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Summary

When considering air quality, notably in South America, it seems that we are falling
behind more developed regions in exacerbating the issue. This shortfall serves
not just as observation, but as a warning, as air quality problems here are rapidly
escalating. Nevertheless, by examining how other countries have addressed similar
issues, we can prepare ourselves to tackle our own challenges. In this thesis we
demonstrate how utilizing Data Assimilation DA we can reduce the uncertainty in
some model uncertain parameters in an air quality model such as the LOTOS-EUROS
Chemical Transport Model (CTM).

CTMs are critical for representing reality through numerical simulations of con-
centrations of atmospheric constituents. These models incorporate various pro-
cesses, including emissions, transportation, chemical reactions, and deposition. It
is imperative to use accurate models as they enable us to understand atmospheric
processes better and develop effective solutions to environmental problems, more
in regions with scarce measurenments. The LOTOS-EUROS model is employed,
whereby the portrayal of reality accounts for uncertainty from multiple sources. To
enhance model output, it is crucial to maximise the representativeness of the input
information.

From a measurement perspective in Colombia, there is an evident scarcity of
ground-level equipment to monitor air quality in a comprehensive manner. The
principal urban areas are monitored but extensive regions remain unobserved. This
is precisely where satellite data, together with cost-effective sensors, prove advan-
tageous by offering a more comprehensive range. Satellite air quality data has be-
come increasingly available and its temporal and spatial resolution improves. How-
ever, cloud coverage, particularly around the Andean mountains, often obstructs
satellite observations. This dissertation uses TROPOMI satellite-derived NO, con-
centrations as the primary data source for assessing air quality in tropical regions.
Furthermore, this thesis involved the development of a customised electronic hard-
ware device specifically designed to collect in-situ measurements in a mountainous
region, to compare models and perform remote data assimilation experiments. Data
assimilation (DA) methods can be divided into two main categories: sequential and
variational methods. Sequential methods introduce observations progressively as
they become available. On the contrary, variational methods adopt a wider per-
spective by assimilating observations over a predetermined time frame and refining
model accuracy through optimizing a cost function.

The 4D Var method is a noteworthy variational method that finds application
in atmospheric sciences. The method employs an adjoint model that is a crucial
component in enabling the optimization process through the computation of gradi-
ents that are vital for minimizing the cost function. The implementation of adjoint
models, however, poses significant challenges, involving complex coding and main-
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xii Summary

tenance requirements. These challenges are more pronounced when working in the
area of Chemical Transport Model (CTM), where the goal is to significantly improve
the physical modelling system based on an adjoint model that is not always avail-
able.

To overcome the hurdles related to adjoint models, this study explored adjoint-
free data assimilation techniques. Adjoint-free methods, such as the 4DEnVar and
the Local Ensemble Kalman Filter (LEnKF), employ ensemble propagation within
the model to estimate variables, presenting a practical substitute. The research
explored parameters that modulate emission model uncertainties as a means to
reduce CTM-related uncertainties, given the focus on emissions as a significant
contributing factor. Conducting experiments in various urban and rural locations in
Colombia enabled a more nuanced comprehension of emission parameters.

The innovative use of ensemble-based data assimilation techniques, including
the 4DEnVar and LEnKF, along with the incorporation of satellite observations, has
substantially enhanced the refinement of emission parameters. The combination of
chemical transport models (CTMs), satellite data, low-cost sensors, and data assim-
ilation (DA) has led to significant progress in measuring atmospheric pollutants and
forecasting emissions in Colombia. The integration of the LOTOS-EUROS model, im-
provements in satellite data processing, and alignment of sensors has substantially
enhanced the region’s atmospheric chemistry modelling capabilities in the region.
Moreover, the implemented data assimilation techniques have proven effective in
improving the precision of air quality models, strengthening the correlation between
model projections and real-world observations.



Samenvatting

Bij het bestuderen van de luchtkwaliteit in Zuid-Amerika, lijkt het erop dat we daar
achterblijven bij meer ontwikkelde regio’s in het aanpakken van problemen. Dit
is zorgwekkend omdat de problemen met de luchtkwaliteit hier snel toenemen.
Desalniettemin kunnen we, door te kijken hoe andere landen soortgelijke problemen
hebben aangepakt, leren hoe de uitdagingen in Zuid-Amerika aangegaan kunnen
worden.

In deze dissertatie demonstreren we hoe het gebruik van Data Assimilatie (DA)
ons kan helpen de onzekerheid in sommige modelparameters van het Chemical
Transport Model (CTM) LOTOS-EURQS voor de Colombiaanse regio verminderd kan
worden. CTM’s bevatten diverse processen, waaronder emissies, transport, chemis-
che reacties en depositie. Het is van essentieel belang om hierbij nauwkeurige
modelparameters te gebruiken, om de atmosferische processen beter te begrijpen
en om effectieve oplossingen voor milieuproblemen te ontwikkelen, vooral in re-
gio’s met weinig meetinformatie. Het LOTOS-EUROS model dat wordt gebruikt,
houdt rekening met onzekerheid uit meerdere bronnen. Om de modeloutput te
verbeteren, is het vooral cruciaal om de nauwkeurigheid van de emissie parame-
ters in het model te verbeteren.

Vanuit het perspectief van metingen is er in Colombia een duidelijk gebrek
aan grond apparatuur om de luchtkwaliteit op een uitgebreide schaal te mon-
itoren. De belangrijkste stedelijke gebieden worden goed gemonitord, maar in
veel uitgestrekte regio’s zijn nu weinig meetgegevens beschikbaar. Dit is precies
waar satellietgegevens en nieuwe, goedkope sensoren, een belangrijke rol kunnen
spelen. Satellietgegevens van luchtkwaliteit worden steeds toegankelijker en ver-
beteren de temporele en ruimtelijke resolutie van de metingen. Echter, bewolking,
met name rond de Andes, belemmert vaak de beschikbaarheid van satellietwaarne-
mingen. Deze dissertatie gebruikt TROPOMI-satelliet NO, concentraties als de pri-
maire gegevensbron voor het beoordelen van de luchtkwaliteit. Daarnaast is ook
op maat gemaakte elektronische meetapparatuur ontwikkeld, specifiek ontworpen
om in situ metingen te verzamelen in bergachtige regio 's.

Data assimilatie (DA) methoden kunnen worden onderverdeeld in twee hoofd-
categorieén: Sequentiéle en variationele methoden. Sequentiéle methoden ge-
bruiken waarnemingen naarmate ze beschikbaar komen. Daarentegen worden bij
variationele methoden alle beschikbare waarnemingen in een vooraf bepaalde ti-
jdspanne tegelijk geassimileerd om de modelnauwkeurigheid te verbeteren via het
optimaliseren van een kostfunctie. De 4DVar-methode is een methode die veel
wordt toegepast in de atmosferische wetenschappen. Deze methode maakt gebruik
van een adjoint model dat een cruciaal onderdeel is om het optimalisatieproces te
versnellen. Dit adjoint model wordt gebruikt voor het efficiént berekenen van de
gradiént van de kostfunctie, die nodig is voor het minimaliseren van de kostfunctie.
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Xiv Samenvatting

De implementatie van adjoint modellen brengt echter aanzienlijke uitdagingen met
zich mee, waaronder een zeer complexe codering.

Om de hindernissen gerelateerd aan de ontwikkeling van adjoint modellen te
overwinnen, zijn in deze dissertatie adjoint-vrije data-assimilatietechnieken gebruikt.
Adjoint-vrije methoden, zoals de 4DEnVar en het Local Ensemble Kalman Filter
(LEnKF), maken gebruik van een ensemble van model simulatie en vermijden daarmee
het gebruik van een gelineariseerd model en een adjoint model. Het onderzoek in
deze dissertatie richtte zich vooral op het schatten van onzekere emissie parame-
ters. Er zijn experimenten uitgevoerd in verschillende stedelijke en landelijke re-
gio’s in Colombia. Deze toepassingen van ensemble gebaseerde data assimilatie
technieken, samen met het gebruik van satellietwaarnemingen, hebben het begrip
van de emissies aanzienlijk verbeterd.

De combinatie van chemische transportmodellen, satellietgegevens, goedkope
sensoren en data-assimilatie (DA) heeft geleid tot aanzienlijke vooruitgang bij het
voorspellen van luchtverontreiniging in Colombia. Er zijn ook aanzienlijke verbe-
teringen geboekt op het gebied van de verwerking van satellietgegevens en de
opzetten van een netwerk van goedkope sensoren in enkele Colombiaanse regio’s.
Bovendien zijn de geimplementeerde data-assimilatietechnieken effectief gebleken
bij het verbeteren van de nauwkeurigheid van de luchtkwaliteitsmodellen.



Introduction

... From phlogistic matter, I say, because, as noted above, pure phlogiston
combined with common air seems to constitute another kind of air, namely,
”noxious air.”

Daniel Rutherford 1772

The early motivation for this research was the long-range transport of pol-
lutants over Colombia. This problem could silently harm the natural areas
with the constant deposition of pollutants that travel considerable distances
from the emission source. We are interested in understanding how Colom-
bia’s principal cities contribute to contaminant deposition in faraway places
and, more critically, areas with vulnerable ecosystems. The deposition of
atmospheric contaminants like nitrogen dioxide (NO,) induces chemical im-
balances in natural ecosystems, with potential subsequent severe impacts,
such as biodiversity loss.

The first approximation for this study was using Chemical Transport Models
(CTM). CTMs use differential equations to describe the transport phenomena
of pollutants; in this thesis, we use the LOTOS-EUROS (Long Term Ozone
Simulation- European Operational Smog model), a Dutch model that simu-
lates the physical dynamics of trace gases and aerosols, including emissions,
chemical reactions, transport, and deposition.

The second approximation was the use of satellite information due to the
lack of on-site measurements within Colombian territory. Satellite data is
valuable for monitoring pollutant concentrations, transport, and deposition.

Parts of this chapter have been published in A. Yarce-Botero et al. (2021). Medellin Air Quality Initiative
(MAUI). DOI: 10.5772/intechopen.97571.
About the MAUI project: ttps:// afit.edu.co/investigacion/
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2 1. Introduction

A group of instruments, from the numerous instruments in orbit around the
Earth, are designed to collect remote data for atmospheric composition stud-
ies. Furthermore, the usefulness and availability of this data is gradually
increasing.

The third approximation was once preliminary simulations were conducted
with the model, and the satellite measurements were incorporated into it to
improve the model simulations in a process known as Data Assimilation (DA).
The CTMs models are enhanced by feeding available real-life data, which
leads to a better output representation and predictability of the CTM used
once measured information is incorporated. Adjoint-free Data Assimilation
techniques were implemented to estimate emission and other parameters in
this thesis. This Introduction discusses the motivation and methodology used
in this work and the objectives proposed.
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1.1. Motivation

olombia is a relatively large country with a population of around 50 million peo-

ple and an area of 1,141,748 square kilometers (440,831 square miles). Colom-
bia’s natural protected areas are organized under the National System of Protected
Areas www.parquesnacionales.gov.co: 59 protected areas as of 2018, cov-
ering 169,545 km”’ (65,462 sq mi) and accounting for more than 14 percent of the
country’s land area. An example of Colombia’s unique high mountain ecosystem is
the paramo, which provides water for many of Colombia’s residents and is protected
under Colombian law. The high mountain ecosystem of the Paramo and the native
plant species Frailejon are shown in Figure 1.1.

Figure 1.1: Left image of a Paramo. It is a unique high-altitude ecosystem confined to the Andes of
Ecuador, Peru, and Colombia. Paramo is located above the timberline (3000 m) and below the snowline
(5000 m) and receives an average of 200 cm of precipitation annually. The right image shows one of
the plants there presented, the Frailejones (Espeletia hartwegiana). Observers have described paramo
as "grassland and bushes islands surrounded by a cloud forest sea.”

Anthropogenic activities such as transport and thermoelectric generation are
significant sources of reactive nitrogen (N,) into the atmosphere [1], the compo-
nent of primary interest during this work. NO, is a gas emitted by anthropogenic
and natural sources as part of the family of nitrogen oxides NO,(NO+NO,). NO,
is emitted from anthropogenic (industrial activity, transport, and biomass burning)
and natural (NO,. soil emissions and lighting) sources. Photochemical reactions of
Nitrogen Oxide NO, and Amonnia NHs create secondary inorganic aerosols [2] that
can be transported over large distances [3]. Long-distance transport of secondary
inorganic aerosols accounts for more than 8% of the reactive nitrogen flow on the
planet in terrestrial ecosystems and constitutes a significant source of N, in addition
to the ocean [4].

Atmospheric transport and deposition are described as mechanisms that induce the
flux of gases and particles to the land surface due to meteorological, chemical, and
biological phenomena [5] and are responsible for the change in the balance concen-
tration of different soil components and alter the dynamics of remote ecosystems
[6, 7]. Deposition of atmospheric N, alters oligotrophic ecosystems [2, 8], affecting
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4 1. Introduction

the distribution of communities of species [9-13] and the ecosystem’s stability [14].
In Chemical Transport Models (CTMs), non-linear and stiff chemical interactions oc-
cur at periods that are often significantly shorter than transport time scales, making
accurate modeling of the environment challenging [15] but necessary. Identifying
natural and agricultural areas that may be excessively exposed to NO, deposition
allows an estimation of the detrimental impact of these ecosystems. Unfortunately,
most of the Colombian territory has no pollutant measurement networks. Hence, re-
sorting to alternative sources of information, such as numerical models and satellite
observations, is crucial. Furthermore, the constant interrelation between simula-
tions and measured satellite data could eventually lead to an accurate description
and prediction of the transport and deposition of the pollutants threatening frag-
ile, large ecosystems in Colombia. The models have parameters that are modeled
with a range of uncertainty because of the difficulty of mathematically representing
some phenomena, making them inaccurate.

To reduce uncertainty and incorporate data in large-scale mathematical models, the
project named Data Assimilation Schemes in Colombian Geodynamics - Cooperative
Research Plan Between Universidad EAFIT in Colombia and TUDelft in the Nether-
lands was set in 2017. Several universities and state institutions’ efforts aligned in
search of the Colombian atmosphere’s modeling dynamics in the framework of this
project. Medellin Air Quality Initiative (MAUI) was created to understand this
problem and suggest sensible decisions through scientific information. This project
brought together local, regional, and international experts on subjects related to
air quality and its impact on human and ecosystem health to establish a knowledge
network to identify knowledge gaps to contribute to a deeper understanding of the
local and regional scale of the impact of air pollution, motivating research collabo-
rations, and inform the policymakers. *

Modeling the geodynamics of Colombia with a CTM requires considering the re-
gion’s complex atmospheric dynamics. Colombia’s unique location at the Intertrop-
ical Convergence Zone (ITCZ) confluence makes this phenomenon a primary driver
of the transition between wet and dry seasons. Its rugged terrain, determined
by the Andes mountain range system, creates a challenging scenario for a con-
gruent representation of the spatio-temporal chemical distribution of the different
atmospheric constituents. Quintero Montoya (2020) stated that the distinctive to-
pography of the terrain gives rise to atmospheric conditions that degrade air quality
in particular regions, notably in valleys, particularly during the shift from dry to rainy
seasons. The unique geographical features in the tropical Andean region pose re-
markable challenges for simulating the dynamics of atmospheric chemistry.

The uncertainty in parameters such as emissions and deposition velocities limits
the accuracy of the model simulation of depositions. When the evolution of the
states deviates from real-life expectations, for example, when it fails to describe
how the concentration and deposition of different components of interest due to
the transport of those from another area, we usually attribute this fault to the sys-
tem parameters because we commonly do not discuss the physics or chemistry

ll,t’,};f’ :/
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involved, for this reason, at the optimization step, we can ask: what parameters
cause the difference between our behavior and the one we should have to match
the best initial condition that makes the model perform the optimum evolution of
the states of interest?

CTMs rely on environmental authorities to update emission inventories consis-
tently. While this practice is standard in Europe and the United States, it often faces
hurdles in Latin America. Here, the relevant authorities often struggle to provide
timely updates on emission inventories, largely due to a mix of ethnographic and
political factors. When relying on European emission inventories, it is essential to
reassess both biogenic and anthropogenic emissions and to re-evaluate the current
national inventory. However, the rapid urbanization of cities in Latin America, cou-
pled with inadequate land use planning and a low number of air quality networks,
means that these inventories are often outdated. In such scenarios, alternative
methods such as top-down emission inventories - which estimate emissions based
on satellite observations - become invaluable. When combined with remote sens-
ing information and CTMs, these methods can provide a more accurate emission
constraint.

The uncertainties in the emissions inventories lead to problems of over- or un-
derestimation of the CTM prediction, which could be corrected by providing the
model with the closest possible emissions parameterization. The assimilation of
data from the high, medium, and low-cost and other ground sensor networks in
Colombia has previously shown how the model representation of dynamics is im-
proved in various orders of magnitude [16, 17] in cities such as Medellin, specif-
ically for particulate matter pm2.5 and pm10 pollutants. In this case, the emis-
sion parametrization of other pollutants, such as nitrogen, has not been previously
estimated, specifically from a top-down estimation perspective, by incorporating
satellite information from satellites dedicated to air pollution monitoring into the
CTM.

This work uses data assimilation (DA) techniques to integrate large-scale numer-
ical models, satellite information, and data from different sources.DA techniques
play a fundamental role in improving the system states that represent meteorolog-
ical or chemical atmospheric conditions. This allows us to incorporate different real
observations into the models, taking advantage of these two sources of information:
observations and mathematical models. Due to the lack of in-situ measurements
over much of Colombia, satellite information is key to understanding the faithful
chemical representation of the atmosphere.

Real-life measurements in combination with a CTM can be used to describe
the release of tracers and aerosols from various sources (anthropogenic, biogenic,
marine, airborne dust, fires). In the emission module of the LOTOS-EUROS CTM
(explained in detail in the next subsection), these sources are considered either as
areas or point sources. The input data for the model are spatially gridded temporal
values from average emissions databases. Time factors are defined per source
category for the month of the year, the day within the week, and the hour within
the day. Figure (1.2) shows an example of a city’s daily anthropogenic emission
factor.
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Figure 1.2: Daily cycle profiles of the emission factors applied to anthropogenic sectors for a typical city
as presented in [18]. Different color curves correspond to different sources of pollutants, as indicated.
Combustion and road transport have two pronunciated peaks corresponding to the busiest rush hours
in the day when people are going and coming from house to work

Once emitted, the pollutant propagates to different places driven by the wind
currents, then becomes dry/wet and deposited over areas that can be reached de-
pending on its lifetime in the atmosphere and the magnitude and direction of the
wind fields. We can improve the accuracy of modeling the long-range transport of
pollutants from cities to natural areas in the country by adjusting the emission fac-
tors for specific points of interest using various data assimilation techniques. There
is no way to measure these parameters directly from satellite observation, so meth-
ods are needed to estimate these indirectly. Through assimilation techniques and
establishing relationships between what was emitted and observed, it was possible
to determine parameters that suggest the correct emissions so that the model could
approach the observed quantities. These results are presented in Chapters 4 of this
thesis. In the following subsection, some of the mathematical details of the CTM
used in this thesis are presented in detail.

1.2. The LOTOS-EUROS Chemical Transport Model

We aim to simulate the transport and deposition of pollutants with an accurate
and robust numerical model. Modeling natural phenomena mathematically is a
formidable challenge, as the intricacies of nature’s complexity create inherent limi-
tations on the representativeness attainable through a group of equations. In the
particular case of transport and deposition of pollutants, one needs to consider the
atmospheric chemistry concentration and its production/loss through the chemi-
cal reactions and depositions. CTMs receive real-life information from land use,
emissions inventories, meteorology, orography, and atmospheric chemical bound-
ary conditions to solve a numerical equation in discretized domains (parcels) to cal-
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culate the concentration of the species of interest in a 3D space georeferenced that
evolves in time (as represented in Figure 1.3). LOTOS-EURQOS is the CTM[18, 19]
used in this thesis to simulate Colombia’s emissions, transport, concentrations, and
depositions of pollutants (in particular NO, in Colombia).
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Figure 1.3: Schematic flow of the Chemical Transport Model LOTOS-EUROS implemented in Colombia.
Input information (Chemical concentration boundary conditions, meteorology fields, land use maps and
emission inventories) to solve the numerical transport propagation and chemical reactions to produce
different gas concentration outputs.

LOTOS-EUROS (Long Term Ozone Simulation- European Operational Smog model)
[20] is a large-scale, 3-D chemistry transport model simulating lower troposphere
air pollution. Through the iterative numerical solution of Eq. (1.1), the model solves
the concentration of the different components considered in the domain enclosed
by each parcel.

— HU—+V—+W—=—|[K

9C,  aC, aC,  9C, 8 [ 9Ck
at dx dy 0z 0z \ ? oz

>+Ek+Rk+Qk_Dk_Wk (11)

Here, C, is the concentration of each pollutant involved in the model; U,V, and
W are the large-scale wind components in West-East, North-South, and vertical
directions, respectively; K, is the vertical turbulent diffusion coefficient; Q, repre-
sents the entrainment and detrainment of pollutants in the airflow due to variations
in atmospheric layer height; R, gives the amount of material produced or destroyed
as a result of chemical reactions; Ej is the contribution by emissions to the pollu-
tant concentration, and D, and W, are concentration loss terms due to processes



8 1. Introduction

of dry and wet deposition respectively [18]. The LOTOS-EUROS central equation
comprises different operators, each with different modeling components of the pol-
lutant’s behavior.

First, the transport operator consists of advection dynamics in three dimensions:
horizontal and vertical diffusion and entrainment. Horizontal advection is described
by horizontal winds (U, V) that are input from the model. Second, the chemistry
operator models everything related to the production and consumption of compo-
nents by different chemical reactions in the atmosphere. As a result of the com-
plexity of LOTOS-EUROQS, handling a complete mechanism of chemical reactions is
unmanageable. To avoid this problem, LOTOS-EUROS can use one of two simplified
reaction mechanisms: the Carbon Bond Mechanism CBMIV scheme, which consists
of 81 reactions [20], and the aerosol mechanism, ISORROPIA parameterization
[21]. Third, the dry deposition operator is parameterized following the mechanism
known as the resistance approach [22]. Fourth, the process of the wet deposition
operator is represented by the removal of gases from the below cloud [23].

The LOTOS-EUROS model can be driven with different meteorological inputs. This
work is driven using ECMWF meteorology and is constrained by boundary condi-
tions from the global MACC IFS/MOZART forecasts [24]. The anthropogenic emis-
sions are prescribed following the EDGAR10 emission database for 2012 https:
//edgar.jrc.ec.europa.cu/. Biogenic emissions are calculated using the
MEGAN model https://bai.ess.uci.edu/megan. The MACC global fire as-
similation system [25] is used hourly to account for occasional fire events. The sea
salt emissions are parameterized following source formulations for coarse [26] and
fine [27] aerosol modes.

Due to the vast geographical diversity in the study area, the LE for Colombia was
not correctly represented for its default model configurations. More representa-
tive input conditions were needed for the LOTOS-EUROS CTM. The LOTOS-EUROS
model was updated for the surface fields that provide boundary conditions to the
simulation parcels from the ground, the land use, and the topographic input.

CTMs simulate the atmospheric concentrations of chemical species and the ex-
change of components with the surface, even if, in most cases, these are imperfect
representations of reality. With land use and topography update, vulnerable nat-
ural areas were identified by quantifying atmospheric deposition pollutants from
the CTM simulations that can be more representative. There is uncertainty in their
values due to the difficulty in obtaining this information and the fact that the elabo-
ration processes are not in real-time, so the information is worked offline and with
delays in emission values. Additional simulations were performed for the model
configuration using point sources of pollutant emissions from the country’s prin-
cipal cities. This experiment consisted of controlled emissions from cells in those
cities to identify the extent of spatial deposition of certain long-transport pollutants
from the main Colombian cities.

This thesis is concentrated on Nitrogen dioxide (N0,) because of the potential
impact that its deposition may represent on ecosystems. Their role in acidification,
eutrophication, and their impacts on the ecosystem and water quality are well doc-
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umented [28-32]. The deposition problem will be revisited in Chapter 2, where
different simulation experiments are shown. In the next section, different satellites
used for data collection to measure pollutant concentrations are presented, with
particular emphasis on the one used in this thesis (TROPOMI).

1.3. Satellites to monitor atmospheric composition

Different Low Earth Orbit (LEO) satellites have been carrying sensors to monitor NO,
atmospheric concentrations since 1964, see Figure (1.4). From Paul J. Crutzen’s
idea of having spectrometers onboard satellites, an open field in the study of at-
mospheric chemical composition was created. Chronologically appeared the Global
Ozone Monitoring Experiment (GOME, (1996-2003), GOME2A (2007-), GOME2B
(2013-)) [33], [34], the Scanning Imaging Absorption Spectrometer for Atmospheric
Cartography (SCIAMACHY, 2002e2012) [35], and the Ozone Monitoring Instrument
(OMI) [36]. Each instrument generation has improved different data characteristics
in the measured spectra, solving ratios and signal-to-noise problems and increasing
spatial and temporal resolution.
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Figure 1.4: Timeline of the remote sensing instruments in orbit for measuring atmospheric composition.
The TROPOMI instrument is in the red circle because it is the data of NO, used in this thesis.

TROPOMI is the instrument used in this thesis as the source of observed NO, for
assimilation with the LOTOS-EUROS model. In Chapter 3, more general information
about this satellite and the process of retrieving data from it is presented.

The NitroSat is a satellite mission that is in the planning phase. It could be the
continuation of orbital spectrometers with improved resolution (500x500 m?) [37].
Another mission coming is the TANGO mission, two CubeSat form factor satellites
in development from SRON [38] to measure CO and NO,. On the other hand,
the deployment of a geostationary sensor observing network for air quality-related
species is the next decade’s milestone: the TEMPO (Tropospheric Emissions: Mon-
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itoring of Pollution [39]), Sentinel-4 [40], and GEMS (Geostationary Environment
Monitoring Spectrometer [41]) measurements will be directed to continuously ob-
serve North America, Europe, and East Asia, respectively. As a result, low-altitude
polar-orbiting sensors will be required to examine the atmospheric composition of
tropical and southern regions because the geostationary sensor observing network
cannot monitor those regions. The following section presents the theoretical back-
ground of Data Assimilation (DA) as a tool to improve this imperfect representation
using satellite data and other measurements.

