

Wireless and Mobile Communication (WMC) Group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Design and Implementation of
a Wireless Sensor Network Testbed

Jiangjie He

Committee Members:

Ir. Cheng Guo Mentor

Dr. Martin Jacobsson

Supervisor Prof. Ignas Niemegeers

Member Dr. Stefan Dulman

Date: July, 2009

 I

Abstract

Wireless Sensor Network (WSN) is becoming a more and more popular research area
since its emergence. Many WSN researches rely on practical experiments in real
wireless networks. However, to setup and conduct such an experiment is always
cumbersome and time-consuming. So in this thesis, we design and implement a WSN
testbed to solve the problem and help user focus on their researches. Our testbed
provides necessary modules and service, such as command dissemination and
feedback module, data logging and collection module, network programming module
and time synchronization service. Different from other existing testbeds, our testbed
removes wire connections and gateways, which are used for transmitting commands,
feedbacks and users’ programs, between nodes so that it provides high flexibility in
deployment and reduces costs. This testbed can be widely applied in different
environments without extra devices but experimental motes.

We have deployed our testbed on the 19th floor of EWI building at TU Delft and
verified its functionality and performance with tests. The testbed meets our design
goals that it can be used for most WSN experiments. We hope this testbed can make a
contribution to WSN research in the future.

Keywords: Testbed, wireless sensor network, IEEE802.15.4

 II

 III

Acknowledgments

First, I would like to thank my mentor Cheng Guo for his patient guide and
suggestion on my thesis project, especially for his big help on my thesis writing. And
I want to thank Martin Jacobsson for his patient explanation of related knowledge and
comments. I appreciate Prof. Ignas Niemegeers and Dr. Fernando A. Kuipers for their
kindness and patience when I was looking for my thesis project.

I am thankful to all the friends who were working together with me in the lab. They
make the research life enjoyable.

And I also want to say thanks to Egbert W. Bol who gave me an impressive interview
before I came to TU Delft.

At last, I would like to thank my parents who give me confidence and courage to face
the difficulties in the life.

 IV

 V

Contents

Abstract .. I
Acknowledgments... III
Chapter 1. Introduction ... 1

1.1 Wireless Sensor Network.. 1
1.2 Related issues for WSN applications .. 3
1.3 Motivation of this thesis.. 3
1.4 Thesis Objective.. 4
1.5 Terminology.. 4
1.6 Thesis Outline ... 5

Chapter 2. Existing solutions for WSN testbed .. 7
2.1 MoteLab.. 7

2.1.1 Elements of MoteLab... 7
2.1.2 Summary of MoteLab .. 9

2.2 EmStar... 9
2.2.1 Elements of EmStar ... 9
2.2.2 Summary of EmStar... 10

2.3 Other testbeds.. 10
2.4 Discussion ... 10

Chapter 3. Our Solution for WSN testbed .. 13
3.1 Overview of our solution .. 13

3.1.1 Hardware and Architecture .. 13
3.1.2 Operating system ... 15
3.1.3 Software framework... 15

3.2 Discussion of our solution .. 19
Chapter 4. Implementation of the Software Framework .. 23

4.1 Command Dissemination and Feedback... 23
4.1.1 Dissemination .. 23
4.1.2 Feedback .. 25
4.1.3 Protocol of Dissemination and Feedback .. 26
4.1.4 Configuration reuse.. 28

4.2 Network Programming.. 29
4.2.1 Introduction of Deluge... 29
4.2.2 A new interface for Deluge.. 30

4.3 Data Logging and Gathering... 31
4.4 Time Synchronization... 34
4.5 Key Optimizations .. 34

4.5.1 Modularization... 35
4.5.2 Division solution.. 35
4.5.3 GUI Tools .. 37

4.6 Tutorial.. 39
4.6.1 Quick tutorial for user.. 39
4.6.2 Instructions for developer .. 42

4.7 Performance analysis .. 43
4.7.1 Dissemination of commands.. 43
4.7.2 Detection of malfunctioning nodes.. 44
4.7.3 Network Programming... 45
4.7.4 Data Collection .. 45

 VI

4.7.5 Time Synchronization ..46
Chapter 5. Conclusions and Future Work ...47

5.1 Conclusions ...47
5.2 Future Work ..48

Reference...49

Design and Implementation of a Wireless Sensor Network Testbed

1

Chapter 1. Introduction

Wireless Sensor Networks (WSN) has been widely applied to numerous fields such

as battlefield surveillance, environmental monitoring, intelligent building and etc

since its emergence. At present, there are thousands of research developments taking

place in this field, including new protocols, energy saving mechanism and

performance improvements. Most of these researches have to be verified by

real-world experiments under practical environment. However, setting up and

conducting such an experiment usually costs lots of time and effort. In order to solve

this problem, building up a WSN testbed to handle complicated things of setup and

make user to focus on their researches should be a necessary work.

1.1 Wireless Sensor Network

WSN is a network that uses wireless connected sensor devices to monitor and

communicate specific conditions. It gathers concerned information such as voltage,

pressure, motion, sound and etc in different locations, especially in some restricted

place that people cannot be competent, e.g. in nuclear power plant.

A WSN can be formed by multi sensor nodes with different topologies such as star,

tree and mesh structures. Different multi-hop routing protocols are applied in these

WSN to broaden the communication range. Take a typical WSN for instance which is

showed in Figure 1.1, the Basestation node connected with PC plays a role of gateway

between WSN and PC while other nodes communicate with each other by wireless.

The nodes in the WSN can receive and send information over multi hops with

suitable protocols. In order to support interconnection among the different WSNs or

between WSN and other kinds of networks, some standards have been proposed with

different scope.

Design and Implementation of a Wireless Sensor Network Testbed

2

Figure 1.1. A typical structure for WSN

Among others, IEEE standard 802.15.4 is the major standard of WSN, which

specifies the physical and MAC layer. IEEE802.15.4 focuses on low cost, low speed

ubiquitous communication between devices. With little underlying infrastructure,

communication among nearby devices can be very low. In addition, IEEE802.15.4

also has other important features, such as real-time suitability, collision avoidance,

power management and etc.

ZigBee, which develops their protocols based on IEEE802.15.4, is an example of

successful commercial alliances which has already tag their trademark in some

consumer devices. ZigBee supplements IEEE802.15.4 with additional specification

on higher layers which also targeted at RF applications that require a low data rate

and long battery life.

In order to interconnect wireless network with traditional IP network, 6lowpan is

proposed to provide internet connectivity for low cost wireless devices, mapping IPv6

on IEEE802.15.4 which includes packet sizes adaptation, address resolution and

power management for different devices.

As we see above, low energy consumption is one of the most important

characteristics of WSN. Due to the varying locations of WSN, batteries are usually

the power supply. The network must to be alive for a long period in most situations.

So hardware and software of WSN should be designed with low energy consumption

in mind.

Along with the development of semi-conductor circuit, not only energy cost but also

the size of device is becoming smaller, which broadens the fields of application for

wireless sensor devices. With these achievements and progress of techniques, WSN is

becoming a more and more popular research topic in different area.

Sensor node Base Station

Serial (cable) connection

Wireless routing path

Design and Implementation of a Wireless Sensor Network Testbed

3

1.2 Related issues for WSN applications

For a real-world WSN application, every sensor node in the wireless network must be

able to be reached and act as expected steadily. As we know, many issues still exist in

practice. Generally speaking, several important subjects should be considered before

implementation:

� Multi-hop routing strategy, which guarantees every node in the network can be

communicated with.

� Sensor data management, consisting of data storage and collection.

� Time synchronization of network, which synchronize the time of all the nodes in

the network.

� Energy consumption. For example, developer should take into account the

battery life when using battery as power supply.

Although there are several existing protocols or implementations for these subjects,

for different cases, these solutions have to be discussed in detail to meet the specific

requirement of the applications, some of which even have to be rewritten or tailored

to be compatible with other modules.

In addition, from the angle of embedded systems, other issues such as code size,

RAM usage, portability and reliability have to be taken into account. A stable system

with few bugs is the key to run programs safely for a long period.

So developing a real-world application for WSN is always complicated and

time-consuming. Even making experiments for verifying protocols or theoretical

results of WSN is not easy to conduct. Though there are some simulators that can be

utilized to analyze network behavior, the simulation-based results still have a distance

from reality.

1.3 Motivation of this thesis

Over the past few years, researchers usually setup the WSN environment by

themselves before doing their experiments. As we talked above, besides their research

experiments, they have to think of many trivia which are always time consuming, for

example, the way to collect data from sensors. Usually, these configurations and

programs can not be reused and have to be abandoned after experiments.

In addition, to develop an application for wireless sensors always need to reprogram

the sensor nodes iteratively with the updated program. So as traditional way, user has

to collect sensor nodes from their deployed places, reprogram them manually and

deploy them again, all of which are tedious and time consuming.

So it’s necessary to build up a WSN testbed to lighten the burden for researchers.

Design and Implementation of a Wireless Sensor Network Testbed

4

Nowadays, there are already some WSN testbeds developed for solving the problems

we discussed above, to which we will give an introduction in next chapter. However,

these testbeds always lead to a high expense because of their extra devices. And some

of them quite rely on underlying infrastructure such as Ethernet.

In order to improve the testbeds with a new scope, we would like to design and

implement a WSN testbed with a high flexibility and cost-performance ratio, which

also contains the necessary components for WSN experiments.

1.4 Thesis Objective

According to our motivation, our objective is to implement such a high flexibility

WSN testbed that can help user to conduct experiments easily.

With reference to the existing testbeds, we would like to show another idea to build

up a WSN testbed in this thesis, putting the emphasis on the flexibility and cost.

However, reducing the cost of a testbed always affect its robustness. So there is a

tradeoff between cost and reliability. What we want to achieve is designing a high

flexibility and low-cost WSN testbed with an acceptable reliability which may

contribute to the research of WSN.

In our plan, we are going to achieve our objective by following steps:

� Determine basic functions for the testbed according to our objective.

� Review other existing solutions, and discuss their advantages the disadvantages,

then give out our solution with the improvement on their deficiencies such as

cost and mobility.

� Implement our solution with selected devices and programming language. Make

the required components to be compatible with each other.

� Make GUI tools for testbed at PC-end to provide a friendly interface to users.

� Testing and debugging with sufficient test cases, verify the whole system with its

characteristics, including functionality and stability.

As to our expectation, our testbed can be reprogrammed remotely with a wireless

approach. The testbed controlled by PC-end with different commands can collect data

from all sensor nodes easily and report failure or abnormity to users in time. And a

service of time synchronization is also provided to users.

1.5 Terminology

Some special vocabulary we used in this thesis is introduced below.

