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Abstract 

 
This literature study investigates how to use the sequential decision-making 
techniques, i.e., planning or reinforcement learning, in the Delfi-PQ mission. Delfi-
PQ is the first PocketQube satellite developed by TU Delft. 
 
Given descriptions of the system, planning selects and organizes a sequence of 
actions that will eventually achieve goals set by human. Depending on the 
assumptions used, there are different types of planning problems: classical 
planning, temporal planning, probabilistic planning, non-deterministic planning, 
etc. Planning algorithms for these problems, history remarks and current trends in 
this field are reviewed in this document. To understand how planning techniques 
can be used for the Delfi-PQ satellite, the document also discusses previous 
applications of planning in the space industry, from the early 1980s to 2020s. 
 
Reinforcement learning (RL) is another type of sequential decision-making 
technique which is getting popular in recent years. A reinforcement learning 
agent learns how to take the actions that maximize received rewards during 
interaction with the environment. Depending on how the agent represents the 
learned experience, reinforcement learning algorithms can be value-based, 
policy-based, model-based, or a mixture among them. The document reviews 
representative RL algorithms and briefly discusses current challenges in this field. 
It also briefly introduces neural networks, which are frequently used to construct 
components in RL agents. 
 
Three possible applications of planning and reinforcement learning techniques 
are identified, including normal operation of the satellite, FDIR (Fault Detection, 
Isolation and Recovery), and automated test case generation for onboard 
software.  Analysis shows that automated test case generation is the most useful 
and feasible application for Delfi-PQ. 
 
After reviewing the existing test case generation techniques, a gap is identified. In 
current space industry, no system testing tool can efficiently generate causal-
related command sequence with limited prior knowledge of the tested system. By 
contrast, such techniques based on the planning or reinforcement learning have 
become very mature in GUI testing and web service testing. Migration of such  
techniques from these fields to onboard software testing is still a challenge 
because of different environments. 
 
Therefore, to reduce workloads of testers and improve the test coverage, we set 
the following research objective and related research questions as results of the 
literature study: 
 
Suggesting an approach to automatically generate strong causal-related 
testing commands with limited prior knowledge for onboard software by 
designing and validation of a primitive planning/RL-based testing tool for 
the Delfi-PQ satellite. 
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1 Introduction 
 
Sequential decision-making is a key challenge in artificial intelligence. Over the past decades, this 
problem has been studied by two different research communities: planning and reinforcement 
learning (Moerland, Broekens, & Jonker, 2020). Both communities developed their own 
conventions and successful applications. 
 
There are also sequential decision-making problems for the Delfi-PQ, the first PocketQube satellite 
developed in TU Delft. This literature study focuses on how to apply planning and reinforcement 
learning techniques in the mission. This chapter first gives a brief introduction to planning, 
reinforcement learning, and the Delfi-PQ mission. At the end of the chapter, an overview of this 
document is given. 

1.1. Planning 

 
AI Planning is an important research field of Artificial Intelligence since the 1970s. It focuses on how 
to choose and organize future actions to achieve given goals (Ghallab, Nau, & Traverso, 2016). The 
following figure shows a simplified example of a planning problem. 
 

 
Figure 1: Example of a Planning Problem 

 
Planning can be seen as a search process with prediction of future. Classical planning with several 
simplifying assumptions (see section 2.1) was the main topic in this area. Over the last 50 years, the 
search speed of classical planners has been improved by several orders of magnitude and can be 
used in some scenarios. Recent work in this area focuses on adapting planning to more complex 
scenarios (relax some assumptions), acquiring planning models automatically, and integration with 
other deliberation functions/agents (Ingrand & Ghallab, 2017).  
 

1.2. Reinforcement Learning 
 
Reinforcement learning (RL) is a computational approach to learn how to maximize the total amount 
of reward while interacting with a complex and uncertain environment (Sutton & Barto, 2018). Figure 
2 shows an example of an RL problem. 
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Figure 2: Example of a Reinforcement Learning Problem 

 
From a view of search process, RL agents are learning heuristic functions. Model-based RL agents 
also learn searching models. A searching model can define a search space, such as “what nodes 
can be reach from the current node”. A heuristic function can guide the search process, like “which 
successor node is better”.  
 

 
Figure 3: Learning of a Search Process 

 
Knowledge of a search process can be learned from demonstration of expert, i.e., imitation learning 
(IL). RL and IL share many basic techniques. We will discuss both of them in chapter 3. 

 

1.3. The Delfi-PQ Mission 
 
After the Delfi-C3 launched in 2008 and the Delfi-n3Xt launched in 2013, the Delfi-PQ is the 3rd 
satellite build by Delft University of Technology (Radu et.al, 2018). It’s a 3P PocketQube 
(150x50x50mm). As a forerunner, Delfi-PQ helps to set a standard of this type of satellites 
(Bouwmeester, van der Linden, Povalac, & Gill, 2018). Most of subsystems, onboard software and 
electric ground support equipment are made in house.  
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Figure 4: Delfi-PQ satellite 

 
This literature study looks for a way to apply planning and reinforcement learning in the Delfi-PQ 
mission. 3 possible applications are previously identified: 
 

App1: Autonomous operation of the satellite. 
App2: Autonomous recovery from faults. 
App3: Automated testing of onboard software. 

 

1.4. Overview of Rest of This Document 
 
Chapter 2 reviews different types of planning problems and methods to solve these problems. It 
mostly focuses on classical planning and temporal planning since they are more often used in real-
world applications. Some famous planners used in the space industry are briefly introduced. At the 
end of the chapter, it also gives a glimpse of the current trends in this field. 
 
Chapter 3 reviews reinforcement learning. It mainly focuses on model-free RL algorithms because 
they are heavily researched. It also discusses topics like neural networks, Markov Decision 
Problems, model-based RL, hierarchical RL, imitation learning and meta learning. Some 
applications of reinforcement learning are briefly introduced.  
 
Chapter 4 introduces objectives, hardware and software of the Delfi-PQ mission, and analyses 
where autonomy can be applied.  
 
At the end of this document, chapter 5 proposes to apply planning and reinforcement learning 
techniques in the automated testing system of Delfi-PQ. It also suggests what can be improved 
compared with other methods and gives work packages of the research. 
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2 Planning 
 
Figure 5 shows a view of planning in autonomous systems. 
 

  
Figure 5: Traditional View of Planning (Nau, 2021) 

 
In Figure 5, users input descriptions of the planning domain, and descriptions of the planning 
problem (the initial state 𝑠0 and goals) into the planner. The planner makes plans. After that, the 
acting module refines actions in a plan into lower-level actions (commands), executes them and 
deals with uncertainty. The acting module also checks the execution status. If the status is 
unacceptable, it queries the planner to adapt the existing plan to new circumstances (plan repair) 
or generate a new plan from the current state (re-planning). 
 
Planning can be (Nau, 2007) 
 

- Domain-specific. These planners are specially designed and can only be used in a 
specific field, e.g., motion planning and path planning. The AI planning research field is less 
concerned with it because it highly depends on specific domains. 

- Domain-independent. These planners can be applied in any field that satisfies some set 
of simplifying assumptions (see section 2.1). The sole input to the planner is a description of a 
planning problem to solve. Examples are the state space search, plan space search, GraphPlan, 
SAT Plan and CSP planners. 

- Domain-configurable. The planning engine is domain-independent but the input to the 
planner includes domain-specific knowledge to constrain the planner’s search. Examples are HTN 
planners and control-rule planners. 
 
Planners with domain-specific knowledge are generally quicker than those without domain specific 
knowledge. However, it needs effort if users edit domain-specific knowledge by hand. 
 
This chapter discusses domain-independent and domain-configurable planning. It first introduces 
common assumptions of planning. There are many types of planning problems based on different 
assumptions. Representations, languages, and algorithms for these problems are briefly reviewed, 
following by applications in the space industry and current trends. 
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2.1. Types of Planning Problems 
 
Commonly used assumptions of planning problems are (Ghallab, Nau, & Traverso, 2004): 
 
 Assumption A0: the system has a finite set of states and actions. 
 Assumption A1: the system is fully observable. 
 Assumption A2: actions only have deterministic effects. 
 Assumption A3: only the actions of the agent can change the states, i.e., no external 
events. 
 Assumption A4: the goal is only a state or a set of states. 
 Assumption A5: a solution plan is a linearly ordered finite sequence of actions. 
 Assumption A6: actions have no durations. 
 Assumption A7: the planner is not concerned with any change that may occur during 
execution. 
 
Classical planning problems satisfy all assumptions from A0~A7. It was most heavily researched 
and can be used in some simple scenarios. 
 
Temporal planning relaxes A6 by including parallel actions and their durations. Its model is more 
realistic so many autonomous robot systems (e.g., spacecrafts) use it. Examples include the 
planning and scheduling module of the NASA Deep Space 1 spacecraft (Muscettola, Nayak, Pell, & 
Williams, 1998) and the APSI planning platform of ESA (Fratini, Cesta, De Benedictis, Orlandini, & 
Rasconi, 2011).  
 
Probabilistic planning, where an action has multiple possible outcomes and the probability of each 
outcome is known, relaxes A2 and A5. Such problems can be modelled as Markov Decision 
Processes (MDP). A solution of probabilistic planning is a policy which maps states to actions, 
instead of a linear plan. The MDP approach has difficulties in integration with temporal planning.  
 
In nondeterministic planning, outcome of actions is uncertain, and the probability is not fixed. One 
approach used to solve this problem is belief state search. A belief state is a set of world states, one 
of which is the actual state. This method relaxes A2. Another approach is conditional planning, 
whose solution plan is a tree structure with observation actions. This approach relaxes A2 and A5. 
Both approaches are not frequently used in practice. 
 
A3 and A7 can be relaxed by planning repair or replanning. Replanning simply builds a new plan 
from scratch. In contrast, planning repair tries to reuse fragments of the original plan in the new 
plan.  
 
There are many other types of planning problems which are not covered in this document. Note 
that: 
 

- An algorithm may be able to solve different types of problems.  
- In practical applications, there are not necessarily clear boundaries between the various 

types of planning problems. Different algorithms are also mixed. 
- Several planning techniques can deal with uncertainty. However, in practice it is mainly the 

acting module that responds to uncertainty. 
 

2.2. Representations 
 
In the example of section 1.1, planning methods need to find a route from an initial state to a goal 
state in a state space. However, in most of planning problems, the state space is very large (NP-
hard) and difficult to represent explicitly. Therefore, we need to find an implicit and compact way to 
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represent the state space. Such representation should enable us to generate the following things 
during planning: 
 

- internal information about the current state 
- actions that can be applied in the current state 
- what state is reached after an applicable action is performed 

 
There are 3 popular representations in classical planning (Ghallab, Nau, & Traverso, 2004): 
 

- Propositional representation, which comes from the proposition logic. The world state is 
simply a set of propositions. Preconditions of an action are also propositions. Effects of an action 
are propositions that are added to, or removed from, the world state. 

- STRIPS representation, which comes from the first-order logic. It was firstly introduced by 
the STRIPS planner. It has objects, variables (unknown objects), predicates (relations among 
objects), actions, and operators (actions with variables). A state consists of predicates with objects, 
also called ground atoms/literals. Preconditions of an action are literals. Effects of an action are 
literals that are added to, or removed from, the world state. 

- State-variable representation. A world state consists of state variables. Actions are partial 
functions over states. 

 
These 3 representations are equally expressive, which means a planning problem in one 
representation can also be represented by others. However, each representation may be more 
efficient than others in specific applications or algorithms. For example, the GraphPlan algorithm, 
which fully exploits the characteristics of the positional representation, was the most efficient 
planning algorithm in the mid-1990s. 

 
Variants of these representations are used in other types of planning problems. In temporal 
planning, a variant of state variable representation called the timeline representation is commonly 
use (Ghallab, Nau, & Traverso, 2016). A timeline includes values of a state variable during different 
time intervals. For probabilistic planning and non-deterministic planning, all these 3 representations 
can be used with slight modification, i.e., there will be multiple possible outcomes of an action. 
 

2.3. Languages 
 
As shown by Figure 6, users need to input descriptions of the planning domain (the system ∑), and 
descriptions of the planning problem (the initial state 𝑠0 and goals) into the planner. It is helpful to 
use standard languages to write definitions of planning domains and problems so different planners 
can have a standard interface. 
 
Domain-independent planners for classical planning share a standard language now. It is called the 
Planning Domain Definition Language (PDDL), evolved from the STRIPS and ADL languages 
(McDermott, 2003). It was first developed for the international planning competition (IPC) in 1998 
and becomes a complex language with many characteristics today.  Most planers, however, do not 
support the full PDDL. The majority support only the STRIPS subset, or some small extensions of it. 
 
Languages of domain-configurable planners for classical planning were also proposed. An example 
is the HDDL, an extension to PDDL for expressing HTN planning problems (Höller et al., 2020).  
 
For probabilistic planning, there is an extension of PDDL 2.1 called the Probabilistic Planning 
Domain Definition Language (PPDDL), which supports probabilistic effects. It's now the standard 
planning language defined for the IPC probabilistic planning track (Younes & Littman, 2004). The 
NPDDL language for nondeterministic planning was defined in a similar way (Bertoli, Cimatti, Dal 
Lago, & Pistore, 2003). 
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Figure 6: Standard Languages Needed by Planning 

 
However, an extension of PDDL may not become the standard language in temporal planning. 
Although the current PDDL language provides some temporal characteristics, most of this language 
is based on the STRIPS representation, which is not flexible enough in temporal planning (we will 
discuss why in section 2.5). Languages of temporal planning need to support the popular timeline 
representation. Examples include the New Domain Definition Language (NDDL) of the Extensible 
Universal Remote Operations Planning Architectures (EUROPA) of NASA, and Domain Definition 
Language (DDL) used by the Advanced Planning and Scheduling Initiative (APSI) of ESA 
(Cividanes, Ferreira, & de Novaes Kucinskis, 2021). 

 

2.4. Classical Planning 

 

2.4.1 State Space Search 

 
State space search is the most straightforward planning algorithm. It simply sees the planning 
process as finding a route from an initial state to a goal state on a state transition graph. As we 
mentioned in section 2.2, the state transition graph is implicit, and the planning algorithm constructs 
the nodes and edges of the graph on the fly. 
 
State space search can be informed or uninformed. Uninformed search doesn't have any 
guidance. Examples of such methods include Depth-First search, Breadth-First search, and the 
famous Dijkstra's algorithm. Informed search uses heuristic functions to evaluate the distance 
between a state and the goal state. Examples of such methods include the Greedy Best-First 
Search (GBFS), the Depth-First Branch and Bound algorithm (DFBB) and A*-like algorithm. Practice 
shows that informed search can be more efficient than uninformed search. 
 
State space search can also be forward search or backward search. Forward search starts from 
the initial state and tries to reach the goal states by repeating the following steps (backtracking and 
pruning are not shown here): 
 
 Step 1: Find applicable actions of the current state 
 Step 2: Choose an applicable action (informed/uninformed) 
 Step 3: Apply the action virtually and reach a new state 
 Step 4: Examine whether the new state is the goal state 
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By contrast, backward search starts from the goal state and try to reach the initial state by 
repeating the following steps (backtracking and pruning are not shown here): 
 
 Step 1: Find relevant actions of the current goal 
 Step 2: Choose a relevant action 
 Step 3: Find the state before applying the selected action. The new state is called a “sub-
goal” 
 Step 4: Check whether the new sub-goal contains the initial state 
 
Backward search generally has fewer branch number (branch factor) compared with forward 
search. 
 
A technique called lifting can further reduce number of branches and therefore speed up state 
space search. It selects and applies operators (actions with variables), instead of fully ground 
actions that are applicable to the current state. In this way, it introduces variables into the state 
space and does not instantiate these variables if not necessary (least commitment principle). 
Therefore, this method reduces the branch number in the state space. However, as a price, it must 
manage the constraints among these variables. This idea is inherited by many other planning 
methods, especially the plan space search. 
 
Some early planners used state space search. An example is the STRIPS planner (Fikes & Nilsson, 
1971), which used a way like backward search. However, the state space is still too large even after 
backward search and lifting is used. Only with very good heuristic functions, state space search can 
reach a solution quickly. Over a long period of time, researchers didn’t know how to come up with 
good heuristics. 
 
This situation was changed by Bonet and Geffner (1999). They found that good heuristics can be 
easily computed by solving the relaxed problem, i.e., a simplified version of the original planning 
problem. It can be seen as generating domain-specific heuristics automatically.  
 
This had led to fast planning algorithms like HSP (Bonet & Geffner, 1999) and FastForward 
(Hoffmann & Nebel, 2001). There are 4 types of advanced heuristics constructed in this way: 
ignoring delete effects on a planning graph (Keyder et al., 2012), abstractions (Helmert et al., 
2007), critical paths (Haslum & Geffner, 2000), landmarks (Richter & Westphal, 2010). Some 
fastest planners today use forward state space search and these heuristics. 

  

2.4.2 Plan Space Search 

 
Before explaining the plan space search, we first introduce some basic concepts.  
 
A partial plan, as shown by Figure 7, is an incomplete plan 𝜋 = (𝐴, ≺, 𝐵, 𝐿), where: 
 

- 𝐴 = {𝑎1, … , 𝑎𝑘} is a set of partially instantiated operators, i.e., actions with variables. 
- ≺ is a set of ordering constraints on 𝐴. 𝑎𝑖 ≺ 𝑎𝑗 means 𝑎𝑖 is earlier than 𝑎𝑗. 

- 𝐵 is a set of binding constraints on the variables in 𝐴, such as 𝑥 = 𝑦, 𝑥 ≠ 𝑦, and 𝑥 ∈ 𝐷𝑥. 
- 𝐿 is a set of causal links 𝑎𝑖 − [𝑝] → 𝑎𝑗 so that 𝑝 is an effect of 𝑎𝑖 and a precondition of 𝑎𝑗. 

 
A partial plan becomes a partial solution if: 
 

- no open goal (a type of flaw), i.e., every precondition in 𝐴 is supported by a causal link. 
- no threat (a type of flaw), i.e., no action that may interfere with a causal link ≺. 
- the ordering constraints ≺ is not circular. 
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- the variable bindings 𝐵 are consistent. 
 
A partial solution can be linearized to total-order plans, i.e., sequences of actions that can convert 
the initial state to the goal state.  
 
We can apply resolvers to a partial plan to make it closer to a partial solution. A resolver can be: 
 
 - adding an action 
 - adding a causal link 
 - add a variable binding 
 - add an ordering constraint 
 

 
Figure 7: A Partial Plan (Wickler & Tate, 2012) 

Solid lines are ordering constraints. Black dash lines are causal links. The red dash line is a threat. 
Variable bindings are not shown here. 

  
In the plan space search, each node is a partial plan, and each edge is a resolver. We search in 
such plan space to find a way from a partial plan to a partial solution. The workflow of a partial 
space planner is shown in Figure 8. 
 

 
Figure 8: Workflow of Plan Space Search (Wickler & Tate, 2012) 

 
In several planning domains, the plan space search is faster than the state space search. Another 
advantage is that rationale of the plan is explicitly represented by constraints and causal links. This 
makes plan repair easier. Therefore, when the plan space search was introduced by the NOAH 
(Sacerdoti, 1974) and NONLIN (Tate, 1977) planners in the late 1970s, it was a great breakthrough. 
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However, plan space search also has a significant problem: the current state of the system is 
always unknown. Without the current state, it’s difficult to utilize domain-specific heuristics to guide 
the search. Therefore, the heuristic functions used by plan space search are less efficient than 
those used by state space search today. Examples of these heuristics are: 
 
 - Select the flaw with the smallest number of resolvers 
 - Choose the resolvers that rules out fewest resolvers of other flaws 
 - … 
 
Computation in each node is also more expensive because such algorithms need to maintain 
ordering constraints and binding constraints. Sometimes it needs to solve a general Constraint 
Satisfaction Problem (CSP), which is NP-complete. 
 
Therefore, the efficiency of plan space planners cannot be compared with advanced state space 
planners today, especially in classical planning. Some of its advantages are desired by planning 
with temporal and resources constraints because such planning problems must deal with 
constraints (Ghallab, Nau, & Traverso, 2004). 

 

2.4.3 Hierarchical Task Network 

 
In Hierarchical Task Network (HTN), there are tasks to decompose, instead of goals to achieve. We 
will first illustrate the basic idea of HTN using its simplest variants, total-order HTN planning.  
 
Compared with the planning problem shown in Figure 2, a total-order HTN planning problem has 
some new concepts: 
 
 - Tasks. A primitive task can be performed by an action. A non-primitive task can be 
decomposed by one or several methods. 
 - Methods. A method is designed to decompose a non-primitive task. It has a sub task 
network and preconditions. 
 - Task Networks. In the total-order HTN planning, a task network is simply a sequence of 
task.  
 
At the beginning of the planning process, an initial state, an initial task network, a set of actions, and 
a set of methods are given. The total-order HTN algorithm repeats the following steps until all non-
primitive tasks are decomposed and all primitive tasks are replaced by actions (backtracking and 
pruning are not shown here): 
 
 Step 1: Select the first task in the current task network (a sequence). 
 Step 2: If the task is non-primitive, choose a method to decompose the task. The current 
state should satisfy the preconditions of the method. The non-primitive task is then replaced by the 
sub task network (a sequence) of the method. 
 Step 3: If the task is primitive, replace it with an action. 
 