1.4. Data Assimilation

Data assimilation (DA) is a process in which observations of the actual system are
incorporated into the model states using the residuals (differences between the
model states and the observations) as small as possible [42]. DA is used in me-
teorological areas to produce a regular, physically consistent representation of the
atmosphere from a heterogeneous collection of in situ and remote instruments that
imperfectly and irregularly cover the domain of interest in space and time [43].
DA methods for CTMs are inspired mainly by meteorological DA experiences [44].
Many successful applications have demonstrated the benefits of assimilation for
CTMs, either to produce reanalysis fields and forecasts or to focus on improving
the accuracy of model inputs (initial conditions, boundary conditions, emissions)
[45]. A common characteristic of these applications is that in regional air-quality
simulations, the influence of initial conditions quickly fades over time, as emissions
and lateral boundary conditions primarily determine the model fields [46].

In Colombia, DA methods with CTMs have not been implemented at the regional
scale; in the local scale, the case studio of particulate matter in Medellin [47] con-
stitutes the init of data assimilation activities in this territory. The in-depth knowl-
edge of atmospheric dynamics that these techniques provide is essential because
it provides the region with accurate forecasting capabilities, accurate simulation of
pollutant transport trends, and estimation of process dynamics such as emissions
and deposition, which are useful for understanding the impact of long-range trans-
port of pollutants on natural ecosystems.

Variational and sequential methods constitute the two primary classes of DA tech-
niques, with variational methods centering on minimizing a cost function within a
designated time window to encompass the available observations. This cost or ob-
jective function is generally depicted as the sum of squared discrepancies between
the data and the corresponding model values. The sequential methods, on the
other hand, provide the best representation of reality by combining both sources of
information each time the observations are available. The Ensemble Kalman Filter
(EnKF) is the name of the DA technique that can be used when the model is non-
linear [48]. From the Variational method, there are two methods for incorporating
observations in one specific time or a time window: 3DVar and 4DVar. The 3DVar
method uses a static, flow-independent, background error covariance that is often
spatially homogeneous and anisotropic [49]. The 4DVar method allows fitting the
model forecast trajectory to observations distributed over a time window to pro-
vide more accurate model state estimations that are also more consistent with the
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prediction model [50].

A cornerstone of the 4D-Var method is the adjoint model, which is utilized to
compute gradients required for the optimization process that minimizes the cost
function. In the 4D-Var framework, data assimilation is morphed into an optimiza-
tion issue resolved using gradient-based optimization methods, where the 4D-Var
gradient is derived by enforcing the adjoint model with observation increments.
The formulation of the adjoint model necessitates significant developmental effort,
underscoring its complexity and the intricacy of the variational approach to data
assimilation [51]. Through adjoint methods, the adjoint model assists in incorpo-
rating measured observations into a dynamical system model, aiming for accurate
estimations of the system’s current and future state variables. The optimal esti-
mates, minimizing a variational principle, are achieved using adjoint methods, with
model equations acting as stringent constraints on the problem [52]. The adjoint
method is recognized for its capability to adjust unknown control parameters based
on the provided data, including model initial conditions or other model parame-
ters and inputs[53]. Through various scenarios and sets of observations, the 4-D
variational approach demonstrates its efficiency in extracting information from the
model’s dynamics in conjunction with the information contained in the observations,
thereby enhancing the accuracy and consistency of model state estimations [54].
The applicability and centrality of adjoint operators are evident in numerous oper-
ational data assimilation systems, notably in numerical weather prediction, and are
progressively gaining traction in oceanography, underlining the broad-based utility
and the evolving adoption of adjoint methods for data assimilation [55]

The use of the adjoint perspective in data assimilation is a potent tool; how-
ever, it comes with certain limitations. The main drawback lies in the intricate and
resource-demanding nature of constructing and maintaining adjoint models, which
requires a profound grasp of mathematical fundamentals and considerable develop-
mental effort. This intricacy also encompasses the creation of adjoint code, which
is @ nuanced task fraught with potential pitfalls. Furthermore, the established tech-
niques require thorough validation for the precise and efficient functioning of the
adjoint models, which could consume significant time and resources. Furthermore,
the methodology mandates a methodical mistake covariance model to correctly
present the system’s uncertainties, posing a formidable challenge to obtain. The
inflexibility of the adjoint model’s structure can occasionally limit its ability to han-
dle non-linear dynamics or integrate new data sources, which could impede the
development of data assimilation tactics. While the adjoint perspective is vital in
enhancing model state estimations, its challenges often require a combination of
skill, time, and computational resources that may not always be accessible.

An essential difference between Variational and EnKF is how the results are de-
livered. Variational provides an assimilated result in the form of an optimal model
evaluation; EnKF provides the result in terms of mean and covariance [42]. Both
methods are suitable for online forecast applications; for offline applications such
as parameter estimation, the Variational method is often favored. Compared to the
Variational methods, the EnKF is generally quite simple to implement since only the
forward model must be used, and there is no need for an adjoint model [56].
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Figure 1.5: Time evolution of the model to present the parts that compose the cost function J in the
variational assimilation method. This cost functions J is established by the distance from the background
initial condition (blue curve) J? and the distance of the model values from observations (red disks) J°.
These two contributions encompass the analyzed cost function (dotted yellow curve). The green curve
corresponds to the truth, which is one model propagation the modeler assumed as the real value where
synthetic observations are sampled in a twin experiment procedure.

Variational DA methods are based on minimizing a cost function J to find the
optimal initial condition that minimizes the distance between the background and
the initial condition and the observations and the analysis. Each cycle is repeated
at each analysis step for a window of time, searching for an appropriate initial
condition that produces the best functional analysis. Figure 1.5 shows one assim-
ilation window where observation helps to calculate a new initial condition state
x, to produce a new trajectory known as the analysis. This process can also be
used to calculate parameters, as we use it to estimate the emission parameters in
this thesis. Variational assimilation is based on optimal control theory derived from
the calculus of variations. The advantage of variational methods is that they ad-
dress the entire phenomenology and provide an optimal solution consistent with the
model dynamics, the assimilation window based on a prior state (the background
or forecast), the observations, and the prescribed Gaussian uncertainty statistics
for the background and observations.[57]. In contrast, the sequential approach
is progressively updated by reconciling the state with the uncertainties defined for
the simulated state and the observations.[48, 58, 59].Since no randomness is in-
volved in the state’s evolution, variational approaches assume that the underlying
model is deterministic. The parameter estimation problem is treated as an opti-
mization problem using variational techniques, where a cost function J penalizes
the difference between model simulations and observations and the variation of the
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parameters from their initial value. The vector that minimizes J is the best estimate
of the parameter vector.

A state space is a mathematical depiction of a physical system comprising input,
output, and state variables interconnected through first-order discrete equations.
It serves as a mathematical model wherein state variables determine the values of
output variables. Let the element vectors x, € R™*! represent a state of the model
at time t where n is the number of states. The state x, is found by propagating
x,_, forward by one time step by the model operator M ,_ ;:

X, = Mt—l,t(xt—l) + M Ny ~ N(0,Q;), (1.2)

With x, as the initial condition and where 7, is an n-element model uncertainty
that is normally distributed with an error covariance matrix Q;. Parameters control
the temporal evolution of the system and can be included in the state x,. This thesis
focuses on emission parameters. Given the parameters, the evolution of the state
vector over time can be calculated. In data assimilation, this evolution is called the
trajectory of x,.

yt = Htxt + Vt, Vt ~ N(O, Rt) (1.3)

The set of observations y, made at time t are related through the observation
operator H, from the model space x, to the observation space y, € R™*! where m
is the number of observations. The linear observation operator is denoted H; and
v; is an m-element uncertainty that denotes the observation representation error
that is Gaussian distributed with mean 0 and covariance matrix R;.

In 4DVar we consider a deterministic system with Q, = 0, known as strong
constraint 4DVar with no model uncertainty. The 4DVar problem can be posed as a
cost function J, which is a function represented by the sum of terms or distances
between components of the system space.

JO

T
1 1
J(Xo) = E(xo - Xb)Tpo_l(xo -x0)+ 2 Z(Yt - Htxt)TRt_l(Yt -H:x,), (1.4)

t=0

Jb

The first term is known as the background term J?, and it measures the differ-
ence between the first guess x” and the estimated state x,. This difference is cal-
culated with the norm P, (prior information covariance). In this case, we have the
cost function for the initial condition x,. The second term,J°, measures the devia-
tion between the measured states y, and H.x, weighted with the observation-error
covariance matrix R; over the assimilation window.

The four-dimensional variational method or the 4DVar method allows the fitting
of the model forecast trajectory to observations distributed over the assimilation
window [t = 0,.,t = T] to provide more accurate model state estimations that are
also more consistent with the prediction model [50]. The minimization of this cost




14 1. Introduction

function requires the adjoint model operator, which transports the sensitivity fields
to estimate the initial conditions and can be interpreted as a backward propagation
of the model from one moment t to the initial time 0. One of the disadvantages
of the method is that implementing the adjoint model is often very complicated
for nonlinear models. Especially implementing the linearized model of a complex,
existing numerical model can be very hard and depends on the model version evo-
lution for which the adjoint model must be updated too, making the adjoint effort
expensive [60]. Only for a very structured model code can automatic differentiation
tools be used to generate the linearized model code and the adjoint model code
by a computer. This thesis uses adjoint-free methods for different data simulation
implementations in Colombia.

The EnKF method, depicted in Figure 1.6 is the other DA method used in this
thesis that does not use an adjoint of the model [61, 62]. It is known as sequential,
meaning that the information is continuously ingested once presented. The EnKF
approach updates the model state sequentially based on each new observation, in-
corporating it into the state estimate from the previous assimilation step. Sequential
methods typically consist of two main steps: the forecast step, which propagates
the model forward in time, and the analysis step, which adjusts the model state
based on the new observation and propagates the new model simulation or analy-
sis trajectory, which is not always the outcome of a model simulation. The physical
relationship between emissions and observed NO, concentrations is important for
estimating emission parameters. Such a physical relationship fundamentally entails
mass conservation, which the variational technique preserves.

In ensemble-based methods, an ensemble of N model realizations and n states
is generated :

X{ = [x{[ll,x{[z],..,x{[lv]] € R™N | (1.5)

Which correspond to the different realizations of the model generated by perturbing
the model uncertainty assumed to be normally distributed:

ne ~N(0,Qp) . (1.6)
The mean %, = ¥, x” and the covariance background error matrix is:
1 N
B = — > &V -z - %) er. (1.7)

N —1 ¢
=1

The EnKF analysis step is applied to each member of the ensemble update:

0 =2V L R (y, - Hx, +v)), (1.8)

with the optimal gain K, defined by the expression:

K, = B/H/[H,B/H’ + R, !, (1.9)
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Figure 1.6: A prediction is issued from the analysis until the next observations at t + 1; At time t + 1,
a new analysis is performed by combining the forecast and the observations at t + 1. The process is
repeated from the analysis at t + 1, and a new forecast until t + 2 is issued, and a new analysis is
performed using the observation at t + 2.In blue and red, the uncertainty of the analysis and forecast
ensemble members are depicted

The matrix B{ is not computed and K; is calculated directly from the model
ensemble. Since Geir Evensen’s innovative introduction in 1994 [61], the Ensemble
Kalman Filter (EnKF) has occupied a pivotal position in geophysical data assimila-
tion. Based on Monte Carlo techniques, the EnKF approach involves propagating an
ensemble of model states over time, integrating observational data at designated in-
tervals. This paradigm provides a probabilistic framework for state estimation, cru-
cial for capturing inherent uncertainties in such complex systems [63]. Numerous
variations of the EnKF have been developed over the years, a testament to its versa-
tility and wide applicability. Over the years, the foundational principles of the EnKF
have been adapted and extended, leading to a suite of variations tailored to dif-
ferent challenges. Other noteworthy variations include the Deterministic Ensemble
Kalman Filter (DEnKF) [64], which offers a deterministic perspective on ensemble
updates, and the Ensemble Transform Kalman Filter (ETKF), which transforms the
ensemble members directly in the observation space, and the LEnTKF that has gar-
nered attention [65]. Yet another variant, the Stochastic EnKF, incorporates model
and observational uncertainties more explicitly by introducing stochastic perturba-
tions. The proliferation of these versions underscores Evensen’s original concept’s
adaptability and foundational strength.

Both DA perspectives reach similar accuracy levels if long assimilation DA win-
dows are used for 4DVar [66] and can be used for parameter estimation by aug-
menting the state vector. Regarding implementation, 4DVar depends on the tan-
gent linear and adjoint model to solve the minimization procedure, making this
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method less easy to implement due to the common unavailability of this adjoint
model for a highly complex model. This is a considerable drawback of variational DA
because adjoints are prohibitive for large-scale models (~ 10°—10° state elements)
and very expensive to maintain [44]. Hybrid approaches tackle this problem, aiming
to take advantage of the characteristics of each method [59, 67]. Ensemble-based
approaches avoid the construction of tangent linear and adjoint representations of
the forecast model (e.g., [68]), which is interesting for low-budget operational sce-
narios using numerical models. This thesis will first focus on the implementation
of an adjoint free variational DA (4DEnVar) and the sequential implementation of
EnKF, which also does not require the adjoint model.

1.4.1. Covariance localization

Due to the approximation of the state-space covariance by a finite number of
ensemble members, spurious correlations between state items are unavoidable.
These erroneous connections can be eliminated using a technique known as local-
ization [69]. Covariance localization [70] is the localization method employed in this
study. The covariance localization, also known as the Schur localization, focuses
on the forecast error covariance matrix, removing correlations in error covariances
after a specific distance [70, 71]. The localization is accomplished by a pointwise
multiplication known as a Schur product and is denoted by o, where i and j are the
row and column matrix members:

[foB]];; = [B]];; - [fli (1.10)

The Schur product says that if £ and B{ are positive semidefinite, then the Schur

product, fo B{ , is positive semi-definite too. A cutoff function G (r/p) to fill f, where
r is the Euclidean distance between two state members and p is a length scale
called the localization radius [72]. The cutoff function used in this thesis has the
following form:

[f];; = exp(=0.5 - (1;;/p)?) (1.11)

This results in a matrix structure with a band of non-zero elements surrounding
the main diagonal, with ones on the diagonal and zeros at the localization radius dis-
tance from the diagonal. The covariance localization method attempts to eliminate
misleading correlations in error covariances over a long distance, thereby improving
background error covariance estimates.

This localized covariance matrix £ B/ is used in the EnKF analysis and in the

generation of the posterior ensemble of perturbations as a replacement for B{ :

K, = (fo B)H'[H,(f- B)H! +R,] ", (1.12)

1.5. Objectives of the research

The objectives of this thesis are as follows:
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Development of a CTM for the Colombia region using the LOTOS-EUROS
modeling system.

The main goal is to create a Chemical Transport Model (CTM) for the Colombia
area utilizing the LOTOS-EUROS modeling system. It is important to collect addi-
tional representative data for the CTM to work, specifically focusing on land use
and topography updates. Simulations shall be conducted, considering both point
sources and pollutant emissions from major cities across Colombia. The objective
is to identify natural areas that are vulnerable to atmospheric pollutant deposition.
The research shall involve quantifying pollutant levels per unit area in selected natu-
ral protected areas, thereby seeking a clearer understanding of the spatial range of
atmospheric deposition pollutants. Further simulations will be conducted to assess
the spatial extent of deposition areas, aiming for a more detailed comprehension
of pollutant dispersion throughout the region.

Evaluate the Potential Benefits of Satellite Measurements for Enhanc-
ing Emission Data within the LOTOS-EUROS Model in the Colombian Re-
gion.

This study aims to evaluate how satellite measurements can enhance emission
data within the LOTOS-EUROS model in Colombia. Since there is incomplete data
coverage across the Colombian territory and insufficient air quality networks in ma-
jor cities, utilizing remote satellite data is imperative. With a history of satellites
devoted to studying atmospheric composition and the progressively enhanced spa-
tial and temporal resolution of orbits, the primary objective is to incorporate this
data into the model. The process of data assimilation, which involves a mathemati-
cal method of reconciling model representation with measurements, will be utilized.
However, the integration of satellite products is complex and requires sufficient cal-
ibration to accurately align the observed state with the model, as shown through
the applied methodology.

Evaluate the Impact of a Low-Cost Sensor Network on Improving Emis-
sion Data in the LOTOS-EUROS Model for the Colombia Region.

The objective is to assess the effect of a newly developed low-cost sensor net-
work on improving emission data in the LOTOS-EUROS model, with a focus on
Colombia. The customized hardware will act as both a ground node and a gateway
in air quality networks, as Chapter 3 will explain. This chapter will detail the con-
struction, testing, and challenges of creating a device suitable for conducting on-site
air quality measurements and long-distance data transmission. This project aims to
address the data scarcity issue in Colombia by providing new data sources for the
Data Assimilation of LOTOS-EUROS. A significant milestone in advancing this thesis,
this venture will present opportunities for tackling prevalent data scarcity issues in
the region.

To use adjoint-free data assimilation techniques to estimate uncertain
parameters within the LOTOS-EUROS Model.

The aim is to estimate uncertain parameters within the LOTOS-EUROS model
by employing adjoint-free data assimilation methods, as this system has no ad-
joint model. Chapter 3 and Chapter 4 will showcase the implementation results of
two methods that avoid using the adjoint model through an ensemble.The LOTOS-
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EUROS model will estimate NOx emissions in a region covering Colombia, Venezuela,
and Ecuador, using TROPOMI NO2 observations. The Ensemble Kalman Filter
(EnKF) and 4D-Ensemble-Variational (4DEnVar) methods will be employed to achieve
this. Avoiding linearized and adjoint model implementations, EnKF and 4DEnVar will
employ an array of model simulations to approximate the background covariance
matrix, non-linear model, and observation operator with the goal of achieving a
more precise estimation of uncertain parameters within the model.

1.6. Aim and structure of this thesis

In this thesis, we integrate satellite data into the LOTOS EUROS Chemical Transport
Model via data assimilation in Colombia. This results in a substantial improvement
in the predictive accuracy of LOTOS EUROS for this area outlined in Chapter 2 where
we detail the modeling phase, including updating model characteristics such as land
use and topography. In Chapter 3, the observational section is discussed, outlin-
ing the implemented satellite information procedure and the creation of electronic
hardware for measuring pollutants, and in Chapter 4, we present the adjoint free
data assimilation method in which we show how this technique works for estimat-
ing emission parameter over the territory domain. Finally, in the last section 5.3,
a recommendation for the estimation with the data assimilation technique of other
parameters that introduce uncertainty to the system is presented.
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Chemical Transport Models
to study the trace gasses
reactions and dynamics in
the atmosphere

Unless there is a global catastrophe — a meteorite impact, a world war, or a
pandemic — mankind will remain a major environmental force for many
millennia. A daunting task lies ahead for scientists and engineers to guide
society toward environmentally sustainable management during the era of
the Anthropocene.

Paul J. Crutzen

Chemical Transport Models (CTMs) allow the simulation of the physical dy-
namics of trace gasses and aerosols, including emission, chemical reactions,
transport, and deposition processes. The deposition of atmospheric contam-
inants like nitrogen dioxide (NO,) induces chemical fluxes in natural ecosys-
tems, with severe consequences like biodiversity loss. Depositions are sen-
sitive to changes in the land cover maps used in the model.

In this Chapter, we show how the update on topography plays a role in the
vertical disposition of the planet’s boundary layer for the LOTOS-EUROS CTM

Parts of this Chapter have been published in A. Yarce-Botero et al. (2021). Medellin Air Quality Initiative
(MAUI). DOI: 10.5772/intechopen.97571.

More about the MAUI  project: https://www.eafit.edu.co/investigacion/
grupos/modelado-matematico/proyectos/cofinanciados/Paginas/
data-assimilation-2017-2020.aspx
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for a regional atmospheric CTM implementation in Northwestern South Amer-
ica. Land use input information and topography input for this simulation
area are updated. The impact of these updates in the model was analyzed
to identify potentially vulnerable natural areas by quantifying atmospheric
deposition pollutants per area in the natural protected zones of interest.

Additional simulations for the updated scenario using point sources were
performed to assess the spatial extent of the deposition areas due to the
pollutant emissions of Colombia’s principal cities. Implementing this model
in Colombia provides a fundamental understanding of the main dynamics
of pollutants on this territory. It allowed us to define an appropriate set of
model parameterizations and detect emissions factors as one of the uncer-
tain parameters to be updated by incorporating measured concentrations via
data assimilation, as shown in Chapter 3
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2.1. Introduction

olombia has a territory characterized by a rough topography that introduces

complex meteorological dynamics. These dynamics, in consonance with the
land use characteristics, drive the transport and deposition of pollutants. The de-
position is described as the mechanism that induces a flux of gasses and particles
to the land surface due to meteorological, chemical, and biological phenomena [1].
Through atmospheric transport and deposition, emitted pollutants can alter the dy-
namics of remote ecosystems when they generate an imbalance of the soil and
plant concentrations([2, 3]).

Anthropogenic (human-originated) activities are significant sources of N, (re-
active nitrogen) to the atmosphere [4]. The subsequent photochemical reactions
of nitrogen oxides NO, and Amonnia NH3 create secondary inorganic aerosols [5]
that can be transported over large distances [6]. The long-distance transport of
secondary inorganic aerosol accounts for over 8% of the planet’s reactive nitrogen
flow in terrestrial ecosystems [4], and constituted a significant source of N, to the
oceans [7]. Deposition of atmospheric N, alters oligotrophic ecosystems [5, 8],
affecting the distribution of communities of species [9—-13] and ecosystem stability
[14]. Nitrogen Dioxide NO, is a gas emitted by anthropogenic and natural sources
as part of the family of the nitrogen oxides NO,(NO+NO,) emitted from anthro-
pogenic (industrial activity, transport, and biomass burning) and natural (NO,. soil
emissions and lighting) sources. Once in the atmosphere, NO, could be transported
over long distances before it is chemically transformed or deposited on the surface.
From this process of deposition, this trace gas contributes to the reactive nitrogen
in the soil, water, and vegetation, leading to eutrophication ( overabundance of nu-
trients in water bodies, primarily nitrogen and phosphorus) and loss of biodiversity
[15]. Additionally, model studies indicate that lighting in the tropical troposphere
may significantly influence the NO,. budget [16—18]. Agricultural activities and live-
stock feedlot operations are the primary causes of atmospheric NH;, followed by
wood-burning (including forest fires) and fossil fuel combustion to a lesser degree.
Acute exposures to NH; near its origin (4-5 km) can lead to substantial foliage dam-
age to the plant, growth, and productivity decreases [19]. Results of this Chapter
have been cited in [20], where the ecosystem impacts from different sources were
reviewed and updated for Colombia.

This Chapter focuses on the study of the atmospheric transport and deposi-
tion of N,, primarily (NO,), with additional experiments with ammonia (NH;), over
Northwest South America, and in particular over Colombia using Chemical Trans-
port Models (CTMs). Due to the lack of observations in this territory, mathematical
models are essential for understanding the spatial and temporal dynamics of at-
mospheric gasses over Colombia. CTMs simulate dynamic concentrations of trace
gases and aerosols influenced by emission, chemical reactions, transport, and de-
position. All these processes are not devoid of uncertainty.

The use of CTMs in the Tropical Andean Region (including NW South America)
has been recently reviewed ([21]), highlighting the difficulties involved in model-
ing atmospheric chemistry and transport in tropical regions with abrupt topogra-
phy. Other applications with CTMs over Colombia have included the use of another
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model, the WRF-Chem CTM, for evaluating the dynamics behind high particulate
matter (pm) pm,, and pm, s episodes under different meteorological conditions for
the city of Bogota [22]. Another case is in the exploration of methane (CH,) emis-
sion sources with the use of satellite data, for example, from landfills [23, 24], and
the dispersion of CO within the Aburra Valley [25]. In terms of the pollutant NO,,
surface NO, concentrations for Colombia in 2007 were estimated from simulations
of the global model GEOS-Chem CTM (resolution 2.5° x 2°) and Ozone Monitor-
ing Instrument (OMI) NO, column measurements, resulting in the identification of
biomass burning as a significant source of atmospheric NO, [26]. Furthermore,
Barten et al. use the WRF-Chem model and OMI-generated satellite NO, sources
and sinks in Colombia for 2014 in a coarse resolution of 1° x 1° resolution identify-
ing lighting as one of the main contributors to the total nitrogen emission budget.
In this Chapter, a qualitative and quantitative analysis of the spatial and temporal
patterns of deposition of (NO,) and (NH3) over the Colombian domain using the
LOTOS-EURQOS CTM is presented.

This Chapter updates the LOTOS-EUROS model land use and other input char-
acteristics to simulate nitrogen deposition in Colombia.

2.1.1. Updating the LOTOS-EUROS Chemical Transport Model
in a new territory

T he CTM model used was the LOTOS-EUROS (Long Term Ozone Simulation- Eu-

ropean Operational Smog model) v2.0.001 to simulate in three dimensions and
time, the atmospheric species of the lower layers of the troposphere over Colom-
bia. The LOTOS-EUROS model was created to study the atmospheric distribu-
tion of photo-oxidants in the 1990s by the Dutch Organization for Applied Sci-
entific Research (TNO) https://www.tno.nl/ and the Environmental Assess-
ment Agency of the Dutch National Institute for Public Health and the Environ-
ment (RIVM/MNP)https://www.rivm.nl/. TNO, RIVM, and the Royal Dutch
Meteorological Institute (KNMI) https://www.knmi.nl/ utilized LOTOS-EUROS
version 1.0, which was developed by combining the two models, LOTOS and EU-
ROS, in 2004. In 2016, the open-source 2.0 version of the model was published to
expand the user base (https://ci.tno.nl/gitlab/lotos-euros). In the
LOTOS-EUROS, the species’ dynamics are regulated by processes of chemical reac-
tions, diffusion, drag, dry and wet depositions, emissions, and advection. Numerous
studies have used the model simulating trace gas and aerosol concentrations [28—
30]. Nowadays, the model is used for daily operational air quality forecasts over the
Europe domain [31], and more focused over the Netherlands [32], and China [33],
and it is used for daily forecasts of dust concentrations over North Africa as part of
the SDS-WAS service [34]. Recently, it has been used to forecast the dynamics of
particulate matter (PM) in the Aburra Valley in Colombia [35], improving the emis-
sion inventory of this specific pollutant through the implementation of Ensemble
Kalman Filter (EnKF) or Local Ensemble Kalman Filter (LEnKF), which are the data
assimilation techniques that are implemented by default in the model for estimating
emission factors.