� Basestation: node with extra functions that play a role of gateway between

Design and Implementation of a Wireless Sensor Network Testbed

5

PC-end and wireless sensor nodes. It receives instructions from PC via serial link

and sends them to sensor nodes over wireless connection; it also deals with

feedback from sensor nodes and sends them back to PC via serial link.

� Previous node: the node which is in charge of current sensor node. A sensor node

receives instructions from its previous node and also feedback information to PC

through its previous node.

� Node list: a list structure exists in every node that maintains information of

sensor nodes. It is used for multicasting instructions.

1.6 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, an introduction to existing WSN testbeds is given with a discussion on

their good approaches and also their shortages.

In Chapter 3, we proposes our solution in comparison with the testbeds which are

introduced in Chapter 2, including the description on both hardware and software

parts.

Chapter 4, implementation details of our testbed are given. Improvements are

proposed to solve the problems which are found during the implementation procedure.

In addition, test cases are made to verify the whole system with consideration of

reliability.

Chapter 5 draws the conclusions of this thesis and proposes some future work.

Design and Implementation of a Wireless Sensor Network Testbed

6

Design and Implementation of a Wireless Sensor Network Testbed

7

Chapter 2. Existing solutions for WSN testbed

Real experiments play an important role in the research of WSN. Compared with

simulations, experiments give a better view of how a protocol or an algorithm

performs in real life. Since some parameters such as resource usage, link quality

fluctuation and energy consumption can not be simulated with all details. But unlike

simulations, the implementation and debugging of WSN applications require frequent

reprogramming of nodes with new code. Therefore, in a fixed testbed, it is not

practical that a user frequently goes to the location of dozens of nodes, connects them

and reprograms them through wire. So reprogramming sensor nodes remotely is a

necessary feature for a good testbed. Moreover, a developer must take into account

the total expense of testbed, making a fitting testbed in his budget.

So far, some WSN testbeds have been designed for different kinds of purposes. These

testbeds use different device, software and have differet system architectures. They

can be applied in different application areas. Users can utilize these testbeds to setup

WSN experiments quickly. In this chapter, I will describe two testbeds, which are

designed with motivations close to ours introduced in the last chapter, in details.

2.1 MoteLab

MoteLab[1], a Ethernet-based sensor network testbed, developed by Harvard

University. It consists 30 MicaZ[2] motes connected by Ethernet and a central server.

User can access the central server via web-based interface to upload experimental

code or download experimental results. This testbed has been deployed in Harvard for

research and teaching.

2.1.1 Elements of MoteLab

MoteLab consists a fixed array of wireless sensor network nodes. MicaZ is chosen as

sensor node which radio is IEEE802.15.4 compliant. The nodes are connected by

Ethernet. MoteLab uses two kinds of Ethernet interface boards: EPRB[3] and

Crossbow MIB-600[4]. Both of the boards provide interface to reprogramming and

data logging through Ethernet.

The central server is responsible for data storage, reprogramming nodes and

scheduling tasks for nodes. They use MySQL database to store useful information for

testbed operations such as log data from sensor nodes, user account information with

access priority, schedule information and other related running states. It also provides

a Web interface for user which is represented as PHP-generated pages. All the

Design and Implementation of a Wireless Sensor Network Testbed

8

operations such as job creation, scheduling, and data collection can be issued through

this interface by users from remote terminals. The whole system is shown in Figure

2.1.

Figure 2.1 MoteLab System Architecture[1], SF is abbr. of SerialForwarder which is

a tool of TinyOS[5]. It acts as a TCP multiplexer with which user can directly access

serial port of each node via TCP connection.

Since all of the devices are linked by Ethernet, the testbed needs a suit of tools to

manage the whole system. The central server operates in Linux with Apache, MySQL

and PHP on which several software runs. As we see in Figure 2.1, there are three key

components:

� DBLogger: a java programme connected with each sensor node. It translates data

message from sensors and insert useful segments into database with node id,

received time and global sequence number.

� Job Daemon: a Perl script that handles experiments initialization and disposal

such as reprogramming nodes, starting or terminating related components(e.g.

DBLogger), and providing a formatted log data for user to download.

� Web interface: the pages are generated by PHP dynamically. When user login

with his own account, he can maintain his account information, create/modify job,

upload his experiment image to server and download logging data.

Beside these, MoteLab has an extra feature of power measurement, which can help

user to monitor energy consumption of WSN jobs.

Depending on these components, MoteLab performs well as a mature system and

Design and Implementation of a Wireless Sensor Network Testbed

9

allows remote users to create a WSN experiment conveniently.

2.1.2 Summary of MoteLab

In short, MoteLab testbed is an Ethernet-based solution to manage images

distribution, data logging and collection. All controls and data transmissions are

undertaken by Ethernet. Sensor nodes in this testbed only have to run users’ programs,

transmit or receive packets with their wireless transceiver and submit the

experimental data to the central server. The central server takes over most of the

works for the whole system, serving multi users and managing sensor nodes with all

sorts of software.

2.2 EmStar

EmStar[6] is a software framework for WSN experiments. It provides sufficient tools

for simulation and also includes an array of real sensors deployed on the ceiling of the

CENS systems laboratory. An impressive feature of EmStar is its indefinite boundary

between simulation and real life experiment, with which an experimental program

running with simulated models can also run well with real sensors.

2.2.1 Elements of EmStar

Unlike MoteLab that uses real devices for experiments, EmStar is developed as a

PC-based software framework that emphasizes its outstanding capability of

simulation.

EmStar provides three different modes for WSN experiments: pure simulation, real

life experiment with deployed devices, and a hybrid mode that combines simulation

with real wireless communication and sensors. Because of our motivation, simulation

mode is out the scope of the thesis.

For the real life experiment part, there is an array of 54 Crossbow Mica motes on the

ceiling of lab, which are all mains powered and have a serial-port connection to a

central simulation machine. Similar to the real-world mode, the hybrid mode also

utilize real wireless links. The advantage of the hybrid mode is that a user can use a

rich set of debugging and visualization tools, which improves the system visibility

from the experiment mode.

In order to work in different modes, two main tools called EmSim and EmCee are

provided:

� EmSim is a pure simulation environment. In the simulations, many virtual nodes

are run in parallel, interacting with simulated modules and radio channel.

� EmCee is a modified version of EmSim that provides an interface to use real

Design and Implementation of a Wireless Sensor Network Testbed

10

radio transceivers to communicate. It’s easy to switch the mode by typing

EmSim or EmCee when user starts a program. Because a same program can run

well with both tools without any change.

2.2.2 Summary of EmStar

EmStar is a simulation-driven testbed that provides plenty tools for simulation and

debugging. With its simulation mode user can test and debug code to check its logic

and consistency while real life experiment can be realized by running the

communication part in the real wireless links between the nodes in the array on the

ceiling. Each mode covers the shortage of the other, so user has multi-options to write

and debug WSN applications.

2.3 Other testbeds

In Section 2.1 and 2.2, we introduced two solutions for WSN testbed, which inspires

us on designing our testbed. Beside these two solutions, there are still dozens of

solutions in use. Some of them are listed below.

WSNTB[7], similar to MoteLab, also manages reprogramming and data logging

through Ethernet and provides remote control to user by web-base interface. An extra

feature proposed by the authors is its “local mode” which allows users to run their

programs locally with testbed resource. The testbed includes 34 sensor nodes, three

gateways and three servers while software framework provides many functions such

as compiler, online editor, data logger, working status monitor, job queue system, and

etc.

In [8], TU Berlin proposed another WSN testbed TWIST which also uses Ethernet to

connect WSN nodes. It supports flat and hierarchical sensor networks with basic

services such as node configuration, network programming, application data

gathering, active power control, and etc. This testbed consists of 102 Tmote Sky

nodes and 102 eyesIFX nodes which are deployed in three floors in a building of TU

Berlin. Users can use the system through a web interface.

2.4 Discussion

The goal of our solution is to implement a testbed prototype with reliability, low cost

and compact software framework. We want to acquire some good characteristics from

existing designs. As we see, solutions to WSN testbed vary with developers’ purposes,

from software to hardware. In this subsection, we will summarize and discuss

characteristic of the testbeds introduced.

As we see in Table 2.1, all of these four testbeds need additional devices such as

Ethernet interface boards, standard/micro server, and link converters. When we check

the purpose of these devices, we find that most of these devices are deployed for

Design and Implementation of a Wireless Sensor Network Testbed

11

connecting the sensor nodes by Ethernet connection. Nearly all of the solutions use

Ethernet connection to transmit new programs, log data and control message. So far it

seems that these backbone devices are requisite for remote reprogramming.

These extra devices can be divided into two categories: One is peripheral board which

usually acts as interface of reprogramming, disseminating control messages and

collecting experimental results between sensor nodes and central servers. E.g.,

MIB-600 provides Ethernet connectivity to IRIS/MICAz/MICA2 family of motes. It

offers two separate TCP ports: one for in-system programming and one for routine

data communication like serial login, telnet login and security verification. The other

category is micro-server which plays a role of super node in network, linked with

sensor nodes via wired cable. E.g., Compaq iPAQ 3760, a handheld PDA having a

strong ARM processor, 64MB RAM and 32MB FLASH. It can handle more works

than the connected sensor node with its large process capability and memory size,

which reduce the work load for main server.

With support of these devices, the testbeds gain extra benefit: utilizing fixed Ethernet

as network backbone to transmit data, many mature protocols for Ethernet can be

applied so that developers can save much time on protocols design and validation.

What’s more, as hardware backup, these devices which have low possibility to crash

can detect and recover abnormal nodes when some fatal failure occurred on these

nodes’ system. So apparently the reliability of these solutions is higher than the others

without these devices.

However, devices in both categories introduce extra cost on hardware purchase.

Especially for some customized peripheral board, i.e., each MIB-600 costs $300. If a

WSN testbed contains 30 sensor nodes and uses MIB-600 for each node, it means

user have to pay 300*30=9000 dollars extra.

Item

Testbed

Sensor node

Additional devices

MoteLab MICAz EPRB[3], MIB-600[4]

EmStar MICA Compaq iPAQ 3760

WSNTB Octopus I

Octopus II

Single-board computers net4501&net4801,

RS232-to-Ethernet & USB-to-Ethernet convertors

TWIST Tmote Sky

EyesIFX

Linksys USB2HUB4 hub,

Network Storage Link for USB2.0 (NSLU2) device

Table 2.1. Hardware of four testbeds

In addition to extra devices, these solutions also rely on Ethernet connection. It is not

Design and Implementation of a Wireless Sensor Network Testbed

12

a big problem when we set up the testbeds indoor, e.g. in the modern buildings, the

fixed network infrastructure can be utilized to form a LAN. However, when we want

to deploy one of those testbeds outdoors, the difficulty emerges that we have to take

additional workload such as connecting devices by cable and arranging spaces for

housing, to constitute our local Ethernet. So in other words, mobility is one of the

challenges for these solutions.