A plan may be found at the end. An example of a total-order HTN planning process is shown in 
Figure 9. 
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Figure 9: Illustration of Total-Order HTN Planning (Nau, 2021) 

 
There are many variants of HTN Planning algorithms: 
 
 - Total-order HTN planning as shown here. The SHOP planner uses it (Nau, Cao, Lotem, & 
Munoz-Avila, 1999).  
 - Partial-order HTN planning, where a method only has a sub task network. A task network 
has tasks and constraints. A constraint looks like “precondition A is true, from the start of task B to 
the end of task C”. The SHOP2 planner uses such algorithm (Nau et al., 2003). 
 - Plan space HTN planning, which combines HTN planning with plan space search.  
Examples are SIPE (Wilkins, 1990), O-Plan (Currie, & Tate, 1991), and UMCP (Erol, Hendler, & 
Nau, 1994). 
 - Hierarchical Goal Network (HGN). There is no task in HGN. HGN methods contain sub-
goals, instead of sub task network. It can be seen as another type of hierarchical planning. An 
example is the GoDeL planner (Shivashankar, Alford, Kuter, & Nau, 2013). 
 - Angelic Hierarchical A* (AHA*). It does forward A* search at every level, from top down 
(Marthi, Russell, & Wolfe, 2008). 
 
The advantage of HTN planning is thinking hierarchically. Different from state space search and 
plan space search, HTN doesn’t look for a detailed plan at the beginning. It first finds a simple high-
level plan and then define the details. This is exactly how human experts do their planning. At the 
same time, domain-specific search control knowledge is encoded in methods. If there are good 
methods, HTN planners can be several orders of magnitude faster than the classical planners 
(state/plan space search). Therefore, most of practical planners today use HTN planning. 
 
The disadvantage is that HTN needs a set of good methods, which may take a lot of effort to 
develop. If at a certain state, no method can decompose a task, then the HTN algorithm will crash. 

 

2.4.4 Planning with Control Rules 

 
Another way to utilize domain-specific knowledge is planning with control rules. It uses linear 
temporal logic formulars to prune nodes during search. These formulars will be updated when the 
world state is changed. If there are good control rules, such planners can be several orders of 
magnitude faster than the classical planners. However, it needs good control rules written by human 
experts. An example of such planners is the TLPlan (Bacchus, & Kabanza, 2000).  
 
It’s interesting to compare control-rule planners with HTN planners. HTN tells the planner which 
parts to consider, while control rules tell the planner which parts not to consider. It’s possible to 
integrate them together in some scenarios (Ghallab, Nau, & Traverso, 2004). 
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2.4.5 GraphPlan 

 
A planning graph is a data structure such as the one shown in Figure 10. It uses the propositional 
representation in the section 2.2. Each level n contains propositions and actions that can be applied 
to propositions in level n-1. The graph also maintains precondition/effect links among layers, and 
mutual-exclusive propositions/actions in each layer. Thus, the planning graph represents a 
relaxed version of the planning problem in which several actions can appear simultaneously even if 
they conflict with each other (Nau, 2007). 
 

 
Figure 10: An Example of Planning Graph (Nau, 2007) 

 
The basic GraphPlan algorithm repeats: 
 

Step 1: Create a planning graph of n levels.  
 
Step 2: Goals of the n-th level are the goals of the problem. 
 
Step 3: If the n-th level contains all goals of this level and they are not mutually exclusive, 
look for actions in the n-th level that are not mutually exclusive and can satisfy all goals. 

 
 Step 4: Goals of the n-1 level are preconditions of the action found in the previous step. 
 
 Step 5: Do similar things in step 3, but in level n-1. 
 
 Step 6: Repeat step 4 and 5 for level n-2, n-3, …, 1. If it succeeds, it will find a plan. 
 
 Step 7: If step 6 fails, set n = n+1 and go to step 1.  
 
The planning graph can be expanded in polynomial time (step 1) and the mutually exclusive 
restrictions that the backward search must operate within the planning graph dramatically improve 
the efficiency of the backward search. As results, GraphPlan runs orders of magnitude faster than 
other domain independent planning algorithms. When it first appeared in the mid-1990s, it was a 
remarkable breakthrough in AI planning (Blum, & Furst, 1997). 
 
It’s popular to use the GraphPlan to generate heuristics instead of using it as a planner directly. The 
relaxed planning graph ignores “delete” effects of all actions so there will not be mutually exclusive 
propositions/actions. It simplifies the whole algorithm. By calculating the solution of such relaxed 
problem, a planner can better estimate the distance between a state and the goal, i.e., the heuristic 
function. An example is the FastForward planner (Hoffmann & Nebel, 2001). 
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2.4.6 Translation into Other Problems 

 
A planning problem can be translated to combinatorial problems, such as satisfiability problems 
(SAT), constraint satisfaction problems (CSP), and integer programming. There are some efficient 
solvers that can deal with such problems. At the end, the solution found by the problem solver is 
translated to a plan. This approach leads to planners like SATPlan (Kautz, & Selman, 1999). 
 
In fact, CSP techniques are often used to aid planning, rather than encoding planning problems 
directly into CSP problems. For example, such techniques can manage variable binding constraints 
in plan space search, or mutually exclusive propositions/actions in GraphPlan. 
 

2.5. Temporal Planning 

 

2.5.1 Planning and Scheduling 

 
Traditional planning and scheduling are 2 different research fields. “Planning” decides which actions 
to take in an order to reach a desired goal, while “scheduling” allocates time and resources to some 
known actions (Hopgood, 1993).  
 
In some simple scenarios, we can plan before we schedule. We first decide which actions to do and 
in what order, then allocate time and resources to each action. This approach simplifies both 
planning and scheduling, as shown by Figure 11. 
 

 
Figure 11: Simple Decomposition of Planning and Scheduling  

(Ghallab, Nau, & Traverso, 2004). 
 
However, there may be inconsistency. For example, solutions from a planner may always violate 
temporal and resource constraints. To deal with such inconsistency, we need to integrate planning 
and scheduling together, i.e., temporal planning. 

 

2.5.2 Temporal Planning Based on Durative Actions 

 
Early temporal planners simply extend classical planning by giving each action a duration. 
According to PDDL2.1 (Fox, & Long, 2003), preconditions for a durative action can be true at the 
start of the action or be true all the way through the action. The effect of a durative action can occur 
at the start or end of the action. Figure 12 shows an example of such action. 
 
In the durative action approach, the temporal model is not very complex. Therefore, classical 
planning techniques mentioned above can be reused here with modifications. Some efficient 
planners are designed in this way. 
 
Many durative action planners use the state space search, and use heuristics improved from 
classical planning. An example is the SAPA planner (Do, & Kambhampati, 2003) which uses the 
relaxed time planning graph as its heuristic. Action compression (Eyerich, Mattmüller, & Röger, 
2009), which abstracts the durative transition to an instantaneous one to calculate heuristic, is also 
popular.  
 



       

19 

 

A few planners with durative actions use the plan space search, like the ZENO planner (Penberthy, 
& Weld, 1994). Some planners also integrate HTN planning with durative action extension. 
Examples are the DEVISER (Vere, 1983), SIPE (Wilkins, 1990), O-Plan (Currie, & Tate, 1991), and 
SHOP2 (Nau et al., 2003).  
 
Control-rule planners can also be extended with the durative action extension, such as the 
TALplanner (Kvarnström, & Doherty, 2000). It’s also possible to encode such problems into SAT or 
CSP problems. 
 

 
Figure 12: A Durative Action 

 
Although the speed of the durative action approach is promising, the expressive of such model may 
be not enough in many applications. For example, such model cannot handle concurrent actions 
with interfere effects very well because these effects are instantaneous. Figure 13 shown an 
example of such case. In contrast, the timeline-based model in the next section can fix this problem. 
 

 
Figure 13: Concurrent Actions with Interfere Effects 

 

2.5.3 Timeline-based Temporal Planning 

 
Timeline-based planners use the basic ideas of the plan space search and HTN planning. Before 
explaining its ideas, we first introduce some basic concepts. 
 
Each state variable has a timeline. We use the timeline in Figure 14 as an example, and it has: 
 
 - Timepoint variables (𝑡1, 𝑡2, 𝑡3, 𝑡4), object variables (location 𝑙), real values (location loc1, 
loc2). 



       

20 

 

 - Persistence temporal assertions, e.g., [𝑡2, 𝑡3]𝑙𝑜𝑐(𝑟1) = 𝑙. It shows that 𝑙𝑜𝑐(𝑟1) remains to 
be 𝑙 from 𝑡2 to 𝑡3. 

 - Change temporal assertions, e.g., [𝑡3, 𝑡4]𝑙𝑜𝑐(𝑟1): (𝑙, 𝑙𝑜𝑐2). It shows that 𝑙𝑜𝑐(𝑟1) changes 
from 𝑙 to 𝑙𝑜𝑐2 in the time interval [𝑡3, 𝑡4]. 
 - A temporal assertion can be causally supported by another assertion. For example, 
[𝑡3, 𝑡4]𝑙𝑜𝑐(𝑟1): (𝑙, 𝑙𝑜𝑐2) is supported by [𝑡2, 𝑡3]𝑙𝑜𝑐(𝑟1) = 𝑙. The concept of “causal support” is like the 
“causal link” in plan space search. 
 - Constraints on timepoint variables and object variables.  
 

 
Figure 14: Timeline of State Variable loc(r1), Location of Robot r1 (Nau, 2021) 

 
An action in the timeline representation doesn’t have preconditions and effects anymore. Instead, it 
has temporal assertions and constraints, which will be inserted to timelines if the action is applied. 
Figure 15 shows an action in the timeline representation. 
 

 
Figure 15: An Action in Timeline Representation (Nau, 2021) 

 
A method here also doesn’t have preconditions. If a method is applied, new assertions and 
constraints will be added to timelines, and a composite task will also be decomposed to sub tasks. 
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Figure 16: A Method in Timeline Representation (Nau, 2021) 

 
A chronicle, as shown in Figure 17, is like a partial plan. It has: 
 
 - Current all primitive/composite tasks. 
 - Causally supported/unsupported temporal assertions of all timelines. 
 - Constraints from of timelines. 
 
Like a partial plan, a chronicle will be a solution if: 
 
 - No unsupported temporal assertion (a type of flaw, like open goals in partial plans). 
 - No possibly conflicting temporal assertions (a type of flaw, like threats in partial plans). 
 - All composite tasks are decomposed. All primitive tasks are replaced by actions, and the 
assertions and constraints of these actions are added to the chronicle (a type of flaw). 
 - All constraints on timepoints are consistent. 
 - All constraints on object variables are consistent. 
 

 
Figure 17: A Chronicle in Timeline Representation (Nau, 2021) 
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Like in plan space search, we can define resolvers for a chronicle, which make it closer to a 
solution: 
 
 - Adding an action or a task 
 - Adding a persistence assertion 
 - Add a constraint on timepoint/general variables 
 - Decompose a composite task using a method 
 - Replace a primitive task using an action and add assertions & constraints of the action to 
the chronicle. 
 
With these concepts, the workflow of timeline-based planners is like the one in Figure 8. It simply 
repeats the following steps until a solution is found (backtrack and pruning not shown here): 
 
 Step 1: Select a flaw. 
 Step 2: Select a resolver for the flaw. 
 Step 3: Apply the resolver and maintain constraints in the chronicle. 
 
Like variable binding constraints of plan space search, constraints on objects are maintained as a 
general CSP. However, maintaining constraints on timepoint variables here are more complex than 
checking circular loops in plan space search. Such constraints are generally represented and 
managed by a Simple Temporal Network (STN) or the interval algebra. 
 
The timeline approach was firstly introduced by Allen and Koomen (1983). The first planner that 
introduced chronicles was the IxTeT (Ghallab, & Laruelle, 1994). This approach is popular today, for 
example, most of planners for space industry in the section 2.7 are timeline-based. Compared with 
the durative action approach, it’s less efficient but can deal with more complex situations. Because 
the timeline approach uses plan space search and keeps causal links and constraints, plan repair is 
also easier. 
 

2.6. Planning with Uncertainty and Probability 
 
In probabilistic planning, an action may have multiple outcomes, and the possibility of each 
outcome is known. It can be modelled as a Markov Decision Process (MDP) where state transition 
probabilities are known.  
 
Early solvers of such problems used policy iteration or value iteration of dynamic programming. 
These solvers will calculate optimal policies of all states, so they take too much computational 
resources. Later algorithms avoid to evaluating all states. They focus on the states that can be 
reached from the initial state and use forward search based on AND/OR graphs. 
 
This document doesn’t dive into probabilistic planning. Such technique is difficult to use in the Delfi-
PQ mission because we don’t know the probabilities in advance. In the next chapter, we will see 
how probabilistic planning is used in model-based reinforcement learning. 
 
Conditional planning doesn’t need the probabilities. It produces plans with tree structures: 
 

If <condition> 
plan_A  

else  
plan_B 
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It also based on AND/OR graph search. The bad news is that conditional planning is harder than 
NP and use a lot of memory space O(2^n). In practice, we generally handle uncertainty with the 
acting module. 
 

2.7. Planning in Space Industry 
 
For some simple scenarios, where the spacecraft only has few actions to do, the approach in the 
section 2.5.1 is enough. For example, in normal operations of a remote sensing satellite, there will 
be only 2 actions: “turn to a target and take a photo”, and “downlink the data”. In this case, we can 
use a scheduler to make yearly/weekly schedules. Human operators will then translate the 
schedules to commands by modifying a set of command templates. The Hubble Space Telescope is 
operated in this way, with a CSP-based scheduler called SPIKE (Johnston, 1990). The author of 
this document also designed several scheduling algorithms for a China-ESA space telescope called 
the Einstein Probe (NAOC, 2018). 
 
For more complex scenarios, where the spacecraft has many actions to select, organize and 
synchronize, temporal planning is needed. For example, a Mars rover needs to move, 
communicate, and perform multiple scientific operation. The Spirit and Opportunity rovers were 
supported by the MAPGEN ground planner (Ai-Chang et al., 2004), while an onboard planner was 
designed for the Perseverance rover (Rabideau et al., 2020). 
 
There are many planners used in the space industry. The most representative examples among 
them are presented in this section. A conference in this field is the International Workshop on 
Planning and Scheduling for Space (IWPSS), organized by JPL. 2 surveys of planners in space 
industry are (Chien, 2012) and (Cividanes, Ferreira, & Kucinskis, 2019). 
 

2.7.1 DEVISER (JPL, early 1980s) 

 
DEVISER (Vere, 1983) mentioned in section 2.5.2 was one of the earliest planners in the space 
industry. In early 1980s, NASA JPL recognized that they needed temporal planning in deep space 
missions. As their first try, they developed DEVISER based on the NONLIN planner (Tate, 1977) 
mentioned in section 2.4.2.  
 
The program is written in Lisp. It used plan space search and simple temporal constraints. The 
planner was tried when the Voyager spacecraft encountered Uranus but not actively used. 
 

 

 
Figure 20: Examples of Actions and Goals of the Voyager Mission (Clement, 2013) 

 

2.7.2 Plan-IT (JPL, 1987-2001) 

 
JPL’s Plan-IT ground planner (Shepperd et al., 1998) are improved versions of DEVISER. It used 
local search, which is also a type of plan space search. The plan space search mentioned before 
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starts from a blank initial plan and ends with a (not fully instantiated) partial plan without flaws. 
However, local search algorithms start with a ground plan with flaws, and end with a ground plan 
without flaws. Plan-IT also modelled depletable (like propellant) and non-depletable resources (like 
electrical power). 
 
Plan-IT was used in many missions: 
 

- It created activity plans for Galileo at Jupiter in 1994.  
- From 1996 to 1997, it created science and operation plans for the Mars Sojourner rover.  
- From 1998 to 2001. It generated all ground command sequences for the Deep Space 1 

mission.  
- This planner was also used to manage NASA’s Deep Space Network. 
- Creating plans for the Spitzer space telescope. 
- Operate the DATA-CHASER payload on the space shuttle. In the DATA-CHASER mission 

(Shepperd et al., 1998), it was reported to reduce 80% of operation effort and increase 40% of 
scientific return. 

 

 

 
Figure 20: Plan-IT and Its Applications (Clement, 2013) 

 

2.7.3 PS Module in DS-1 (NASA Ames, 1998) 

 
The Planner/Scheduler module of Deep Space 1 (Muscettola et al., 1998) was the first onboard 
planner over the world. The architecture of the Deep Space 1 remote agent was exactly the 
architecture mentioned in chapter 1. Such architecture is also common in autonomous robots. The 
“Mission Manager” is a goal reasoning module. The “Planner/Scheduler” is a planning module. The 
“Smart Executive” is an acting module. The “livingstone MIR” is a FDIR module. The “monitors” are 
observing module. As an early agent, Deep Space 1 didn’t have a learning module.  
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The Planner/Scheduler can also communicate with several external programs called “planning 
experts”. For example, an ADCS expert can calculate the time needed by attitude maneuver and 
send the result to the Planner/Scheduler. In this way, the complexity of planners is reduced. 
 
The Planner/Scheduler of DS1 used the timeline approach in section 2.5.3. However, it didn’t 
integrate HTN methods inside. It also didn’t use local search but always started from a blank partial 
plan. As a result, it takes approximately 4 hours to produce a 3-day operations plan. Such long 
planning time is not desired in many missions. 

 

 
Figure 21: Architecture of Deep Space 1 Remote Agent (Muscettola et al., 1998) 

 
The remote agent only controlled the Deep Space 1 spacecraft for 5 days (17th-21st May 1999). 
Some issues and alarms did arise during the experiment. These alarms mainly came from the 
complexity of the agent. They show that formal verification methods are needed for such mission-
critical software. 
 

2.7.4 ASPEN/CASPER (JPL, 2001-present) 

 
The ASPEN system developed by JPL was another iterative repair local search planner like the 
Plan-IT. It was written in C++ and integrated HTN methods. Apart from the local search 
characteristic, it is very like the timeline approach in section 2.5.3.  
 
An onboard version of ASPEN is called CASPER. CASPER doesn’t generate a plan from scratch 
but modify plan uploaded from the ground. Such plan repair only takes several seconds and is a 
remarkable improvement compared with the Planner/Scheduler of DS-1.  
 
Its applications include: 
 

- It was first used in the Modified Antarctic Mapping Mission and reported to reduce 80% 
planning effort and save more than $1M.  

- ASPEN (ground) and CASPER (onboard) was used in the Earth Observation 1 satellite 
from 2004 to 2017, reducing 55% of operation costs.  

- Since 2007, ASPEN is used to generate plans for the DARPA Orbital Express and save 
more than $10M. In this mission, ASPEN used nature language processing to generate planning 
model automatically. 

- Since 2007, ASPEN is used to generate plans for the NASA Deep Space Network. 
- In 2014, ASPEN and CASPER was also used in the IPEX CubeSat mission, where ASPEN 

generated a coarse plan on the ground and CASPER modified the plan onboard. 
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Figure 22: ASPEN and Its Applications (Clement, 2013) 

 

2.7.5 EUROPA (NASA Ames, 2004-present) 

 
The EUROPA planner is an improvement of the Planner/Scheduler module on DS-1. The program 
was rewritten in C++, instead of Lisp. It called timelines as “tokens”. It was used in 
 
 - Since 2004, as a part of MAPGEN, it generated plans for the Spirit and Opportunity mars 
rovers. 
 - Since 2007, as a part of SACE, it planned the orientation and movements of the 
International Space Station’s eight large solar arrays. 
 

  
Figure 23: EUROPA Planner (Clement, 2013) 

 

2.7.6 MEXEC (JPL, 2019-present) 

 
MEXEC is developed by JPL (Troesch et al., 2020). It was first tried in the ASTERIA CubeSat and 
run within 2MB of memory (the number of actions is limited). MEXEC includes a HTN planner, an 
executive (acting module), a state database and a timeline library. The timeline library can manage 
temporal and object constraints and calculate valid intervals for tasks. It leaves an easy-to-use 
interface to the planner. This feature is popular on the recently developed temporal planners.  
 
The onboard planner of the Perseverance Mars rover (Rabideau et al., 2020) was specially 
designed but shared the same timeline library of MEXEC. MEXEC is multi-mission, while the 
onboard planner only has a specialized planning algorithm with limited choice points. 
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Figure 24: Architecture of MEXEC (Troesch et al., 2020) 

 

2.7.6 APSI (ESA, 2006) and European Planners 

 
APSI (Fratini et al., 2012) is a platform to support planners and schedulers. It manages timelines 
and constraints for planners / schedulers, which is like the timeline library of MEXEC. Several 
schedulers, like the downlink scheduler MAXER of Mars Express, were developed on APSI. 
 
ESA is also working on integrating the OPTIC timeline-based planner (Benton & Coles, 2012) into 
their Mars rover. ESA also developed planners including: 
 
 - PlanERS, which was the earlies ESA planner (Fuchs, Gasquet, Olalainty, & Currie, 1990). 
 - Optimum-AIV, which was developed from the Edinburgh O-Plan mentioned in section 2.4.3 
(Arentoft, Parrod, Stader, Stokes, & Vadon, 1991). It was used in project management of the 
assembly, integration, and verification (AIV) of the vehicle equipment bays of the Ariane 4 rockets. 
 
There are many other European planners, for example, the Flexplan of GMV. 
 