Among the various removal mechanisms of pollutants in the atmosphere, dry
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deposition is an important one that comprises a large part of total deposition [36].
The deposition of gases is a diffusion flux process driven by the difference in con-
centrations inside and outside the vegetation tissues. Deposition can occur directly
into the soil but is much stronger on vegetation surfaces. The primary surfaces
for deposition are the leaves, where gasses and particles can be absorbed via the
stomata or the cuticle [37], though outer bark surfaces can also contribute. In
LOTOS-EURQS, the resistance approach [38] is used to simulate gas-phase de-
position following the DEPAC (DEPosition of Acidyfing Compounds) formulation
[39]. The DEPAC module considers three pathways: deposition through the stom-
ata, deposition through the external leaf surface, and deposition through the soil
to calculate the deposition velocities for each one of the categories. The model
considers the components exchanged between the atmosphere’s lower layers and
surfaces for estimating deposition. For aerosol deposition, a uniform structure is
used for all land use categories in the analysis ([40]) with an explicit dependence on
aerosol size [38]. The simulation of atmospheric species’ deposition is challenging
depending on whether the phenomena are modeled in the close, local, or long-field
range. Larger particles dominate a near-field deposition. Local field events occur
in the plume portion dominated by the wind-driven trajectory. The peak-to-mean
concentration ratios are much smaller than closer to the source, resulting in more
uniform deposition patterns. In long-range fields, the larger particles have been
removed, so smaller particles are the primary concern of the modeling [41].

The application of the LOTOS-EUROS model in South America has substantial
challenges due to processes that must be better described in the CTM to improve its
performance. For example, the tropical meteorological dynamics like the bi-annual
transit of the Inter-Tropical Convergence Zone and el Nifio, a climate pattern that
leads to an unusual warming of surface waters in the eastern Pacific Ocean [42].
Other sources of uncertainty are the abrupt topography, the diversity of ecosystems,
and the representation of biogenic emissions, which substantially contribute to the
uncertainty when applying a CTM in the region [21]. Previous studies in South
American regions of similar characteristics were limited by using relatively coarse
spatial resolutions [26, 27]. In this Chapter, we investigate the effect on the CTM
pollutant deposition predictions of input modifications in land use and topography.

In addition, point source simulations were conducted to understand the spatial
deposition dynamics of N, emanating from the main cities of the country (Bogota,
Medellin, Barranquilla, Cali). This work contributes to evaluating the performance
of the LOTOS-EUROS CTM in NW South America. The evaluation of large-scale
models in the tropical Andean zone appears to be challenging because this zone is
not often entirely covered by a sufficient sensor network, so CTM is often compared
to the scarce measurements, and satellite information is increasingly valued to be
used for this purpose.
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2.2. Methods

2.2.1. Domains and model set up
The two nested domains used for the simulations to provide higher-resolution bound-
ary conditions for the area of interest are shown in Figure 2.1. The first domain
(D1) stretched from the west coast of Nicaragua to the Caribbean Dutch Islands
and Eastern Venezuela, with a horizontal resolution of 0.27° (about 28 km). The
inner domain (DCol) covered the continental territory of Colombia, with a horizontal
resolution of 0.09°. All deposition analyses were conducted in the inner domain.

A table with the main characteristics of the simulation run is shown in Table 2.1.

Period 1-January-2016 to 31-December-2016

Meteorology ECMWF; Temp. res.: 3h; Horiz. res.: 0.07° x
0.07°

Initial and boundary LOTOS-EUROS (D1). Temp. res.: 1h.

conditions Horiz. res.: 0.09° x 0.09°

Anthropogenic emissions EDGAR v4.2. Spat. res.: 0.1° x 0.1°

Biogenic emissions MEGAN Spat. res.: 0.1° x 0.1°

Fire emissions MACC/CAMS GFAS Spat. res.: 0.1° x 0.1°

Landuse GLC2000. Spat. res.: 0.1°x 0.1°

Orography GMTED2010. Spat. res: 0.002° x 0.002°

Domain 1 (D1) Lat x Lon [-8.5°,18°] x [-84°,-60°]

Domain Colombia (DCol) Lat x Lon | [-4.55°,13.27°] x [-79.80°,-65.94°]

Table 2.1: LOTOS-EUROS configuration settings for the simulations in this Chapter.

The default vertical layer definition for LOTOS-EUROS is obtained from ECMWF
meteorological data, with a resolution of 0.07°(= 7 km). LOTOS-EUROS can receive
meteorological fields in Cartesian and non-Cartesian projections and has three dif-
ferent option schemes to process this information: mixed layer, hybrid, and me-
teorological levels driven [43—45]. The first implementation was made with the
mixed-layer scheme. In this scheme, the model follows a mixed-layer level with
a 25 m surface layer, then a mixed layer at the top at the boundary layer height
taken from the meteorological input (ECMWF), and two reservoir layers of at least
500 m at the top. When the mixing layer is thick over mountainous terrain in the
tropics, where elevations can regularly reach more than 3500 m, the model’s top is
extended to accommodate the minimum thickness of the reservoir layers.

An updated elevation model used for the region was obtained from the Global
Multi resolution Terrain Elevation Data (GMTED 2010) [46], with a resolution of
0.002°(=~ 220 m).

A detailed high-resolution and up-to-date anthropogenic emissions inventory for
the time of the simulations was not available for this region. Therefore, emissions
were taken from EDGAR inventory (Emission Database for Global Atmospheric Re-
search) 4.2 for 2008. However, previous studies have shown a significant gap in
knowledge for the Colombian territory in the EDGAR inventory (e.g., [47-49]), this
database was at the time the only one accessible with all the species required to
operate the model in the selected domain for the time of the simulations. Biogenic
emissions were taken from the MEGAN 2.1 model. The MACC/CAMS GFAS global fire
assimilation system from [50] was used with a time resolution of 1 hour to account
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Figure 2.1: Nested domain model configuration selected for the LOTOS-EUROS simulations over North
West South America Domain (D1) (0.27°) and Domain Colombia (0.09°).

for the occasional fire events. The chemical mechanism used was the Carbon Bond
mechanism 5 (CB05), and the sea salt emissions were parameterized according to
formulations for the fine and coarse aerosol modes from [51] and [52]. Once the
simulation domains were set and the characterization for the emission was chosen,
we proceeded to characterize the land cover and land use data.

2.2.2. Land Cover/Land Use data

LOTOS-EUROS requires a 2D map with deposition properties per grid cell to model
the deposition dynamics. Land use characteristics are relevant for the CTM de-
position dynamics because they define the terrain roughness and canopy altitude
of each category that determine the velocity of the component, depending on the
vegetation type[53].

The default land use/land cover (LU/LC) input data for LOTOS-EUROS were
derived from the Global Land Cover (GLC2000) project [54]. GLC2000 includes
23 categories consistent with the FAO (Land Cover Classification System of the
Food and Agriculture Organization) classification [55]. For South America, mapping
these categories at spatial resolutions of 0.01°(approx. 1 km) was done in [56],
with contributions from some regional experts based on multi-resolution satellite
data. The GLC project was updated with the LU/LC data from the 2009 Land Cover
Climate Change Initiative (CCI) dataset [57]. CCI has 38 categories with a horizontal
resolution of 0.003°x 0.003°(300 m x 300 m). Figure 2.2 compares the default and
updated LU/LC models for Aburra Valley. The mapping from CCI to GLC considered
the similar morphological characteristics between categories and the aseasonality
in this tropical region. The mapping from GLC to DEPAC is the standard scheme
constructed for LOTOS EUROS. The model defines each grid cell as the fraction
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000 - WGS84 (EPSG4326 Landsat 8 Path 009 Row 036 (2019-09-03) Pansharpencd

M Trees (broad leaved, evergreen) 1 Mosaic (trees & other natural veg.) W Cultivated & managed areas

M Trees (broad leaved, deciduous, closed) I Shrubs (evergreen) Mosaic (cropland / trees / other nat. veg.)
M Trees (needle leaved, evergreen) Shrubs (deciduous) Mosaic (cropland / shrub / grass)

M Trees (mixed leaf type) Herbaceous (closed or open) M Bare areas

M Trees (regularly flooded, fresh water) I Sparce herbaceous or shrubs W Water bodies

I Trees (regularly flooded, salt water) [l Herbaceous & shrubs (regularly flooded) [l Artificial surfaces

Figure 2.2: Comparison between (A) the LOTOS-EUROS's original land cover model (Global Land Cover,
with a resolution of 0.01°x 0.01°(1 km x 1 km).) and (B) the updated land cover scheme (Land cover
from the Climate Change Initiative, with resolution 0.003°x 0.003°(300 m x 300 m)). Real-color Land-
sat cloudless imagery from the date 2019-09-03 is included in (C) to reference the artificial surfaces
from the city infrastructure. The political boundaries marked with white lines correspond to the munic-
ipality of Medellin and the other nine municipalities that constitute the Aburra Valley Metropolitan Area
conurbation.

covered by each of the LU/LC classes used by the DEPAC module and calculates
the deposition of each fraction. The mapping of the 39 (CCI) and 23 (GLC) LU/LC
categories to the nine classes of the DEPAC deposition model is illustrated in Figure
2.3. The descriptions of each category are presented in Table 2.2.

Matlab and Python scripts are available from the author upon reasonable re-
quest.

2.2.3. Simulations description

Simulations were carried out using the following configurations for the experi-
ments: Experiment 1 (Exp-1), default elevation model and default LU/LC data;
Experiment 2 (Exp-2), default elevation model and updated LU/LC data; Exper-
iment 3 (Exp-3), updated elevation model and default LU/LC data; and Exper-
iment 4 (Exp-4), updated elevation model and updated LU/LC data. For each
of these four experiments, the total deposition (wet and dry) of nitrogen diox-
ide (NO,) and ammonia (NHs3) was calculated for the year 2016. Zonal analysis
for estimating annual nitrogen deposition in protected areas and Paramo ecosys-
tems was conducted in QGIS 3.10 (https://qgis.org), using official Colombian
cartography obtained from the National Geographic Information Systems (SIGOT,
https://sigot.igac.gov.co/). Simulations were conducted in the APOLO
cluster (https://www.eafit.edu.co/apolo), and data was post-processed
(analyzed) using MATLAB and Python software.
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Number | Land Cover Climate Change Initiative (CCI) label Code CCINumber _Global Land Cover (GLC) label Code CORINE
0 No data ND 1 Tree Cover, broadleaved, evergreen TBE
10 Cropland, rainfed CRA 2 Tree Cover, broadleved, deciduous, closed TBDC
11 Herbaceous cover HBC 3 Tree Cover, broadleaved, deciduous, open TBDO
12 Tree or shrub cover TSC 4 Tree Cover, needle-leaved, evergreen TNE
20 Cropland, irrigated or post-flooding cp 5 Tree Cover, needle-leaved, deciduous TND
30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%) | MC/ NV | 6 Tree Cover, mixed leaf type ™ML
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) | MNV 7 Tree Cover, regularly flooded, freshwater TRF
50 Tree cover, broadleaved, evergreen, closed to open (>15%) TBECO |8 Tree Cover, regularly flooded, saline water TRS
60 Tree cover, broadleaved, deciduous, closed to open (>15%) TBDCO |9 Mosaic: Tree Cover / Other natural vegetation MTO
61 Tree cover, broadleaved, deciduous, closed (>40%) TBDC 10 Tree Cover, burnt TCB
62 Tree cover, broadleaved, deciduous, open (15-40%) TBDO 11 Shrub Cover, closed-open, evergreen SCOE
70 Tree cover, needle-leaved, evergreen, closed to open (>15%) TNECO | 12 Shrub Cover, closed-open, deciduous SCCD
71 Tree cover, needle-leaved, evergreen, closed (>40%) TNEC 13 Herbaceous Cover, closed-open HCCo
72 Tree cover, needle-leaved, evergreen, open (15-40%) TNEO 14 Sparse herbaceous or sparse shrub cover SHSS
80 Tree cover, needle-leaved, deciduous, closed to open (>15%) TNDCO 15 Regularly flooded shrub and/or herbaceous cover RFSH
81 Tree cover, needle-leaved, deciduous, closed (>40%) TNDC 16 Cultivated and managed areas CMA
82 Tree cover, needle-leaved, deciduous, open (15-40%) TNDO 17 Mosaic: Cropland / Tree Cover / Other natural vege | MCTO
90 Tree cover, mixed leaf type (broadleaved and needle-leaved) TMBN 18 Mosaic: Cropland / Shrub andjor grass cover csG
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) MTS 19 Bare areas BAR
110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) MHC 20 Water bodies WAB
120 Shrubland SRU 21 Snow an Ice SNI
121 Shrubland evergreen SRE 22 Artificial surfaces and associated areas URB
122 Shrubland deciduous SHD 23 No Data ND
130 Grassland GRA Number LOTOS-EUROS fractional categories LE-fract-code
140 Lichens and mosses LIM 1 Arable ARA
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) SPV 2 Permanent crops CRP
151 Sparse tree (<15%) SPT 3 Grass GRS
152 Sparse shrub (<15%) SPs 4 Coniferous forest CNF
153 Sparse herbaceous cover (<15%) SHC 5 Deciduous forest DEC
160 Tree cover, flooded, fresh or brackish water TFFB 6 Other OTH
170 Tree cover, flooded, saline water TFS 7 Water WAT
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water SHCF 8 Urban NO2
190 Urban areas URB 9 Desert DSR
200 Bare areas BAR

201 Consolidated bare areas CBA

202 Unconsolidated bare areas UBA

210 Water bodies WAB

220 Permanent snow and ice SNI

Table 2.2: Land Use/ Land Cover categories and acronyms for the two data sources used in this study
and for the DEPAC module. The table in the right bottom part contains the LOTOS-EUROS fractional
categories

2.2.4. Fate of urban contaminants experiments

The grid cells that house the centroids of the urban areas of Bogota, Medellin, Cali,
and Barranquilla were assumed to be artificial point sources of emissions to explore
the fate of the atmospheric nitrogenous species emitted from the main Colombian
cities. The simulations were conducted with the updated elevation model and the
updated LU/LC scheme detailed in the last section for ten days at four different
times of the year: March 1-10, June 1-10, September 1-10, and December 1-10.
After a 2-day model spin-up, the point source was activated from 08:00-18:00 of
day 3 of the simulation, emitting a total of 1000 kg/hour NO,, which is the amount
of daily NO, emissions reported for Medellin [58]. The artificial emissions were
monitored for seven additional days, during which time all the emitted species had
either been deposited or transformed. Similar simulations were conducted without
the point source’s activation to estimate the background deposition values for each
grid cell.

2.3. Results

2.3.1. Influence of the elevation model update

LOTOS-EUROS interpolates the input elevation data within each grid cell according
to the simulation’s resolution (Fig. 2.4) (0.12°,0.09,0.06,0.12). The input elevation
model can change variables such as the temperature profiles of the vertical layers.
The effect of an updated elevation model depends on the desired resolution of the
simulation grid; it means it is not as beneficial to go to the updated orography if the
resolution is higher than the input information, but for getting specific details on the
structure of the terrain, a more detailed topography impacts also in the structures
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Figure 2.3: Climate Change Initiative (CCI) Land Cover data categories mapped to the Global Land Cover
(GLC). The GLC categories are, in turn, mapped to the model’s equivalencies. The category’s codes are
as in Table 2.2.

in the interpolated grid.

The most significant temperature changes occurred in the upper layers above
the rugged terrain, reaching differences of up to 5°C degrees in the top layers.
Figure 2.5 compares the default (left image) and the updated elevation model (right
image). The inset zoomed in around the Aburra Valley (Medellin and neighboring
municipalities) demonstrates the absence of the valley in the default elevation model
with the update to the new topography. This improved representativity has impacts
on the definition of the low boundary information.

Figure 2.6 shows a transverse cut at a latitude of 6.6°North, corresponding to
the Aburra Valley’s location. In the left panels, the transversal cut is depicted over
the topography input. The center panels show the temperature interpolated for
the simulation at a horizontal resolution of 0.09°x 0.09°, illustrating the impact of
the change of input elevation information for the Aburra Valley. The right image
shows a difference between the two temperature fields, where the more noticeable
changes were in the upper level.

2.3.2. Conversion of land use categories

Figure 2.7 compares the fractional coverage changes of the 23 categories of the
GLC2000 land use when using the CCI land use data and the mapping presented in
Figure 2.3. Image (A) compares the total area represented by each category over
the entire study domain. Image (B) shows the fractional bias error calculations
between these scenarios for all the simulation domains, illustrating the fractional
change for each category. LOTOS-EUROS allocates a fractional usage per grid of
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Figure 2.4: Comparison of the two topography interpolated to four different grid resolutions, in the
upper left panel, the default topography for the LOTOS-EUROS and the left panel below the GMTED2010.
Colorscale depicts the altitude in meters.

the land surface to each of the nine categories used by DEPAC to generate the
corresponding deposition estimates.

Figure 2.8 corresponds to the land use fractions assumed by the model for both
default land use GLC2000 (a) and the updated scenario CCI (b), the default. These
fractions are the spatial percentage cover categories for which the model performs
the simulation calculations. It shows the mean fractional bias of the updated CCI
land cover model relative to the default GLC LU/LC data. Changes were noticeable
for categories like grasslands, where the deposition decreased with the updated
land-use configuration. For categories such as deciduous forest, arable, coniferous
forest, and permanent crops, primarily located in the country’s eastern region, the
simulations showed an increase in depositions related to the change in the fraction
percentage of these categories.

The Amazon region (SE) presented minimal changes in deposition between the
two LU/LC scenarios, primarily due to the minor changes in LU/LC between the two
data sources. The most significant changes related to deposition in deciduous and
coniferous forests were found along the Andean cordilleras, which were higher in
the updated LU/LC scheme.

The pictures in Fig. 2.9 show the comparison between the different scenarios
for the NO, and NH; accumulated dry deposition for the year 2016 simulated with
the LOTOS-EUROS CTM. The upper left corner of each situation corresponds to
Exp-1, and the lower right corner corresponds to the Exp-4 conditions. The top
right images correspond to the MFB comparison between Exp-1 and Exp-2 and the
lower left to the same MFB comparison between Exp-1 and Exp-3 elucidating the
impact on the total deposition for 2016 due to the change in land use and orography
scenarios respectively. MFB comparisons allowed us to highlight some regions (A,
B, C, and D) of interest due to drastic changes that overestimate or underestimate
deposition values concerning the initial condition given in the Exp-1.

Figure 2.8 shows the land use comparison for the respective chemical compound




2. Chemical Transport Models to study the trace gasses reactions and
38 dynamics in the atmosphere

Current orography from ECMWF GMTED 2010. Global Multi-Resolution
meteorology input 0.14 © Elevation Data 0.002°

76°W 74°W 72°W 70°W °) 78°W 76°W 74°W 72°W 70°W 68°W
Altitude (m)

Cr o
4o I 10

s 2% [ 500

o K [ 750
B [ 1000
] [ 1250
[ 1500
W 754 11750
e Q [ 2000
% [ 2250
W? [ 2500
[ 2750
e [ 3000
ah - . I 3250
o i I 3500

0 200 400 600 800km

Figure 2.5: Comparison between the default elevation model for LOTOS-EUROS (A) and the updated
elevation model derived from the GMTED 2010 data (B). The insets illustrate the differences in elevation
representation for the Aburra Valley.

simulation deposition output. For zone A, the CCI water bodies category is more
abundant than the GLC. The regularly flooded shrub and herbaceous cover are
predominant in the bodies of internal waters. The three cover categories and the
urban areas are noticeable in the zones with an MFB image overestimated. On the
other hand, the bare areas and the three cover and regularly flooded, cultivated,
and managed areas and mosaic cropland are more abundant in the old land cover.
For zone C, the urban areas are more relevant in updating land use. The land use
located at the left of the principal metropolitan area of the images corresponding
to cultivated and managed areas seems to promote the deposition of the updated
condition significantly. Moreover, in Figure 2.10 E, we can see that the herbaceous
cover closed-open was prevalent in the old land use and changed to mosaic crop-
land, shrub, and grass cover in the new one. In the MFB image, overestimating
respect to the Exp-1 conditions is seen in how the dominant land use was changed.

2.4. Point sources experiment

The LOTOS-EUROS emission module describes the discharge of tracers and aerosols
from various sources (anthropogenic, biogenic, marine, airborne dust, fires) that
can be configured to define emissions in specific point sources to simulate scenarios.
Figure 2.11 shows the simulation of the total deposition (dry and wet) of nitrogen
considering the emission of the four main cities of Colombia. Cities were assumed
to be point emission sources for a regional domain, determining this city’s influence
area.

Figure (2.11, A) shows the contours generated with an increment of 5 g/ha
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between the contour level and a bias correction of +2 g/ha to avoid negative
values that appear as numerical noise from the rest of the reference run minus the
punctual perturbed emission run. The more rounded contour delimits the impact
zone for each of the cities.

Identifying some wind direction trends for the four different times of 2016 (1-
9 days of March, June, September, and December) is possible. The influence of
Barranquilla on faraway zones is perceivable due to the proximity of this city to
the Caribbean coast, where intense wind conditions exist, and flat topography that
drives the transport dynamics far away. Most of the depositions from Barranquilla go
to the ocean direction and, at other times, to the southwest of the city, reaching the
other cities’ deposition areas. For the other cities, the impact area is more limited
but has higher deposition values due to the roughness of the mountainous terrain
and the lower magnitude of the wind patterns presented. It is also interesting to
see that the deposition from Bogota could reach other cities, such as Medellin, at
some time of the year. From the simulations conducted, it's possible to extract some
trends for the wind directions.
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Figure 2.8: Only 7 of 9 categories are shown here. The other two are the categories water and other.

Figure (2.11, B) shows a simulation of what happens with Medellin for simula-
tion resolution of 0.03 °x 0.03 °, conceiving the point source concentrated in a grid
cell in the middle of the metropolitan area. The simulation results indicate that the
northwest-west area of the Aburra Valley (Medellin and Metropolitan Area) is the
most affected, which could be seen in how paramos ecosystems located at points
A and B in the map receive nitrogen that was emitted from the cities. The mosaic
in the right part of Fig. (2.11, C) is a detailed simulation, conceiving the point
source concentrated now in a grid cell in the middle of the metropolitan Rionegro
area. During some parts of the year, it is crucial to notice that Rionegro influences
Medellin’s emissions far away depositions. The transport dynamic of contaminants
should be studied in more detail because of the increasing Rionegro area for indus-
trial and urban settings.

After the first implementation of the model with the updating of land use, depo-
sition analysis was performed. The following Figure shows a quantitative analysis
of the paramos ecosystems (Fig. 2.12, a)) with the natural protected areas (Fig.
2.12, b)) delimitation, via the LOTOS-EUROS NO, model output and the total depo-
sition of those areas are receiving. Cartographic data for ecosystems and protected
areas were obtained from the Colombian System for Environmental Data (Sistema
de Informacién Ambiental de Colombia, SIAC; http://www.siac.gov.co/).

The Paramo de Las Baldias was the paramo zone with greater exposure to at-
mospheric pollutants. It receives 14 kg/(ha yr), above the standard critical load
of Nr, and 60 kg/(ha yr) of ozone. The paramos of western Antioquia receive 5-6
kg/(ha yr), while the Sonsdn Paramos are identified as those with the lowest ex-
posure to atmospheric pollutants(2.2-2.6 kg/(ha yr) Nr; 35-40 kg/(ha yr) ozone).
The ecosystems of the west of the Caribbean coast receive the highest ozone load
in the country (50-100 kg / (ha yr)).


http://www.siac.gov.co/
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Figure 2.9: Comparison between the experimental scenarios with the updating of orography and land
cover for two chemical compounds a) the Ammonia NH;, b) the Nitrogen dioxide (NO,).
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Figure 2.10: Detailed comparison in four regions A, B, C, D for the changes in land use for the simulations
performed with the LOTOS-EUROS for this chapter. The order in the graphics are the left the GLC, the
middle the CCI and in the right the mean fractional bias between the nitrogen concentration outputs of
the LOTOS-EUROS simulating with this two input information.
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Figure 2.11: Point source contour experiment in 2016 at different times of the year for A) the 4 biggest
cities in the country (pink lines) and contour limitation of the influence area from the deposition plots.
B) Higher resolution for Medellin and C) Higher resolution for Rionegro denoting the impact in terms of
transport and deposition.

Figure 2.12 shows a histogram quantification over the natural protected areas
and Padaramo ecosystems to identify the critical deposition load of NO, in ecosys-
tems and how many sites are at higher risk for the transport of pollutants. The
critical load in a tropical ecosystem is not very well determined, and, probably, due
to the high biodiversity index in this region, the critical load should be lower.

Using LOTOS-EUROS deposition simulations, we calculated the average annual
total nitrogen deposition in Colombia in 2016, estimated to be 4.2 kg/(ha yr) with
min and max values of (0.8-18.9) kg/(ha yr). The average annual 0zone deposition
was 36.0 with min and max values of (7.7-109.4) kg/(ha yr), respectively. Within
the year, the lowest ozone deposition has been estimated for May and July, while the
maximum occurred in June and December-January. Updated protected areas and
ecosystem cartography were superposed on simulation results. Weighted average
annual total nitrogen deposition in national protected areas and Paramos (a critical
ecosystem for the water cycle in Colombia) has been estimated to be 2.61 kg/(ha
yr) with min and max values of (0.0-18.5) kg/(ha yr) and 4.11 kg/(ha yr) and min
and max values of (2.2-14.2) kg/(ha yr), respectively. Total nitrogen deposition at
or above 5 kg/(ha yr) occurs in 60% of declared protected areas and over 13%
of the paramo ecosystems. Figure 2.14 present a weighted average annual total
ozone deposition in nationally protected areas and paramos has been estimated at
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Figure 2.12: Simulated calculation of annual (2016) deposited nitrogen budget for Paramo ecosystem
(left image) and natural protected areas (right image). Based on the model output, the histograms
below quantify the total nitrogen deposition in the Paramo region and other national protected areas.
The red line in each histogram refers to this region’s theoretical, critical nitrogen load, which shows that
a considerable area is vulnerable nowadays to transport and deposition.
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Figure 2.13: Point source experiment over the main cities in Colombia for moments in the year. Nitrogen
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44

2. Chemical Transport Models to study the trace gasses reactions and
dynamics in the atmosphere

19.8 kg/(ha yr) with min and max values (0.0-99.3) kg/(ha yr) and 24.8 kg/(ha yr)

with min and max (13.2-62.4) kg/(ha yr), respectively.
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Figure 2.14: Simulated calculation of annual deposited Ozone budget for natural protected areas and
paramo ecosystem.Weighted average annual total ozone deposition (Kg/(ha year)) in nationally pro-
tected areas and paramos and zoom over the east region over the Andean mountain corridor

2.5. Summary and Discussion

This work’s main contribution is assessing the LOTOS-EUROS CTM Model’s perfor-
mance in the Tropical Andes Domain, focusing the analysis on deposition simula-
tions. Determining the relevance of the Land Use Land Cover and Topography as
model inputs and paying attention to specific points of the study zone were certain
factors driving the deposition process and were some of the results of this work.
Future improvements of the simulation method could consider cities as pollutant
sources with, at first, shapes closer to the emission inventory.

