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Abstract. Proper orthogonal decomposition (POD) is a powerful technique for model
reduction of linear and non-linear systems. It is based on a Galerkin type discretization
with basis elements created from the system itself. In this work POD is applied to esti-
mate scalar parameters in elliptic partial differential equations. The parameter estimation
is formulated in terms of an optimal control problem that is solved by an augmented La-
grangian method combined with a sequential quadratic programming algorithm. Numerical
examples illustrate the efficiency of the proposed approach.

1 INTRODUCTION

Proper orthogonal decomposition is a method to derive low order models for systems
of differential equations. It is based on projecting the system onto subspaces consisting
of basis elements that contain characteristics of the expected solution. This is in contrast
to, e.g., finite element techniques, where the elements of the subspaces are uncorrelated
to the physical properties of the system that they approximate.

In this work we apply a POD Galerkin approximation to estimate scalar parameters
in elliptic systems. The corresponding parameter identification problem is formulated
as an optimal control problem with inequality constraints for the parameters. To solve
this optimization problem with a scalar inequality constraint we apply an augmented
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Lagrangian method [5, 6] combined with a globalized sequential quadratic programming
(SQP) algorithm [12]. In [18] error estimates for POD Galerkin schemes for linear and
certain semi-linear elliptic, parameter dependent systems were proved. The resulting error
bounds depend on the number of POD basis functions and on the parameter grid that is
used to generate the snapshots and to compute the POD basis.

Let us finally briefly comment on further literature containing applications of POD. It
is successfully used in different fields including signal analysis and pattern recognition (see,
e.g., [10]), fluid dynamics and coherent structures (see, e.g., [14, 30]) and more recently
in control theory (see, e.g., [1, 3, 19, 22, 24]) and inverse problems [2]. Surprisingly
good approximation properties are reported for POD based schemes in several articles,
see [9, 31] for example. The relationship between POD and balancing is considered in
[23, 29, 33]. Error analysis for nonlinear dynamical systems in finite dimensions are
carried out in [15, 28]. In [20, 21] error estimates for POD Galerkin approximations
are derived for non-linear parabolic differential equations. These results are extended
to linear-quadratic optimal control problems in [13]. Reduced-basis element methods
for parameter dependent elliptic are investigated in [4, 25, 26], for instance. Parameter
identification problems are formulated in terms of optimal control problems and solved
by SQP techniques in [7, 11, 16, 32], for instance.

The article is organized in the following manner: In Section 2 the parameter estimation
is formulated interms of an optimal control problem. The POD Galerkin approximation is
described in Section 3. In Section 4 we present numerical examples illustrating the efficient
performance of the reduced-order approximation compared to a high-order approximation
that utilizes a finite element discretization. Finally, we draw some conclusions and discuss
future research in the last section.

2 PARAMETER ESTIMATION FOR ELLIPTIC EQUATIONS

Motivated by the good approximation properties [18] we apply the POD method to a
parameter estimation problem, where we want to identify a scalar parameter in an elliptic
equation from (perturbed) measurements of the solution on the boundary and/or in the
domain. Let qa ∈ R be a given lower bound for the unknown parameter q and

Qad =
{

q ∈ R | qa ≤ q
}

⊂ R

the (closed and convex) set of admissible coefficients. Suppose that Ω is a given bounded
and open domain in R

d, d ∈ {1, 2, 3}, with boundary Γ = ∂Ω. Throughout, by ∇ϕ we
denote the gradient of a function ϕ : Ω → R. We suppose that for any q ∈ Qad there
exists a unique weak solution u = u(q) to the elliptic problem

−c∆u+ β · ∇u+ qu = g in Ω, (1a)

c
∂u

∂n
+ σu = gΓ on Γ, (1b)
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where β ∈ R
2, c, σ ∈ R with c > 0. Further, g : Ω → R and gΓ : Γ → R are (essentially)

bounded inhomogeinities. More precisely, u is a weak solution to (1) provided u belongs
to the Sobolev space H1(Ω) = {ϕ : Ω → R |

∫

Ω
|∇ϕ|2 + ϕ2 dx <∞} and

∫

Ω

c∇u · ∇ϕ+
(

β · ∇u+ qu
)

ϕ dx +

∫

Γ

σuϕ ds =

∫

Ω

gϕ dx +

∫

Γ

gΓϕ ds (2)

is satisfied for all ϕ ∈ H1(Ω). For the definition and properties of Sobolev spaces we refer
the reader to [8], for instance.