2.8. Current Trends in Planning 
 
We will discuss some important directions in the following subsections. 
 

2.8.1 Dynamic and Open World 

 
Most of classical planners assume the environment is fully observable (A1 in section 2.1), static 
(A3), and planners are not concerned with any change that may occur during execution (A7). 
However, these assumptions are not true in many applications.  
 
In most of applications, the acting module will handle dynamic and partially observable environment 
as much as possible. However, to reduce the complexity of the acting module, the planning module 
needs some capability to handle dynamic and open environment. 
 
Plan repair and replanning.  
 
It has been widely accepted. For example, the CASPER system in section 2.7.4 takes this 
approach. (Rui, Chen, Cui, Zhu, & Xu, 2019) surveys current plan-repair techniques: 
 
 - Use rules to identify why the current plan fails and fix the problem. It’s simple but repair 
rules may not cover all situations. Examples are the CHEF (Hammond, 1990) and O-Plan system 
(Drabble, Dalton, & Tate, 1997).  
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 - Use historical plans to modify current plans. It’s quick but takes a lot of memory space to 
store historical plans and cannot guarantee a solution. Researchers like Fukushima and Mita (2011) 
try to improve its efficiency. 
 - Delete the failure action and try to find action(s) which can replace the failure action. If not 
possible, delete more actions from the plan and try again. Examples are (Gerevini, & Serina, 2000), 
(Van Der Krogt, & De Weerdt, 2005) and (Mohalik, Jayaraman, Badrinath, & Feljan, 2018). 
 - Repair the failure action. An action fails because some of its preconditions are not true. 
Such algorithms try to find actions that can make these preconditions true. An example is (Guzman, 
Castejon, Onaindia, & Frank, 2015) 
 - Retrieve information from the original plan and use such information as “soft goals” of the 
new planning problem. An example is (Talamadupula, Smith, Cushing, & Kambhampati, 2013). 
 
Generally, if the original plan contains more information about “why this action is placed here”, plan 
repair will be easier. If plan repair is not possible, we must do replan which starts from scratch. 
Replan takes more time and may lead to inconsistency.  
 
There are many research questions to answer in this area: 
 
 - How to evaluate feasibility of plan repair before we start to do it? 
 - How to minimize the time and resources needed by plan repair? There has been a lot of 
work done in this question. 
 - Determine which part of the plan are affected by the failure action, so we can only fix that 
part. 
 - Evaluate stability of a plan. 
 - Plan repair on concurrent actions and their conflicts on time and resources. This is 
important for operation of spacecraft. 
 
Generate a flexible plan.  
 
We have seen this approach in temporal planning, probabilistic planning (where a plan is a policy), 
and conditional planning (where a plan is a tree structure). The Planner/Scheduler of DS-1 takes 
this approach and always generates a partial plan with some variables. For example, the timepoint 
variables in a DS-1 plan are not substituted by real values. The “Smart Executive” will set these 
timepoints according to constraints in the plan during acting. 
 
Recent developments of flexible temporal plans include research on the Simple Temporal Network 
with Uncertainty (STNU). In temporal planning, we generally assume an action has certain known 
duration. However, duration of an action can be longer or shorter in practice. A STNU is 
dynamically controllable if we can find a policy that guarantees success regardless of actual 
duration of an action (Hunsberger, Posenato, & Combi, 2012). A STNU with such policy can be 
seen as a conditional temporal plan. Some techniques like the graph neural network can be used to 
analyse the dynamically controllability of STNU (Osanlou, 2021). 
 
Probabilistic planning is not frequently used in practice because we don’t know the probability in 
most of time. In some cases, where most of actions are deterministic and only few of them are 
probabilistic (Likhachev, Thrun, & Gordon, 2004), probabilistic planning is applicable. 
 
Better prediction  
 
If the environment is uncertain, why not just improve the prediction capability of the planning 
module? AI planning generally uses “precondition-effect” representation of actions, which is too 
shallow but has high searching speed (Ingrand and Ghallab, 2017). By contrast, sampling search 
determines outcomes of an action by simulation, which can provide good prediction but take a lot of 
time.  
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A compromise can be a reinforcement learning approach. The agent is first trained under sampling 
search (the simulation may be accelerated by another neural network). After training, the agent can 
select actions without explicit sampling because such experience is stored in its neural network 
(Patra, Mason, Kumar, Ghallab, Traverso, & Nau, 2020). However, this approach is currently limited 
by bad generalization of reinforcement learning, i.e., if the goals or domain definitions are changed, 
the agent needs to be trained again. 
 

2.8.2 Integration with Other Deliberation Functions 

 
Apart from planning, an autonomous agent also has other deliberation functions (Ingrand & Ghallab, 
2017), including acting, learning, observing, monitoring and goal reasoning: 
 
Acting: Agent acts during execution of a plan. It focuses on how to perform an action now, instead 
of choosing what action occurring in future. It decomposes the current action in the plan into low-
level commands, executes them and deals with environments with uncertainty.  
 
Observing: The agent needs to observe signals and extract current state of the system from 
signals. However, it is not simply a data processing process in complex systems. For example, a 
satellite may have thousands of parameters in its telemetry. What parameters need to be paid 
attention to when certain problems occur? How can we deal with relations among these parameters, 
e.g., data fusion? To solve these problems, some reasoning capability is needed. 
 
Monitoring: It’s also called Fault Detection, Isolation and Recovery (FDIR). It detects the 
discrepancies between the prediction and current observations, diagnoses the causes of such 
discrepancies, surveys whether the current goals are still feasible and if not, find a way to solve it 
(e.g., set new goals for the planner). 
 
Goal Reasoning: It sets goals for planning. Sometimes human give many goals over a long period 
(e.g., 1 week) to an autonomous agent. Therefore, the agent needs to decide which goal is needed 
in the next planning horizon (e.g., 1 hour). 
 
These deliberation functions also use different knowledge models so there may be inconsistency. 
There are researchers who want to integrate several deliberation functions in a single model, i.e., 
using similar or the same knowledge model and representation in different deliberation functions. 
 
The integration of planning and monitoring is quite successful. By monitoring some state variables 
called planning invariants, it’s possible to monitor whether the current plan can reach the goal or 
not. We can also use model-based diagnosis approach, or the temporal action logic mentioned in 
section 2.4.4 to monitor whether the current plan is feasible or not (Ingrand and Ghallab, 2017). 
 
Integration of planning and acting is possible by using some HTN-like algorithms (Ghallab, Nau, & 
Traverso, 2014). The work of Patra et al. (2020) also integrates planning, acting, and learning. 
 
The integration of planning and observation remains to be a challenge. An autonomous robot needs 
to plan sensing actions and focus on which part of telemetry. It also needs some types of reasoning 
capabilities to identify relations among telemetry parameters. Such integration can be a promising 
direction. 
 

2.8.3 Learning 

 
There are two approaches to achieve learning in planning. One approach is learning a neural 
network, which can represent heuristic function (policy/value network in RL) and domain definition 
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(model-based RL). Recent research also considers causal-representation learning. We will discuss 
this approach in the next chapter.  
 
Another approach is symbolic learning, which learns symbolic heuristics and domain definitions 
from demonstration or trials. Symbolic learning relies on techniques like inductive logic programming 
(ILP). They are not very popular because of errors and limited complexity in learned models. 2 
surveys of this approach are (Zimmerman & Kambhampati, 2003) and (Jiménez, De La Rosa, 
Fernández, Fernández, & Borrajo, 2012). 
 
We can also transfer other symbolic models to planning models or require a planning model from a 
semantic web (Ingrand & Ghallab, 2017). For example, the RoboEarth (Waibel et al., 2011) and 
KnowRob (Tenorth & Beetz, 2013) projects build platforms to share and reuse planning knowledge 
over the internet. They share models of objects (e.g., images, CAD models), environments (e.g., 
maps and object locations), and actions together with their relations and properties in a general 
ontology. 
 
Current planning research is mainly based on hand-written symbolic knowledge. Future planning 
may be based on some automated learned knowledge representations that have enough complexity 
and good generalization. It may reform the planning area.  
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3 Reinforcement Learning 
 
This chapter mainly focuses on reinforcement learning (RL): 
 

- Section 3.1 will introduce basics of artificial neural networks because they can be used as 
components of an RL agent.  

- Section 3.2 will briefly introduce the Markov Decision Process.  
- Section 3.3 will introduce value-based RL algorithms. It focuses on the Deep Q Network 

(DQN). This section will also briefly review variants of DQN. 
- Section 3.4 will introduce policy-based RL algorithms. It introduces the policy gradient 

algorithms. This section will also briefly review its variants, including TRPO, PPO, ACER, AKTER, 
A3C/A2C, DDPG, TD3 and SAC. 

- Section 3.5 briefly reviews current challenges of reinforcement learning, including large 
amount of sampling, sparse or hard to define rewards, and migrations to different tasks. Several 
approaches to solve these challenges are introduced, including off-policy, model-based RL, 
imitation learning (IL), hierarchical RL, curiosity mechanism, multi-task RL and meta-learning. 

- Section 3.6 introduces 3 famous RL agents of DeepMind, including the AlphaGo Zero, 
MuZero and AlphaStar. 
 

3.1. Basics of Artificial Neural Networks 
 

3.1.1 Structure 

 

 
Figure 25: An Artificial Neuron 

 
An artificial neuron has multiple inputs 𝑥𝑖  (𝑖 = 1, … , 𝑛) from other neurons or external world. The 
sum of the inputs is  
 

 𝑠 = ∑ 𝑤𝑖

𝑖

𝑥𝑖 + 𝑏 (3-1) 

 
Here 𝑤𝑖 are weights of connections and 𝑏 is the bias. The output of the neuron is  
 

 
𝑦 = 𝑓(𝑠) 

 
(3-2) 

 
And 𝑓 is the activation function. There are many types of activation functions, like sigmoid and 
ReLU.  
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An artificial neural network consists of neurons and their connections with weights. The simplest 
neuron network is the Back-Propagation Neural Network (Rumelhart, Hinton, & Williams, 1986), as 
shown by Figure 26. 
 

 
Figure 26: Structure of BP Neural Network 

 
In the BP network, output of each layer is forwarded to the nodes in the next layer. The input vector 
[𝑥1, … , 𝑥𝑁]𝑇 is sent to the input layer, and we get an output vector [𝑦1, … , 𝑦𝑀]𝑇 from the output layer. 
Given an input vector, a neural network should be able to minimize a loss function.  
 

For a classification task, each sample 𝑠 has a feature vector [𝑥1𝑠, … , 𝑥𝑁𝑠]𝑇, which is input of the 

neural network, and a result vector  [𝑝1𝑠, … , 𝑝𝑀𝑠]𝑇, where 𝑝𝑚𝑠 is a binary indicator (0 or 1) indicating 
the correct classification for sample 𝑠 for class 𝑚. The loss function can be a cross entropy 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑆
∑ ∑ 𝑝𝑚𝑠𝑙𝑜𝑔(𝑦𝑚𝑠)

𝑀

𝑚=1

𝑆

𝑠=1

 (3-3) 

 
where 𝑀 is the number of classes, 𝑆 is the number of samples, and 𝑦𝑚𝑠 is the predicted probability 

in sample 𝑠 for class 𝑚. By minimizing the loss function, a neural network fit the relation between 
feature vectors and result vectors.  
 
For a regression task, the loss function can be a mean squared error: 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑆
∑‖𝒑𝒔 − 𝒚𝒔‖2

𝑆

𝑠=1

 (3-4) 

 
Where 𝒑𝒔 is the result vector of a sample, and 𝒚𝒔 is the predicted vector from the neural network. 
Here again, by minimizing the loss function, a neural network fit the relation between feature vectors 
and result vectors. 
 
Apart from the BP network, there are many network structures designed for different tasks, like the 
Convolution Neural Network (CNNs), Recurrent Neural Network (RNNs), Transformers, etc. New 
network structures are proposed every day. 
 

3.1.2 Training 

 
Training of a neural network is an optimization process. We change weights (and sometimes 
structures) of the network to minimize the loss function. This can be achieved by the gradient 
descent method.  
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The first step is to find the partial derivatives of the loss function with respect to each of the weights 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
. This can be done by a process called back propagation. For example, in Figure 27 there are 

3 neurons whose outputs are 𝑦1, 𝑦2, 𝑦3. There are also 3 connections whose weights are 𝑤1, 𝑤2, 

𝑤3. If we know 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑦3
, it’s easy to calculate: 

 

 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦2
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦3
∙

𝜕𝑦3

𝜕𝑦2
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦3
∙

𝜕𝑓(𝑤2𝑦2)

𝜕(𝑤2𝑦2)
∙ 𝑤2 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦1
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦2
∙

𝜕𝑦2

𝜕𝑦1
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦2
∙

𝜕𝑓(𝑤1𝑦1)

𝜕(𝑤1𝑦1)
∙ 𝑤1 

(3-5) 

 

 
Figure 27: Demonstration of Back Propagation 

 
So, the back propagation (Rumelhart, Hinton, & Williams, 1986) simply means that we can calculate 
the partial derivatives of the current layer using the partial derivatives of the previous layer. With all  
𝜕𝐿𝑜𝑠𝑠

𝜕𝑦𝑖
, we can compute 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
: 

 

 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤2
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦3
∙

𝜕𝑦3

𝜕𝑤2
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦3
∙

𝜕𝑓(𝑤2𝑦2)

𝜕(𝑤2𝑦2)
∙ 𝑦2 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤1
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦2
∙

𝜕𝑦2

𝜕𝑤1
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦2
∙

𝜕𝑓(𝑤1𝑦1)

𝜕(𝑤1𝑦1)
∙ 𝑦1 

(3-6) 

 
The second step is to use the partial derivatives to update the weights, for example: 
 

 𝑤𝑖 = 𝑤𝑖 − 𝛼
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
 (3-7) 

 
where 𝛼 is the learning rate of gradient descent. There are many variants of the gradient descent 
methods. For example, the mini-batch gradient descent only uses part of samples in the loss 
function. Some new optimization algorithms like Adam and RMSdrop also rely on gradient 
information from back propagation. 
 

3.1.3 Limitation 

 
A deeper neural network with more layers can fit more complex relation. However, as a neural 
network gets deeper, researchers found the vanishing gradient problem. If the partial derivatives 

are less than 1, from eqn (3-5, 3-6) we can image the 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
 of deeper layers will become smaller. 

Eventually, 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
 in some layers will be so close to 0 that eqn (3-7) won’t update weights 𝑤𝑖 in these 

layers anymore. The vanishing gradient problem limits the depth (number of hidden layers) of neural 
networks for a long time. Nowadays, this problem can be mitigated by simpler activation functions 
like ReLU (𝑚𝑎𝑥(0, 𝑥)), carefully designed network structures (ResNet, batch normalization, etc), and 
smarter training methods like dropout. 
 
Samples should be independent and identically distributed (i.i.d). If samples are related or 
following different distributions, it will be difficult for a neural network to “grasp” the relation between 
result vectors and feature vectors of the samples. 
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An inherent problem of current neural network is that it can only fit a relation. As the relation 
becomes more complex, the neural network needs to have more parameters and layers. OpenAI’s 
GPT-3 model (Brown, 2020) already has 175 billion parameters. Shall we keep increasing the size 
of the model to fit almost all relations in this world? A possible solution may be adding some kinds of 
reasoning capability (like symbolic techniques in chapter 2) in neural networks. For example, causal 
representation learning can not only find relations, but also causal links among entities (Schölkopf et 
al., 2021). 
 
A brief survey and future directions of neural network research can be found in (Bengio, Lecun, & 
Hinton, 2021). 
 

3.2. Markov Decision Process 

 

3.2.1 Concepts in Markov Decision Process 

 
A Markov decision process is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅), where (Wikipedia, 2021) 
 
 - 𝑆 is a set of states called the state space. 

 - 𝐴 is a set of actions called the action space. 𝐴𝑠 is the set of actions available from state 𝑆. 
 - 𝑃(𝑠′|𝑠, 𝑎) is the probability that action 𝑎 in state 𝑠 will lead to state 𝑠′. 
 - 𝑅(𝑠′|𝑠, 𝑎) is the immediate reward received after transitioning from state 𝑠 to state 𝑠′, due 
to action 𝑎.  
 
In a Markov Decision process, the state transition probability is only related to the current state and 
action, instead of the entire history of the agent’s interaction with the environment. This assumption 
simplifies the problem a lot and makes search in a MDP model like search on a graph. 
 

 
Figure 28: Example of a MDP Model 

 
In episodic problems, there are special states called terminate states. If an agent enters such 
state, an episode will finish, and the length of the episode is called the horizon 𝑇. There aren’t 
terminate states in continuous problems, where the length of an episode 𝑇 = ∞ (Sutton, & Barto, 
2018). 
 
A return function 𝐺𝑡 is the cumulated reward from time step 𝑡 to horizon 𝑇: 
 

 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑇−𝑡−1𝑟𝑇 (3-8) 
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Where 𝛾 is the discount factor. If 𝛾 = 1, the return function will be very high since horizon 𝑇 can be 
very large. In this case, the return is almost the same regardless of the agent's choice of action. To 
avoid this, we generally set 𝛾 ∈ (0,1), which shows long-term rewards are less important than short-
term rewards.  
 
A policy function 𝜋(𝑎|𝑠) =  𝑃(𝑎|𝑠) determines the probability that the agent will select action 𝑎 in 

state 𝑠. Under a policy 𝜋, an action-value function 𝑄𝜋(𝑠, 𝑎) shows the expected return of state 𝑠 if 
action 𝑎 is selected (it’s time-independent): 
 

 𝑄𝜋(𝑠, 𝑎) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3-9) 

 
Under a policy 𝜋, a state-value function 𝑉𝜋(𝑠) shows the expected return of state 𝑠 (time-
independent): 
 

 𝑉𝜋(𝑠) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠] = ∑  𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

𝑎∈𝐴

 (3-10) 

 

3.2.2 Estimate Value Functions by Sampling 

 
In reinforcement learning, researchers estimate value functions (3-9) and (3-10) by sampling. There 
are 2 types of sampling methods: Monte Carlo Sampling and Temporal Difference Sampling. 
 
The basic idea of the Monte Carlo sampling (MC) is to acquire several complete trajectories 𝜏 =
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+2, … , 𝑟𝑇 , 𝑠𝑇) from state 𝑠𝑡 and action 𝑎𝑡 under policy 𝜋. Each trajectory has a 

return function, and we use the average of these return functions as an estimation of 𝑄𝜋(𝑠, 𝑎). 𝑉𝜋(𝑠) 
can be also computed using eqn (3-10). 
 
The tabular version of Monte Carlo sampling maintains a Q table in which estimations of all 𝑄𝜋(𝑠, 𝑎) 
are stored. The initial state of the sampling is randomly selected. After obtaining a trajectory under 

policy 𝜋, from estimation �̂�𝜋(𝑠𝑇 , 𝑎𝑇) to �̂�𝜋(𝑠1, 𝑎1) in the Q table are updated by repeating: 
 

 
�̂�𝜋(𝑠𝑡 , 𝑎𝑡) ← �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝐺𝑡 − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)]; 

𝑡 ← 𝑡 − 1; 
𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝐺𝑡+1; 

(3-11) 

 

 
Figure 29: A Q Table to Store �̂�𝜋(𝑠, 𝑎) 

 

𝛼 in (3-11) is the learning rate of Monte Carlo sampling. If 𝛼 =
1

𝑁(𝑠𝑡)
 where 𝑁(𝑠𝑡) is the total number 

that state 𝑠𝑡 is visited, it means all trajectories affect the Q table equally. If 𝛼 is a constant, new 
experience will have more influence on the Q table. 
 
Under the Monte Carlo sampling, the estimation of 𝑄𝜋(𝑠, 𝑎) has no bias but high variance. Variance 
is introduced because trajectories from the same initial state can be very different. Another 
disadvantage is that the Monte Carlo sampling can only be used in episodic MDP problems. 
Otherwise collecting a complete trajectory will be impossible because a trajectory is infinite long. 
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Different from the Monte Carlo sampling, the temporal difference sampling (TD) can use 
incomplete trajectories. For example, the single-step TD(0) only uses trajectories like 
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1) and update the Q table with 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) ← �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾�̂�𝜋(𝑠𝑡+1, 𝑎𝑡+1) − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)]; (3-12) 

 
There are also multi-step TD, as shown in Figure 30. 
 

 
Figure 30: Multi-Step Temporal Difference Sampling 

 
Under the Temporal Difference sampling, the estimation of 𝑄𝜋(𝑠, 𝑎) has bias and low variance. Bias 

is introduces because the estimation �̂�𝜋(𝑠𝑡+1, 𝑎𝑡+1) in (3-12) is usually not accurate. Compared with 
the Monte Carlo sampling, it has lower variance because it only uses shorter, incomplete 
trajectories. 
 

3.3. Value-Based Reinforcement Learning 
 
Value-based RL algorithms have explicit action-value functions, but they don’t have explicit policy 
functions. Their policies can be calculated using the action-value functions in some ways.  
 
In this section, we will use simple tabular methods like SARSA and Q-learning to illustrate the basic 
ideas behind value-based RL. Then we will explain how neural networks can do the similar things 
better. 
 