With advances in WSN technology, nowadays some sensor boards are competent for

super nodes with their rich on-board hardware such as strong processor, large

memory and programming space, and plenty peripheral components. It can fulfill the

requirements of routine communication and management. So it’s possible that some

functions can be migrated from standard/micro server to these boards, which means

some of those extra devices are not necessary anymore. The challenge we confront is

the reliability of the WSN systems: without these extra devices, the whole WSN

should still run steadily as expected.

As a result, we are not satisfied with these existing testbeds since no one fulfills the

requirement of our objective which is aiming at design of a testbed with high

flexibility and cost-performance ratio. Nevertheless, we appreciate some good ideas

of these solutions which may benefit our own design proposed in next chapter.

Design and Implementation of a Wireless Sensor Network Testbed

13

Chapter 3. Our Solution for WSN testbed

We have discussed several solutions for WSN testbed in the last chapter. According

to our objectives, these solutions cannot meet all of our requirements such as good

flexibility and low cost. So in this chapter, we would like to propose our own solution

with high flexibility and a reasonable cost.

We explain the main idea of our solution in this chapter. The content is organized as

follows: in Section 3.1, we describe our solution in three aspects: hardware and

architecture, operating system and software framework. In Section 3.2, we discuss the

solution with respect to our objective and compare it with other solutions.

3.1 Overview of our solution

With reference to other solutions, we decide to design a new solution for our testbed

in order to fully meet our objectives. To explain the characteristics of our testbed, I

will give an introduction in different aspects in the following subsections.

3.1.1 Hardware and Architecture

We choose Tmote Sky[9] as our wireless sensor motes due to its rich on-board

modules, reliable quality and acceptable price. The mote complies with IEEE802.15.4

standard. It provides USB interface through which a mote can be programmed. The

mote equips an 8MHz Texas Instruments MSP430 microcontroller with 10KB RAM

and 48KB Programming Flash. Optional accessories include integrated Temperature,

Humidity and Light sensors. The transceiver has a data rate of 250kbps at 2.4GHz

and the transmission range is 50m indoor and 125m outdoor.

Design and Implementation of a Wireless Sensor Network Testbed

14

Figure 3.1. Our wireless sensor node: Tmote Sky.

In order to increase the flexibility of the testbed and reduce the cost of whole system,

we plan to build up our network backbone by wireless connection. Thanks to the

good capability of Tmote sky board, no extra device is necessary for our testbed

except a PC as the root server.

The PC server connected with the basestation node runs our software to manage the

whole WSN. User can perform all the operations through the user interface, such as

topology configuration, distribution of new programs, management of the experiment

and data collection.

Figure 3.2. possible topologies of the system

The topology of our WSN testbed can be configured as tree or star like Figure 3.2

shows. Physically, we deploy our sensor nodes in the different rooms on the 19th

floor of EWI building at TU Delft. Tree-based topology is the better option since all

of the nodes can be reached over one or several hops. However, we can change the

logic topology of the network by our software which will be described in later

subsections.

(a) star-based topology (b) tree-based topology

Design and Implementation of a Wireless Sensor Network Testbed

15

3.1.2 Operating system

An operating system is a good choice to be added for managing different tasks for

embedded systems. In our design, nodes have to handle all different kinds of

operations, such as linking high-level APIs to low-level hardware interface,

scheduling tasks with different priorities and allocating memory. So we would like to

introduce an operating system in our development.

TinyOS[5] is an open-source operating system designed for wireless embedded

sensor networks. It is a popular system for wireless network which supports several

wireless platforms such as micaZ, Tmote Sky, IntelMote2 and Eyes. Dozens of

groups and organizations use TinyOS as the software platform to develop WSN

protocols and contribute to the platform actively. Many WSN testbeds use TinyOS as

their operating systems, such as MoteLab, which we introduced in the last chapter.

Since wireless embedded device always be used to handle specified works, its

programs on these devices are well-defined and customized. Therefore, TinyOS

decides the complete call graph at compile time, avoiding dynamic allocation or

reloading components in runtime, which optimizes code efficiency and decreases

complexity of compiling.

TinyOS adopts event-driven style and components-based programming method. The

programming language for TinyOS is nesC, a kind of C dialects with extra features,

which has a different coding style and approaches. However, it is not difficult for

users to adapt themselves to nesC if he has already had sufficient knowledge of C or

Java.

In our project, I select newest version TinyOS 2.1 as the operating system for nodes,

which incorporates new features and useful modules, such as FTSP synchronization

module. We use this module to carry out synchronization in our software framework.

3.1.3 Software framework

In our solution, the testbed consists of three main modules and one service:

� command dissemination and feedback,

� Remote reprogramming,

� Data logging and collection,

� Time synchronization.

The Tmote Sky motes are logically divided into two categories by our software

framework: the basestation and the sensor nodes. The basestation acts as a gateway

between PC and other sensor nodes while sensor nodes run users’ programs and log

sensor data for research.

Communication between the basestation and other nodes is wireless. So a node

Design and Implementation of a Wireless Sensor Network Testbed

16

cannot be reached if it is out of the transmission range of the basestation. In order to

ensure every node in our testbed can be reached we need to organize the network into

a topology to support multi-hop transmission. Spinning tree topology is a nice option

for our solution, because it is straightforward for disseminating commands by

flooding and collecting feedbacks with little overhead. Meanwhile, it is good for

network extension.

Other testbeds using Ethernet as their backbones do not have to consider the

networking functions like routing and flooding because the underlying Ethernet

protocols can handle these. However, we have to make a wireless flooding solution

for our testbed.

Thanks to tree topology, routing is easy to be carried out by maintaining a

configurable node list in every node which provides the data stream path for every

node. Our software provides an interface for configuring the node list remotely. So

every node can be either configured as a “Branch” or a “Leaf” of the tree as showed

in Figure 3.3. When user floods an instruction to every node, the basestation or

branch node will only distribute the instruction to the nodes which are in its nodes list.

And when a node receives an instruction, it returns an acknowledgement message to

its upstream node. By this acknowledgement, a node can confirm the link with its

neighboring nodes. If a node doesn’t response to an instruction after many retries, its

upstream node will report the failure to the basestation, then user can diagnose the

problem with the failure report. Feedback is a mechanism to report internal error of

system or network situation to user that makes the whole system to be diagnosable.

The transmission path for feedback is the reverse of flooding path. That’s the basic

idea of our flooding and feedback module.

 Figure 3.3. Hierarchy architecture of our testbed. Theoretically, the number of

intermediate Branch is unlimited. In our deployment, two or three Branches are enough

to cover all the nodes of our testbed.

Design and Implementation of a Wireless Sensor Network Testbed

17

Though the manual configuration looks a little cumbersome, it gives much flexibility

for changing the wireless network topology. There are three advantages: first it is

easy to implement with a little footprint, secondly it is clear to draw the exact

topology of whole WSN by user’s configuration. Thirdly it is easy to trace the

feedbacks of abnormality through the well-defined paths. However, to implement a

routing protocol will be a possible future work thus the routes between nodes can be

automatically configured.

Deluge[10] is an existing solution for remote reprogramming, which is released with

TinyOS 2.x. Deluge provides a reliable way to disseminate program images then

nodes can be reboot to these images. It uses an epidemic way to propagate the

program image. Nodes broadcast advertisement periodically. Each advertisement

contains a version number and a vector which indicates the complete pages of version

the advertiser has received. When a node notices that it needs to update some parts of

its old program from an advertisement, it will send a request to the advertiser to ask

for the needed packets. After completing a page, the node starts to broadcast an

advertisement to other nodes too. This mechanism helps all the nodes in the network

update to the same new version of program. It’s suitable to be our reprogramming

module as it also support multi-hops networks. However, the way of propagation

decides that the basestation can not know whether every node has received the

program image completely. So our software tries to complement Deluge by adding

confirmation function. And the propagation of deluge may affect our experiments,

because nodes keep broadcasting advertisement periodically even all expected nodes

has received the new version. So we need to add an interface to stop it before running

our experiments.

We add a wrapper on Deluge, which contains management interface. By this interface,

user can be notified as soon as a node has completely received a new image. So it’s

easy for user to find which nodes have not received the new image and check if there

is something wrong. In addition, user can turn on or off the propagation function of

Deluge by the interface. By this extra feature, reprogramming different nodes with

different program in the network becomes possible. For example, if user wants to

reprogram node A with version 1 and node B with version 2, the approach is: first

turn off the propagation function of node B and start deluge to send version 1 to node

A. When it is done, turn off the propagation function of node A and turn on for node

B, then send version 2 to node B. Finally, turn off the propagation function for both.

Now, node A is running version 1 and node B is running version 2.

Without extra devices, the experimental data have to be temporally stored on the

wireless sensor boards before being collected. There is a 1 MB external flash on

Tmote Sky which can be used as the storage space. TinyOS provides storage

interfaces to read and write the external flash. So operation of logging data can be

done with modification of original interfaces.

Beside storage, gathering data from nodes have to be implemented. There are some

protocols implemented for data collection. But most of them designed for all-purpose

have a large code size. So we decide to give our light protocol to collect data

Design and Implementation of a Wireless Sensor Network Testbed

18

according to the architecture of our testbed. It’s a simple yet useful way: when a

sensor node receives the collection command by command collection module, the

collection procedure starts. A piece of data is read out in the user-defined structure

and stamped with a sequence number to be sent. The message is transmitted to the

basestation via the reverse path of flooding hop by hop, then the basestation sends it

to the PC via serial link. Due to the packet loss in wireless link, the basestation should

acknowledge the messages which it has received. The node that sent the message

should repeat until its last message is acknowledged. The drawback of this

retransmission mechanism is that redundant messages may be received by the

basestation. The sequence number in every message can identify duplicated packets.

Theoretically, all the log data should be collected by PC without loss.

Time synchronization is a service we provide with the testbed. The requirements,

such as calculating delay or time synchronization, in some experiments drive us to

decide that this module is a must-have. There are many wireless synchronization

protocols proposed for WSN, such as Reference Broadcast Synchronization (RBS)

[11], Timing-sync Protocol for Sensor Network(TPSN) [12] and Flooding Time

Synchronization Protocol (FTSP) [13]. We choose the FTSP module as our

synchronization module because it has already implemented in the TinyOS package

and shows promising performance. The principle of FTSP is utilizing a single radio

message which is time-stamped at both the sender and the receiver to synchronize the

time of sender and receiver. FTSP also supports synchronization across multi hops.

