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The DELFT-JAVA Engine

Clair Johnston Glossner

Abstract

n this dissertation, we describe the DELFT-JAVA engine - a 32-bit RISC-

based architecture that provides high performance JAVA program execu-

tion. More specifically we describe a microarchitecture that accelerates
JAVA execution and provide details of the DELFT-JAVA architecture for exe-
cuting JAVA Virtual Machine bytecode. The basic architecture implements a
Media Processor with Signal Processing capabilities. The perspective of the
approach is that to maximally accelerate a compiled application, the machine
language should accurately reflect the type of operations the compiler speci-
fies. Except where JAVA Virtual Machine operations are unusually complex,
we prefer to allow the compiler to optimize directly to the implementation.
This is independent of any particular machine organization. The architecture
is then a superset of the JAVA Virtual Machine and provides operations that are
necessary for system execution (e.g., I/O, supervision, etc.). Rather than just
supporting the JAVA Virtual Machine, the architecture takes a more general
purpose approach in that it also is intended to be programmed from a number
of additional high-level languages including C and C++. Furthermore, we in-
troduce the concept of JAVA dynamic instruction translation, a new approach
to JAVA hardware acceleration. In hardware assisted dynamic translation, JAVA
Virtual Machine instructions are translated on-the-fly into the DELFT-JAVA in-
struction set. The hardware requirements to perform this translation are not
excessive. Consequently, support for JAVA language constructs are also in-
corporated into the processor’s Instruction Set Architecture. This technique
allows application level parallelism inherent in the JAVA language to be effi-
ciently utilized as instruction level parallelism. In addition to dynamic trans-
lation, a special Link Translation Buffer (LTB) can be used to improve the
performance of dynamic linking. In addition, there are some key organiza-
tion structures which we deem appropriate to provide architectural support for
including: a) synchronization for multithreaded organizations, b) garbage col-
lection, c¢) array bounds checking, d) real-time caches, e) multiple machines
which can time-share the same datapath (e.g., the JAVA Virtual Machine and
Media Processing functions), and f) vector/dsp operations. By building sev-
eral models of the DELFT-JAVA engine, we were able to characterize perfor-
mance metrics of kernels executing on our processor. We found that when
compared to realizable stack-based machines, our techniques could improve
performance by 2.7x. Furthermore, by converting stack-based dependencies
into pipeline dependencies, we showed that out-of-order superscalar machines
could remove up to 60% of the hazards.
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The only way to get something for nothing is to have previ-
ously gotten nothing for something — Fred Brooks.

Chapter 1

Introduction

AVA is a C++ like programming language designed for general-purpose

object-oriented programming[1]. An appeal for the usage of such a lan-

guage is its “write once, run anywhere” philosophy [2]. This is accom-
plished by providing a JAVA Virtual Machine interpreter and runtime support
for each platform[3]. In theory, any platform that supports the JAVA runtime
environment will produce the same execution results independent of the plat-
form. Due to its characteristics and possibilities, JAVA has been extensively
used as a programming language of choice. In this dissertation we consider
the possibility of executing JAVA programs efficiently and investigate the pos-
sibility of adding a specialized JAVA engine to provide high performance JAVA
program execution.

High-speed communications are proliferating[4] and digital signal processors
(DSPs) are accelerating this trend. DSPs have become a ubiquitous enabler for
integration of audio, video, and communications[5]. Furthermore, DSPs are
the driving force accelerating wireless communications. In the future world
of convergence devices, efficient JAVA execution may be only one component
of system performance. The DELFT-JAVA processor addresses these trends by
providing facilities that enable efficient performance. Tremendous hardware
and software challenges exist to realize convergence devices. First, power dis-
sipation constraints are requiring new techniques at every stage of design -
architecture, microarchitecture, software, algorithm design, logic design, cir-
cuit design, and process design. With performance requirements exploding as
bandwidth demand increases, power conscious design becomes more difficult.
SOC integration and low voltage process technologies will contribute to lower
power system-on-a-chip (SOC) integrated circuits (ICs) but are insufficient as
the only solution for streaming multimedia. Second, convergence applications



are fundamentally DSP applications. In addition, these applications are be-
coming very complex. In wireless communications, GSM and IS-54 data rates
were limited to less than 15 Kbps. Future third-generation (3G) systems may
provide data rates more than 100 times the previous rates. Higher communi-
cation rates are accelerating higher processing requirements. Complexity is
driving the need to program applications in high-level languages. In the past,
when only small kernels were required to execute on a DSP, it was acceptable
to program in assembly language. Today, resource constraints prohibit these
practices. Third, JAVA may become the dominant programming paradigm for
3G systems. NTT DoCoMo recently rolled out Java-based services for its cel-
lular subscribers and hardware solutions for efficient JAVA execution are being
proposed[6]. Fourth, unlike many past developments, hardware designers will
need to understand the complexities of software systems so that compilation
techniques can be effective. With a large number of standards both existing
and proposed for wireless communications, a programmable platform will be
required for timely implementation. Fifth, embedded and DSP wireless appli-
cations have distinct requirements when compared with general purpose pro-
cessors [7]. The predominant algorithmic difference is that inner loops are
easily described as vectors of moderate length. A key point is that the native
datatype is often fixed-point fraction. This is in distinct contrast to general
purpose processors (and most high-level languages) which operate on inte-
ger datatypes. Finally, in addition to algorithmic differences, most conver-
gence devices will be deployed in embedded environments where real-time
constraints are prevalent. Real-time behavior has a dominant influence in the
design of these devices[8]. Whereas general-purpose applications can often
manage with variable latency response, convergence applications, in contrast,
should be able to precisely guarantee the latencies within the system.

Our design includes modern DSP facilities required in convergence devices.
Execution predictability in DSP systems precludes the use of many general-
purpose design techniques (e.g. speculation, branch prediction, data caches,
etc.). Instead, classical DSP architectures have developed a unique set of per-
formance enhancing techniques that are optimized for their intended market.
These techniques are characterized by hardware that supports efficient filter-
ing, such as the ability to sustain three memory accesses per cycle (one instruc-
tion, one coefficient, and one data access). Sophisticated addressing modes
such as bit-reversed and modulo addressing may also be provided. Multiple
address units operate in parallel with the datapath to sustain the execution of
the inner kernel. Examples of classical DSPs include TI’s C54x [9], Lucent’s
16xx[10], and IBM’s Mwave DSP[11, 12].



Transitional DSP architectures have either attempted to extend existing archi-
tectures or solve a specific programming problem. The Lucent 16000 architec-
ture extends the 1600 architecture to a dual-MAC machine while maintaining
the same pipeline and programming style [10]. Likewise, TI’s C55x extends
the C54x to a dual-MAC machine [13]. Although these processors maintain
many of the irregularities and specialized hardware of their predecessors, they
provide performance gains and extend the lifetime of popular DSP families.
Processors which typify transitional architectures include Infineon’s Carmel
DSP[14] and LSI’s ZSP[15].

A special class of DSP architecture was introduced with the Media processor.
Since these applications are dominated by pixel processing, an 8-bit datatype
is often as important as a classical DSP’s 16-bit datatype. These processors
have had an influence on modern DSP architectures. Examples of media pro-
cessors include IBM’s Mfast [16—19], Philips’ Trimedia [20], TI C80 [21], and
Chromatics MPACT [22].

Another special class of processors with DSP functionality is general-purpose
processors which include SIMD extensions. Examples of this include Intel’s
MMX([23] and PowerPC’s Altivec [24]. Retrofitting DSP capability into gen-
eral purpose processors has not been as successful as once envisioned. Al-
though excellent performance can be achieved, system characteristics such as
real-time constraints and power dissipation sensitivities are harder to realize
on general purpose processors [25].

In classical DSP architectures, the execution pipelines were visible to the pro-
grammer and necessarily shallow to allow assembly language optimization.
This programming restriction encumbered implementations with tight timing
constraints for both arithmetic execution and memory access. The key charac-
teristic that separates modern DSP architectures from classical DSP architec-
tures is the focus on compilability. Once the decision was made to focus the
DSP design on programmer productivity, other constraining decisions could
be relaxed. As a result, significantly longer pipelines with multiple cycles to
access memory and multiple cycles to compute arithmetic operations could be
utilized. This has resulted in higher clock frequencies and higher performance
DSPs.

In an attempt to exploit instruction level parallelism inherent in DSP applica-
tions, modern DSPs tend to use VLIW-like execution packets. This is partly
driven by real-time requirements which require the worst-case execution time
to be minimized. This is in contrast with general purpose CPUs which tend
to minimize average execution times. With long pipelines and multiple in-



struction issue, the difficulties of attempting assembly language programming
become apparent. Controlling instruction dependencies between upwards of
100 in-flight instructions is a non-trivial task for a programmer. This is exactly
the area where a compiler excels. Representative examples of modern DSP
architectures include Lucent/Motorola’s Starcore SC140 [26], ADI’s Tiger-
SHARC]J[27, 28], TI’s C64x[29], BOPS’ ManArray[30-32], and Lucent’s Day-
tona[33, 34].

Our design, combines a unique combination of modern techniques including
SIMD execution and dynamically constructed VLIW or compounded instruc-
tion execution. The resulting combination provides for efficient DSP and JAvA
execution. Future convergence devices will require both types of execution.

This chapter is organized as follows: In the section to follow we discuss briefly
some related work. That is we consider approaches used to improve JAVA
program execution time, and briefly describe original contributions of the pro-
posals. Furthermore we identify open questions and the need to resolve the
open questions left by the related work. The chapter is concluded with a brief
discussion of the contents and the organization of the chapters to follow.

1.1 Related Work + Open Questions

JAVA Virtual Machine translation designers have used both software and hard-
ware methods to execute JAVA bytecode. The advantage of software execution
is flexibility. The advantage of hardware execution is performance. To try to
blend the benefits of both approaches hybrid techniques have also been pro-
posed. In this section we briefly describe existing approaches. The following
have been proposed thus far:

M Interpretation: Current implementations of the JAVA Virtual Machine take
alternative approaches to JAVA bytecode execution. One solution is interpreta-
tion. In this approach, a software program emulates the JAVA Virtual Machine.
This requires software to execute multiple machine instructions for each emu-
lated instruction. This provides cross-platform portability but poses a number
of performance issues. While this approach provides for maximum flexibility,
the performance achieved can be as low as 5-10% the performance of natively
compiled code [35].

B Just-in-time (JIT) Compilation: For this approach translation is performed
from JAVA bytecodes to native code (e.g. the machine language of the pro-
cessor) just prior to executing the program. The Intel IA-32 JIT which is used



in the VTune tool uses the JAVA bytecodes themselves to represent expres-
sions rather than building an intermediate representation[36]. Using a tech-
nique called lazy code selection, native IA32 instructions are generated in a
single pass with linear time complexity. They also describe lightweight imple-
mentations of several standard optimizations including common subexpression
elimination, priority-based global register allocation, and array bounds check
elimination. JITs have demonstrated 5-10x performance improvement over in-
terpretation [35, 37]. However, the compilation is only resident for the current
program invocation. Because they utilize processor resources, the number of
optimizations that can be performed prior to execution is restricted[35]. Addi-
tionally, multiple instructions are required to implement JAVA Virtual Machine
instructions and there is memory overhead to load the compiler into the run-
time system.

B Flash Compilation: Flash compilation is a hybrid approach in that a highly
optimizing JIT compiler and a JAVA Virtual Machine are integrated into a run-
time environment[37-39]. This allows code to be loaded in an already com-
piled application. The compiler only optimizes loops where a performance
gain is likely to be obtained. The information may come from profiled byte-
code execution. Stated performance improvements of 140x interpretive ap-
proaches and 13x JIT compilers have been reported.

In the Sun HotSpot compiler[38], released in 1999[40], a number of optimiza-
tions are made in addition to an optimizing compiler. The memory subsystem
uses direct object pointers for objects rather than handles. C and JAVA pro-
grams share the same activation stack which allows fast calling of C routines.
Garbage collection is performed using an accurate, generational copy collec-
tor which speeds object allocation and collection while reducing hard to debug
memory leaks. A mark-and-compact algorithm eliminates memory fragmenta-
tion and pause-less collection ensures nearly imperceptible user-visible pauses.
Special support is also provided for thread synchronization. The compiler it-
self does on-the-fly optimizations including method inlining, dead code elim-
ination, loop invariant hoisting, common subexpression elimination and con-
stant propagation. More sophisticated optimizations include null-check and
range-check optimizations. Because new code can be loaded dynamically, the
Sun HotSpot compiler has the ability to de-optimize (e.g. reverse the inlining
process) to allow modification of the natively optimized code.

In the IBM dynamic compiler[39] a small VLIW machine with a JIT compiler
hidden within the chip architecture is proposed. The first time a fragment of
JAVA code is executed, the JIT compiler transparently converts the JAVA byte-



codes to highly optimized RISC primitives, then parallelizes them, so multiple
RISC primitives can be executed in one machine cycle. The VLIW code is
saved in a portion of main memory not visible to the JAVA architecture. Sub-
sequent executions of the same fragment do not require translation (unless cast
out). They describe fast compiler algorithms for dynamic translation of JAVA
bytecode to VLIW code. These algorithms parallelize across multiple paths
and loop iteration boundaries. In addition, they map the JAVA stack and local
variables to real registers, thereby eliminating the pushes and pops between
local variables and the stack by appropriate register allocation.

B Off-line Compilation: Off-line compilers, sometimes referred to as way-
ahead-of-time compilers, translate JAVA bytecodes to machine code prior to
execution. Because the scope of optimizations which can be performed in JIT
compilers during JAVA execution is limited[41], an off-line compiler may de-
vote additional time to complex optimizations. This requires that programs be
distributed and installed (e.g. compiled) prior to use. Since it is assumed that
the compilation is performed once and maintained on a disk, additional time
may be devoted to optimizations. Except for loop information, the JAVA byte-
codes contain nearly the same amount of information as the source itself[37].
Therefore, an off-line compiler should be nearly as efficient as a native JAVA
compiler. A restriction on off-line compilers is that all of the class files must
be present (e.g. all superclasses) to perform the compilation[36].

The Toba system first translates bytecodes to C and then compiles the C pro-
gram[42]. For each JAVA method, Toba works by translating it into a C func-
tion. A C local variable is created for each JAVA local variable. Indirect jumps
and exceptions are handled through a giant switch statement. Exception han-
dling is based on the runtime program counter in the JAVA Virtual Machine.
Toba simulates the program counter by assigning values to a local pc variable.
Hewlett Packard has a similar system[43]. Using the Toba compiler, perfor-
mance improvements nearly twice a standard interpreter have been reported for
FFT signal processing functions[44, 45]. The Toba group found performance
improvements of 2 to 10 times versus a standard interpreter[42].

B Native Compilation: Native compilers use JAVA as a programming lan-
guage and generate native code directly from the high-level source. Even
though this approach is contrary to the JAVA philosophy of “write once, run
anywhere” [2], it may provide a good opportunity for speed improvement since
no information is lost during high-level compilation. A runtime system for
linking the JAVA classes is still required and classes may potentially need to be
resolved each time a method is invoked. Additionally, multiple instructions are



required to implement JAVA Virtual Machine instructions. The gcj compiler is
an example of a native compiler[46].

The previous approaches leave open the following questions:

e Is it possible to improve JAVA execution time with hardware?

e Is it possible to dynamically translate JAVA Virtual Machine instructions
in hardware?

e Is it possible to accelerate JAVA dynamic linking?
e [s it possible to accelerate garbage collection in hardware?

o [s it possible to apply modern computer organizations to accelerate JAVA
execution?

e [s it possible to overcome ILP limiting stack bottlenecks in JAVA byte-
code?

e Is it possible to take advantage of the inherent parallelism expressed in
the JAVA language?

B Direct Execution: The previously mentioned questions could be possibly
answered using direct JAVA execution. This approach assumes hardware capa-
bilities that execute the JAVA Virtual Machine instruction set. Our proposal
also belongs to this approach. We began in 1996 to investigate the previ-
ously mentioned questions. We envisioned that hardware approaches could
significantly enhance JAVA Virtual Machine execution time. At that time only
Sun Microsystems proposed similar approaches to improving JAVA perfor-
mance. Sun’s picoJava implementation directly executes the JAVA Virtual Ma-
chine Instruction Set Architecture (ISA) but incorporates other facilities that
improve the system level aspects of JAVA program execution[47-49]. The
picoJava chip is a stack-based implementation with a 64 entry register-based
stack cache which automatically spills and fills based on high and low-water
marks. Support for garbage collection, instruction optimization, method invo-
cation, and synchronization is provided. Because the JAVA Virtual Machine
does not implement an entire machine, Sun added 115 additional extended
bytecodes to the picoJava core[49]. These extended bytecode are not pro-
duced by JAVA compliant compilers. Sun partitions the bytecode into simple
instructions which can be directly executed, CISC-like instructions which are
implemented in microcode using 2kB ROMs, and very complicated instruc-
tions which trap. Because a register-file stack cache is used, the picoJava core



has access to the top 64 entries in the stack. This allows them to fold (e.g. com-
bine) multiple stack-based operations into one execution packet. On average,
Sun found about 28% of instructions executed get folded into other instruc-
tions. Researchers at National Chiao Tung University in 1997 found that in-
struction folding can reduce up to 84% of all stack operations and a 4-foldable
Java core could improve overall program speedup by 1.34[50,51]. Sun states
that the picoJava core provides up to 5x performance improvement over JIT
compilers [52].

We note that some questions discussed earlier have been investigated and re-
sults have been published'. At the time of our initiation, most of the open
questions remained unresolved. What we thought could be a slow-paced eval-
uation turned out to be a frantic dash as JAVA’s popularity and interest grew
dramatically. The results of related investigations are also reported here. We
would like to emphasize here that all published results are either at approx-
imately the same date or later date than our preliminary results described in
[53]. The following have been reported regarding direct JAVA executior?.

e Using the Tomasulo technique[54], Munsil and Wang show that an adapted
algorithm on simple benchmarks could reduce stack usage[55].

e Liet. al. from Tsignhua University also used a Tomasulo algorithm
combined with a technique called virtual registers[56]. Their JAViR pro-
cessor provides concurrent access to multiple stack entries. Virtual Reg-
isters are transparent to programmers and compilers (e.g. they are not
architectural registers). At runtime, the dependencies of JAVA bytecode
are checked and the virtual registers present the dependencies. These are
then allocated to physical registers with a reference count that records
the lifetime of the result. When a result is computed it is broadcast to
the reservation stations. If the reference count for the virtual register is
not zero, a new physical register is allocated. Using this technique they
achieved an effective IPC (instructions per cycle) of 2.89 to 4.01 with a
16 and 64 entry instruction window, respectively.

e The TinyJ processor from Advancel Logic Corporation also directly ex-
ecutes about 60% of Java bytecode[57]. Complicated bytecode are em-

'Sun investigated improving Java execution with hardware. They particularly tried to over-
come the problem of ILP limiting stack parallelism. Instruction folding partially resolves limita-
tions in issuing multiple instructions from a stack-based instruction set. Results were published
by Ton in 1997[51].

Recently, a new approach has begun to emerge for Java execution. The new approach is
based on FPGA execution.



ulated with software. They have two view of the machine - a Java Vir-
tual Machine view and a RISC-based execution engine. They transition
between the two views using a DISP (JAVA Virtual Machine dispatch
instruction). They provide special hardware support for a JAVA program
counter and special decode registers used to accelerated the software
emulated long bytecodes. They also include rudimentary DSP multiply-
accumulate instructions.

e The ShBoom PSC1000 processor from Patriot Scientific is a stack-based
machine which is semantically close to the JAVA Virtual Machine [58].
It is a 32-bit processor with a peak instruction issue of 1 per cycle. To
execute JAVA, a 20kB interpreter is required. This minimal memory
requirement is due to the close semantic nature of the JAVA Virtual Ma-
chine instruction set architecture and the ShBoom instruction set archi-
tecture.

We note here that these approaches only partially address the previously men-
tioned open questions. Generally speaking, they attempt the ILP extraction
without focussing on other important aspects of JAVA Virtual Machine execu-
tion. A number of such approaches have similarity to our approach. The TinyJ
processor in particular uses a technique for transitioning between machines
views that is close to ours. Most proposals avoid the more difficult questions of
extraction of parallelism from the semantics of the JAVA language, acceleration
of dynamic linking, dynamic translation of JAVA bytecode, and acceleration of
garbage collection.

In this dissertation we provide answers to the open questions presented previ-
ously. We further provide techniques for significantly accelerating JAVA exe-
cution. We present results for the extraction of ILP from JAVA bytecode includ-
ing an important technique of dependency collapsing. We also answer other
thus far unresolved research questions such as dynamic translation, dynamic
linking, and semantic extraction of JAVA parallelism from language constructs.

1.2 Framework of the Presentation

The dissertation is organized into six chapters excluding the current chapter.
The chapters and discussion are organized as follows:

e Chapter 2, entitled JVM: Brief Introduction, provides background in-
formation. It is dedicated to a short description of the JAVA Virtual



Machine architecture. In the chapter, we introduce the reader to the
stack machine concepts necessary to understand the JAVA Virtual Ma-
chine and present the memory organization, instruction formats and op-
erations, and all concepts necessary to make the JAVA Virtual Machine
operational.

e Chapter 3, entitled Delft-Java Architecture, provides a description of
the architecture of the DELFT-JAVA processor and its organization. In-
struction formats, operations, and specific hardware support for JAVA
Virtual Machine instructions are described.

o Chapter 4, entitled Microarchitecture and Java Acceleration, provides
a detailed description of how:

1. JAVA Virtual Machine instructions are dynamically translated on-
the-fly into DELFT-JAVA instructions,

2. dynamic linking is accelerated through the use of a Link Transla-
tion Buffer, and

3. programmer defined parallelism is exploited through multithread-
ing.

We show that it is possible to efficiently translate JAVA Virtual Machine in-
structions into a native RISC-type instruction set architecture and accelerate
execution. In addition, multiple instruction issue and dependency collapsing is
described. This chapter shows that JAVA stack induced ILP bottlenecks can be
removed from an instruction stream to allow efficient execution. In addition
we show that multi-threaded architectures and machine organizations can be
designed that allow for transparent extraction of JAVA parallelism.

e Chapter 5, entitled Experimental Validation, describes the benchmarks
we used and provides an overview of the evaluation methodology. We
look at performance results of dynamic translation for a number of hypo-
thetical and realizable machines for both in-order and out-of-order orga-
nizations. We characterize IPC and speedup to determine the success of
turning stack-induced hazards into pipeline hazards. The pipeline haz-
ards are then removed through superscalar techniques. Next we charac-
terize the speedup of organizational techniques for accelerating dynamic
linking. We characterize a number of workloads and their performance
improvement. Next we investigate signal processing applications and
their suitability to the JAVA programming language. Specifically, we
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use tensor algebra to optimize the algorithms to the JAVA Virtual Ma-
chine and characterize the performance delta between C code and JAVA
code. Finally, we summarize our experiments with garbage collection
and identify opportunities where hardware may accelerate garbage col-
lection.

Chapter 6, entitled Conclusions, presents a short description of what
has been achieved and discusses the overall significance of our research
by describing specific contributions. Finally, it discusses directions for
future investigation.

11






Knowledge brings power. — Stamatis Vassiliadis.

Chapter 2

JVM: Brief Introduction

guage designed for general-purpose object-oriented programming[1].

The language includes a number of useful programming features in-
cluding programmer defined parallelism support in the form of threads with
synchronization, strong typing, garbage collection, classes, inheritance, and
dynamic linking. The JAVA Virtual Machine (JVM) is a stack-based instruc-
tion set designed to efficiently transport programs across the Internet and allow
register poor processors to efficiently execute JAVA bytecodes[2]. Instructions
are not confined to a fixed length however all of the opcodes in the JAVA Vir-
tual Machine are 8-bits[3]. This allows for efficient decoding of instructions
while not requiring all instructions to be 32-bits or longer.

gs indicated in the introduction, JAVA is a C++-like programming lan-

Generally speaking, the JAVA language supports many of the basic data rep-
resentation types'. In contrast to C, their values are not implementation de-
pendent[59]. In addition, the JAVA language also supports char which is
a 16-bit unsigned Unicode character and a true boolear? for relational and
logical operators. While JAVA does not allow operations on C-style pointers,
it does have the concept of a reference type. There are three kinds: class,
interface, and array types. These objects are created on a dynami-
cally allocated heap. Multiple references may exist to the same object. The
reference values are handles (e.g. pointers) to the object. The distinction is
that a reference can not be operated on arithmetically as is often done in C-
style pointers. Operations in the JAVA Virtual Machine are strongly typed.
The 8-bit opcode imposes the availability of only 256 opcodes, this results in

1e.g. byte, short, int, long, float, and double.
Note that while the JAVA language supports a boolean datatype, the JAVA Virtual Ma-
chine does not support it.
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the trade-off that nearly all operations are performed as integers or IEEE-754
floating point. An interesting JAVA definition is that the JAVA Virtual Ma-
chine does not indicate overflow or underflow during operations on integer
data types[3]. There are also load and store instructions which move values
from memory locations to the operand stack in a very RISC-like manner. In
addition to standard operations, there is direct support for method invocation,
synchronization, exceptions, and arrays. Of the more unusual instructions, the
iinc is a memory-to-memory instruction that increments the contents of a
local variable location by a signed constant. There are two variable length
instructions® - tableswitch and lookupswitch.

This Chapter is dedicated to a more in-depth description of the various con-
cepts incorporated in the JAVA Virtual Machine. The chapter is organized as
follows: Given that the JAVA Virtual Machine is a stack-based machine, we
first describe the operation of a stack machine. Next we describe the JAVA Vir-
tual Machine storage organization. We then describe the operations available
in the JAVA Virtual Machine . Finally, we describe instruction execution.

0000 1030
limit limit limit limit
tos ——=
0000_0001
0000_0000
tos tos
tos = 2222_2722 0000_0001 0000_0001 0000_0001
bos bos bos bos
0000 1004
0000 1000
Empt .
Sta(I:)ky iconst_1 Iconst__1 pop2
(@ (b) © (@

Figure 2.1: Stack Example.

3This is in contrast with instructions of variable length where the length of the instruction is
fixed but variable.
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2.1 Stack Machines and Java Execution

The JAVA Virtual Machine is based on the stack concept. A stack is an ordered
set of elements [60]. Elements contained within the stack are accessed one at a
time. The point of access is called the fop of the stack. The number of elements
in the stack is known as the length of the stack. Items may only be added to or
deleted from the top of the stack. Figure 2.1 shows the basic stack mechanism.
An area of memory is displayed beginning at byte address 0000 1000f. The
bottom of stack pointer (bos) in 2.1a is equal to the top of stack pointer (tos)
and is referencing address 0000 0008. By convention, we describe the stack
as growing upward in memory’. In most stack architectures, a push operation
moves an operand onto the top of the stack. Because the JAVA Virtual Ma-
chine is strongly typed, a special instruction for each datatype is required for
push operations. As shown in the figure 2.1b, an iconst [ instruction (a push
operation) pushes the 32-bit integer constant Ox1 onto the stack. Figure 2.1c
shows the result of a 64-bit long integer constant Ox1 that is pushed onto the
stack. In JAVA , the JAVA Virtual Machine specification does not mandate how
two words of a 64-bit word are represented[3]. We choose to represent 64-bit
quantities in big endian® notation utilizing two 32-bit stack locations. In addi-
tion to the iconst instructions, the JAVA Virtual Machine also contains bipush
and sipush instructions. The bipush instruction pushes a sign extended byte
onto the top of the stack. The sipush instruction pushes a sign extended 16-bit
short word onto the stack. The JAVA Virtual Machine also has a traditional
pop instruction. Figure 2.1 depicts the result of executing the pop2 instruction.
This instruction pops the top two locations off of the stack’.