Although LOTOS-EUROS is terrain-following, the chosen domain simulations are
sensitive to the orography map only if the simulation is also high resolution. We also
know that the EDGAR inventory does not appropriately represent some component
emission dynamics. For the time of the experiments, this was the inventory we had
available for the study domain. In later works (see Chapter 4), an updating of the
inventory employing parameter estimation using data assimilation corresponding to
a top-down reconstruction methodology [59].

Deposition depends on land-use changes. It was essential to analyze the area
of interest’s temporal behavior to identify zones with over and sub-estimation com-
pared with the early reference. Natural protected areas with notable changes in
deposition between the default and updated input data were identified, highlighting
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the importance of using accurate and up-to-date land cover data in the simulation
model. Vulnerable areas such as natural protected areas and paramos ecosystems
may require more than a local conservation effort to preserve their ecological func-
tions.

Simulations with point sources identified the transport patterns in the territory.
They showed the regional influence of the major cities based on qualitative and
quantitative results to understand the dynamics of emission and deposition of con-
taminants for the main cities of Colombia, which consists of an attractive information
supply to begin understanding the transport of atmospheric pollutants in this terri-
tory. The atmospheric transport and deposition of contaminants present ecosystem
risk factors that require an evaluation of impacts directly in the field based on the
reported results and their inclusion in conservation strategies.
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Measurements, the input
needed in data assimilation
for improving models
performance

‘You see, but you do not observe. The distinction is clear. ’
-A Scandal in Bohemia

Sherlock Holmes

Data assimilation is a mathematical technique that reconciles the mathe-
matical modelling representation of reality with the measurement perspec-
tive. Measurements are essential in any Data Assimilation (DA) system.
Satellite information is becoming increasingly valuable as new applications
emerge. The increase in satellite data availability presents novel monitoring
prospects, especially in areas where ground-based measurement systems
are insufficient, lack operational network infrastructure, or are infeasible to
deploy due to geographical constraints.

There exists a legacy of satellites dedicated to researching atmospheric com-
position, with an enhancement of spatio-temporal resolution over time. How-
ever, incorporating satellite products into data analysis is a complex task
that requires appropriate data preparation to ensure the accurate compari-
son with the observed model states. This chapter outlines the methodology

Parts of this chapter have been published in - Yarce Botero, Andrés, et al. "Design and Implementation
of a Low-Cost Air Quality Network for the Aburra Valley Surrounding Mountains.” Pollutants 3.1 (2023):
150-165. https://doi.org/10.3390/pollutants3010012
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used to handle satellite information, from data download to processing, for
effective comparison with models and subsequent assimilation purposes.

This chapter outlines the design and manufacturing process of a low-cost
device that can measure air quality variables in-situ and transmit data over
long distances. The objective behind developing this device is to gather new
information to integrate into the LOTOS-EUROS in this region. As there is a
scarcity of data in Colombia, the development of new technologies to generate
it has been emphasized throughout this thesis.

Using an adjoint-free technique, this chapter describes the process for imple-
menting the Local Ensemble Kalman Filter to assimilate satellite data and
the development of assimilating these low-cost measurements.
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3.1. Introduction

Data Assimilation (DA) is a mathematical technique that reconciles the mathematical
modeling representation of reality with the measurements, these applications will
be presented in Chapter 4 of this thesis. In this Chapter, two measurements are
described. One is the TROPOMI (TROPOspheric Monitoring Instrument [1]) which
is on board the Sentinel 5-Precursor satellite, and the other is a low-cost, in-house
developed sensor device used to monitor pollutants in Colombia, specifically in the
Aburra Valley.

3.1.1. Satellite information to study atmospheric composition
Colombia is demarcated by the Andes mountain range divided into three branches,
with peaks up to 5750 m.a.s.l., a suitable territory for generating clouds. This terrain
is highly rough with variable heights covered with rainforest, a highly appropriate
place for cloud formations. The problem of cloudiness is crucial for the retrieval of
pollutants. To understand the spatial distribution of the high quantity of available
data for a period of time, an early study was made. Figure 3.1 shows the data
comparison density for the Colombian territory vs. the Netherlands. This image
was generated with the count of available pixels for each grid during a period.
It can be seen how the prevailing clouds over the Andes mountains reduce the
number of available observations. Cities on the Caribbean north coast of Colombia
have more observations per month than inner cities. Magdalena River Valley and
Orinoquia sector also show many available observations.

1 10 2x10  3x10  4x10 1 10 2x10  3x10  4x10
Available measurenments Available measurenments

Data Min = 1, Max = 4x10 Data Min = 1, Max = 4x10

(a) (b)

Figure 3.1: Comparison of available measurement for a month with the topographic surface of Colombia
and the Netherlands. Satellite pixels are less available during a period, mainly over mountainous terrain,
which is correlated to cloud formation.

Most of Colombia’s air quality ground networks are located in the principal cities
and urban areas, having most of the territory uncovered. The high-density in-
formation of NO, instruments, such as the TROPOspheric Monitoring Instrument
TROPOMI, onboard the Copernicus Sentinel-5 Precursor satellite, increases the po-
tential use of this data over this region. Sentinel-5 Precursor (S5P) is a low Earth
polar orbit satellite. The scanner’s polar orbit and wide coverage provide almost
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daily global coverage. However, the high levels of cloudiness in the area continue
to be a significant problem for retrieving pollutants. Satellite information is a val-
ued resource for acquiring information; no matter how consistently good quality,
satellite data is scarce, especially in regions with high cloudiness [2].

The volume of data is constantly increasing and improving in spatial and tem-
poral resolution, particularly in instruments for atmospheric chemistry composition
(see Chapter 1). This decade, 2020-2030, foresees almost complete planet mon-
itoring with the geostationary network dedicated to air quality for the northern
hemisphere. Thus, a cornerstone of state-of-the-art atmospheric modeling is in-
corporating real observations into simulations. In many applications, incorporating
this data with numerical models induces parameter estimation capabilities that could
overcome the complex tasks of developing emission inventories. Numerical model
implementations are constantly improving in resolution thanks to the increasing
availability of satellite observations and ground-based instruments.

3.1.2. Low-cost sensors

The densest network for measuring air pollutant concentrations in Colombia is in
Medellin, where most sensors are located in the heavily polluted lower parts of the
valley. Measuring stations in the higher elevations in the mountains surrounding the
Aburra Valley are unavailable due to the efforts in the city to get the best-measured
representation in the populated areas. This limits our understanding of the valley’s
pollutant dynamics and hinders the effectiveness of data assimilation studies using
Chemical Transport Models CTMs such as LOTOS-EUROS.

To address this measurement gap, we designed a network of low-cost sensors to
be installed at altitudes above 2000 m.a.s.l. The network consists of custom-built,
solar-powered, and remotely connected sensors. The locations were strategically
selected using the LOTOS-EUROS model driven by various meteorological simulated
fields to explore the effects of the valley wind representation on the transport of
pollutants. The sensors transmit collected data to internet gateways for posterior
analysis. Various tests to verify the critical characteristics of the equipment, such as
long-range transmission modeling and experiments with an R score of 0.96 for the
best propagation model, energy power system autonomy, and sensor calibration
procedures, besides case exposure to dust and water experiments, to ensure IP
certifications. An inter-calibration procedure was performed to characterize the
sensors against reference sensors and describe the observation error to provide
acceptable ranges for the data assimilation algorithm (<10% nominal).

This air quality network’s design, installation, testing, and implementation, ori-
ented toward data assimilation over the Aburra Valley, constitute an initial experi-
ence of the system’s operative capabilities. Our solution approach adds value by
removing the disadvantages of low-cost devices and offers a viable solution from
a developing country perspective, employing hardware explicitly designed for the
situation. The next section details data collection from the TROMOPI satellite and
the specifics of the low-cost sensor network designed.
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3.1.3. Parametrization
In the following sections, the dynamic time step of the LOTOS-EUROS model will
be denoted by:

= Mp(Ci_1,€-1) (3.1)

The initial condition is ¢,, and the state vector ¢, contains the concentrations of all
trace gases and aerosols in each cell of the three-dimensional grid valid for time ¢,
e; is the nominal emission from the emission inventory. The LOTOS-EUROS model
operator M, ; computes the state at time ¢ from the concentrations at one timestep
At before at time t — 1 using the model input data. Note that in the following
equations, some arguments of M, have been omitted to simplify notations.

A parametrization for representing the model uncertainty is required to imple-
ment the data assimilation algorithm. A significant source of uncertainty is the
emissions that, in reality, may differ vastly from the inventory in both space and
time. Therefore, the emissions utilized by the model operator are modeled as a
stochastic process:

ét = et‘(l + 5et—) (3.2)

The emission deviation is modeled as an autoregressive model of order one
(AR-1) with the following structure of a colored noise process [3]:

Set = a- 5et_1 +o0- 1 - a’z . wf—l (3.3)

where w; is a white noise process with zero mean and unity standard deviation:

w, ~ N(,I) (3.4)

Stochastic samples are drawn from a normal distribution with zero mean and
standard deviation o. The temporal correlation coefficient « € [0, 1] is used to de-
scribe the temporal variation, where the value should be set between two extremes:
for a = 0, the deviation is pure white noise with completely different values for ev-
ery sample; for « = 1 the deviation factor is a single sample out of the normal
distribution. In this study, the correlation parameter is described using a temporal
length scale t following [4]:

a = exp (—|At|/T) (3.5)

A stochastic model state is formed by augmenting the state vector (3.1) with
the correction factor Se,:

¢ |_| Mue(er-r,€-1-(1 + b€y ) 0
6et - [ a.é‘et_l + J.\ll_az t—-1 (3'6)
or simply:

X = M(X-1) + G- Wy (3.7)
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It is feasible to employ a sequential data assimilation method to determine both the
state and the correction factor for emission using the augmented vector (10). The
non-linear operator M progresses the augmented state vector x, in time, while G
distributes the stochastic forcing w; over the elements of the state.

3.2. Methods

3.2.1. TROPOMI Satellite Data

TROPOMLI is a sun-synchronous orbit instrument that overpasses at altitudes around
800 km at 13:30 local time. On October 13, 2017, it was launched onboard the
low earth orbit polar Sentinel 5 Precursor (S5P) satellite. The TROPOMI spatial
pixel resolution is 5.5 x 3.5 km?, and the NO, retrieval uses a wavelength range
of 405465 nm (spectral band 4). The NO, concentration retrieval and averag-
ing kernels are necessary for converting TROPOMI data to compare appropriately
with Chemical Transport Models (CTM) [5]. The most recent NO, satellite mea-
surements for the study region are from the TROPOMI instrument, a spectrometer
sensing ultraviolet (UV), visible (VIS), near (NIR), and short-wavelength infrared
(SWIR) wavelengths to monitor Ozone (0O;), Methane (CH,), Formaldehyde (CH,),
Aerosol, Carbon Monoxide (CO), Nitrogen Dioxide (NO,), and Sulfur Dioxide (SO,).
The Royal Netherlands Meteorological Institute (KNMI) created the TROPOMI NO,
retrieval method based on the DOMINO NO, retrieval algorithm employed on the
Ozone Monitoring Instrument (OMI) precursor instrument [6].

Although the high levels of cloudiness in the area continue to be a significant
problem for retrieving pollutants, the high density of information of TROPOMI re-
spects OMI increases the potential use of this data over the region. [7] and extends
the capabilities from OMLI. It has improved the retrieval values of the Vertical Column
Densities VCD because of the no use of the intensity offset correction. TROPOMI
observations have been applied in inversion studies, demonstrating the ability to
track small-scale pollution and emissions [8].

3.2.2. TROPOMI retrieval algorithm
The steps to employ the TROPOMI data available take into account the previous
procedures to have the L2 level geophysical products from the raw data in the LO
level to specific radiance and irradiance products in the L1 level. In the first stage,
the overall density of the NO, slant column is determined using the Differential Op-
tical Absorption Spectroscopy (DOAS) method. Compared to the light that comes
from the path of the sunlight reflected from the earth to the direct sunlight reaching
the satellite, the extinction of scattering and absorbing photons by tracers affects
the reflected information in the spectrum [7]. For the computation of the NO,
concentration, a radiance model is fitted to these various received spectra, assign-
ing the slant column density of NO, as the efficient absorption of NO, along this
channel.

The second stage divides the slant column into stratospheric and tropospheric
parts. The stratospheric and tropospheric components of the slant column density
are separated using data assimilation and the TM5-MP CTM. The mechanisms that
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Figure 3.2: Illustration of the TROPOMI data downloaded before the regriding. Upper panels, data
filtering a quality flag threshold of 0.5. Lower, data filtering at a quality flag threshold of 0.75. Left
column panels, TROPOMI data retrievals for the two quality flags. Center, TROPOMI data projected to
LOTOS-EUROS grids at resolutions of 0.09° (center) or 0.5° (center-right). Right, scatter plots comparing
TROPOMI vs. LOTOS-EUROS pixel values for the resolution of 0.09°).

occur at the stratosphere and tropospheric levels are substantially distinctive. Most
NO, in the slant column will be confined to the troposphere over highly polluted
areas. However, stratospheric NO, dominates the slant column’s density in remote
areas like the oceans. The tropospheric column is calculated by subtracting the
stratospheric column from the total column; note that this stage of the retrieval
process leverages pre-existing knowledge regarding NO, columns from the TM5-
MP model.

The final stage of the retrieval procedure is to convert slant column densities
to vertical column densities, which is vital since the vertical column can readily be
compared to the model’s output. Slant columns are converted to vertical columns
using air-mass factors (AMFs), denoted by the symbol M. The AMF establishes a
link between the density of slant columns and the vertical density and defines the
vertical profile of the trace gas. AMFs that are altitude-dependent are determined
by retrieval parameters such as the satellite’s viewing geometry, the surface albedo,
the surface pressure, and cloud cover. These AMFs are used as prior information in
the retrieval method since they are produced from a radiative transfer model.

TNO Dutch Organization for Applied Scientific Research (TNO https://www.
tno.nl/) developed the module EMIP (EMEP Model Input Processor) for the satel-
lite Sentinel 5P preprocessing task to produce the files to simulate the LOTOS-
EUROS model and calculate the value for the appropriate comparison with the model
output. The EMIP module evolved into what is known as CAMS Satellite Operator
CSO, a toolbox designed to aid in integrating satellite observations into local air
quality models. (https://ci.tno.nl/gitlab/cams/cso), which is software
for preprocessing satellite information. The toolbox consists of two primary com-
ponents: a pre-processor capable of downloading and transforming satellite data,



https://www.tno.nl/
https://www.tno.nl/
https://ci.tno.nl/gitlab/cams/cso

3. Measurements, the input needed in data assimilation for improving
60 models performance

specifically TROPOMI data, and an observation operator that can be incorporated
into the model simulation’s source code. Using this operator, the module can sim-
ulate satellite retrievals and utilize them for data assimilation [9]. CSO handles
the TROPOMI tropospheric NO, retrieval product (yr) as a profile spanning from
the surface to 200 hPa. The first is the download task; once the date was intro-
duced in the configuration script, the download starts from wuww. temis.nl for the
TROPOMI Offline (OFFL) product and from www.data-portal.s5p-pal.com for
the TROPOMI Products Algorithm Laboratory (PAL) product. In the second step,
CSO creates netCDF files with selected pixels, such as those within some region or
cloud-free pixels. The third step is regarding this task could resample the pixels
onto a regular grid, distributing the footprint polygon over the grid cells. Each grid
cell is filled with a weighted sum of contributions from pixels that (partly) overlap
the cell.

For this comparison, the satellite quality flag defined in the EMIP module was set
to 0.75 to avoid artifacts that do not necessarily correspond to NO, concentrations.

The S5P/TROPOMI tropospheric NO, data are gridded onto the simulation grid
using a conventional area-weighted averaging approach. The relative mean is de-
termined after averaging the observations’ distance from each grid point. A model
simulation of the satellite retrieval could be derived from the average kernel of the
satellite product concentration profiles applied to the LOTOS-EUROS concentration
to produce simulations of the gridded data. The average kernel integrates the
concentrations over height, as the sensitivity of the satellite instrument to tracer
densities is height-dependent. The model profile was convolved with the averaging
kernels provided in the satellite download data product to simulate the retrieval.
[5]. The averaging kernels are applied to the model output at the nearest satellite
pass, usually between 11:00 and 12:00 UTC [10].

Satellite information is highly valuable for collecting data. However, it often en-
counters quality problems, which can be a persistent issue. Additionally, satellite
data is scarce, especially in regions with heavy cloud cover [2]. Due to these high
cloudiness levels, most of the region’s satellite data is filtered out. The remaining
pixels are collocated to the grid of the LOTOS-EUROS model (0.09° x 0.09°) simula-
tion to facilitate graphical comparison. Each grid cell is filled with an area-weighted
sum of contributions from pixels that (partly) overlap the cell.

3.2.3. Design and Implementation of a Low-Cost Air Quality
Network for the Aburra Valley Surrounding Mountains
There is interest in developing a measurement network study to corroborate previ-
ous CTM representation of the valley and collecting data in these allocations for a
future operational data assimilation (DA) start. In recent cases, as in [11] for esti-
mating emissions in urban environments and in another case where the IoT-based
(Wifi protocol) for suburban environments generates a network for measuring pol-
lutants [12].
The proposed station locations are intended to gather information from areas
that connect the urban regions of the Aburra Valley and the San Nicolas Valley to
the east, such as Rionegro. The proposed sites cover the highest regions along the
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Figure 3.3: CSO pipeline procedure. It starts with downloading different TROPOMI product datasets and
then converting or cropping them to a specific region. The CSO plots the steps of the data processed in
the catalog. Then, the simulation goes through a model step for column integration, and last, the grid
step produces the files to compare these observations directly with the model.

slopes of the Aburra Valley. This will allow monitoring of the pollutant dynamics of
the valley and understanding of the extent of these regional atmospheric linkages
while providing sampling with high spatio-temporal resolution. SIATA (Sistema de
Alerta Temprana del Valle de Aburr'a) manages the air quality measurement net-
work in the Aburra Valley (https://siata.gov.co/) and holds authority over
varying early warning systems within the region. The Figure 3.4 simulation provides
a basis for the proposed network configuration and offers stations that complement
the SIATA station network. SIATA stations will serve as reference and calibration
stations to ensure the dependability of the resulting data, as it constitutes the op-
erational network for decision-making in the metropolitan area. The simulations
employed the LOTOS-EUROS CTM to simulate a nested domain configuration to
reach 0.01°x 0.01 °resolution for the particulate matter PM2.5, using two different
meteorology input conditions (ECMWF and WRF). The results illuminate how pollu-
tants are carried far away from the Valley by ECMWF meteorology, while for WRF
meteorology, the Valley acts as a trap for contaminants.

In terms of low-cost sensors and applications with CTM, the work in [13] shows
the comparison between a certified air quality network and a DA experiment with
the low-cost sensor network by combining these two sources of information through
DA schemes to balance the inaccuracy of these with the possibilities to drive a
model with the right trend. In Figure 3.4, the comparisons of the three-dimensional
snapshot of the model output over the valley and assimilated outputs of a low-cost
sensor network inside the valley are depicted in transversal cuts.

The development of technology for monitoring air quality based on low-cost sen-
sors is an increasing trend for small cities, harbors, and rural areas with increasing
pollution-related problems [14-16]. Miniaturization of technology opens up new
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Figure 3.4: Left panel: transversal cut comparisons between the LOTOS-EUROS model simulated with
ECMWF and WRF input meteorology. Central panels: a three-dimensional snapshot of the model output
over the valley. The colorbar is for the particulate matter concentrations in ugm=3. Right panels: as-
similated outputs of a low-cost sensor network inside the valley with the two meteorology configurations
for the LOTOS-EUROS (LE-WRF and LE-ECMWF), respect the observation network.

modular integration opportunities [17]. In this case, robust and rugged aerospace-
inspired low-cost monitoring stations were deployed in strategic remote sites to
detect the exchange of atmospheric contamination among regions. The proposed
network, nested in a cyber-physical system [18], integrates new and existing data
into a framework for understanding regional dynamics, evaluating development sce-
narios, and supporting decision-making and citizen science at the local and regional
scales[19]. A review of low-cost sensors for outdoor quality applications is [20] and
includes helpful information to understand the difference between existing ways to
measure the standard sensor.

Description of the network

At the heights around the Aburra Valley, measurements are necessary for the CTM
comparison. The locations of the network were selected because they are city-
representative locations and can be accessed by hill walking routes. Therefore, the
nodes are considered energy-autonomous and remotely connected. The species
of interest will be particulate matter (PM, 5 ), nitrogen oxides (NO, ), and ozone
(03), in addition to standard meteorological variables such as relative humidity,
temperature, wind magnitude, and speed. However, other compounds, such as
ammonia and isoprene, may be interesting to monitor in the future.

The proposed location of the measuring stations is presented in Figure 3.5.
These locations are primarily selected for coverage of remote sites not covered by
the SIATA network but that may provide data to detect the transport of contami-
nants in and out of the Aburra Valley. Because of the urban growth trends, there will
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Station name Code Latitude Longitude
Cerro padre Amaya | CPA | 6°16"47.6796" N | -75° 41" 14.2362" W
Baldias BDS | 6°20"1.3632"N | -75° 39" 14.7312" W
Quitasol QTL | 6°22"85908"N | -75°33'16.2318" W
\ L on Pan de Azucar PDA | 6°1510.5228" N | -75° 32" 0.6432" W
O La Romera LRA | 6°7°12.2988" N -75° 35’ 52.6704" W
Los T e Alto de Palmas ADP | 6°9740.8414"N | -75° 32" 42.1152" W
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Figure 3.5: (a) Locations selected for the air quality network disposition around the mountains sur-
rounding Medellin. Colorbar indicates height over sea level in meters. The red cross is located at the
point of view in the right direction from the arrow of the (c) photo. (b) table with the name, code, and
coordinates of the stations. (c) Photography of the landscape seen from Medellto the east mountains
of the valley. The Pan De Azlcar (PDA) station location is indicated with an arrow.

be an emphasis on stations that may provide data to understand the atmospheric
interconnections between the Aburra Valley and the San Nicolas Valley.

The panel in Figure 3.6 points to the need for a measurement station in the
high levels of the Aburra Valley from the perspective of a previous DA scenario
Figure 3.6. It shows the LOTOS-EUROS model assimilated with the PM, : high-
density network. It is crucial to notice how almost all stations from this assimilation
network are below the 2000 m.a.s.l. The results shown in Figure 3.6 showcase
the need to collect more information at high altitudes. An example to support this
affirmation is seen for the star station, which is possible to see in the right part
above the valley (yellow circle), for which the value in both situations for the model
was underestimated, not presenting a proper update of the analysis for this area
suggesting an increase in the number of observations.

With the measurement tools discussed here (TROPOMI satellite data and low-
cost sensor array), we proceed to present them in more detail in the next section.

3.2.4. Airborne data collection

The low-cost sensor developed has been tested in airborne data collection cam-
paigns. The ability to georeference the data means that mobile air quality data can
be collected and georeferenced by these units in different conditions. This section
presents the two data collection campaigns, one in a helicopter and the other in an
aeroplane.

Hellicopter Insitu Pollution Acquisition Experiment

The HIPAE mission took place on 12 March 2019, from 9:30 am to 12 noon local
time. Figure 3.7 shows the helicopter’s flight path over the city of Medellin. The
designed pattern of the flight was at three different altitudes of 600, 1200 and 1800
ft. The aircraft used was the helicopter (Airborne) of the Fuerza Aerea Colombiana
(Colombian Air Force), UH-60L FAC 4121, a utility helicopter manufactured in the
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Figure 3.6: Comparison of the LOTOS-EUROS output concentrations before and after the Data assimila-
tion over the 3D topography of the Aburra Valley. The new measurements in the high part of the valley
complement the SIATA networks for assimilation or validate.

USA by Sikorsky Aircraft Industries. The capacity of 22,000 Ibs under external load
configuration was used to allow an external sling load of 60ft.

Airborne data collection

Between the first of November and March 2021, 15 routes were flown to take
measurements on a Colombian Air Force Caravan aircraft Figure Figure 3.8. This
unpressurized aircraft flies humanitarian routes daily, and the sensor developed was
attached to the cabin as a secondary payload to get data for the purpose of this
thesis.

In Figure 3.9, we present a crucial aspect of our study involving integrating air-
craft data with the LOTOS-EUROS model using the LEnKF (Local Ensemble Kalman
Filter) framework. The aircraft dataset, characterized by its 3D plus temporal vari-
ability, provides high temporal resolution with data points sampled every minute. A
regrinding process was performed to prepare the data with the simulation resolution
of interest to enable meaningful comparison and assimilation of the data with the
model. The standard LEnKF implementation in the LOTOS-EUROS needs the data
in a specific structure, capturing both geopositioning and concentration magnitude
information within its operational framework. In particular, the assimilated data,
aggregated hourly and over-defined grid areas, play a key role in improving the
accuracy and predictive capabilities of the model. This integration highlights the
synergy between high-resolution real-world data and modeling techniques, provid-
ing valuable insights into atmospheric dynamics and composition.