To determine the admissible coefficient q ∈ Qad from bounded measurements ud : Γ →
R we minimize the quadratic cost functional J given by

J(q, u) =

∫

Γ

α

2
|u− ud|2 ds +

κ

2
|q − qd|2, (3)

where α is a non-negative weight, κ > 0 denotes a regularization parameter and qd ≥ qa
is a nominal/reference coefficient.

Now the constrained optimal control problem is given by

min J(q, u) subject to (s.t.) (q, u) ∈ Qad ×H1(Ω) satisfies (2). (P)

Note that (P) is an optimization problem in function spaces. It can be shown that there
exists a solution (q∗, u∗) to (P). For more details we refer the reader to [17].

Since (P) is a non-convex programming problem, different local minima might occur.
A numerical method will deliver a local minimum close to its starting value. Hence we
focus on properties of local minima of (P). Suppose that (q∗, u∗) is a local optimal
solution. This solution is characterized by first-order necessary optimality conditions
[17, 27]: There exist unique Lagrange multipliers p∗ ∈ H1(Ω) and λ∗ ∈ R with λ∗ ≥ 0
satisfying the dual/adjoint equation

∫

Ω

c∇p∗ · ∇ϕ−
(

β · ∇p∗ − q∗p∗
)

ϕ dx +

∫

Γ

(

σ + β · n
)

p∗ϕ ds =

∫

Γ

α(ud − u∗)ϕ ds (4)

for all ϕ ∈ H1(Ω) and the optimality condition

λ∗ = κ(q∗ − qd) +

∫

Ω

u∗p∗ dx in R. (5)

Moreover, the complementarity condition λ∗(qa−q∗) = 0 ∈ R holds true. In (4) we denote
by n the outward normal vector. Equation (4) is the weak (or variational) formulation of
the elliptic boundary value problem

−c∆p∗ − β · ∇p∗ + q∗p∗ = 0 in Ω,

c
∂p∗

∂n
+

(

σ + β · n
)

p∗ = α(ud − u∗) on Γ.
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From λ∗ ≥ 0 and qa − q∗ ≤ 0 we infer that λ∗ satisfies

λ∗ = max
{

0, λ∗ + ̺(qa − q∗)
}

for every ̺ > 0. (6)

In our approach we handle the scalar constraint qa − q ≤ 0 by an augmented Lagrangian
penalization, where we make use of (6). See, e.g., [5, 6] for a detailed account of this
technique. In fact, for ̺ > 0 and λ̂ ≥ 0 we introduce the modified cost functional

J̺

λ̂
(q, u) = J(q, u) +

1

2̺
max

{

0, λ̂+ ̺
(

qa − q
)

}2

.

Then we consider the optimal control problem

min J̺

λ̂
(q, u) s.t. (q, u) ∈ R ×H1(Ω) satisfies (2) (P̺

λ̂
)

for fixed ̺ > 0 and λ̂ ≥ 0 instead of (P). Using analogous arguments as for (P) one
can prove that (P̺

λ̂
) has a solution for arbitrarily ̺ > 0 and λ̂ ≥ 0. Notice that (P̺

λ̂
)

does not involve the inequality constraint explicitly. Rather this constraint is realized by
adding an augmented Lagrangian-type penalty term to the original objective function. It
is well-known that the augmented Lagrangian penalization is exact for sufficiently large
̺ > 0, i.e., a local solution (q∗, u∗) to (P) is also a local solution to (P̺

λ̂
).

Since (P̺

λ̂
) has no inequality constraints, it can be solved by an SQP method with line

search globalization. For more details we refer the reader to [12] for the globalized SQP
method and to [17] for the application to our problem (P̺

λ̂
). Let us review the augmented

Lagrangian algorithm, which can be interpreted as a combination of penalty functions
and local duality methods.