So the whole network can be synchronized to a global time which is the local clock of

the node with the smallest ID in the network. So in our testbed, if we want to

synchronize all the nodes to the basestation, we assign the smallest node ID to the

basestation. After repeating tests on this module, we have decided to include it which

suits our testbed well.

The software framework for sensor board is made up of these modules and service.

Because of the limited programming space of Tmote Sky which is 48KB, removing

unnecessary modules for some experiments can save the programming space for

user’s program. In order to use the programming space efficiently, modules of

collection and time synchronization can be included or excluded by user’s

configuration at compile time.

Design and Implementation of a Wireless Sensor Network Testbed

19

Figure 3.4. Our GUI software on PC-end is written in Java with NetBeans IDE,

including many tools for operating our testbed, such as instruction sender, feedback

receiver and translator, data collection and conversion tool.

In addition to the software framework for sensor board, for the PC, we have designed

a suit of GUI tools written in Java for users’ convenience, as shown in Figure 3.4. With

these tools, a user can perform all the operations by clicking a button instead of

typing commands in a console. And the control tool can translate the feedback

information to be straightforward, explaining received binary segments for users with

clear words on screen. Furthermore, a tool for collecting data can gather data from

different nodes in batch and save the data as a formatted text file.

3.2 Discussion of our solution

As we discussed in the last subsection in Chapter 2, those solutions have their

advantages and disadvantages. Our solution is to improve the deficiencies of these

solutions, which do not meet our objectives. Comparing with those solutions, our

solution has the following differences.

Firstly, our testbed do not depend on the Ethernet equipments. The Tmote sky motes

act as both experimental devices and experiment management devices. Any PC or

handheld equipments which have Linux OS and Java Runtime Environment can be

used as the root server of our testbed. So the expense for hardware devices is reduced,

which meets one of the requirements of our objective. In addition, the application

Design and Implementation of a Wireless Sensor Network Testbed

20

field is broadened since we do not depend on Ethernet any more. So we can deploy

the testbed in different topologies in most places where we are going to run

experiments with great flexibility. Moreover, when we want to add more sensor

nodes into our testbed, we can easily power up the nodes and allocate them anywhere

within the radio coverage of our testbed.

Secondly, without support of extra devices and Ethernet, our software framework

based on wireless communication is much different from other solutions. The

testbeds we introduced before, such as MoteLab, let the sensor nodes run

experimental programs only, the remaining works can be handled by extra devices

with their software. The wireless transceiver on a sensor node is used for experiments

only and the generated data are submitted to a center server immediately via extra

devices. However, in our solution, the sensor nodes are not only used for running

experimental program, but also have to deal with networking things like flooding

instruction, sending and receiving program binaries. And the experimental data are

stored on the local flash and sent to the server when received the certain instruction.

As we see, the difference is obvious, but we cannot say they are the improvements for

Ethernet-based solutions. Our software framework is just designed for the WSN

testbed without Ethernet backbone. What we want to show is, with no Ethernet

support, the testbed can be still competent for conducting different WSN experiments,

and of course, the expense of our testbed is quite lower than other Ethernet-based

testbeds.

So far as we see, the solution we present above can fully meet our requirements.

However, with the reduced cost and devices, the testbed also has some drawbacks.

Due to the fact that our software framework is compiled with user’s experimental

program, so user has less programming space for experimental codes since the

software framework has taken up some space. That’s one of the reasons that we make

the software framework to be module-customizable. The external flash for storing

experimental data also has the similar problem. Because the experimental data are

saved in the local flash with size of 1MB, it may be overflow when a program

generating a large quantity of data runs for a long time.

As we mentioned above, user’s program runs with the software framework, so

allocation of the shared resource is a problem we have to figure out. E.g., both the

software framework and user’s program use the same wireless transceiver of the node,

so we cannot send the experimental data to root server as soon as it is generated, or it

may affect the running program of users.

Removing the backbone hardware also affect the reliability of the testbed. E.g., the

micro server of some testbeds also plays a role of backup system. When the system of

a sensor node cashed with fatal failure, the micro server which is connected by cable

can detect the abnormality and recover it as soon as possible. So from this angle, our

solution is not as reliable as those which are equipped extra devices.

Nevertheless, our solution gives a new idea for implementing a WSN testbed with

Design and Implementation of a Wireless Sensor Network Testbed

21

low cost and high flexibility. We have implemented the first version of the testbed.

Details of our implementation will be given in the next chapter.

Design and Implementation of a Wireless Sensor Network Testbed

22

Design and Implementation of a Wireless Sensor Network Testbed

23

Chapter 4. Implementation of the Software Framework

In the previous chapter, we proposed our solution of WSN testbed which contains

both hardware and software components, focuses on flexibility and cost. We choose

Tmote Sky as our wireless sensor board and TinyOS as our operating system for

sensor board. The software framework which contains several modules was also

introduced briefly.

However, due to some real-world restriction, our software framework needs some

slight modifications in practice. In this chapter, I will present implementation details

of the modules.

The content of this chapter is organized as follows: the first four sections introduce

the implementation of the three main modules and the service: command

dissemination and feedback, remote reprogramming, data logging and collection, and

time synchronization service respectively. In Section 5, optimizations are introduced

with related modification works for our original design. Then we give further

illustrations of the frame in the form of two tutorials in Section 6. Performance of our

testbed is measured in different test cases in last section.

4.1 Command Dissemination and Feedback

This module not only sends instructions from base station to every other node, but

also ensures those nodes have received the instructions and reports failure/error

information when nodes do not act as expected.

4.1.1 Dissemination

Before introducing implementation details for this module, we explain some

terminologies. The logic topology of our testbed is a tree. As we see in Figure 3.2, we

defined the basestation as the root of a network. Node A, which relays messages to

node B, is called the branch of node B. Node B is the leaf of node A. Please note that

node B can also be a branch if it has leaves.

The routing strategy is straightforward in this module. Messages are disseminated

from the root (basestation) to branches and then to their leaves. So first of all we have

to organize nodes to form a tree topology. Every node in the network must know its

branch and its leaves if it has any.

To make it easy to implement and control, every node maintains a node list shown in

Design and Implementation of a Wireless Sensor Network Testbed

24

Figure 4.1(b) which keeps the information about its leaves nodes. The variable

“count” in a node_list structure keeps the number of leaves. The structure named

node_state is made up of a unique id and a linkstate variable as shown in Figure

4.1(a). The variable “id” in the structure keeps an 8-bit node id assigned uniquely by

TinyOS. The “linkstate” is used during the instruction disseminations which I will

introduce with dissemination mechanism later.

The capacity of a node_list is defined by pre-defined parameter NODES_CAPACITY.

The node list will initialize an array of nodes_state with a pre-defined length. Since

the TinyOS doesn’t support dynamic allocation of memory, we use pre-defined

capacity of node list here. User can change the capacity of node list by modifying the

NODES_CAPACITY in a header file named “MyDeluge.h”.

Beside the list, a variable named “prevNode” is used to save the id of previous node.

With the node list and prevNode, a node can be linked to the network. The

“bootKeeper” is a 16-bit non-volatile flag that keeps useful states for reboot.

Figure 4.1. Node list and Configuration structure, uint8_t is unsigned 8-bit integer

and uint16_t is unsigned 16-bit integer.

In order to define all different kinds of instructions, we have set a command structure

as shown in Figure 4.2, all control instructions as well as feedback messages use the

same structure. And for different types of commands and feedbacks, we also defined

two arrays of constants, the prefix CMD_ signifies that this constant is used for a

command type while the prefix ACK_ means the constant is for a feedback. e.g.,

CMD_COLLECT is the instruction to start data collection while

ACK_COLLECTION is the feedback to acknowledge the former instruction. In

command structure, there are 5 fields. “cmd” is the variable to give the type of

instructions or feedbacks. “data” is used to store parameters. Since some instructions

and feedbacks need parameters, e.g. command to add a node to node list needs a

parameter to indicate the node id to be added. “uidhash” is a 32-bit variable which is

node_state nodes[N]

uint16_t count

uint8_t id

uint8_t linkstate

(a) node_state structure

(b) node_list structure

node_list list

uint8_t prevNode

uint16_t bootKeeper

(c) config_data structure

Design and Implementation of a Wireless Sensor Network Testbed

25

used for feedbacks in two ways. For image feedback which feedback image

information to user, it’s used to store the uidhash which is a 32-bit unique number for

program image; for other feedbacks, it keeps a 32-bit error flag for diagnosing the

running situation of system. The flag is a global variable of our software framework

that each bit stands for one kind of error, so it is possible to report 32 kinds of error.

Last two fields “src” and “des” keep the original source id and the destination id of a

message. If a message is for every node in the network, the “des” field is set to 0xff.

Figure 4.2. Command structure, the nx_ prefix is specific to the nesC language and

signifies that the uint8_t, uint16_t, uint32_t are external types

There are two types of dissemination: first is one-to-one mode that commands are

transferred from basestation to destination node. And the other is one-to-all mode that

commands are distributed to every node in the network. For each node, the field

“des” of command is used to distinguish between the two modes. In the first mode, a

node only executes received command if the “des” field is same as its own id,

otherwise the node retransmits the command to its leaves. If the “des” field of

command is 0xff, the node not only retransmits the command to its leaves but also

executes the command as well. However, each node keeps the previous and next

nodes that it can connect, which means that the basestation do not know the actual

path to the destination node. So, both modes deliver commands to every node in the

network, the difference is that in the latter one a node needs to check every node’s

feedback to ensure all of the nodes have received the command while in the former

one, it only has to know if the destination node acknowledged. Details will be given

in subsection 4.1.3.

4.1.2 Feedback

Feedback is a mechanism to confirm if a message is delivered successfully, gather

useful information from nodes and diagnose potential network problems for user. In

this module, we apply feedback mechanism in several places such as command

acknowledgement, image disseminations acknowledgement, and error reporting. The

feedback can be divided into two types: passive feedback and active feedback. As the

name implies, the passive feedback is activated when it has been requested, e.g.

feedback of checking version function, the node which has received the request sends

back a feedback with version information. And for active feedback, the feedbacks

nx_uint16_t cmd

nx_uint16_t data

nx_uint32_t uidhash

nx_uint8_t src

nx_uint8_t des

Design and Implementation of a Wireless Sensor Network Testbed

26

will be returned automatically when a specific event happens without being requested,

e.g. sending a feedback with image information will be triggered after a node has

completely received a new image.

For the convenience of description, we divide feedbacks into four categories by their

functions:

� For command dissemination. The feedbacks confirm the commands are received

by destination nodes.