We adopt the following notation; values written as 0, 1, 2, etc. are considered to be integer
representations and values written as 0x0, 0x1, 0xA, 0x0000 0001, or 0000 0001 are considered
to be in hexidecimal notation. Specifically, when the number of bytes is important, we use
the 0000 0001 or 0x00000001 format where each digit represents 4-bits. Additionally, a ?
represents an undefined value of variable length depending upon the context in which it is used.
If the length is not obvious, we specify the number of bits the ? occupies.

5To allow for C linkage, our actual implementation grows downward in memory. However,
it is conceptually simpler to consider a stack as growing upward in memory.

®Endian refers to which bytes are most significant in multi-byte data types. In big-endian
architectures, the leftmost bytes (those with a lower address) are most significant. In little-
endian architectures, the rightmost bytes are most significant.

"Since the maximum size of the stack can be statically ascertained[59], a JAVA compliant
compiler should never produce code that causes a stack underflow or overflow. However, in
the case of malicious code that is not properly verified by the JAVA Virtual Machine, it may
be necessary to provide a mechanism to ensure stack integrity. In Figure 2.1, a JAVA Virtual
Machine should indicate a stack underflow condition if the top-of-stack (zos) pointer is ever
decremented below the bottom-of-stack bos pointer. Likewise, if the fos pointer is incremented
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class Add {
public static void main( String argv[] ) {
int i;
int result = 0;
for( i=0; i<10; i++ ) {
result = result + 1;

Program 2.1: A Simple JAVA Program.

Byte Text Comments

Address
0 iconst 0 ; push into 0x0 onto the stack
1 istore 2 ; store tos into LocalVar[2] = result
2 iconst 0 ; push int 0x0 onto the stack
3 istore 1l ; store tos into LocalVar[l] = i
4 goto 14 ; jump to address 14
7 iload 2 ; load LocalVar[2] = result
8 iload 1 ; load loop count i
9 iadd ; add them
10 istore 2 ; store result in LocalVar([2]
11 iinc 1 1 ; Memory increment LocalVar([l] + 1 = i
14 iload 1 ; Load Localvar[l] = 1
15 Dbipush 10 ; Push byte 0xA onto stack
17 if icmplt 7 ; if( 1 < 10 ) goto 7
20 return ; return control to invoker

Program 2.2: Simple JAVA Bytecodes

To comprehend how JAVA programs operate consider Figures 2.2 and 2.3.
These figures correspond to the execution of the bytecodes in Program 2.1 and
2.2. Program 2.1 depicts a simple JAVA program which adds 1 to a variable for
10 iterations of a loop. When compiled, the bytecode shown in Program 2.2 is
produced. The notation represents the Local Variables memory area as Local-
Var. Addresses in the Local Var memory start at O at the bottom of the box and
increment by 1 towards the top of the page. The width of the Local Variables
memory space is 32-bits. In Figure 2.2a, the Loop Count and Result locations

beyond the limit register, a stack overflow condition should be indicated.
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tos

J 0000_0000 ‘ Addr =0
bos tos = bos
O: iconst_O O: iconst_O
1: istore_2
(a) (b)
Stack Local Var Stack Local Var
0000_0000 0000_0000
tos
0000_0000 0000_000A| 0000_0000
0000_0000
tos = bos bos
O: iconst_O
1: istore_2 14: iload_1
2: iconst_O 15: bipush 10
3: istore_2
4: goto 14 (iar=14)
© @
Figure 2.2: Stack Execution Example.
17: if_icmplt 7 (O < 10) 9: jadd
7:iload_2 10: istore_2
8:iload_1 11:iinc 11
14: iload_1
(a) 15: bipush 10
(b)
Stack Local Var Stack Local Var
0000_0000 0000_0001
tos tos
0000_0001 0000_0001 0000_000A| 0000_0002
0000_0000 0000_0002
bos bos
17: if_icmplt 7 (1 < 10) 9: iadd
7:iload_2 10: istore_2
8:iload_1 11:iinc 11
14: iload_1
15: bipush 10
© (d)

Figure 2.3: Bytecode Stack (cont.).

are symbolically labeled at Local Variables address 1 and 2, respectively. This
represents the high-level JAVA variables i and result of Program 2.1. The state
of the stack and local variables spaces are depicted at the completion of the last
instruction in the list. For Figure 2.2a, this implies that the iconst O instruction
has completed. Similarly, in Figure 2.2c, the state is depicted after the execu-
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tion of goto 14 where 14 is the byte address of the instruction to branch to. In
Figure 2.2a, the assembled program begins with an iconst O instruction. This
instruction pushes an immediate 0x0 value onto the operand stack. This causes
the top of stack pointer (tos) to be incremented. The Local Variables memory
is shown but has not yet had any operations performed on it. Figure 2.2b shows
the state of both the operand stack and the Local Variables memory area after
the execution of the istore 2 instruction. The istore 2 instruction pops the 0x0
that was placed on the operand stack by the iconst O instruction execution of
Figure 2.2a. The 2 notation denotes that the machine is to place the value
in the Local Variables memory space at address 0x2. At the end of this op-
eration the stack is empty. Figure 2.2c shows the state of the operand stack
and local variable memory space after executing the sequence of instructions
at addresses O through 4. The instructions at addresses 2 and 3 perform the
same operations as Figures 2.2a and 2.2b. The instruction at method area byte
address 4 is an unconditional branch. When the branch is executed, control
is passed to instruction address 14. This is effected by writing the instruc-
tion address register (IAR) with the method area address 14. In Figure 2.2d,
the ellipsis (...) implies that all of the previous instructions in Figures 2.2a-
¢ have completed. The execution state is shown after the completion of the
iload 1 and bipush 10 instructions. The iload 1 instruction loads the integer
contents of the Local Variables memory space at address 1 onto the operand
stack. The bipush 10 instruction pushes an immediate, sign extended value 10,
represented in decimal notation, onto the stack. The first value corresponds to
the loop count i in the high-level JAVA code shown in Figure 2.1. Similarly,
the decimal value 10 represents the loop termination count.

2.2 Memory (Storage) Organization

This section is dedicated to the description of the JAVA Virtual Machine mem-
ory® organization. There are a number of run-time memory areas that are de-
fined in the JAVA Virtual Machine[61]. The Heap is the run-time data area
where all objects are dynamically allocated. There is one heap and it is shared
among all threads. The heap is required to be garbage collected. The Java
Stack is a private area created for each thread. It performs the same function
as the stack in C-like languages. It can not be directly manipulated except
to push and pop frames. A Frame is created each time a method, described

81n this presentation we will use memory and storage to have the same meaning except when
explicitly stated.
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later, is invoked and is destroyed when the method completes. It is used to
store data, partial results, aid in dynamic linking, method results, and excep-
tion handling information. Only one frame can be active at any point for a
particular thread. The Operand Stack is contained within the JAVA frame. It
is defined to be 32-bits[62] with 64-bit values occupying two locations on the
stack. The Local Variables area is allocated for each JAVA frame. It contains
32-bit variables addressed as word offsets from the base address of the area.
Any 64-bit datatypes are considered to occupy two logically contiguous local
variable locations. The Method Area is the location where the bytecode text
is loaded. In addition, the method area also contains the Constant Pool. Con-
stant Pool entries include numeric constants as well as symbolic references to
dynamically loadable objects. More specifically, the following describes the
JAVA Virtual Machine storage structure:

2.2.1 Spaces

Instructions and their operands must be obtained from a storage space or an
input source; the results are placed in a storage space or an output sink. From
a machine-language view, I/O can be treated as a specialized type of storage
read-only or write-only. We distinguish three types of spaces: Memory, Work-
ing Store, and Control Store. We also discuss runtime memory areas which
are not distinct spaces since no operations are provided. However, the runtime
areas are useful in understanding how a JAVA Virtual Machine is implemented.

Memory Area  Space Limitations

Heap Unbounded

Method Area 216 bytes per method
Constant Pool 216 entries per class

Local Variables 2'¢ 32-bit entries per method
Operand Stack 26 (class file restriction)

Table 2.1: JVM Memory Spaces.

B Memory: The memory space is the storage space from which programs are
directly executed. This may be augmented with auxiliary store or secondary
store. The JAVA Virtual Machine does not have provision for accessing auxil-
iary store. Embedding allows the same space to be accessed in two syntacti-
cally distinct ways. An example is mapping the register file into the memory

19



space. The JAVA Virtual Machine architecture has no embedding of address
spaces. The JAVA Virtual Machine specifies the following types of memory:

Heap: The heap is a runtime data area that is shared among all threads. It
is garbage collected and contains object instances and array allocations. The
JAVA Virtual Machine specification does not require the heap to be a fixed size.
If the physical memory capacity of the heap is exceeded, an OutOfMemory -
Error is reported.

Method Area: The method area is a single space that is shared among all
threads. It contains the constant pool, field and method data, and the code for
methods and constructors. According to the JAVA Virtual Machine specifica-
tion, it may be of fixed or variable size. The memory area is not required to be
contiguous. If enough memory can not be allocated, an OutOfMemoryEr-
ror is reported.

Constant Pool: The Constant Pool is a per-class or per-interface runtime
data area that contains numeric literals and symbolic names of classes that are
dynamically linked. The JAVA specification states that this area is allocated
from the method area’s space. The constant pool is created when a class or
interface specified in a JAVA class file has successfully been loaded. If the
physical memory capacity of the method area is exceeded, an OutOfMemo-
ryError is thrown. Each index into the Constant Pool references a variable
length structure.

B Working Store: The working store is the set of concisely specifiable loca-
tions that temporarily contain operands or results of the operations.

Operand Stack: The primary JAVA Virtual Machine working store is a stack,
termed the Operand Stack, of 32-bit words, placed as a variable-length, variable-
location segment in memory’. The Operand Stack is logically part of the
JavaFrame that is allocated on method invocation. Most instructions operate
on the current frame’s operand stack and return results to it. The operand stack
is also used to pass arguments to methods and receive method results. A 1long
or double is considered to occupy two stack locations. All operations on
the operand stack are strongly typed and must be appropriate to the type being
operated upon.

Local Variables: The Local Variables are logically part of the JavaFrame that
is allocated on method invocation. There are up to 2 local variable locations
per method invocation. Each location is 32-bits wide, placed as a fixed-length,

°The Burroughs B5500, circa 1963, used a similar organization[63]. In the JAVA Virtual Ma-

chine, this area of the memory space may be implemented with a register file. It is particularly
convenient because the stack is not global but is local to each executing thread.
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variable-location segment in memory. A long or double is considered to
take two local variable locations. The local variables hold the formal parame-
ters for the method and partial results during a computation.

l Control Store: The control store is the storage that contains the status of the
processor, and the information to control the syntactic and semantic interpreta-
tion process. The JAVA Virtual Machine provides no directly accessible control
registers. For changes in control flow (if <cond>,jsr, etc.), all transfers are rel-
ative to the current bytecode. This implies an instruction (or bytecode) address
register. However, all operations on this register are indirect side effects.

Instruction Address Register (IAR)'?: The Instruction Address Register (IAR)

controls the flow of program execution. Branch conditions and other control
instructions may indirectly modify the IAR. Upon completion of the current
instruction, the IAR is indirectly incremented by the bytelength of the current
instruction.

B Runtime Memory Areas: The runtime memory areas are not distinct spaces
and no operations are provided that operate on them. We describe them here
for completeness. The JavaStack'! is a per thread memory area created to
store frames. It is equivalent to the stack of a conventional language and hold
local variables, partial results, method invocation parameters, and return pa-
rameters. The memory is not required to be contiguous and may be either fixed
or dynamically varying in size. If the maximum stack size is exceeded by a
computation in a thread, a StackOverflowError is thrown. If enough
physical memory is not available to create the JavaStack, an OutOfMemory -
Error is thrown.

A JavaFrame is per method space allocated from the JavaStack. It stores data
and partial results, performs dynamic linking, returns values for methods, and
dispatches exceptions. A new frame is created each time a JAVA method is
invoked. It is destroyed when the method terminates whether it is normal or
abnormal termination. Each frame may contain a local variable area and an
operand stack!?. Since the size of all these areas is known at compile time, the
size of the frame data structure depends only upon the implementation [3].

'Note that in the JAVA Virtual Machine literature, this is often incorrectly described as the
Program Counter (pc). In fact, it does not count programs. Therefore, we prefer to give it the
proper term - Instruction Address Register.

"The JavaStack is not to be confused with the Operand Stack.

12We note that the implementation of the Frame is not mandated. We may therefore store a
pointer to the actual Local Variables and Operand Stack memory spaces.
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The NativeMethodStack is allocated on a per thread basis and is used to support
native methods which are written in a language other than JAVA. It is not
required to be implemented. If it is implemented, it may be of either fixed or
variable size. If the maximum stack size is exceeded by a computation in a
thread, a StackOverflowError is thrown. If enough physical memory is
not available to create the Native Method Stack, an OutOfMemoryError is
thrown.

2.2.2 Memory (Storage) Access

In this section we describe the storage access characteristics of the JAVA Virtual
Machine. Storage space is a two-dimensional array of bits, whose rows are
addressable units and whose columns are the bits within each unit.

B Address Space: The one-dimensional vector of addresses possible in a stor-
age space is its address space or name-space. An address is a storage element’s
unique name. The name-spaces of a language are the disjoint sets into which
the names of objects are grouped. Each object has a unique name or address
within its name-space. Two names are defined to be in the same name-space
if either can be substituted for the other in any machine-language statement
without altering that statement’s syntactic correctness.

In the JAVA Virtual Machine, a set of successive integers as addresses is as-
signed as the name-space of specific objects. This provides an isomorphic
mapping between the set of all possible n-bit names and the set of binary inte-
gers from 0 to 2" — 1. This constitutes a dense, ordered, and measured set!3.
This allows the same mechanisms used for operations on data to be used for
comparisons and additions desirable for names.

Address-Set Structure: The address-set structure is linear with detection of
addresses beyond the ends of the installed segment. This ensures that an in-
crease of memory will not affect correct execution of programs.

Address Resolution: The minimal memory address resolution is an 8-bit byte.
The byte ordering convention is big-endian. Big-endian is chosen because of
the logical convention of treating the whole storage space as one stream of bits.
Bits, bytes, half-words, etc. are numbered from left to right.

Information-Unit Alignment: Memory is not required to be aligned with the
memory space being manipulated. It is recommended that compilers generate
code that is aligned with the datatype being manipulated. Some language sys-

3By measured we mean that the successor of a name can be calculated by addition.
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tems (e.g. FORTRAN) forbid alignment. However, it is highly recommended
to align values where ever possible.

A | 8-b Opcode

B| iinc LocVar[] | S..S const

C| wide linc LocVarf ] S..S const

Figure 2.4: JVM Operand Address Formats

B Names and Addresses: In programming languages, objects are identified
by names. The name may refer to a single object but most names refer to
groups of data and instructions. The address is the corresponding machine-
language name.

Binding: The memory location is the place where a programmer defined name
is stored. Binding is the process of mapping a programmer defined name to an
address. The address is then interpreted at execution time to refer to the mem-
ory location. Because the set of programs whose data are simultaneously in
memory may change, it is desirable not to have a fixed correspondence be-
tween the programmer defined name and the object’s actual location in mem-
ory.

B Address Modification: The address calculation computes an element of
an array or matrix by taking the array name and adding an index. This is

called address modification when the address calculation takes place as part of
instruction execution. The result of the calculation is the effective address.

Address Components: The base address specifies the location of the array
in memory. The element address specifies an element within a data structure.
This is relative to the base address. The displacement determines the location
of an item relative to the current element address. The JAVA Virtual Machine
provides for all three components but not in a traditional manner. For simple
data accesses (e.g. load, store, load <n>, store <n>), the JVM provides
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the element address directly from an index. JAVA Arrays provide a base and
element address. For example, the base address in the iaload instruction is
an 32-bit array reference. An index is also provided to supply the element
address. The JAVA Virtual Machine also provides for dynamic binding of data
locations. The putfield and getfield instructions use a modified form of element
addressing.

Effective Address Calculation: For simple data accesses, there is no address
modification and the direct address is the effective address. For JAVA Arrays,
the components are added to form the effective address. For dynamic binding
of locations, an object reference to the class of the field requested is used as a
type of base address'*. An index into the Constant Pool of the class requesting
the field is used to return the name of the field request. The effective address
is then formed by resolving, loading, and linking the requested field name[1].

Location of Address Components: For simple data accesses, the element
address is provided directly by an address field of the instruction. For Array
accesses, the base address (e.g. array reference) and element address (e.g.
index) are provided in the operand stack. For dynamic binding of location, the
object reference is provided on the operand stack and the index into the current
class’ Constant Pool is provided by an address field in the instruction.

M Index Arithmetic: The JAVA Virtual Machine index arithmetic is described
by the following:

General Index Operations: Index arithmetic takes place in either the Operand
Stack or the Local Variables memory (using the iinc instruction). All inte-
ger operations available for normal computations are available for index arith-
metic.

Stack Addressing: The JAVA Virtual Machine provides a generalized Operand
Stack. The maximum size of the stack is computed statically at compile time.
A current Class File restriction limits the maximum number of stack locations
to 216 entries. Checks for overflow and underflow of the stack are not enforced
at runtime but may be optionally verified statically during class loading. The
stack is logically in memory although the top of the stack may be cached or
contained within a register file.

Incrementing: All incrementing, whether for general index operations or
stack operations takes place on the stack or through the Local Variables mem-
ory (using the iinc instruction). The index for the stack is called the stack

4Note that the object reference does not specify an array in memory but specifies a reference
to the class which contains the field.
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pointer. There is no directly accessible stack pointer register that can be ma-
nipulated as part of the JAVA Virtual Machine instruction set. However, an
implied stack pointer is indirectly modified as the result of operations. The
stack is not defined to grow in a particular manner. We adopt the arbitrary con-
vention that the stack grows from high to low memory addresses. The stack
pointer then points to the top element. A pop operation becomes a Read fol-
lowed by an increment corresponding to the size of the data just read. This is a
postincrement. A push is a write preceded by a decrement, the predecrement.

B Address Levels: Addresses which refer directly to the machine-language
names for data are called direct addresses. An address which refers to an-
other address rather than the machine-language name is called indirect address.
There are no indirect addresses in the JAVA Virtual Machine architecture’>. An
immediate address is an address that does not name a data item but is itself used
as the data item. The JAVA Virtual Machine provides only the proper operation
of using immediate addressing for loading the stack.

2.3 Operations

An information unit is the information that an operation stores and operates
upon as a single entity. The JAVA Virtual Machine basic unit system is defined
to be an 8-bit long byte. As shown in Table 2.2, operations are provided for
standard datatypes as well as Unicode characters, Object references, and return
addresses. In contrast to their C counterparts, JAVA values are not implemen-
tation dependent[59].

Operations are provided for integer, logical, and floating point datatypes. The
following definitions are from [64]. A datatype consists of a referent set (the
set of concepts represented) and a representation (a set of bit patterns and
the encoding and allocation that define the correspondence). A processor’s
datatypes are divided into a couple of categories.

1. those used to produce bit patterns with new meaning (data in the narrow
sense)

5The convention is adopted that for an address to be indirect it must first retrieve a pointer

from memory and then use that as the direct address. Often, the term register indirect is used

where the address given refers to an abbreviated register reference. We consider this a direct
address.
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Type Interpretation

byte 1-byte signed 2’s complement integer

short 2-byte signed 2’s complement integer

int 4-byte signed 2’s complement integer

long 8-byte signed 2’s complement integer

float 4-byte IEEE 754 single-precision floating point
double 8-byte IEEE 754 double-precision floating point
char 2-byte unsigned Unicode character

reference 4-byte reference to a JAVA object

array Array of another type

returnAddress  4-byte reference used with jsr, ret, jsr w, ret w

Table 2.2: JAVA Virtual Machine Datatypes.

2. instructions and other status words used to control the computing system
itself.

Each datatype has a set of operations proper to it. A datatype is made up of
several subparts, which may themselves be datatypes (e.g. vectors and ma-
trices). Often, one kind of representation can be embedded in another (e.g.
addresses are usually encoded as integers).

B Logical Data: A logical (or Boolean) datum has two possible states - true
and false. It can be represented by a single bit. The JAVA language provides
a true boolean type. However, the JAVA Virtual Machine does not directly
support this single-bit type. The allocation for logical operations is a 32-bit
vector of booleans. A logical datum is encoded as a binary value with true and
false states. The JAVA Virtual Machine adopts the C convention that a false
value is represented by zero and any non-zero value is true.

B Fixed Point Numbers: The representation of fixed point numbers includes
the number system choice, the allocation of elements, and the element repre-
sentation.

Number System: The JAVA Virtual Machine uses a positional representation
for the number system. Two types of fixed-point numbers can be represented:
positive whole numbers which include zero (termed positive integers or un-
signed integers) and integers. The notation for positive integers uses a binary
radix with an implied sign of zero in the most significant (hidden) bit. The
position of the radix point is just to the right of the digits.
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For integers, the notation of negative numbers uses radix complement. The
radix value is binary. This is commonly referred to as 2’s complement. The
position of the radix point is just to the right of the digits (e.g. integer nota-
tion). Because the high-order digit (which denotes the sign) participates fully
in arithmetic, multiple precision low-order numbers can be treated as all digits.

The implied position of the radix point matters only for complement notations.
The multiplication of two n-bit numbers (with sign) words yields 2n — 2 bits
of product and a sign. In the complement notations, the sign is treated as a
digit.

4 Allocation of elements: An allocation of elements is comprised of the
number of digits and a sign.

Number of digits: For a binary radix, each digit requires 1 bit. The number
of digits is fixed based on the datatype. For addresses (e.g. object references),
all lengths are 32-bits. The length of data is implicitly given by the operation
code with the instruction.

Sign: For unsigned integers, the sign is hidden in the most significant bit (the
left-most bit) and implied to be O (e.g. positive). For integers, the sign is
encoded as required for radix complement notations (0 for positive and 1 for
minus). The sign bit is left aligned into the most significant bit.

¢ Element Representation: The allocation is one-to-one in that the number
of digits determines the length of the number in bits. Digits are encoded as 0
for zero and 1 for one.

B Floating Point Numbers: All floating-point notation follows the IEEE-
754-1985 standard. In fixed-point arithmetic, the basic arithmetic laws can be
preserved provided some indication mechanism is used when the result over-
flows the representation range. In floating-point arithmetic, however, preserv-
ing exact results would entail corrective action. This would reintroduce pro-
grammed scaling and therefore defeat the purpose of floating-point arithmetic.
Therefore, floating-point arithmetic usually produces an approximation of the
result. The key arithmetic law violated is the associative law. As a result, the
distributive law also fails as do cancellation and solvability.

B Arrays: An array’s elements are placed in groups of equal size. The number
of elements in a group is called that group’s dimension. The rank of an array is
the number of dimensions of the array. A vector has rank 1. A matrix has rank
2. A scalar has rank 0. The JAVA Virtual Machine has support for arrays of
rank up to 255 (limited by an 8-bit dimension field in the instruction format).
Additionally, all arrays are homogeneous - all elements are considered to be
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of the same datatype for all operations. All element types must be one of the
primitive datatypes.

2.3.1 Operation Specification

An operation is the elementary independent step carried out by a machine. An
operation code is the encoded specification of an operation. It may specify
not only the action to be taken but also the datatype of the operand. It may
also specify the instruction format and the format for the operation code itself.
An instruction is the elementary independently reorderable unit of a program.
We group the operations in a similar manner as Stallings[60] with additional
categories for JAVA specific operations.

Hl Secondary Operations: A secondary operation is one implied by an explic-
itly specified operation; the operand and result locations are usually implied as
well. An example of this is the sign test. Secondary operations create a depen-
dence between previously independent functions - they violate orthogonality.
The JAVA Virtual Machine does not provide secondary operations (e.g. indi-
cators). All bits participate in the computation. All arithmetic is modulo its
native datatype.

B Operation Encoding: A homogeneous encoding contains no internal struc-
ture to the correspondence between code point and the representant (e.g. no
significant subsets of the representands can be discerned by examining the
codes). A fully decomposed specification provides n bits for each of the n
actions. The JAVA Virtual Machine uses a partially decomposed specification.
Operations are decomposed into actions - (e.g. Add, Logic, etc.) and modi-
fiers. Operations are specified using a sequence of variable length with an 8-bit
basic sequence. The operation code is always found within the same bits of all
the instruction formats'® and is always 8-bits in length.

2.3.2 JAVA Virtual Machine Operation List

B Data Handling: Data-handling operations are those that do nothing else -
no arithmetic or logic. The data movement operations change neither alloca-
tion nor coding. An unchanged bit pattern is copied from one place to another.

16The wide instruction could be considered to be an exception. Because it may not be the
target of a branch operation, it can also be considered a delimiter instruction which modifies the

behavior of the following instruction. Using the later interpretation allows the JVM to treat the
instruction independently.
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The format transformation operations change allocation but not encoding. As
with data-handling operations, the format transformations are code indepen-
dent (e.g. decoding and encoding steps are not involved). The third class of
data-handling operations is code transformation, which changes coding and in
general requires reallocation.

Data Movement: Data movement corresponds to the programming-language
assignment primitive. The JAVA Virtual Machine provides data movement op-
erations via working store in the form of stack manipulations, Load, and Store
operations. Table 2.3 summarizes the JAVA Virtual Machine data movement
instructions.

Instruction Size/
Name Function/Syntax Opcode
o Remove top word from operand stack 1
pop pop 87
on2 Remove top two words from operand stack 1
pop. pop2 88
du Duplicate top word on operand stack 1
P dup 89
dup x1 Duplicate top word on operand stack and put two down 1
dup x1 90
dup x2 Duplicate top word on operand stack and put three down 1
dup x2 91
Duplicate top two words on operand stack 1
dup? dup? 92
Duplicate top two words on operand stack and put three down 1
dup2 x1 dup2 x1 93
Duplicate top two words on operand stack and put four down 1
dup2 x2 dup2 x2 94
Swap top two words on operand stack 1
swap i
swap 95

Table 2.3: JVM Data Movement Instructions

Instruction Size/
Name Function/Syntax Opcode
bipush Push (Load) sign-extended imma8 onto stack 2
P bipush (S..8)imm8 16
sipush Push (Load) operand stack with sign-extended imm16 3
P sipush (S..S)imm16 17
1de Load operand stack with 32-bit ConstantPool[(0..0)imm8] value 2
ldc (0..0)cp index imm8 18
Ide w Load operand stack with 32-bit ConstantPool[imm16] value 3
Idc (0..0)cp index imml16 19
1de2 w Load operand stack with 64-bit ConstantPool[imm16] value 3
ldc2 w (0..0)cp index imml6 20
Push (Load) operand stack with null reference 1
aconst null
aconst null 1
. . Push (Load) operand stack with int constant i 1
iconst <i> iconst ml; iconst 0; iconst 1; etc. 2-8
Push (Load) operand stack with long constant 1 1
leonst <1> lconst O; lconst 1 9-10
Push (Load) operand stack with float constant f 1
feonst <f> feonst 0; feonst I feonst 2 11-13
Push (Load) operand stack with double constant d 1
deonst <d> deonst 0; deonst 1 14,15

Table 2.4: JVM Load Constant Instructions
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Note that in Table 2.4, when using the ldc instruction it is also possible for a
String to be loaded. In this case, a String Class object is created on the heap
and the value loaded is a reference to the String.