Algorithm 1 (Augmented Lagrangian method [5, 6])

(1) Choose a starting value λ0 ≥ 0 for the Lagrange multiplier associated to the inequal-
ity constraint, the initial parameter ̺0 > 0 for the augmentation, a factor β̺ > 1
and a stopping criterion; set k = 0.

(2) Determine a (local) solution xk+1 = (qk+1, uk+1) of (P̺

λ̂
) with ̺ = ̺k and λ̂ = λk.

(3) Set λk+1 = max
{

0, λk + ̺k(qa − qk)
}

.

(4) Unless the stopping rule is satisfied, set ̺k+1 = β̺̺k, k = k + 1, and continue with
step (2).

Remark 1

(a) Other augmentation rules for the parameter ̺ than the one realized in step (4) can
be found, e.g., in [6, p. 405].

(b) In the process of solving (P) the augmented Lagrangian algorithm acts as the outer
iteration of our whole optimization method, whereas at each level of Algorithm 1
the solution of (P̺

λ̂
) is computed by the globalized SQP method that is described

in detail in [17].
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3 POD REDUCED-ORDER MODELLING

In this section we describe our POD Galerkin approximation of (P̺

λ̂
). For that purpose

let ql ≤ qa and qu > qa be chosen lower respectively upper estimates for the scalar
coefficient q∗. We introduce the parameter grid by

∆q =
qu − ql
n− 1

and qj = ql + (j − 1)∆q for j = 1, . . . , n. (7)

To simplify the presentation we choose an equidistant mesh in (7). Of course, the approach
is analogous for non-equidistant parameter grids [18]. For j ∈ {1, . . . , n} let uj = u(qj)
denote the solution to (2) for the parameter qj . Introducing the L2 inner product

〈ϕ, ψ〉 =

∫

Ω

ϕψ dx (8)

and the associated induced norm ‖ϕ‖ =
√

〈ϕ, ϕ〉 we determine a POD basis of rank
ℓ ∈ {1, . . . , n} by solving

min

n
∑

j=1

αj

∥

∥

∥
uj −

ℓ
∑

i=1

〈uj, ψi〉ψi

∥

∥

∥

2

s.t. 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ ℓ, (9)

where the αj’s are chosen as the trapezoidal weights α1 = αn = ∆q/2 and αj = ∆q for
2 ≤ j ≤ n − 1. In (9) we denote by δij the Kronecker symbol with δij = 1 for i = j and
δij = 0 otherwise.

Remark 2 Instead of (8) one can also utilize the H1 inner product

〈ϕ, ψ〉H1 =

∫

Ω

ϕψ + ∇ϕ · ∇ψ dx

with its associated induced norm ‖ · ‖H1 ; see [18, 20, 21].

The solution to (9) is given by the solution to the symmetric eigenvalue problem [14, 31]

Rψi = λiψi, i = 1, . . . , ℓ

with Rψ =
∑n

j=1 αj 〈uj, ψ〉 uj and λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0.

Remark 3 (Snapshot POD [30]) Let us supply R
n with the weighted inner product

〈v, w〉
Rn =

n
∑

i=1

αiviwi for v = (v1, . . . , vn)T , w = (w1, . . . , wn)T ∈ R
n.
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We define the symmetric non-negative matrix K ∈ R
n×n with the elements 〈ui, uj〉, 1 ≤

i, j ≤ n, and consider the eigenvalue problem

Kvi = λivi, 1 ≤ i ≤ ℓ and 〈vi, vj〉Rn = δij , 1 ≤ i, j ≤ ℓ. (10)

From singular value decomposition it follows that K has the same eigenvalues {λi}d
i=1 as

the operator R. Furthermore, the POD basis functions are given by the formula

ψi =
1√
λi

n
∑

j=1

αj(vi)juj for i = 1, . . . , ℓ, (11)

where (vi)j denotes the jth-component of the eigenvector vi ∈ R
n. In our numerical test

examples (see Section 4) we compute the POD basis by solving (10) and using (11).