� For data collection. The feedback confirms the start of collection and returns

initialization information for PC end.

� For error reporting. The feedbacks report different kinds of errors to user for

diagnosis.

� For confirmation of received image. The feedbacks report which nodes have

received a new image.

I am going to explain the first one for this module and I will give the details of

remains in other sections for other modules.

4.1.3 Protocol of Dissemination and Feedback

I take the one-to-all mode dissemination for an example. The dissemination is carried

out in following steps: user send out a command in which “des” field is set as 0xff.

The basestation receives the command via serial link and check if its node list

contains any nodes. If so, the command is sent to these nodes one by one in a unicast

way. The reason of using unicast is that broadcast will arouse problems such as

broadcast storm and feedback collision, and multicast has not been implemented yet

in TinyOS. Compared with broadcast, unicast avoids all receiver to acknowledge at

the same time thus decreases the possibility of feedback collision. The drawback is it

takes more time and energy to send command to multi nodes. As we mentioned above,

each node state contains a field of “linkstate”. Before starting a dissemination, this

flag for each node is initialized to “NO_RESPOND” state. When one of the leaves

has received the command, it returns an acknowledgement feedback to the basestation.

After receiving the acknowledgement, the basestation sets the “linkstate” of

corresponding node as “ACKed”. Every time the basestation receives an

acknowledgement, it switch the corresponding “linkstate” and checks if the

“linkstate” of all the nodes have been set to “ACKed”. If so, the basestation send a

feedback to PC to tell the user that every node has received the command. Since the

sending and receiving events are asynchronous, there is a timeout timer start as soon

as the command has been sent to all the leaves, which is used to check if all the leaves

have received the command before timeout. When the timer expires and there are still

some nodes haven’t acknowledged the command, the basestation report the nodes id

of which did not acknowledge to PC. In late modification, we add in retry mechanism

Design and Implementation of a Wireless Sensor Network Testbed

27

before reporting to ensure whether the nodes cannot receive the command or just

missed the command due to collision.

In practice, there may be two or three hops between the basestation and outermost

leaves. Then the protocol is a little more complex than above. The outermost leaves

acknowledge the command which is received from branches. Branches and the

basestation, when receive a command, they follow the steps as above. The slight

change is that they return an acknowledgement to previous node only after all of its

leaves have received the command and acknowledged. If there are still some nodes

haven’t respond to the command after timeout, the basestation or branch will send the

report to user too. As we see in Figure 4.3, the dissemination order is from 1 to 3, and

the order for feedback is from a to c.

Figure 4.3. Dissemination and feedback steps are shown with order.

Thanks to the feedback mechanism, dissemination of command becomes reliable and

easy to track. User can know whether there are failed nodes which do not respond to

commands, and by feedback information, user can also know which nodes are out of

order and the route to these nodes, both of which can help user find and fix the

problems.

1

2

3

a

b
c

Design and Implementation of a Wireless Sensor Network Testbed

28

Figure 4.4. Flowchart for the feedback of one-to-one mode.

In the one-to-one mode, the dissemination is the same, but the feedback is simplified.

During the dissemination, if the basestation or branches have received the

acknowledgement from destination node, it will stop waiting and checking the states

of node list, the feedback will be directly sent to basestation to confirm that the

destination node has received the command. And if the destination node is not in the

network, the PC will receive a feedback informing that every node in the network has

received the command, which means that the destination node is not in this network

because every node in the network has received the command but no feedback is from

the destination. However, if the routing path to destination is broken by one or several

nodes, the feedback which indicates the link broken will be returned to user.

This is the structure of dissemination and feedback module, a tree-based, manual

configuration and reliable implementation. By this module, all the nodes build up a

wireless network that each node in the network can be reached and controlled by

commands. This module is the groundwork that provides a basic command sending

and receiving service to other modules. Other modules and service, such as data

collection, utilize it for signaling, confirmation and identification. I will explain in the

next sections along with the description of these modules.

4.1.4 Configuration reuse

Since switching from one program image to anther and rebooting are normal during

an experiment, the configuration for a node including information of node list and

previous node are saved in the permanent flash that can be reloaded next time the

node reboots. By this feature, we do not have to configure the same network every

Command has been sent to every node

Waiting for feedbacks

Feedback is from the destination

Feedback to the basestation

Feedbacks from all the nodes have been received

TimeOut

a feedback is received

Yes

Yes

No
No

To PC/User

Design and Implementation of a Wireless Sensor Network Testbed

29

time.

To conduct these operations, ConfigStorage which is an existing interface for storing

data of small size is included in our module. Our structure of configuration is showed

in Figure 4.1(c), the field bootKeeper is a permanent flag that it is reserved for future

extensions. We defined the size of volume in volumes-stm25p.xml file for

configuration. Every time a node reboots, the module will mount the flash volume

automatically and read out the last configuration. And when the configuration

changes, it will be used to overwrite the old one in the flash immediately.

4.2 Network Programming

Network programming is much different from a normal programming, in which we

wire the sensor board with PC via USB and reprogram it with a new program image.

But for network programming, we have to consider the way to disseminate program

to multi nodes via wireless links and reprogram them remotely. We can see the

difference in Figure 4.5.

Figure 4.5. Direct programming and Network programming approaches

As we introduced in Chapter 3, we decide to use deluge module as our program

dissemination and reprogramming module. The version of deluge we use is 2.0 which

is released with TinyOS 2.x.

4.2.1 Introduction of Deluge

Deluge is a reliable dissemination protocol for large amounts of data. It can be used

to propagate program images from one node to multi-nodes which are also running

deluge protocol.

For a new image, Deluge assigns it with a greater version number in order to inform

Sensor board Sensor board

Program

Memory

External

Flash

Program

Memory

PC

Program

binaries

Basestation PC

Program

binaries

(a) Direct programming (b) Network programming

Design and Implementation of a Wireless Sensor Network Testbed

30

other node which runs old version to update. Deluge split an image into pages of

fixed-size. A node can only send or receive a single page at one time

A “deluge” process contains following steps. Firstly, nodes broadcast advertisements

periodically which contain a version number and a vector indicating the pages that the

advertiser has. When a node realizes from the advertisement that it need to update

with some new pages, it will wait for some time to check which node provides the

needed pages by listening advertisements. And then the node will send request to the

chosen node, indicating the pages it need. After received the request, a node will

prepare the requested data and broadcast them. After completely receiving the last

packet of a page, the node will broadcast an advertisement of the page before

requesting next needed page. In multi-hop network, this will increase the speed of

dissemination because the nodes in different part of network can communicate in

parallel.

The implementation of Deluge is in nesC language and also includes a

reprogramming function. When a node has received an image of a new version

completely and be requested to reprogram itself, it will call the reprogram interface to

reboot.

TinyOS provides an interface called NetProg for network programming. This

interface has two commands, one is used to reboot only, and the other is reprogram

and then reboot. The parameter for latter one is the physical address of image in

external flash.

So, Deluge 2.0 with TinyOS should be a sufficient solution to the network

programming module to our testbed. However, Delugerelies on periodic

advertisements to keep nodes informed of their neighbor’s states. As we discussed

before, this feature may interfere users’ experimental program. So we introduce an

interface to Deluge to provide extra functions to stop advertisement while still

guarantee every node can receive an image.

4.2.2 A new interface for Deluge

To adapt Deluge to our network programming module, we still need some additional

functions to meet our requirements. Therefore, we design a new interface called

DelugeTools for Deluge.

The DelugeTools interface contains two commands and one event: the functions of

two commands, lock and unlock, are to stop/restart the propagation function and the

advertisement broadcast in Deluge, and the event “objectReceived” is triggered when

a node has received a new image completely by Deluge protocol. To use this interface,

user should register a handler for dealing with this event.

The implementation of this interface is added to the main components of Deluge

module which are DelugeC and DelugeP. For command “lock”, a flag which

Design and Implementation of a Wireless Sensor Network Testbed

31

indicates whether the propagation function is locked will be set. So a node which

called the lock command can not receive new packets from Deluge and also will not

broadcast advertisements. Command “unlock” is the opposite operation of “lock” that

it reopens the propagation function again. In DelugeP, there is an event handler for

receiveDone event of underlying interface ObjectTransfer. If a node has received the

whole program image and last received command asked for reprogramming, this

handler will call the command of NetProg interface to reprogram the node. So we add

a new task in this handler before reprogramming in order to trigger objectReceived

event for DelugeTools interface.

The DelugeTools interface is used in our software framework with the help from the

command dissemination and feedback module. For the commands “lock” and

“unlock” of DelugeTools interface, there are two commands reserved by command

dissemination module, by which user can turn off/on the propagation function of

Deluge for all the nodes by sending a single command.

The DelugeTools also improve the Deluge with a new feature that user can know

which nodes have received a new program. It’s an important feature that keeps user to

be informed with the nodes that completely receive the program. The implementation

is carried out by the event handler of DelugeTools. In our software framework, when

this event ObjectReceived triggered, the event handler will generate a feedback

message with a 32-bit uidhash of program image and send it to the basestation.

Considering the fact that a feedback may be lost in the retransmission from the sender

to the basestation, the feedback sender should know whether the feedback has been

received by the basestation. In our framework, there is a timer for iteratively sending

the feedback to the basestation until the feedback has been confirmed by a

confirmation message from the basestation. Although some redundant message may

be generated, we consider the redundant acknowledgements are necessary for keeping

a high reliability.

Now Deluge plus DelugeTools interface is a complete solution to network

programming for our testbed.

4.3 Data Logging and Gathering

In most of WSN experiments, experimental data will be generated during the process

of experiments, which are valuable for analyzing the behavior of WSN afterwards. So

data logging is a necessary function in a WSN testbed especially in our testbed. .

Since our testbed uses wireless communication to disseminate commands, program

binaries and etc. The wireless transceiver of a sensor board is shared by our software

framework and user’s program. During the execution of user’s program, the wireless

transceiver is occupied by user’s program. So log data has to be saved in remote

sensors’ flashes, which will be collected after the end of user’s programs. Moreover,

To help user to gather experimental data is also a required function. Thus in our

design, this module contains two functions: data logging and data collection.

Design and Implementation of a Wireless Sensor Network Testbed

32

TinyOS provides several modules and interfaces for permanent storage of data from

which we choose LogStorageC as our underlying component for data logging which

provides sufficient functions. We can call the functions and set event handlers via two

interfaces LogRead and LogWrite which should be linked to the component

LogStorageC.

In addition to storage, we design the collection part of the module. In TinyOS, there

are also some collection modules that we can use. However, these implementations

are designed for different purpose that not suit to the architecture of our testbed.