Instruction Size/
Name Function/Syntax Opcode
iload Load operand stack with int in Local Variable[(0..0)imm8] 2
roa iload lv index (0..0)imm8 21
. Load operand stack with int in LocalVariable[n] 1
fload <n> iload 0; iload I etc. 2629
lload Load operand stack with long in Local Variable[index],[index + 1] 2
o lload Iy index (0..0)imm8 2
Load operand stack with long in Local Variable[n],[n+1] 1
lload <n> ltoad 0; lload I; etc. 30-33
fload Load operand stack with float in Local Variable[(0..0)imm8] 2
fload lv index (0..0)imm8 23
Load operand stack with float in Local Variable[n] 1
fload <n> fload 0; fload I; etc. 34-37
dload Load operand stack with double in LocalVariable[index],[index + 1] 2
oA lload Iy index (0..0)imm8 24
Load operand stack with long in LocalVariable[n],[n+1] 1
dload <n> dioad 0; dioad I; etc. 38-41
load Load operand stack with reference in LocalVariable[(0..0)imm8] 2
aloa aload lv index (0..0)imm8 25
Load operand stack with reference in Local Variable[n] 1
e aload 0; aload 1 etc. 4245

Table 2.5: JVM Load Constant Instructions

In Table 2.4, the iload, lload, fload, dload, and aload instructions, the Local
Variable index (imm8) can be extended to an imm16 using the wide instruc-
tion. In the lload and dload instructions, the order of LV[(0..0)imm8] and
LV[(0..0)imm8 + 1] may be reversed provided the data returned from the two
addresses results in the stack state: ...,wordl,word?2.
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Instruction Size/

Name Function/Syntax Opcode
ist Store operand stack containing int to Local Variable[(0..0)imm8] 2
Istore istore Iv index (0..0)imm8 54
. Store operand stack containing int in Local Variable[n] 1
istore <n> istore 0; istore I etc. 59-62
Istore Store operand stack containing long in Local Variable[index],[index + 1] 2
Istore lv index (0..0)imm8 55
Store operand stack containing long in Local Variable[n],[n+1] 1
Istore <n> Istore 0; Istore 1; etc. 63-66
fstore Store operand stack containing float in LocalVariable[(0..0)imm8] 2
fstore lv index (0..0)imm8 56
Store operand stack containing float in Local Variable[n] 1
fstore <n> fstore 0; fstore I; ete. 67-70
dst Store operand stack containing double in Local Variable[index],[index + 1] 2
store dstore Iv index (0..0)imm8 57
Store operand stack containing long in Local Variable[n],[n+1] 1
dstore <n> dstore 0; dstore 1; etc. 71-74
astore Store operand stack containing reference in Local Variable[(0..0)imm8] 2
astore lv index (0..0)imm8 58
Store operand stack containing reference in Local Variable[n] 1

astore <n> astore 0; astore 1; etc. 75-78

Table 2.6: JVM Store Constant Instructions

In Table 2.6 the istore, Istore, fstore, dstore, and astore instructions, the Local
Variable index (imm8) can be extended to an imm16 using the wide instruc-
tion. In the lload and dload instructions, the order of LV[(0..0)imm8] and
LV[(0..0)imm8 + 1] may be reversed provided the data returned from the two
addresses results in the stack state: ...,wordl,word?2.

Format Transformation: Format Transformations reallocate one machine
field into another without changing the encoding. Operations are provided to
convert datatypes to smaller or larger lengths while maintaining their encoding
(e.g. formatting a byte to int, short to long, or int to byte). In some cases
the bits are truncated. In other cases, they are zero- or sign-extended. Format
transformations are accomplished by restricting the domains and types of the
general code transformation instructions.

In formatting a double to a single, if the represented value is too small it is
formatted as a zero of the same sign and if it is too large, it is formatted as
an infinity of the same sign. Table 2.7 summarizes the available JAVA Virtual
Machine format transformations.
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Instruction Size/

Name Function/Syntax Opcode
21 Format int (w32) to long (w64) 1
! i21 133
. Format int (w32) to byte (w8) by trucation and sign-extension 1
i2b .
i2b 145
. Format int (w32) to short (w16) by truncation and sign-extension 1
i2s B
i2s 147
. Format long (w64) to int (w32) by truncating high-order 32-bits 1
12i .
12i 136
f2d Format float (f32) to double (f64) 1
f2d 141
af Format double (f64) to float (f32) using round-to-nearest 1
dzf 144

Table 2.7: JVM Format Transformation Instructions

Code Transformation: One data representation in a machine language can be
transformed to another representation if the concept sets that the two represent
intersect. The JAVA Virtual Machine architecture allows general transforma-
tions between floating point, integer, and unsigned integer representations.

When converting from types float or double to types int or long, the following
rules are used:

1. if the floating point representation is NaN, the resultant is zero

2. if the value is an infinity, the maximum representable integer of the ap-
propriate sign is used

3. Otherwise, the operand is converted to an integer using round-to-zero.
If this is too small to be represented, the smallest representable integer
is used.

Table 2.8 summarizes the available JAVA Virtual Machine code tranformation
operations.
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Instruction
Name

i2f

i2d

i2c

12f

12d

2i

21

d2i

dzl

B Logic: All logical operations apply to vectors of bits. There is no direct
boolean datatype in the JAVA Virtual Machine although the JAVA language

Function/Syntax
Convert int to float using IEEE-754 round-to-nearest
i2f
Convert int to double
i2d
Convert int to unsigned char using zero-extension and truncation
i2c
Convert long to float using IEEE-754 round-to-nearest
2f
Convert long to double using IEEE-754 round-to-nearest
2d
Convert float to int

2i

Convert float to long

7

Convert double to integer
d2i

Convert double to long
dazl

Table 2.8: JVM Conversion Instructions

contains a boolean type. There are however logical vectors.

Connectives: The dyadic operations upon a single pair of bits are called con-
nectives. The JAVA Virtual Machine architecture supplies 3 connectives on
integer and long types. Connectives are inherently unsigned. Table 2.9 sum-

Size/
Opcode
1
134
1
135
1
146
1
137
1
138
1
139
1
140
1
142
1
143

marizes the available JAVA Virtual Machine logical connectives.

Composite Functions: A composite logical function applies a dyadic scalar
function among the elements of a bit vector. The JAVA Virtual Machine con-

Instruction Size/
Name Function/Syntax Opcode

. int logical boolean bitwise AND (conjunction) 1
iand .

iand 126
. int logical boolean bitwise inclusive OR 1
ior .

ior 128
. int logical boolean bitwise exclusive OR 1
ixor .

ixor 130

long logical boolean bitwise AND (conjunction) 1
land

land 127

long logical boolean bitwise inclusive OR 1
lor

lor 129

long logical boolean bitwise exclusive OR 1
Ixor

Ixor 131

Table 2.9: JVM Logical Connective Instructions

tains no composite instructions.
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Shift Operations: A shift operation is used in data handling for field selec-
tion; in logic, for bit inspection, and in arithmetic, for programmed scaling,
multiply, divide, and floating point. The JAVA Virtual Machine provides a rudi-
mentary set of logical and arithmetic shift functions. The shift displacement is
passed on the stack using the low-order 5 bits for an integer and the low-order
6-bits for a long (e.g. shiftval = 2/ow order bits)y - Taple 2.10 summarizes the
available JAVA Virtual Machine shift instructions.

Instruction Size/
Name Function/Syntax Opcode

int arithmetic shift left 1
ishl 120
ope;sa nd J) 1

ishl

ishr int arithmetic shift right (|

ishr 122
. int logical shift right 1
fushr iushr 124
long arithmetic shift left 1
Ishl Ishl 121
Jshr long arithmetic shift right (| °P‘f;:"d D 1
Ishr 123
long logical shift right 1
lushr lushr 125

Table 2.10: JVM Shift Instructions

Bit Manipulations: The JAVA Virtual Machine does not contain any bit ma-
nipulation instructions.

B Fixed-Point Arithmetic: Computer arithmetic operations are best under-
stood as consisting of two steps. First, the operation as defined in mathemat-
ics is applied to the interpretations of the operand representations. Next, the
mathematical result is changed by a domain function, if necessary, such that
it can be represented in the datatype’s domain. Computer arithmetic does not
have closure because of finite domains and ranges. For fixed-point represen-
tation, the domain function usually does not change the mathematical result.
The JAVA Virtual Machine does not contain any flags to indicate overflow. All
arithmetic is modulo. The representation range is the range of integers that can
be represented by the integer datatypes. Datatypes are not properly mixed and
therefore must undergo a format transformation prior to arithmetic operations.

Addition and Subtraction: When operands and results have equal lengths,
an overflow can always be represented by 1 bit. The JAVA Virtual Machine
does not store the overflow bit and the results is truncated to fit within the
datatype (e.g. modulo arithmetic). However, if overflow occurs in a two’s-
complement encoding, the sign of the result will not be the same as the sign
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of the mathematical sum of the two values. In negation, because the range of
values is not symmetric in 2’s-complement encoding, when the most negative
number is negated, the result is again the most negative number. No excep-
tion is thrown in this case. Table 2.11 summarizes the available JAVA Virtual
Machine addition and subtraction instructions.

Instruction Size/
Name Function/Syntax Opcode
. int add (truncate) 1
fadd iadd 96
isub int subtract (truncate) 1
isub 100
ine int arithmetic negation 1
g ineg 116
inc Increment Local Variables[(0..0)imm8] by (S..S)imm8. (No change to stack) 3
iinc Iv index (0..0)immS8 (S..S)imm8 132
long add (truncate) 1
tadd ladd 97
long subtraction (truncate) 1
Isub Isub 101
long arithmetic negation 1
Ineg Ineg 117

Table 2.11: JVM Add and Subtract Instructions

Multiplication and Division: For multiplication, the number of product dig-
its is just less than or equal to the total number of digits of the multiplier and
the multiplicand. The JAVA Virtual Machine considers the resultant destination
to be the same length as the operands. This is as per the JAVA (and C/C++)
language convention. If an overflow occurs, the least significant bits of the
mathematical product are used (e.g. truncation).

For division, if the dividend is the largest representable number and the divi-
sor is -1, then the result is equal to the dividend (e.g. overflow occurred). No
exception is thrown. The quotient’s magnitude is the largest possible while
satisfying |divisor * quotient| < |dividend|. A divisor of 0 throws an Arith-
meticException.

For remainder, the result is dividend— (d;%?;;nd )*divisor. The identity § *b-+
a%b = a, always holds. Moreover, the result of the remainder operation will
have the sign of the dividend. A divisor of 0 throws an ArithmeticException.
Figure 2.12 summarizes the available JAVA Virtual Machine multiplication and

division instructions.
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Instruction
Name

imul

idiv

irem

Imul

Idiv

Irem

Size/
Function/Syntax Opcode

int multiply (truncate) 1

imul 104
int division (round toward 0) 1
idiv 100
int remainder 1
irem 112
long multiply (truncate) 1
Imul 105
long division (round toward 0) 1
Idiv 109
long remainder 1
Irem 113

Table 2.12: JVM Multiplication and Division Instructions

B Floating Point: All floating point operations correspond exactly to the
IEEE-754-1985 standard including denormalized numbers and gradual under-
flow. Inexact results must be rounded to the representable value nearest to the
infinitely precise result. Round-towards-zero (the default rounding) effectively
truncates the mantissa. Floating point operations produce no exceptions. An
overflow produces a signed infinity, an underflow produces a signed zero, and
an indefinite result produces NaN.

Addition and Subtraction: For addition, the following IEEE rules apply:

—

NS kR w

value

. if either value is NaN, the result is NaN

the sum of two infinities of opposite sign is NaN

the sum of two infinities of the same sign is the infinity of that sign
the sum of infinity and a finite value is infinity

the sum of two zeroes of opposite sign is positive zero

the sum of two zeroes of the same sign is the zero of that sign

the sum of a zero and a nonzero finite value is equal to the non-zero

8. the sum of two nonzero finite values of the same magnitude and opposite

sign is positive zero.

Moreover, all sums are computed and rounded using round-to-nearest mode.
If an overflow occurs, the result is the infinity of the appropriate sign. If an
underflow occurs, the result is a zero of the appropriate sign.
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For subtraction, the result of a— b is the same as a+ (—b) except for the case of
subtraction of 0.0. For example, 0.0 —0.0 = +0.0 while 0.0+ (—0.0) = —0.0.

For negation, the following additional IEEE rules apply:

1. the negation of an infinity is the infinity of opposite sign

2. the negation of a zero is the zero of opposite sign.

Table 2.13 summarizes the available JAVA Virtual Machine addition and sub-
traction operations.

Instruction Size/
Name Function/Syntax Opcode
float add (round-to-nearest) 1
fadd fadd 98
fsub float subtract (round-to-nearest) 1
Sfsub 102
fneg float arithmetic negation 1
fneg 118
double add (round-to-nearest) 1
dadd dadd 99
dsub double subtraction (round-to-nearest) 1
dsub 103
dneg double arithmetic negation 1
dneg 119

Table 2.13: JVM Floating Point Add and Subtract Instructions

Multiplication and Division: For multiplication, the following IEEE-754
rules apply:

1. if either operand is a NaN, the result is NaN

2. if neither operand is NaN, the sign of the result is positive if both operands
have the same sign, and negative the the operands have different signs

3. multiplication of infinity by a zero is NaN

4. multiplication of an infinity by a finite operand produces an infinity fol-
lowing the sign rule given above.

Moreover, the product is computed and rounded using round-to-nearest mode.
If an overflow occurs, the result is the infinity of the appropriate sign. If an
underflow occurs, the result is a zero of the appropriate sign.

For division, the following IEEE-754 rules apply:
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. if either operand is a NaN, the result is NaN

. if neither operand is NaN, the sign of the result is positive if both operands
have the same sign, and negative the the operands have different signs

. division of infinity by infinity is NaN

. division of infinity by a finite value produces an infinity following the
sign rule given above

. division of a finite value by an infinity produces a zero following the
sign rule given above

. division of a zero by a zero results in NaN

. division of zero by a finite value produces a zero following the sign rule
given above

. division of a nonzero finite value by a zero produces an infinity following
the sign rule given above.

Moreover, the quotient is produced using round-to-nearest mode. If an over-
flow occurs, the result is the infinity of the appropriate sign. If an underflow
occurs, the result is a zero of the appropriate sign. For remainder, the definition
is not the same as the IEEE-754 version. The IEEE version uses rounding divi-
sion while the JAVA Virtual Machine uses truncating division (to more closely
approximate the integer behavior). The following JAVA Virtual Machine rules

. if either operand is a NaN, the result is NaN

. if neither value is NaN, the sign of the result is equals the sign of the
dividend

. if the dividend is an infinity, or the divisor is a zero, the result is NaN

. if the dividend is finite and the divisor is an infinity, the result equals the
dividend

. if the dividend is a zero and the divisor is finite, the result equals the
dividend.
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Moreover, the result is dividend — into f ((d;§5?;£d> * divisor). The function

intof() rounds toward the nearest integer, or towards the nearest even integer
if the number is half way between two integers.

Table 2.14 summarizes the available JAVA Virtual Machine multiplication and
division instructions.

Instruction Size/
Name Function/Syntax Opcode
float multiply (round-to-nearest) 1
fmul Sfinul 106
. float division (round-to-nearest) 1
fdiv fdiv 110
frem float remainder 1
frem 114
dmul double multiply (round-to-nearest) 1
dmul 107
ddiv double division (round-to-nearest) 1

ddiv 111
double remainder 1

drem drem 115

Table 2.14: JVM Floating Point Multiplication and Division Instructions

Relational Operations: Relational operations test a specified relation among
operands and produce a result that is true or false. A relation can formally be
considered to be a mapping from an input domain, consisting of all possible
values of the datum, to an output space or range, consisting of one point for
each category. Generally, a compare instruction is provided for this purpose.
The JAVA Virtual Machine provides comparisons for types long, float, and
double. The kind of comparison used is a ranked comparison (e.g. <,=>
membership). The domain of the comparison is the operand stack. The results
are recorded explicitly on the operand stack. Table 2.15 shows the result of a
comparison:

Comparison Result
> 1
= 0
< -1
NaN 1 (fcmpg)
NaN -1 (fempl)
+0.0 = —0.0 0

Table 2.15: JVM Comparison Results
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For floating point relational operations, the following JAVA Virtual Machine
rules apply:

1. positive zero and negative zero are equivalent
2. negative infinity is less than positive infinity

3. aNaN is unordered and can be determined from a combination of fcmpg
and fcmpl instructions.

Table 2.16 summarizes the available JAVA Virtual Machine relational instruc-
tions.

Instruction Size/
Name Function/Syntax Opcode

Compare long (opl <> op2) 1

lemp lemp 148
fem Compare float (NaN = 1) 1

Pg fempg 150
Compare float (NaN = -1) 1

fempl fempl 149
Compare double (NaN = 1) 1

dempg dcmpg 152
Compare double (NaN = -1) 1

fempl fempl 151

Table 2.16: JVM Comparison Instructions

B Array Operations: The JAVA Virtual Machine provides for operation on
arrays. JAVA arrays are created dynamically and are a type of Object (e.g. all
methods of class Object may be invoked on an array). An array object may
contain zero or more variables (called components). The length of an array is
the number of components it contains. Non-negative integer index values are
used to access arrays. An array of zero components is not equivalent to a null
reference. All components within an array must be of the same type (which,
however, may be an array type). The element type is the component type of the
components which are not array types. If the element type is of type Object,
then it is possible to have a case where the element type is actually an array
type. Moreover, an array of type char is not a string. Neither is a String an
array of char. Arrays may also contain an abstract class component type.

A variable of array type holds a reference to an object but the array object
is created using an array creation instruction. The length of an array is not
part of its type. Once an array is created, its length never changes. All arrays
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are O-origin. They are indexed using int values. Array access bounds are
checked at runtime. An index greater than or equal to the array length causes
an ArraylndexOutOfBoundsException to be thrown.

Array Creation: Arrays are created by specifying the number of elements
(passed on the operand stack) and the element type. Valid element types are
shown in Table 2.17. Unfortuantely, Sun’s JAVA Virtual Machine architecture
does not provide a way to disambiguate a byte from a boolean (e.g. the same
instruction is used to load and store both types). Therefore, even though Sun
suggests other implementations may implement packed boolean arrays, this
is not architecturally possible (although a software interpreter may be able to
accomplish it). A special instruction (anewarray) is used to create an array of
type reference. All arrays are allocated to the garbage collected heap. If the
number of elements is less than zero, a NegativeArraySizeException is thown.
Table 2.17 summarizes the available JAVA Virtual Machine array types which
may be created. Table 2.18 summarizes the available JAVA Virtual Machine
array creation instructions.

Array Type aType Array Type aType

bool 4 byte 8
char 5 short 9
float 6 int 10
double 7 long 11

Table 2.17: JVMArray Element Types

Instruction Size/

Name Function/Syntax Opcode
newarray Create a new array for non-object types 2
newarray imm8 aType 188
anewarray Create a new array for .objec(s 3
anewarray imml6 CPindex 189
multianewarray Create a new multidimensional array 4
multianewarray imm16 CPindex, imm8 dim 197

Table 2.18: JVM Array Creation Instructions

Array Data Movement: The JAVA Virtual Machine provides instructions
to load and store values in Arrays. Table 2.19 and Table 2.20 summarizes the
available JAVA Virtual Machine array Load and Store instructions, respectively.
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Instruction

Size/

Name Function/Syntax Opcode
Load type <t> from heap to operand stack <t>=1,f,a 1
<t>aload <t>aload result = int, float,ref 46,48,50
Load type <t> from heap to operand stack <t>=l,d 1
<t>aload <t>aload result = long, double 47,49
<t>aload Load type <t> from heap to operand stack <t>=b,s 1
<t>aload result = (S..S)byte, (S..S)short 51,53
Load type <t> from heap to operand stack <t>=c 1
<t>aload <t>aload result = (0..0)char 52

Table 2.19: JVM Array Load Instructions

When datatypes smaller than 32-bits are stored to the heap, the values are
truncated to the size of the type even though they are maintained on the stack
as 32-bit quantities.

Instruction Size/
Name Function/Syntax Opcode
Store type <t> from operand stack to heap <t>=1,f,a 1
<t>astore <t>astore operand = int, float,ref 79,81,83
Store type <t> from operand stack to heap <t>=l,d 1
<{>astore <t>astore operand = long, double 80,82
<t>astore Store type <t> from operand stack to heap <t>=b,c,s 1
<t>astore operand = (Trunc)byte, char, short 84-86

Table 2.20: JVM Array Store Instructions

Miscellaneous Array Instructions: The JAVA Virtual Machine provides an
instruction that returns the length of an Array. The length is pushed onto the
stack as an int. In JAVA, all arrays are O-origin. An array with length n can be
indexed by the integers O through n — 1. All array accesses are checked at run
time; an attempt to use an index that is less than zero or greater than or equal
to the length of the array causes an ArraylndexOutOfBounds exception to be
thrown. Table 2.21 summarizes the JAVA Virtual Machine miscellaneous array
instructions.

Instruction Stack State Size/
Name Function/Syntax Prior/Post Opcode
Get length of an array ...,arrayref 1
arraylength arraylength ...,length 190

Table 2.21: JVM Array Miscellaneous Instructions
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B Object Operations: The JAVA Virtual Machine provides for operation on
objects including accessing fields, casts, comparison, etc. JAVA allocates all
object on the garbage collected heap. Objects can never reside on the Java
Stack.

Object Creation: All JAVA Virtual Machine objects are created on the garbage
collected heap. Table 2.22 summarizes the available JAVA Virtual Machine
object creation instruction.

Instruction Stack State Size/
Name Function/Syntax Prior/Post Opcode
new Create new object 3
new imml6 CPindex ...,objectref 187

Table 2.22: JVM Object Creation Instructions

Object Manipulation: JAVA Virtual Machine objects may access fields which
are members of class objects (static fields) or instance objects. Operations are
provided for moving values to/from fields and to/from the operand stack. The
type of the field is determined from the Constant Pool index and the appropriate
number of bytes are pushed or poped. Table 2.23 summarizes the available
JAVA Virtual Machine object manipulation instructions.

Instruction Size/
Name Function/Syntax Opcode
Get field from object 3
getfield getfield imm16 CPindex 180
Put field into object 3
putfield putfield imm16 CPindex 181
tstati Get static field from class 3
getstatic getstatic imm16 CPindex 178
utfield Put static field into class 3
P putstatic imm16 CPindex 179

Table 2.23: JVM Object Manipulation Instructions

Miscellaneous Object Operations: The JAVA Virtual Machine provides an
operation that ensures a type cast between objects is valid. It also provides
an operation to determine if a reference is an instance of a particular class. If
a cast is made to an improper object type, an ClassCastException is thrown.
The instanceof operation does not throw an exception but places an int 1 on the
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operand stack if a proper instance is found. Otherwise, a int 0 is pushed onto
the operand stack. Table 2.24 summarizes the available JAVA Virtual Machine
miscellaneous object operations.

Instruction Size/
Name Function/Syntax Opcode
Check whether object is a given type 3
checkeast checkcast imm16 CPindex 192
. Check whether object is a given type 3
Instanceof instanceof imm16 CPindex 193

Table 2.24: JVM Miscellaneous Object Instructions

B Miscellaneous Operations: The JAVA Virtual Machine provides some ad-
ditional operations.

The athrow instruction searches the current frame for a catch clause that catches
the class that threw the exception. If it is found, the instruction address regis-
ter is reset to that location, the operand stack of the current frame is cleared,
the object reference is pushed back onto the stack, and execution continues.
Otherwise, the frame is popped, the frame of the invoker is reinstated, and the
exception for that object reference is rethrown. Ultimately, if no catch clause
is found, the current thread exits. If the object reference is null, a NullPoint-
erException is thrown instead of the object reference exception.

Two opcodes are specifically reserved for JAVA Virtual Machine implementa-
tions and are guaranteed by Sun not to be used in future implementations of the
JVM. One of these opcodes is used by the DELFT-JAVA processor to transition
between JAVA Virtual Machine execution and normal DELFT-JAVA execution.
Table 2.25 summarizes the available JAVA Virtual Machine miscellaneous in-
structions.

Instruction Size/
Name Function/Syntax Opcode
nop No Operation 1
nop 0
wide E).dend Local Variable Index 1
wide 196
Raise an exception 1
athrow athrow 191

1

202
1
254,255

breakpoint Reserved for Debuggers

rsv Implementation Dependent

Table 2.25: JVM Miscellaneous Instructions
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2.4 Instruction Execution

In this section we describe JAVA Virtual Machine instructions and their execu-
tion.

B Instructions: A sequence of instructions is defined as a procedure. The
procedure and the data to which it applies are jointly called a program.

Sequence Specification: The status variable that indicates the location of the
instruction to be fetched and executed next is the instruction address. Because
most instructions are stored consecutively in memory, the address is typically
incremented each time an instruction is executed. Because of the incrementa-
tion, the instruction address is often misnamed the instruction counter or the
program counter.

Instruction Format: The instruction format is the summary document for
CPU architecture.

Status Format: Starus is information that controls the interpretation process,
in contrast to instructions that define this process and data that determine the
result of this process. The status must be saved as part of the context saving
during program switching. Similarly, part of the status is saved during subrou-
tine call and return. The memory format for saved status is called the status
format. Such a unit of control information is called a status word or control
word.

H Instruction Sequencing: A sequence requires a specification and a normal
sequence. The specification was previously treated. A normal sequence re-
quires selecting a Continuity and a Choice. The Continuity is partitioned into
a linear sequence and a delegation. The choice can be a decision or iteration.

Linear Sequence: The simplest structure is the linear sequence - or vector
arrangement - of instructions. When instructions are arranged in a vector, each
can be identified by the vector index of its position in memory - its address. The
address where an instruction resides is called its location. The design choices
for a linear sequence include Dependence, Next Location, and Completion.

Functional Independence: Normally, it is desirable that all instructions to be
executed constitute independent syntactical units. The JAVA Virtual Machine
places semantic dependencies between instructions with the use of a wide in-
struction prefix. It is used to extend memory indicies or constant values.

Instruction Location: The next instruction is placed linearly in memory, using
an implied instruction address, incremented by the length of the instruction.
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Completion: A program typically has a well-defined end. A wait instruction
is generally provided for this purpose. Because the JAVA Virtual Machine
assumes a higher level run-time interpreter or operating system, it does not re-
quire a program end. When all JAVA methods have terminated, control returns
to the run-time system.

Decision: The design choices for Decision include the Condition and an
Alternative Action.

Condition: The condition is decomposed into a general computation with
explicit condition followed by a general condition test and the target selection.
Indicators that are recorded as the result of a general computation are termed
condition codes because they encode secondary operations. A problem with
condition codes is that they constitute state. The JAVA Virtual Machine does
not use hidden condition codes but rather places the results of a comparison
(e.g. lcmp, fcmp, etc.) on the stack. The condition for a branch is calculated
as part of the total computation.

Alternative Action: Having specified the condition, one must indicate which
action corresponds to each of its values. The entails specifying a Branch-
ing factor, and a Target Address. Since the JAVA Virtual Machine supports a
CASE statement, branching factors may be greater than two. The exclusive use
of 16-bit signed relative branches (e.g. Branch Target Address = iar + simm16)
allows a section of program to be relocated without modification. Instructions
are aligned on byte boundaries except for the tableswitch and lookupswitch in-
structions which are padded to align on a 4-byte boundary from the beginning
of a method. All branch target addresses must be within the current executing
method.

Tables 2.26 and 2.27 summarize the JAVA Virtual Machine conditional branch
instructions.

Instruction Function/ Size/
Name Syntax Opcode
if femp < cond > Branch relative if int datum2 < cond >datuml cond = 3
P if icmp<cond> simml6 eq, ne, lt, le, gt, ge 159-164
if<cond> Branch relative if int datum < cond >0 cond = 3
if<cond> simml6 eq, ne, lt, ge, gt, le 153-158

Table 2.26: JVM Integer Conditional Branch Instructions
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Instruction Function/ Size/

Name Syntax Opcode
if acmp<cond> Branch relative if re.ference datum2< cond >datuml cond = 3
if acmp<cond> simml6 eq, ne 165-166
ifnonnull ]lSIranch relz.ttive if reference is not null 3
ifnonnull simm16 199
itaull B.ranch relative if reference is null 3
ifnull simml16 198

Table 2.27: JVM Reference Conditional Branch Instructions

The JAVA Virtual Machine supports unconditional branching. The Branch Tar-
get Address is a relative signed 16-bit or 32-bit offset from the current instruc-
tion address. All branch target addresses must be within the current executing
method. Note that due to class file restrictions, a JAVA method is limited to 2
instructions. Table 2.28 summarizes the JAVA Virtual Machine unconditional
branch instructions.