3.3.1 SARSA and Q-Learning 

 
We start from the simplest MDP problem called the multi-Arm bandit problem, as shown in Figure 
31. There are only 3 actions 𝑎1, 𝑎2, 𝑎3 and one state 𝑠 in this example. Each 𝑎𝑖 provides a reward 
(get money or not) from an unknown probability distribution 𝑝𝑖. We assume 𝑝𝑖 and 𝑄(𝑠, 𝑎𝑖) remain 
the same regardless of how an agent interact with the bandit. 
 
A (tabular) value based RL agent maintains a Q table. In this case, the Q table has only one row 
and three columns. Since the agent’s objective is to maximize the expected return, its policy should 

be choosing the action with the highest �̂�(𝑠, 𝑎𝑖). However, as we see from Figure 31, the initial 

values of �̂�(𝑠, 𝑎𝑖) are incorrect. If a policy randomly chooses actions and updates the Q table with 

�̂�(𝑠, 𝑎𝑖) ← �̂�(𝑠, 𝑎𝑖) + 𝛼[𝐺𝑖 − �̂�(𝑠, 𝑎𝑖)] for many times, the agent will get good estimation for 𝑄(𝑠, 𝑎𝑖). 
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Figure 31: Value-Based Reinforcement Learning on Multi-Arm Bandit 

 
It’s called the exploitation vs exploration dilemma. When the Q values are inaccurate, we hope 
the policy chooses action that’s less familiar. When the Q values are accurate enough, we hope the 
policy chooses the action that has given highest rewards in the past. In practical problems, we don’t 
know whether these Q values are accurate or not. 
 
One solution is to use a slightly changing policy. An example is the ε-greedy policy. In such policy, 

the agent selects the action 𝑎𝑖 with the highest �̂�(𝑠, 𝑎𝑖) with probability 1 – ε, or it selects an action 
randomly with probability ε. ε is a small value (e.g., 0.1) and usually decreases over time. In this 
way, the RL agent explores more space at the beginning and believes more in the results of 
learning. If an RL agent always uses a slightly changing policy, it’s called on-policy approach. 
 
By contrast, the off-policy approach uses 2 policies, the behavior policy for training and the target 
policy for real application. The behavior policy usually allows more effective exploration of the state 
space, while the target policy greedily chooses the best action. The key is how to use samples from 
the behavior policy to evaluate the target policy. If such evaluation is not done properly, the training 
process will be unstable (Sutton, & Barto, 2018). 
 
Fortunately, in the multi-Arm bandit example, 𝑄(𝑠, 𝑎𝑖) remains the same regardless of what policy 

the agent takes. It’s possible to use a behavior policy to estimate the 𝑄(𝑠, 𝑎𝑖), and use the 

estimation �̂�(𝑠, 𝑎𝑖) in the target policy directly. The 2 approaches will be: 
 
 - In the on-policy approach, we simply use an ε-greedy policy with a slightly decreasing ε. 
Values in the Q table will converge to real values. 
 - In the off-policy approach, we can use a random behavior policy and a greedy target policy. 
Values in the Q table will converge more quickly because the behavior policy does more exploration 
than the ε-greedy policy. 
 
From this simple example, we know the offline approach can reach optimal performance in a shorter 
time, at the cost of a potentially unstable training process. 
 
Now we move forwards to more realistic MDP problems, as shown by Figure 32. The main 
difference compared with the multi-Arm bandit case is that 𝑄𝜋(𝑠, 𝑎) will change if the policy 𝜋 

changes. For the ε-greedy policy, 𝑄𝜋(𝑠, 𝑎) will change with the parameter ε. 
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Figure 32: A more realistic MDP 

 
An on-policy algorithm called SARSA (Rummery, & Niranjan, 1994), will keep sampling the state 
space using the ε-greedy policy with a slightly decreasing ε. During sampling, it updates its Q table 
using eqn(3-12). We can image that: 
 

- If ε is fixed and 𝑄𝜋(𝑠, 𝑎) remains unchanged, the Q table will reach good estimations of 
𝑄𝜋(𝑠, 𝑎), as it does in the multi-Arm bandit case.  

- After that, ε will slightly decrease and the Q table will reach good estimations of 𝑄𝜋(𝑠, 𝑎) 
under a new policy. 

- (Repeating…) 
- Finally, the Q table will reach good estimations of 𝑄𝜋(𝑠, 𝑎) under a policy with 𝜀 = 0. 

Obviously, such a greedy policy will be optimal if the estimation �̂�𝜋(𝑠, 𝑎) is accurate. 
 
An off-policy algorithm called Q-Learning (Watkins, & Dayan, 1992) have an ε-greedy behavior 
policy and a greedy target policy. During training, it uses the samples of the behavior policy to 
estimate 𝑄𝜋(𝑠, 𝑎) of the target policy: 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) ← �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)] (3-13) 

 

Note that in (3-13) 𝜋 means the fully greedy target policy, and 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) is the maximal 

�̂�𝜋(𝑠𝑡+1, 𝑎) under the state 𝑠𝑡+1. Q-Learning is proved to converge to the optimal if: 
 

- ε approaches 0 not too quickly. 
- Each state-action pair is visited infinitely often. 

- It uses a Q table to store all estimations �̂�𝜋(𝑠, 𝑎), instead of using a function or a neural 
network to fit these estimations. 
 
Compared with the fully random behavior policy in the multi-Arm bandit example, the ε-greedy policy 
is more suitable like MDPs in Figure 32. A fully random policy will not pay more attention to a high-
reward region in a large state space, but an ε-greedy policy will do so.  
 
The ε-greedy policy in Q-Learning is also “bolder” in exploration than that one in SARSA. Assume 

the agent samples a very low �̂�𝜋(𝑠𝑡+1, 𝑎𝑡+1), it will affect �̂�𝜋(𝑠𝑡 , 𝑎𝑡) in SARSA but not affect 

�̂�𝜋(𝑠𝑡 , 𝑎𝑡) in Q-Learning. After that, the SARSA agent doesn’t “dare” to take the action 𝑎𝑡 in state 𝑠𝑡, 
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while the Q-Learning agent would still like to do so. Such property of Q-Learning may make it more 
efficient in exploration. 
 
The SARSA and Q-Learning algorithm shown here use the single-step TD sampling. In fact, some 
variants also use multi-step TD sampling or even Monte Carlo sampling. 
 

3.3.2 Deep Q-Learning (DQN) 

 
If there are many states and actions, the size of a Q table will be so large to fit in any memory. To 
solve this problem, DeepMind (Mnih et al., 2015) proposed to use a neural network called Deep Q 

Network (DQN) to fit all estimations �̂�𝜋(𝑠, 𝑎), as shown in Figure 33. 
 

 
Figure 33: Two Types of Deep Q Networks 

 
However, life is not so easy. They found many problems with this approach. A fatal problem is that 
the training process is very unstable.  
 
The first reason of such instability is that the output from the neural network cannot converge to 

�̂�𝜋(𝑠, 𝑎). According to (3-4) and (3-13), the loss function of such neural network should be 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)]

2

𝜏

 (3-14) 

 
Here, 𝑁𝜏 is the number of incomplete trajectories 𝜏 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) collected by the agent. From 

the view of a regression task, 𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) is the result value of a sample, (𝑠𝑡 , 𝑎𝑡) is the 

feature of a sample (input of the neural network), and �̂�𝜋(𝑠𝑡 , 𝑎𝑡) is the predicted value (output of the 
neural network). 
 

Minimization of (3-14) is difficult because the distribution of �̂�𝜋(𝑠𝑡+1, 𝑎) is changing all the time. We 

calculate �̂�𝜋(𝑠𝑡+1, 𝑎) using the neural network, but weights in the network is changed by the back 
propagation. Therefore, distribution of these samples is changing, which violates the i.i.d 
assumption of neural networks (see section 3.1.3).  
 

Mnih et al. (2015) alleviated this problem by using a fixed but not accurate �̂�𝜋(𝑠𝑡+1, 𝑎). More 
specifically, they use two neural networks in their design: one is the current network to calculate 

�̂�𝜋(𝑠𝑡 , 𝑎𝑡), the other is the target network to calculate �̂�𝜋(𝑠𝑡+1, 𝑎). In N time steps, the target 
network is fixed and only the current network is updated. After that, the target network will be set 
equal to the current network. The whole process is shown in Figure 34. 
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Figure 34: Current and Target Networks of DQN 

 
The second reason of instability is that samples from recent 𝑁𝜏 trajectories (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) are 
highly related. DeepMind plays video games in their research. In such games, sample used to train 
the neural network comes from related frames close in time. Such relation violates the i.i.d 
assumption (see section 3.1.3) again and destabilises the training process. 
 
Mnih et al. (2015) alleviated this problem by a large buffer to store trajectories, which is called 
experience replay. The agent randomly takes some trajectories (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) from the replay 
buffer. These trajectories are far apart in time and not related. They may come from different 
behavior policies and are used to evaluate different target policies. If the replay buffer is not too 
large and 𝜀 decreases slowly, such difference is acceptable. 
 
Now the loss function becomes: 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎) − �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡)]

2

𝜏

 (3-15) 

 

𝑁𝜏 trajectories are randomly collected from the replay buffer. �̂�𝑤−
𝜋 (𝑠𝑡+1, 𝑎) is calculated by the target 

network with weights 𝑤−, which has a lag in weight updates. �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡) is calculated by the current 

network with weights 𝑤. The DQN algorithm with these tricks is shown in Figure 35. 
 

 
Figure 35 DQN Algorithm in (Mnih et al., 2015) 

 
Given all these tricks, DQN is still not very stable during training. It’s some kinds of inherent property 

of value-based RL algorithms because small updates to �̂�𝜋(𝑠, 𝑎) may significantly change the policy 
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and therefore change the data distribution. Error of neural networks makes the situation even 
worse. Assuming 𝑄𝜋(𝑠1, 𝑎1) = 0.5 and 𝑄𝜋(𝑠1, 𝑎2) = 0.51, the best action under state 𝑠1 should be 𝑎2. 

However, because of error, the neural network may give �̂�𝜋(𝑠1, 𝑎1) = 0.52 and �̂�𝜋(𝑠1, 𝑎2) = 0.51. 
Such minor error makes training more instable and the target policy sub-optimal (policy 
degradation). 
 
Although DQN is not perfect, it is able to solve many problems. DeepMind’s DQN agent achieved 
better scores than human beings in the Atari 2600 video games. It was also a good beginning of 
deep reinforcement learning. Some other problems of DQN will be addressed in the next section. 
 

3.3.3 Variants of DQN 

 

DQN and Q-Learning tend to overestimate 𝑄𝜋(𝑠, 𝑎). Since �̂�𝜋(𝑠, 𝑎) from both the neural networks 

are very noisy, when we take max over all �̂�𝜋(𝑠, 𝑎), we are probably getting an overestimated value 
(Lgvaz, 2017). For example, the expected value of a dice roll is 3.5, but if we throw the dice 100 
times and take the max over all throws, we're very likely taking a value that is greater than 3.5.  
 
A solution is the Double DQN (Van Hasselt, Guez, & Silver, 2015), whose loss function is 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑ [𝑟𝑡+1 + 𝛾 ∙ �̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥�̂�𝑤
𝜋 (𝑠𝑡+1, 𝑎)) − �̂�𝑤

𝜋 (𝑠𝑡, 𝑎𝑡)]
2

𝜏

 (3-16) 

 

The trick is how to 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) in (3-14). In (3-15), it’s simply computed by the target network, 

i.e., 𝑚𝑎𝑥�̂�𝑤−
𝜋 (𝑠𝑡+1, 𝑎). In the Double DQN, we select the action with the maximal �̂�𝜋(𝑠𝑡+1, 𝑎) using 

the current network and recalculate its �̂�𝜋(𝑠𝑡+1, 𝑎) using the target network. Since 2 network has 
different weights, it is unlikely that they overestimate the same action. However, double DQN is 
more vulnerable to noise. 
 

The �̂�𝜋(𝑠𝑡 , 𝑎𝑡) from DQN is only an estimation of the expected return 𝐺𝑡 under state-action pair 
(𝑠𝑡 , 𝑎𝑡). The 𝐺𝑡 is a random variable. Distributional DQN algorithms like C51 (Bellemare, 
Dabney ,& Munos, 2017), QR-DQN (Dabney, Rowland, Bellemare, & Munos, 2018) and IQN 
(Dabney, Ostrovski, Silver, & Munos, 2018) will estimate the distribution of 𝐺𝑡, instead of an 

expected value. Distributional DQN records more information of 𝐺𝑡 to make “smarter” decisions. 
However, such algorithms are complex. 
 
DQN is good at large state space, but not good at large/continuous action space. In eqn(3-15), 

how can we know which action makes �̂�𝑤−
𝜋 (𝑠𝑡+1, 𝑎) maximal, if there are too many actions? There 

are some tricks of DQN to fix such problem. However, policy based RL usually performs better at 
large/continuous action space, for example, the DDPG algorithm in section 3.4.4. 
 
Prioritized Experience Replay (Schaul, Quan, Antonoglou, & Silver, 2015) doesn’t randomly take 
trajectories from the buffer to train the network. Instead, it chooses the trajectories that lead to 
higher loss functions to update the network. It significantly increases the efficiency of DQN. 
 
Dueling DQN (Wang et al., 2016) estimates 𝑄𝜋(𝑠, 𝑎) by 2 networks: one estimates the state-value 
function 𝑉𝜋(𝑠), and the other estimate the advantage function 𝐴𝜋(𝑠, 𝑎). Estimations from these 
networks can be combined: 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = �̂�𝜋(𝑠𝑡) + �̂�𝜋(𝑠𝑡 , 𝑎𝑡) (3-17) 
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In this case, the loss function (3-15) is calculated by 4 networks: �̂�𝑤−
𝜋 , �̂�𝑤

𝜋, �̂�𝑤−
𝜋 , and  �̂�𝑤

𝜋 . Such 
decomposition makes the estimation more accurate. 
 
Noisy Net (Fortunato et al., 2017) gives up the ε-greedy behavior policy. Instead, it explores the 
state space by adding Gaussian noise to weights of its neural networks at the beginning of each 
episode. After that, new noise will not be added, and the agent will explore greedily until reaching a 
terminate state. Noisy net has better performance because for a DQN, it’s quicker to estimate 
𝑄𝜋(𝑠, 𝑎) if the policy 𝜋 doesn’t include random actions. 
 
DQN from demonstration (Hester et al., 2018) puts some pre-prepared good trajectories in the 
replay buffer and never deletes them. Obviously, the agent will learn in a shorter time. However, if 
the pre-prepared trajectories are too few or contain noise, the algorithm may overfit or be instable. 
 
The rainbow algorithm (Hessel et al., 2018) simply combines all improvements mentioned above. 
 

3.4. Policy-Based Reinforcement Learning 
 
A policy based RL algorithm has an explicit policy function 𝜋, whose input is current state. For 
discrete action space, a policy function directly estimates the probability to take each action. We will 
discuss continuous action space in section 3.4.4. 
 
The performance of a policy function is commonly evaluated by the objective function (Schulman, 
Wolski, Dhariwal, Radford, & Klimov, 2017): 
 

 𝐽 = 𝔼(𝑠,𝑎)~𝑤[𝐴𝜋(𝑠, 𝑎)𝑙𝑜𝑔𝜋𝑤(𝑎|𝑠)] (3-18) 

 
𝐴𝜋(𝑠, 𝑎) is the advantage function and shows how good action 𝑎 is, comparing with other actions 
under state 𝑠. 𝜋𝑤(𝑎|𝑠) is the probability to take action 𝑎 under state 𝑠, with current policy 

parameters 𝑤. Generally, a policy 𝜋𝑤 is a neural network with weights 𝑤. The state action pairs 
(𝑠, 𝑎) can be seen as random variables, whose distribution is determined by the policy 𝜋𝑤.  
 
A policy 𝜋𝑤 with higher 𝐽 is better. Therefore, the key idea of policy based RL algorithms is to 
estimate the policy gradient ∇𝑤𝐽,  
 

 ∇𝑤𝐽 = 𝔼(𝑠,𝑎)~𝑤[𝐴𝜋(𝑠, 𝑎)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎|𝑠)] (3-19) 

 
and use gradient ascent method to maximize 𝐽. This section will introduce some classical policy-
based algorithms. 
 

3.4.1 REINFORCE 

 
REINFORCE (Williams, 1992) uses the Monte Carlo sampling. After getting 𝑁 complete trajectories 

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+2, … , 𝑟𝑇𝑛
, 𝑠𝑇𝑛

), it estimates the gradient without bias: 

 

 ∇𝑤𝐽 =
1

𝑁

1

𝑇𝑛
∑ ∑ �̂�𝜋(𝑠𝑡 , 𝑎𝑡)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎𝑡

𝑛|𝑠𝑡
𝑛)

𝑇𝑛

𝑡=1

𝑁

𝑛

 (3-20) 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐺𝑡
𝑛 − 𝑏(𝑠𝑡

𝑛) (3-21) 
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where 𝑏(𝑠𝑡
𝑛) is the average 𝐺𝑡 under the state 𝑠𝑡

𝑛. After that, REINFORCE updates the weights 𝑤 by 
 

 𝑤 ← 𝑤 + 𝛽∇𝑤𝐽𝑤 (3-22) 

 
Where 𝛽 here is the update rate. 
 
The main problem of REINFORCE is the low sampling efficiency, i.e., it needs too many samples to 
reach the optimum. After it updates the weights 𝑤 (only one backpropagation), it must sample again 
to estimate the new gradient under new weights. Sampling takes most of training time. 
 
Different from the Q-Learning, REINFORCE doesn’t guarantee to reach optimum. It usually finds a 
local maximum. The estimation of the advantage function (3-21) also has high variance because of 
the Monte Carlo sampling.  
 

3.4.2 Trust Region Methods (TRPO/PPO/ACER/ACKTR) 

 
Trust region methods use samples of an old policy 𝜋𝑤′ to estimate policy gradient of the current 
policy 𝜋𝑤. According to importance sampling in statics, the gradient is: 
 

 ∇𝑤𝐽 = 𝔼(𝑠,𝑎)~𝑤′ [
𝜋𝑤(𝑠, 𝑎)

𝜋𝑤′(𝑠, 𝑎)
𝐴𝜋(𝑠, 𝑎)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎|𝑠)] (3-23) 

 
In (3-19), the probability distribution of the random variable (𝑠, 𝑎) is determined by the current policy 

𝜋𝑤. In (3-22), the probability distribution is determined by the old policy 𝜋𝑤′. The expected values in 
(3-19) and (3-22) are equal. 
 
Assume 𝜋𝑤(𝑠) = 𝜋𝑤′(𝑠), 𝐴𝜋(𝑠, 𝑎) remains unchanged when 𝑤 is changing, and sampling is 
sufficient, (3-23) can be estimated by 
 

 ∇𝑤𝐽 =
1

𝑁(𝑠𝑡,𝑎𝑡)
∑ [

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
�̂�𝜋(𝑠𝑡 , 𝑎𝑡)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎𝑡|𝑠𝑡)]

(𝑠𝑡,𝑎𝑡)

 (3-24) 

 
Where 𝑁(𝑠𝑡,𝑎𝑡) is the total number of (𝑠𝑡 , 𝑎𝑡) pairs of all Monte Carlo trajectories collected by the 

policy 𝜋𝑤′. With (3-24), multiple backpropagations using the same samples are possible. Since 

𝜋𝑤(𝑎𝑡|𝑠𝑡)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎𝑡|𝑠𝑡) = ∇𝑤𝜋𝑤(𝑎𝑡|𝑠𝑡), the objective function is: 
 

 𝐽 =
1

𝑁(𝑠𝑡,𝑎𝑡)
∑ [

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
�̂�𝜋(𝑠𝑡 , 𝑎𝑡)]

(𝑠𝑡,𝑎𝑡)

 (3-25) 

 
We can simply input the objective function and samples (𝑠𝑡 , 𝑎𝑡) to a neural network optimizer and 

update the current policy 𝜋𝑤. However, experiments shows performance of 𝜋𝑤 will increase and 
then decrease during the training process. This is because the assumptions of (3-24) are only 
tolerable if policy 𝜋𝑤 and 𝜋𝑤′ are not very different. 
 
Therefore, a reasonable compromise is stopping the optimization when the two policies become 
“too different”, and then resample with the current policy 𝜋𝑤. How to measure the difference 

between two policies? We cannot simply compare the weights 𝑤 and 𝑤′ directly because similar 
weights can lead to very different decisions. The first method is the Trust Region Policy 
Optimization (TRPO) (Schulman, Levine, Abbeel, Jordan, & Moritz, 2015). It maximizes (3-25) with 
the constraint on the KL divergence: 
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 𝐾𝐿(𝑤, 𝑤′) < 𝛿 (3-26) 

 
The computation of KL divergence and optimization with an external constraint are complex. 
Therefore, another method called the Proximal Policy Optimization (PPO) uses the following 
objective function to limit the difference between  𝜋𝑤 and 𝜋𝑤′ (Schulman, Wolski, Dhariwal, Radford, 
& Klimov, 2017): 
 

 𝐽 =
1

𝑁(𝑠𝑡,𝑎𝑡)
∑ 𝑚𝑖𝑛 {

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
�̂�𝜋(𝑠𝑡 , 𝑎𝑡), 𝑐𝑙𝑖𝑝 [

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
, 1 − 𝜀, 1 + 𝜀] �̂�𝜋(𝑠𝑡 , 𝑎𝑡)}

(𝑠𝑡,𝑎𝑡)

 (3-27) 

 

𝑐𝑙𝑖𝑝 [
𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
, 1 − 𝜀, 1 + 𝜀] is shown in Figure 36. 