3.3. Results

3.3.1. TROPOMI observations errors
Figure 3.10 shows an example of the grid satellite data, presenting how the NO,
footprint demarcates the principal Colombian cities. The right panel shows an ex-
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Figure 3.7: Left image is the ap of the mission’s flight route, departing from Air Force Base CACOM-5
and entering the Aburra Valley through the municipality of Copacabana Northeast of Medellin. Indicated
in the image are the boundaries of the ten conurban municipalities of the Valley. Land cover derived
from pan-sharpened Landsat 8 image (2018-04-09). 3-D rendering based on JAXA's 30 m ALOS Global
Digital Surface Model (AW3D30), using QGIS 3.6. Right image Helicopter (Airborne) of the Fuerza Aerea
Colombiana (Colombian Air Force), UH-60L FAC 4121,
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Figure 3.8: The left-hand column of this panel displays two images of the Caravan aircraft utilized
to transport the developed sensor. The right-hand column depicts a 2D representation of the spatial
temperature pattern in the upper-right panel, with a time series of the same variable indicated in the
lower-right corner using the same colormap.
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Figure 3.9: The data of the airplane is a 3D plus time variable that is sampled with high temporal
resolution (1 value of data per minute), so we had to regrind it to the simulation resolution of interest
in order to perform comparison or data assimilation with the model. By default, The LEnKF in the
LOTOS-EUROS receives in situ measurements in a structure that permits recall of the geoposicioning and
magnitude of the concentration once the filter is working. The data is hourly, and per grid averageded

ample of the quality flags ga values. A quality flag ga for the retrieval is a value
provided for each pixel recovered; this number might be between 0 and 1, where
1 is the perfect quality data retrieved scene, and 0 is the worst. This quality qa
value is mainly determined by the presence of clouds above the pixel. When the
qa value is > 0.75, cloud-covered, partially snow/ice-covered errors and problem-
atic retrievals are removed. A ga-value > 0.5 indicates good-quality retrievals over
clouds and scenes covered with snow/ice, which is helpful for model comparison
and assimilation studies. For this comparison, the quality flag ga was configured at
0.75 to avoid artifacts that do not necessarily correspond to NO, concentrations.

To see the effects due to the quality filter in this region, Figure 3.2 shows the
comparison of the TROPOMI output in the first left column and the simulation kernel
transformation for two different grid resolutions ( 0.09 °,0.5 °) and the scatter plot
between the tropospheric column density of the satellite and the LOTOS-EUROS
simulated column density, showing a large divergence between the satellite simu-
lated data and the model output. After downloading the offline TROPOMI TM5-MP
/ DOMINO data from (www.temis.nl) [21], a pixel quality flag ga selection was
applied. However, [7] recommends using pixels with a ga value of 0.52 or higher
for data assimilation and model comparison studies.

Data assimilation must get the accuracy of the observations. Van Geffen et al.
contains an in-depth examination of how uncertainty emerges throughout retrieval.
Inaccuracies in the TROPOMI observations result from the three stages of the re-
trieval method described previously: errors in quantifying slant columns, errors in
separating the stratospheric and tropospheric components of slant columns, and er-
rors in tropospheric air mass factors. The overall error is provided in the TROPOMI
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Figure 3.10: TROPOMI NO, vertical column density. Right panel, TROPOMI Offline level 2 data for the
overpass over Colombia on 2019-04-02. Center panel, as before, zoomed over Bogota and Medelli, the
two largest (population-wise) Colombian cities. Right panel, quality flag values for the corresponding
data.

data product.

For data assimilation, it is essential to get estimates of the accuracy of the obser-
vations. An in-depth assessment of how uncertainty arises throughout the retrieval
is available in [7]. Slant column errors, errors in differentiating stratospheric and
tropospheric components of slant columns, and tropospheric air-mass factors errors
contribute to the overall error. In the TROPOMI data product, the total error per
pixel is given.

Figure 3.11: Available pixels with NO, data for (a) April, (b) May and (c) June 2019 with a quality flag
of 0.75 and a grid resolution of 0.05°. The areas of unavailable pixels clearly demarcate the Andean
corridor during the month due to the high cloudiness of this mountainous area during these months,
which is a common situation throughout the year.

In the figure presented, labeled (a), (b), and (c), we show the spatial distribution
of available pixels containing NO, data for April, May, and June in the year 2019,
respectively. These data are presented with a quality flag of 0.75, indicating a
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reliable dataset, and have been spatially resolved to a grid resolution of 0.05°. What
is striking about these visualizations is the clear delineation of areas where NO, data
are unavailable, particularly within the Andean corridor. This lack of data is due to
the persistent high cloud cover in this mountainous region during these months, a
climatic characteristic that persists throughout the year. The figure illustrates the
challenges of obtaining air quality information in regions with frequent cloud cover.
It highlights the limitations and considerations essential for accurate environmental
monitoring and assessment.

3.3.2. TROPOMI versions comparison

The comparison of the OFFL and PAL TROPOMI versions over Colombia shows
differences that were compared with the Google Earth information. The Y, is the
satellite value. The comparison shows two points corresponding to an open pit
mine in Colombia and a presumably large body of water with high eutrophication
activity.

0 5%10- 10 2x10% 2x104 -2x105 -1x10° 0 10°  2x10° 5%10-° 10 2x10*  2x10°
(mol m-2) OFFL-PAL (mol m-2) (mol m-2)

Data Mi 1075, Max = 2x10°5

Data Min = -2x10°, Max = 1x10"*

Figure 3.12: (a) shows the value of the OFFL version and (b) shows the PAL version and (c) the
comparison of Y,. average tropospheric vertical column of nitrogen dioxide.

The Y, is the model value integrated with the observations. Here an area that
pointed out is located at the south of the country over a river due to the fluvial
transport.
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Figure 3.13: (@) shows the value of the OFFL version and (b) shows the PAL version, and (c) the
comparison of Y, grid cell averaged simulated retrieval column of nitrogen dioxide.

3.3.3. TROPOMI LEnKF Data Assimilation

Figure 3.14 shows a spatial comparison of NO, total column simulations over the
Colombian domain, with and without the application of data assimilation techniques.
The number of ensembles used in this experiment was 12, generated by applying
stochastic noise to NO, emission inventory values. The spatial localization of the
filter was 15 km, and for the temporal correlation, 1 day was set to have persistence
in the emissions, which means that the effect of the parameter update maintains a
residual effect that is transferred to the following day until the next satellite overpass
that generates a new update of the parameters.

In the upper left corner of the figure, we observe the full column simulation for
NO, without the influence of data assimilation, showing the baseline representa-
tion. In the upper right corner, we show the simulation incorporating the TROPOMI
data through the LEnTKF data assimilation method, demonstrating the improved
accuracy achieved through assimilation [22, 23]. For this experiment, 12 ensemble
members were used with a localization radius of 15 km. The emission factor param-
eters evolve in a stochastic model, which converges to the values suggested in the
estimation process. The unassimilated dc parameters are shown in the lower-left
corner, maintaining a consistent nominal value of 1 without affecting the base-
line emissions. Meanwhile, we visually represent the parameter changes resulting
from the data assimilation process in the lower right-hand corner, highlighting the
refinements introduced. Finally, the lower middle panel shows the satellite data
corresponding to this specific time, providing an additional perspective on the ob-
served NO, levels in the region.
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Figure 3.14: Figure 1: Spatial Comparison of NO, Total Column Simulation with and without Data Assim-
ilation for the Colombia Domain. The total column simulation for NO, without data assimilation is shown
in the upper left corner. The simulation assimilating TROPOMI data using the LEnKF data assimilation
method is displayed in the upper right corner. The lower left corner illustrates the unassimilated dc
parameters, which remain at a nominal value of 1 without affecting baseline emissions. The parameter
maodifications resulting from data assimilation are presented in the lower right corner. Satellite data is
depicted in the lower center panel for this specific moment.

The following section explains the custom electronic development of the low-cost
sensor device for air quality monitoring in the Aburra valley, another observation
resource to assimilate.

3.3.4. Low-cost sensor hardware architecture
The module used to develop this network is called Simple-4. This device’s electronic
architecture evolved from the Simple-3 architecture created in 2018 and the previ-
ous before (Simple-3, Simple-2, Simple-1, Simple-0) [24, 25]. The Simple Missions
represent projects based on the CanSat development (a CanSat is a standard pico-
satellite form factor soda can satellite), with a cylindrical array structure, a mass of
approximately 250 grams, and a volume of approximately 330 cubic centimeters.
While originally designed for deployment aboard rockets or weather balloons, the
CanSat-inspired design results in rugged, modular, robust, non-invasive measuring
devices that are highly efficient in their communication approaches and energy use.
The subsequent developments to this module facilitated the use of different
communications modules and protocols, increased the number of sensors in the
payload, and improved the energy system, which consists of an independent board
from the previous payload subsystem. The attributes of the modules make them for
deployment as remote measuring stations. Figure 3.15 shows the Simple-4 diagram
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schematic system.

The different subsystems are explained below:

SimpleVital - On-Board Data Handling (OB&DH). The OB&DH manages, stores,
and sends information from the other electronic subsystems to the ground segment
through the communication subsystem. This board contains an 8-bit microcon-
troller that communicates employing standard protocols such as Serial, I12C (Inter-
Integrated Circuit), and SPI (Serial Peripheral Interface) to peripheral units such as
GPS (Global Positioning System), IMU (Inertial Measurement Unit), barometer, and
temperature and communicates with the subsystems of EPS, Payload, and COMM
(Communications). Furthermore, this subsystem is responsible for formatting the
data for storage in SD memory. This four-layer Printed Circuit Board (PCB) design
promotes the integration of more components per area.

SimplePower - Energy Power Subsystem (EPS). EPS regulates the power of
satellite subsystems. The charge is stored in a battery bank with 20000 [mAh] in
this module. This battery supplies between 3 and 4.2 volts, raised to 5 volts, to be
distributed to other subsystems and a stage for overcharge protection. Additionally,
this subsystem controls the power supplied by the solar cells (solar array interfaces)
through a DET (Direct Energy Transfer) architecture; this enables the extension of
the operation time of the module thanks to the additional power already available
in the batteries.

SimplePollution - Payload Subsystem. This subsystem is composed of a sen-
sor (MICS-6814) that measures the concentration of gases such as CO (Carbon
monoxide), NO, (Nitrogen dioxide), C,H;OH (Ethanol), H, (Hydrogen), NH; (Am-
monia), CH, (Methane), C;Hg (Propane), and C,H;0 (Iso-butane), in addition to
these two SPEC ™sensors for measuring NO, and O; thermodynamic variables such
as relative humidity and temperature.

SimpleCOMM -Communications Subsystems. In particular, the Simple-4 de-
sign features three different types of radios (LoRa Tx / Rx @ 915 MHz, Dorji Tx / Rx
@ 434 MHz, and Radiometrix Tx / Rx @ 434 MHz). Besides, it incorporates Wi-Fi
technology. In terms of communication having different radio possibilities allows
greater autonomy and modularity in the network and the capabilities to support
long, medium and low-range transmissions. Two references were used, a 144 MHz
Very High Frequency (VHF) and 434 Ultra High Frequency (UHF). Both frequencies
used Narrow Band FM (NBFM) and Audio Frequency Shift Keying (AFSK) modulation
at a 1200 baud velocity using the AX.25 (Amateur X.25) protocol, supporting the
use of an Automatic Packet Reporting System (APRS) packets for real-time digital
communications, thus permitting Tx/Rx coverage. Communication links generated
between the Simple-4 CanSat picosatellites and the gateway station ensured a min-
imum vertical line-of-sight communication range of 300 meters without multipath
propagation, rain fade, and attenuation for vegetation phenomena.

3.3.5. Hardware development

The simple-4 device is made up of 5 Printed Circuit Boards PCBs, each one of them
housing a subsystem. The first is one 4-layer PCB called SimpleVital, corresponding
to the Command On Board & Data Handling (CB&DH) subsystem. The second is
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Figure 3.15: Flowchart with the various subsystems that comprise the Simple-4 partial centralized ar-
chitecture. The Energy Power Supply (EPS) subsystem with the Maximum Power Point Tracker (MPPT)
module controls the charge and discharge cycles of the battery and the load consumption. A dedi-
cated microcontroller collects the payload information and, once the data is preprocessed, is delivered
to the On Board and Data Handling (OB&DH) to command the communication subsystem. The other
secondary system is the thermal monitoring system, a transversal support system conformed by the
different thermal sensors in each Printed Circuit Board (PCB) layer.

a three 2-layer PCBs called SimplePayload (Gases / Pollution), the third one the
SimplePower (Energy Power Supply (EPS)), the fourth is the SimpleBattery (Battery
bank), and the last the SimpleCOMM (Communications Subsystems (COMM)). All
those are shown in Figure 3.16

The information transmitted (TX) from the Simple units is received in a gateway
(RX) that uploads the information to the cloud service. Different long-range tests
were developed in the Aburra Valley intending to guarantee the success of the net-
work communication challenges as the abrupt terrain as well as possible obstacles,
assuring the maximum distance of 18 km from the (TX) location in Bello (Baldias)
to the gateway node (RX) in Universidad EAFIT.

3.3.6. Low-cost sensor network evaluation

The nodes established contact with the web server through the configured gateway
in the Universidad EAFIT with an incremental distance to understand the system’s
operation under different types of antennas (Figure 3.17). In this process, two types
of antenna, centered and not centered in frequency, were used in two configurations
to determine the type of antenna with the best performance. The measurement of
the intensity of the signal was compared with the theoretical electromagnetic signal
propagation models.
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(a) (b) (C] (d)

Figure 3.16: The two sides of the PCB, top and bottom, of the a) SimpleVital (Command On Board &
Data Handling (CB&DH)),b) SimplePayload (Gases / Pollution),c) SimplePower (Energy Power Supply
(EPS)),d) SimpleCOMM ( Communications Subsystems (COMM). See the main text for description of the
different subsystems.

Test Location TX(Latitude/Longitude) Name Location RX(Latitude/Longitude) Name
Distance (m)

1 6°15710.9" N /75°34'52.1" W Suramericana, Medellin 6°11/33.0" N/ 75°34'03.1 W Los Balsos, Medellin
3910 6°16/51.5"” N /75°36'50.1" W La Aurora, Medellin 6°11/33.0" N/ 75°34'03.1 W Los Balsos, Medellin
;1':: 6°16/51.5” N /75°36/50.1" W La Aurora, Medellin 6°09 '13.2" N/ 75°32'41.7 W Alto las Palmas, Envigado
15,

Table 3.1: Locations selected for the long-range transmission test. This gradual increase in successful
experiments assures us of the long-range and stable communication link possible with the modules.

In Figure 3.17, in the left image, we examine the relationship between the
vertical cut, earth contour, and the Fresnel distances. The x-axis corresponds to
the distance in kilometers from the transmission point. In the center, it shows the
spatial intensity in the Aburra Valley with the transmission (TX) and reception (RX)
points, and in the right image a model created using different signal intensities
and antenna types at different experimental locations to understand the spatial
transmission intensity patterns and develop an accurate model for the region.

We conducted different tests to ensure the module’s long-term performance and
reliability. A thermal camera monitors the electronic Printed Circuit Board (PCB)
during complete operation cycles. This enabled us to detect deviations from the
nominal operating temperature, as shown in Figure 3.18 (a). By identifying compo-
nents that were not functioning properly, we were able to take proactive measures
to prevent future malfunctions and energy losses.

Additionally, this testing allowed us to identify any potential issues, helping to
ensure the longevity and effectiveness of the module. By regularly monitoring the
temperature of the PCB and its components, we were able to catch any abnor-
malities early on and take corrective action to maintain the overall efficiency and
reliability of the system. Overall, this testing was critical in ensuring the long-term
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Figure 3.17: a) Vertical cut and Fresnel distance. (b) Spatial intensity over the Aburra Valley and (c)
model generated from the different signal intensities and experimental locations.

capabilities of the module and safeguarding against costly and inconvenient mal-
functions. Moreover, Figure 3.18 (b) and (c) show some images of the integrity
tests carried out in the chamber for the IP5X IP6X evaluation. These tests are es-
sential to ensure the long-term viability of the hardware because they expose the
equipment to drastic conditions because the location sites surrounding the valley
are not supposed to be visited frequently.

Figure 3.19 shows the time series comparison between the Vaisala AQT400 unit
and the module developed for this project for the Ozone, NOx gasses, humidity,
and temperature from two sensors. The data from the module overestimated the
Vaisala measurements, and once the calibration algorithm is applied, the corrected
value is also depicted.

° Celsius

° Celsius
%

A A AN A

—— Simple
—— Simple - C
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Figure 3.19: Time series comparison for Simple-4 (the grey line is the value measured, and the blue is
corrected) for the barometer temperature, humidity, and temperature (upper panels) and NO, and O,
(below panels) from the divide developed with the Vaisala AQT400 (black lines) ®calibrated equipment.
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The inter-calibration procedure validated the performance of the sensor under
investigation. The sensor was compared with reference sensors to determine ob-
servation error and accuracy. Results showed error margins within 10% of nom-
inal, considered acceptable for use in the data assimilation algorithm. The inter-
calibration contributed to the robustness of the study’s findings by ensuring the
reliability of the sensor data.
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Figure 3.18: (a) Infrared thermal images under operations for different operation routines of the devel-
oped module. IP5X IP6X test for the device. (b) Temperature and Humidity stationary chamber test.
(c) Dust and wind tests.

3.3.7. Airborne data acquisition, model comparison, and as-
simillation

The provided figure presents qualitative comparisons of particulate matter 10 (PM10)
concentrations between the LOTOS-EUROS model and the low-cost sensor deployed
during the HIPAE mission at varying altitudes. The altitudes are categorized into
four ranges: (a) 0-1500 meters, (b) 1500-1850 meters, (c) 1850-2200 meters, and
(d) 2200-2550 meters. The comparison highlights the agreement or disparities in
PM10 levels between the two measurement methods, shedding light on the sen-
sor’s performance across different altitude bands. These visual insights contribute
to a comprehensive understanding of PM10 distribution in the atmosphere over the
Aburra Valley

Figure 3.21 shows the NO, concentration through the flight trajectories of the
Caravan aircraft, using assimilation techniques within the LOTOS-EUROS model.
The upper panels show four different flight paths, with NO, concentrations in parts
per million (ppm) displayed on a color scale. The lower left corner introduces a
grid labeling system for precise spatial referencing and averaging of measurement
points. In the middle panel, a composite of airborne measurements, assumed to
be collected on the same day, provides a view of the NO2 distribution and pre-
pares the data for the assimilation experiment. Finally, the lower right corner high-
lights the column difference resulting from the assimilation of airborne data into the
LOTOS-EUROS model, highlighting the importance of data assimilation in refining




3. Measurements, the input needed in data assimilation for improving
76 models performance

LOTOS-EUROS

i
jﬁ
H

HIPAE

> Ee——— S E—— — 1

(a) (b) (©) (d)

Figure 3.20: Comparisons at different altitudes between the LOTOS-EUROS and the low-cost sensor
carried in the HIPAE mission for altitudes between 0-1500 (a), 1500-1850 (b), 1850-2200 (c), and
2200-2550 (d) for concentrations of particulate matter 10.

atmospheric modeling and elucidating the impact on NO2 dispersion dynamics.

3.4. Discussion and conclusion

The previous modeling of atmospheric composition dynamics in the Aburra Valley
showed inconsistencies in concentration and deposition fields based on the mete-
orological input to the CTM. Accurate meteorology suggests a reduced simulated
concentration from the previous ECMWF meteorology used for this valley. Although
emissions and meteorology are relevant dynamics in these models, the detailed
emissions inventories contain high uncertainty, so the developments of a DA sys-
tem like this oriented to emission estimations bring a region a capability.

Air quality data at the top of the Valley’s surrounding mountains are nonexistent,
and the transport hypothesis from the valley still needs to be explored experimen-
tally. In 3.19 the measurement unit’s first deployment campaign in the valley’s
surrounding mountains is shown. A comparison of the particulate sensor (pm10)
of the device against two sensors, one inside the valley (Est 295) and the other
outside (Est 152), is shown in the right image. This low-cost sensor ground-based
measurement could be a feasible solution to increase data availability from non-
connected areas. It will be validated if evidence corroborates these contradictions
in these difficult-to-reach areas.

Air quality modeling and monitoring are crucial for understanding the sources
and distribution of pollution. Incorporating additional spatial and temporal infor-
mation into model simulations can improve predictions. However, the lack of mon-
itoring in certain areas and the dependence of particulate matter simulation impact
on meteorological modeling accuracy pose challenges for fully understanding air
pollution. These findings underscore the need for continued research in this field
and motivate us to develop a low-cost monitoring system that enables us to get
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Figure 3.21: The figure shows an example of 4 flight trajectories in the upper panels, with the NO,
variable shown in ppm in the color scale. In the lower-left corner, the grid label is used to mark the
locations and average the values of the measurement points within. In the center bottom panel is a
composition of the measurements; for the experiment, we assume that all airborne measurements were
taken on the same day. In the lower-right corner, the column difference between the LOTOS-EUROS
assimilation of the airborne measurements and the LOTOS-EUROS without assimilation.

this valuable information.

The simulation perspective gives some ideas for this kind of network to verify
the predicted removal dynamics corroborating from the observation point of view
through DA and validation activities. DA activities have been reviewed for this re-
gion in [26], analyzing the state-of-the-art and the subsequent state applicable to
the Tropical Andes region. DA has been applied in the Aburra Valley since 2019
[27] for a high-resolution experiment assimilating particulate matter observations
with the LOTOS-EUROS CTM using an ensemble-based technique. From this first
DA experiment, the urgent need to expand the data sources on atmospheric pol-
lutant concentrations was identified to improve the performance models at local

—— pm10 - Columbus
pm10 - Est. 152
pM10 - Est. 295

(a) (b)

Figure 3.22: (a) Locations of a Simple 4 compared with two sensors of the SIATA network at two altitudes
in the southeast part of the Aburra Valley. (b) PM10 concentrations as a function of time for the three
sensors, and this indicates the highest pollution levels inside the Valley.




3. Measurements, the input needed in data assimilation for improving
78 models performance

and regional scales. Low-cost sensors are gaining importance through the years
for managing air pollution in the cities [28]. Therefore, more and more electronic
technology of this kind is gaining respect and complementing operative air quality
networks. Problems such as calibration have recently been reviewed, and method-
ologies such as [29] can be applied to assess network data through calibration
models or specific tools designed to evaluate low-cost gas sensors [? ]. Also, the
correction of hysteresis developed in [30] must be considered further for oxidative-
based sensors.

The network is designed to complement the existing air quality network in
the area based on various considerations and experiments to test the hardware
equipment. This rural network has design challenges such as energy autonomy,
case protection against water and dust for electronic equipment, and long-range
data transmission. The telemetry signal was analyzed using four radio propaga-
tion models and field measurements, allowing a more comprehensive understand-
ing of the network’s behavior and signal behavior in the region with this topog-
raphy. Simulations of energy charge and discharge cycles were used to deter-
mine the optimal configuration of solar cells and batteries, and additional stud-
ies were conducted on the IP degree of the system. The European Commission’s
Joint Research Centre (JRC) developed the PVGIS European power calculation tool
(https://ec.europa.eu/jrc/en/pvgis). PVGIS uses data from meteorolog-
ical models and satellite imagery to estimate the solar radiation a PV system receives
at a given location, considering the local weather conditions, solar panel orientation,
and tilt. This study demonstrated the utility of PVGIS for estimating the potential
energy production of PV systems for a low-cost autonomous air quality sensor. Our
results suggested that the valley’s west side may be optimal for PV systems due to
higher solar power availability. However, further research is needed to confirm and
expand upon these findings because, in this part of the paper, we had simulated
radiances for the past from PVGIS but not yet measured values in the installation
points; nevertheless, the simulated values gave a helpful design input.

Airborne data assimilation is an emerging field in Colombia, and this work rep-
resents a pioneering effort. While it's a significant first step, further studies are
required to validate the conditions for collecting in-situ data from small aircraft.
Stemming from this thesis, a project was initiated to enhance the electronic hard-
ware, exploring a range of sensors and optimizing the airflow into the equipment’s
measurement chamber.

There's a pressing need for further research in comparing data with models and
other meteorological and air quality sensors. Establishing this innovative network
in high-altitude tropical regions promises to offer crucial empirical data for data
assimilation. Beyond this endeavor, there’s an ambition to set up similar sensors
in Colombia‘s untouched ecosystems. Taking advantage of the network’s extensive
transmission range and energy autonomy, we aim to remotely track the spread of
urban pollutants. The network’s geolocation features and data offerings can also
promote data assimilation studies, aiming for heightened spatiotemporal resolution.
By extending this network to more regions, we aspire to amplify its potential in mon-
itoring urban pollution influx, thereby deepening our insight into the environmental
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repercussions of these contaminants.
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4DEnVar Data assimilation
of TROPOMI for parameter
estimation

Perhaps some day in the dim future it will be possible to advance the
computations faster than the weather advances and at a cost less than the
saving to mankind due to the information gained. But that is a dream.

Lewis Fry Richardson

In this chapter, we present the development of a 4D-Ensemble-Variational
(4DEnVar) data assimilation technique to estimate top-down NO, emissions
using the regional chemical transport model LOTOS-EUROS with the NO, ob-
servations from the TROPOspheric Monitoring Instrument (TROPOMI). The as-
similation was performed for a domain in the northwest of South America
centered on Colombia, also considering regions in Venezuela and Ecuador.
In the 4DEnVar approach, the linearized and adjoint model implementation is
avoided by generating an ensemble of model simulations and using this en-
semble to approximate the nonlinear model and observation operator. Emis-
sion correction parameter locations were defined for positions where the model
simulations showed significant discrepancies with the satellite observations.
The 4DEnVar method was first implemented in the Lorenz96 model to test it
in a more controlled scenario. Afterward, optimal emission parameters for

Parts of this chapter have been published in - Yarce Botero, A., Lopez-Restrepo, S., Pinel Pelaez,
N., Quintero, O. L., Segers, A., Heemink, A. W. (2021). Estimating NOx LOTOS-EUROS CTM Emis-
sion Parameters over the Northwest of South America through 4DEnVar TROPOMI NO2 Assimila-
tion. Atmosphere, 12(12), 1633. https://doi.org/10.3390/atmos12121633
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the LOTOS-EUROS model have been estimated using the 4DEnVar data as-
similation method, allowing for corrections in areas where ground observa-
tions are unavailable. The emission inventories of the region do not correctly
reflect current emissions activities, so estimating emissions using different
approaches helps reduce uncertainties in this field. The analyzed 4DEnVar
concentration was compared with the ground measurements of one local air
quality network and the OMI satellite instrument. The assimilation had a
low impact on surface concentration, primordially enhancing the spatial and
temporal variations in the simulated NO, fields.
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4.1. Introduction

Colombia is demarcated by the Andes mountain range divided into three branches,
with peaks up to 5750 m.a.s.l. This terrain is very rough with variable heights cov-
ered with rainforest, a suitable territory for generating clouds. The high-density
information of NO, instruments such as the TROPOspheric Monitoring Instrument
TROPOMI (https://www.tropomi.eu/) increases the potential use of NO, air
quality information over this region. However, the high levels of cloudiness in the
area continue to be a significant problem for retrieving pollutants, as discussed in
Chapter 3.