Instruction Function/ Size/
Name Syntax Opcode
goto Jump relative by short offset 3
goto simml6 167
Jump relative by int offset 5
goto w goto w simm32 200

Table 2.28: JVM Unconditional Branch Instructions

The JAVA Virtual Machine supports two special instructions which support
case statements. Each instruction pops an int key from the operand stack. The
key is compared with all the case values. If a match is found, the branch offset
associated with the case value is taken. Otherwise, the default case value is
taken. The number of case comparison/offset pairs is unsigned 32-bit value
given in the instruction format.

Instruction Function/ Size/
Name Syntax Opcode
lookupswitch Access jump table by key match variable
lookupswitch <0-3 byte pad> simm32 default, simm32 npairs, match-offset pairs 171
tableswitch Access jump table by index variable
tableswitch <0-3 byte pad™> simm32 default, simm32 low, simm32 high, offsets 170

Table 2.29: JVM Switch/Case Instructions
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Iteration: Iteration involves a scope (what is to be iterated) and a termination
condition (when iteration should be stopped). In the JAVA Virtual Machine, all
iteration is done through conditional branching.

Delegation: Delegation of control allows a recurring function to be detailed
only once and to be called from many places. The JAVA Virtual Machine pro-
vides delegation instructions for method invocation and subroutines.

Method Invocation: The JAVA Virtual Machine provides support for instance
methods and class methods. Instance methods are dynamic and use late bind-
ing. Class methods are static (e.g. its type is known at compile time) and may
use early binding. Each occurence of a non-native method invocation creates a
new stack frame within the executing thread. The stack frame contains space
for all the state of the virtual machine including local variables and the operand
stack (both of whose size are determinable at compile time).

An interface method invocation must create a hash table to map from a spe-
cific class to a structure containing that class’s implementation of a specific
interface. For a class invocation, the offset of the method will be the same in
the method table regardless of the actual class or the object. For an interface
reference, the method may occupy different locations for different classes that
implement the same interface.

All method invocations complete with a strongly typed return instruction. Ta-
ble 2.30 summarizes the JAVA Virtual Machine method invocation instructions
while Table 2.31 summarizes the return instructions.

Instruction Function/ Size/
Name Syntax Opcode

invokeinterface Invoke Inlerface Method 5
invokeinterface imml16 CP, imm8 nargs, 0x00 185

invokespecial Invoke superclass, private, or constructor method invocation 3
invokespecial imml16 CP 183

invokestatic I_nvoke a c!as_s method 3
invokestatic imm16 CP 184

invokevirtual Invoke an instance method based on dynamic class type 3
invokevirtual imml16 CP 182

Table 2.30: JVM Method Invocation Instructions

Instruction Function/ Size/
Name Syntax Opcode
Return from a method 1
return
return 177
Return result from a method <t>=1,f,a 1
<t>return <t>return int, float, ref 172,174,176
<t>return Return result from a method <t>=l,d 1
<t>return long, double 173,175

Table 2.31: JVM Return Instructions
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Subroutines: Subroutines in the JAVA Virtual Machine are used only to support
exception handling. They are used to implement the finally clause of the JAVA
language. All subroutines are local to the body of method. Upon a subroutine
invocation, the instruction address to return to is pushed onto the stack. Execu-
tion then branches relative to the instruction address plus a signed-immediate
16-bit offset. The ret instruction intentionally retrieves the instruction address
from a local variable location and not from the stack. If more than 256 Lo-
cal Variables are required for the ret instruction, a wide prefix may be used to
modify the local variable index.

Instruction Function/ Size/
Name Syntax Opcode

. Jump to subroutine 3
Jsr jsr simml16 168
. Jump to subroutine (wide offset) 5
jsrw . X

Jjsr w simm32 201
ret Return from subroutine 2

ret imm8 LVindex 169

Table 2.32: JVM Subroutine Instructions

Parameter Passing: Parameters are passed either through the operand stack or
Local Variables depending upon the type of call/return sequence. For method
invocations, parameters are passed and returned on the operand stack. For the
intra-method subroutine call, the instruction address is passed on the stack but
it is returned through a local variable location.

State Preservation: If a method or subroutine saves state in its own space, it
is no longer a pure procedure and cannot be used reentrantly and recursively.
Therefore, it is preferable for the caller to furnish a save area or activation
record such as a stack. Passing the address of the stack to the subroutine allows
an effective callee-save strategy. All state preservation in the JAVA Virtual
Machine is implicit. Method invocations store all required state in the Java
Stack Frame.

2.4.1 Supervision and I/0

Supervision is necessary for efficiency and reliability. Efficiency requires that
the resources of the system - such as memory space, processor time, and pe-
ripheral devices - be used by a program no more and no longer than necessary.
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Reliability requires that the result of a program be correct in the presence of
malfunction. The essential architectural requirement for the supervisor is the
ability to seize control from a user program. Because the JAVA Virtual Machine
is not intended to be a full physical machine, support for most supervisory
functions is absent.

B Interlocks: In a multiprogrammed uniprocessor, the critical-section prob-
lem can be solved by disabling the interruption system upon entering the sec-
tion and re-enabling it upon exiting the section. The semantics of the JAVA
language state that in the in the absence of explicit synchronization, a JAVA
implementation is free to update the main memory in any order[1].The JAVA
Virtual Machine does provide support for explicit syncrhonization for criti-
cal section integrity. These instructions are only used within a method. If an
entire method is required to be locked, the JAVA Virtual Machine implicitly
aquires the lock during resolution and invocation based on information con-
tained within the Constant Pool. Each time a lock is aquired, a lock count
is incremented. Each time a lock is released, the lock count is decremented.
When the count becomes zero, the current thread releases the monitor. If an
exception is thrown while a monitor is aquired, the lock is released. Table 2.33
summarizes the available JAVA Virtual Machine concurrency instructions.

Instruction Size/
Name Function/Syntax Opcode
Aquire monitor lock for object 1
onitorent 194
Release monitor lock for object 1
Xit 195

enter

exit

Table 2.33: JVM Interlock Instructions

Integrity: The JAVA Virtual Machine contains no support for privileged op-
erations or protected spaces.

Control Switching: The JAVA Virtual Machine contains no support for inter-
ruption, humble access or dispatching.

State Saving: The JAVA Virtual Machine contains no support for context
switching.

Control: The JAVA Virtual Machine has no concept of a clock or other control
mechanisms.

I/O: The JAVA Virtual Machine contains no support for input or output opera-
tions.
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2.4.2 Conclusion

In this chapter we have given a brief overview of the JAVA Virtual Machine
architecture. We have described how stack machines operate in general and
also how the stack-based JAVA Virtual Machine operates. We showed how a
simple JAVA program is translated to JAVA Virtual Machine bytecode and how
it executes. We gave an architectural overview of the JAVA Virtual Machine.
We described the storage organization and each of the spaces the JAVA Virtual
Machine can access. We described how this memory is accessed and how
index arithmetic is computed. We also described all JAVA Virtual Machine
operations and the data upon which they operate. Finally, we described how
instructions execute and their control structures.

This chapter gave the background for the work which we will describe in the
following chapters. We will show how our RISC-based architecture can ef-
ficiently translate JAVA Virtual Machine instructions into our instruction set.
This chapter also laid the foundation to understand why certain techniques
which we have developed to accelerate JAVA execution. The following chap-
ters will explain in detail the techniques we have developed as a result of our
research.
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If you believe that something is impossible, do not disturb the
person who is doing it. — Albert Einstein.

Chapter 3

Delft-Java Architecture

n the previous chapters we gave an introduction to the JAVA Virtual Ma-

chine and discussed previous research on JAVA acceleration. This chap-

ter is dedicated to the description of the DELFT-JAVA architecture - a
32-bit RISC-based architecture. More specifically we describe how we ac-
celerate JAVA execution and provide details of the DELFT-JAVA architecture
for executing JAVA Virtual Machine bytecodes. Before we begin our discus-
sion we briefly describe the design philosophy underlying our approach. The
basic architecture implements a Media Processor with Signal Processing capa-
bilities. The architecture takes the perspective that to maximally accelerate a
compiled application, the machine language should accurately reflect the type
of operations the compiler specifies. Except where JAVA Virtual Machine op-
erations are unusually complex, we prefer to allow the compiler to optimize
directly to the implementation. This is independent of any particular organiza-
tion. The architecture is then a superset of the JAVA Virtual Machine and pro-
vides operations that are necessary for system execution (e.g. I/O, supervision,
etc.). Rather than just supporting the JAVA Virtual Machine, the architecture
takes a more general purpose approach. While it continues to support JAVA
Virtual Machine specific constructs, it also is intended to be programmed from
a number of additional high-level languages including C and C++.

Dynamic instruction translation, a new approach to JAVA hardware accelera-
tion, is also used in the DELFT-JAVA processor. In hardware assisted dynamic
translation, JAVA Virtual Machine instructions are translated on-the-fly into
the DELFT-JAVA instruction set. The hardware requirements to perform this
translation are not excessive. Consequently, support for JAVA language con-
structs are also incorporated into the processor’s ISA. This technique allows
application level parallelism inherent in the JAVA language to be efficiently
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utilized as instruction level parallelism while providing support for other com-
mon programming languages such as C/C++. In addition to dynamic transla-
tion, a special Link Translation Buffer (LTB), discussed in the next chapter,
can be used to improve the performance of dynamic linking.

In addition to the basic RISC design philosophy, there are some key organiza-
tion structures which we deem appropriate to provide architectural support for.
In particular, we support the following important categories:

e Synchronization for multithreaded organizations
e garbage collection

e array bounds checking

e real-time caches

e multiple machines which can time-share the same datapath (e.g. the
JAVA Virtual Machine and Media Processing functions) and

e vector operations

The chapter is organized in a manner consistent with Chapter 2, JVM : Brief
Introduction. First we describe our storage organization including index arith-
metic operations. Next we describe the operations which our machine can
perform. We then describe how instructions execute on our machine. Finally,
we present some conclusions.

3.1 Memory (Storage) Organization

Instructions and their operands must be obtained from a storage space or an
input source; the results are placed in a storage space or an output sink. From
a machine-language view, I/O can be treated as a specialized type of storage -
read-only or write-only. We distinguish three types of spaces: memory, work-
ing store, and control store.

3.1.1 Spaces

B Memory Space: The memory space from which programs are directly ex-
ecuted is augmented with auxiliary store or secondary store which appears
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jointly in the DELFT-JAVA architecture as a single contiguous memory space.
The DELFT-JAVA architecture has no embedding of address spaces.

B Working Store: In the DELFT-JAVA RISC-style instructions, the working
store are the following registers.

1. General Purpose Register File (r): This space is a 32 entry by 32-bit
register file. An 8-bit datatype occupies bits 7..0. A 64-bit entry occupies
an odd/even register pair with the odd register containing the MSB.

2. Instruction Address Base Registers (¢base): This file contains 32 entries
of a u32 datatype. The purpose of an instruction address base register
is to allow sharing of common subroutines between tasks and to provide
namespace protection among tasks. They can only be written under su-
pervisory control. ibase( always reads zero and may only be accessed
in privileged mode.

3. Data Address Base Registers (dbase): This file contains 32 entries of
a u32 datatype. The purpose of a data address base register is to allow
sharing of common data between tasks and to provide namespace protec-
tion among tasks. They can only be written under supervisory control.
dbase( always reads zero and may only be accessed in privileged mode.

B Control Store: The control store is the storage that contains the status of
the DELFT-JAVA processor, and the information to control the syntactic and
semantic interpretation process.

1. Control Register File (ctl0): This space is a 32 entry by 32-bit register
file. The file holds control information necessary for the proper opera-
tion of the machine. The file is only accessible by the supervisor. Some
fields available within the Control Registers are:

e The Instruction Address Register (IAR) controls the flow of pro-
gram execution. Branch conditions and other control instructions
may modify the IAR.

e The Processor Status Word (PSW) .
e Stack Pointers
e Limit Registers

e Clock Counts
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3.1.2 Storage Access

In the DELFT-JAVA processor, a set of successive integers as addresses is
assigned as the name-space of specific objects. This provides an isomorphic
mapping between the set of all possible n-bit names and the set of binary
integers from 0 to 2" — 1. This constitutes a dense, ordered, and measured
set!. This allows the same mechanisms used for operations on data to be used
for comparisons and additions desirable for names. The address-set structure
is linear with detection of addresses beyond the ends of the installed segment.
This ensures that an increase of memory will not affect correct execution of
programs. The minimal memory address resolution is an 8-bit byte. The byte
ordering convention is big-endian. Big-endian is chosen because of the logical
convention of treating the whole storage space as one stream of bits. Bits,
bytes, half-words, etc. are numbered from left to right. The memory alignment
is aligned with the memory space being manipulated. It is recommended that
compilers generate code that is aligned with the datatype being manipulated.
Some language systems (e.g. FORTRAN) forbid alignment. However, it is
highly recommended to align values where ever possible.

B Address Format: The architecture permits generalized use of (both indi-
rect and direct) a three-address operand format. In general, a three-address
operand format is the most natural since most operations are dyadic. However,
the three-address format is costly in bits even though the operands are in ab-
breviated address register files. Because memory addresses are costly in bits,
the working store is used as the source and destination of an operation.

B Datatypes: As shown in Table 3.1, the DELFT-JAVA architecture offers
a number of useful datatypes. Each instruction must specify the type of its
operands. An expression remains syntactically correct if an operand is replaced
by another operand from the same set and/or if the operation is replaced by an
operation of the same set. One datatype may be a subset of another if the cor-
responding representands are a subset of the other and/or if the corresponding
operation set is a subset of the other. The architecture determines the datatype
of the operands in a specific manner. The operation code gives the operation to
be performed. An extension field gives the type of the operation, and whether
a vector datatype is specified. The architecture’s basic unit system is the 8-bit
byte.

'By measured we mean that the successor of a name can be calculated by addition.
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Type Interpretation Packed Form Java Type

u8 1-byte unsigned integer u8|[8] n/a

w8 1-byte signed 2’s complement integer ~ w8([§] byte

ul6  2-byte unsigned integer ul6[4] char

wl6  2-byte signed 2’s complement integer ~ w16[4] short

u32  4-byte unsigned u32[2] reference
w32  4-byte signed 2’s complement w32[2] int

ub4  8-byte unsigned n/a

w64  8-byte signed 2’s complement long

f32  4-byte IEEE 754 single-precision 32[2] float

f64  8-byte IEEE 754 double-precision float double

Table 3.1: DELFT-JAVA Datatypes.

B Data Length: The architecture is comprised of a collection of fixed-length
datatypes. The data length is specified in an instruction explicitly by the type
field, the operation performed, the working store that is used, and the machine
view selected.

B Address Phrase: The fundamental address phrase in the architecture is
Base, Offset, Displacement addressing. In addition, a stack addressing mode
is provided for state saving. A software stack can, of course, be built from
the basic address components. The state-saving stacks provide object-code
compatible mechanisms that scale with main memory bandwidth. Very low
cost addressing can be achieved noting that dbase0 always reads zero. This
allows privileged code to provide non-additive register direct addresses.

B Address Modes: The architecture provides the following addressing modes:

e Base + Register Offset + Register Displacement; Offset += Displace-
ment

— If Base=dbase0, this is a true register direct address.
e Base + Register Offset + Register Displacement
— If Base=dbase0, this is a true register direct address.

e Base + Register Offset + Immediate Displacement; Offset += Register
Displacement

— If Base=dbase0, this is a true direct address.
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e Base + Register Offset + Immediate Displacement
— If Base=dbase0, this is a true direct address.

e Base + Register Offset; Offset += Immediate Displacement
— If Base=dbase0, this is a true direct address.

e Stack State Saving using push/pop range.

B Address Length: The memory name-space size of the DELFT-JAVA archi-
tecture is 232,

B Names: In programming languages, objects are identified by names. The
name may refer to a single object but most names refer to groups of data and
instructions. The address is the corresponding machine-language name. The
memory location is the place where a programmer defined name is stored.
Binding is the process of mapping a programmer defined name to an address.
The address is then interpreted at execute time to refer to the memory loca-
tion. Because the set of programs whose data are simultaneously in memory
may change, it is desirable not to have a fixed correspondence between the
programmer defined name and the object’s actual location in memory. The
address calculation computes an element of an array or matrix by taking the
array name and adding an index. This is called address modification when the
address calculation takes place as part of instruction execution. The result of
the calculation is the effective address.

Address Components: The architecture provides all three base, element, and
displacement addresses.

Effective Address Calculation: All components of the effective address are
added.

Location of Address Components: The base component is a separate quan-
tity and in a supervisor protected space. The element address resides in a gen-
eral purpose register. The displacement never changes and is properly placed
in the address field of the instruction. Because of the number of bits required
for large displacements, the architecture has a provision to place the displace-
ment in a register as well as an option for a small displacement in the address
field.

M Index Arithmetic: Index arithmetic takes place in either of the general pur-
pose register domains. All integer operations available for normal computa-
tions are available for index arithmetic. The architecture provides state-saving
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stack addressing. In addition, a software stack can be obtained by the gen-
eral addressing mechanisms. The stack is logically in memory. The top of the
stack and its maximum extent are specified by pointers. An exception (trap) is
thrown when an attempt is made to pop from an empty stack or to push onto a
full one.

Incrementing: All incrementing, whether for general index operations or
stack operations takes place in registers. The index for the stack is called
the stack pointer. The stack is implied to grow from high to low memory ad-
dresses. The stack pointer points to the top element. A pop operation becomes
a Read followed by an increment corresponding to the size of the data just
read. This is a postincrement. A push is a write preceded by a decrement, the
predecrement.

B Address Levels: Addresses which refer directly to the machine-language
names for data are called direct addresses. An address which refers to an-
other address rather than the machine-language name is called indirect address.
There are no indirect addresses in the architecture. An immediate address is
an address that does not name a data item but is itself used as the data item.
Immediate addressing is only proper for loading registers.

Operation Types Example Instructions
Data Transfer load, store, mv

Arithmetic add, add.sat, add.w16[4].sat
Logical and, or

Transfer of Control  beq, bgt, fbeq

1/0 ior, iow

Conversion 12f, d21, £2d, 121

System Control scall, wait

Synchronization csa

Dynamic Linking invokevirtual, getfield
Object Allocation new, newarray
Exceptions athrow

Table 3.2: DELFT-JAVA Operation Categories
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3.2 Operations

In a general purpose machine, there is little merit in specifying operations that
compilers can not generate. The compiler is most likely to use an operation
repertoire that satisfies the requirements of generality, orthogonality, and par-
simony. The architecture makes allowances for certain application-specific
operations that accelerate JAVA Virtual Machine operations (e.g. method invo-
cation, synchronization, garbage collection, etc.). It also makes allowances for
DSP-specific operations (e.g. general bit shifting, extract, rotate) and Multi-
media processing (SIMD operations). Because JAVA does not require extended
precision, our architecture does not provide secondary operations (e.g. indica-
tors such as carry and overflow). For DSP-specific functions, a saturating type
is provided for both signed and unsigned integers so that secondary operations
are not required. The category of operations in our architecture is shown in
Table 3.2 along with some representative sample instructions.

Our architecture uses a partially decomposed specification. Operations are
decomposed into actions - (e.g. Add, Logic, etc.) and modifiers are used to
select datatypes. All operations are specified using a fixed-length sequence
of 32-bits. However, certain JAVA specific instructions are greater than 32-
bits. These instructions trap and the instruction address is updated to reflect
the actual length This allows for the instruction address to be updated prior
to decoding any particular instruction. In all formats, the operation code is a
fixed-length of 7-bits. Furthermore, the operation code is always found within
the same bits of all the instruction formats.

We note that throughout this section any instruction which references a direct
register (e.g. r; ) may also use it’s indirect form (e.g. [idz,] ;) where [idx,,]
is the index register offset file and i is the target index. For example, in Table
3.3 and Table 3.4, the 1d instruction could be re-written as [ida,] {iT3.} i} =
Mem([ dbase,, + izo + iyq] iy += iy. This instruction would then be interpreted
as select the indirect register file location [idx;,] where n can be from 0 to
7. Assign the target register that is dereferenced by idx;, to the contents of
the effective address formed by adding the dbase, registers with the ., and
the 7,4 registers. Following the formation of the effective address, the indirect
offset register is incremented contents of the indirect displacement register.
The {iT3.} specifies that 3-bits of type information are available. The curly
braces mean a value is optional. If no value is specified, a default value is
selected.

B Data Handling: Data-handling operations are those that do nothing else -
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no arithmetic or logic. That is register-to-register moves, loads from memory,
etc.

Data movement corresponds to the programming-language assignment prim-
itive. The DELFT-JAVA architecture provides data movement operations via
working store in the form of register to register moves, Load and Store oper-
ations. There is also a special form which allows a group of registers to be
moved to a stack. A register to register move is accomplished by restricting
the datatypes in the conversion functions. The supervisor may also move con-
trol registers. The 32-bit instructions can access up to 32 locations. All offset
and displacement registers are defined to be in the general purpose register file
r and may be accessed as direct or indirect register references. The type is
u32. Up to 32 dbase registers may be specified. A conditional move opera-
tion is provided in the DELFT-JAVA architecture. The conditions are the same
as in Table 3.21. Tables 3.3 and 3.4 summarize the available data movement
instructions.

Name Function

Id Load base + r[offset] + r[disp]; off += disp
Id.rdisp Load base + r[offset] + r[disp]

Id.disp  Load base + r[offset] + imm16 displacement
1d.off Load base + r[offset]; off += disp

1di Load imm16

st Store base + r[offset] + r[disp]; off += disp
st.rdisp  Store base + r[offset] + r[disp]

st.disp Store base + r[offset] + simm16 displacement
st.off Store base + r[offset]; off += disp

mv Move register to register
cmyv Conditional Move register to register
mvce Move Control Register

Table 3.3: DELFT-JAVA Load and Store Operations Function.
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Name Assembly Syntax

1d {iT3.}ry = Mem[dbase,, + 740 + Tyql T2 += 1y
Id.rdisp {iT3.}r; = Mem[dbase,, + 73 + Tyd]

Iddisp  {iT3.}r; = Mem[dbase,, + ry, + #imm16]
1d.off {iT3.}r; = Mem[dbase,, + 130] 75 += 1y

1di {iT4.}r; = #imm16

st Meml[dbasey, + 1740 + Tyql = 1¢{ iT3}; 1 4= 1y
strdisp Mem[dbase,, + 130 + 7yql = ¢ {.iT3}

st.disp  Mem[dbase,, + 75, + #imm16] = r,{.iT3}
st.off Mem[dbase, + 101 = 1¢{iT3}; ry +=1,

myv Tt =Ty
cmv (if cond) then {iT3.}r; =1,
mvc rp=ctl or ctl=1

Table 3.4: DELFT-JAVA Load and Store Operations Syntax.

Format Transformation: Reallocating operators transform one machine field
into another without changing the encoding. Operations are provided to con-
vert datatypes to smaller or larger lengths while maintaining their encoding
(e.g. converting a u8 to u32, w16 to w64, or ul6 to u8). In some cases the bits
are truncated. In other cases, they are zero- or sign-extended. Format transfor-
mations are accomplished by restricting the domains and types of the general
code transformation instructions. Table 3.5 summarizes the available format
transformation instructions.

Name Function Assembly Syntax
cvtii  Convert Integer to Integer {iT3.}ry =, {.iT3}
cvtff  Convert Floating Point to Floating Point ~ {fT2.}r; = r,{.fT2}

Table 3.5: DELFT-JAVA Format Transformation Operations.

Code Transformation: One data representation in a machine language can be
transformed to another representation if the concept sets that the two represent
intersect. The architecture allows general transformations between floating
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point, integer, and unsigned integer representations. Table 3.6 summarizes the
available code transformation instructions.

Name Function Assembly Syntax
cvtif ~ Convert Integer to Floating Point ~ {fT2.}r; =, {.iT3}
cvtfi  Convert Floating Point to Integer  {iT3.}r; = r,{.fT2}

Table 3.6: DELFT-JAVA Data Code Transformation Operations.

B Logic: A logical (boolean) datum has two possible states - true and false. It
can be represented by a single bit. In the architecture, a logical datum is en-
coded as a binary value with a true state represented by a 1 and false by 0. The
allocation for logical operations is as a vector of booleans. The architecture
representation includes the Encoding and Allocation. Logical data is repre-
sented by a vector. All logical operations apply to vectors of bits. There is no
direct boolean datatype of length 1-bit. There are however logical vectors.

Connectives: The dyadic operations upon a single pair of bits are called con-
nectives. The architecture supplies 8 connectives (versus the generic 16). A
ninth (not) can be synthesized from the nAorB connective with the B value be-
ing an immediate containing zero. Connectives are inherently unsigned. Note,
however, that the immediate fields are sign extended. This is to provide an all
1’s mask. Table 3.7 summarizes the available logic connective instructions.

Name Function Assembly Syntax

and ANB {uT2.}ry = ry & 1, Vi#tsimm5
nab ANB {uT2.}ry ="ry & 1, V#simmS5
nand AADB {uT2.}ry ="(ry & r;V#simm))
naOrb AV B {uT2.}ry ="ry | ryV#simm5
nor AV B {uT2.}ry ="(ry | vz V#simm5)
or AV B {uT2.}ry = 7y | ryV#simmS
xnor Ae B {uT2.}ry ="(ry “ry Vi#simm})
xor A®B {uT2.}ry = ry "ry Vi#simm5

not naOrb ( A, #0 ) {uT2.}ry="r, |#0

Table 3.7: DELFT-JAVA Logical Connective Operations.
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Composite Functions: A composite logical function applies a dyadic scalar
function among the elements of a bit vector. A population count which is an
add reduction is a popular composite function which can be used as a primitive
along with other logical functions to find the first bit set. A scan function is
provided to give this result directly. Rather than shifting the number of bits set,
a normalize function is provided. Table 3.8 summarizes the available logical
composite functions.

Name Function Assembly Syntax
scan.0 Count Leading Zeros  {uT2.}r; = clz(ry)
scan.l Count Leading Ones  {uT2.}r; = clo(ry)
norm Normalize {uT2.}r; = norm(r,)

Table 3.8: DELFT-JAVA Composite Logic Operations.

Shift Operations: The shift is used in data handling for field selection; in
logic, for bit inspection, and in arithmetic, for programmed scaling, multiply,
divide, and floating point. The architecture provides a rich set of shift func-
tions including arithmetic shift, logical shift, rotate, and rotate with carry. The
shift displacements can either be an immediate field or contained within an-
other register. The results may also be saturated. Table 3.9 summarizes the
available shift instructions.

Name Function Assembly Syntax

sll Shift Logical Left {uT2.}ry =1y <<< rpV#imms8
sll.sat  Shift Logical Left with Saturate {uT2.}ry = sat( r, <<< ryV#Hmm8)
slr Shift Logical Right {uT2.}ry =7y >>> r V#imm8

sal Shift Arithmetic Left {wT2.}ry =1y << 1z V#mm8
sal.sat  Shift Arithmetic Left and Saturate ~ {wT2.}r; = sat( r, << r,V#mm8 )
sar Shift Arithmetic Right {WT2.}ry =1y >> 1, V#HmmS8
sar.sat  Shift Arithmetic Right and Saturate  {wT2.}; = sat( 7, >> r,V#imm8 )
ror Rotate Right {uT2.}ry =1y "> r, VH#HmmS

rol Rotate Left {p==z}{uT2.}ry =1, "< r, V#mm3

Table 3.9: DELFT-JAVA Shift Operations.
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Bit Manipulations: A rich set of bit manipulation operations exist for DSP-
specific operations. Bit manipulations are defined only for the u32 datatype
with some limited support for the ©16 datatype. While this is an impropriety,
it is the best choice that can be implied for a signal processing datatype. The
bit fields are allowed to be set, cleared, or extracted from a starting and ending
position. The bits to be operated upon are specified by two 5-bit immediate
fields within the instruction formats. Bit testing is also provided for. Table
3.10 summarizes the available bit manipulation instructions.