Moreover they usually have a large code size. So we decide to write a light

implementation for this function.

To provide basic log and collection operations to user, we write an interface called

DataStorage. It contains commands for logging and collection, and also some events

for feedback and error checking. The implementation is carried out by DataStorageP

and DataStorageC components. The operations for data storage extend the functions

of LogStorageC, e.g. DataStorage.append() is implemented by calling

LogWrite.append(). We extend it by adding error reporting mechanism for these

commands which may return input/output errors. When an error occurs, event

failureOccured is triggered with a variable as its parameter which indicates the type

of error. If a developer wants to deal with some of these errors, he can assign

corresponding feedbacks for them and collect them by the module of feedback. When

a command of this module has been executed successfully, event workDone is

triggered with a parameter indicating the type of command.

Figure 4.6. data structures for collection

In the collection part, we take advantage of the routing strategy from the feedback

module. However, the data structure which is showed by Figure 4.6 are different from

the one in the module of command dissemination & feedback. The structure

dataToSend is the message container for transmission, including a 16-bit sequence

number, source and destination id, and actual log data. The size of the structure varies

with the user_data_t structure, which is used to store experimental data, is defined at

compile-time. E.g. in Figure 4.6 (a), the user_data_t structure contains a 16-bit integer

for temperature value, a 32-bit integer for system time and a 16-bit counter.

The sequence number in dataToSend structure is used to eliminate packet redundancy.

nx_uint16_t uid

nx_uint8_t src

nx_uint8_t des

user_data_t content

(a) example of user_data_t structure

nx_uint16_t temp

nx_uint32_t time

nx_uint16_t count

(b) dataToSend structure

Design and Implementation of a Wireless Sensor Network Testbed

33

Because in real-life transmission, packet loss is possible to happen, the retry

mechanism is applied to solve packet loss, however, it may cause the problem of

redundancy. User can utilize the sequence number to judge if the packet has already

been received and discard it if it’s redundant.

There are two commands and two feedbacks for this module: commands

CMD_COLLECT and CMD_ERASE, and feedbacks ACK_COLLECTION and

ACK_CLDONE. CMD_ERASE is used to erase all the data in the flash of a sensor

board. When a node receives this command, it will call DataStorage.erase() to erase

all the data.

When a node received a command CMD_COLLECT, it will first return a

ACK_COLLECTION feedback of which the “data” field is the size of user_data_t in

bytes. When PC has received this feedback, it will initialize a message instance with

the size and register a new listener for this kind of message. When PC is ready for

collection, then the node will call DataStorage.collect() to start the collection. During

the collection by the module, the node will iteratively read out a piece of data, insert

into a dataToSend message and send it to PC. Each node follows the route of

feedback to transfer logging data. However, in order to avoid packet loss during the

multi-hop transmission, a node will repeat the same message of data to PC at regular

intervals until receiving a confirmation from PC. The sequence number for

eliminating redundant data increases in every message. So when PC received a

message of which the sequence number is smaller than the last message, this message

will be considered as redundancy and discarded.

Figure 4.7. Collection scheme for data uploading and confirmation downward. The

dotted line points out the source and final destination of messages and the real line is the

actual route for messages.

When the module tries to read the next data but finds the entire log data have been

read out and sent to user, the event allDataSent will be triggered. Accordingly, the

event handler in our software framework will generate a feedback of ACK_CLDONE

and send it back to PC. So user can be notified that collection process is done and all

the data have been gathered.

confirmation

PC

data message

Design and Implementation of a Wireless Sensor Network Testbed

34

4.4 Time Synchronization

FTSP module is released with TinyOS 2.1. It is used as an additional service for our

testbed. The FTSP module consists of two main components TimeSyncC and

TimeSyncP, following the protocol introduced in [13]. The global time of all the

nodes in the network is synchronized to the node with minimal node id. So in our

testbed, we can set node id of the basestation to the smallest one, then other nodes

synchronize their time to the basestation.

Some interfaces are provided to user: GlobalTime, TimeSyncInfo and

TimeSyncMode. GlobalTime contains common functions, by which user can get the

current global and local time, or make conversion between global time and local time.

TimeSyncInfo has more functions that let user see more details of time

synchronization, as it provides functions to get the dynamic parameters, like the latest

sequence id, current skew between the local and global time, and current root id. This

interface is usually used for testing the synchronization module. TimeSyncMode is a

interface to change the mode of FTSP module. The FTSP protocol relies on flooding

the synchronization messages to every node. The FTSP module iteratively sends the

message at regular intervals by default. However, there are two modes for the module:

one is TS_TIMER_MODE; it’s the default mode that a timer is running for sending

the synchronization message automatically. The other is TS_USER_MODE, with this

mode, user have to send synchronization messages manually. The interface

TimeSyncMode just gives a function setMode() to change the mode. And also a

function send() for sending synchronization message manually during the

TS_USER_MODE mode. These interfaces are linked to our software.

For this module, the command dissemination & feedback module assigns two

commands and one feedback: TEST_SYNC, CMD_STOPSYNC and ACK_SYNC.

CMD_STOPSYNC is a command to stop the timer which fires periodically to send

synchronization message. The purpose is similar as stopping the propagation function

of Deluge which avoids interferences to users’ program. TEST_SYNC and

ACK_SYNC are used for testing the performance of synchronization module. The

command TEST_SYNC asks the basestation to broadcast a message. Nodes which

have received this message will obtain the local arrival time from the message,

convert it to a global time and send the global time back in a feedback of

ACK_SYNC type. Since the message is broadcasted, theoretically every node in

range should receive the message at the same time. Therefore, if they are all

synchronized, the global time returned should also be the same. From the feedbacks,

we can see how precise the network is synchronized.

4.5 Key Optimizations

Three modules and one service constitute a complete software framework in our

testbed. In order to achieve a better flexibility and be more user-friendly, we made

some improvements to our original design.

Design and Implementation of a Wireless Sensor Network Testbed

35

4.5.1 Modularization

For embedded systems, resources are usually limited thus user should be able

customize their program to fit the available resources. Restrictions on programming

memory and RAM also require the customizability in our software framework.

Among the modules and service, collection module and the time synchronization

service are not must-have for some experiments. So in our software framework, we

set macros of pre-processor for these two modules. User can set whether to include

the collection module and time synchronization service in a header file called

“TB_Config.h” at compile-time. The definitions are as below:

#define TB_COLLECTION
#define TB_SYNC
#define TB_DEBUG

TB_COLLECTION is the directive for data collection module. TB_SYNC is for the

service of time synchronization and TB_DEBUG is for functions of debugging. If

these directives are commented out, respective module or service will not be

compiled. This enhancement can save a lot of programming memory and RAM for

user. In our test, without these module and service, user can save about 11KB

programming memory and 500Bytes RAM.

4.5.2 Division solution

This enhancement is also about the limitation on memory. The Tmote Sky has only

48KB programming flash. A complete version of the software framework takes much

programming space. The remaining space for users’ program is limited, which is

problem we would like to tackle.

We find that the network programming module is bulky in the software. This module

is only used to disseminate new programs and reprogram nodes remotely. Therefore

when user’s program runs, it is not necessary to keep it in the program memory. So

we propose a solution which splits the software into two different versions: A Deluge

version which includes Deluge module, and a light version without Deluge module.

The Deluge version is mainly used to disseminate program and reprogram nodes. And

when the process of network programming is done, user’s program starts to run with

the light version of software framework. The light version has an interface that it can

be switched to the Deluge version when user needs to disseminate a new program.

For Deluge module, a golden image is saved in the external flash which can be

modified only via physical connection. It will be loaded when a buggy application

works abnormally, which brings the error node into a recoverable state. We utilized

the external flash to store the Deluge version software framework as the golden image,

which gives more programming space for users’ program.

Design and Implementation of a Wireless Sensor Network Testbed

36

Table 4.1. Components for different versions.

In order to implement the switch between the Deluge version and the light one, we

add some extra interfaces and functions, especially for the light version. User

compiles his program with light version and inserts it to the basestation, and then

utilizes Deluge module of Deluge version to disseminate the program image to other

nodes and reprogram them. All the nodes then begin to run user’s program, supported

by the light version of the software framework. When user has a new program to test,

the command CMD_TODELUGE can be disseminated to all the nodes and ask them

to switch to the Deluge version. As we introduced before, the reprogramming

function is included in the NetProg interface that need physical address of image as

its parameter. However, to get a physical address of a volume in the flash is one of

the functions in Deluge which is not included in this case. So we write a component

StorageMapP and its configuration StorageMapC to provide the interface StorageMap

which has a function of getting physical address of a Deluge volume. The

implementation is borrowed from component BlockStorageManagerP and its

configuration BlockStorageManagerC which are included in Deluge module. As we

plan to place the Deluge version in the golden image position, we need to get the

physical address of golden image volume by calling StorageMap.getPhysicalAddress,

and then switch to the Deluge version by calling NetProg.programImageAndReboot

with the address.

Deluge module has signal commands such as disseminate, reprogram and stop

disseminate as we introduced in the first subsection. If some intermediate nodes run

light version that they cannot retransmit Deluge commands to next hops. For example

with Figure 4.8, user wants to reprogram node c, but c is out of range of a, and b runs

light version that do not have functions to retransmit the command for a. So c fails to

be reprogrammed. To solve this problem, in light version, our command

dissemination&feedback module takes over these signal commands for Deluge.

Figure 4.8. Deluge commands dissemination, the black nodes are running Deluge

version and the white node is running light version.

In order to provide additional information for diagnosis, our command dissemination

& feedback module reserves CMD_CHECKVERSION and ACK_VERSION for

verifying versions of nodes. To get the version information of a node, user can send

 Function
 Version

Deluge Disseminate&Feedback Collection
TimeSync

Deluge √ √ ×

Light × √ √

a b c

Design and Implementation of a Wireless Sensor Network Testbed

37

the command CMD_CHECKVERSION to destination node, a feedback of

ACK_VERSION will return in the field “data” which indicates which version is

running on the node. Here we define 0 as Deluge version and 1 as light version. In

addition, this command and feedback can be used to check the internal errors of a

node too. Because the field “uidhash” of the feedback is used to save the 32-bit error

flag which records the internal errors occurred since the node boots. Each bit of this

flag stands for a kind of error so that it can be used to monitor 32 different kinds of

errors.

With this improved solution, user can save about 10KB programming space.

However, the tradeoff is extra operations for switching between two versions that

increases the consumption of power.

4.5.3 GUI Tools

In order to provide a user-friendly interface, we write a suit of GUI software in Java

for management of our WSN testbed. All the operations can be conducted in this GUI,

including command dissemination, feedback receiving, data collection and error

diagnosis. The suit of software is developed by NetBeans IDE and supported by

TinyOS SDK.