A recent review on using CTM’s in the tropical Andean region [1] highlighted

the difficulties in modeling atmospheric chemistry in tropical regions with abrupt
topography. Previous work in Colombia used the WRF-Chem CTM to evaluate the
dynamics behind high PM,, and PM, ¢ episodes under different meteorological con-
ditions for the city of Bogota [2]. Other works include exploring methane emission
sources using satellite data [3] and the dispersion of chemicals such as CO within
the Aburra Valley [4]. Barten et al. [5] estimated NO, sources and sinks in Colom-
bia for 2014 at a 1°x1° resolution using WRF-Chem and OMI satellite observations,
identifying lighting as the main contributor to the total nitrogen emission budget.
Surface NO, concentrations in Colombia were estimated from simulations of the
global model GEOS-Chem CTM (resolution 2.5°x2°) and OMI NO, column mea-
surements for the year 2007, resulting in the identification of biomass burning as a
significant source of atmospheric NO, [6].
LOTOS-EUROS is an open-source CTM used for a wide range of applications around
the world [7, 8], to support scientific research, regulatory programs, and air quality
forecasts[9]. LOTOS-EUROS has been included in various model inter-comparison
studies and has been tested for the assimilation of ground-based data and satellite
observations [10]. Further details about the LOTOS-EUROS model can be found in
Chapter 1. This model has been implemented for DA in studying the dynamics of
contaminants in the city of Medellin and the Aburra Valley [11].

Data Assimilation (DA) is the mathematical technique that integrates observa-
tions into numerical model simulations, alleviating the model’'s weaknesses by im-
proving parameter and state representation and estimation [12]. In this chapter,
we present the development of a 4D-Ensemble-Variational (4DEnVar) data assim-
ilation technique [13] assimilating satellite data to estimate, through a top-down
approach, emission factors for the LOTOS-EUROS CTM. A more detailed explanation
about DA in general can be found in Chapter 1.

This chapter presents the development of a 4D-Ensemble-Variational (4DEn-
Var) data assimilation technique to estimate top-down NO, emissions using the
regional chemical transport model LOTOS-EUROS with the NO, observations from
the TROPOspheric Monitoring Instrument (TROPOMI). The 4DEnVar emerged in
the Numerical Weather Prediction (NWP) institutions to circumvent the large-scale
dynamical model’s adjoint development. 4DEnVar combines ensemble information
with the variational method, avoiding the explicit development of the observation
and forward model adjoint operators or its linearization [14].
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The incremental 4Dvar adjoint-free data assimilation procedure, known as 4DEn-
Var, was implemented for the first time using the TROPOMI satellite in conjunction
with the LOTOS-EUROS CTM for the Tropical Andes domain. The objective of this
implementation was to estimate parameters that correspond to the emission rate
of a particular compound, in this case, NO,.. The parameter emission update has
substantially enhanced the agreement between the simulated and observed NO,
fields; this ensures that The data assimilation implementation effectively extracts
NO, emissions from concentration measurements. Although satellite data for this
region have not been used due to the abruptness of the topography causing high
cloud cover, we can show how a data assimilation technique can exploit the rela-
tionships between observed and unobserved states of a chemical transport model to
improve its representation. Readers should be careful in interpreting the emissions
presented here.

This chapter is organized as follows. The following section 4.2 presents the
4DEnVar mathematical formulation for the experiments. The emission uncertainties
perturbation model that will drive an ensemble of CTM simulations is explained. At
the end of this section, an overview of the data used for validation is presented.
Subsequently, the results of the 4DEnVar assimilation experiments are described in
Section 4.3, focusing on estimating the optimal emission factors and the impact on
the model simulations. The final section 4.4 summarizes the results and discusses
the usability of this kind of data assimilation technique for future applications.

4.2. Methods

4.2.1. Lorenz 96 model

Small-scale models with chaotic properties and nonlinear behavior are useful to test
data assimilation techniques, such as the Lorenz 96 model. Unlike its predecessor,
the Lorenz 63, the 96 version is useful for generating a custom number of states
from its recursive mathematical formulation. It is defined for i = 1,..,n where n is
the state number with the following expression:

dxl-
r = @i~ X)X — X (4.1)
The index i is cyclic, which means that x_; = x,,_,,%x, = x, and x,,,; = X;. X;
is the state system. The model is highly non-linear and has a strong state-to-state
coupling

4.2.2. Chemical Transport Models

Chemical Transport Models (CTMs) are used to simulate and forecast air quality to
understand the contaminant dynamics in the atmosphere. CTMs are multivariate
models incorporating hundreds of gaseous species and aerosols and their related
reactions [12]. Persisting uncertainties associated with emission parameters and
numerical approximations of certain model dynamics prevent the exact simulation
of reality from CTMs [15—-17]. Accuracy in emission inventories is fundamental for
proper simulations, yet inventories are generally outdated and principally generated
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through bottom-up approaches [18-20].

Data assimilation methods for CTMs are inspired mainly by meteorological DA
experiences [12]. Many successful applications have demonstrated the benefits of
DA for CTMs, either to produce re-analysis fields and forecasts or with the focus
on improving the accuracy of model inputs (such as initial conditions, boundary
conditions, emissions) [21]. A common characteristic of these applications is that
in regional air-quality simulations, the influence of initial conditions quickly fades
over time, as emissions and lateral boundary conditions primarily determine the
model fields [22].

Techniques in DA follow either variational or sequential approaches. The varia-
tional approach optimizes a cost function that calculates the mismatches between
the model and the observations. In contrast, the sequential approach is progres-
sively updated, reconciling the state using the uncertainties defined for the simu-
lated state and the observations [23—25]. A considerable drawback of variational DA
is the requirement for a direct model adjoint representation, prohibitive for large-
scale models (~ 10 — 10° state elements), and very expensive to maintain [12].
Hybrid approaches tackle this problem, aiming to take advantage of the character-
istics of each method [24, 26]. Ensemble-based approaches avoid the construction
of tangent linear and adjoint representations of the forecast model (e.g., [27]),
which is interesting for low-budget operational scenarios using numerical models.
Emili et al. give details on the 4DEnVar methodology and its application to highly
nonlinear reactive species in chemical transport data assimilation and state that the
emissions are often the most uncertain but also most influential parameters.

Data assimilation experiments with the LOTOS-EUROS CTM mainly used an
Ensemble Kalman Filter (EnKF) approach, with most of the applications over Eu-
rope [28-30]. In Colombia, the LOTOS-EUROS CTM has been used since 2017
[31], including studies on the assimilation of surface network observations using an
ensemble-based LEnKF technique for particulate matter forecasts [11, 32]. Recent
applications use variational approaches with the LOTOS-EUROS model in estimating
volcanic ash emissions [33? ] where the vertical profile of volcanic ash injections
was estimated using variational techniques that did not require the implementation
of the adjoint model (Traj-4DVar). Jin et al. [34] used the LOTOS-EUROS model
over China to assimilate satellite data to improve the simulation of dust transport
from the Gobi Desert to Chinese cities, proposing an adjoint-free 4DVar technique
for dust emission parameters estimation.

In this chapter, we used the LOTOS-EUROS CTM to simulate NO, concentra-
tions over North-South America, modifying the simulations through 4DEnVar satel-
lite data assimilation for emission parameter estimation. The emission parameter is
the quantity responsible for modifying the emission inventories over a region. The
increasing availability of observations from both satellites and ground-based instru-
ments allowed reducing the uncertainty of atmospheric chemistry models in many
applications [27]. The reason to incorporate these measurements is to improve
the numerical models and induce parameter estimation capabilities to overcome
the complex tasks of emission inventory development. The principal advantage of
the 4DEnVar technique is that it does not require an adjoint model and could also
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allow for the introduction of generic model errors by adding stochastic perturba-
tions during the propagation of the ensemble [27]. The variational technique helps
assimilate the many observations produced from each satellite overpass, iteratively
searching for the optimal values of the quantity of interest.
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Figure 4.1: The left is a Conceptual illustration of simulation domains and vertical extent and the center
and Right, is a conceptual state representation in the gridded model of the column being sampled by
the observation operator H}, (6e) relatedto the emission factor Se.

To validate the results, two sources of information were used. First, the ver-
sion 4.0 Aura Ozone Monitoring Instrument (OMI) Nitrogen Dioxide (NO,) Stan-
dard Product (OMNO2) was used to calculate the tropospheric NO, vertical column
density (VCD) time-series, which can be found at (https://disc.gsfc.nasa.
gov/datasets/0MNO2) . Secondly, SIATA (Sistema de Alerta Temprana del Valle
de Aburra), a network of sensors that offer air-quality measurements for different
pollutants in the atmosphere across the Aburr'a Valley region such as 03, SO2,
PM10, PM2.5, and PM1. The network is spread across the five most populous mu-
nicipalities in the Aburr'a Valley, with most of the measurement stations in Medellin
inside them into the perimeter demarcated by the mountains of the Valley. SIATA
has ground-based sensor measurements of NO2, with stations along the Valley from
SIATA's data portal, available at (https://siata.gov.co/descargasiata/
index.php/index2/).

4.2.3. 4DEnVar Data assimillation
The 4DEnVar DA technique solves several variational analyses in parallel, intro-
ducing flow dependence in the 4DVar DA technique [13, 35]. Multiple trajectories
generated through the emission factors' initial parameters’ perturbations spawn an
ensemble space for the analysis update to estimate the initial parameters gradually
through an incremental perspective and a flow-dependent background covariance.
A work that points out details about the viability of a 4DEnVar method dealing
with highly nonlinear reactive species in a chemical transport data assimilation could
be found in [27]. This work details the viability of a 4DEnVar method dealing with
highly nonlinear reactive species in a chemical transport data assimilation.


(https://disc.gsfc.nasa.gov/datasets/OMNO2)
(https://disc.gsfc.nasa.gov/datasets/OMNO2)
https://siata.gov.co/descarga siata/index.php/index2/
https://siata.gov.co/descarga siata/index.php/index2/
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Let x, € R™! and x” represent the states and parameters of the LOTOS-EUROS
model, and the background state at time t respectively. The state x, results from
propagating the previous state x,_; one time step using the non-linear model op-
erator M,_; ;:

Xy = Mt—l,t(xt—l)' Xy ~ N(Xg'B): (4.2)

Let y, € R™* be the set of m number of observations made at time t. y, is
related to x; via the observation operator H,:

Yt = Htxt + vt, Vt ~ N(O, Rt), (4.3)
The mathematical method 4DEnVar was introduced by [13] and its initial for-
mulation comes from the 4DVar method presented in Chapter 1. The cost function

described in Eq. 1.4 which is a functional of the n parameters in the augmented
quantity x, over a time window, is defined fromt=0tot =T:

T
1 1
I®e) = 5l1%0 =Bl +5 ) l1ye — Hem I, (4.4)
t=0
where B is the n x n background-error covariance matrix and R; corresponds to
the m x m observation-error covariance matrix. In an incremental formulation for
an updated state from the background state, a state x, is estimated as follows:

x, = X + 6x,, (4.5)

with §x, being the increment in the state x,. Substituting Eq. 4.5 into Eq. 4.4
leads to:

_1,.b b 1$T b
J(8%o) = SIIx] + 6% — ] lIg-1 + 5 Xeo lye — Hex + 5xtllf2t—1

1 1 T b
= ;180131 + 5 Teoo lIye — Hexp — Hedx )% -,

(4.6)

Equation 4.6 represents the incremental strong-constraint 4DVar cost function. Min-
imizing J gives particular values of 6x,. The cost function in (4.6) could be written
in terms of the initial increment 6x, like

T
1 1
JGx) = S16%elI31 + 5 Y llye — Hx! + HMoomoll%, o (47)

t=0

where M, 1) is the tangent linear model. The increment is now transformed by what
is known as a control variable §X,,, from §x, = U§X,,,, which is associated with
the model space variable 6x, and U the Control Variable Transforms (CVTs), which
is a workaround to represent the covariance matrices needed without knowing them
explicitly[14]. Substituting this transformation in Eq. 4.6 generates the following
preconditioned cost function:

T
1 1
J((ngar) = Elluaxvar”]z;—l + E Z ||Yr - Htxi) - HM(O,t)Uvaarlllzzt—li (48)
t=0




90 4. 4DEnVar Data assimilation of TROPOMI for parameter estimation

The next step consist of replacing the CVTs in Eq. 4.8 and use U = B'/2, having
the covariance matrix of the first term like B = UUT:

T
1 1
J(axvar) = E”Uaxvar”?UUT)ﬂ + E Z ||Yt - Htxlt) - HM(O,t)Ué‘xvar)”lZQ;l (4-9)
t=0

If we develop the first term in Eq. 4.9 we have:

0B s ar Pty = 2 (U8 X pq) (UUT) ™ (US X )
= l(‘S-x‘var)TI(‘S‘X‘var) (4.10)
16X parllf,

>l

We now create an ensemble of N realizations of §x, from a N (0, B) distribution and
approximate B by the covariance of this ensemble with X? € R™" equal to :

1

B~
vN —1

N
: : T
Z sxiTToxl = X0 XP (4.11)
i=0
Using U ~ X? in the cost function, Eq. 4.9, we have:

J(6Xpar) = FIK 8 X parliZgn goyryr + 5 Drmo Ve — Hex? — HMo X6 X yqrllZ -1
= J16X0arlif + 5 Zeo lye — Hex = Ye8Xqr 12 -
(4.12)
The core assumption, the need for the tangent linear model, is avoided. To
minimize the cost function, the gradient is formulated using an ensemble of model
simulations as follows in [14]:

1 . _ __
JN -1 (Ht(Mo,t(‘SXB)) ~— Y Ht(Mo,t(‘ngl)) - Yt) /
(4.13)

where y; is the model observation vector at time ¢ based on the ensemble mean.
The gradient of eq. 4.12 is calculated as follows:

Yt = HtM(O‘t)xb =~

T
VJ(axvar) = 6Xpar + Z Y?R_l(Yt - HtX? - Ytaxvar) =0 (414)
t=0

Solving Eq. 4.14 for 6 X, leads to:
-1

T T
5y, = _ZY{R—l(yt ~Hx")[1- ZYZR—lYt . (4.15)
t=0 t=0
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This algorithm is for cases where the number of parameters is not too large.
By setting the cost function gradient equal to 0, the system of equations for § X4,
can be obtained. This procedure can also be repeated, starting with the latest
estimates of the parameters, by generating a new ensemble of model simulations
by perturbing these parameters and by computing a new linear approximation of the
observation operator. For large-scale problems, this implementation is not attractive
from the computational point of view, and a gradient-based minimization algorithm
based on equation 4.12 is to be preferred.
Once 6.X,,, is estimated, the following expression calculates the increment of
the state:
Xy = X5 + 6%y = X0 + XP6 X4, (4.16)

The 4DEnVar methodology is used for estimating uncertain parameters. In our
application, the emissions are the major sources of uncertainty and are parameter-
ized by introducing multiplicative correction factors.

Let 5e € R™! with n the number of uncertain parameters, represent the un-
known LOTOS-EUROS emission correction factors. The emissions e; at time ¢ are
calculated according to:

e, = & (1 + be) (4.17)

with &, as the nominal emissions at time t from the emission inventory.

The choice of the emission correction parameters to be estimated and the quan-
tification of their uncertainty is critical in designing the assimilation system because
this should reflect the most significant uncertainty of the CTM model. Since chemical
species can be sensitive to physical and chemical processes, the primary uncertainty
source could differ depending on the species of interest.

The choice of the control variables should reflect the largest source of uncer-
tainty of the considered model, which is commonly associated with the model’s
initial state or chemical emissions. Therefore, its uncertainty is critical for design-
ing an appropriate assimilation algorithm that ensures the correct DA results [27].
Since different chemical species can be sensitive to different physical and chemical
processes, the primary source of uncertainty can differ from species to species.
[27]. Therefore, the initial conditions are chemical DA's most important control
variables. The emissions are often the most influential input parameters choice
as control variables [12], and in this chapter implementation, the emission factors
were also taken as the parameters to update.

The LOTOS-EUROS simulations exhibit different time evolution of the states of
the system in time when compared to real-life observations. This discrepancy is
mostly attributed to the uncertainty in the model emission parameters [32, 34].
As previously discussed, the available inventories are not accurate enough in the
region of interest. Accurate emissions for specific components such as PM, ¢ were
estimated only recently, for example, for cities like Medellin using an EnKF DA tech-
nique in [32]. Nevertheless, for the coarse domain inventories of other pollutants,
the emission inventories remain uncertain. Different perspectives have been taken
into account for the emission parameter estimation problem using satellite informa-
tion and data assimilation variational (4DVar) techniques ([36—40], and also from
the sequential (EnKF, OI) techniques [41, 42].
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4.2.4. LOTOS-EUROS model 4DEnVar setup

The basic idea of the 4DEnVar method is to estimate the sensitivities of the observa-
tions concerning changes in the parameters using the full observation model instead
of using the linear tangent model and its adjoint that is needed for the gradient cal-
culation. This is done by generating an ensemble of forwarding model simulations
that are used to obtain a linear approximation of the operator H; [12, 43].

In this chapter, the 4DEnVar methodology is used to estimate uncertain pa-
rameters. This chapter shows the viability of this method in dealing with a small
number of highly nonlinear reactive species such as NO, in a control scenario.

Using all the available observations, we want to estimate the emission correction
factors Se. First, the selection of places to estimate those parameters was made,
choosing 27 locations that are the main cities and other locations of interest, such
as open pit mines and refineries. After the successive implementation of one of the
techniques just described, the parameters §e can finally be calculated. The input to
this procedure is the CTM model, the satellite observations, and the parametrization
of the algorithm (window length, inner loops, convergence criteria), and the output
is the set of optimized parameters.

Start simulation
L Start 4DEnVar simulation Assimilation window

|
15 days for decide the areas to Model §| orom
: o . £ 13:30UTC
estimate emission parameters Spin-up i Y 2019
—
January 16 February 1 Februy& 2 February3
Assimilation window
.
\\‘ 33 Model 5 13:30UTC
Bi senue 32 bk
T T
February 2 February 3 February 4

Figure 4.2: Data assimilation (4DEnVar) procedure for emission parameter estimation. Simulations
were run for 15 days (January 16-31) before the data assimilation process started. In the window
February 1-3, the ensemble was propagated without assimilation, and in this new ensemble subspace,
the assimilation was performed for February 2-3 and 3-4.

Figure 4.2 shows the setup of the 4DEnVar assimilation process proposed for the
first days of February 2019. A simulation of 15 days over January 16 to February
1 was performed before data assimilation to identify the locations where emission
parameters require improvement. Data assimilations were performed over individ-
ual days (February 2 and 3). Each assimilation was preceded by a 1-day spin-up
period, where the simulated fields stabilized and became independent of the initial
conditions. During assimilation, the observations (satellite data available from the
TROPOMI instrument at 13:30 local time) were incorporated to estimate the value
of the initial emission factor parameters. The optimization procedure consisted of
an outer/inner loop iteration to reach the convergence criteria or the maximum
number of iterations defined to find the proper parameters. The iteration proce-
dure was terminated when the maximum iteration number was reached or met by
the minimal error criteria.

To perform the assimilation window, the 4DEnVar weighted an ensemble of 40
model trajectories generated from perturbing the emission factor parameters based
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on how much the ensemble matched the observations and the background state.
Based on its minimization procedure, a limit of 15 iterations for the inner loop of
the 4DEnVar implementation step was set. Incorporating more than 15 iterations
demonstrated no significant reduction of the cost function. The 4DEnVar result
(known as analysis in many data assimilation scenarios) is the model value for the
emission parameters updated in the previously chosen positions.

4.3. Results

This section is separated into three subsections. First, we focus on implementing
the 4DEnVar in the Lorenz96 mode. Then, we pay attention to the observations
used for assimilating, and last, we show the DA over the whole of Colombia and
major cities.

4.3.1. 4DEnVar in Lorenz96

Figure 4.3 illustrates the temporal evolution of the 40 states; these plots are known
as Hovmoller diagrams and are used to see all the states simultaneously for time
propagation. The background is the first model realization that is taken as the
states to update. The truth value represents a sampled model realization that for
generating synthetic observations as the target in the twin experiment to test the
ability of the DA system. The analysis shows the filter outcome once the synthetic
observations are ingested. Additionally, the figure displays the analysis outcome
obtained from the data assimilation (DA) procedure and a comparative visualization
of the difference between the analysis and the truth in the right image.

To have another perspective, let's see what happens for three randomly chosen
states in Figure 4.4. The dashed black line represents the background state, the
red line represents the truth, and the analysis step is in blue. The green dashed
line represents the start and end of the assimilation window, which is the defined
time for which observations are accepted in the assimilation cycle. Notice here how
the initial value at the beginning of the assimilation window is updated to produce
a forward simulation step from this new point that predicts more accurately than
the background value that the truth suggests.

For the experiment, a number of ensembles from 10 to 100 were defined, in-
creasing to 10 ensemble members in each experiment (Figure 4.5). One ensemble
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Figure 4.3: The left panel shows the representation in time of the background, then immediately to the
right the truth, and then the analysis. On the right is the difference between the analysis output and
the background.
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Figure 4.4: Comparison background and analysis in three validation random states (6,16, and 33). The
truth state is depicted in red, the background initial state corresponds to the black dashed line, and the
analysis output state is in blue. The 4DEnVar method, through the minimization of the cost function,
estimates the initial condition for propagating the update version of the model.

is defined as one realization of the model for certain initial conditions.

Once the assimilation step was applied to the model, it was easy to find that
by increasing the number of ensembles, the analysis representation improved, ap-
proaching the truth value. For the case of the size of the ensemble spread (Figure
4.6), which is also known as inflation, the behavior was the opposite because once
the spread size increases, the representation of the analysis deviates more from
the truth value.

The case for window size increasing is shown in Figure 4.7. When the window
size started to increase, the capability of the method to represent the truth from
the analysis worsened.

4.3.2. NO, column concentrations: TROPOMI and LOTOS-EUROS
A qualitative comparison of the simulated and observed NO, column densities
was conducted to detect locations where the TROPOMI observations differed sig-
nificantly from the LOTOS-EUROS simulations to focus the attention therein for

the data assimilation and the emission estimation of the experiment. Figure 4.8
shows a comparison between the 15-day average satellite observations (January
16-February 2019) with the LOTOS-EUROS NO, column, as well as the EDGAR NO,,
emission inventory on the right image.

The NO, concentration in the model and the observations presented high values
over the main urban centers, but the amplitude of the simulated NO, concentrations
often differed. Simulated values over the densely populated area of Venezuela that
includes Caracas, Valencia, Barquisimeto, and Maracaibo (a region known as the
oil refinery corridor) showed much higher values in the model simulation output
than the satellite observations, and consequently, showed the highest root-mean-
square-error (RMSE; lower-left in Figure 4.8, details performance metrics in the
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Figure 4.5: Assimilation comparison increasing the ensemble size as indicated. The x-axes correspond
to the time dimension. The analysis update from the filter corresponds to the green line, the true is
depicted in red, and the blue lines are the ensemble members.
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Figure 4.6: Assimilation comparison between the analysis and the true for different spread sizes (1 to
10), the spread corresponds to what is also known as inflation. In the initial condition can be seen as the
spread in the seed values for the ensemble members. The analysis update from the filter corresponds
to the green line.
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Figure 4.7: Assimilation comparison for different window assimilation sizes. The window size is denoted
with the vertical green dashed lines and corresponds to the time for which observations are ingested for
the assimilation stage. After a window size of 30, the 4DEnVar analysis no longer starts to fit the truth.

Appendix of this Chapter). A Mean Fractional-bias (MFB; lower-centre in Figure
4.8) calculation showed a broader perspective over the domain, revealing that the
model underestimated the NO, in the south except for some isolated, overestimated
points over the southern Colombian Amazonia. The model also underestimated NO,
concentrations along the Magdalena River Valley in northern Colombia.

Twenty-seven locations were selected to perturb the model’s parameters to gen-
erate a subspace of model ensemble trajectories to estimate appropriate values
driven by the observations. These are marked as black squares on the central
panel of Figure 4.9 denoting the areas selected over the initial nominal emission
parameter value. These correspond to the major cities and other areas of interest
denoted in the previous Figure 4.8. One is the main ail refinery in Colombia located
in the central part of the country in the Magdalena River Valley, and the other is
open-pit coal-mine mining in northern Colombia near the Venezuelan border that
presented anomalous concentration values in a rural area. The emissions for these
27 locations were updated using the 4DEnVar data assimilation.

Each perturbation location consisted of a 3x3 buffer of 0.09°x 0.09°grid cells.
The emission factor perturbation value multiplies the concentrations homogeneously
in the area where the parameter was estimated. This buffer of 9 grids is because
TROPOMI samples the downwind plume, which might be 1-2 grid cells away from
the source.