Name Function Assembly Syntax
bic Clear bit field {uT.}r; = bic(ry, 7, start, stop)
bis Set bit field {uT.}r; = bis(ry, 7, start, stop)

bit Test bit field ry = bit(r,, start, stop)
bix Extract bit field  {uT.}r; = bix(r, start, stop, 7y, start, stop)

Table 3.10: DELFT-JAVA Bit Operations.

B Fixed-Point Arithmetic: The representation of fixed point numbers in-
cludes the number system choice, the allocation of elements, and the element
representation. The architecture uses a positional representation for the num-
ber system. Two types of fixed-point numbers can be represented: positive
whole numbers which include zero (termed positive integers or unsigned inte-
gers) and integers. The notation for positive integers uses a binary radix with
an implied sign of zero in the most significant (hidden) bit. The position of the
radix point is just to the right of the digits. For integers, the notation of nega-
tive numbers uses radix complement. The radix value of our representation is
2 and our notation is 2’s complement. The position of the radix point is just to
the right of the digits - integer notation. Because the high-order digit (which
denotes the sign) participates fully in arithmetic, multiple precision low-order
numbers can be treated as all digits. The implied position of the radix point
matters only for complement notations. In the complement notations, the sign
is treated as a digit. For a radix 2 system, each digit requires 1 bit. The number
of digits is fixed based on the datatype. For addresses, all lengths are 32-bits.
The length of data is explicitly given by an instruction field. For unsigned inte-
gers, the sign is hidden in the most significant bit (it is implicit and preceding
the left-most bit) and implied to be O (e.g. positive). For integers, the sign is
encoded as required for radix complement notations (0 for positive and 1 for
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minus). The sign bit is left aligned into the most significant bit. The allocation
is one-to-one in that the number of digits determines the length of the number
in bits. Digits are encoded as O for zero and 1 for One. Scalar operations are
provided for absolute value, add, subtract, and multiply.

Absolute Value: Table 3.11 summarizes the absolute value instruction.

Name Function Assembly Syntax
abs Absolute Value {wT2.}r; = abs(ry)

Table 3.11: DELFT-JAVA Absolute Value Operation.

Addition and Subtraction: When operands and results have equal lengths, an
overflow can always be represented by 1 bit. However, the architecture does
not provide support for obtaining overflow information (since both JAVA and
C/C++ specify modulo arithmetic). For DSP operations, the result may be sat-
urated. The instructions can specify rounding (including convergent rounding)
as well as saturation and type information. A special butterfly operation is
provided which is useful in certain signal processing applications. To be able
to perform polynomial arithmetic, a double width result may be specified on
selected instructions (provided the maximum result width is not greater than
64-bits). Table 3.12 and Table 3.13 summarizes the available addition and
subtraction instructions.
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Name Function

add Add

add.rnd  Add and Round

add.sat Add and Saturate

sub Subtract

sub.arnd  Subtract and Round
sub.sat Subtract and Saturate
sub2 Negate / Sub

sub2.rnd Negate / Sub and Round
sub2.sat  Negate / Sub and Saturate
bfly Butterfly

bflyrnd  Butterfly and Round
bfly.sat Butterfly and Saturate

Table 3.12: DELFT-JAVA Add Operations Function.

Name Assembly Syntax

add {2x. H{T5.}ry = ry + 7, VH#HmMmS

add.rnd  {2x.}{T5.}r; = md(ry + r, V#imm3)

add.sat  {2x.}{T5.}r; = sat(ry + r, V#imm8)

sub {2x. H{T5.}ry = ry - rp VH#immS

subornd  {2x.}{T5.}r; = rd(ry - 7, V#imm8)

sub.sat {2x. }{T5.}r = sat(ry - ry V#imm8)

sub2 {2x. H{T5.}ry = rpV#simms -

sub2.rnd  {2x.}{T5.}r; = rmd(r, V#simmS8 - r,)

sub2.sat  {2x.}{T5.}r; = sat(r, V#simm8 - r,)

bfly {2x. H{T5.}rH = ry + rp vV#HmmS; 7L = 1y - 7, V#HmmS
bflyrnd  {2x.}{T5.}r:H = md(r, + r,V#imm8); r,L = rnd(r, - 7, V#imm8)
bfly.sat {2x. }{T5.}rH = sat(ry + 7, V#mm8); r,L = sat(r, - r, V#imm§)

Table 3.13: DELFT-JAVA Add Operations Syntax.

Multiplication and Division: For multiplication, the number of product digits
is just less than or equal to the total number of digits of the multiplier and the
multiplicand. Most instructions in the architecture consider the resultant des-
tination to be the same length as the operands. This is as per the C language
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convention. However, a double width result may be specified on selected in-
structions (provided the maximum result width is not greater than 64-bits). The
result can also be saturated. The 3-address formats automatically expand the
result to 2n bits. Tables 3.14 and 3.15 summarize the available multiplicative
instructions.

Name Function

mpy Multiply

mpy.rnd Multiply and Round

mpy.sat  Multiply and Saturate

div Divide

mac Multiply and Accumulate

mac.rnd Multiply and Accumulate and Round
mac.sat  Multiply and Accumulate and Saturate
rem Remainder

Table 3.14: DELFT-JAVA Multiply/Divide Operations.

Name Assembly Syntax

mpy {2x. }{T4.}ry = ry * 1, VH#HmmS8
mpy.rnd  {2x.}{T4.}r; = md(r, * 7, V#mm8)
mpy.sat  {2x.}{T4.}r; = sat(r, * r,V#mm8)

div {2x. }{T4.}ry =ryy / 75 VH#HmMmS

mac {2x.H{T4.}ry = vy + 1y * 1, VHmMMS
mac.rnd  {2x.}{T4.}r; = md(r; + r, * 7, V#mmS)
mac.sat  {2x.}{T4.}r; = sat(r; + ry, * 7, V#mmS)
rem {2x.}{T4.}r; =rem(ry / r, V#imm3)

Table 3.15: DELFT-JAVA Multiply/Divide Operations.

B Floating Point: All floating-point operations follow the IEEE-754-1985
standard as per the JAVA Virtual Machine specification. Inexact results must
be rounded to the representable value nearest to the infinitely precise result.
Round-towards-zero (the default rounding) effectively truncates the mantissa.
Floating point operations produce no exceptions. An overflow produces a
signed infinity, an underflow produces a signed zero, and an indefinite result
produces NaN.

68



Addition and Subtraction: For addition, the following IEEE rules apply:

1. if either value is NaN, the result is NaN

2. the sum of two infinities of opposite sign is NaN

3. the sum of two infinities of the same sign is the infinity of that sign
4. the sum of infinity and a finite value is infinity

5. the sum of two zeroes of opposite sign is positive zero

6. the sum of two zeroes of the same sign is the zero of that sign

7. the sum of a zero and a nonzero finite value is equal to the non-zero
value

8. the sum of two nonzero finite values of the same magnitude and opposite
sign is positive zero.

Moreover, all sums are computed and rounded using round-to-nearest mode.
If an overflow occurs, the result is the infinity of the appropriate sign. If an
underflow occurs, the result is a zero of the appropriate sign.

For subtraction, the result of @ —b is the same as a+ (—b) except for the case of
subtraction of 0.0. For example, 0.0 —0.0 = +0.0 while 0.0+ (—0.0) = —0.0.

For negation, the following additional IEEE rules apply:

1. the negation of an infinity is the infinity of opposite sign

2. the negation of a zero is the zero of opposite sign.

Table 3.12 summarizes the available DELFT-JAVA floating point instructions.
They are a superset of the JAVA Virtual Machine addition and subtraction op-
erations.

Multiplication and Division: For multiplication, the following IEEE-754
rules apply:

1. if either operand is a NaN, the result is NaN

2. if neither operand is NaN, the sign of the result is positive if both operands
have the same sign, and negative the operands have different signs
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3. multiplication of infinity by a zero is NaN

4. multiplication of an infinity by a finite operand produces an infinity fol-
lowing the sign rule given above.

Moreover, the product is computed and rounded using round-to-nearest mode.
If an overflow occurs, the result is the infinity of the appropriate sign. If an
underflow occurs, the result is a zero of the appropriate sign.

For division, the following IEEE-754 rules apply:

—_

. if either operand is a NaN, the result is NaN

2. if neither operand is NaN, the sign of the result is positive if both operands
have the same sign, and negative the operands have different signs

3. division of infinity by infinity is NaN

4. division of infinity by a finite value produces an infinity following the
sign rule given above

5. division of a finite value by an infinity produces a zero following the
sign rule given above

6. division of a zero by a zero results in NaN

7. division of zero by a finite value produces a zero following the sign rule
given above

8. division of a nonzero finite value by a zero produces an infinity following
the sign rule given above.

Moreover, the quotient is produced using round-to-nearest mode. If an over-
flow occurs, the result is the infinity of the appropriate sign. If an underflow
occurs, the result is a zero of the appropriate sign. For remainder, the defini-
tion is not the same as the IEEE-754 version. The IEEE version uses rounding
division while the DELFT-JAVA uses truncating division (to more closely ap-
proximate the integer behavior). This was required to be consistent with the
JAVA Virtual Machine rules for division.

The following rules apply:

1. if either operand is a NaN, the result is NaN
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2. if neither value is NaN, the sign of the result is equals the sign of the
dividend

3. if the dividend is an infinity, or the divisor is a zero, the result is NaN

4. if the dividend is finite and the divisor is an infinity, the result equals the
dividend

5. if the dividend is a zero and the divisor is finite, the result equals the
dividend.

Moreover, the result is dividend — into f ((déz’ifjg;d) * divisor). The function

intof () rounds toward the nearest integer, or towards the nearest even integer
if the number is half way between two integers.

Table 3.14 summarizes the available multiplication and division instructions.
They are a superset of the JAVA Virtual Machine addition and subtraction op-
erations.

Hl Relational Operations: Relational operations test a specified relation among
operands and produce a result that is true or false. A relation can formally be
considered to be a mapping from an input domain, consisting of all possible
values of the datum, to an output space or range, consisting of one point for
each category. Generally, a compare instruction is provided for this purpose.
The architecture provides comparisons for types all types. Table 3.17 shows
the result of a comparison:

Name Function Assembly Syntax
cmp  Compare {T5.}r; < result, r, <> 7,V#mm8

Table 3.16: DELFT-JAVA Compare Operation.

Comparison Result

> 0x01
= 0x00
< OxFF
NaN 0x10
<= 0xOF
>= 0xF1

+0.0=-0.0 0x02

Table 3.17: DELFT-JAVA Comparison Results
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The architecture uses a ranked comparison (e.g. <,=,> membership). Com-
parisons can be made on any of the general purpose registers  domain. Results
are recorded in working store.

For floating point relational operations, the following rules apply:

1. positive zero and negative zero are equivalent
2. negative infinity is less than positive infinity

3. aNaN is unordered and can be determined from a combination of fcmpg
and fcmpl instructions.

Table 3.16 summarizes the available relational instructions.

B Numeric SIMD Operations: All arithmetic on the r» domain can be con-
sidered to apply to a Single Instruction Multiple Data (SIMD) datatype. The
maximum length of the SIMD array is fixed architecturally at 64-bits. SIMD
arrays logically take up an even/odd register pair. For all SIMD operations, the
destination operand must be distinct from the source operand. Any arithmetic
instruction can be made a SIMD instruction by prepending a v (e.g. vadd, vsub,
vmpy, vevtii, etc.). There is one SIMD-only operation. The permute function
rearranges the datatype within the array by a specified function. The vector
length is determined by the type specified in the instruction format. The valid
permutations are Pg’ﬁiﬁﬂ with an ¢mm4 = 000 being interpreted as [ vien ® P24
operation. The permute function may be applied to any SIMD datatype but
for the purposes of the operation, the data is treated as unsigned. To avoid a
large internal storage requirement, the source and destination vectors must be
distinct.

Name Function Assembly Syntax

perm Permute Vector {utype.}r; = P (imm3,7;) {cex=z}

Table 3.18: DELFT-JAVA Vector Permute Operation.
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3.3 Instruction Execution

The architecture increments the instruction address by 4-bytes each cycle. In
the architecture, all instructions formats are 32-bits. However, certain JAVA
specific instructions are greater than 32-bits. These instructions trap and the
instruction address is updated to reflect the actual length. The status word of
the architecture consists of uniquely named registers.

H Instruction Sequence: An instruction sequence requires a specification and
a normal sequence. A normal sequence requires selecting a Continuity and a
Choice. The Continuity is partitioned into a linear sequence and a delegation.
The choice can be a decision or iteration.

Linear Sequence: The simplest structure is the linear sequence - or vector
arrangement - of instructions. When instructions are arranged in a vector, each
can be identified by the vector index of its position in memory - its address.
The address where an instruction resides is called its location. The design
choices for a linear sequence include Dependence, Next Location, and Com-
pletion. Normally, it is desirable that all instructions to be executed constitute
independent syntactical units. The JAVA Virtual Machine contains a wide in-
struction which places semantic dependency upon multiple instructions. In the
DELFT-JAVA architecture this instruction causes a trap. The wide instruction
is summarized in Table 3.19.

Name Function Assembly Syntax
wide  Wide prefix wide

Table 3.19: DELFT-JAVA Wide Prefix.

Instruction Location: The next instruction is placed linearly in memory, us-
ing an implied instruction address, incremented by the length of the instruction.

Completion: A program has a well-defined end. A wait instruction which is
summarized in Table 3.20 is provided for this purpose.

Name Function Assembly Syntax
wait  Wait (privileged operation) wait

Table 3.20: DELFT-JAVA Program Completion.
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B Decision: The design choices for Decision include the Condition and an
Alternative Action. Tables 3.21 and 3.22 summarize the available integer deci-
sion instructions. Tables 3.23 and 3.24 summarize the available floating point
decision instructions. Tables 3.25 and 3.26 summarize the available trap in-
structions.

Condition: The condition is decomposed into a general computation with ex-
plicit condition followed by a general condition test and the target selection.
Indicators that are recorded as the result of a general computation are termed
condition codes because they encode secondary operations. A problem with
condition codes is that they constitute state. The architecture contains no con-
dition codes. The condition is calculated as part of the total computation.

Alternative Action: Having specified the condition, one must indicate which
action corresponds to each of its values. The entails specifying a Branching
factor, and a Target Address. Since a CASE statement is not supported di-
rectly, all branching factors are two?. The exclusive use of user mode relative
branches allows a section of program to be relocated without modification.
Use of an absolute branch address is available only in privileged mode. All
instructions must be aligned on 4-byte boundaries and relative branches are
implied 4-byte boundaries. Any valid type may be specified.

2A CASE statement (tablelookup) is provided but only so that a trap may occur and the
actual instruction specified in the JAVA Virtual Machine may be emulated.
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Op Function Cond

eq Branch Relative Equal Zero 0000
nz  Branch Relative Not Zero 0001
gu  Branch Relative Greater Unsigned 0010
cu  Branch Relative Carry Unsigned 0011
geu Branch Relative Greater or Equal Unsigned 0100
rsv 0101
rsv 0110
rsv 0111
rsv 1000
n Branch Relative Never 1001
g Branch Relative Greater 1010
1 Branch Relative Less 1011
ge  Branch Relative Greater or Equal 1100
le Branch Relative Less or Equal 1101
rsv 1110
rsv 1111

Table 3.21: DELFT-JAVA Relative Branch Conditions with Compare.

Op Assembly Syntax Cond
eq breq{.T4} ry— ry, ryV#simmol[iar] 0000
nz  brnz{.T4} ry— ry, ryV#simmll1fiar] 0001
gu brgu{.T4} r,— r,, r;V#simmll[iar] 0010
cu  brcu{.T4} ry— ry, ryVi#simmll[iar] 0011
geu br.geu{.T4} r,— r,, r;V#simml1[iar] 0100
0101
0110
0111
1000
n brn{.T4} r,— 7y, 7/ \V#simm] 1[iar] 1001
g br.g{.T4} ry— ry, r/V#simmllfiar] 1010
1 brl{.T4} r,— 7y, r;V#simml1[iar] 1011
ge  brge{.T4} ry— ry, ryVé#simmll[iar] 1100
le brle{.T4} r,— ry, r;V#simml1[iar] ~ 1101
1110
1111

Table 3.22: DELFT-JAVA Relative Branch Conditions with Compare.
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Name Function Cond

fbeq  Branch Equal Zero 0000
fbnz  Branch Not Zero 0001
fbu Branch Unordered 0010
fbug  Branch Unordered or Greater 0011
fbul Branch Unordered or Less 0100
fbue  Branch Unordered or Equal 0101

fbuge Branch Unordered or Greater or Equal 0110
fbule Branch Unordered or Less or Equal 0111

fbo Branch Ordered 1000
1001
fbg Branch Greater 1010
fbl Branch Less 1011
fbge Branch Greater or Equal 1100
ble Branch Less or Equal 1101
1110
1111

Table 3.23: DELFT-JAVA Floating Point Branch Conditions.

Name Assembly Syntax Cond
fbeq tbeq 7y— ry, ¢ VHsimm6 0000
fbnz tbnz ry— 7y, 7 V#simm6 0001
fbu ftbu ry— 7y, r¢V#simm6 0010
fbug  fbug ry,— 7, rVH#simm6 0011
fbul fbul ry— ry, ryV#simm6 0100
fbue fbue ry— 7z, r;V#simm6 0101
fbuge fbuge r,— 75, r;V#simm6 0110
fbule fbule r,— ry, ryV#simm6 0111
fbo tbo  ry— 7y, 74 V#simm6 1000
1001
fbg tbg  ry— 7y, 7 VH#simm6 1010
fbl tbl  ry— 74, 1 V#simm6 1011
fbge fbge ry— 1y, i V#simm6 1100
ble ble ry— rz, r;V#simm6 1101
1110
1111

Table 3.24: DELFT-JAVA Floating Point Branch Conditions.
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A branch with implied absolute target address is called a trap. Traps are used
only for exception handling and debug. The address of the trap handler can be
specified through an unsigned immediate field or placed in a register. When a
trap occurs, the instruction address to return to is atomically pushed onto the
supervisor stack.

Name
teq
tnz
tgu
tcu
tgeu

ta
debug
tg

tl

tge
tle

Function

Trap Equal Zero

Trap Not Zero

Trap Greater Unsigned
Trap Carry Unsigned
Trap Greater or Equal Unsigned
Isv

Isv

rsv

Trap Always

Trap Debug

Trap Greater

Trap Less

Trap Greater or Equal
Trap Less or Equal

Assembly Syntax

teq 7y, r;V#imml2
tnz 1y, r;V#imml2
tgu 7y, ¢ V#HmmI2
tcu 7y, 7y V#mmIl2
tgeu 7y, 7 V#immI2

trap 7y, r¢V#HmmI2
debug 7y, 7 V#imm12
tg 7y, rV#HmmIl2

tl 7y, ryV#HmmI2
tge 1y, r¢V#HmmI2
tle 7y, ryV#mmI2

Table 3.25: Trap Instructions.

Name Function

reti

Return From Interrupt

Assembly Syntax
reti

Cond
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 3.26: DELFT-JAVA Return from Trap/Interrupt Instruction(16-bit).

B Iteration: Iteration involves a scope (what is to be iterated?) and a termi-
nation condition (when should iteration be stopped?). In the architecture all
iteration is done through conditional branching.
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H Delegation: Delegation of control allows a recurring function to be detailed
only once and to be called from many places. The architecture provides a call
instruction and a ret (return) instruction for user level subroutine invocation.
Supervisory functions are also provided for with the privileged svc and sret
instructions. This provides for fully protected subroutines that only the su-
pervisor can access. Tables 3.27 and 3.28 summarize the available delegation
instructions.

Name Function Assembly Syntax
call Call and Link call 2pgse, Ty VHMmM20
sve User Request for Supervisor Program  call 4se, 7y V#Hmm20

Table 3.27: Delegation Operations.

Name Function Assembly Syntax
ret Return From Subroutine ret
sret Return From Supervisor call  sret

Table 3.28: DELFT-JAVA Return Operations.

Parameter Passing: Parameters are passed either through registers or mem-
ory. When a call occurs, the instruction address to return to is atomically
pushed onto the user stack which is logically in memory. In addition, a su-
pervisor stack is provided which atomically copies the instruction address to
return to onto the supervisor stack whenever an scall instruction is executed.
Push and pop instructions are provided to pass parameters to a separate super-
visor stack. When an interrupt or trap occurs, the instruction address to return
to is atomically pushed onto the supervisor stack.

State Preservation: If a subroutine saves state in its own space, it is no longer
a pure procedure and cannot be used reentrantly and recursively. Therefore, it
is preferable for the caller to furnish a save area or activation record such as
a stack. Passing the address of the stack to the subroutine allows an effective
callee-save strategy.

78



3.4 Supervision and I/O

Supervision is necessary for efficiency and reliability. Efficiency requires that
the resources of the system - such as memory space, processor time, and pe-
ripheral devices - be used by a program no more and no longer than necessary.
Reliability requires that the result of a program be correct in the presence of
malfunction. The essential architectural requirement for the supervisor is the
ability to seize control from a user program. The DELFT-JAVA architecture
assumes the presence of a supervisor and provides privileged instructions.

B Interlocks: In a multiprogrammed uniprocessor, the critical-section prob-
lem can be solved by disabling the interruption system upon entering the sec-
tion and re-enabling it upon exiting the section. The architecture provides an
atomic Compare And Swap instruction for critical section integrity. Table 3.29
and Table 3.30 summarize the available atomic instructions.

Name Function

csa Compare and Swap Atomic B/O/D

csa.off  Compare and Swap Atomic Base + Offset
csa.disp Compare and Swap Atomic Base + ImmDisp

Table 3.29: DELFT-JAVA Atomic Operations Function.

Name Assembly Syntax

csa {T3.}cmpReg = csa(dbase + off/dispReg, swapReg)
csa.off  {T3.}cmpReg = csa(dbase + offReg,  swapReg)
csa.disp {T3.}cmpReg = csa(dbase + #simm6,  swapReg)

Table 3.30: DELFT-JAVA Atomic Operations.

B Privileged Operations: Privileged operations are operations that exer-
cise control and are reserved for the supervisor. Capabilities imply that the
operands that are capable of control are accessible only to the supervisor. By
definition, privileged operations can be invoked only by the supervisory pro-
gram. The computer must know whether or not a privileged operation is al-
lowed. The mode in which the supervisor has control is termed privileged
mode. This is distinguished by a bit in the processor status word. Tables 3.31
and 3.32 summarize the available privileged instructions.
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Name Function

scall Supervisor Subroutine Call
rets Return from Supervisor
wait Program Completion

mvr2c Move Register to Control Register

Table 3.31: DELFT-JAVA Privileged Operations.

Name Function
trap Trap
reti Return From Interrupt

mvc2r  Move Control Reg To Register (except PSW)

Table 3.32: DELFT-JAVA Privileged Operations.

In addition to privileged operations, there are also registers which only the
supervisor may access. These include the entire set of control registers. Tables
3.33 and 3.34 summarize the DELFT-JAVA privileged registers.

reg Function reg Function
0 ctrH - Cycle Ctr High 16  psw

1 ctrL - Cycle CtrLow 17  dar

2 clk0 - 8 kHz 18  nextiar
3 clkl-9.6 kHz 19  ssp

4 clk2 - 44.1 kHz

5 meclk - Master Clock

6

7

Table 3.33: DELFT-JAVA Control Registers 1.
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reg Function reg Function

32 ibasel 48  dbasel

33 ibasel 49  dbasel

34 ibase2 50  dbase2

35 ibase3 51 dbase3

36  ibased 52 Supervisor sibase

37  ibaseb 53  umemlAL - User Mem limit low
38  ibaseb 54  umemMH - User Mem limit high
39  ibaseT 55

Table 3.34: DELFT-JAVA Control Registers II.

B Control Switching: A supervisory program requires three types of control
switches: 1) Dispatch where the supervisor gives control to the user, 2) Humble
Access where the user yields control, and 3) Interruption where the supervisor
takes control.

Interruption: An interruption is a control switch away from the program
under execution to another program - almost invariably the supervisor.

Dispatching: A program is said to be active if it has requested system use. It
is said to be inactive otherwise. A program that is actually placed in memory
is called entered; the others are called not entered. In a uniprocessor, only one
of the programs that are entered is executing at a given moment; its state is
called executing. The others may be in a ready state where they are waiting for
the processor or they may be in a not ready state waiting for input/output. The
supervisor dispatches a program on a processor when it changes that program’s
state to executing. A switch from the supervisor to a user program is always
initiated by the supervisor. This is accomplished by the privileged load of the
Instruction Address Register in the Control Registers.

Humble Access: The user program yields control to the supervisor through
the Supervisor Call (SVC) instruction. It is important that the supervisor - not
the user program - specify the point at which the supervisor starts execution.

B State Saving: The cause of an asynchronous interruption is independent
of the program that is in execution. The state of a program is defined by the
content of its storage spaces - the used parts of memory, working, and control
store. A program context is all the storage spaces that are time-shared when
one program is switched to executing another program.
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Context Switching: Context switching overhead is alleviated by using push
and pop range commands.

B Control: The clock controls the operation of the processor and provides the
master control signal which synchronizes all events.

3.5 Java Specific Operations

The DELFT-JAVA architecture supports some JAVA Virtual Machine specific
instructions. These instructions are inherent in the DELFT-JAVA architecture.
Thus, it allows the machine to maintain the high-level information contained
in the operation and either emulate or execute the instruction based on a partic-
ular implementation’s performance requirements. Instructions which are more
than 4 bytes in length trap and are architecturally defined to be emulated in a
trap handler. Table 3.35 summarizes the available DELFT-JAVA specific JAVA
Virtual Machine instructions.

In addition to JAVA Virtual Machine specific instructions, additional support
is provided for microarchitectural features that are useful to accelerate JAVA
language constructions.

M Link Translation Buffer

The Java Virtual Machine [3] contains support for run-time bound method in-
vocation. Because the Delft-Java processor incorporates invocation instruc-
tions directly into it’s ISA, architecturally transparent techniques can be used
to accelerate dynamic linking and method invocation. In this section we briefly
describe method resolution and invocation. We then introduce an architec-
turally transparent technique, the Link Translation Buffer, and explain its op-
eration.

Method Invocation: In a Java program, the Constant Pool contains the names
of the methods to be invoked. These are stored as strings and function much
like a symbol table. When a method is invoked, the Java Virtual Machine
searches the Constant Pool for the name of the method to invoke. Then, based
on the run-time type of the object invoking the method, it determines if the
method has already been resolved [1]. If the method has not been resolved, the
runtime system searches for the method. If the method is found, the address
of where the method is loaded is returned and execution continues from the
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Name Function

anewarray create array of reference
arraylength get length of an array

athrow throw exception

checkcast check if object is of given type
getfield get field from an object

getstatic get static field from a class

goto w branch always wide (traps)
instanceof determine if object is of given type
invokeinterface  invoke interface method
invokespecial invoke instance method (superclass, etc.)
invokestatic invoke class (static) method
invokevirtual invoke instance method

jsr w jump subroutine wide (traps)
lookupswitch jump table match by key (traps)
monitorenter enter monitor for object
monitorexit exit monitor for object
multianewarray create multdimensional array

new create new object

newarray create new array

putfield set field in object

putstatic set static field in class
tableswitch jump table match by index (traps)
wide extend local variable index (traps)

Table 3.35: DELFT-JAVA JVM specific Instructions

new address. If the method has been resolved, the name contained within the
constant pool can be associated with a physical location in memory for each
object.