Remark 4 Note that (9) can be interpreted as the trapezoidal approximation of

min

∫ qu

ql

∥

∥

∥
u(q) −

ℓ
∑

i=1

〈u(q), ψi〉ψi

∥

∥

∥

2

dq s.t. 〈ψi, ψj〉 = δij, 1 ≤ i, j ≤ ℓ. (12)

In (12) the function u(q) is the weak solution to (1) for the parameter q ∈ [ql, qu]. This
relationship is used in [21] to study asymptotic convergence properties of the eigenfunc-
tions {ψi}ℓ

i=1 and the corresponding eigenvalues {λi}ℓ
i=1 as the mesh size ∆q tends to zero

or, equivalently, n tends to ∞.

When the POD basis functions {ψi}ℓ
i=1 have been computed we make the ansatz

uℓ =

ℓ
∑

j=1

γjψj , γ1, . . . , γℓ ∈ R, (13)

for the POD Galerkin approximation. Inserting (13) into (2) and choosing ϕ = ψi,
i = 1 . . . , ℓ, we get the finite-dimensional problem

∫

Ω

c∇uℓ · ∇ψi +
(

β · ∇uℓ + quℓ
)

ψi dx +

∫

Γ

σuℓψi ds =

∫

Ω

gψi dx +

∫

Γ

gΓψi ds (14)

for i = 1, . . . , ℓ. Then we consider the following POD Galerkin approximation of (P̺

λ̂
):

min J̺

λ̂
(q, uℓ) s.t. q ∈ R, uℓ is given by (13) and (q, uℓ) satisfies (14) (15)

for fixed ̺ > 0 and λ̂ ≥ 0.

6



M. Kahlbacher and S. Volkwein

Remark 5 Introducing the matrices

Aℓ = ((aij)) ∈ R
ℓ×ℓ with aij =

∫

Ω

c∇ψj · ∇ψi + (β · ∇ψj)ψi dx +

∫

Γ

σψjψi ds,

Bℓ = ((bij)) ∈ R
ℓ×ℓ with bij =

∫

Ω

ψjψi dx,

and the vectors

γℓ = (γi) ∈ R
ℓ and bℓ = (bi) ∈ R

ℓ with bi =

∫

Ω

gψi dx +

∫

Γ

gΓψi ds,

we derive from (13) that (14) yields the linear system in R
ℓ:

(

Aℓ + qBℓ
)

γℓ = bℓ.

4 NUMERICAL EXPERIMENTS

This section is devoted to present two numerical test examples. All coding is done in
Matlab using routines from the Femlab package concerning finite element implemen-
tation. The programs are executed on a standard 1.7 Ghz desktop PC.

Run 1. The domain Ω is the unit square (0, 1)×(0, 1) and we choose c = 2, β = (0, 1)T ,
g = 1, σ = 1.5, gΓ = −1 in (1). To compute the snapshots for the POD reduced-order
modelling we apply a finite element discritization with a rectangular, equidistant mesh
with mesh size h = 1/50. As ansatz function we utilize piecewise linear finite elements.
In (7) we take ql = 0 and qu = 50 and compute the finite element solution to (2) for
n = 51 different coefficients. Then we determine ℓ = 7 POD basis functions as described
in Section 3. The decay of the first eigenvalues is shown in the left plot of Figure 1.
The needed CPU time for the computation of the POD basis is 40.19 seconds. Our aim

1 2 3 4 5 6 7

10
−15

10
−10

10
−5

10
0

Decay of the first eigenvalues

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

x−axis

POD solution to the optimization problem

y−axis

Figure 1: Decay of the first eigenvalues (left) and optimal POD state (right) for Run 1.

is to estimate the ideal coefficient qideal = 40 from a measurement ud that is given by
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the boundary values of the finite element solution uideal = u(qideal) to (2) for the ideal
coefficient qideal. Moreover, let α = 10000 and κ = 0.001 in (3). For the inequality
constraints we take the lower bound qa = 20. Since we assume that we do not have an
a-priori estimation for q∗, we set qd = 0.