 

 
Figure 36: The Clip Function 

 
PPO is much simpler than TRPO and can also ensure performance of 𝜋𝑤 to increase. Both TRPO 
and PPO are seen as on-policy because 𝜋𝑤 and 𝜋𝑤′ are not very different. 
 
Other trust region methods include the ACER (Wang et al., 2016) and ACKTR (Wu, Mansimov, 
Grosse, Liao, & Ba, 2017). They are more complex and don’t always have better performance than 
PPO.  
 

3.4.3 Advantage Actor-Critic (A3C/A2C) 

 

The A3C/A2C algorithms have both explicit policy function 𝜋𝑤(𝑎|𝑠) and state-value function �̂�(𝑠). 
After a “worker” collects a complete trajectory using current policy 𝜋𝑤 (called the actor), it estimates 

the advantage function 𝐴𝜋(𝑠, 𝑎) in (3-19) by 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = �̂�𝜋(𝑠𝑡 , 𝑎𝑡) − �̂�𝜋(𝑠𝑡) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + 𝛾𝑁−1𝑟𝑡+𝑁−1 + 𝛾𝑁�̂�𝜃
𝜋(𝑠𝑡+𝑁) − �̂�𝜃

𝜋(𝑠𝑡) (3-28) 

 
(3-28) uses N-step TD sampling to estimate 𝑄𝑤

𝜋 (𝑠𝑡 , 𝑎𝑡). It’s a better estimation compared with (3-21) 

because of low bias and variance of N-step TD. �̂�𝜃
𝜋(𝑠𝑡) and �̂�𝜃

𝜋(𝑠𝑡+𝑁) are computed using another 

neural network called the critic. Weights of the critic network are 𝜃. Based on (3-28), the policy 
gradient is estimated by 
 

 ∇𝑤𝐽 =
1

𝑇𝑛
∑[�̂�𝜋(𝑠𝑡 , 𝑎𝑡)∇𝑤𝑙𝑜𝑔𝜋𝑤(𝑎𝑡|𝑠𝑡) + 𝜑∇𝑤𝐻(𝜋𝑤(𝑠𝑡))]

𝑇𝑛

𝑡=1

 (3-29) 

 

Where 𝐻(𝜋𝑤(𝑠𝑡)) is an entropy regularisation term and 𝜑 is the entropy coefficient. A policy with 

higher 𝐻(𝜋𝑤(𝑠𝑡)) is more random and explore more states in training. 

 
Such algorithms also need to update the critic network. The gradient is estimated by 
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 ∇𝜃𝐿𝑜𝑠𝑠 =
1

2𝑇𝑛
∑ ∇𝜃[�̂�(𝑠𝑡, 𝑎𝑡) − �̂�(𝑠𝑡)]

2

𝑇𝑛

𝑡=1

 (3-30) 

 

Here the loss function is an estimation of 
1

2
𝔼[�̂�(𝑠𝑡 , 𝑎𝑡) − �̂�(𝑠𝑡)]

2
= 0. Note that the actor network and 

the critic network sometimes share some layers, as shown in Figure 37. In this case, we can 
combine the two loss functions together to compute a total gradient. 
 
A3C/A2C improve the sampling efficiency by having n “workers” to sample at the same time. In 
Asynchronous Advantage Actor-Critic (A3C) algorithm, each “worker” repeats (Mnih et al., 2016) 
 
 Step 1: Copy current weights of the global actor network and critic network. 
 Step 2: Sample a complect trajectory in simulated environment. 
 Step 3: Calculate the policy gradient (3-29) and the value gradient (3-30) 
 Step 4: Update the global actor network once using the policy gradient (3-29) 
 Step 5: Update the global critic network once using the value gradient (3-30) 
 

 
Figure 37: Architecture of A3C/A2C 

 
In the Advantage Actor-Critic (A2C) algorithm, each worker will directly sends the sampled 
trajectory to the global computer. The global computer will calculate the total policy gradient and the 
total value gradient to update the networks. A2C is the synchronous version of A3C. It’s simpler and 
generally has better performance. 
 
A3C/A2C is a type of on-policy actor-critic algorithm (Konda, & Tsitsiklis, 2000). It loosely satisfies 
the i.i.d requirement in section 3.1.3. Samples from different workers are independent. However, for 

the actor network, distribution of 𝐽 will be slightly changed by update of the critic network. On the 

other hand, distribution of the loss of the critic �̂�𝜋(𝑠) will be slightly changed by update of the actor 
network. Although such correlation is reduced by the N-step TD sampling, it still makes A3C/A2C a 
little difficult to train. Tricks to train A3C/A2C are like techniques for GAN (Pfau, & Vinyals, 2016). 
A3C/A2C can be combined with other policy gradient algorithms. 
 

3.4.4 Algorithms for Continuous Action Space (DDPG/TD3/SAC) 
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All policy-based algorithms mentioned above can be used in continuous action space. In this case, 
input of a policy 𝜋𝑤(𝑎|𝑠) is a state 𝑠, and output is parameters of probability distribution of an action 

𝑎. Such 𝜋𝑤(𝑎|𝑠) is a stochastic policy. 
 
We can also adopt a deterministic policy, whose output is an action. Such policy is more efficient 
in continuous action space. An example is the Deep Deterministic Policy Gradient (DDPG) 
algorithm (Lillicrap et al., 2015). 
 
DDPG is an off-policy actor-critic algorithm. As shown in Figure 38, it has a replay buffer and 4 

neural networks: actor 𝜋𝑤, target 𝜋𝑤−, critic �̂�𝜃
𝜋, and target �̂�𝜃−

𝜋 . The target actor 𝜋𝑤− and the target 

critic �̂�𝜃−
𝜋  are used to calculate the loss function of the current critic �̂�𝜃

𝜋.  

 

 
Figure 38: Components of DDPG 

 
In each iteration, DDPG repeats: 
 
 Step 1: Take the action 𝑎𝑡, which is computed by 𝜋𝑤 under current state 𝑠𝑡. We add 
Gaussian noise to output of 𝜋𝑤 (e.g., a control torque) to encourage exploration, and slightly reduce 
the noise during training. 
 Step 2: Put an incomplete trajectory (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) to the replay buffer.  𝑠𝑡 ← 𝑠𝑡+1. 
 Step 3: Randomly take 𝑁𝜏 incomplete trajectories 𝜏 from the buffer. 

 Step 4: Update the critic �̂�𝜃
𝜋 with the following gradient (gradient descent): 

 

 ∇𝜃𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑[𝑟𝑡+1 + 𝛾�̂�𝜃−

𝜋 (𝑠𝑡+1, 𝜋𝑤−(𝑠𝑡+1)) − �̂�𝜃
𝜋(𝑠𝑡 , 𝑎𝑡)]

2

𝜏

 (3-31) 

 
 Step 5: Update the actor 𝜋𝑤 with the following gradient (gradient ascent). This gradient can 

be computed by back propagation when weights of �̂�𝜃
𝜋 are fixed. 

 

 ∇𝑤𝐽 =
1

𝑁𝜏
∑ ∇𝑤�̂�𝜃

𝜋(𝑠𝑡 , 𝑎𝑡)

𝜏

 (3-32) 

 

Step 6: Every C iteration, update the target actor 𝜋𝑤− and the target critic �̂�𝜃−
𝜋 : 

 

 𝑤− ← 𝛽𝑤 + (1 − 𝛽)𝑤−; 𝜃− ← 𝛽𝜃 + (1 − 𝛽)𝜃− (3-33) 

 
DDPG has some problems. Every C iteration, the distribution of (3-31) remains the same. However, 

the distribution of (3-32) is slightly changing with update of �̂�𝜃
𝜋. Only when update of �̂�𝜃

𝜋 stops, the 

distribution of (3-32) can be fixed.  
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At the same time, experience replay ensures selected samples are independent and improves the 
sampling efficiency. However, like DQN, DDPG tends to overestimate 𝑄𝜋.  
 
Twin Delayed DDPG (TD3) is an improvement on DDPG (Fujimoto, Hoof, & Meger, 2018). It learns 

two current critic networks �̂�𝜃1

𝜋  and �̂�𝜃2

𝜋  using the same gradient (3-34). It has 6 neural networks in 

total: 2 current critics �̂�𝜃1

𝜋  and �̂�𝜃2

𝜋 , 2 target critics �̂�𝜃1
−

𝜋  and �̂�𝜃2
−

𝜋 , a current actor 𝜋𝑤, and a target actor 

𝜋𝑤−. TD3 adds 3 tricks to DDPG: 
 

 - Clipped Double Q-Learning. The target critic that gives smaller �̂�𝜋(𝑠𝑡 , 𝑎𝑡) will be used as 
the target in (3-34). Like the double DQN, it reduces overestimation of 𝑄𝜋. 
 

 ∇𝜃𝑖
𝐿𝑜𝑠𝑠 = −

1

𝑁𝜏
∑ [𝑟𝑡+1 + 𝛾(1 − 𝑑) ∙ 𝑚𝑖𝑛�̂�𝜃𝑖

−
𝜋 (𝑠𝑡+1, 𝑎𝑇𝐷3(𝑠𝑡+1)) − �̂�𝜃𝑖

𝜋 (𝑠𝑡 , 𝑎𝑡)]
2

𝜏

 (3-34) 

 
 - Delayed policy update. TD3 updates the critic networks frequently and updates the actor 
network less frequently. It usually updates the critic twice and the actor once during the same time. 
In this way, TD3 reduces the influence of changing distribution of (3-32). 

 - Target policy smoothing. TD3 smooths �̂�𝜋(𝑠𝑡 , 𝑎𝑡) by 
 

 𝑎𝑇𝐷3(𝑠𝑡) = 𝑐𝑙𝑖𝑝[𝜋𝑤(𝑠𝑡) + 𝑐𝑙𝑖𝑝(𝜀, −𝑐, 𝑐), 𝑎𝑙𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ] for current actor 
(3-35) 

 𝑎𝑇𝐷3(𝑠𝑡) = 𝑐𝑙𝑖𝑝[𝜋𝑤−(𝑠𝑡) + 𝑐𝑙𝑖𝑝(𝜀, −𝑐, 𝑐), 𝑎𝑙𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ] for target actor 

 

 𝜀 is a Gaussian noise. It makes the actor difficult to utilize the error of �̂�𝜋(𝑠𝑡 , 𝑎𝑡). 
 
With these tricks, TD3 achieves much better performance than DDPG. However, TD3 has many 
hyperparameters to choose. 
 
The Soft Actor-Critic (SAC) algorithm is also based on DDPG and has similar performance of TD3 
(Haarnoja, Zhou, Abbeel, & Levine, 2018). But it has fewer hyperparameters. SAC doesn’t maintain 
the target actor, so it has 5 neural networks in total. Other differences include: 
 
 - SAC maintains a stochastic policy, whose output is parameters of probability distribution of 
action 𝑎. SAC samples an action from the distribution and sends the action to the critic. It doesn’t 
need explicit policy smoothing because noise from the stochastic distribution is sufficient. 
 - It adds an entropy term to the gradients of actor and critic.  
 - It computes the gradient of critic with the current actor since SAC doesn’t have the target 
actor anymore. 

 

3.5. Current Challenges and Progress of Reinforcement Learning 

 
In this section we will briefly discuss main challenges of deep reinforcement learning (DRL) 
techniques. DRL is limited by current neural networks, which can only “fit some kinds of relations”. 
To deal with such limitation, some researchers introduce new machine learning techniques (e.g., 
causal representation leaning), some other researchers hope to use some tricks (e.g., network 
structures and training methods) to “bypass” the limitation. 
 

3.5.1 Low Sampling Efficiency 
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Low sampling efficiency means the agent needs too many samples to train. There are several tricks 
to solve this problem: 
 
 - Off-policy, such as the experience replay in DQN, DDPG, TD3 and SAC. 
 - Parallel sampling. Examples are A3C and A2C. 
 - Importance sampling. Examples are trust region methods TRPO/PPO/ACER/ACKTR. 
 - Model-based reinforcement learning. 
 
We have discussed the first three tricks. Some large-scale distributed RL frameworks combine 
these tricks. For example, DeepMind’s IMPALA (Espeholt et al., 2018) combines parallel sampling 
(like A2C) and importance sampling (like PPO). They also developed the APE-X (Horgan et al., 
2018) which combines parallel sampling and experience replay. 
 
All reinforcement mentioned above are model-free. By contrast, model-based RL learns a MDP 
model from interaction with the environment. The model usually includes the state transition 
probability 𝑃(𝑠′|𝑠, 𝑎) and reward 𝑅(𝑠′|𝑠, 𝑎). After that, it gets a policy by the probabilistic planning 
techniques in the chapter 2. The whole process is shown in Figure 39. Representatives of model-
based RL include the prediction model (Silver, 2017), PLICO (Deisenroth & Rasmussen, 2011), and 
GPS (Levine & Koltun, 2013). A review of model-based RL can be found in (Moerland, Broekens, & 
Jonker, 2020). 
 

 
Figure 39: Process of Model-Based Reinforcement Learning 

 
Model-based RL doesn’t discard any samples. All samples are useful to fit the MDP model. By 
contrast, in model-free RL, only the samples collected by the current policy is useful and agents will 
throw outdated samples away (size of the replay buffer is limited). Therefore, it’s not surprising that 
model-based RL has higher sampling efficiency.  
 
Another advantage of model-based RL is better generalization. It can easily compute a policy for a 
new goal in the same MDP model. By contrast, model-free RL must be trained again. 
 
Model-based RL algorithms also have some problems. They are more complex. They cannot solve 
tasks that cannot be modelled, such as natural language processing. At the same time, there is 
always error in the models they learn. Such error makes the policy not optimal. By contrast, model-
free algorithms like Q-Learning are guaranteed to be optimal under some situations. As a result, 
model-based RL algorithms usually perform worse than model-free RL algorithms. 
 
Some researchers try to combine model-free and model-based algorithms together. Such 
algorithms repeat: 
 
 Step 1: Collect a trajectory in real environment. 



       

49 

 

 Step 2: Train the policy/value function using the trajectory. 
 Step 3: Train the MDP model using the trajectory. 
 Step 4: Collect a trajectory in the MDP model. 
 Step 5: Train the policy/value function using the trajectory from the MDP model. 
 
Early works in this area include the Dyna (Sutton, 1991) and Dyna-2 (Silver, Sutton, & Müller, 2008) 
but the most well-known one is DeepMind’s MuZero (Schrittwieser et al., 2020). As DeepMind’s 
latest game agent, it performs better, needs fewer samples, and even doesn’t need to know rules of 
the game. MuZero can be used in both discrete and continuous action space. We will briefly discuss 
it in section 3.6. A latest improvement on MuZero is EfficientZero (Ye, Liu, Kurutach, Abbeel, & Gao, 
2021), which can even master the Atari game in a shorter time than human beings. 
 

3.5.2 Sparse Reward 

 
Rewards in some tasks are sparse, which means agents seldomly get a reward. Training becomes 
difficult in this case. There are several ways to alleviate this problem. 
 
Better exploration policies may be helpful. We have introduced a simple ε-greedy policy, which 
randomly takes actions with probability ε. Similar policies include the Boltzmann policy (Luce, 2012), 
Thompson Sampling (Chapelle & Li, 2011), Upper Confidence Bound UCB (Auer, Cesa-Bianchi, 
& Fischer, 2002). For example, the UCB1 policy always chooses an action that maximizes 
 

 𝑈(𝑠, 𝑎) = �̂�(𝑠, 𝑎) + √
2𝑙𝑛𝑁(𝑠)

𝑙𝑛𝑁(𝑠, 𝑎)
 (3-36) 

 
where 𝑁(𝑠, 𝑎) is the number of time that the agent tries action 𝑎 in state 𝑠, and 𝑁(𝑠) is the number of 
time that the agent is in state 𝑠. Given some consumptions, we can prove that as number of calls →
∞, UCB’s choices become optimal. Upper Confidence Bounds for Tree UCT (Kocsis & Szepesvári, 
2006) is a variant in the Monte Carlo Tree Search (MTCS). The MCTS algorithm with UCT is 
powerful in board games. It beat professional Go players in 2006 for the first time and were still the 
basic algorithm of AlphaGo in 2016 (Silver et al., 2016).  
 
We can also encourage exploration by adding intrinsic rewards. Such rewards can be given 
according to the number of visits to the current state (count-based exploration). An example is the 
hash-based counts (Tang et al., 2017), which adds visitation count by an auto-encoder. On the 
other hand, the agent can use a neural network to predict the next state. If the real next state is far 
from the prediction, the agent can get a reward because it finds something new (curiosity-based 
exploration). Examples are the ICM (Pathak, Agrawal, Efros, & Darrell, 2017) and RND (Burda, 
Edwards, Storkey, & Klimov, 2018) methods. 
 
Another approach to deal with sparse reward is hierarchical reinforcement learning (HRL), which 
is like the HTN in Chapter 2. In HRL, high-level agents set goals of low-level agents. For example, 
the H-DQN algorithm uses a 2-level DQN to acquire higher scores than the original DQN in the Atari 
game (Kulkarni, Narasimhan, Saeedi, & Tenenbaum, 2016). A survey of HRL can be found in 
(Pateria, Subagdja, Tan, & Quek, 2021). 
 
Reward shaping and curriculum learning are problem-specific tricks. In reward shaping, 
researchers carefully design rewards in every step to guide the agent. In curriculum learning, the 
agent first learns how to perform simple tasks, and then learn how to difficult tasks. These 2 tricks 
are shown in Figure 40. 
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Figure 40: Reward Shaping and Curriculum Learning 

 

3.5.3 Imitation Learning 

 
In many tasks, it’s difficult to define rewards. For example, it takes too much time to carefully define 
every reward in an autonomous driving task. Reinforcement learning algorithms cannot be used 
without rewards. However, we can still use imitation learning (IL), which learns from demonstration 
of experts. IL and RL share many fundamental technologies. 
 
The simplest IL is behaviour cloning. Experts provide demonstration samples like 
(𝑠1, 𝑎1), (𝑠2, 𝑎2), … (𝑠𝑛, 𝑎𝑛). Then we train a policy network whose input is a state 𝑠 and output is an 
action 𝑎. In fact, behaviour cloning is supervised learning. However, a behaviour cloning agent 
cannot deal with a situation that has never been demonstrated. 
 
Another approach is the inverse reinforcement learning (IRL). The IRL agent will learn how to set 
rewards from demonstration of experts. After that, we can train the agent with the rewards and RL 
algorithms. A famous example is the Generative Adversarial Imitation Learning GAIL (Ho & Ermon, 
2016), which takes idea from GAN. In GAIL, the discriminator tries to assign high rewards to the 
expert trajectories, and low rewards to trajectories from the generator. At the same time, the 
generator learns to maximize its rewards. A survey of imitation learning is (Hussein, Gaber, Elyan, & 
Jayne, 2017). 
 
For traditional reinforcement tasks that we can define rewards, IL may also be helpful. For example, 
in section 3.3.3 we introduce DQN from demonstration (Hester et al., 2018), which adds expert 
trajectories to the replay buffer to accelerate learning. AlphaGo also used expert experience to get a 
good initialization (Silver et al., 2016). 
 

3.5.4 Migration to Other Problems 

 

An RL model is trained for a specific problem. When the problem or the goal is slightly changed, the 
trained model becomes useless. There are several approaches to alleviate the problem. 
 
The first approach is multi-task learning. The initial agent is trained on some supporting problems. 
After that, we continue to train this initial agent on a target problem to fine-tune the parameters. The 
second step usually takes much less time and sampling. The idea is like the pre-training in natural 
language processing. 
 
We can also use the goal as an input to the policy network or the value network. In this case, the 
agent can be applied to the same problem with different goals. However, training will become more 
difficult, and capability of the neural networks should be strong enough. Examples are UVFA 
(Schaul, Horgan, Gregor, & Silver, 2015), UNREAL (Jaderberg et al., 2016), and HER 
(Andrychowicz et al., 2017) 
 
Another approach is meta-learning. Its input includes the training set of the target problem, and output 
can be parameters, structures, activation functions, or weight update methods. In short, it learns how to 
design an RL agent. For example, the MAML algorithm learns how to set initial weights of neural 
networks for different problems (Finn, Abbeel, & Levine, 2017).  
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Reinforcement learning can be used for causal reasoning (Zhu, Ng & Chen, 2019). On the other hand, 
causal reasoning can also help RL (Dasgupta et al., 2019). Reversibility is another issue in causal 
representation based RL (Grinsztajn, Ferret, Pietquin, & Preux, 2021). 
 
A survey of generalization of RL is (Kirk, Zhang, Grefenstette, & Rocktäschel, 2021). 
 

3.5.5 Other Topics 

 
Like the planning area, multi-agent is also an important topic in reinforcement learning. Interesting 
research (Siu et al., 2021) shows that RL agents are not your good team members at this moment. 
 
Safety is another problem of current RL, especially model-free RL. Many classical algorithms like 
DQN cannot withstand adversarial attacks (Behzadan & Munir, 2017).  
 
At this moment, most of RL agents can only handle single type of input. However, in practice there 
can be multiple types of inputs: text, image, sound… As an example, DeepMind’s AlphaStar can 
deal with multimodal inputs. We will discuss it in the next sections. 
 