LTB Supported Operations: Some architectural support is provided for LTB
Operation. In particular, the ability to lock/unlock the cache, or to flush it is
provided. Table 3.36 summarizes the available DELFT-JAVA Link Translation
Buffer instructions.
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Name Function

ItbLock lock an LTB entry
ItbUnlock unlock an LTB entry
ItbFlush  flush the LTB

Table 3.36: DELFT-JAVA LTB specific Instructions

3.6 Conclusion

In this chapter we have described the DELFT-JAVA architecture in general
terms. We presented the Memory (Storage) spaces the processor operates
from. We also presented the complete set of operations the processor is able
to perform and identified a number of JAVA Virtual Machine specific instruc-
tions for which special support is provided. Without the special instruction
support, many cycles may be required to emulate the operations. A key point
of our architecture was introduced - where it is easy to dynamically translate
JAVA Virtual Machine bytecode into DELFT-JAVA instructions, no instruction
set support is provided. For those JAVA Virtual Machine bytecode which are
highly complex, instruction set support is provided to allow acceleration of the
function through microarchitectural support.

In the following chapters we will show how the DELFT-JAVA instruction set ar-
chitecture can be used to accelerate JAVA program execution. The next chapter
presents a microarchitecture for high-performance JAVA execution. By using
microarchitectural techniques and specific organizations which accelerate var-
ious aspects of the JAVA Virtual Machine, performance improvements can be
realized using hardware to perform the acceleration.

84



If one woman can have a baby in 9 months it doesn’t imply
that 9 women can have a baby in 1 month. — Fred Brooks.

Chapter 4

Microarchitecture and Java
Acceleration

n the previous chapters we gave an introduction to the JAVA Virtual Ma-

chine, discussed previous research on JAVA acceleration, and provided

an architectural introduction to the DELFT-JAVA processor. This chap-
ter is dedicated to describing the organization of our processor. We provide
microarchitectural support for dynamic translation, dynamic linking, multi-
ple thread units, multiple instruction issue, dependency collapsing, and other
features common to modern superscalar processors. These techniques take ad-
vantage of key JAVA language properties to transparently extract parallelism
without programmer intervention. The presentation is as follows: First we
describe our hardware support for JAVA Virtual Machine dynamic translation.
We describe how indirect access to the register file provides the basic mech-
anism required to dynamically translate JAVA Virtual Machine instructions.
Then we provide an example of the translation process. Next we describe
special hardware features we incorporated to assist in translation. Finally, we
list instructions which are not translated. Second, we describe how we sup-
port dynamic method invocation. We provide background on dynamic method
invocation. Next we describe the Link Translation Buffer (LTB) and its op-
eration including enhancements which can be made to the LTB. Finally, we
describe our concurrent multithreaded organization and describe how multiple
thread units and multiple instruction issue efficiently accelerate JAVA program
execution. We also briefly describe how the indirect registers and Link Trans-
lation Buffer operates within the description of the microarchitecture. We then
describe some features of the architecture that are not primarily for JAVA ex-
ecution but allow speedup of native methods. Finally we describe so related
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work on multithreaded architectures and present some conclusions.
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Figure 4.1: Indirect Register Access..

4.1 Dynamic Translation

The architecture supports the same basic datatypes as the JAVA Virtual Ma-
chine. We dynamically translate JAVA Virtual Machine instructions into DELFT-
JAVA instructions by providing indirect access into the register file. Figure 4.1
shows a set of index registers. Each index (e.g. ix, iy, and it) is 5-bits wide
with separate entries for each source and destination operand. Every indirect
operation accesses the index register file to obtain the last previously allocated
register. An immediate field within the instruction format can be used to spec-
ify offsets from the original index value. In addition, a pre/post-increment field
specifies whether the index uses a pre-incremented or post-incremented value
to resolve the register reference. For most translated JAVA instructions this
can be inferred from the operation. For general indirect instructions, which
are useful in vector operations, it is beneficial to directly specify a pre or post
increment. Once the operands are transformed from an indirect address to a di-
rect register reference, they are placed in the instruction window for dispatch.
If an overflow or underflow of the register file is detected by the hardware, the
offset register which maps the register file into main memory must be adjusted.
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In addition, the register file may be configured to act as a memory cache. In
this case, a base register indicates the starting memory address being cached.

Valid and modified bits control the write-back to memory when overflow or
underflow is detected.

Register File Tags
13l .
Resolbved 130 v (b Ilain Meraory
Renbl rA0 a0
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g a HE Stack
0 o |F hreat
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o
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Figure 4.2: Indirect Register Mapping.

To illustrate how these operations are performed, consider the code show in
Program 4.1.

add 12, 10, rl
addi [1dx7] ++it, 2-ix, iy
storei [idx7] baseO + #3, it++

Program 4.1: Indirect Instructions.

In Program 4.1, a typical RISC-style instruction is shown in line 1. The add
mnemonic specifies the operation, r2 is the destination (target) register. Reg-
isters r0 and r1 are the source operands. When no type is explicitly specified,
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a w32 (signed integer 32-bits) type is implied. In line 2, addi specifies that
an indirect add will occur. The idx[7] implies that the 8-th index register is
to be selected. The source operand 2+ix implies that an immediate value of
2 (which is specified in the instruction format) is pre-updated with the con-
tents of idx[ix][7] to determine the source operand. In line 3, a memory store
operation is performed. The target operand is a memory location addressed
by base register base0 with an immediate displacement of 3. To calculate the
source operand, the value contained in idx[it][7] is used. In practice, the only
way for this to happen is to be in JAVA translation mode (which provides for
locked indexing using it). Since it+1 contains the +1 on the right hand side
of the expression, it implies that idx[it][7] is post-incremented by 1. For JAvVA
Virtual Machine bytecodes, the pre/post increment values can be implied from
the JAVA Virtual Machine instruction.

Figure 4.2 shows the indirect mapping translation. The resolved register ad-
dress from Figure 4.1 is used as an index into the register file. This address
is also used as a displacement which maps the register file into Main Mem-
ory. A 32-bit base address is set by the DELFT-JAVA processor to point to the
starting memory location. A 32-bit offset is added to provide the current map-
ping of the register file to the stack main memory. If the amount of required
stack storage exceeds the register file limit, a signal is sent to the DELFT-JAVA
processor and the offset is adjusted as needed. The tags control whether all
the data is written back on an overflow or underflow. It is possible to be con-
tinually updating main memory in the background while bytecode execution
proceeds.

4.2 Example Translation

In this section we present the translation of a Vector Multiply. Program 4.2
shows a rudimentary JAVA program that reads an element of a vector from
array a[], multiplies it with a fully disambiguated array b[], and stores the
result in another independent array c[]. The JAVA language specifies that array
memory is allocated on the heap. The operations take place on an element by
element basis.

B Inner Loop Bytecode: When compiled with -O optimization using Sun’s
Java JDK 1.1, the bytecodes produced for the inner loop of Program 4.2 (e.g.
c[i]=a[i]*b[i}) are shown in Program 4.3. To be able to load a single element
from an array, the address of the array is pushed onto the stack (Program 4.3
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class VectorMultiply {
public static final int MAXVEC = 100;
public static void main( String[] args ) {
int[] a,b,c;
a = new intftMAXVEC];
b = new intfMAXVEC]
¢ = new intfMAXVEC];
for(int i=0; i<MAXVEC; i++ ) { // init arrays
afi] =1; b[i] = 2*i; c[i] = 0;
}
for( int i=0; i<MAXVEC; i++ ) {
c[i] = a[i] * b[i};
i}

Program 4.2: Vector Multiply Example.

line 1) followed by the index to load (Program 4.3 line 2). Previously (not
shown in Program 4.3), each array was allocated on the heap. As a result of
executing the instruction “"newarray int”, the heap address is returned on the
stack. This address was immediately stored into a Local Variables location
(e.g. LV[1], LV[2], and LV[3] for a[], b[], and c[] respectively).

1 aload 3 ; address of c[0] on heap

2 iload 5 ;index into c[]

3 aload 1 ;address of a[0]

4 iload 5 ;index into a[]

5  iaload ; load element from a[index]
6 aload 2 ; address of b[0]

7 iload 5 ;index into b[]

8 1aload ; load element from b[index]
9 imul ; multiply a[i]*bl[i]

10 iastore ; store it into c[index]

Program 4.3: Compiled Inner Loop Bytecode.

B Translated Bytecode: Program 4.4 shows the vector multiply inner loop
bytecode translated into DELFT-JAVA indirect instructions. Because instruc-
tions are being translated from JAVA, all operand indirect references are with
respect to the target location. When a program is about to begin execution
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Opc
load
load
load
load
load
load
load
load

mpy
store

Indirect Register
[idx7] —it, base LV + #3
[idx7] —it, base LV + #5
[idx7] —it, base LV + #1
[idx7] —it, base LV + #5
[idx7] ++it, ++it + it
[idx7] —it, base LV + #2
[idx7] —it, base LV + #5
[idx7] ++it, ++it + it
[idx7]  ++it, it, ++it
[idx7] 2+it + 1+it, it

Program 4.4: Translation Bytecode.

of JAVA bytecodes, a "branchJVM” instruction is executed by a DELFT-JAVA
processor. As shown in Figure 4.1, this configures the IsJava control switch to
use the ”it” reference. The “base LV’ name is a symbolic name for one of the
DELFT-JAVA base registers. As shown in Program 4.4 line 1, loading a JAVA
array reference from a local variable is translated as an indirect load with base
register plus displacement. Notice that after the translation most of the type
information contained within the JAVA instruction is removed. It is therefore
important for a separate program to verify the bytecodes prior to execution if

security is an issue.

11
i2
i3
ig
i5
i6
i7
ig
i9
110

Opc

Direct Register

// initial value of idx[7][it] = 24

load
load
load
load
load
load
load
load

mpy
store

123 <= Mem|[base LV + #3
122 <= Mem{[base LV + #5
121 <= Mem|[base LV + #1
120 <= Mem|[base LV + #5
121 <= Mem|[1r21 + r20]
120 <= Mem|base LV + #2]
r19 <= Mem|[base LV + #5]
120 <= Mem|[1r20 + r19]

121 <120 *r21

Mem|[r23 + 122] <= 121

]
]
]
]

Program 4.5: Final DELFT-JAVAInstructions.
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B Executed Bytecode: Program 4.5 shows the operation code mnemonic and
the final resolved instruction. For this example, we assume that the value con-
tained in idx/7][it] is 24. Of notable observation is the large number of Mem-
ory accesses required. However, it should be noted that most of these are
not global memory accesses but rather Local Variable accesses which may be
cached locally or even stored in small buffer. The JAVA language currently al-
lows up to 26 local variables. Implementations which do not store this much
memory locally (e.g. when the Local Variables are allocated to registers) must
dynamically allocate spill memory to accommodate a particular program’s re-
quirements.

4.3 Hardware Support

In order to perform JAVA translation, the DELFT-JAVA machine has a number
of special registers which control the dynamic translator. When the proces-
sor transitions to JAVA-mode using a branchJVM instruction, the programmer
views the processor as a JAVA Virtual Machine and translation is automati-
cally enabled. In any of the privileged modes, the translator is disabled. When
dynamic translation is enabled, the register file caches the top of the JAvA
stack. This is accomplished by using architected base and offset/displacement
registers within the architecture. During normal JAVA execution, the register
file can cache up to 32 stack entries. In addition, the actual top of the stack
may be offset from the memory location that points to it to allow for delayed
write-back. The JAVA language specifies that in the absence of explicit syn-
chronization, a JAVA implementation is free to update the main memory in
any order[1]. Therefore, each context may maintain a set of register file status
bits that allow a more balanced utilization of bandwidth constrained resources.

To ensure proper sequencing of instructions during JAVA translation, all in-
structions are assumed to be stored as JVM bytecode. To transition to kernel-
mode, a special reserved JAVA Virtual Machine instruction is used. The JAVA
Virtual Machine specification states that 3 opcodes will permanently be re-
served for implementation dependent purposes[3]. The DELFT-JAVA pro-
cessor utilizes one of these instructions to transition a context between JAVA
Virtual Machine execution and general DELFT-JAVA execution. When the
context is executing in kernel-mode, instructions are assumed to be stored as
32-bit DELFT-JAVA instructions. This allows the branch decode logic to op-
erate correctly without modifying JAVA compilers while compilers specific to
our architecture can take advantage of hardware-specific features. Addition-
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ally, it is not necessary for all DELFT-JAVA instructions to execute in kernel
mode. A security scheme may be implemented using a supervisor invoked
transition to native user-mode DELFT-JAVA execution.

anewarray  invokeinterface! multianewarray

arraylength  invokespecial new
athrow invokestatic newarray
checkcast invokevirtual putfield
getfield jsr w! putstatic
getstatic lookupswitch! tableswitch
goto w' monitorenter wide
instanceof  monitorexit L(traps)

Table 4.1: Instructions with Special Support.

B Non-translated Instructions:Primarily, we dynamically translate arithmetic
and data movement instructions. In addition to the translation process, the
architecture provides direct support for a) synchronization, b) array manage-
ment, c) object management, d) method invocation, e) exception handling, and
f) complex branching operations. The JAVA instructions shown in Table 4.1
have special support in our architecture. These instructions are dynamically
translated but only the parameters which are passed on the stack are actually
translated. The high-level JAVA Virtual Machine operations are translated to
equivalent high-level operations in the DELFT-JAVA architecture. In addition,
four instructions which are greater than the 32-bit DELFT-JAVA instruction for-
mat width trap.

B Conclusion: In this section we have described the dynamic translation of
JAVA Virtual Machine instructions into DELFT-JAVA instructions. The basic
mechanism for accomplishing the translation is indirect access to the register
file. Special hardware is utilized to accomplish the translation. In addition,
certain JAVA Virtual Machine reserved opcodes are used to transition between
kernel and JAVA execution. All but a handful of instructions are dynamically
translated. Those that are not have special instruction set support provided in
the native DELFT-JAVA ISA. A very few number of instructions have architec-
tural support but trap due to their variable length.

In the next section we will describe an organization of a DELFT-JAVA proces-
sor and show how JAVA execution can be further accelerated at the microarchi-
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tecture level. We will introduce the Link Translation Buffer for accelerating
dynamic method invocation which is required in the JAVA language. Then,
we will show how multiple thread units, multiple instruction issue, and depen-
dency collapsing can further accelerate JAVA execution.

4.4 Link Translation Buffer

An important consideration in accelerating JAVA ’s dynamic linking is the Link
Translation Buffer (LTB)[65]. The LTB acts as a global repository for dynam-
ically resolved names. During dynamic linking, the name of the class or field
to be resolved is contained in the constant pool. After a process called resolu-
tion [1], the name contained within the constant pool can be associated with a
physical location in memory. This association is placed in the Link Translation
Buffer. If the control unit finds the constant pool address in the LTB and the
requesting class has access permissions to the data, then the control unit very
quickly returns the resolved address. There is still a potential problem that the
LTB may hold data that is stale. To diminish the impact of this, the control
processor regularly re-resolves addresses when it is not busy performing other
tasks. A program may also completely disable the LTB or more judiciously
issue flushLTB instructions.

B Background: Dynamic method invocation is a technique whereby a pro-
gram may invoke a method with the same name and parameters but execute
a different sequence of code depending upon the run-time type of the object
invoking the procedure. The JAVA programming language supports general-
ized use of dynamic method invocation. The C++ language also supports a
more limited form of this behavior through the virtual keyword. As in C++,
JAVA method invocation generally involves an indirection through a method
dispatch table.

In Program 4.6 and Program 4.7, both the C++ and JAVA statements for
msc.instanceMethod() invoke MySubClass:: instanceMethod(). In the C++
version, the virtual keyword informs the compiler that the method instance-
Method() will have runtime binding behavior. The capability of calling differ-
ent methods at runtime is known as late binding because the method to invoke
is not known until the program executes. In C or Pascal, by contrast, a func-
tion call always resolves to a specific, compile-time known, location. This is
known as early binding because physical addresses can be associated with the
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class MyClass {
public:

virtual void instanceMethod() {};
|5
class MySubClass : public MyClass {
public:

virtual void instanceMethod() {};
|5
void main() {
MyClass mc = MyClass();
MyClass msc = MySubClass();
mc.instanceMethod();
msc.instanceMethod();

}

Program 4.6: C++ Method Invocation

public class MyClass {

void instanceMethod() {}

}

public class MySubClass extends MyClass {
void instanceMethod() {}

}

class Test {

public static void main(String args[]) {
MyClass mc = new MyClass();
MyClass msc = new MySubClass();
mc.instanceMethod();
msc.instanceMethod();

1

Program 4.7: JAvA Method Invocation
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function during compilation and linking. The advantage of early binding is
that the only run-time overhead is argument passing, performing the function
call, and cleaning up the frame stack. The advantage of late-binding is that
the mix of objects in a system is not required to be fixed at compile-time. The
cost of this additional flexibility is the run-time efficiency of deducing which
methods to invoke. C++ is a hybrid language and only uses late binding when
the virtual keyword is utilized but still requires the set of all potential objects
which may be invoked to be known at compile time. JAVA , because of its
dynamic linking facility, is inherently a late-binding language that allows an
arbitrary set of objects, which may not all be known at compile time, to be
invoked at run-time.

Vtables
Memory
3
MYSUbCIaSS — = 2 instanceM()
1
! \
3 /
MyClaSS — =2 instanceM()
1
0

Figure 4.3: C++ Virtual Table Implementation.

In Figure 4.4 we show a possible implementation of C++ virtual tables. During
compilation, two tables can be created - one for MyClass and one for MySub-
Class. These are stored in memory. When an object invokes the function
instanceMethod(), they both have the same offset in their virtual tables. The
contents of that memory offset is used to reference the actual location of the
code in memory.
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Method void main(java.lang.String [])
Line InstrAddr Instr

1 0 new #3 <Class MyClass>

2 3 dup

3 4 invokenonvirtual #7 <Method MyClass.<init>()V>

4 7 store 1

5 8 new #4 <Class MySubClass>

6 11 dup

7 12 invokenonvirtual #6 <Method MySubClass.<init>()V>

8 15 astore 2

9 16 aload 1
10 17 invokevirtual #5 <Method MyClass.instanceMethod()V>
11 20 aload 2
12 21 invokevirtual #5 <Method MyClass.instanceMethod()V>
13 24 return

Program 4.8: JAVA Method Invocation Bytecode

To understand how dynamic linking and late-binding are performed in JAVA,
it is instructive to see the compiled bytecodes. As shown in Program 4.8, the
first instruction (new #3) creates a MyClass object on the heap. Line 3 in-
vokes its constructor. Line 5 does similarly for MySubClass. The interesting
cases are found at lines 10 and 12. The invokevirtual call for both the My-
Class::instanceMethod() and MySubClass::instanceMethod() are called with
the same Constant Pool index (e.g. #5). The only way to distinguish them is
through the object reference that is loaded in Lines 9 and 11. In line 9, the
method dispatch table to use is the one for a MyClass object. In line 11, it is
for the MySubClass object. As in C++, the offsets into the Constant Pool are
the same. The actual method to call is disambiguated by the object reference
which is loaded onto the stack at runtime. This is exactly analogous to Figure
4.4, except that the method dispatch tables are built at run-time by the runtime
system.

4.5 LTB Acceleration

The JAVA Virtual Machine [3] contains support for run-time bound method
invocation. Because the DELFT-JAVA processor incorporates invocation in-
structions directly into it’s ISA, architecturally transparent techniques can be
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used to accelerate dynamic linking and method invocation. In this section we
briefly describe method resolution and invocation. We then introduce an archi-
tecturally transparent technique, the Link Translation Buffer, and explain its
operation.

B Method Invocation: In a JAVA program, the Constant Pool contains the
names of the methods to be invoked. These are stored as strings and function
much like a symbol table. When a method is invoked, the JAVA Virtual Ma-
chine searches the Constant Pool for the name of the method to invoke. Then,
based on the run-time type of the object invoking the method, it determines
if the method has already been resolved [1]. If the method has not been re-
solved, the runtime system searches for the method. If the method is found,
the address of where the method is loaded is returned and execution continues
from the new address. If the method has been resolved, the name contained
within the constant pool can be associated with a physical location in memory
for each object.

B LTB Operation: A Link Translation Buffer is a buffer which accelerates
late-binding of names with locations in memory. It is properly characterized
as an organizational technique although some architectural support can be pro-
vided. In particular, a kernel program may need to enable, disable, lock, or
judiciously flush the buffer.

The Link Translation Buffer provides an architecturally transparent means to
accelerate the JVM’s late-bound method invocations. When a DELFT-JAVA
processor executes a method invocation instruction, it first dynamically trans-
lates the instruction into an equivalent DELFT-JAVA invocation instruction.
When the instruction is executed, it checks the Link Translation Buffer to de-
termine if the current object reference and its associated constant pool address
are in the Link Translation Buffer. If the information is resident in the LTB,
a new frame is created and the method is directly invoked. If the informa-
tion is not in the LTB, the instruction is forwarded to the Control Unit. The
Control Unit may be implemented as a state-machine, microcode, or be a sep-
arate processor executing a thin interpretive JVM layer. The Control Unit is
responsible for resolving the method name and placing the physical method
invocation address into the Link Translation Buffer.

B LTB Design: In designing the Link Translation Buffer, there are two cases
to consider: 1) dynamic method invocation and 2) static method invocation. In
dynamic method invocation, a JAVA Virtual Machine invoke instruction takes
a 16-bit Constant Pool value from the instruction format and searches the cur-
rent object’s Constant Pool for the name of the method to invoke. The current
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object’s this pointer and the Constant Pool index from the instruction field pro-
vide a unique identifier to the name of the method to invoke. The name of the
method includes the class name, the method name, and the method signature
(e.g. the argument and return types). The DELFT-JAVA processor must then
determine if the class is already loaded. If it is not, the Control Unit searches
for the class and loads it. The instance reference is then retrieved from the stack
and the list of methods defined by that class (and possibly it’s superclasses) is
searched. If a method is found that matches the name and descriptor, it is
invoked. Once this relationship is resolved to a physical address, additional in-
vocation instructions may use the previously resolved address directly. Thus,
the caller’s object id (this pointer and Constant Pool location) and the callee’s
object reference provide sufficient information to directly invoke the method.
This relationship is stored in the LTB. In static method invocation, the method
to be invoked is a class method (e.g. not an instance method) and does not
need an explicit object reference. In this case the caller’s object id is sufficient
to invoke the method.

The Link Translation Buffer can support a variety of entries and associativi-
ties depending upon the desired implementation cost. We note that since the
runtime can define the object ids, depending upon the actual associativity of
the LTB, we may optimize the runtime to produce object ids which minimize
cache conflicts. This is not true, however, for the 16-bit Constant Pool offset
location.

B LTB Enhancements: In the design of the Link Translation Buffer some fur-
ther enhancements can be made that reduce the impact of creating new frames.
Our initial design places a small amount of additional data into the LTB. In
the DELFT-JAVA processor, a frame is created which holds the 32-bit base
values of the Constant Pool and Local Variables. Because each invoke instruc-
tion causes the creation of a new frame, we would like the frame creation to
have as minimal overhead as possible. To assist this, we designed all execu-
tion frames within a thread to be contiguous. The Heap, Local Variables, and
Constant Pools do not have this requirement. Making the frames contiguous
allows us to use the operand stack as the frame stack. Because there can be 26
Local Variables in a JAVA frame, we do not place this data in the execution
frame. By not placing them in the frame stack, we avoid excessive flushing of
the register file stack cache. In JAVA , only the actual operands are considered
to be placed on the stack. In our method, the calling parameters also traverse
through the stack so that the values are cached by the register file. Because
the register file operates as a type of cache, if we were to change the operand
stack’s offset register, the modified register file locations would be required to
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be flushed on every method invocation. This requires no more additional cy-
cles than a caller-save calling convention however we can gain the advantages
of using a register file with no register saving overhead and variable length pa-
rameter passing. By using contiguous frames, the only information that needs
to be stored when a new frame is created is the base addresses of the Local
Variables and Constant Pool and the instruction address to return to the previ-
ous frame. These additional pushes and pops are performed transparently to
the JAVA programmer and are logically considered to be part of the Operating
System.

Caller’s | CPool | Callee’s
Reference | Entry | Object Ref

32-bit 16-bit 32-bit 32-bit | 32-bit

LV[0]| CP[0]| Other

Figure 4.4: Link Translation Buffer.

As shown in Figure 4.4, some other performance enhancements can also be
made by associating additional data with the LTB. Examples include synchro-
nization locks!, garbage collection reference counts, actual data, and other
information to accelerate dynamic invocation.

The JAVA Virtual Machine also defines other operations which require late-
binding. The getstatic, putstatic, getfield, and putfield instructions may work
in an analogous manner except that the value stored in the LTB is the data
field itself rather than the address of the method to invoke. In addition, these
instructions do not cause the creation of a new frame.

B Conclusion: In this section we have described the Link Translation Buffer
which is an organizational technique to accelerate JAVA’sdynamic method in-
vocation. We have shown why it is effective, how it is designed, and how
it may be enhanced. In the next chapter we will discuss organization details
which allow us to accelerate JAVA execution. Dynamic instruction translation
and the LTB are key aspects of accelerating JAVA execution. Other techniques
from superscalar processors may also be employed. These are discussed next.

'In fact, this synchronization field is required since a synchronized method does not need
to be defined through monitorenter and monitorexit instructions. Because Java allows the class

file to contain data stating the entire method is synchronized, some mechanism must be present
in the invocation scheme to cache this information.
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Figure 4.5: Concurrent Multithreaded Organization.

4.6 Concurrent Multithreaded Organization

In this section, we present a concurrent multithreaded organization of the DELFT-
JAVA architecture. This organization provides hardware support for multiple
context instruction issue and global instruction scheduling. The organization
supports multiple concurrent execution of threads which share global execu-
tion units. We define a context as a hardware supported thread unit. Each
context assumes that the processor’s organization incorporates (logically) an
instruction cache, a decode unit, a local instruction scheduler, a local instruc-
tion issue unit, and an instruction retire unit. A context does not include any
shared resources such as a first level (L.1) cache, execution units, a register file,
global instruction schedulers, nor global issue units. The term thread is gener-
ally used to refer to the programmer’s view of a thread - a possibly concurrent
stream of independent executing instructions[66, 67]. In this thesis, the term
context denotes the hardware on which a thread may run. The system software
may map any number of threads to a particular context.

B Operation: All instructions are fetched from global shared memory and
placed into a global L1 on-chip instruction cache. Each context also assumes
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a (logicalz) zero level (LO) instruction cache to provide concurrent per context
instruction fetch capacity. During normal user-level operation, all instructions
are fetched as JAVA instructions. After being fetched, most JAVA instruc-
tions are dynamically translated into the DELFT-JAVA instruction set. Because
the instructions are stored in cache memory as JAVA instructions, branching
and method invocation code produced by JAVA compilers will execute prop-
erly on the DELFT-JAVA architecture. After translation, the instructions are
decoded and placed in a local instruction window. The instruction window
keeps track of issued and pending instructions. The local instruction sched-
uler is responsible for determining how instructions within the window should
be scheduled. This unit takes the instructions in a RISC form and performs
instruction combining and compounding. Often, in stack based architectures,
a number of optimizations pertaining to stack manipulation can be efficiently
combined[48, 68]. The DELFT-JAVA processor may also dynamically build
internal compound instructions[69]. Instructions are then sent to the local is-
sue unit after they have been scheduled. The local issue unit determines if the
instructions that have been locally scheduled can be issued to the global in-
struction scheduler. To resolve interlock dependencies, an interlock collapsing
unit could be used[70].