Algorithm 1 is initialized by λ0 = 1 and ̺0 = 2. Further, we choose the factor β̺ = 2.
Due to the optimality condition (5) we take

∣

∣

∣
κ
(

qk+1 − qd
)

+

∫

Ω

uk+1pk+1 dx − λk+1
∣

∣

∣
< 10−8

and k ≤ kmax = 100 as a stopping rule. The augmented Lagrangian method stops after
two iterations and needs 0.15 seconds. As the POD solution we obtain qℓ ≈ 39.50 for the
estimated coefficient and λℓ = 0 for the Lagrange multiplier associated with the inequality
constraint. From

|qideal − qℓ|
|qideal|

· 100% ≈ 1.25%

we conclude that the POD Galerkin approximation yields a satisfactory result. The POD
optimal state is presented in the right plot of Figure 1. In the left plot of Figure 2 you
can see the difference between the POD optimal state and the measurement ud which is
very small relative to the optimal state. The performance of the algorithm and of the
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Figure 2: Difference between optimal POD state and measurements (left) and Difference between optimal
POD and finite element state (right) for Run 1.

SQP method as the inner iteration method is shown in Table 1. When we consider the

Alg. 1 SQP method qk

k = 1 6 iterations 39.504506
k = 2 2 iterations 39.504519

Table 1: Performance of Algorithm 1 with the globalized SQP method as the inner iteration method for
the POD discretized problem (Run 1).

same algorithm, except that we use the finite element discretization of (P̺

λ̂
) instead of the
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POD approximation (15), we find the solution qh ≈ 39.50 for the estimated coefficient and
λh = 0 for the Lagrange multiplier. The obtained result nearly coincides with (qℓ, λℓ),
yet the computing time is 96.73 seconds that is much larger than the computing time
for the POD-based SQP solver. The difference between the optimal POD and optimal
finite element state is shown in Figure 2 (right plot). The performance of the algorithm
and of the SQP method as the inner iteration method is shown in Table 2. In Table 3

Alg. 1 SQP method qk

k = 1 6 iterations 39.504754
k = 2 1 iteration 39.504775
k = 3 1 iteration 39.504771

Table 2: Performance of Algorithm 1 with the globalized SQP method as the inner iteration method for
the finite element discretization (Run 1).

we compare the optimal POD state and optimal POD coefficient with the corresponding
finite element solution for different numbers ℓ of POD ansatz functions. We observe from

ℓ ‖uℓ−uh‖
‖uh‖

‖uℓ−uh‖
H1

‖uh‖
H1

|qℓ−qh|
|qh|

4 5.6e-09 1.7e-08 7.9e-05
5 1.0e-10 1.5e-11 1.3e-05
6 5.7e-11 5.6e-12 9.8e-06
7 1.9e-12 1.9e-13 1.8e-06

Table 3: Relative errors for the optimal POD state uℓ and optimal POD coefficient qℓ compared to the
corresponding finite element solutions (uh, qh) for different numbers ℓ of POD ansatz functions (Run 1).

Table 3 that the relative errors for the states and coefficients decrease for increasing ℓ.
Run 2 For the same domain Ω as in Run 1 we now regard other values for the pa-

rameters of the elliptic differential equation (1): c = 0.75, β = (1, 1)T , g(x) = x, σ = 1.5,
gΓ = −1. In (3) the weight and the regularization parameter are α = 10000 and κ = 0.001,
respectively. Further, we choose qideal = 25 and analogous to Run 1 we take ud as the
boundary values of the finite element solution uideal = u(qideal) to (2) for q = qideal. The
snapshots for the computation of the POD basis are computed by the same finite element
discretization and same parameter grid as in the previous run. Then we determine ℓ = 7
POD basis functions and perform the reduced-order model (15). Note that for the com-
putation of the POD basis functions we use the H1 inner product (see Remark 2) in Run 2
opposite to Run 1 where we used the mass matrix. The decay of the first eigenvalues is
shown in the left plot in Figure 3. The lower bound qa is set equal to 10. Algorithm 1
is initialized and ed as in Run 1. After 3 augmented Lagrangian iterations we obtain
the POD solution qℓ ≈ 24.95 for the estimated coefficient and λℓ = 0 for the multiplier.
Again, the relative error

|qideal − qℓ|
|qideal|

· 100% ≈ 0.2%
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Figure 3: Decay of the first eigenvalues (left) and optimal POD state (right) for Run 2.
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Figure 4: Difference between optimal POD state and measurements (left) and Difference between optimal
POD and finite element state (right) for Run 2.