Because of low sampling efficiency, most of successful RL are trained in simulators. However, there 
is usually a gap between simulation and realistic. As shown by (Rajeswaran, Lowrey, Todorov, & 
Kakade, 2017), some RL experiments show good performance because their simulators are too 
simple. To be honest, some experiments cannot even be repeated at all (Islam, Henderson, 
Gomrokchi, & Precup, 2017). This situation will be changed if good simulators fill the reality gap. 
Digital twins supported by neural networks may be useful here. 
 

3.6. Applications 
 
At this stage, reinforcement learning is most mature in games. It’s easy to collect large amount of 
samples in games and the reward is clear (higher score in a game). The most famous work is the 
game AI of DeepMind. In this section, we will briefly discuss: 
 
 - AlphaGo Zero, a model-free RL agent in a fully observable environment. Humans write 
rules of the game in the agent. 
 - MuZero, a model-based RL agent in a fully observable environment. It learns rules from the 
environment. 
 - AlphaStar, an RL agent in partially observable and dynamic environment. 
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Figure 41: Some Game AI of DeepMind 

 

3.6.1 AlphaGo Zero (DeepMind, 2017) 

 
AlphaGo Zero relies on the Monte Carlo Tree Search (MCTS). Before taking an action, the agent 
builds a MCTS and uses the final data in the tree to make the decision. At each node 𝑠′ of the tree, 

there is a value estimation �̂�(𝑠, 𝑎) and a prior estimation �̂�(𝑎|𝑠), and 𝑠 is the father node, as shown 
by Figure 42. For simplicity, we assume an action only has a single outcome.  
 
An MCTS is constructed by repeating: 
 
 - Step 1: Selection always starts at the root of the tree, i.e., the current state in the game. At 
each node, it uses a scoring function 𝑈(𝑠, 𝑎) to compare different actions 𝑎 and choose the largest 
one. Computation of 𝑈(𝑠, 𝑎) is slightly different from (3-36) in UCB1: 
 

 𝑈(𝑠, 𝑎) = �̂�(𝑠, 𝑎) + �̂�(𝑎|𝑠)
𝑐√𝑙𝑛𝑁(𝑠)

1 + 𝑙𝑛𝑁(𝑠, 𝑎)
 (3-37) 

 
 - Step 2: Expansion. The selection process stops at a leaf node. All children of this leaf 

node will be expanded according to rules of the game. These new nodes contain �̂�(𝑠, 𝑎) and �̂�(𝑎|𝑠) 
which are initialized to 0. 

 - Step 3: Simulation. For each new node, the agent will compute �̂�(𝑎|𝑠) according to some 
rules. And then do a simulation from this node to the end of the game. In the simulation, the agent 
will choose actions according to some simple policy, e.g., fast rollout. The agent gets a result of this 
game after the simulation. 

 - Step 4: Backpropagation. Use the result of the simulation to update �̂�(𝑠, 𝑎) in the path. 
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Figure 42: Outline of a Monte Carlo Search 

 
The MCTS algorithm with UCB (Kocsis & Szepesvári, 2006) significantly improved performance of 
game AI. However, the step 3 simulation still takes too much time. AlphaGo and AlphaGo Zero 
(Silver et al., 2017) used a convolution neural network (ResNet) to accelerate the simulation. The 

input of the neural network includes previous 8 states of the Go board. The output includes �̂�(𝑎|𝑠) 

of the new node and change to �̂�(𝑠, 𝑎) of all nodes on the path. 
 

 
Figure 43: Neural Network Architecture of AlphaGo Zero 

 
After around 1600 MCTS, AlphaGo Zero chooses the action in the game to maximize the following 
formula: 
 

 𝜋(𝑎|𝑠𝑡) =
𝑁(𝑠𝑡 , 𝑎)1/𝜏

𝑁(𝑠𝑡)1/𝜏
 (3-38) 

 
Where 𝑠𝑡 is the root node of the tree at step 𝑡 of the game. 𝜏 is a parameter to control the degree of 
exploration. 𝜏 = 0 means greedy action selection, and 𝜏 = 𝑖𝑛𝑓 means sampling actions uniformly. 
 
In the training process, AlphaGo Zero will play with itself to generate samples. The loss function of 
the neural network is simply (excluding regularisation terms): 
 

 𝐿𝑜𝑠𝑠 = ∑ {[𝑄(𝑠𝑡 , 𝑎𝑟) − �̂�(𝑠𝑡 , 𝑎𝑡)]
2

− ∑ 𝜋(𝑎|𝑠𝑡) ∙ 𝑙𝑛 (�̂�(𝑎|𝑠𝑡))

𝑎

}

𝑡

 (3-39) 

 

3.6.2 MuZero (DeepMind, 2020) 
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AlphaGo Zero and its variant AlphaZero achieve good performance in board games like go, chess, 
and shogi. However, in step 2 “expansion”, MCTS still needs rules of the game to find successor 
states, i.e., children of a node. By contrast, the MuZero (Schrittwieser et al., 2020) automatically 
learns rules of the game and builds a MDP model. 
 
There are 3 neural networks in MuZero: 
 
 - The representation network ℎ maps from a set of observations to a hidden state 𝑠𝑡. 
 - The dynamics network 𝑔 maps from a state 𝑠𝑡 to the next state 𝑠𝑡+1 based on an action 𝑎𝑡. 

It also estimates the reward 𝑟𝑡+1 observed in this transition. 
 - the prediction network 𝑓 is like the neural network in AlphaGo Zero. 
 
MuZero uses networks 𝑔 and ℎ to find successor hidden states in step 2 “expansion”. The overall 
training process is like the one in section 3.5.1, as shown by Figure 44. 
 

 
Figure 44: Parallel Training of MuZero 

 
MuZero sets a new state of the art for reinforcement learning algorithms, outperforming all prior 
algorithms on the Atari game, as shown by Figure 45. It also masters more than 50 other games. 
 

 
Figure 45: Performance of RL Algorithms in the Atari Game 

 

3.6.3 AlphaStar (DeepMind, 2019) 

 
The games played by AlphaGo Zero and MuZero are relatively simple: the state is fully observable, 
the input only includes images of the screen, and the environment is relatively static. By contrast, 
DeepMind’s AlphaStar agent is designed for the StarCraft II game, which is partially observable, 
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dynamic and has multimodal inputs (Vinyals et al., 2019). The architecture of AlphaStar is shown in 
Figure 46. 
 

 
Figure 46: Architecture of AlphaStar 

 
Limited by pages, it’s difficult to introduce details of AlphaStar here. But there are some important 
ideas to mention: 
 
 - AlphaStar allows multimodal inputs and provides capability like temporal planning. 
 - AlphaStar combines reinforcement learning and imitation learning. 
 - The structure and training strategies of the neural networks are complex. 
 - It takes significant amount of computation resource. 
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4 The Delfi-PQ Mission 
 
PocketQube is a new form factor of very small satellites. The size of 1P PocketQube is around 

5×5×5cm, smaller than 10×10×10cm of 1U CubeSat. Since they are smaller, PocketQubes have 
stronger constraints on mass, size, power, and communication budget. However, for some 
applications like education, technology demonstration, gravity / magnetic / radiation multi-point 
measurement, PocketQubes are cheap and competitive (Bouwmeester et al., 2020). 
 
Delfi-PQ is a 3P PocketQube and third student satellite made in TU Delft (Radu et.al, 2018). The 
purpose of the mission includes education and technology demonstration. In this chapter, we will 
briefly discuss the hardware and software design of the satellite. We will also discuss how the 
planning and learning technology can help this mission. 
 

4.1. Overview of Subsystems 
 
The first Delfi-PQ has 7 subsystems, the On-Board Computer (OBC), the Communication System 
(COMMS), the Antenna Deployment Board (ADB), the Electrical Power System (EPS), the Attitude 
Determination and Control System (ADCS), a low frequency radio payload (LOBE-P), and a 
redundant on-board computer. An Electrical Ground Support Equipment (EGSE) board is used in 
debugging. 
 
Each subsystem has a Texas Instrument MSP432P4111 microcontroller, which controls how the 
subsystem works. All these microcontrollers are connected to an RS-485 bus with speed of 
115.2kbps. The OBC is the master of the bus. Only the OBC can actively send frames over the bus 
and other subsystems  only reply passively. The bus only allows half-duplex communication, and 
each frame has up to 256 bytes. Each microcontroller also has JTAG pins, which can be connected 
to a PC via a JLINK connector.  
 
The 48MHz microcontroller has 2MB Flash and 256KB SRAM. There is also a 512KB FRAM for 
each microcontroller. Information in a FRAM will not be lost after a reset. However, only the OBC 
has a 2GB SD-card to store telemetry.  
 
Every microcontroller should kick an external watchdog on the board at least once every 2.5 
second, otherwise the board will be reset. At the same time, a microcontroller should kick an internal 
watchdog at least once every 178 second, otherwise the controller will be reset. These are basic 
measures to deal with space radiation. 
 
The EPS consists of the battery board (1500mAh, 2 batteries of 3.7V), the main EPS board and 
solar panels. EPS manages 4 power lines, and each line has some subsystems on it. Depending on 
commands from the OBC, EPS can enable, disable, reset, or power cycle a power line. EPS is 
designed to be always running after the Delfi-PQ is released from the deployer. Therefore, a reset 
of the EPS leads to a reset of the whole satellite. If the battery voltage is lower than 3.6V, the OBC 
should commend the EPS to disable the power lines of unnecessary subsystems. 
 
The COMMS receives and decodes signal from the ground station. It automatically puts the ground 
commands into the RX queue. If the OBC requests ground commands from the queue, COMMS will 
take a ground command from the queue and send it to the OBC. On the other hand, if the OBC 
needs to send a message to the ground station, it will command COMMS to put the message to the 
TX queue. COMMS will automatically sends all messages in TX queue to the ground.  The RX/TX 
queue can store up to ~200 messages. The communication is full-duplex with a nominal speed of 
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1200 bps, or a higher speed of 9600 bps at 2W power consumption. In emergent case, if the 
COMMS receives a special commend from the ground, it will raise a special line to reset the EPS, 
which will reset the whole satellite. 
 
Another important subsystem is the ADCS. It has a BOSCH BMX055 sensor chip including a 
gyroscope, an accelerometer, and a geomagnetic sensor. It also has 3 house-made coils as 
magnetorquers to control the rotational speed of the satellite. If the rotation speed is larger than 5 
deg/second, the OBC will command the ADCS to slow down the rotation. 
 
The OBC controls how the subsystems work. It has a state machine which cover very basic 
operations of the satellite. As shown by Figure 47, the state machine has five modes: initial mode, 
antenna deployment mode, safe mode, ADCS mode, and normal operation mode. In the normal 
operations mode, the OBC will request telemetry from every subsystem periodically, save the 
telemetry is in its SD card and send it to the ground via COMMS. OBC will also periodically request 
ground commands from the COMMS. If the command is for OBC itself, it will deal with it and reply to 
the ground station. If the command is for another subsystem, OBC will forward the command to that 
subsystem, wait for the reply, and send reply to the ground. 
 

 
Figure 47: The State Machine in OBC 

 
ADB is used to deploy the antennas after the satellite is released from the deployer. The payload is 
another radio which will generate scientific data. The redundant on-board computer board only has 
a MSP432 and some basic components. 
 
The EGSE board can be put on the bus during debugging. It has a MSP432 which transfers frames 
between the bus and a USB connector, which is connected to a PC. On the PC, frames are 
converted to the JSON format and be sent via Internet. In this way, remote testing can be achieved. 
EGSE can listen to every frame over the bus and be the master of the bus. 
 

4.2. Onboard Software 
 
The onboard software can be seen to have 3 parts: 
 
 - Drivers, i.e., driver functions of peripherals. 
 - DelfiPQcore, a lightweight operating system with some basic helper functions. 
 - Application. Different microcontrollers run different applications on the same drivers and 
the DelfiPQcore. 
 
We will discuss the general workflow of the onboard software in section 4.2.1, basic concepts of 
DelfiPQcore in section 4.2.2, and applications in section 4.2.3. Most of information of this section 
are taken from internal reports. 
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4.2.1 Workflow of Onboard Software 

 
The general workflow of the programs can be described as a sequence of initialization steps, after 
which the program will go into a continuous task loop, as shown by Figure 48. In this loop it does: 
 

 
Figure 48: Workflow of Onboard Software of Delfi-PQ 

 
Step 1: Initialize Hardware 
 
This step should initialize the critical hardware components of the module. This ranges from general 
hardware in the MCU, such as initializing the clocks and busses, to specific hardware for this  
module, such as current sensors.  
 
Step 2: Execute Bootloader Routine 
 
One of the core features of the software is the possibility to load different software versions from the 
flash memory of the MCU. 
 
Step 3: Get Hardware Status 
 
As soon as possible in the startup routine, critical hardware status indicators should be collected 
and stored. These critical status indicators include the reset status (the reason for last reboot) and  
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possible clock faults. 
 
Step 4: Task Execution Routine 
 
After the operating system has completed its boot steps it starts a continuous task execution 
routine, which can be considered a simple non-preemptive, non-prioritized, linear scheduler (round-
robin). 
 

4.2.2 Important Concepts of Delfi-OS 

 
In this section we discuss some basic concepts and functions in the operating system. 
 
Task 
 
After the operating system is started, tasks can be executed. Any processing/data collection or any 
other action executed by the device, is preferably described as a ‘Task’. A task consists of an 
Initializer Function, a function executed once during the initialization of the Scheduler (Task 
Manager), and a User Function, the function executed every Iteration of the Task. Lastly the task 
has an Execution Flag, raising this flag will tell the Task Manager that this Task is ready for 
execution. If the Execution Flag is not raised, the Task will not be executed and ‘skipped’ by the 
Task Manager. The Execution Flag can be raised either externally by another task or using any 
interrupt routine, this action will henceforth be called ‘notifying’ a Task. 

 
PeriodicTask 
 
Some tasks will require periodic execution, and there might not be any clear external trigger 
available to notify such tasks (such as a Telemetry collection Task). Such a Task can be defined as 
a PeriodicTask, these tasks include another parameter which contains the required amount of 
‘counts’ for the task to be notified (currently, 1 ‘count’ is approximately 0.1 second ). An external 
object, the TaskNotifier, will notify the period tasks assigned to it using an interrupt routine. 
 
Service 
 
The most common source of notifying a task is from an external trigger over the satellite bus. The 
satellite bus driver will receive bytes over the bus using a hardware-interrupt routine, if a full frame is 
received, a CommandHandler Task is notified and the received frame is copied into its buffer. The 
scheduler will consecutively execute the CommandHandler Task since the Execution Flag is raised. 
The CommandHandler will read the DataFrame and will ‘poll’ so called Services it has registered to 
it. When a Service detects that the received frame is intended for this service, it will process the 
received frame, set a response frame, and notify the CommandHandler that it has processed this 
frame. The CommandHandler will then stop polling other services and reply over the bus. A user 
should create a service for every functionality that is required over the satellite bus. 
 
PQ9Bus and PQ9Frame 
 
Though the commandHandler is built to handle any frame it is supplied, the services used in the 
Delfi-PQ project are frame-specific. In this project, the frame used is a so-called PQ9Frame as is 
built in the following way: 
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Figure 49: PQ9Frame Definition 

 
Whereas the frame Payload is described as follows: 
 

 
Figure 50: PQ9Frame Payload Definition 

 
Bootloader and OTA Update 
 
As mentioned earlier one of the core functionalities of the OS is to execute a different software 
version from flash. This is handled by the so-called BootLoader. This bootloader requires an 
external memory (FRAM) to be present that holds (non-volatile) information regarding which 
memory-slot needs to be executed, whether the last execution was successful and how-many 
unintended reboots happened while in a certain executed slot. If this information tells the bootloader 
that the target slot is broken or has issues (or if the external FRAM is unavailable), it will fall back on 
the default slot (Slot 0). The device has three slots available, Slot 0, the default slot that is protected 
in flash and cannot be reprogrammed, and Slot 1 & Slot 2, which are allowed to be reprogrammed. 
Using this functionality an OTA (Over-The-Air) update can be executed in situ. Currently a service is 
implemented (SoftwareUpdateService), that allows a binary file transfer of a new software version 
over the bus to be programmed in flash. Using this, a module can be reprogrammed externally and 
even in orbit. Note that for this functionality to work the FRAM needs to be present.  
 

4.2.3 Tasks and Services in Each Subsystem 

 

Tasks shared by every subsystem: 
 
 - Timer task: A periodic task which collects telemetry of the subsystem every second. 
 - CommandHandler: It processes received frames and replies. CommandHandler is raised 
when a frame comes. 
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Service shared by every subsystem: 
 
 - Ping service: It replies to the ping command. 
 - Reset service: A microcontroller can be reset, or power cycled by a command. 
 - FRAM service: FRAM can be read, written, or erased by a command from the bus. 
 - Housekeeping service: Send the telemetry collected by the Timer task as a response. 
 - Software update service: Handle commands for OTA. New binary software is the payload 
of some OTA commands. 
  
Special tasks of ADB: 
 
 - A function in the burn service is set as a periodic task. 
 
Special services of ADB: 
 
 - Burn service: It burns the wire that locks the antenna, so the antenna is deployed. 
 
Special tasks of ADCS: 
 
 - None. Readout of attitude sensors is part of the telemetry, and the magnetorquer can be 
controlled via the coil service. 
 
Special services of ADCS: 
 
 - Coil service: Set states of the magnetorquers. 
 
Special tasks of COMMS: 
 
 - CommRadio: This task is raised by the Radio service. 
 
Special services of COMMS: 
 
 - Radio service: It includes a set of functions to interact with COMMS. 
 
Special tasks of EPS: 
 
 - None. 
 
Special services of EPS: 
 
 - Power bus handler: Set states of the power lines. 
 
Special tasks of LOBE-P (payload): 
 
 - lobepRadio: like CommRadio, but working on lower frequency 
 
Special services of LOBE-P (payload): 
 
 - lobep service: like the radio service, but working on lower frequency 
 
Special tasks of OBC: 
 
 - State Machine: It’s a periodic task that runs the simple state machine in section 4.1. 
 - File system: This task is raised by the telemetry request service to retrieve telemetry files 
from the SD card asynchronously or raised by the state machine to store telemetry in the SD card. 
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Special services of OBC: 
 
 - State machine service: get / set the current state; enable beacon or reset the state 
machine. 
 - Telemetry request service: request telemetry file from the SD card or format the SD card. 
 - Bootloader override service: command the microcontroller to jump to a specific slot. It 
should be a service shared by multiple subsystems but is only an OBC service at this moment. 
 

4.3. Apply Autonomy in the Mission 
 
As mentioned in Chapter 1, three possible applications of planning/learning in the Delfi-PQ mission 
are identified: 
 

App1: Autonomous operation of the satellite. 
App2: Autonomous recovery from faults. 
App3: Automated testing of onboard software. 

 
For onboard autonomous operation or fault recovery, the computing resource is too limited, e.g., 
48MHz microcontrollers with 256KB SRAM. Other missions with onboard planners have stronger 
computing capability and more mature operating system support: 
 
 - The early Deep Space 1 mission has a 33MHz RAD6000 CPU running the VxWorks OS 
with 96MB hardened RAM (Williams et al., 1997). 
 - The IPEX 1U CubeSat has a 400MHz ARM9 CPU running the Linux operating system with 
128MB RAM (Chien et al., 2017).  
 - The ASTERIA 6U CubeSat has a CORTEX 160 flight computer, which has a 400MHz 
PowerPC 405 CPU running the Linux with 64MB DSRAM (Smith et al., 2018). The MEXEC planner 
needs to fit in 2MB of memory, so the engineers put a lot of effort into it (Troesch et al., 2020). 
  
We can operate Delfi-PQ on the ground since there are more computing resources. However, the 
operation is simple so planning/learning techniques may not be necessary. Basically, we only need 
to decide when to open the payload or when to downlink. In this case, a greedy scheduling 
algorithm like (Rabideau, Chien, Galer, Nespoli, & Costa, 2017) is enough. Operation of other 
PocketQubes is also relatively simple because of limited performance. 
 
The situation is similar for fault recovery on the ground. There are engineers on the ground to deal 
with faults, so Delfi-PQ doesn’t need complex ground software to do the same thing. On the other 
hand, automated telemetry processing is helpful but out of the scope of this document. 
 
Automated testing of onboard software seems to be doable and helpful: 

 
- It’s performed on the ground so not limited by onboard computing resources.  
- Although planning/learning techniques are not commonly used in space industry, they have 

been used in software engineering. 
- There are many “actions” to choose in a test, so test case generation is complex enough to 

use the planning/learning techniques.  
- Currently we write all test cases by hand, which takes a lot of effort and cannot cover every 

edge case. It will be helpful if we can automate this process. 
- It’s also helpful to other PocketQubes because their software is updated frequently. 

 
In the next chapter, we will discuss how to apply such techniques in the mission and compare them 
with the existing methods. 
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5 Apply Autonomy in Testing 
 
This chapter proposes to use planning and reinforcement learning techniques to test onboard 
software of Delfi-PQ: 
 

- It introduces software testing in general in section 5.1.  
- After that, it reviews traditional test case generation methods in section 5.2.  
- Section 5.3 briefly reviews the literatures to apply planning in software testing. 
- More and more researchers and companies are using reinforcement learning to test 

software in recent years. Section 5.4 reviews the progress in this field. 
- In section 5.5, we will discuss which gap can be filled in this area, and how much it is 

related to the Delfi-PQ mission. 
- Research questions are proposed in section 5.6. 