Figure 4.9 shows the batch reprogramming GUI, which can be used to

reprogramming dozens of local nodes in batches. It also includes some functions from

Deluge: user can check image information in a specified Deluge slot and clear an

image. User can also make program images and insert them to the different slots of

Deluge volumes.

Figure 4.9. Batch reprogramming GUI with additional functions for Deluge volumes

Design and Implementation of a Wireless Sensor Network Testbed

38

Figure 4.10. Main GUI for our testbed

The main GUI controller is showed in Figure 4.10. It can handle the operations like

sending commands, receiving feedbacks and translating them. User can choose an

option of command in the list and press “Send” button to send. User can also give

instructions to Deluge module, e.g. reprogramming the basestation. A small function

called node manager is attached to keep the information of all the nodes in the

network. When there are dozens of nodes in the network, in order to identify different

nodes in the future, user can give descriptions such as their locations along with the

nodes by this function. And this function also provides id of all the nodes to

command for checking version, if a user wants to check the version of all the nodes,

he/she can obtain all the version information by polling all the nodes saved in the

node manager. A typical result is showed in the Figure 4.11.

Figure 4.11. An example result for checking versions of all the nodes

For collection of log data, a graphic collection panel is also provided. As we see in

Figure 4.12, after configuring the panel with right parameters, user can gather log

Design and Implementation of a Wireless Sensor Network Testbed

39

data in batches easily by this tool, and at the end of collection, these data can be saved

in a txt file.

Figure 4.12. Data collection panel

With these GUI tools, a user doesn’t have to type different commands to control the

testbed, and doesn’t have to look up our instruction document to know the meanings

of different feedbacks. It saves much time for user and also provides a convenient

way for experiment.

4.6 Tutorial

In order to give some instructions to users and developers for using our testbed and

extending it in the future, we would like to present two brief tutorials for users and

developers respectively.

4.6.1 Quick tutorial for user

Before using our testbed, user has to install TinyOS 2.1 with its toolchain first, some

of which are the basis of our GUI software. The details of installation can be found on

the official website of TinyOS (http://www.tinyos.net). Java Runtime Environment is

Design and Implementation of a Wireless Sensor Network Testbed

40

also necessary to support our GUI tools. Related software can be downloaded from

the website of Sun Microsystems (http://java.sun.com).

When setting up the nodes at the first time, a user load our golden image which

contains the Deluge version of the software framework.

Enter the folder of our golden image. First initialize the node with Deluge version that

we can insert volume later.

% CFLAGS=-DDELUGE_BASESTATION make tmote install,0 bsl,/dev/ttyUSB0

Then make the golden image for different kinds of node,

For the basestation:

 % CFLAGS=-DDELUGE_BASESTATION make tmote

For other sensor nodes:

% make tmote

Now insert the image into the slot of golden image:

% tos-deluge tmote -i 0 build/telosb/tos_image.xml

User can also use our GUI tools to insert the golden image, which is easier than the

method above.

After installing Deluge version on each node with unique id, the sensor nodes can be

deployed. The distance between hops should be in the range of communication

according to the practical environment.

To combine with light version of our software framework, a user must add our

component into his/her program with a statement:

 Components MyDelugeLiteC;

Users can decide whether to add data collection module and time synchronization

service. Comment relevant lines in “TB_Config.h” file can exclude the collection

module and time synchronization service at compile-time. If a user’s program

includes data collection module, he/she should define the log structure in the program

or its header file with the following form:

#define USER_DATA_T

typedef nx_struct user_data {

 nx_uint8_t field1;

 …

} user_data_t;

Design and Implementation of a Wireless Sensor Network Testbed

41

Our software framework has reserved a command append() for users’ program. If

they want to save experimental results in permanent flash, they have to link the

command append() to MyDelugeLiteC and call it with a log as a parameter.

If time synchronization service is included, users should define the rate of

synchronization message in Makefile file. The default rate is 10 times per second.

He/She can define the rate (times in seconds) by:

PFLAGS += -DTIMESYNC_RATE=1

In addition, the memory space for Deluge volumes, configuration and log data should

be defined too. The users’ programs should contain a volumes-XXX.xml file which

defines the allocations for these permanent data. Take our Tmote(stm25p) for

example, a volumes-stm25p.xml should be configured as follows:

Compiling user’s program for non-basestation nodes, insert it to a volume slot of the

basestation. And compile the program again for the basestation, with a parameter

CFLAGS = -DDELUGE_BASESTATION. Then insert it to another slot among the

three available. Here for example, we use slot 1 to store the image for non-basestation

nodes and slot 2 to store the image for the basestation. All these work can be carried

out with our GUI tools.

A user has to configure the logic topology for the whole network firstly. Command

“Add Node to list” and “Clear Node List” can be used to add or remove leaves. The

logic topology should be adjusted according to the physical deployment in order to

ensure each node in the network can be reached.

To start dissemination of user’s program, we need to open our main GUI controller.

Choose the “Disseminate” in Deluge commands set and fill in 1 as its parameter

because we are inserted the image in slot 1. Waiting until each node in the network

has received the image, user can be notified by the feedback from each node. Then

send “Reprogram Remote” command to request all the nodes except the basestation

to reprogram with new program they have received. User can use the command

“Check Version” to verify if all the nodes have reprogrammed. For the basestation,

user has to send “Reprogram Local” with parameter 2 to reprogram with its special

version for basestation that we have inserted in slot 2 before.

Before starting the experimental program, user may have to turn off some functions

in our software framework, e.g. stop time synchronization by command “Stop

<volume_table>

 <volume name="GOLDENIMAGE" size="65536" base="983040" />

 <volume name="DELUGE1" size="65536"/>

 <volume name="DELUGE2" size="65536"/>

 <volume name="DELUGE3" size="65536"/>

 <volume name="CONFIG" size="131072"/>

 <volume name="LOGTEST" size="262144"/>

</volume_table>

Design and Implementation of a Wireless Sensor Network Testbed

42

Synchronization”.

At the end of experiment, user can gather the experimental results from nodes by

collection graphic panel. Please note that that the structure of data must be set the

same as the one defined in his program.

If a user wants to start a new program, he/she has to send “CMD_TODELUGE” to

switch all the nodes to the Deluge version again and then repeat the same steps as

above.

4.6.2 Instructions for developer

There are some useful tips for developer to extend or modify the software framework.

In the TinyOS 802.15.4 frame, AM type is a single byte field which indicates which

active message type the payload contains. In our software framework, there are

several AM types occupied by different modules. We list these occupied AM types

below:

In command dissemination&feedback module, the AM type from the basestation to

PC is defined as 7, and to wireless nodes is defined as 9. For data collection module,

the AM type from the basestation to PC is defined as 10 and to wireless nodes is

defined as 8. 0x53 and 0x54 are reserved for Deluge module.

In header file “MyDeluge.h”, there are several pre-defined constants.

RETRY_TIMES is the maximum retry times for sending a message to a node.

IMG_REP_RETRY_TIMES is the maximum retry times for feedback an image

report to previous node. BUFFER_SIZE is the buffer length for our feedback buffer.

In order to avoid feedback packets loss, we write a simple component called

SimpleBufferC which contains basic operations of a buffer and has two modes of

FILO and FIFO. When a branch has many leaves, the BUFFER_SIZE should be set

large as it may receive many feedbacks in a short time. However, large buffer size

will cost more RAM. So this constant should be modified according to the real

applications.

Error flags which are used for diagnosing the problems in the system, we have

defined 9 different kinds of errors in MyDeluge.h file. Developer can still define 23

other kinds of error in this enumeration.

In data logging and collection module, we have introduced an event called

failureOccurred, which can be used to handle different errors. This event is still kept

for extension that can be used to improve the reliability of this module.

Design and Implementation of a Wireless Sensor Network Testbed

43

4.7 Performance analysis

To test our testbed in a practical environment, we configure several test cases to

check its performance of different part.

Before performing the tests, we setup the WSN network which consists of one

basestation and ten Tmote sensors which are deployed in the different rooms on the

19th floor of EWI building at TU Delft. The deployment is illustrated in Figure 4.13.

Node 1 is the basestation which is connected with PC. Node 2 and 3 are deployed in

the corridor, and other eight nodes are deployed in four rooms, each room has two

nodes. The logic topology is configured as Figure 4.13 showed. Initially, all of these

nodes are programmed to Deluge version of software framework.

Figure 4.13. Deployment of our wireless sensor nodes in different rooms of 19th

floor, the dashed lines indicate the logic topology for this WSN testbed. Node 1 is the

basestation.

4.7.1 Dissemination of commands

The first test case is to verify the functionality of dissemination and feedback module.

We want to check the performance of this module under normal conditions. Every

node in our network was turned on and running normally. Firstly we sent a command

to a single node for certain times to test the module in one-to-one mode; and then we

sent the command to every node for certain times to test the module in one-to-all

mode. Here, for every step, we sent the same command for 100 times. If a feedback

shows the destination node has received the last command in one-to-one mode or

every node has received the last command in one-to-all mode, we counted it as a

feedback of “success”, or it is a feedback of “fail”. The results are in Table 4.2.

Design and Implementation of a Wireless Sensor Network Testbed

44

Results

Tests

No. of sent

commands

No. of received

feedbacks

(redundancy)

No. of feedbacks

with success info.

No. of feedbacks

with fail info.

One-to-one 100 116(16) 92 8

One-to-all 100 93(4) 79 10

Table 4.2. Results for dissemination and feedback

As we see the results in Table 4.2, due to the retry mechanism, the redundancy of

feedback exists that user may receive several acknowledgements for a command. For

instance, in one-to-one mode, the number of feedbacks (116) is larger than the times

we sent the command (100). However, for each command there is a corresponding

feedback returned at least. Because wireless communication is not reliable that

sometimes the channel may be jammed due to interference, a command or its

acknowledgement feedback may be lost in the transmission. The one-to-one mode

has a 92% success ratio for sending the packet to the right node. For one-to-all mode,

the results are not so perfect to show the reliability of the module. Although we sent a

command for 100 times, we got 89 feedbacks with 4 redundant feedbacks and

actually 15 feedbacks were lost in the paths. The success ratio for delivering a

command to all the nodes is about 79%. Number of fail time is 10 which is similar to

one-to-one mode.

4.7.2 Detection of malfunctioning nodes

The second test case is created to test the function of detecting malfunctioning nodes.

In order to simulate an error node in the network, we turn off a node intentionally

before the tests. Then we send a command to the node which is turned off to test the

detection in one-to-one mode, and then send it to all the nodes to test the detection in

one-to-all mode. For column of “Correct report” in Table 4.3, if a feedback reports

the malfunctioning node correctly, we count it as a correct report.