All instructions which require access to shared resources must be forwarded to
the global instruction scheduler. This unit schedules the aggregated instruc-
tions destined for execution units. Any number of implementation dependent
scheduling policies can be utilized including priority-based, round-robin, ear-
liest deadline, etc. The JAVA language specifies that in the absence of explicit
synchronization, a JAVA implementation is free to update the main memory in
any order[1]. This relaxed memory consistency model allows the scheduler to
reorder the instructions from individual contexts to optimize the utilization of
the shared execution units. After all instructions which request global shared
resources have been scheduled, they are sent to the global issue unit. This unit
ensures that global resources are available to begin issuing instructions. In-
structions may be issued in one of two forms: single independent instructions
and compound parcels. A parcel is a dynamically built compound instruction.
Parcels are particularly effective in reducing the logic complexity of imple-
mentations and execute in less cycles when used in conjunction with interlock
collapsing units. In a traditional processor implementation, all execution units
would require bypass circuitry between each other. As the number of global
execution units becomes large, it is no longer feasible to provide general by-
passing between all sets of execution units. In the DELFT-JAVA processor, this

?logical meaning not necessarily physical.
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requirement is removed by provided compound instructions which collapse in-
terlocks and then scheduling the interlocked instructions within a parcel. The
global issue unit has the capability of reordering the execution of individual
instructions and parcels. If the global issue unit can find available resources, it
can splice an independent instruction from an alternative context into a parcel.
Since contexts are independent, this ensures that an instruction spliced into a
parcel does not cause invalid results. Additionally, because each instruction
contains a unique context identification, the results are forwarded to the proper
context.

After global execution, all results are forwarded to the global retire unit. This
unit removes the requirement for a general interconnection unit between all
contexts and execution units. If instructions were not executed speculatively,
the global retire unit writes the results to the register file after forwarding the
instruction to the local retire unit. Otherwise, the result is maintained in the
retire unit until the conditional outcome is known.

All instructions eventually return to the local retire unit in the context from
which they originated. This unit is responsible for committing state to the
context. Each context may retire multiple instructions per cycle.

Stack Area Cached
Register File

iaxi1l
iaxrol

Figure 4.6: Concurrent Multithreaded Registers.

B Registers: From the perspective of a context, the register file consists of a
standard 32 entry by 32-bit register array. From the perspective of the machine,
this resource is managed as a global register file that is addressed by a context
identifier that is appended to the instruction’s register reference. An alternative
organization would be to place the register files logically within a context. This

102



organization however creates a proliferation of register file ports. Managing
the register file as a global resource reduces the number of ports to the peak
retire rate of the machine versus the peak retire rate of a context.

Instructions have two methods of accessing the register file: 1) direct RISC-
style references and 2) indirect index access. Even though there is an indirect
reference, all instructions physically execute using direct RISC-style register
references. The indirect index registers are only used to translate instructions.
This implies that they are not part of the register file and do not affect the
execution path.

The JAVA Virtual Machine instruction set architecture is inherently stack based
[3]. When executing JAVA instructions, the register file index registers create
a circular buffer that is mapped to the operand stack in memory. A set of valid
and modified bits are associated with each register. These bits are maintained
logically within the local context. These registers automatically prefetch and
spill as the stack size changes.

B Translation: As described in the previous chapter, the indirect access to
the register file plays the largest role in the translation of JAVA bytecodes. As
shown in Figure 4.6, when executing JAVA instructions, the register file index
registers create a circular buffer that is mapped to the stack in memory. A
set of valid and modified bits are associated with each register. These bits are
maintained logically within the local context. A JAVA instruction such as iadd
goes through two intermediate phases. The first phase translates the instruction
into a valid DELFT-JAVA instruction. In this case, a add.ind.w32 idx[0] it, it-
1, it-1 is generated by the translation logic. If we assume that the top of the
cached stack in idx[0] is currently in r5, this instruction proceeds through the
decoder and is placed in the decoded instruction window as add.w32 r5, r6,
r6. Functionally, this performs r5 + 16 — 16. In the DELFT-JAVA processor,
the stack grows upward in both memory and in register file references. These
registers automatically prefetch and spill as the stack size changes.

H Execution and Context Switching: When a thread begins execution within
a context, the offset registers are written with the location of the frame, operand
stack, and local variables memory locations. Additionally, the register file tags
within the context are reset. When the operand stack address is written to
the offset register, the context begins to generate speculative load instructions.
This allows the register file to pre-fill only if there is adequate bandwidth avail-
able to the L1 cache. It also reduces cache thrashing because the L1 cache is
not obligated to evict data upon a speculative load.

As instructions begin to execute, if the speculative pre-loads were successful,
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context execution proceeds without delay. If the pre-loads were not successful
and the data is required for execution, the local context re-issues the load non-
speculatively. This effectively raises the priority of the load instruction. When
the data arrives at the context, a valid bit associated with that register file lo-
cation is set. If the register is modified at any point during program execution,
the modified bit is set. If the processor has spare resources, a speculative cache
store instruction is generated. If there is spare bandwidth available, the proces-
sor stores the updated memory location and resets the modified bit. Otherwise,
execution continues with a delayed write-back.

In some cases, the global thread management unit may determine that a partic-
ular software thread has resulted in a unacceptable degradation of a hardware
context. In this case, the unit may make a request to the context to perform a
context switch so that a new thread may be mapped to the context. Since re-
sults are only committed by the retire unit, it is possible to interrupt a context
at any time. When a context becomes invalid, it signals the global instruction
scheduler and issue unit to flush any remaining instructions in the queue. It
then checks the modified bits of the register file to determine if any values
must be written back into memory. After all state has been saved in memory,
the context may signal the global thread management unit that a new thread
may be mapped to the context. Even though the context is now freed to map a
new thread onto it, it may still be the case that an instruction was executing at
the time of the context switch request. It is the responsibility of the global re-
tire unit to ensure that any instructions received from execution units destined
for the switched context are not forwarded to the local retire unit. This is not
difficult to implement when the longest instruction execution time is less than
the context switch time.

B Control Unit: The control unit is responsible for managing system re-
sources, ensuring synchronization, cache locking, dynamically linking classes,
performing I/O operations, running operating systems, loading instructions,
and generally performing system functions. Since the JAVA Virtual Machine
does not provide all the functionality generally required by a full operating
system, many of these functions have been grouped into a special control unit.
A control unit is analogous to a context except that it contains additional re-
sources that are not necessarily required within a context. These resources
could be implemented within a context but with a large number of contexts it
would lead to unacceptable duplication of typically idle hardware. There are
no architectural limits on the number of control units permitted in a system.
The control unit is a logical independent entity so that the complexity of buss-
ing between global system resources such as caches is significantly reduced.

104



Some of the differences that distinguish the control unit from a context are:

First, a control unit has direct access to the Link Translation Buffer. The LTB
acts as a global repository for dynamically resolved names. During dynamic
linking, the name of the class or field to be resolved is contained in the constant
pool. After a process called resolution, the name contained within the constant
pool can be associated with a physical location in memory. This association
is placed in the Link Translation Buffer. If the control unit finds the constant
pool address in the LTB and the requesting class has access permissions to the
data, then the control unit very quickly returns the resolved address. There is
still a potential problem that the LTB may hold data that is stale. To diminish
the impact of this, the control processor regularly re-resolves addresses when
it is not busy performing other tasks. A program may also completely disable
the LTB or more judiciously issue £1ushLTB instructions.

Second, the global instruction scheduler has direct access to the control unit
and may schedule instructions on execution units that are inherently owned
by the control unit. This is to ensure that all addresses are resolved through
the control unit and that all synchronization is performed by the control unit.
When execution has completed, instructions are returned to the global retire
unit which then returns the results to the context requesting the operation. Care
is taken by the Global Retire Unit to ensure that any locks acquired for a con-
text that have undergone a context switch are released.

Third, any unimplemented instructions trap first through the global instruction
scheduler and global issue unit to the control unit. The control unit then ei-
ther halts execution if it is an illegal instruction or can emulate the instruction
sequence and return the instruction to the global retire unit.

Fourth, the control unit is responsible for synchronization. This is because
generally it may be possible for an object to have acquired a lock but the locked
object may not be fully resident in the L1 instruction cache. The easiest way
to deal with this issue is to lock down all cache lines associated with object
synchronization. Another alternative is to have the control unit check each
address as it is brought into the cache to ensure that the address is not contained
within an already locked object. If it is the context that currently owns the lock
that requested the instruction, the new instructions are brought into the cache.
If it is any other context requesting the instruction, the context is placed in a
blocked state. This reduces thrashing within the cache and allows the thread
scheduler to make better decisions about the mapping of threads to contexts.

Fifth, a thread scheduler in the control unit is responsible for mapping all of the
software threads in the system to particular hardware contexts. It may update

105



the state of threads (i.e. from active to blocked), it may preempt threads, and it
may create and destroy threads. There are no restrictions on the mappings of
threads to contexts. Multiple threads may be mapped to a single context or to
multiple contexts.

Finally, the control unit performs all the necessary functions required in phys-
ical processors that are not required in virtual machines. These include I/O
access, initialization, and system administration functions.

4.6.1 Enhancing Performance

Accelerating the JAVA Virtual Machine interpreter is only one aspect of JAVA

performance improvement implemented in the DELFT-JAVA processor. We

utilize a number of techniques including pipelining, load/store architecture,

register renaming, dynamic instruction scheduling with out-of-order issue, com-
pound instruction aggregation, collapsing units [70], branch prediction, a link

translation buffer [65], and standard register files. We selectively describe

some of these mechanisms.

() () Q

Figure 4.7: Vector Multiply Dependency Graph.

B Removing Hazards: A common problem with stack architectures is that
the stack may become a bottleneck for exploiting instruction level parallelism.
The dependency graph for Program 4.5 is shown in Figure 4.7. Note that this
dependency graph is shown prior to any register allocation scheme. Since the
results of operations typically pass through the top of the stack, many inter-
locks are generated in the translated instruction stream [71]. Register renaming
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allows us to remove false dependencies in the instruction stream. In addition,
an interlock collapsing unit can be used to directly execute interlock dependen-
cies[69, 70, 72]. After translation the instructions are placed in an instruction
window.

B Multiple Instruction Issue: After translation the instructions are placed
in an instruction window. Once instructions are translated into a RISC-based
form, superscalar techniques are used to extract instruction level parallelism
from the instruction stream. Reservation stations are an effective means of de-
termining which instructions can execute concurrently[54] . Since all thread-
units operate independently, multiple instructions can be issued from each
thread unit as well as multiple thread units.

B Bounds Checking: The JAVA language specifies that arrays must be bounds
checked[1]. Special register sets can be provided for this purpose. The mi-
croarchitecture is not required to implement them but the architecture supports
the use of bounds checking.

4.7 Garbage Collection

Microarchitectural support for the DELFT-JAVA processor has been considered
in [73]. We are indebted to Alexandru Berlea for this investigation of garbage
collection for the DELFT-JAVA processor.

An important feature of JAVA which distinguishes it from C++ is its support
for garbage collection, i.e., the automatic reclamation of unused dynamically
allocated memory. The garbage collection available in JAVA relieves the pro-
grammer from the burden of having to explicitly deallocate dynamic memory
when it is no longer needed. All JAVA objects are created on a dynamically
allocated memory zone (heap).

Generally speaking, the best possible garbage collector for a given applica-
tion can be implemented when the allocation behavior of the application is
known. This is an idealistic case since in general garbage collectors are not
written for a specific application but for a group of applications. In this case
the specific allocation behavior is generally not known before the applications
are executed. A garbage collector tailored for each application is therefore not
possible. However, best overall performance can be achieved by a garbage col-
lector if a general pattern of dynamic memory allocation for the applications it
will garbage collect exists and can be deduced.

One could chose to write the JAVA Virtual Machine in a language which pro-
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vides garbage collection and not bother with garbage collection for the objects
created by the JVM. By doing so there is no further need of an explicit garbage
collection within the JVM. Objects that are not reachable for the JAVA Virtual
Machine are also not reachable for the garbage collector in the source lan-
guage. The initial simulator for the DELFT-JAVA processor took this approach.
The concern with this approach is that the garbage collector for the JVM is
at best as good as the collector of the implementing language. Another disad-
vantage is that the collector of the implementing language will have to deal not
only with the objects created by the JVM (e.g. JAVA objects), but also with ob-
jects needed for the JVM itself in order to execute. This makes optimizations
based on the observations which apply only to the JAVA Objects potentially
problematic.

Another possible approach is to have the garbage collector written only for the
JAVA objects. The other dynamically allocated objects needed for the JVM
itself require explicit memory reclaimation. In the case that the source lan-
guage of the JVM provides garbage collection, they may not require specific
deallocation. Otherwise, they must be explicitly deallocated if the JVM is a
program written in a non garbage-collected language. If the later solution is
chosen then one could get again the same problem the garbage collection tries
to solve - relieving the programmer from the burden of having to know when
the space occupied by a dynamically allocated object is to be freed. Further-
more, a JVM is a complex program and is specifically the type of program
for which garbage collection was intended. If memory losses accumulate as
a consequence of the death objects allocated for the JVM itself and the JVM
runs for a long period of time, the application could run out of memory even
if the garbage collector in the JVM is very accurate. An example of this may
be if the JVM is integrated into some other long running program. In fact,
if the JAVA application and the JVM share the same dynamic memory zone,
significant memory inefficiencies may occur.

A third approach is the effort-saving technique utilized in Kaffe. The idea is
that since a garbage collector had to be written for the JAVA objects, why not
use the same garbage collector for the dynamically allocated objects in the C
program. The advantage of this approach is ease of the implementation. The
C-language can be used as a garbage collected language since objects created
for the internal use of the JVM could remain not explicitly deallocated. The
disadvantage is that when both objects are combined, the garbage collector
for the JAVA objects and the garbage collector for the objects allocated for the
internal use of the JVM can only be as good as the worst case of the two col-
lectors. C objects when combined with those used internally by the JVM can
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not be accurate collectors because the C-language does not support one of the
conditions in order to implement accurate garbage collection. Specifically, one
can not tell for sure if a variable contains a pointer or a non-pointer value. The
only type of garbage collection possible in C is conservative garbage collec-
tion. That is why the Kaffe collector is a conservative collector even if accurate
collection is possible for the JAVA objects. A key point of our approach is that
we separated the collector for the C objects from JAVA Objects. The C objects
were managed by the original Kaffe garbage collector whle we implemented
an accurate garbage collector for the JAVA objects.

For the DELFT-JAVA engine we used a very simple garbage collector interface.
We then tested it by simulating the objects in the heap and their garbage collec-
tion with a C++ program. The examples below are taken from the simulation
program which used a very simple mark and sweep collector.

The garbage collector interface provides two basic operations:

1. dynamic memory allocation (the allocate() function) and

2. explicit garbage collection invocation (the collect() function).

class gcHeap{
/* list of pointers to allocated heap objects */
pointerList allocatedObjects;
/* list of user pointers to live objects in the heap */
pointerList liveObjects;
void mark (POINTER p object) ;
void sweep () ;
void myCollect (pointerList * p rootSet) ;

public:
POINTER allocate (objectDescriptor * p od, rootsObject * p ro);
void collect (rootsObject * p ro);

};

Program 4.9: Garbage Collection Interface.

In fact, the garbage collection system has two parts: the dynamic memory allo-
cator and the garbage collector. All dynamic allocation requests are directed to
the memory allocator and must contain the description of the type of the object
whose allocation is requested. An object descriptor contains the map (layout)
of pointers within the object and is needed when scanning the object during
garbage collection. Therefore, the object descriptor is made available by the
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memory allocator by storing in the header of each allocated object a pointer
to its object descriptor. When garbage collector occurs, the graph of live ob-
jects is traversed starting with the roots and using the pointer maps located in
the objects’ headers. The allocation process is depicted in Figure 4.9 where
the differences and the similarities to the Kaffe dynamic allocator depicted in
Figure 4.8 are outlined.

An adapter from the DELFT-JAVA processor allocator interface to the Kaffe
allocator interface would need to call from the DELFT-JAVA processor the al-
locate() function and the NewObject() function in the Kaffe interpreter in order
to use the Kaffe allocator.

JVM ‘ NEW ‘

Object strucure

. # type Dispatch table
size
layout

‘ dtable *

Interpreter ‘ NewObject()

size, type
4 *

High level
allocator

gcMalloc() ‘

size + size of ge header

‘X—

gc_heap_malloc() ‘

type  WHITE

Low level gc block
allocator gc_block header | ...

¢ header(ge_unit) n‘hjcci header o#jccz
#

Figure 4.8: Object allocation in the Kaffe JVM

As a garbage collection can occur as the result of a memory allocation request,
if enough free memory is not available to satisfy the request, the garbage col-
lector roots must also be available at the time the request is made. We designed
the garbage collector roots as a garbage collection friendly object that has a
method to return the roots as a pointer list. This is shown in Program 4.10.

The garbage collector can be invoked directly or indirectly when a memory
allocation request fails. In both cases the garbage collector roots are made
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Figure 4.9: Heap occupancy in the jess benchmark, when interpreted by the
CC Kaffe JVM with a heap of 5 Megabytes

class rootsObject {
public:
virtual pointerList * getPointers() ;

}i

Program 4.10: Garbage Collection Roots.

available through the pointer to the garbage collector roots object. The roots
object could be also made available to the garbage collector via a global vari-
able. In this case the collector could be invoked without parameters just like the
Kaffe collector. If a specific DELFT-JAVA processor implemented the modified
garbage collection system of Kaffe, a minor modification would be needed in
the ccWalkRootSet() function. The rootset in the modified Kaffe JVM would
require modification so that the roots from the list made available by the root-
sObject object pointed only to Kaffe objects and not JAVA objects.

Using the above analysis, a hardware accelerator for garbage collection was
proposed. If an accurate garbage collector is to be implemented, information
which makes it accurate must be provided. This implies that the collector must
always be able to precisely distinguish references from non-references values.
A tracing garbage collector determines reachability of objects, i.e., object live-
ness, from some set of roots. In JAVA , the JAVA stack forms one component of
the rootset. Therefore, a stack map must be available. A stack map describes
which locations on the JAVA stack contain references. Maintaining this stack
map may introduce both performance and complexity overhead [74]. Each
time a reference appears/disappears on/from the stack, the stack map must be
updated. This type of bookkeeping is also necessary when implementing a ref-
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erence counting collector, since this must update the corresponding reference
counting each time a reference is created or destroyed. The overhead of main-
taining the stack map could be significantly reduced if it could be supported in
hardware.

Our study of the allocation behavior showed that JAVA could take advantage
of a generational garbage collection approach. The generational garbage col-
lector we implemented indicated that in order to take full advantage of the
generational approach write barriers are required. The write barriers trap all
the pointer writes in order to take special action in case an old-to-young inter-
generational pointer is created. Moreover, write barriers are also needed in the
case of an incremental approach. The overhead introduced by soft write barri-
ers could be significantly diminished if they were implemented in hardware.

The JAVA dynamic allocation behavior study suggested that a reference count-
ing collector only fails to reclaim a relatively small data percent. One of the
advantages of reference counting garbage collection is that memory manage-
ment overhead is distributed throughout the computation [75]. A DELFT-JAVA
processor implementation may use a reference counting collection scheme in
order to provide smooth response time. A second tracing collector could run
from time to time in order to reclaim the garbage that the reference counting
collector fails to reclaim. If the amount of garbage to be reclaimed by the trac-
ing collector is not important, this scheme provides smooth overall response-
time. A reference counting collector, needs to maintain the same stack map
necessary in the case of an accurate tracing collector implementation. Besides
marking and unmarking the corresponding bit in the stack map when a ref-
erence appears or disappears in the stack, the hardware support should also
increment or decrement the corresponding reference counting field and take
the needed reclaiming action in case the reference counting drops to zero.

4.8 Related Work

There are a number of projects which are investigating the usefulness of mul-
tithreading. Most of these projects are concerned with scientific workloads
rather than JAVA-specific acceleration. In the multiscalar approach[76], ILP
is exploited by keeping a single logical copy of the register file with physical
copies distributed among parallel processing units. In the DELFT-JAVA archi-
tecture, there is no concept of independent processing units. Additionally, the
register files are logically associated with each independent context although
to conserve register file ports, they may be implemented within the global exe-
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cution view. In the Tera MTA[77], each thread can issue an LIW from as many
as 128 program counters. However, at any one time, only one stream can be
active. The MIT M machine[78] uses V-threads which are also interleaved on
a cycle-by-cycle basis. The DELFT-JAVA processor allows multiple instruc-
tions to be issued simultaneously from concurrent threads. We also intend
this machine as a JAVA processor rather than a massively parallel machine.
Both Multistreaming [79] and Simultaneous Multithreading[80] integrate fine-
grained threads within a general purpose superscalar processor. Each of these
processors is capable of achieving significant speedup over superscalar proces-
sors by issuing multiple instructions from several independent threads. These
models are philosophically aligned with the DELFT-JAVA architecture and are
shown to be powerful techniques. We extend this concept by providing archi-
tectural support for dynamic instruction translation, synchronization, and other
JAVA constructs which are not currently supported in typical superscalar pro-
cessors. In addition, we improve upon the organization by choosing to execute
dependencies directly rather than using a superscalar organization. They based
their architectures upon a DEC Alpha or an RS/6000 while we have chosen to
exploit threaded parallelism inherent in the JAVA language.

4.9 Conclusions

In this chapter we have considered microarchitectural aspects of accelerating
the JAVA Virtual Machine. We first considered how to dynamically translate
JAVA Virtual Machine instructions into a RISC-based form. This was accom-
plished through the use of indirect register file access. We then considered how
to accelerate dynamic method invocation. We incorporated a Link Translation
Buffer to hold resolved methods. Finally we considered superscalar techniques
for accelerating JAVA execution. We described a microarchitecture with mul-
tiple thread units (contexts), multiple instruction issue per context, and de-
pendency collapsing arithmetic units. Since JAVA translation produces a large
number of instruction dependencies, superscalar techniques effectively accel-
erate JAVA execution. Using a form of hardware register allocation, we trans-
form stack bottlenecks into pipeline dependencies which are later removed
using register renaming and interlock collapsing arithmetic units. We also
described how microarchitectural support for write barriers could be used to
accelerate garbage collection.

In the next chapter we will describe some example programs. In addition we
will present translated programs and show how they execute on our processor.
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There is no point in providing operations the compiler will not
generate — Fred Brooks.

Chapter 5

Experimental Validation

n the previous chapters we gave an introduction to the JAVA Virtual Ma-

chine, discussed previous research on JAVA acceleration, provided an

architectural introduction to the DELFT-JAVA processor, and described
our hardware acceleration for efficient JAVA execution. We introduced the
concept of dynamic translation where stack-based operations are translated
on-the-fly into register-based instructions. This was accomplished through in-
direct access to the hardware register file. We also introduced the concept of
a Link Translation buffer which stores methods and other dynamically linked
JAVA constructs in a special cache that accelerates invocation. We also de-
scribed a multithreaded organization that allows for JAVA acceleration.

In this chapter we describe the results of a number of experiments. We first de-
scribe a simple example based on a DSP kernel for vector multiplication. We
characterize the speedup from dynamic translation hardware that can translate
JAVA Virtual Machine instructions into DELFT-JAVA instructions. We describe
this for several possible machine organizations and characterize the perfor-
mance improvement. Next we describe the results of hardware that acceler-
ates dynamic method invocation through the use of a Link Translation Buffer
(LTB). We present results of a more complicated program - a tensor-based
FFT suite. We show results for a number of Java Virtual Machines and com-
pare those results with expected acceleration using our hardware techniques.
Finally, we describe the results of our garbage collection experiments.
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5.1 Test Methodology

Our general methodology for describing experimental results is to report on
kernel performance. This illustrates the effectiveness of the techniques but
does not require the tremendous time required to implement a full JAVA Virtual
Machine and all the associated libraries written in native methods. Generally,
our results are validated against both an analytical model and where possible a
C++ model of the DELFT-JAVA processor.

5.2 Dynamic Translation Results

Model Renaming Issue L/Sunits Latency

IS No inorder 00 1
X No inorder o0 1
IR Yes 000 00 1
PS No inorder 00 4
PX No inorder 00 4
PR Yes 000 %) 4
BR Yes 000 2LV/2H 4

Table 5.1: Model Characteristics

In this section we describe the results for a DSP Vector Multiply. We describe
seven machine models and report on the relative performance of these mod-
els. A summary of the machine characteristics is shown in Table 5.1. The
Ideal Stack (IS) model does not attempt to remove stack bottlenecks nor does
it include pipelined execution. It assumes all instructions including memory
operations complete in a single cycle. The Ideal Translated (IX) model uses
the translation scheme described in Section 4.1. It also includes multiple in-
order issue capability but no register renaming. The Ideal Translated with
Register Renaming (IR) model includes out-of-order execution but with un-
bounded hardware resources. In addition to the ideal machines, we also calcu-
lated the performance on a more practical machine. The Pipelined Stack (PS)
model assumes a pipeline latency of 4 cycles for all memory accesses to the
Local Variables or Heap memory. The Pipelined Translated (PX) model and
the Pipelined with Register Renaming (PR) include the same assumptions for
memory latency but are equivalent to the IX and IR models in other respects.
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The final experiment looked at the additional constraint of bounded resource
utilization. We allowed two concurrent accesses to the Local Variable and
Heap memories. We maintained a four cycle latency for each memory space.
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Figure 5.1: Performance Results.

Figure 5.1 shows the relative performance of each of the models. We chose the
Pipelined Stack as the basis for comparison since it is a potentially realizable
implementation. We note that compared with a reasonable implementation, the
ideal stack (IS) model is 3.5 times faster than the PS model. When we compare
the IX model with the IS model, we were able to reduce the stack bottlenecks
by 40%. When register renaming was also applied in the IR model, the stack
bottlenecks were reduced by 60%. When bounded resources constrained the
issue capacity of the BR model, the performance still was 3.2x better than the
PS model. In addition, register renaming with out-of-order execution success-
fully enhanced performance by about 50% in comparison with the same model
characteristics but with in-order execution.

Table 5.2 shows the summary of instructions issued, peak issue rate, and over-
all speedup. In the unbounded resource case, a peak issue of 6 instructions per
cycle was achieved with the ideal, register-renamed, out-of-order execution
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Model Peak Issue IPC Speedup

IS 1 1.0 3.5
IX 4 1.7 5.8
IR 6 25 8.8
PS 1 0.3 1.0
PX 4 0.6 22
PR 6 0.9 32
BR 2 0.8 2.7

Table 5.2: Machine Performance

model. The in-order issue peak rate was 4 instructions. When resource con-
straints were applied, the peak issue rate dropped to 2 and the average IPC was
0.8 even with out-of-order execution. However, the speedup achieved from the
reduced stack bottlenecks was still 2.7x.

5.3 LTB Results

This section contains preliminary performance results for the DELFT-JAVA
Link Translation Buffer. We investigate a range of performance the LTB can
provide and then characterize the projected actual performance on an DELFT-
JAVA processor. For the results presented, we assume: 1) all instructions have
unit latency except for invocation instructions, 2) perfect branch prediction, 3)
perfect L1 and L2 caches, 4) a single-context DELFT-JAVA processor, and 5)
one instruction issued in-order per cycle.

We have built a C++ model which is capable of simulating JAVA programs
that do not make system calls. The model supports dynamic translation and
the Link Translation Buffer. It currently does not perform garbage collection
or simulate I/O. We have used a program that produces synthetic workloads
that can execute within our model. The workload generator allows the number
of objects that are created and invoked to be varied. It also supports adjust-
ing the dynamic instruction mix between invocation instructions and other in-
structions. Our results are based on the synthetic workloads generated by the
program.
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Figure 5.2: Application Speedup Versus Method Speedup

5.3.1 Available Performance

We have isolated all performance results to be relevant to a DELFT-JAVA pro-
cessor with and without a Link Translation Buffer. This allows us to compare
application speedup due to the LTB mechanism. Figure 5.2 shows applica-
tion speedup versus the percent of invocation instructions. This relationship
is based on Amdahl’s law [81]. Ideal speedup refers to code that has all in-
vocation instructions removed from the instruction stream (e.g. they execute
in zero time). As an example, if 50% of the dynamic instructions are invoca-
tion instructions, then an ideal DELFT-JAVA processor would accelerate the
application by 2x. In the above example, if we accelerate method invocation
by 10x, we anticipate an application speedup of about 1.8x.
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Figure 5.3: Application Speedup Versus Method Speedup

119



Not all applications have large opportunities for acceleration. Sun has shown
an instruction distribution with less than 10% of all instructions being invoca-
tions [47,52]. Figure 5.3 highlights a portion of Figure 5.2 and is intended to
represent a more typical distribution of invocations.