4.3.3. 4DEnVar data assimilation results over Colombia

Figure 4.10 shows the NO, column concentrations from the LOTOS-EUROS before
assimilation (free run) and the TROPOMI retrieved product for February 2, 2019.
Although the satellite data presented an absence of data (white areas) due to the
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Figure 4.8: In the top left and center, the 15 days mean (January 16 to February 1, 2019) of the
TROPOMI tropospheric NO, vertical column and the corresponding LOTOS-EUROS simulations. Spatial
resolution 0.09 °x 0.09 °. Purple areas correspond to areas where no data was available, mainly due to
the cloudiness presence over the area for all that time. The dashed yellow squares correspond to two
locations selected to update emissions that are not principal cities, but many concentration spots are
seen from the remote sensing instrument to qualitatively detect the right place to estimate unknown or
uncertain parameters. In the bottom left and centre, the root-mean-square-error and modified fractional
bias between retrieval and simulation. On the rightis EDGAR V4.3.2 anthropogenic NO,, emissions, 2012.

quality filter, it was possible to notice the difference between the model simulation
and the observation from the remote instrument. The dashed rectangle marks a
relatively flat area in Venezuela where good quality observations, due to low cloud
cover, are present and where the model overestimates the satellite product denot-
ing areas to update the emission parameters. Other cities like Bogota, Medellin,
Barranquilla, and Quito also present differences between LOTOS-EUROS and satel-
lite information. Open-pit mining pops up in satellite observation and in a small city
in the Maracaibo Gulf.

The left panel of Figure 4.11 shows the emission factors obtained with the 4DEn-
Var technique once it is completed, showing the estimated values of the 27 locations
of emission parameters selected based on the preliminary simulation in the domain.
For this case, the emission factors went from 0 to 2, suggesting in much of this area
reduction or augmenting the magnitude of the parameters due to the overestima-
tion of the model against the satellite observation through the minimization of the
cost functional from equation 4.4. In the north part of the domain, mainly in the
Venezuelan dashed area, the values suggest reducing emissions below 1, which is
the nominal value, it means with this emission factor, the emissions are not modi-
fied. In some areas in the center of Colombia, the most populated areas, the new
emission suggests an increase with values slightly above 1.

The 4DEnVar analysis output is shown in the center mosaic in Figure 4.11. This
graphic shows the NO, column that the LOTOS-EUROS model simulated using the
updated emission parameters. The image on the right shows the MFB between this
analysis step and the background condition; here, it is possible to appreciate the
spatial over/underestimations between both scenarios resulting from the updated
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Figure 4.9: Central panel: Locations selected for emission parameter adjustment via 4DEnVar data
assimilation. The 27 locations indicated in the center panel, corresponding primarily to large urban
centers, were chosen for parameter adjustment based on the magnitude of the differences observed
in Figure 4.8. The colorbar indicates the emission parameter value, in this case all the emission factor
locations are in the default condition which is the nominal with value 1. Left panel: location of Colombia’s
largest oil refinery (near the city of Barrancabermeja). Right panel: Drummond open-pit coal mine, a
non-urban site whose emissions were poorly represented by the default emissions inventory (Photo Diego
Santagruz/Archive journal EL TIEMPO). NO, concentration images from https://maps.s5p-pal.com/.
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Figure 4.10: Comparison of the tropospheric NO, column estimation from LOTOS-EUROS simulations
(left panel) and TROPOMI retrievals (right panel) for February 2, 2019. The dashed rectangle highlights
the sizable discrepancies between the two sources observed over the main Venezuelan cities (Caracas,
Valencia, Barquisimeto, and Maracaibo). Colorbar indicates the column concentrations.

initial parameter values. The area’s values in the dashed square region in the pre-
vious Figure suggest a reduction of (0.2-0.6). With the new emission factors, the
emissions within the rectangle were strongly reduced, leading to simulated lower
magnitude NO, columns that were better in agreement with the TROPOMI simu-
lations. Curagao shows a plume with a high east-west trend in the LOTOS-EUROS
that is not appreciated in the TROPOMI data for this day and where we did not
put an update emission. It is possible to see how the same plume appears in the
analysis simulation, indicating that the model was not modified for this location.

The parameters’ value and the comparison of results are presented with the MFB
in the right panel, using the emissions estimated to propagate a new forward run
(4DEnVar analysis simulated retrieval) and the free run. In the area of Venezuela,
it is possible to see how the estimated values of the parameter suggest a reduction
of emissions. Moreover, in the city of Bogotd, an underestimation of the model’s



4.3. Results 99

ADEnVar analysis simulated retrieval MFB Analysis free run

latitude *
lautuae -

-76 72 - - 78 76 74 12 70 68 -66

74 -
longitude ° longitude ©

Figure 4.11: Left panel. Colorbars represent the NO, emission factor adjustment (&e) over the 27 loca-
tions illustrated in Figure 4.9 to reconcile the LOTOS-EUROS simulations with the TROPOMI observations,
with values < 1 indicating LOTOS-EUROS over-estimations, and values > 1 indicating under-estimations
(observations > simulated values). Central panel: simulated TROPOMI NO, columns from the analysis
run using the newly estimated emission factors. Colorbars represent concentrations Right panel: Col-
orbars represent the Mean Fractional Bias in NO, column between LOTOS-EUROS simulations with the
adjusted emission factors (analysis) and the simulations with the default emission factors (background).

Non assimilated

Assimilated

Figure 4.12: Transverse cut profiles for NO, concentration over latitude =10.255° for four different
time points during the assimilation window day (2019-02-03). The adjustment in emission parameters
affected the simulated NO, column estimates at various heights and the associated plume. Colorbars
indicate concentration levels in mixing ratio. The right panel shows the topography map of Colombia
with the transversal cut location

emission was corrected, increasing the emission due to the parameter estimated in
that place. The locations where the emission adjustment does not help, presumably,
are where the satellite information is incomplete, such as the Andean mountain
corridor and regions for which the emission is too low in the current inventory.

Vertical profiles

Figure 4.12 shows a comparison between the assimilated and non-assimilated ver-
tical NO, concentrations for the latitude 10.255° for four different local time steps
(1 am, 7 am, 1 pm, 7 pm UTC) during the second day of assimilation (2019-02-
03). This mosaic compares the changes in the vertical profiles of this gas. This
latitude corresponds to the locations of the parameters with the highest emissions
in Venezuela, which correspond to the oil refineries. The non-assimilated scenario
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displays a higher NO, concentration than the assimilated scenario; it is evident how
the plume partially disappears for moments like at 1 pm. The emission was updated
with the parameters estimated, suggesting this is a decrease in the emissions for
the current time for the experiment. These results could be explained by the fact
that during the last ten years, there has been a dramatic reduction in oil produc-
tion in Venezuela due to the U.S sanctions, for which also the refining activity has
decreased [44].

4.3.4. Impact over major cities

The 4DEnVar results have been evaluated in more detail for the areas around the
cities of Medellin and Bogota (Figure 4.13). For these cities, respective close-ups
are presented, for which it is also possible to appreciate the wind pattern driving the
transport of these atmospheric chemicals, which is mainly east-west and sometimes
northwest. The TROPOMI retrieval is shown in the two right columns, while the
emission factors estimated are shown in the two left columns. For the two days
of assimilation, the change in the value of this new emission parameter from the
nominal value has an impact on the concentration fields as shown in Figure 4.14.
The second assimilation day integrates the emissions being estimated as the new
nominal values to start the new assimilation window.

Figure 4.13: Comparison of the TROPOMI retrieval products for 2019-02-02 and 2019-02-03 zooming
in the two principal Colombian cities, Medellin and Bogota. Colorbar on the left panel represents con-
centrations. The right panels show the corresponding estimated values of the emission parameters that
suggest a reduction in the emission for the two cities for the two assimilation days. Colorbar on the
right panel represents emission factors.

Figure 4.14 shows the difference between the background NO, plumes retrieval
and the retrieval with the estimated parameters. The meteorological wind fields
drive the concentration plumes. The magnitude reduction due to the emission up-
date is shown for the assimilated scenario, which reduces the concentration spatially
along the wind trajectory.

Figure 4.15 shows the vertical cut profiles for Bogota and Medellin, respectively,
for the two assimilation days declared in the schematic of Figure 4.14 and the two
scenarios before assimilation and with the assimilation. Bogota is located over a
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Figure 4.14: LOTOS-EUROS free run and the analysis run generated from the 4DEnVar results with the
Mean Fractional Bias comparison for the 2019-02-02 (three first rows) and 2019-02-03 (three last rows).
For each situation, the zoom is made for Bogota and Medellin, and in the right column, the statistics are
used to quantify the impact of those changes.

plateau, with the removal process dominant from east to west; the assimilation
effect is noticeable regarding the magnitude of the concentration reduction in the
plume transported in this direction. Medellin is located in a deep-seated valley
(Aburra Valley). The wind removes the contaminants in the order that overtakes the
mountains around the Valley. Here, the assimilation effect is noticeable regarding
the magnitude of the concentration reduction gathered inside the Valley.

Comparison with SIATA surface observations and OMI measurements

For the city of Medellin, surface measurements of NO, are available along the Val-
ley from the ground-based sensor network measurements from Sistema de Alerta
Temprana del Valle de Aburra (SIATA) which provide time series observation with
an hourly temporal resolution. Figure 4.16 shows the mean of all the available sta-
tions with their standard deviation spread against the non-assimilated and 4DEnVar
assimilated model output. The assimilated trajectory starts from the horizontal red
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Figure 4.15: Transverse cut for NO, concentration over latitude=6.2518° for Medellin (left four panels)
and latitude=4.609° for Bogota (four central panels). The emission parameter update impacts the
column of the model concentration output. The right panel shows the topography map of Colombia with
the transversal cut location

dashed because the emissions were corrected for the model from this time after
DA. The spatial distribution from the NO, SIATA network stations is in the right
panel, where it is appreciated how the stations are located in the lower part of the
Valley.
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Figure 4.16: In the Left panel, Seven stations from the SIATA network of NO and NO,, comparing the
no assimilated model (green curve) and 4DEnVar assimilated model output (red curve). The black curve
corresponds to observations and its representativity error is depicted with the grey uncertainty. Right
panel: Location of the NO, measuring stations in the Aburra Valley

Table 2 shows the mean fractional bias (MFB), the root mean square (RMSE),
and the correlation factor comparison in the free run and assimilated propaga-
tion during the assimilation period against the observation mean. The estimated
emission parameter suggests an increase in the emission value (e > 1) from the
assimilation experiment in this location, which is appreciated in reducing the MFB
and RMSE statistic and increasing the correlation factor.

For this area, the comparison was not too relevant upon modifying the initial
conditions for the analysis value because the TROPOMI information was not very
significant for the experiment period to promote a drastic parameter update. At the
same time, in Medellin’s vertical cut, the effect was more evident in the concentra-
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Observation SIATA .
as reference MFB RMSE Correlation

[ free run | -0.4520 [ 7.3050 | 0.5485 |
Assimilation -0.3226 7.0464 0.5864

Table 4.1: Comparison of Mean Fractional Bias (MFB), Root Mean Square (RMSE), and Correlation

factor between the free run and assimilated propagation, relative to the observation mean during the
assimilation period.

tion of higher levels seen in Figure 4.14. It was possible to see how the analysis
searched the mean value from the ground observation. No more NO, measure-
ments were available around the domain during this study.
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Figure 4.17: Left panel: comparison in time of the non-assimilated (red circles) and assimilated 4DEn-
Var (green triangles) concentrations with the OMI satellite measures (pink and yellow squares) around
Bogotd, Medellin. The right panel shows the spatial comparison over the region in Colombia that covers
Bogota and Medellin in the upper panels and over Venezuela in the below panels.

Another comparison was made with the OMI measurements from the refer-
ence data [45]. Only data of excellent quality (VCD Quality Flags of 0) and cloud
screened (Effective Cloud Fraction 30 percent) were included in the statistics. In
Figure 4.17, two concentration values are shown; the OMI concentration for the
days and similar statistics for 2020 were computed for each day during 2015-2019
to produce the "baseline” value shown. The baseline values were then calculated
as a weighted mean of values for each day’s overall years, weighted by the nhumber
of points used to compute each median. The magnitude of the concentration value

simulated by the model decreases for all cities, approaching the magnitude of the
OMI concentrations.

4.4, Conclusions

A 4DEnVar methodology has been developed to combine TROPOMI satellite obser-
vations with LOTOS-EUROS regional CTM simulations for the northwest of South
America. Cities and municipalities in developing countries without local air quality
and meteorological networks can use this technique, which avoids the implementa-
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tion of the adjoint of the CTM to estimate coarse emissions inventories. This study
defines emission correction factors as the uncertain parameters to be calculated
by multiplying the nominal emission inventory. Modifying the correction factors by
using the 4DEnVAR technique to assimilate the TROPOMI-NO2 columns improves
the spatial and temporal concentration distribution of the NO, fields by the estima-
tions of the emission factors. The emission update has substantially improved the
agreement between the simulated and observed NO, fields. These findings showed
that TROPOMI NO,, concentrations could be used to reconstruct spatial and tempo-
ral variable NO, components, making enhancing temporal NO2 emission patterns
relatively simple in a forward modeling setting.

It should be remembered that the updated inventory that takes the model fore-
casts closer to the assimilated observations is the subsequent emission inventory
obtained from DA. Consequently, it involves a model error and does not reflect the
actual emission scenario. One of the most relevant facts is that this technique relies
on the generated ensemble’s Gaussianity.

Although the satellite data have not yet been exploited for extended periods
due to the high cloudiness, we have demonstrated how to use a 4DEnVAr data
assimilation technique and take advantage of the relationships between observed
and unobserved states of a chemical transport model to improve the model results.
Adding satellite information to the model makes estimating a coarse emission in-
ventory possible. It is also a good starting point for establishing higher-resolution
emission inventories or improving boundary conditions for high-resolution nested
simulations. The particular results from this case study suggest a decrease in the
emission values in notorious places like the refinery corridor in the Venezuela region,
driven by the drastic decrease in oil production over the last ten years.

In the future, we will refine the surface information, complementing the region’s
surface information with the satellite information and the meteorology from high-
resolution mesoscale models such as WREF, to represent more accurate patterns, as
we see in deep-seated narrow valleys such as in Medellin. We will also improve the
data assimilation methodology by implementing localization techniques to reduce
the well-known problems introduced by using a limited amount of ensembles.

4.4.1. Appendix: Performance metrics

The mean fractional bias (MFB) normalizes the bias for each model-observation
pair using division by the average of the model and observation before taking the
sample mean:

2 < (H©); — ¥

MFB = —
M = (H(C))i + Y

(4.18)

with M the number of elements in the set. In this application, M equals the
number of observations from all valid monitoring station data for the comparison
time period of interest. The simulation H(c); of an observation y; is taken either
from a model output, or from the ensemble mean in case of an assimilation run.
The MFB ranges from —2 to +2, and has the advantage preventing the bias from
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being dominated by few high value observations/simulation pairs in case of strong
variations, for example due to a strong diurnal cycle [46].

The root mean square error (RMSE) represents the sample standard deviation
of the differences between predicted values and observed values Eq. 4.19. The
RMSE penalizes a high variance as it gives errors with larger absolute values more
weight than errors with smaller absolute values [47]:

M
1
RMSE = M; ((H©), - %) (4.19)

The last metric is the correlation coefficient (Corr), which shows how the values
from one data set (simulations) relate to value of a second data set (observations).
A high value (approaching +1.0) is a strong direct relationship, values near 0.5
are considered moderate and values below 0.3 are considered to show weak rela-
tionships. A low negative value (approaching -1.0) is a strong inverse relationship,
and values near 0.0 indicate little, if any, relationship. The correlation coefficient is
calculated following [48]:

R (GIGTEICION [R))
\/Z?; ((H(C)i - (H(C)i)2 \/2?11(%’ —-¥)?

where the overline denotes a sample mean over the M elements of the validation
set.

Corr =

(4.20)
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Conclusions and
recommendations

5.1. Conclusions

The road to develop simulation operational scenarios to represent accurately the air
quality through the incorporation of real-time satellite and ground observation in
this region is beginning. This thesis, which was formulated based on the objectives
proposed in chapter 1, presents the conclusions in the following manner:

Development of a CTM for the Colombia region using the LOTOS-EUROS
modeling system.

The LOTOS-EUROS model was implemented in the northwestern region of South
America with a focus on the Colombian territory. To enhance the model’s input in-
formation and deliver the best conceivable representation of atmospheric chemical
concentrations in the target area, updates were carried out on land use, orography,
and meteorology data. In Chapter 2 these updates aimed to improve the repre-
sentation of complex interactions and dynamics that contribute to the distribution
of pollutants in the atmosphere by reducing model uncertainties in LOTOS-EUROS.
Simulations were conducted considering experiments on point sources to quantify
the impact of pollutant emissions from major Colombian cities at different times
throughout the year. The analysis sought to identify natural areas that may be
vulnerable to atmospheric deposition pollutants by measuring levels of pollutants
per unit area in the designated protected areas of interest.

To evaluate the potential benefits of satellite measurements in im-
proving emission data within the LOTOS-EUROS model, specifically for
the Colombian region.

This dissertation explores and utilizes satellite measurements for the northern
region of South America, focusing on the data of NO, from the TROPOMI instru-
ment. In Chapter 3 a methodology was developed to prepare the satellite informa-
tion for assimilation into the LOTOS-EUROS model. The preprocessing procedure
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implemented involved downloading the data, cropping to a specified region, and
integrating it into a column format to ensure compatibility with the model’s assim-
ilation algorithms. By utilizing this methodology, the satellite data was proficiently
integrated into the CTM, thus enhancing the accessible information and refining the
model’s output accuracy. The data was prepared accordingly for the ensuing Data
Assimilation procedures.

Evaluate the influence of a low-cost sensor network on the improve-
ment of emission data within the LOTOS-EUROS model, focusing on the
Colombia region.

We have created an affordable hardware solution that functions as a ground
node and a gateway in air quality networks. In Chapter 3 these low-cost sensors
were designed and integrated into the model to enhance satellite-derived concen-
trations using data assimilation techniques. Though cheaper and easier to install
than traditional ground-based sensors, these sensors provide essential real-time
measurements of pollutant concentrations. We examine the intricacies associated
with building and producing a device appropriate for in-situ air quality assessments
and long-range data transmission from Colombia. Despite Colombia not being a
primary producer of electronic technology, it plays an integral role in its integration.
Thus, future endeavors should focus on striking a balance between operational pro-
duction and the costs associated with technological integration. By integrating the
data from these sensors, subsequent operational Chemical Transport Models could
profit from these evaluations to increase their overall effectiveness and deliver more
dependable estimations of pollutant concentrations. The development of this inno-
vative device is motivated by the need for novel data sources to improve the Data
Assimilation of LOTOS-EUROS in Colombia.

To use adjoint-free data assimilation techniques to estimate uncertain
parameters within the LOTOS-EUROS model.

Implementing Chemical Transport Models (CTMs) is indispensable for quanti-
fying the concentrations of diverse atmospheric pollutants in regions with insuffi-
cient measured information. However, these models inherently carry uncertainties,
needing the integration of additional data sources to improve their performance.
One effective approach to address the limitations of CTMs is the assimilation of
satellite-derived concentrations and low-cost sensors.In Chapter 3 the Local Ensem-
ble Kalman Filter (LEnKF) and in Chapter 4, the 4D Ensemble Variational (4DEnVar)
, were successfully implemented over the study region. These techniques allowed
the correction of emission parameters, which play a crucial role in accurately sim-
ulating pollutant concentrations.

In summary, the successful implementation of CTMs combined with the assimi-
lation of satellite-derived concentrations and low-cost sensor data has significantly
advanced our ability to quantify atmospheric pollutant concentrations and estimate
emissions and wind direction parameters. The updates and improvements made
to the LOTOS-EUROS model, the development of a preprocessing methodology
for satellite information, and the integration of low-cost sensors have collectively
contributed to a more comprehensive and accurate representation of atmospheric
chemistry over the study region. Additionally, in the recommendations section us-
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ing the stream function data assimilation expanded our capabilities in optimizing
emission parameters and capturing directional information in chemical transport
modeling. These advancements hold significant potential for addressing environ-
mental challenges and informing policy decisions related to air quality management
in Colombian territory.

5.2. Recommendations

Based on the research and findings, the subsequent recommendations are ad-
vanced for maintaining a current and effective Chemical Transport Model:

1. Transition to Higher Resolution Meteorology Input: Shift from the ECMWF me-
teorological input to non-hydrostatic formulations, such as WRF or HARMONIE. This
would improve vertical transport and dynamics representation, providing greater
detail for regional scale modeling.

2. Expand the Use of Virtual Sensors: Encourage the integration of both physical
and virtual sensors in the modeling process. Virtual sensors, through their intelli-
gent capabilities, can provide estimations of other vital parameters, enhancing the
accuracy and robustness of the model.

3. Optimized Utilization of Satellite Data: Recognizing the scarcity of satellite
data for certain regions, it is imperative to maximize its utility. This can be achieved
by integrating available data through data assimilation into models better suited for
regional representation. Continuously explore and incorporate new satellite data
sources. Different satellites offer varied standardization mechanisms for concen-
tration retrievals, which could potentially enrich the model.

4. Emphasis on Wind Field Corrections: Prioritize the correction of wind fields.
It is evident from different meteorological sources that there exist systematic dis-
crepancies in wind direction data. Addressing these will significantly improve the
accuracy of the inversion problem when estimating emissions.

5. Leverage Data Assimilation Strategies with Low-Cost Sensors: Actively in-
corporate data assimilation techniques to enhance the performance of low-cost
sensor technologies. This mutualistic relationship allows for a more refined and
cost-effective model, providing better accuracy and reliability.

Incorporating these recommendations will not only streamline the process of
maintaining an up-to-date Chemical Transport Model but also ensure that the model
remains responsive to the dynamic needs and realities of the region it represents.

5.3. On correcting wind fields

Other parameters were noted as important because they introduce uncertainty to
the system. The wind direction is significant to take into account because it is pos-
sible to observe variations in direction across different weather models concerning
plumes of pollutants detected from satellite observations. In the material in the
appendix, we propose a data assimilation (DA) approach for estimating emission
and wind direction parameters in an advection-diffusion model. To evaluate the ef-
fectiveness of the proposed approach, a low-dimensional advection-diffusion model
was used with varying numbers of observations. The model’s emission and wind
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parameters were assumed to be both uncertain. The parameters are estimated us-
ing the Ensemble Kalman filter with an augmented state vector for the parameters.
These sequential data assimilation (DA) techniques utilize the ensemble of multi-
ple model realizations to decrease state and parameter representation uncertainty.
An associated stream function with a divergence-free condition governs the wind
fields. Estimation of this stream function through the assimilation process allows
for corrections to the wind fields without violating physical conservation laws.



Appendix: Wind and
emission parameter
estimation data assimilation
with an associate stream
function

THE ROAD TO WISDOM

The road to wisdom? Well, it is plain and simple to express:
Err

and err

and err again

but less

and less

and less.

Piet Hein

The present study proposes a data assimilation (DA) approach for estimat-
ing emission and wind direction parameters in an advection-diffusion model.
This implementation aims to improve the prediction of a chemical transport
model over long distances by updating the emission operator in the model
using DA techniques. As a first step, we want to test the method in a small-
scale scenario. A low-dimensional advection-diffusion model was utilized
to evaluate the effectiveness of the proposed approach under various sam-
pling observation numbers. The model’s emission and wind parameters are
perturbed as a source of uncertainty. The parameters are sequentially es-
timated with the Ensemble Kalman filter with an augmented state vector.
These sequential DA techniques exploit the ensemble of multiple model re-
alizations to reduce uncertainty in the state and parameter representation.
An associated stream function with a divergence-free condition controls the
wind fields, and the estimation of this stream function through the assimila-
tion process allows corrections of the wind fields without violating physical

Parts of this chapter have been published in Eurosim proceedings conference 2023 and submitted in the
conference Springer journal 2023
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laws. The technique’s performance was compared against validation obser-
vations such as the Root-Mean Square (RMS). This study demonstrates the
potential of the proposed DA approach for improving the prediction of trans-
port in the advection-diffusion model through parameter estimation.
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A.1l. Introduction

One of the primary sources of uncertainty in CTMs comes from the emission in-
ventories, which could differ significantly from the technique’s location and time
against reality. We inspired or contributed to a real-life scenario where we have a
CTM model in a region with coarse meteorology input information, so the winds are
the secondary source of uncertainty between the model and real directions.

Emission parameter estimation has been the center of attention for DA around
the globe for CTM implementations, mainly because the emission inventories tend
to have high uncertainty values, with some different degrees of uncertainty between
regions and source sectors [1, 2]. In South America, updating emission inventories
can be challenging due to historical institutional limitations, making it difficult to
have up-to-date information available. This significant variability in CTMs from the
emission parameters [3] has been given the principal attention in DA techniques to
incorporate observations into numerical models for determining the most appropri-
ate state and parameter sets that produce a new state that follows this observation
[4]. DA method is commonly used to incorporate measurements into the system,
estimate its states and parameters, and enhance subsequent simulation forecasts,
making it a valuable tool for improving model performance.

The state and model parameters, emissions and winds, can be estimated si-
multaneously using the Ensemble Kalman Filter (EnKF) to estimate the error co-
variances among several variables with a small-scale model of a CTM, an emission
advection-diffusion model. EnKF is the DA technique that generates an update
at the first moment of the probability density function found in the analysis once
new observations are available[5, 6]. An ensemble of model propagation is cre-
ated by perturbing emission factors and wind direction parameters. The method
for estimating the parameters using the data provided by the observations uses
covariances that include the relationship between states and initial conditions and
compliance with the observed stated. The “augmented state space” vector tech-
nique, proposed by Jazwinsky in 1970 [7], estimates parameters. Here, both the
state variables and the model parameters are part of the state vector and can be
estimated through the sequential steps of the filter. This approach has been used in
different parameter estimation studies, specifically with the LOTOS-EUROS mode”
as CTM [8, 9].

This chapter is organized as follows: In Section A.2, we introduce the specific
methodology for the EnKF, including the stochastic model for parameter pertur-
bation and propagation, as well as the technical details of the code and stream
function formulation. In Section A.3, we focus on the results of this technique with
the advection-diffusion model. Section A.4 presents our discussion and conclud-
ing remarks. This study offers valuable information on the effectiveness of stream
function DA in improving CTM and can contribute to developing more accurate air
quality monitoring systems.
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A.2. Parametrization

This section presents the representation of the stochastic parameters. Finally, the
stream function formulation is introduced.