is small. The performance of the algorithm is shown in Table 4. Using the finite element

Alg. 1 SQP method qk

k = 1 7 iterations 24.946926
k = 2 3 iterations 24.947143
k = 3 2 iterations 24.947143

Table 4: Performance of Algorithm 1 with the globalized SQP method as the inner iteration method for
the POD discretized problem (Run 2).

discretization (see Table 5) we find the solution qh ≈ 24.95 and λh = 0. However, the
finite element based SQP solver needs 147.01 seconds, whereas the POD-based one only
requires 0.19 seconds for the optimization plus 42.49 seconds for the computation of the
POD basis functions. Again we compare the relative errors between the optimal POD
and the optimal finite element state and the corresponding optimal coefficients for several
numbers of POD basis functions (Table 6).
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Alg. 1 SQP method qk

k = 1 8 iterations 24.947724
k = 2 1 iteration 24.947702
k = 3 1 iteration 24.947696
k = 4 1 iteration 24.947696
k = 5 1 iteration 24.947697

Table 5: Performance of Algorithm 1 with the globalized SQP method as the inner iteration method for
the finite element discretization (Run 2).

ℓ ‖uℓ−uh‖
‖uh‖

‖uℓ−uh‖
H1

‖uh‖
H1

|qℓ−qh|
|qh|

4 2.3e-07 4.9e-07 5.7e-04
5 1.3e-10 7.8e-10 8.0e-06
6 2.1e-10 2.7e-11 2.0e-05
7 2.5e-10 2.8e-11 2.2e-05

Table 6: Relative errors for the optimal POD state uℓ and optimal POD coefficient qℓ compared to the
corresponding finite element solutions (uh, qh) for different numbers ℓ of POD ansatz functions (Run 2).

Finally, we add noise to our measurement:

uh
d = (1 + εδ)uh(qideal)

∣

∣

∣

Γ
.

where ε ∈ [−1, 1] is a random variable and δ = 5%. Algorithm 1 stops after three
iterations and the (typical) performance of the algorithm for one choice of the random
variable ε is presented in Table 7. The optimal POD coefficient is qℓ ≈ 24.85 and the

Alg. 1 SQP method qk

k = 1 7 iterations 24.847891
k = 2 3 iterations 24.848113
k = 3 2 iterations 24.848112

Table 7: Performance of Algorithm 1 with the globalized SQP method as the inner iteration method for
the POD discretization in case of noisy data (Run 2).

Lagrange multiplier λℓ is zero. The relative errors

‖uℓ − uh(qideal)‖
‖uh(qideal)‖

≈ 1.87 · 10−5 and
‖uℓ − uh(qideal)‖H1(Ω)

‖uh(qideal)‖H1(Ω)

≈ 2.091.87 · 10−6

are rather small. Moreover, we have

‖uℓ − uh
d‖

‖uh
d‖

≈ 4.35 · 10−4.
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Of course, due to the non-smooth measurement data uh
d we find

‖uℓ − uh
d‖H1(Ω)

‖uh
d‖H1(Ω)

≈ 0.26.

5 CONCLUSIONS

In this article we consider estimation problems for scalar parameters in elliptic par-
tial differential equations. These problems can be formulated as parameter identification
problems so that we are in the position to apply optimization methods. In many appli-
cations a repeated, reliable and real-time estimation is essential. To obtain an efficient
solver we apply a POD-based discretization of the elliptic equation and make use of an
augmented Lagrangian algorithm combined with a globalized SQP method. It turns out
that in our numerical examples we get satisfactory results. Motivated by this observations
we plan to utilize POD approximation for vibroacoustic applications in future research.
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