 

5.1. A Bite on Software Correctness Testing 
 
Generally, software testing has the following steps: 
 
 - Step 1: Analyse the requirement document. 
 - Step 2: Make a test plan, including testing methods, environment settings, etc. 
 - Step 3: Set the testing environment. For embedded software, tests can be run on target 
boards, in a hardware-in-the-loop environment, or in a fully virtual machine. 
 - Step 4: Write test cases, execute them, and detect faults. A test case is a set of actions 
executed to test a system. A test suite includes multiple test cases. 
 - Step 5: Record the faults and let software engineers to debug. 
 
Although step 3 is also important for embedded software testing, we focus on step 4 in this chapter 
because it can be seen as a sequential decision-making problem. Also note that we mainly discuss 
correctness tests, instead of performance tests, safety tests, portability tests, etc. A comprehensive 
introduction to software testing is (Ammann & Offutt, 2016). 
 
Methods and levels of testing are briefly introduced in the following subsections.  
 

5.1.1 Testing Methods 

 

 
Figure 50: Black Box and White Box Testing 
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Software testing methods can be split into 2 categories, “black box” and “white box” methods. The 
black box testing is usually performed at a high level, where the testers do not need to know the 
system in detail. On the other hand, the white box testing needs details of the system, such as 
behaviours of a component or source code (Palmieri, 2013). The white box testing is more precise, 
but the creation and execution of test cases will take more effort. 
 
Typical black box testing methods include: 
 
 - Compare output of software with expected values. The expected output can be store in 
a decision table, or a state transition table, etc. 
 - All-pair testing / pairwise testing. It tries to minimize the number of test cases while 
ensuring that all combinations of inputs are tested. This method assumes effects of different input 
variables are independent. An example is shown in Figure 51. 
 

 
Figure 51: An Example of Pairwise Testing 

 
 - Equivalence partitioning also reduces number of test cases. It divides the input in several 
equivalent partition. Input values from the same partition have the same effect. Therefore, a few 
samples from an equivalent partition can represent other samples in the same partition. Figure 52 
shows an example of equivalence partitioning.  
 

 
Figure 52: An Example of Equivalence Partitioning 

 
 - Boundary analysis is an improvement on equivalence partitioning, which only samples 
input values around the boundaries, as shown in Figure 53.  
 

 
Figure 53: An Example of Boundary Analysis 

 
Typical white box testing methods include: 
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 - Basis path testing firstly constructs a control flow graph of the tested software, as shown 
in Figure 54. After that, it looks for all independent paths and executes them. 
 

 
Figure 54: Control Flow Graph of a Simple Program 

 
 - Control structure testing is a set of improvements on the basis path testing. For example, 
conditioning testing looks for paths that cover all possible conditions. For each variable in a 
program, dataflow testing covers at least a path from definition of the variable to utilization of the 
variable.  
 - Mutation testing inserts faults in the software to check whether current test cases can find 
the faults. It can also be used to test the fault handling mechanism. 
 
There are still many other testing methods that are not included in the subsection. 
 

5.1.2 Testing Levels 

 

 
Figure 55: The V-Model of Software Development 

 
The V-Model is system engineering is also used in software development. As shown in Figure 55, it 
usually has unit testing, integration testing, system testing and acceptance testing. For higher 
level tests, the system becomes more complex, and it’s usually more difficult for testers to access 
internal information of the system.  
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Before coding, we may also need to test requirements and system design, which can be done by 
technologies like model checking. After the acceptance test, if the software is updated and has 
some new capabilities, it needs regression tests to ensure the original capabilities are not affected. 
We can reuse test cases in regression tests. 
 

5.1.3 Test Embedded Software 

 
Testing embedded software is different from testing conventional software (e.g., PC, web or mobile 
applications). The main challenges include: 
 
 - Embedded software run on a target board with limited computing resources. 
 - It’s more difficult to get debug information from the target board, especially when the 
microcontrollers don’t support some debug capabilities, like tracing. This raises a need for 
sophisticated instrumentation and probing when testing embedded systems. 
 - Apart from commands from a host PC, a target board may also sense signals like 
temperature, acceleration, light intensity, wireless communication, etc. These signals will affect the 
test, and sometimes testers need to provide such signals during the test. 
 - Embedded software is usually developed in parallel with hardware. Sometimes there are 
only few new hardware available for software testing. 
 - Embedded software is closely integrated with hardware. A fault may come from hardware 
rather than software. 
 
Such challenges have led to wide adoption of simulation-based testing in embedded software 
industry. Some simulators can simulate all or part of embedded hardware, so engineers don’t 
always perform tests on target boards. Depend on which part is simulated, this approach can be 
called X-in-the-loop, e.g., hardware-in-the-loop (HiL), software-in-the-loop (Sil), model-in-the-loop 
(MiL), processor-in-the-loop (PiL), etc. Examples of such simulators include Qemu and Tina. Some 
embedded software IDEs also contain simulators. 
 
However, configure such simulators may take a lot of effort, especially when we configure different 
peripherals. On the other hand, any simulator cannot 100% mimic real hardware. Many tests of 
embedded software are still performed on real hardware (Garousi, Felderer, Karapıçak, & Yılmaz, 
2018), as shown in Figure 56. 
 

 
Figure 56: Papers in terms of using simulated or real SUTs (Garousi et al., 2018) 

 
Although testing embedded software is difficult, it’s still important in the research field of software 
testing, as shown by Figure 57. Many papers are related to the aerospace engineering, as shown in 
Figure 58. 
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Figure 57: Growth of the Field (Testing Embedded Software) (Garousi et al., 2018) 

 

 
Figure 58: Applications of Embedded Software Testing (Garousi et al., 2018) 

 
(Garousi et al., 2018) is a comprehensive survey of embedded software testing, though it has many 
errors in the references. 
 

5.2. Traditional Test Case Generation Techniques 
 
We briefly review existing automated test case generation techniques for correctness tests in this 
section. Two related surveys are (Utting, Pretschner, & Legeard, 2012) and (Anand et al., 2013). 
The goal of correctness tests can be 
 

- Coverage, e.g., code coverage, state coverage, requirement coverage, etc. 
- Test case specifications set by human, e.g., reach specific states. 
- Spread test cases evenly in the input domain to achieve high coverage. 
- Detect more faults. 

 
During execution of test cases, faults can be detected by test oracles. A test oracle defines 
expected output of the software under certain preconditions. We can detect faults by comparing real 
output and expected output. In model-based testing, we can directly get expected outputs from a 
model so don’t need test oracles anymore. 
 
There are some standard languages for test cases of embedded software, including the TTCN-3 
(Willcock, Deiß, Tobies, Keil, Engler & Schulz, 2011) and ATLAS2000 (Simpson, 2000). 
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5.2.1 Symbolic Execution 

 
Symbolic execution analyses source code to generate test data that can achieve high code 
coverage (white box testing). In the process of code analysis, it uses symbolic variables to simulate 
execution of the software. At any point during symbolic execution, it maintains current symbolic 
variables, a path constraint on the symbolic variables, and a program counter. Only when inputs of 
the software can  satisfy the path constraint, this path is feasible. In this way, symbolic execution 
can find all feasible paths, their path constraints and test inputs. Figure 59 shows an example of 
symbolic execution (Anand et al., 2013). 
 

 
Figure 59: An Example of Symbolic Execution 

 
Although symbolic execution was proposed by King (1975), it only became feasible in the 21st 
century because of more powerful constraint solvers and computers. It still has some fundamental 
problems: 
 
 - Path explosion: Most real-world software has an extremely large number of paths, and 
many of these paths are infeasible. It takes too much time to symbolically execute all the paths. 
 - Path divergence: Most real-world software uses multiple programming languages, and 
parts of them may be available only in binary form. Users need to provide models for the 
problematic parts.  
 - Complex constraints: some path constraints include non-linear operations like 
multiplication, division, and mathematical functions like 𝑠𝑖𝑛 and 𝑙𝑜𝑔, which cannot be solved by 
available constraint solvers. 
 

5.2.2 Model-Based Testing 

 
Model-based testing is another white-box testing technique. Models can be built by engineers, or 
from reverse engineering of software under test. After that, model-based testing tools will derive test 
cases from the models to maximize some kinds of structural model coverage. The general process 
of model-based testing is shown in Figure 60. 
 
We can also use mutated models to generate wrong test cases. These test cases can verify the 
fault handling mechanisms in programs. 
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There are many types of models. For embedded software, the most popular models are the finite 
state machine (FSM) and its variants (e.g., timed-FSM, stochastic-FSM). Apart from FSMs, other 
models like UML sequence diagrams, Method Definition Language (MeDeLa), logic formulars,  
labelled transition systems are also used. 
 

 
Figure 60: Process of Model-Based Testing (Garousi et al., 2018) 

 
An example of model-based testing tools is the LDRA TBrun (LDRA, 2013). It can automatically 
analyses software under test and get a control flow graph. After that, it automatically generates 
testing functions from the control flow graph. The testing functions are compiled with the software 
under test, and they will send test inputs to the software during execution. However, TBrun is 
designed for unit testing, i.e., analyse some functions and test them. It cannot generate commands 
for multiple subsystems in a system test. 
 

5.2.3 Random Testing 

 
Empirical studies show that failure-causing inputs tend to form contiguous failure regions. 
Consequently, non-failure causing inputs also form contiguous non-failure regions. Therefore, test 
cases should be evenly spread across the input domain, rather than located around a specific 
region (Anand et al., 2013). Random testing (RT) takes this idea and generates test inputs 
randomly. Adaptive random testing is an enhancement to RT. 
 
A famous random GUI testing tool is the Monkey provided by Android SDK (Patel, Srinivasan, 
Rahaman & Neamtiu, 2018). It can generate and execute test cases in a very high speed so it may 
achieve higher code coverage than some complex tools.  
 

5.2.4 Search-Based Testing 

 
In search-based testing, we first define a measurable fitness function that represents the test 
objectives. After that, we search a test case that maximize the fitness function. Commonly used 
search algorithms (Utting, Pretschner, & Legeard, 2012) include metaheuristic search, simulated 
annealing, and evolutionary algorithms (e.g., the genetic algorithm). 
 
An example of search-based testing tools is the Sapienz (Mao, Harman & Jia, 2016). It was first 
developed as research in UCL, but massively deployed in Facebook after 17 months (Mao, 2018). 
Sapienz uses a multi-objective genetic algorithm to generate test cases with maximal fitness 
functions. If the source code of the Android app is available, Sapienz measures statement coverage 
as the fitness function during execution of the app. When the source code is unavailable, Sapienz 
measures method coverage or activity coverage instead. The workflow of Sapienz is shown in 
Figure 61. 
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Figure 61: Sapienz Workflow 

 

5.2.5 Other Traditional Techniques 

 
Combinatorial interaction testing selects samples of input parameters that cover all combinations 
of the elements to be tested. It’s like automated all-pair testing. Such samples can be generated by 
heuristic search or meta-heuristic search (Anand et al., 2013).  
 
Model checking can verify whether a state machine satisfy a property represented by a temporal 
logic formula. If the FSM doesn’t satisfy the property, model checkers can generate counter 
examples, which can be used as test cases. Deductive theorem provers can be used in a similar 
way (Utting, Pretschner, & Legeard, 2012). However, for both model checking and deductive 
theorem provers, a state transition model is needed.  
 

5.3. Apply Planning in Correctness Testing 
 
The basic idea is to let human specify testing goals, and an AI planner will generate a set of plans to 
satisfy the goals. To some extents, planning-based test case generation is a type of model-based 
testing: models of tested systems are implicitly represented in planning domains. If current state of 
software is different from the predicted state in the plan, a “fault” is detected. 
 
However, this approach can only deal with “focused” goals such as reaching a state. It cannot 
achieve “ambiguous” objectives like reaching a high code coverage. 
 

5.3.1 Historical Remarks 

 
The first attempt to apply planning in automated testing is (Howe, Von Mayrhauser & Mraz, 1997). 
They used the UCPOP partial planner (Penberthy & Weld, 1992) to generate testing commands for 
the StorageTek robot tape library. More specifically,  
 
 - Step 1: The users indicate how many of different types of operations should be included in 
the plan. Based on the domain definition and users’ specification, the pre-processor creates a 
problem definition (including an initial state and goal state) that would require using the indicated 
commands. For example, if the user requests 3 move operations to be accomplished, the pre-
processor defines an initial state with at least 3 tapes in randomly selected positions and a goal 
state which specifies three new randomly selected locations for the tapes (Howe, Von Mayrhauser & 
Mraz, 1997). 
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 - Step 2: Based on the planning domain definition and problem definition, the UCPOP 
planner generates a plan. 
 - Step 3: The post-processor transfers the plan to a sequence of commands. 
 - Note: To generate invalid test cases, the users can modify preconditions in the domain 
definition, or change rules in the pre-processor. This approach is like using mutated models in 
model-based testing in section 5.2.2.  
 

 
Figure 62: Overall Design of (Howe, Von Mayrhauser & Mraz, 1997) 

 
It was a successful AI planning framework to generate both valid and invalid test cases. The pre-
processor, post-processor, and planning domain definition with 18 operators were written in only 
414 lines of code. However, 2 problems still exist: the UCPOP is not an efficient planner, and the 
planner only generates a single plan which doesn’t cover too many states. 
 
Memon, Pollack, and Soffa (2001) alleviated these problems. They found that GUI testing had the 
following properties: 
 

- The GUI actions are inherently hierarchical in nature. For example, you need to open the 
“start” menu to click a button in the menu. As we discussed in chapter 2, hierarchical planning is 
more efficient. 

- Hierarchical planning and partial planning can generate a set of plans, rather than a single 
plan, for an initial state and a goal. For example, you can choose different methods to decompose a 
task in the HTN planning, or different ways to complement a partial plan into a total plan. A set of 
plans (test cases) can cover more states. 

- The GUI actions can be automatically extracted from GUI events. Therefore, users only 
need to specify preconditions and effects of these actions, rather than write the complete domain 
definition. It reduces the workload of modelling.  
 
Utilizing the properties of GUI testing, Memon et al. implemented a test case generator called 
PATHS and used it to test the Microsoft WordPad. PATHS automatically derives operators from GUI 
events. After that, the users complement the domain definition and define a task as a problem 
definition. Given the task and domain definition, a hierarchical partial planner (like the AHA* 
planning in section 2.4.3) will generate a set of test cases. The workflow is shown in Figure 63. 
 

 
Figure 63: Roles of Users and PATHS during Test Case Generation 

 
Like PATHS, (Leitner and Bloem, 2006) also automatically derives planning problem and domain 
definitions from source code. Their system tests software written in a programming language called 
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Eiffel, which native support of preconditions and effects. If the derived effects of actions are not 
precise enough, the system can modified the effects according to execution results (𝑛𝑒𝑤 𝑒𝑓𝑓 ←
𝑜𝑙𝑑 𝑒𝑓𝑓 ∩ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡). It’s like the symbolic learning techniques in section 2.8.3. The planning 
and learning process is shown in Figure 64. 
 

 
Figure 64: Planning and Learning Process in (Leitner and Bloem, 2006) 

 
Later works to apply planning in correctness testing followed the methods mentioned above. An 
example is (Bozic, Tazl, & Wotawa, 2019), which uses AI planning to test chatbots. 
 
It’s important to mention that AI planning is more widely used in safety testing. Such tests have 
more “focused” goals like penetrating fireworks. Related works include (Sarraute, Buffet, & 
Hoffmann, 2012) and (Durkota & Lisý, 2014). 
 

5.3.2 Discussion 

 
As mentioned in the beginning of this section, AI planning is good at “focused” testing goals like 
reaching a state. It’s not good at state/code coverage in nature. Although PATHS (Memon et al., 
2001) tried to cover more states by generating a set of plans, it could not achieve as high coverage 
as other model-based testing techniques. For example, a depth-first or breadth-first directed graph 
traversal algorithm will cover more states than any planning algorithm within a given time. 
 
In some scenarios, we need “focused” testing goals rather than higher state coverage. For example, 
if the state space is too large to cover, it’s better to use testing goals derived from the requirements. 
In such scenarios, AI planning can find paths to the goals more quickly than traditional techniques in 
section 5.2. 
 
For these “focused” tests, hierarchical planners and partial planners have a special advantage. As 
shown by PATHS, such planners can generate a set of different test cases for a goal, instead of a 
single test case. More test cases can cover more paths in a test.  
 
Examples in section 5.3.1 mainly use classical planning. Can we use temporal planning and 
probabilistic planning to test complex software with durative actions, concurrency, and uncertainty? 
As mentioned in section 2.8.1, current first-order logic planning representations have poor prediction 
capability. It’s not possible to fully represent behaviours of a complex system in several hundred 
lines of PDDL code. Therefore, if we use temporal/probabilistic planners to test complex systems, 
it’s necessary to use replanning/plan-repair as a supplement. In this case, we need to use testing 
oracles, rather than prediction of planners, to identify faults. 
 
A bottleneck of planning-based testing is to acquire the planning models, i.e., problem and domain 
definitions. As the tested systems become more complex, it takes more effort to write such 
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definitions by hand. PATHS automatically derived part of the definitions from source code. (Leitner 
and Bloem, 2006) also learnt the definitions from execution results. Learning seems to be an 
important direction in this field. 
 

5.4. Apply Reinforcement Learning in Correctness Testing 
 
This section reviews how to use reinforcement learning in test case generation. Most research use 
RL to maximize state coverage of the tested program. Such problem is like traversal for a directed 
graph, as shown in Figure 65. A node on the graph is a state of the tested software, and an edge is 
a state transition caused by an action. If all nodes and edges are known and we can start searching 
from any node, the traversal can be easily done by a depth-first or breath-first search algorithm. 
 

 
Figure 65: A Directed Graph 

 
Again, life is not so easy. Real software testing has the following challenges: 
 
 - Behaviours of some software cannot be explained by a directed graph, a finite state 
machine or similar models. 
 - An action may have probabilistic outcomes. 
 - We won’t know all nodes/edges if we don’t have a model of the software. 
 - We can only start searching from initial state. Resetting to the initial state may take a lot of 
time. 
 
To cover software states under these challenges, 2 approaches were proposed. The first approach 
uses a model-free RL agent to explore the state space, while the second approach learns a model 
of the tested software. Subsections 5.4.1 and 5.4.2 introduce the 2 approaches. 
 
Subsection 5.4.3 briefly reviews other research to apply RL in software testing. (Durelli et al., 2019) 
and (Omri and Sinz, 2021) are 2 recent surveys about machine learning in software testing, which 
are related to this section.  
 

5.4.1 ”AI Spidering” – Model-Free RL to Explore Software 

 
Traditional RL agents struggle to achieve a balance between exploration and exploitation. However, 
an “AI Spider” only focuses on exploration. As we discussed in section 3.5.2, exploration can be 
encouraged by giving the agent (count-based or curiosity-based) intrinsic rewards. 
 
Let’s start from count-based rewards. In the simplest version, the RL agent uses the Q-Learning 
algorithm in section 3.3.1 and receives an intrinsic reward after reaching any state 𝑠: 
 

 𝑅 =
1

𝑁𝑠 + 𝑐
 (5-1) 
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where 𝑁𝑠 is the number of times that state 𝑠 has been visited, and 𝑐 is a constant. Compared with 
random testing in section 5.2.3, the Q-Learning agent records and chooses the actions that lead to 
more new states being discovered. Many researchers and developers adopt similar methods to 
explore the tested software: 
 
 - (Veanes, Roy & Campbell, 2006) records number of visits in edges of a state transition 
graph, which is constructed during the search. Humans write an implicit model (like a planning 
model) of the tested toy program so it knows what action can be executed under a specific state. 
 - (Bauersfeld & Vos, 2012) uses this method to test Microsoft Word’s GUI. 
 - (Groce et al., 2012) uses the SARSA algorithm to test some toy programs. 
 - (Adamo, Khan, Koppula, & Bryce, 2018) uses this method to test GUIs of some Android 
Apps. Executable actions under a state are extracted by the Appium and UIAutomator tools. Under 
a small probability, the agent will restart search from the initial state to avoid being trapped in loops. 
Execution traces are recorded as test cases. For each test case, they calculate a hash value to 
avoid recording the similar case twice. 
 - (Vuong & Takada, 2018) this method to test GUIs of some Android Apps. 
 - Some commercial testing tools like Test.AI (test.ai, 2021) have similar features of the Q-
Learning exploration. However, the technical details of these products are not clear. 
 
The intrinsic rewards can also be given by a curiosity module. The curiosity module can be used as 
a state comparison function to differ different states. For example, there may be different news in 
the same home page of a GUI, as shown by Figure 66. Traditional methods may think that the 
home page contains many states, but a curiosity module will recognize the page as a single state.  
 

   
Figure 66: A Curiosity Module in an “AI Spider” 

 
(Pan, Huang, Wang, Zhang & Li, 2020) uses the curiosity module in Figure 66 to compute rewards. 
Bytedance, the company who developed the popular application TikTok, is using an “AI spider” with 
a curiosity module in GUI testing. Their “Fastbot” tool (Bytedance, 2021) detects more than 50,000 
crashes every month. 
 