Results

Tests

No. of sent

commands

No. of received

feedbacks

(redundancy)

No. of feedbacks

with fail info.

Correct

reports

One-to-one 100 110(10) 100 95

One-to-all 100 96(4) 92 83

Table 4.3. Results for detection of malfunctioning nodes

From the results in Table 4.3, in one-to-one mode, the ratio for reporting

malfunctioning node correctly is 95% while it becomes 83% in one-to-all mode.

However, the inaccuracy makes sense, as we realized from the first test case, failing

to deliver a packet is possible to occur that feedback mechanism may report the fail

Design and Implementation of a Wireless Sensor Network Testbed

45

before it finds the malfunctioning node.

4.7.3 Network Programming

The third test case is for network programming module. We want to check the

relation between image size and transmission time. So we have created several

images with different sizes and disseminate them one by one for certain times. In this

test, we have recorded the intervals from the start of dissemination to all the nodes

have received the image completely. The average time of dissemination in our

scenario is showed in the Figure 4.14. The result also relies on the deployment of the

nodes. With a dense network, the time for dissemination will decrease a bit. For

example, when we placed all the nodes in the same room, the dissemination time for a

38.5KB image is about 72 seconds while in Figure 4.14 it needs 105 seconds.

102 105 106

121

71

0

20

40

60

80

100

120

140

26.3 37.1 38.5 39.5 45.3

KBytes

s
e
c
o
n
d
s

Figure 4.14. Dissemination time for images with different size

4.7.4 Data Collection

The fourth test case is for data logging and collection module. We made a test

program which records environment temperatures every five seconds by the sensor on

the mote. The size of each log is 10 bytes which includes a 16-bit sequence number, a

32-bit value for temperature and a 32-bit value for global time. For this program, we

set 256KB as the space for log data in “volumes-stm25p.xml” file. We run the

program for three days and then checked the system and its collection module. When

we checked the error flag by feedback, we found that the space for logging data was

full and the error flag recorded this event correctly. After collecting all the log data

from a node, we found that these data were logged consecutively which completely

displays the change of temperatures during these days. So this module is stable for

long term running. However, by this test, we can also find some shortages. Firstly the

external flash for log data is limited which may overflows due to the large amount of

data. The size of whole external flash is 1 MB. However, the external flash is used for

Design and Implementation of a Wireless Sensor Network Testbed

46

other storages too, such as storage of configuration and Deluge volumes. As default,

the space for Deluge volumes costs about 64*3=192 KB. So the space for log data is

much less than 1 MB. Secondly the time for collection is a little longer than we

expected. For the collection in our test, the total number of log data is 23807 and each

structure of log data contains 12 bytes. The time for receiving all the data is about 50

minutes that there are 8 log data received per second on average. However, in this test,

we defined that each message contained only one log data. In order to reduce the time

for collection, we can insert five log data into a single message which will reduce the

collection time to 10 minutes.

4.7.5 Time Synchronization

The last test case is for time synchronization service. We have reserved several

commands and feedbacks for debugging. As we explained the principle in Section 4.4,

we can receive several feedbacks after sending the command “TEST_SYNC” to the

basestation. Each feedback contains a 32-bit field which keeps global time of

message arrival. Theoretically, these 32-bit values should be the same. The difference

among these 32-bit values can be considered as inaccuracy of time synchronization

service. After repeating the command for 10*100 times, we found the maximum

difference is 3 milliseconds and the average difference is about 0.42 milliseconds.

Considering some actual error in the testing process, the error less than 1 millisecond

is acceptable. The time synchronization service can be competent for most

applications with normal synchronization requirements.

By these small-scale tests, we have verified the functionality and performance

elementarily for our WSN testbed which shows acceptable results. However, on the

other hand, we also realized that there is still much space for improvements on the

reliability of the whole system.

Design and Implementation of a Wireless Sensor Network Testbed

47

Chapter 5. Conclusions and Future Work

5.1 Conclusions

In this thesis, we have introduced a new solution for WSN testbed. We have studied

some existing solutions for WSN testbed and discussed their advantages and

restriction. According to our objective, we hardly find a suitable solution to meet our

requirements so that we would like to propose our own solution. With reference to

these solutions, our testbed takes advantage of wireless communications as our

backbone network instead of Ethernet or USB cables, for the sake of high flexibility

and low cost. Our testbed can be widely deployed at different places for experiments

without the support of Ethernet and extra devices. The whole testbed consists of

Tmote Sky sensor boards and our software framework which provides necessary

modules and service like command dissemination, data logging and collection and

time synchronization.

We presented the details of our implementation. For our software framework, we

implemented a tree-based protocol for command dissemination and feedback, and a

protocol for data collection. Writing the codes from scratch for these two modules

requires a good amount of knowledge of TinyOS as well as the non-standard

programming language nesC that is used to program the Tmote. And for development,

unlike other embedded systems, we don’t have online debug system for Tmote board,

which means programming and debugging rely on simulations or programming real

devices with every modification. So it is really troublesome and time-consuming. The

main body of the software framework contains about 1100 lines-of-codes (LoC) and

330 LoC for data collection module. Beside the codes for each module, different

testing programs have been written along with the modules to verify the functions one

by one. It was a useful way to trace and fix problems in the process of development.

The total amount for all test programs is close to 1000 LoC. And in order to save time

and energy, some existing modules have been adopted from TinyOS 2.1 as parts of

our software framework, such as Deluge 2.0 network programming module and FTSP

synchronization protocol. It was also not an easy work of importing these modules to

our software framework. The existing code was hard to understand, because of its

complexity and lack of documentation. And before applying these modules in our

software framework, compatibility testing and some modifications or extra functions

had to be carried out. For example, in order to optimize programming space for

Deluge module, the software framework needed to be refined and additional

functions for both split versions had to be implemented. To make our software

easy-to-use, a suit of GUI software has been designed for managing the testbed which

includes thousands of LoC. Writing Java program on PC is much easier than writing

Design and Implementation of a Wireless Sensor Network Testbed

48

embedded codes for Tmote. Some codes of graphic components are generated

automatically by integrated development environment (IDE) software and programs

can be tested with rich debugging tools, such as break point, memory watcher. In

order to make sure everything works fine, we conducted a small scale testing for the

whole system. After being verified by several test cases, our testbed was proven that

it meets our design goals. And we hope our testbed can be widely applied for WSN

research.

5.2 Future Work

Considering the requirements of reliability and user-friendly, we have realized that in

order to be a mature system, the original edition of our WSN testbed still needs many

improvements and optimizations. Especially for reliability of our testbed, some extra

mechanisms should be applied to solve the potential problems which may cause some

system failures. There are some suggestions for the future work:

1. Fixing bugs and optimizing codes. There may be still some bugs we didn’t find

in our small scale testing. So working on debugging is still an important work in

the future. And for the limited programming space, some optimizations for our

software framework are still necessary to be carried out to reduce the code size

even further.

2. A protocol for configuring network topology automatically. So far user still has

to manually configure the node list for every node. When topology changes, user

has to configure them again. So it would be a handy feature if the configuration is

automatic.

3. Data compression for collection process. As we tested, the time for gathering a

mass of data from each node is longer than a user may expect. So compression of

log data is possible before sending them back, which may increase the effective

rate and reduce the time for transmission.

4. On-off solution for low-power applications. For some low-power oriented

experiments, the radio is duty cycled on and off in order to save the energy. So to

ensure all the node can receive commands when their radios are on, an on-off

solution should be carried out for our software framework.

5. Improving GUI software to make it more user-friendly. Some useful functions

can be added. E.g. Scheduler to handle multi tasks for user. For a complex

experiment, several tasks should be performed continuously along with the entire

experiment. The software should be able to help users manage all of these tasks

automatically. In addition, multi-user interface for remote access could be a plus.

Design and Implementation of a Wireless Sensor Network Testbed

49

Reference

[1] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A Wireless Sensor

Network Testbed”, Proceedings of Information Processing in Sensor Networks, pp

483-488, 2005.

[2] Crossbow Technology Inc., “the MICAz Module,” http://www.xbow.com

[3] P. Buonodanna, “EPRB: Ethernet PRogramming Board,”

http://berkeley.intel-research.net/pbuonado/EPRB/

[4] Crossbow Technology Inc., “MIB-600 Ethernet Interface Board,”

http://www.xbow.com/

[5] Open-source operating system for wireless embedded sensor networks,

http://www.tinyos.net

[6] L.Girod, J.Elson, A.Cerpa, T.Stathopoulos, N.Ramanathan, and D.Estrin, “EmStar:

A Software Environment for Developing and Deploying Wireless Sensor Networks”,

Proceedings of USENIX Annual Technical Conference, June 2004.

[7] Jang-Ping Sheu, Chia-Jen Chang, Chung-Yueh Sun, and Wei-KaiHu, “WSNTB:

A Testbed for Heterogeneous Wireless Sensor Networks”, Proceedings of first IEEE

International Conference on Ubi-Media Computing 2008, pp 338-343, 2008.

[8] V.Handziski, A.K¨opke, A.Willig and A.Wolisz, “TWIST: A Scalable and

Reconfigurable Testbed for Wireless Indoor Experiments with Sensor Networks”,

Proceedings of International Symposium on Mobile Ad Hoc Networking and

Computing, pp 63-70, 2006.

[9] Moteiv Corporation, “Tmote Sky: Low Power Wireless Sensor Module,”

http://www.moteiv.com/

[10] Jonathan W. Hui and David Culler, “The Dynamic Behavior of a Data

Dissemination Protocol for Network Programming at Scale,” Proceedings of the 2nd

international conference on Embedded Sensor Systems (SenSys’04), Baltimore,

Maryland, Nov. 2004

[11] Elson J. E., Girod L. and Estrin D, “Fine-Grained Network Time

Synchronization using Reference Broadcasts,” The Fifth Symposium on Operating

Systems Design and Implementation (OSDI), pp 147-163, Dec. 2002

Design and Implementation of a Wireless Sensor Network Testbed

50

[12] Ganeriwal S., Kumar R., and Srivastava M. B, “Timing-Sync Protocol for

Sensor Networks,” Proceedings of the first international conference on Embedded

Networked Sensor Systems (SenSys’03), Los Angeles, California, pp 138-149, Nov.

2003

[13] Miklos, Branislav Kusy, Gyula Simon, and Akos Ledeczi, “The Flooding Time

Synchronization Protocol,” Proceedings of the 2nd international conference on

Embedded Sensor Systems (SenSys’04), Baltimore, Maryland, pp 39-49, Nov. 2004