A.2.1. Stochastic uncertainty representation for wind and emis-
sion parameters

A stochastic representation of the parameter uncertainty is required to implement

the DA method. The emissions employed by the model operator are consequently

modeled as a stochastic process with a factor of random variation.

é = e (1 + bey). (1)

Here, e, is the nominal emission from the emission inventory. The emission devia-
tion is modeled as a colored noise process [7] as follows:

de; = adei+ovl—a?wi  , (2)

where w¢ is a white noise process with zero mean and unity standard deviation:

we ~ N(O,I). (3)

A.2.2. Stream function formulation
Consider the scalar stream function:

Y(x,y), 4)
where
oy
u= E 7 (5)
oy
= 6
v o (6)

This scalar stream function constructs the vector field, satisfying the divergence-
free property V- f = 0:

fay) = (3) (7)

The stream function W (x, y) is a scalar function describing fluid flow in a two-
dimensional space. The stream function divergence-free property V- f = 0 means
the total flow across any closed curve in the fluid domain is zero. This feature is
beneficial because it allows physical constraints, such as continuity or conservation
laws. The proposed approach involves perturbing the stream function instead of the
two wind velocities. The stream function’s divergence-free property is characteristic
of an auxiliary space in DA used for parameter estimation, which can have some
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properties that help describe the magnitudes related to the model space. Section
A.3 provides an illustrative example of this method, where we select a suitable
stream function to demonstrate its effectiveness. The stream function by the model
operator are consequently modeled as a stochastic process with a factor of random
variation.

Y, = BWey 01— B2 W, )]

t-11

where w? is a white noise process with zero mean and Q the correlation matrix:

w, ~ N(0,Q). 9)

The spatial correlation has to be designed according to the similarity of the nat-
ural phenomena where wind fields have long-range correlations. Moreover, the
stream function divergence-free property reduces the dimensionality of the DA
problem. The stream function can transform the state vector into a new space
with a smaller dimension, reducing computational costs. The stream function can
be used as an auxiliary space for DA by transforming the state vector.

From the parametrization, we create the following augmented vector and cal-
culate the approximate covariance matrix of this augmented system:

X Mi_1p (Be_1(6€-1,¥t-1)) 0
de; | = a de;q +]| ovl—a? | -W,_, (10)
Wi B N1 — B2

Using the augmented vector (10), it is possible to estimate the state of the
emission correction factor and the stream function using a sequential DA approach.
The nonlinear operator M propagates the augmented state vector x in time, while
the right part of the expression corresponds to the stochastic forcing W,_; over the
elements of the state, where W,_, correspond to

0
WEJ—l (11)
Wi

A.3. Results

The advection-diffusion model is presented in this section, followed by the different
parameter estimation results for the homogeneous wind field estimating only one
parameter and for the stream function case, which leads to wind direction correc-
tions and magnitudes estimating the number of parameters as the stream function
size.

A.3.1. Advection-diffusion model

Testing an implementation with a simplified model is widely used in the DA field
to check the behavior of new techniques designed. This section considers a 2D
advection-diffusion model to which synthetic data is fed through data assimilation
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(DA). The advection-diffusion model for a gas concentration C is described by the
following equation in the directions x and y with constant diffusion coefficients D,
and D,,, and velocities in the two directions U and V:

ac ac _ac a2C a2C
— =—U=—=V—+D +D

at ax Vay TPxgx tDyga tEk (12)

Synthetic data in this scenario correspond to the data sampled from the true
model states of the advection-diffusion model propagation with different initial con-
ditions. The true model simulation is one simulation of the model that is taken as
reality. This model simulation is perturbed, and then this synthetic data sampled
here is the observation dataset to assimilate. The change in parameters presents a
challenge for DA and predictability. The size of this simple test model is 3600 states
(60 x 60 grid) for the concentrations. The emission parameter depends on the num-
ber of sources to be updated, and the wind direction parameter is two times the
number of states because the horizontal wind directions are u and v. In this case,
one advantage of the stream function is reducing the number of wind direction pa-
rameters in half because once the stream function parameters are estimated, the
wind direction is calculated in the model space through the gradient.

For the discretization form, the central step second order finite difference [10]
was used to generate the propagating following expression from an initial state.
The boundary condition for solving the experiment was the Dirichlet homogeneous
zero or null value fixed in the contour [11].

A.3.2. Results advection-diffusion model

Figure (1) provides a schematic normally-distributed perturbation for the wind di-
rection along with a comparison of various standard deviation values of the wind
direction perturbation for the advection-diffusion model as a grey shade region that
describes a set of variations in the direction of the wind from the ideal or true value.
In comparison, the different standard deviation values of the wind direction pertur-
bation in the advection-diffusion model Eq. 12 determine the region of uncertainty
expanded where the variation in the modeled wind direction occurs.

Wind st . .
Wind std: Wind std: Wind std: Wind std:

.

A2 B P12 R

0.701
" X rid X i X grid X grid

(a) (b)

Figure 1: (a) Schematic perturbation for the wind direction and (b) Comparison for different standard
deviation values of the wind direction perturbation for the advection-diffusion model. Colorbar indicates
concentration.

The Figure provides insights into how perturbations in the wind direction can
impact the accuracy of the advection-diffusion model. It highlights the importance
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of accurately estimating wind direction in improving model accuracy. Furthermore,
comparing the different standard deviation values of the wind direction perturbation
is a useful guide for determining the maximum level of uncertainty or variability
that should be considered when modeling wind direction for various applications.
The wind fields V,, were homogeneously perturbated in direction, assuming that
the magnitudes remain constant and equal to |V,,| = 1. The noise distribution for
generating the distribution is J;, ~ N(%,R)

We use the following linear function to test the case with the scalar stream
function as an auxiliary space to perform the DA for the parameter estimations.

lpb(x'y) = UpY — UpX, (13)
where
oy
w =5 (14)
0w,
=2 15
Up ax (15)

Figure 2: Comparison of the stream function correction after time through the sequential DA, which
estimates emission and wind direction parameters, the true and analysis wind direction correspond to
the gradient direction of the stream function, which ends align through time.

Figure 3 compares the stream function correction after sequential DA, which
involves estimating emission and wind direction parameters. This Figure illustrates
the true and analysis wind direction corresponding to the gradient direction, de-
picted with the red and blue arrows, respectively. Over time, the ends of the
arrows align, indicating that the DA process successfully corrected the stream func-
tion. This result highlights the potential of DA techniques to improve model ac-
curacy and the importance of accurately estimating emission and wind direction
parameters.
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The notion of the true state as a homogeneous field is unrealistic, so we created
a true state by designing the covariance structure. The following diagram depicts
the process of employing a diagonally symmetric matrix, with magnitudes defined
by the next expression.

C,j=oexp(B- (Ti,j)z) (16)
Where i and j are the row and column matrix members of the matrix and the
r;; in the distance between states.

EnKF Analysis update

Figure 3: Schematic with the process to generate more realistic structures from a field with correlation
structure C that are created from the covariance. The gradient of this true field constitutes the wind-
driven field in the two horizontal directions. This is a preliminary result

The filter is applied, correcting both parameters emissions and wind directions
in the stream function space. In this case, different than the homogeneous field
estimation, the number of parameters of the wind direction is not one but is the
number of states that increase the complexity.

A.4. Discussion

DA techniques have been increasingly incorporated into CTM to improve their ac-
curacy. Most of these models use DA to improve emission estimates by ingesting
new data. The next step in our research is to test the stream function DA technique
with advection-diffusion in a larger model, such as the LOTOS-EUROQOS, to evaluate
its effectiveness. The results of this work can provide valuable insights into the
application of DA techniques in different domains and contribute to the ongoing
efforts to improve the accuracy of CTMs. Atmospheric trace gasses measurements
retrieved from Satellite instruments can perceive different plumes of pollutants emit-
ted from sources, and recently, different works propose techniques to detect them
[12—14], thus estimating the wind direction through the incorporation to the model
of concentration plumes can act as a virtual sensor of wind direction.

One of the significant advantages of the proposed approach is the estimation
of the associated stream function that controls the wind fields. The assimilation of
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this stream function allows for the correction of the wind fields while preserving the
physical laws. Considering the uncertainties associated with wind direction, the pro-
posed approach provides a more accurate representation of chemical transport in
advection-diffusion models. This study demonstrates the potential of the proposed
DA approach for improving the accuracy of CTM in advection-diffusion models. The
next crucial step towards advancing our research is introducing spatial correlation to
the stream function, thereby generating a diverse range of spatially varying velocity
patterns to introduce divergence-free structures on the wind fields to be estimated.




References

References

[1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[10]
[11]

[12]

S.-Y. Park, U. K. Dash, J. Yu, K. Yumimoto, I. Uno, and C. H. Song, Imple-
mentation of an ensemble kalman filter in the community multiscale air quality
model (cmaqg model v5. 1) for data assimilation of ground-level pm 2.5, Geo-
scientific Model Development 15, 2773 (2022).

E. Solazzo, M. Crippa, D. Guizzardi, M. Muntean, M. Choulga, and G. Janssens-
Maenhout, Uncertainties in the emissions database for global atmospheric re-
search (edgar) emission inventory of greenhouse gases, Atmospheric Chem-
istry and Physics 21, 5655 (2021).

M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Zabkar, G. Carmichael, J. Flem-
ming, A. Inness, M. Pagowski, J. Pérez Camanio, et al., Data assimilation in
atmospheric chemistry models: current status and future prospects for cou-
pled chemistry meteorology models, Atmospheric chemistry and physics 15,
5325 (2015).

J. Mo, S. Gong, J. He, L. Zhang, H. Ke, and X. An, Quantification of so2
emission variations and the corresponding prediction improvements made by
assimilating ground-based observations, Atmosphere 13, 470 (2022).

G. Evensen and P. J. Van Leeuwen, An ensemble kalman smoother for non-
linear dynamics, Monthly Weather Review 128, 1852 (2000).

G. Evensen, The Ensemble Kalman Filter: Theoretical formulation and practical
implementation, Ocean Dynamics 53, 343 (2003).

A. Jazwinski, Stochastic processes and filtering theory, Mathematics in science
and engineering No. 64 (Acad. Press, New York, NY [u.a.], 1970).

I. Skoulidou, M.-E. Koukouli, A. Segers, A. Manders, D. Balis, T. Stavrakou,
J. van Geffen, and H. Eskes, Changes in power plant nox emissions
over northwest greece using a data assimilation technique, (2021),
https://doi.org/10.3390/atmos12070900.

S. Lopez-Restrepo, E. D. Nino-Ruiz, L. G. Guzman-Reyes, A. Yarce, O. Quin-
tero, N. Pinel, A. Segers, and A. Heemink, An efficient ensemble kalman filter
implementation via shrinkage covariance matrix estimation: exploiting prior
knowledge, Computational Geosciences 25, 985 (2021).

P-S. Laplace and R. Courant, The finite difference method, .

A. H.-D. Cheng and D. T. Cheng, Heritage and early history of the bound-
ary element method, Engineering analysis with boundary elements 29, 268
(2005).

D. P. Finch, P. I. Palmer, and T. Zhang, Automated detection of atmospheric
no 2 plumes from satellite data: a tool to help infer anthropogenic combustion
emissions, Atmospheric Measurement Techniques 15, 721 (2022).


http://dx.doi.org/ https://doi.org/10.5194/gmd-15-2773-2022
http://dx.doi.org/ https://doi.org/10.5194/gmd-15-2773-2022
http://dx.doi.org/https://doi.org/10.5194/acp-21-5655-2021
http://dx.doi.org/https://doi.org/10.5194/acp-21-5655-2021
http://dx.doi.org/ https://doi.org/10.5194/acp-15-5325-2015, 2015
http://dx.doi.org/ https://doi.org/10.5194/acp-15-5325-2015, 2015
http://dx.doi.org/https://doi.org/10.3390/atmos13030470
http://dx.doi.org/ https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/ https://doi.org/10.3390/atmos12070900
http://dx.doi.org/ https://doi.org/10.3390/atmos12070900
http://dx.doi.org/https://doi.org/10.1007/s10596-021-10035-4
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2004.12.001
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2004.12.001
http://dx.doi.org/https://doi.org/10.5194/amt-15-721-2022

References 125

[13] A. K. Georgoulias, K. F. Boersma, J. Van Vliet, X. Zhang, P. Zanis, J. de Laat,
et al.,, Detection of no2 pollution plumes from individual ships with the
tropomi/s5p satellite sensor, Environmental Research Letters 15, 124037
(2020).

[14] G. Kuhlmann, G. Broquet, J. Marshall, V. Clément, A. LGscher, Y. Meijer, and
D. Brunner, Detectability of co 2 emission plumes of cities and power plants
with the copernicus anthropogenic co 2 monitoring (co2m) mission, Atmo-
spheric Measurement Techniques 12, 6695 (2019).



http://dx.doi.org/ 10.1088/1748-9326/abc445
http://dx.doi.org/ 10.1088/1748-9326/abc445
http://dx.doi.org/https://doi.org/10.5194/amt-12-6695-2019
http://dx.doi.org/https://doi.org/10.5194/amt-12-6695-2019




Acknowledgements

I would like to extend my deepest gratitude to a group of remarkable individuals,
whose support and guidance have been invaluable throughout my journey. Their
contributions have been a cornerstone of my success, and for this, I am eternally
grateful.

Arnold W. Heemink: For his unwavering patience and the wisdom he im-
parted. His willingness to listen and share insightful advice has been a guiding
light in my academic pursuit.

Olga Lucia Quintero: Her mentorship, trusted advice, and the bond of
friendship we've built over the years have been nothing short of inspirational.

Nicolas Pinel Pelaez: For his companionship in sculpting the research prob-
lem of this thesis and for the enduring friendship that ensued. His motivation
was a crucial element in my journey.

Arjo Segers: I am grateful for his charisma and the patience he showed
me. His ability to clarify doubts and offer perspectives on problem-solving
has been invaluable.

My Mother, Sylvia Botero Hoyos: For the gift of life, a nurturing education,
and her unwavering support during the most challenging times. Her strength
and love have been my bedrock.

My Father, Luis Fernando Yarce Ospina: For his life lessons, educational
guidance, and constant support through thick and thin. His wisdom has been
a constant source of inspiration.

Maria Juliana Yepes Burgos: The love of my life and my best friend. Her
courage in joining me on the uncertain path of emigration has enriched my
life immeasurably.

Santiago Lopez Restrepo: His support was critical in helping me navigate
complex mathematical concepts. I am equally thankful for his humor, which
brought light to darker times.

Jhon Edinson Hinestroza: For his camaraderie during challenging phases
of the PhD program, enriching mathematical discussions, and unwavering
friendship.

Alvaro Gonzales Garcia: I am grateful for the time he spent discussing
ideas with me, his companionship, and his valuable input in reviewing and
editing this thesis.

127



128 References

¢ Enrique Guarnieri and Amey Vasulkar: For their friendship and support
that greatly enhanced my student life at the TU.

¢ Enrico Dammers: His patience and assistance in clarifying my doubts across
various domains — from modeling and observations to data assimilation — have
been a great help.

¢ Michiel Van Weele: For his understanding and support during my transi-
tion to a new job, and his readiness to aid in my integration into the KNMI
environment.

Each of these individuals has played a significant role in my academic and per-
sonal growth, and I am profoundly grateful for their contributions to my journey.
Thank you all for being a part of this significant chapter in my life.

Andrés Yarce Botero, Delft, 2024



Curriculum Vitaee
Andrés YARCE BOTERO

Andrés Yarce Botero was born the 24-12-1987 in Medellin, Colombia. Due to
his father’s work his family lived in Bogota and from 1994-2005 he went to primary
school in Colegio Italiano Leonardo Da Vinci, Bogota Colombia (1994-2000) and
in Colegio Padre Manyanet, Medellin Colombia (2001-2005) once his family moved
back to Medellin.

From 2006-2014 he studied in Physics in Universidad de Antioquia, Medellin
Colombia (2006—-2009) not finishing due and later studied Physical Engineering in
Universidad EAFIT, Medellin Colombia (2010-2014).

After finishing the bachelor starts a MsC in Applied Physics Universidad EAFIT,
Medellin Colombia (2015-2016).

From 2017-2022 he will pursue a PhD in Applied Mathematics/Mathematical
Engineering TuDelft in Delft, the Netherlands and in Universidad EAFIT, Medellin,
Colombia with the thesis entitled Data assimilation in a LOTOS-EUROS chemical
transport model for Colombia using satellite measurements.

During his Ph.D. he worked as a postdoc at TuDelft-KNMI-VU PIPP project "High
Resolution to Exploit Nitrogen Chemical Compound Observations from Space in the
Netherlands” (2021—2024).

129






13.

12.

11.

10.

List of Publications and
contributions

Yarce Botero, A., Lopez-Restrepo, S., Pinel Pelaez, N., Quintero, O. L., Segers, A.,
Heemink, A. W., Medellin Air Quality Initiative (MAUI)., Environmental Sustainability:
Preparing for Tomorrow 18, 99 (2021).

Yarce Botero, A. et al., Design and Implementation of a Low-Cost Air Quality Net-
work for the Aburra Valley Surrounding Mountains., Pollutants 3.1 17, 549 (2023).

Yarce Botero, A., Lopez-Restrepo, S., Pinel Pelaez, N., Quintero, O. L., Segers, A,
Heemink, A. W., Estimating NOx LOTOS-EURQOS CTM Emission Parameters over the
Northwest of South America through 4DEnVar TROPOMI NOZ2 Assimilation, Atmo-
sphere, 12(12), 1633. (2021).

Yarce Botero, A., Quintero, O. L., Segers, A., Heemink, A. W., Estimating Wind and
Emission Parameters in an atmospheric transport model, Eurosim (2023)(Submitted).

Yarce Botero, A., Santiago Lopez-Restrepo, Nicolas Pinel, O.L Quintero, Arjo Segers,
and A.W. Heemink. (2017). Characterization and analysis of satellite and ground data
available for the Aburra Valley (Medellin Metropolitan Area) as inputs for air quality
models, 3th CMAS South America Conference, Vitoria-Brazil .

Other contributions

Lopez-Restrepo, S., Yarce Botero, A., Pinel Peldez, N., Quintero, O. L., Segers, A.,
Heemink, A. W., Data Assimilation as a Tool to Improve Chemical Transport Models
Performance in Developing Countries, Environmental Sustainability: Preparing for To-
morrow 18, 99 (2021).

Lopez-Restrepo, S., Yarce Botero, A., Pinel, N., Quintero, O. L., Segers, A., Heemink,
A. W., A Knowledge-Aided Robust Ensemble Kalman Filter Algorithm for Non-
Linear and Non-Gaussian Large Systems,Frontiers Appl. Math. Stat.8 (2022)

Lopez-Restrepo, S., Yarce Botero, A., Pinel, N., Quintero, O. L., Segers, A.,
Heemink, A. W., Forecasting PM10 and PM2. 5 in the Aburra Valley (Medellin,
Colombia) via EnKF based data assimilation,Atmospheric Environment 232
(2020): 117507

. Lopez-Restrepo, S., Yarce Botero, A., Pinel, N., Quintero, O. L., Segers, A,,

Heemink, A. W., Urban Air Quality Modeling Using Low-Cost Sensor Network
and Data Assimilation in the Aburra Valley, Colombia,Atmosphere 2021, 12(1),
91

131


DOI: 10.5772/intechopen.97571
DOI: 10.5772/intechopen.97571
https://doi.org/10.3390/pollutants3010012
https://doi.org/10.3390/atmos12121633
https://doi.org/10.3390/atmos12121633
https://cmasconference.com.br/wp-content/uploads/2017/10/Program-Book-CMAS-SA-2017.pdf
DOI: 10.5772/intechopen.97503
DOI: 10.5772/intechopen.97503
https://doi.org/10.3389/fams.2022.830116
https://doi.org/10.1016/j.atmosenv.2020.117507
https://doi.org/10.1016/j.atmosenv.2020.117507
https://doi.org/10.3390/atmos12010091
https://doi.org/10.3390/atmos12010091

132 List of Publications

4. Lopez-Restrepo, S., Nifio Ruis, E. D., Guzman Reyes, L. Yarce Botero, A.,
Pinel, N., Quintero, O. L., Segers, A., Heemink, A. W., An efficient ensem-
ble Kalman Filter implementation via shrinkage covariance matrix estimation:
exploiting prior knowledge, Computational Geosciences 25,985 (2021)

3. Hinestroza-Ramirez, J. E., Lopez-Restrepo, S., Yarce Botero, A., Segers, A.,
Rendon-Perez, A. M., Isaza-Cadavid, S., ... Quintero, O. L. , Improving Air
Pollution Modelling in Complex Terrain with a Coupled WRF-LOTOS—-EURQOS
Approach: A Case Study in Aburra Valley, Colombia,Atmosphere, 14(4), 738.
(2023)

2. Hinestroza-Ramirez, J., Rengifo-Castro, J., Quintero, O., Yarce Botero, A.,
Rendon-Perez, A, Non-Parametric and Robust Sensitivity Analysis of the Weather
Research and Forecast (WRF) Model in the Tropical Andes Region.,Atmosphere,
14(4), 686. (2023)

1. Hinestroza-Ramirez, J., Soto Barbosa,].E, Yarce Botero, A., Suarez Higu-
ita, D.A., Lopez Restrepo,S.,..., Quintero Montoya,O.,textbfEvaluation of the
3DVAR Operational Implementation of the Colombian Air Force for Aircraft
Operations: A Case Study,Climate, 11(7), 153, (2023)

Software implementation

The DAL096 platform, based on the Lorenz model, serves as a key benchmark
for testing data assimilation algorithms. This tool simplifies the evaluation of data
assimilation techniques across different algorithms, particularly when the forcing
parameter is perturbed.

Offering a wide range of data assimilation features, DAL096 is a suitable platform
for students implementing software applications. The aim of DAL096 is to illuminate
the core principles of various Data Assimilation (DA) methods using the Lorenz 96
model, by adjusting model parameters or assimilation technique parameters. Some
of the notable DA techniques available include EnKF, EnKF Schur product covariance
localization, EnKF modified Cholesky, EnKS, and EnKS modified Cholesky.

In several configurations, the forcing parameter is subject to additive noise, pro-
ducing an ensemble space that provides flexibility for multiple model propagations.
This parameter can be easily adjusted with a slider and perturbed using a knob.
The platform also permits the selection of different data assimilation methods and
the calculation of error metrics between the analysis step and the true state.


https://doi.org/10.1007/s10596-021-10035-4
 https://doi.org/10.3390/atmos14040738
 https://doi.org/10.3390/atmos14040738
https://doi.org/10.3390/atmos14040686
https://doi.org/10.3390/atmos14040686
 https://doi.org/10.3390/cli11070153

List of Publications

133

[ XN )
Data assimilation interactive platform
Lorenz 96
dz;
th = (@i — i2)%i — 2 + F

Simulation time

Number of states

Number of ensembles

I I T
3 111927 3543 51 60

Fy Y
0 oo

Forc\ngs 7 8 9 10 11 12

State to visualize

DA configurations

Disturb parameter
Ensemble Inflation

Observation frequency

DA technique

Select timestep

Radius Localization

on
0 ©1
Ue Oinig
off Os

MATLAB App

Forcing factor=9.837 state=3

15
10| [futh state
)
-]
2 5
=
S
E O
)
g5
7]
-10
-15
50 100 150 200
timestep
State number=3 Ensemble number=51
12
6
10
5
s
4
3 6
3
E 4
2 g 2
E- P
[ ° *
Bl -4
2 ©
s L=
40
0 100 200 4 100 200

Simulation time

10°

Error

Simulation time

Time series error
iy

M \
“n‘w'y’v\/mv i

W R

i o

M
[ 50 100 150 200

Simulation time

| EnkF

15

10

State
o

state

-1 -0.6-

| ENKFMC | EnKFSchur  EnKS | Enke >

N e

Correlation

50 100 150 200

Simulation time

Covariance Background Matrix

Scores

.20.2 0.6 l

CORR

UNIVERSIDAD

%
EAFIT TUDelft

Figure 4: Data Assimilation LOrenz 96 platform DALO96 https://github.com/ayarceb/DALo96


https://github.com/ayarceb/DALo96

	Summary
	Samenvatting
	Introduction
	Motivation
	The LOTOS-EUROS Chemical Transport Model
	Satellites to monitor atmospheric composition
	Data Assimilation
	Covariance localization

	Objectives of the research
	Aim and structure of this thesis
	titleReferences

	Chemical Transport Models to study the trace gasses reactions and dynamics in the atmosphere
	Introduction
	Updating the LOTOS-EUROS Chemical Transport Model in a new territory

	Methods
	Domains and model set up
	Land Cover/Land Use data
	Simulations description
	Fate of urban contaminants experiments

	Results
	Influence of the elevation model update
	Conversion of land use categories

	Point sources experiment
	Summary and Discussion
	titleReferences

	Measurements, the input needed in data assimilation for improving models performance
	Introduction
	Satellite information to study atmospheric composition
	Low-cost sensors
	Parametrization

	Methods
	TROPOMI Satellite Data
	TROPOMI retrieval algorithm
	Design and Implementation of a Low-Cost Air Quality Network for the Aburrá Valley Surrounding Mountains
	Airborne data collection

	Results
	TROPOMI observations errors
	TROPOMI versions comparison
	TROPOMI LEnKF Data Assimilation
	Low-cost sensor hardware architecture
	Hardware development
	Low-cost sensor network evaluation
	Airborne data acquisition, model comparison, and assimillation

	Discussion and conclusion
	titleReferences

	4DEnVar Data assimilation of TROPOMI for parameter estimation
	Introduction
	Methods
	Lorenz 96 model
	Chemical Transport Models
	4DEnVar Data assimillation
	LOTOS-EUROS model 4DEnVar setup

	Results
	4DEnVar in Lorenz96
	NO2 column concentrations: TROPOMI and LOTOS-EUROS
	4DEnVar data assimilation results over Colombia
	Impact over major cities

	Conclusions
	Appendix: Performance metrics

	titleReferences

	Conclusions and recommendations
	Conclusions
	Recommendations
	On correcting wind fields
	Introduction
	Parametrization
	Stochastic uncertainty representation for wind and emission parameters
	Stream function formulation

	Results
	Advection-diffusion model
	Results advection-diffusion model

	Discussion
	titleReferences

	Acknowledgements
	Curriculum Vitæ
	List of Publications