These “AI spiders” have been applied in industry and usually perform better than random testing. 
However, they cannot utilize experience of previous tests. For example, reward (5-1) is changing 
during a test, which means the environment is changing when the agent interacts with it. The 
optimal policy in the beginning of the test (most states not visited yet, dense reward) is different from 
the optimal policy in the end (most states visited, sparse reward). Therefore, a trained policy 
(optimal in the end) may not adapt to the beginning of the test very well.  
 
At the same time, the “AI spiders” are mainly built for GUI or web testing, whose state/action space 
is discrete. The state space is also not very large (~100 pages for an Android app) so a tabular Q-
Learning algorithm is enough. The agent can easily know what action can be executed from the 
current page. However, for more complex software, the approach may have problems. 
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5.4.2 Learn Models of the Software 

 
Testing tools in this section interact with tested software to learn of model. As far as we know, most 
of them learn a Finite State Machine (FSM) model. (Fraser & Walkinshaw, 2015) also learns 
different classifiers, including neural networks and naive Bayes learners, from the tested software. 
 
Learning a finite state machine is an old topic in computer science (Mohri, Rostamizadeh & 
Talwalkar, 2012). A state machine (or automata) can be learnt actively or passively. An active 
learning algorithm called L* (Angluin, 1987) has been widely used in domains from network protocol 
inference to functional confirmation testing of circuits. However, L* requires frequent reset to the 
initial state. 
 
(Choi, Necula, & Sen, 2013) learns an FSM model from Android application and uses the model to 
guide test into unexplored parts of state space. They try to minimize number of resets during the 
learning process, which is shown in Figure 67. (Zheng et al, 2021) takes a similar approach. Stoat 
(Su et al., 2017), another popular Android testing tool, learns an FSM and then mutate it to generate 
test cases. 
 

 
Figure 67: Learning Automata from Android Apps (Choi et al., 2013) 

 
This approach can also be applied to embedded systems. For example, (Groz, Simao, Bremond & 
Oriat, 2018) infers an FSM from a heating management system with 3 C++ microcontrollers. Their 
learning algorithm can scale up to more than 1000 states. 
 
Different from the “AI spiders”, models learnt from tested software can be reused in the next round 
of test. However, current learnt models in software testing are mainly finite state machines, which 
cannot be scaled up to very large state space and complex systems. 
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Figure 68: Learning Automata from Embedded Systems 

 

5.4.3 Other Works to Apply RL in Software Testing 

 
Reinforcement learning becomes more popular in game testing. It’s reasonable since many RL 
research are performed using computer games. Because of limited collaboration capability of these 
agents (see section 3.5.5), they cannot be used as teammates of human players at this stage. 
Therefore, the only practical application of these agent will be testing the games. In this case, they 
need to achieve a balance between game scores and state coverage. 
 
Wuji (Zheng et al., 2019) uses the multi-objective genetic algorithm with the standard A3C RL 
algorithm (see section 3.4.3) in web game testing. The genetic algorithm is used to modify weights 
of neural networks to achieve higher state coverage. The famous game company Electronic Arts 
also uses the PPO RL algorithm (see section 3.4.2) to test their games (Bergdahl, Gordillo, Tollmar, 
& Gisslén, 2020). 
 
Apart from state coverage, RL agents can maximize other metrics in software testing. (Ahmad, 
Ashraf, Truscan, & Porres, 2019) uses the duelling DQN algorithm (see section 3.3.3) to do 
performance test so the reward is system workload. (Reichstaller, Eberhardinger, Knapp, Reif, & 
Gehlen, 2016) uses RL in risk-based testing. However, as far as we know, there is no research that 
directly uses code coverage as reward. 
 
Apart from test case generation, RL can also be used to prioritize test cases in regression testing. 
(Spieker, Gotlieb, Marijan, & Mossige, 2017) is a successful work in this field. It calculates rewards 
by execution time and number of failures of test cases.  
 

5.4.4 Discussion 

 
Reinforcement learning can be thought as a search-based test case generation method:   
 
 - Unlike planning, reinforcement learning allows ambiguous goals like maximization of 
coverage. Such goals are important in correctness testing. 
 - Compared with model-based testing, RL needs less prior knowledge of the tested system. 
 - Compared with random testing, RL is guided to the unexplored regions. 
 - Compared with other search-based methods like the evolutionary algorithms, RL can 
generate valid action sequences with strong causal relationships. 
 
To test software with small and discrete state/action space, maximizing state coverage is a 
reasonable goal. As shown in section 5.4.1, the tabular Q-learning algorithm has been successfully 
used to explore such state space. However, the learnt policy may not be very useful in the next 
round of test. To reuse experience of previous tests, it’s better to learn an FSM model with up to 
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1000 states from the tested software, as shown in section 5.4.2. We can also include a coverage 
vector as part of the current state, so the rewards are not changing, and the learnt policy can be 
reused. As a compromise, it will significantly increase the size of the state space. 
 
But how to explore a software with large or continuous state/action space? Covering such 
state/action space is very time-consuming or even impossible. One possible approach is to merge 
similar states and actions, which is identical to the equivalence partitioning in section 5.1.1. An 
example has been shown in section 5.4.1 where a curiosity module is used to differ from different 
states. Another approach is to use other metrics like code coverage, which may be more difficult to 
collect in practice. For example, in (Runeson, Heed, & Westrup, 2011), the testers insert line 
counting instructions in Java bytecode to measure real-time code coverage change on embedded 
devices. Every time a counting instruction is executed, the host PC will receive a message from the 
target board.  
 

 
Figure 69: Inject Lind Counting Instructions in Java Bytecode 

 
If deep reinforcement learning algorithms are used, their low sampling efficiency can be a significant 
problem. We cannot parallel collect a large amount of samples from a simulated environment. In 
practice, we may only have few target boards and the communication between the host and the 
targets takes a lot of time. The sampling efficiency may be improved if we learn a model of the 
tested embedded software. 
 

5.5. Research Questions 
 

5.5.1 Research Objective 

 
The research objective is suggesting an approach to automatically generate strong causal-
related testing commands with limited prior knowledge for onboard software by designing 
and validation of a primitive planning/RL-based testing tool for the Delfi-PQ satellite. 
 
This research objective fills a gap of space system testing. As far as we know, current testing 
techniques in the space industry cannot automatically produce strong causal-related testing 
commands with limited prior knowledge: 
 

- To automatically generate such commands, engineers usually write an FSM-like model of 
the system and use the program to traverse the model. It takes a lot of effort to define the prior 
knowledge.  
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- The model can also be extracted from the source code (like LDRA TBrun in section 5.2.2). 
However, static code analysis like symbolic execution is not good at complex software and mainly 
used in unit testing. It generates test inputs for specific functions. 

- Random testing and evolutionary algorithms are not good at generating valid command 
sequences with strong causal relations.  
 
On the other hand, planning and reinforcement learning are suitable to generate such commands, 
which is a sequential decision-making problem. They have been successfully used in GUI testing 
and web testing (section 5.3/5.4) but not used in onboard software yet. Some challenges remain, 
especially for testing onboard software: 
 
 - Planning can achieve “focused” goals like reaching a specific state. As shown in section 
5.3.2, testers need to write an implicit planning model for the tested software, which may take some 
efforts. The predicting capability of the first-logic planning model is limited for complex onboard 
software. 
 - Reinforcement learning is good at “ambiguous” goals like state/code coverage. As shown 
in section 5.4.4, three fundamental problems of this approach are reusing experience, limited 
sampling from embedded software, and exploring software with large state/action space. 
 
We can compare the primitive testing tool with a traditional model-based testing tool (commercial or 
developed by ourselves) to validate this approach. If we achieve the research objective, we may 
significantly reduce human workload in onboard software testing and increase the test coverage. 
 

5.5.2 Research Questions about the Testing Goal 

 
RQ1 What’s the goal of testing command generation? 
 
Three possible goals are identified: maximize code coverage, maximize state coverage, or reach 
some “focused” goals set by human. 
 
 RQ1.1 If code coverage is the goal, how much effort is needed to collect code 
coverage change caused by a single command? 
 
 For tested software with large action/state space, code coverage is a promising goal. To 
understand how a specific command affects code coverage, we need to measure code coverage 
change caused by the command. However, as shown in section 5.4.4, such measurement is not 
easy. Therefore, we need to know: 
 
  RQ1.1.1 What software/hardware tool can get such coverage change from the 
microcontrollers of PQ? 
 
  Such as LDRA cover, Segger J-Trace, VectorCAST… 
 
  RQ1.1.2 How much money do we need to pay for these tools? 
 
  RQ1.1.3 Do we need to modify the tools, or even develop something by 
ourselves to measure such change? 
 
  RQ1.1.4 Does the same method work for other small satellites? 
 
 RQ1.2 If state coverage is the goal, how can we differ one state from another state for 
the Delfi-PQ onboard software? 
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 It’s easy to differ one state from another in GUI or web testing: one page layout is identical to 
a discrete state. However, it’s difficult to identify a discrete state from telemetry of some onboard 
software. For example, most of parameters in the telemetry of ADB are continuous. Several 
possible solutions exist: 
 
  RQ1.2.1 Can we use a special type of state coverage that is easier to measure?  
 

An example of such metrics is to cover different types of commands and replies? 
 
  RQ1.2.2 Can we use a curiosity module (or similar things) to compute the 
“similarity” of continuous telemetry parameters? 
 
  This means that we try to distinguish states with continuous telemetry parameters. 
 
 RQ1.3 If we set “focused” goals, how can we generate representative goals that can 
sufficiently test the software? 
 
  RQ1.3.1 Can we do that by imitating behaviours of human operators (imitation 
learning)? 
 
  It’s also common to imitate human behaviours in software testing. 
 
  RQ1.3.2 Can users set constraints of the goals, and then a goal generator sets 
the goals automatically? 
 
  Like the approach in section 5.3.1.  
 

5.5.3 Research Questions about Prior Knowledge 

 
RQ2 How much prior knowledge needs to be encoded? 
 
In general, we prefer a method that need less prior knowledge, and the prior knowledge is easy to 
encode. It will reduce workload of testers. 
 
 RQ2.1 The Delfi-PQ mission defines formats of commands and replies in an XML file 
according to the XTCE standard (CCSDS 660.0). Can a testing tool read the format 
automatically? 
 
 The XML file records the formats of all commands and replies for each subsystem. However, 
it doesn’t contain predictions and effects of each command. 
 
 RQ2.2 Can the testing tool learn preconditions and effects of a command during 
execution? 
 
 Some commands can only be successfully executed under some preconditions. Effects of a 
command include type of reply, state change, and code coverage change. By acquiring these 
preconditions and effects, the tool learns a model of the onboard software. It’s helpful but not 
necessary. 
 
  RQ2.2.1 What kind of model is suitable for learning preconditions, type of 
reply, and state change? 
 
  The answer may be a finite state machine, a planning model, or a neural network. 
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  RQ2.2.2 What kind of model is suitable for learning code coverage change? 
 
  The answer may be a neural network, whose inputs include a code coverage vector 
and a command, and output is a new code coverage vector. The size of code coverage vector 
depends on resolution set by human (doesn’t change with code). 
 

5.5.4 Research Questions about Testing Algorithm 

 
RQ3 What algorithm is suitable for testing command generation? 
 
The answer strongly depends on the goal and the prior knowledge we have. 
 
 RQ3.1 For an RL algorithm, how can we reuse previous experience? 
 
 RQ3.2 For an RL algorithm, how can we improve sampling efficiency on embedded 
devices? 
 
 RQ3.3 For a planning algorithm, how can we improve the prediction capability of the 
first-order logic model? 
 

5.5.5 Research Questions about Testing Environment 

 
RQ4 Do we test the software on target hardware, in a simulator, or in a hardware-in-the-loop 
environment? 
 
Probably on target hardware because we don’t have a simulator yet. Texas Instrument doesn’t 
provide a simulator for the MSP432 microcontroller and prefers that customers evaluate their 
solution with the physical hardware itself. 
 
RQ5 How do we set the testing environment when the EGSE is the bus master? 
 
We can send commands and receive replies by the EGSE. However, we may consider other 
connections. 
 
 RQ5.1 Shall we connect the JTAG pins to collect debug information, including code 
coverage? 
 
 Unfortunately, there is only one Segger J-LINK PRO connector. 
 
 RQ5.2 For the COMMS subsystem, shall we use the wireless communication? 
 
 RQ5.3 Shall we mimic other inputs, such as magnetic field and sunlight? 
 
RQ6 How do we set the testing environment when the OBC is the bus master? 
 
We can send commands and receive replies by the COMMS. However, we may consider other 
connections. 
 
 RQ6.1 Can we use the EGSE to hear messages over the bus, or even insert wrong 
messages? 
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 RQ6.2 Can we use the EPS to manage electricity of the satellite? 
 
RQ7 How can we ensure the generated testing inputs will not damage the satellite? 
 

5.5.6 Research Questions about Fault Detection 

 
RQ8 How shall we design the test oracles? 
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Jos é Reinaldo Silva, and Brian Williams, editors, Proceedings of the 22nd International Conference on 
Automated Planning and Scheduling (ICAPS 2012). AAAI Press, 2012. 
 
Erol, K., Hendler, J. A., & Nau, D. S. (1994, June). UMCP: A Sound and Complete Procedure for Hierarchical 
Task-network Planning. In Aips (Vol. 94, pp. 249-254). 
 
Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., ... & Kavukcuoglu, K. (2018, July). 
Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In International 
Conference on Machine Learning (pp. 1407-1416). PMLR. 
 
Eyerich, P., Mattmüller, R., & Röger, G. (2009, October). Using the context-enhanced additive heuristic for 
temporal and numeric planning. In Nineteenth International Conference on Automated Planning and 
Scheduling. 
 
Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep 
networks. In International Conference on Machine Learning (pp. 1126-1135). PMLR. 
 
Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving to 
problem solving. Artificial intelligence, 2(3-4), 189-208. 
 
Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., ... & Legg, S. (2017). Noisy networks 
for exploration. arXiv preprint arXiv:1706.10295. 
 
Fox, M., & Long, D. (2003). PDDL2. 1: An extension to PDDL for expressing temporal planning domains. 
Journal of artificial intelligence research, 20, 61-124. 
 
Fraser, G., & Walkinshaw, N. (2015). Assessing and generating test sets in terms of behavioural adequacy. 
Software Testing, Verification and Reliability, 25(8), 749-780. 
 
Fratini, S., Cesta, A., De Benedictis, R., Orlandini, A., & Rasconi, R. (2011). Apsi-based deliberation in goal 
oriented autonomous controllers. ASTRA, 11. 
 
Fuchs, J. J., Gasquet, A., Olalainty, B., & Currie, K. (1990, June). plan ERS-1: an expert planning system for 
generating spacecraft mission plans. In 1991 First International Conference on Expert Planning Systems (pp. 
70-75). IET. 
 
Fujimoto, S., Hoof, H., & Meger, D. (2018, July). Addressing function approximation error in actor-critic 
methods. In International Conference on Machine Learning (pp. 1587-1596). PMLR. 
 
Fukushima, Y., & Mita, M. (2011, August). A new approach to autonomous onboard mission replanning using 
orthogonal array design. In 2011 IEEE Fourth International Conference on Space Mission Challenges for 
Information Technology (pp. 43-50). IEEE. 
 



       

85 

 

Garousi, V., Felderer, M., Karapıçak, Ç. M., & Yılmaz, U. (2018). Testing embedded software: A survey of the 
literature. Information and Software Technology, 104, 14-45. 
 
Gerevini, A., & Serina, I. (2000, April). Fast Plan Adaptation through Planning Graphs: Local and Systematic 
Search Techniques. In AIPS (pp. 112-121). 
 
Ghallab, M., & Laruelle, H. (1994, June). Representation and Control in IxTeT, a Temporal Planner. In Aips 
(Vol. 1994, pp. 61-67). 
 
Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: theory and practice. Elsevier. 
 
Ghallab, M., Nau, D., & Traverso, P. (2014). The actorʼs view of automated planning and acting: A position 
paper. Artificial Intelligence, 208, 1-17. 
 
Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge University Press. 
 
Grinsztajn, N., Ferret, J., Pietquin, O., Preux, P., & Geist, M. (2021). There Is No Turning Back: A Self-
Supervised Approach for Reversibility-Aware Reinforcement Learning. arXiv preprint arXiv:2106.04480. 
 
Groce, A., Fern, A., Pinto, J., Bauer, T., Alipour, A., Erwig, M., & Lopez, C. (2012, November). Lightweight 
automated testing with adaptation-based programming. In 2012 IEEE 23rd International Symposium on 
Software Reliability Engineering (pp. 161-170). IEEE. 
 
Groz, R., Simao, A., Bremond, N., & Oriat, C. (2018, May). Revisiting AI and testing methods to infer FSM 
models of black-box systems. In 2018 IEEE/ACM 13th International Workshop on Automation of Software 
Test (AST) (pp. 16-19). IEEE. 
 
Guzman, C., Castejon, P., Onaindia, E., & Frank, J. (2015). Reactive execution for solving plan failures in 
planning control applications. Integrated Computer-Aided Engineering, 22(4), 343-360. 
 
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-policy maximum entropy 
deep reinforcement learning with a stochastic actor. In International conference on machine learning (pp. 
1861-1870). PMLR. 
 
Hammond, K. J. (1990). Explaining and repairing plans that fail. Artificial intelligence, 45(1-2), 173-228. 
 
Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., ... & Silver, D. (2018, April). 
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-second AAAI conference on 
artificial intelligence. 
 
Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., ... & Gruslys, A. (2018, April). Deep q-
learning from demonstrations. In Thirty-second AAAI conference on artificial intelligence. 
 
Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. Advances in neural information 
processing systems, 29, 4565-4573. 
 
Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2020, April). HDDL: An 
extension to PDDL for expressing hierarchical planning problems. In Proceedings of the AAAI Conference on 
Artificial Intelligence (Vol. 34, No. 06, pp. 9883-9891). 
 
Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast Plan Generation through Heuristic Search. 
Journal of Artificial Intelligence Research, 14: 253–302. 
 
Hopgood, A. A. (1993). Knowledge-based systems for engineers and scientists. CRC Press, Inc. 
 
Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., & Silver, D. (2018). 
Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933. 
 
Howe, A. E., Von Mayrhauser, A., & Mraz, R. T. (1997). Test case generation as an AI planning problem. In 
Knowledge-Based Software Engineering (pp. 77-106). Springer, Boston, MA. 



       

86 

 

 
Hunsberger, L., Posenato, R., & Combi, C. (2012). The dynamic controllability of conditional stns with 
uncertainty. arXiv preprint arXiv:1212.2005. 
 
Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning methods. 
ACM Computing Surveys (CSUR), 50(2), 1-35. 
 
Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 
10-44. 
  
Islam, R., Henderson, P., Gomrokchi, M., & Precup, D. (2017). Reproducibility of benchmarked deep 
reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133. 
 
Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., & Kavukcuoglu, K. (2016). 
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397. 
 
Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F., & Borrajo, D. (2012). A review of machine 
learning for automated planning. The Knowledge Engineering Review, 27(4), 433-467. 
 
Johnston, M. D. (1990, January). Spike: Ai scheduling for nasa's hubble space telescope. In Sixth Conference 
on Artificial Intelligence for Applications (pp. 184-185). IEEE Computer Society. 
 
Kautz, H., & Selman, B. (1999, June). Unifying SAT-based and graph-based planning. In IJCAI (Vol. 99, pp. 
318-325). 
 
King, J. C. (1975). A new approach to program testing. ACM Sigplan Notices, 10(6), 228-233. 
 
Kirk, R., Zhang, A., Grefenstette, E., & Rocktäschel, T. (2021). A Survey of Generalisation in Deep 
Reinforcement Learning. arXiv preprint arXiv:2111.09794. 
 
Kocsis, L., & Szepesvári, C. (2006, September). Bandit based monte-carlo planning. In European conference 
on machine learning (pp. 282-293). Springer, Berlin, Heidelberg. 
 
Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural information processing 
systems (pp. 1008-1014). 
 
Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J. (2016). Hierarchical deep reinforcement 
learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information processing 
systems, 29, 3675-3683. 
 
Kvarnström, J., & Doherty, P. (2000). TALplanner: A temporal logic based forward chaining planner. Annals of 
mathematics and Artificial Intelligence, 30(1), 119-169. 
 
Ldra. (2013). LDRA_TBrun. https://ldra.com/wp-content/uploads/2017/07/LDRA_TBrun-v5.2.pdf 
 
Leitner, A., & Bloem, R. (2005). Automatic testing through planning. Technische Universität Graz, Institute for 
Software Technology, Tech. Rep. 
 
Levine, S., & Koltun, V. (2013, May). Guided policy search. In International conference on machine learning 
(pp. 1-9). PMLR. 
 
Lgvaz. (2017). Why Does Q-Learning Overestimate Action Values? Stackexchange. 
https://stats.stackexchange.com/questions/277442/why-does-q-learning-overestimate-action-values 
 
Likhachev, M., Thrun, S., & Gordon, G. J. (2004). Planning for markov decision processes with sparse 
stochasticity. Advances in neural information processing systems, 17, 785-792. 
 
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous 
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. 
 



       

87 

 

Luce, R. D. (2012). Individual choice behavior: A theoretical analysis. Courier Corporation. 
 
Markov Decision Process. (2021). Wikipedia. https://en.wikipedia.org/wiki/Markov_decision_process 
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