Work Objects Percent Ideal
Load Created Dynamic Instr Speedup
WL1 2048 40% 1.67
WL2 32 10% 1.11
WL3 512 20% 1.25
WL4 1024 30% 1.43

Table 5.3: Workload Characteristics

5.3.2 Workload Characterization

Since our simulator does not yet execute API or System calls, we have gen-
erated four synthetic workloads that are intended to represent a reasonable
range of JAVA programs. Table 5.3 shows the characteristics of the work-
loads. The first workload, WL1, creates many objects and has a high percent
of dynamic instructions which access the Link Translation Buffer. An exam-
ple of this type of program is object-oriented Tensor Fast Fourier Transforms
(FFTs) [45]. The Tensor program is distinguished by a complex type imple-
mented in JAVA. Many objects are created in this program. Additionally, many
instance methods are recursively invoked to perform the FFT.

The second workload, WL2, creates very few objects and contains very few
method invocations. This is intended to simulate code which may have been
ported from C. An example of this type of program is the Press FFTs [45]. A
key feature of this type of code is the lack of method invocation and the use of
static (e.g. class) method invocations where possible.

The final two workloads, WL3 and WL4, represent intermediate points be-
tween the extremes of workload WL1 and WL2. They may be typical of
object-oriented code that uses most of the features of the JAVA language.
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5.3.3 LTB Characterization

Figure 5.4 shows overall application speedup for the four workloads versus the
number of LTB entries. We assume a fully associative Link Translation Buffer
with greater than 100x method invocation speedup. In addition, we use a ran-
dom replacement policy. This allows us to minimize the effect of degenerate
loops which invoke more objects than can fit within a particular Link Trans-
lation Buffer working set. Furthermore, these should be considered optimistic
since the effect of I/0 and garbage collection is ignored. We also note that
these numbers include only the instructions of the simulated workload. Sun’s
JVM, for example, implements some of the JAVA Virtual Machine functions
in JAVA . This creates additional objects in their JVM. Our simulator is im-
plemented in C++ but is not fully compliant and does not yet execute system
calls. Therefore, our model does not create any additional objects.

For workload WL1, the largest performance gain is achieved. Since this work-
load had the most opportunity for method acceleration, the results improve to
nearly the ideal maximum if the LTB contains sufficient entries to hold the
most frequently used objects. Workload W2 achieves near optimal application
speedup as soon as the LTB is of sufficient size to hold the most frequently
used objects.

Figure 5.5 shows the Link Translation Buffer miss rates for the four workloads.
By miss rate, we mean the traditional definition - the probability of a reference
made to the buffer is not in the buffer [82].

Notably, workload WL4 is the only workload that requires more than 512 en-
tries. As Table 5.3 shows, 1024 objects are created for this workload. However,
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a large number of the objects are required for the working set. Workload WL1
has 2048 objects created but its working set of objects is much smaller and
therefore achieves lower miss rates at 256 LTB entries.

5.3.4 LTB Conclusions

In most Instruction Set Architectures, it is not possible to directly encode high-
level operations in a single instruction. In particular, late binding method in-
vocation is generally not supported. In this case, a C++ compiler would be
required to emit a sequence of instructions that would point to a dispatch ta-
ble based on the object calling the function. The dispatch tables are set up so
that the offset of the function is the same regardless of the actual class. How-
ever, at the instruction level, because a sequence of memory and arithmetic
operations is required, the information concerning the high-level operation is
lost. Therefore, it is difficult for a traditional processor to optimize this oper-
ation. Because the DELFT-JAVA processor architecture retains the high-level
information, it is possible to optimize for dynamic operations.

In conclusion, we have presented the operation of the DELFT-JAVA Link
Translation Buffer. The purpose of this buffer is to accelerate JAVA’s dynamic
linking capability. This buffer is architecturally transparent but requires In-
struction Set support for dynamic method invocation. If the target architecture
contains these types of instructions, this technique may accelerate the perfor-
mance of a JAVA application from 1.1x to 1.5x depending upon the number of
objects utilized. The DELFT-JAVA processor architecture contains instruction
set support for dynamic method invocation and may utilize a Link Translation
Buffer to accelerate JAVA applications.
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5.4 Java FFT Results

In this section we present preliminary results for a 32-bit full complex 4-point
FFT kernel and then extend this analysis to a number of JVMs. The results
are based on a C++ model of the DELFT-JAVA processor and represent figures
for preresolved classes with single-cycle execution units. The FFT is compiled
using Sun’s javac -O. The FFT algorithm is based on Pease’s tensor product
decomposition[83].

For a single-issue, single context, inorder processor, 226 cycles are required.
For a single-issue, four context, inorder processor, 84 cycles are required when
amortized over 4 concurrent FFT’s with adequate execution units. Because the
javac compiler is conservative in optimizing loads and stores, a number of in-
structions are generated that could be further optimized. Because we are accel-
erating Java programs produced directly from a Java compiler, we do not use
any of the multimedia datatypes which would enhance the FFT performance.
We anticipate with better optimizations and multiple issue per thread, the FFT
performance of the DELFT-JAVA processor will improve by 10x based on a
similar algorithm used in [84].

We now analyze the impact of C versus Java programming of FFT kernels. In
the above analysis, the DELFT-JAVA processor’s performance on an I direct
implementation was described. We now extend this to generalized FFTs and
compare the perfromance of various JVMs and corresponding direct execution
C performance.

F, = direct implementation (5.1
Fi¢ = Pi%I,® F)PST[S(I, ® Fy)PL° (5.2)
Fou = P8I, ® Fig)PATI (11g @ Fy) PSS (5.3)

Fose = PH(I) @ Foq) PPST0 (Igy @ Fy) PE° (5.4)

Fioos = P215(1)34(I4 ® F256)P41024T41024(IQ56 X F4)P215?g4 (5.5)

All experiments were conducted using a 300MHz Sun Ultra-Sparc II with
128MB of memory running Solaris 2.6. For all experiments, multiple itera-
tions were performed to minimize start-up effects. The average time is re-
ported based on a time-of-day function in a root window at maximum priority
in an otherwise nearly idle system. We measure the execution time of the al-
gorithms and not the time to load the interpreters or the time to compile the C
code.
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The first experiment investigates a traditional FFT algorithm from Press[85].
The C code is compiled using gcc 2.7.2. Results are presented for unoptimized
and -O3 optimized execution. The C program was then hand-translated into
an equivalent Java program. The resulting code does not take advantage of
most of the Java programming constructs. It is essentially the same C code
with a Java class wrapper. Results are presented for -O optimized Java code.
There were no practical differences between unoptimized and -O optimized
Java results. The Matlab numbers are the times for the built-in FFT routines.
The Sun Solaris 2.6 results are for the built-in Java interpreter with JIT that
comes standard as part of the Solaris 2.6 installation. The Sun JDK 1.1.4 results
are reported for comparison. The Kaffe 0.9.2 just-in-time compiler results are
also presented for comparison . The Toba[42] results are for the 1.0b6 beta
release. Toba off-line translates Java bytecodes to C code. The C code was
then compiled with gcc 2.7.2 with -O3 optimization.
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Figure 5.6: Traditional FFT Speedup

Figure 5.6 and Figure 5.7 shows that the best performance in all cases was
for optimized C code. A notable point is that the Sun Solaris 2.6 platform
came within 20% of the optimized C code for the smallest FFT but diverged to
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Figure 5.7: Relative Traditional FFT Speedup

about 3 times slower for larger FFTs. This is a significant improvement over
the JDK 1.1.4 platform. The new results improve Java’s performance up to
12 times versus the JDK 1.1.4. In addition, the Solaris 2.6 Java platform is
comparable in performance to the Toba off-line compiler which produced very
impressive results. Matlab’s built-in FFT libraries are also very competitive
with optimized C - particularly as the FFT size increases. The Kaffe JIT is
competitive when compared to the JDK 1.1.4 but does not perform as well as
the Sun Solaris 2.6 platform.

The second experiment investigates the effects on performance when many of
the features of the Java language are involved. Unlike the code of the first ex-
periment, the Java Tensor library makes use of many of the Java programming
constructs. In particular, inherited class objects are used and the code is reen-
trant to allow for multithreaded subroutines. Because of this, many objects are
created which require garbage collection.

Figure 5.8 and Figure 5.9 shows the results of the Tensor algebra library for
Matlab and Java. In all cases, the Toba compiler performs better than any
other alternative. Most interestingly, the performance difference between the
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Solaris 2.6 platform and the JDK 1.1.4 are within 20% for all cases. This is
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significantly different than the 12x improvement noted in the first experiment.
We postulate that the JIT compiler may not have been able to perform as many
optimizations due to the large number of objects created. A profile of each
execution stream showed computations to be the predominant time factor in the
first experiment while object creation and method invocation were much larger
percentages of the execution time for the second experiment. Toba, on the
other hand, may take as long as necessary to compile (although our experience
is that it is not much more than a few minutes) and therefore produces more
optimized code. Also, it may not be proper to compare these FFT results
with the results presented in Figure 5.6 and Figure 5.7. The tensor libraries
were written to assist partitioning of parallel code onto multiprocessors and
multithreaded processors and not particularly for absolute performance on a
uni-processor.

We have compared FFT performance in Java, Matlab, and C. We have found
that Java may offer sufficient performance for FFTs. However, when compared
against native C code, the best Java off-line translation and JIT’s may still ex-
ecute 2 to 3 times slower than an equivalent algorithm written in C. However,
Sun’s latest JVMs have significantly closed the gap between native C perfor-
mance and Java. The JVM shipped as part of the Solaris 2.6 operating system is
nearly 10 times more efficient on C-like Java code than the JDK 1.1.4 and pro-
duces results within 20% to 60% of optimized C for small FFTs. The Kaffe JIT
runs about 2 to 5 times slower than the interpreted code for the tensor model.
We attribute this to the large number of objects created and the requirement for
an efficient garbage collector. We also note that the state of Java compilation
is relatively immature compared to C compilers. As Java compilers become
more sophisticated, the gap may narrow further. Furthermore, direct compila-
tion of Java to native machine code may provide performance closely rivaling
C. In addition, raw performance is not the only metric influencing the success
of a product. For example, Matlab has an exceptionally rich library of efficient
signal processing routines. The ease with which these are integrated with other
Matlab programs makes Matlab an excellent DSP development environment.
In addition, the number of lines of code written for the Matlab program was
less than for Java due to the built-in Complex type. Finally, we conclude that
for applications that make predominant use of Java, application specific pro-
cessors may accelerate Java execution to be at least on par with and potentially
better than C code execution on a traditional processor. Depending upon pa-
rameters chosen (e.g. issue rates, clock speed, and functional unit latencies),
we have estimated that a DELFT-JAVA processor can also execute in compara-
ble time relative to native C code. However, at this point our models do not
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take into account I/O or garbage collection.

5.5 Garbage Collection Results

After constructing a reference counting collector for the Kaffe JVM to instru-
ment the Java language and establishing the most usual pattern of dynamic
memory allocation, we used the results of our experiments in implementing
different garbage collectors for the Kaffe JVM. In particular we developed a
copy collector and the framework for a generational collector. We then com-
pared their performance with the performance of the original mark and sweep
collector.

5.5.1 Copy Collector Experiment

In one of the experiments we implemented a copy collector. The original col-
lector of the Kaffe JVM is a mark and sweep conservative collector. It is used
to collect both the Java objects when they become garbage (e.g. objects cre-
ated as result of interpreting the Java user program) and all other dynamically
allocated objects used by the internal structures of the Kaffe virtual machine.

Theoretically, there are a few advantages a copy collector has over a mark and
sweep collector:

e lower allocation costs: Dynamic memory is allocated much simpler and
only requires incrementing the value of a pointer (the free pointer [73]).
The out of space check is also a pointer comparison that simply checks
if by incrementing the free pointer the bounds of the available free space
are exceeded.

e less fragmentation: By successively copying the surviving objects, a
copy collector also implicitly performs compaction. A mark and sweep
collector only picks up the garbage among the live objects.

e reduced complexity: The theoretical time complexity of a copy collec-
tion algorithm is proportional to the memory occupied by the live ob-
jects in the heap at the moment the garbage collection occurs. This is
better than that of a mark and sweep collection algorithm which is pro-
portional to the heap memory dimension. The mark and sweep collector
must touch all the memory in its sweep phase. The prior complexity is
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lower because only a part of the heap memory is occupied by live ob-
jects. We studied this and found that in fact this advantage does not hold
in practice.

A copy collector is a collector that moves objects in the heap memory. Thus,
a copy collector needs to know exactly whether a memory location contains a
pointer or a non-pointer value. If this distinction can not be made accurately, a
copy collector will treat an object that is not a pointer as a pointer and wrongly
update the pointer-holding location to reflect the hypothetical move of the ob-
ject. The location will then no longer hold valid data. Conversely, if a location
contains a pointer-value but it is not recognized as such by the collector, when
the object moves, the location will not be updated and will continue to point
to the old copy that is now an invalid object. A copy collector can only be an
accurate collector (in contrast to a conservative one).

The original garbage collector of the Kaffe JVM takes care of both types of
dynamically allocated objects, i.e., Java objects and objects internally used by
the Kaffe JVM. The latter case is handled through normal C-pointers and there
is no way of using a non-conservative collector since it is not possible to accu-
rately make the distinction between allocations containing a valid reference to
an object and a location containing an integer which happens to hold an integer
value which resembles to a valid reference. That is why the garbage collector
for the Kaffe JVM is a conservative one.

Java Stack (corresponding to a thread)

Operand
Stack

Local variables .
Java Stackframe 2

(corresponding to method 2
invocation within the thread)

Operand
Stack

Local variables

Java Stackframe 1

(corresponding to method 1
invocation within the thread)

Figure 5.10: A thread’s stack in Java
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We wrote an accurate garbage collector for the Kaffe JVM by separating garbage
collection for Java objects, for which accurate collection is possible, from the
garbage collection for other objects used internally by the Kaffe JVM. We ac-
complished this by separating the Java stack (containing the Java frames which
hold the locals and the operand stack for a method invocation) from the stack
used by the Kaffe JVM. Practically, we chained together the Java stack frames
contained in the frames on the system stack. A Java stack is depicted in Figure
5.10.

As the content of the locations in the Java stack dynamically changes with the
interpretation of the Java program, we also needed a parallel structure to the
Java stack frames to keep track of what locations contained pointers at any
moment garbage collection could occur. This is similar to the one used in
the reference counting garbage collector for the Kaffe JVM. We also let the
original mark and sweep collector run so that garbage collection for the non-
Java objects was completed. This was so our collector did not have to account
for them. However, we made a clear distinction between requests of allocation
for user Java-objects and the other objects. We treated each of them separately
so its corresponding collector was responsible for the appropriate objects.

B The Allocator: We redirected all the dynamic memory request coming as
result of interpreting the user bytecodes from the original allocator to our al-
locator. This is done from each of the four JVM instructions used to create
Java objects: NEW, NEWARRAY, ANEWARRAY, MULTIANEWARRAY.
We used a simple allocation algorithm from [75] and implemented it by the
cc heap malloc() function.

The memory allocator first checks to see if enough space is available to satisfy
the memory allocation request. If enough space is available it allocates the
requested space by simply incrementing the freePointer and returning a user
pointer to the allocated memory (the object reference). Otherwise it initiates
a garbage collection cycle. After this garbage collection, if enough space is
available the request is satisfied. Else, the allocator fails, returns 0, and the
JVM will raise an Out Of Memory Exception. Additional space is reserved for
the object header.

The allocator manages from the whole available memory one half of it at a
time. It knows that it can always allocate memory contained between a freeP-
ointer and the topOfSpace. These pointers are initially set along with the other
pointers used by the garbage collector and are updated after every garbage col-
lection cycle to point to new locations in the new memory space containing the
live objects.
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B The Collector: The copying garbage collector is invoked directly by invok-
ing System.gc() from a Java program. It is also invoked when an allocation
request fails because there is not enough free space. It is similar to the inter-
face of the mark and sweep collector but contains two new functions: copyOb-
ject() which will be used for copying live objects from the current semispace
(fromSpace) to the new semispace (toSpace) and the function used to walk
memory CCwalkGC Memory().

Each object type is registered with the copying garbage collector. For each
object type there is a correspondent walking function that is registered when
the Kaffe JVM starts in the gcFuncs.c file in the cclnitCollector() function. The
walking functions are used in the copy phase of the garbage collection. The
correct function is chosen by the collector according to the type of object being
walked so that pointers contained in the object are properly updated and the
objects pointed from within this object are also registered as being alive. The
walk function for String objects just copies the array of chars which represent
the String.

With the previously mentioned functional support we developed a four phase
copying collector. In phase 1, the CCstartGC() function tells the collector to
start the copy (save) of live objects from the current semispace (fromSpace)
to the other semispace (toSpace). At the end of the garbage collection, all the
live objects will be moved in the toSpace and all the accessible references to
these objects will be updated to point to the new locations of the objects. The
collector first stops the other working threads for the interval of time in which
it will perform garbage collection. Then objects that were found dead already
at a previous collection but still need to be finalized are copied. Otherwise
these objects would get lost. If it is the case (which is characteristic of the
generational copying collector) that other objects registered explicitly are also
treated as roots, these objects are then copied. In our implementation, roots
are considered all the object to which references exists in the Java stack that
we originally separated from the system stack. The information as to whether
a location in the Java stack frame is a pointer is available in the structure we
maintain parallel to the Java stack frames.

After phase 1 is completed all the copied objects are scanned (walked) in phase
2. This determines whether other live objects exist. We then save them into
the new semispace and update references within the copied live objects. This
second phase ends when all the live objects have been scanned (when the scan-
Pointer catches up with the newFreePointer). A forwarding pointer is set in the
old object copy (in the tospace) at the time the object is copied into fromspace.
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The object references encountered during scanning are tested in order to see
whether the object was already forwarded (i.e. copied) or not. If the object is
already forwarded, then the forwarding pointer is written instead of the refer-
ence to the old object. If the object is not forwarded then it needs to be copied
and the forwarding pointer must be set to point to the new copy. Since the
number of live objects is limited, it is ensured that at the end of this phase all
the accessible references to live objects will be updated.

All objects remaining in the old semispace and not being copied to the new one
are dead. Before they can be reclaimed, a scanning of the whole old semispace
is needed in order to find dead objects that need finalization. This is performed
in phase 3. These are Java objects which request special actions to be taken
after they become garbage and before they are effectively destroyed. The Java
Language Specification guarantees that these actions will be executed before
these objects needing finalizing are effectively reclaimed[1]. This third phase
has complexity O(size of the useful heap). This means that the entire garbage
collection process will have at least this complexity. This is nearly the same
as the complexity of the sweep phase of a mark and sweep collector. Thus,
the theoretical advantage of copy collection over mark and sweep collection is
minimized due to the objects’ finalizing requirement. This applies generally
to all languages in which object finalization is supported. All objects needing
finalization are also saved in the new semispace. Even if they are dead, their
finalization methods are executed just prior their effective destruction. This
requires that they be kept alive untill the finalizer executes the finalize method.
The resuscitation of the objects needing finalizing can also bring to life other
objects. This requires a new scan of the resuscitated objects untill the scan-
Pointer catches up again with the newFreePointer. After the garbage collection
completes, if there are objects needing finalizing, the finalizer is executed. The
user program can then continue.

B Results: We first compare the original Kaffe Java Virtual Machine and the
modified Virtual Machine measuring the performance of the garbage collec-
tion. Our copy collector can allocate memory fast and efficiently since it only
needs to make a pointer comparison and increment when it serves an allocation
request. It also avoids fragmentation since compaction of the heap is intrinsic
to a copy collector. However, some overhead is introduced by maintaining a
structure that provides the garbage collector the layout of the Java stack (e.g.
a stack map containing which locations are pointers). This is likely to be sig-
nificant as many instructions in the JVM (e.g. ALOAD, ASTORE, NEW) are
used extensively and imply the updating of this stack map structure. Reduc-
tion of the copy collector overhead can be achieved if the stack map update
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can be completely or partially implemented in hardware as is the case for the
DELFT-JAVA processor.

We used some of the benchmarks from the JVMspec98 suite to evaluate the
performance of our collector. The time performance of the modified Copy
Collected Kaffe JVM (CC Kaffe JVM) is very close to the performance of the
original Mark and Sweep Collected Kaffe JVM (MS Kaffe JVM). For example,
in the case of the jess benchmark, the original finished in 3576 seconds while
our modified virtual machine completed in 3712. The relative difference is
3%.

For the mpegaudio benchmark which allocates relatively little dynamic mem-
ory, our modified CC Kaffe JVM performed more efficiently. It took it 3269
seconds to complete compared to 5186 seconds how long the original MS
Kaffe JVM. Our modified machine performed 36% better in terms of time
performance. Only one collection was needed for the modified JVM. No col-
lections were needed for the original JVM. The better time performance of the
CC Kaffe JVM in this case is due to the faster memory allocator.

Callaet on FUmBS

Figure 5.11: Heap occupancy in the jess benchmark, when interpreted by the
MS Kaffe JVM with a heap of 5 Megabytes

133



Heap oooupsnoy
berschimarik = pess 00
heapsize = 54
colactar = ol copy collsotor

Simm of B cocupied heap
{Kiksryinai

BRE

FRIAE

BE¥SE
Callact

g

i E
2T

Figure 5.12: Heap occupancy in the jess benchmark, when interpreted by the
CC Kaffe JVM with a heap of 5 Megabytes

The CC Kaffe JVM in some cases also performed better in terms of memory.
In the jess benchmark program the heap used by the CC Kaffe JVM was 5120
K (both semispaces) and the maximum heap occupancy (the total amount of
memory effective occupied) was 1420K. This means our modified machine
could run in a heap memory space of at least 1420x2=2840K (since there are
two semispaces). The memory occupied by the other non-Java objects that was
not collected by our copy collector was at most 1400 K. The original machine
used a total heap of 6144K and had the maximum heap occupancy of 5039K.
This means that the original required a memory space of at least 5S039K. If we
compare this with the memory needed in our case, even adding the memory
used by the non-Java objects (2840+1400 = 4240K) our collector required 15%
less memory for the jess benchmark. The dynamic evolution of the effective
jess heap dimension is presented in Figures 5.11 and Figure 5.12 for the CC
Kaffe JVM.

Similar results were obtained for a heap size of 10 Megabytes as shown in Fig-
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Figure 5.13: Heap occupancy in the jess benchmark, when interpreted by the
MS Kaffe JVM with a heap of 10 Megabytes

ure 5.13 and Figure 5.14. As in the case of the previous copy collector results,
the memory occupied by other dynamically allocated objects (needed for the
internal use of the JVM) is being taken into account. The maximum occu-
pied memory by the Java objects in the copy collected heap was 2817 K. This
implies that the copy collected heap could have been at most 2817x2=5634K.
Furthermore, adding the total dynamic memory in the mark and sweep col-
lected heap for the internal JVM objects(981K), we obtain a total memory
requirement of 5634+981=6615K. The maximum heap occupancy in the case
of the original mark and sweep collector was of 9621K. Thus, more then 30%
more space was required by the JVM using only the accurate copy collector.

5.5.2 Generational Collector Experiment

The results presented in the previous section have showed that generational
garbage collection for Java is meaningful because most Java objects live a
very short time. Only a small percentage of Java objects survive multiple col-
lections. Thus, we modified the previous garbage collector to implement a
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Figure 5.14: Heap occupancy in the jess benchmark, when interpreted by the
CC Kaffe JVM with a heap of 10 Megabytes

generational collector. In our approach we have only two generations: the
younger generation (YG) and the older generation (OG). This partitioning was
clearly indicated by the lifetime analysis of the Java objects.

To fully benefit from generational garbage collection it must be possible to
collect the younger generation(s) without collecting the older one(s). Since
liveness of data is a global property[86], old-memory must be taken into ac-
count. For example, if there is a pointer from old memory to new memory,
that pointer must be found at collection time and used as one of the roots of
the traversal'.

Ensuring that the collector can find pointers into young generation(s) requires
the support similar to the write barrier of an incremental collector. Each po-
tential pointer store must be accompanied by some extra-bookkeeping in case
an intergenerational (from old to young) pointer is being created. Using these
inter-generational pointers as roots ensures that all reachable objects in the

!Otherwise, an object that is live may not be properly preserved by the garbage collector.
Additionally, the pointer may not be updated appropriately when the object is moved. Either
event destroys the integrity and consistency of data structures in the heap.
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younger generation are accessible by the collector. In the case of a copying
collector, it also ensures that all pointers to moved objects are appropriately
updated.

When implemented in software, write-barriers are expensive in terms of time-
penalty. The interpreter needs to trap any pointer store and execute extra ac-
tions each time an old-to-young inter-generational pointer is created. As hard-
ware support from a DELFT-JAVA processor is to be expected for write-barrier
implementation, we have not implemented soft write-barriers for this study.
However, in order to take into consideration the old-to-young intergenerational
pointers, we had to consider all the pointers in the older generation as roots for
the garbage collection of the young generation.

The age of the objects is measured as the number of garbage collections they
have survived. Young objects are promoted to the OG when they reach the run-
time configurable parameter PROMOTE AGE. An age field was added in the
header of the object for the generational collection. The age field was incre-
mented every time the object survived a copy collection in the ccCopyObject()
function.

When an object reach the PROMOTE AGE (the age at which it is consid-
ered old enough to not die soon) the object is moved to a so-called stable set.
This stable set is kept apart from the heap where “younger” objects reside.
The objects contained in it are considered alive untill a major collection takes
place. They will then be treated again as normal objects and will be reclaimed
if they become garbage. Since they are considered a priori live, in our im-
plementation the old objects are registered with the collector as roots using
cc add ref(newObjp) for the minor collections. Conceptually, classes belong
also to the stable set when no class garbage collection is explicitly requested.
Objects are considered live and are not subject to garbage collection even if
they may become dead. The user that has explicitly requested no class garbage
collection knows that they are very likely not to be dead or it is possibly more
convenient to treat them as being always alive. In much the same manner we
first treat old enough objects as alive knowing that it is very likely that they
will not be dead at the next minor collection.

These objects will still be scanned when a minor collection takes place but
they will not be repeatedly copied from one semispace to the other. Copying
objects can be very time consuming especially if objects are large. If objects
prove to live long there is no need to copy them. The above approach should
perform better than the non-generational one.

In our implementation when an object is promoted, space for it is reserved from

137



the original mark and sweep collector gc malloc(size, CC GET FUNCS(header).
This collector is still running for all the non-Java objects. As this is a non-
moving collector our goal is achieved.

B Results: While providing the framework for fully generational collection,
our approach does not fully benefit from the generational approach. When
collecting the young generation, our collector must also scan all the pointers
in the older generation in order to find and take into consideration the old-
to-young intergenerational pointer updates. However, the repeated copying of
old objects is avoided by keeping the old generation in a memory space man-
aged by the non-moving mark and sweep collector. The younger generation
is copy collected and the heap is continually compacted. However, our anal-
ysis showed that the time saved by avoiding irrelevant moves of older object
was not important. Therefore, the simple copy-collector and the copy-collector
using two generations had virtually the same time-performance.

Furthermore, when using a generational garbage collector a number of trade-
offs are possible between memory and time performance. We illustrated these
possible trade-offs by adjusting the PROMOTE AGE of the objects. We fur-
ther presented the results of our experiments obtained on the jess benchmark
from the jvmSPEC98 benchmarks suite. The interpreting of the benchmarks
by the non-generational CC Kaffe JVM requested 467 garbage collections.
Thus, when run with a PROMOTE AGE of greater than or equal to 467, the
generational collector turns into a non-generational one. We provided results
of varying the PROMOTE AGE between 0 and 467 and we illustrated the pos-
sible trade-offs.

As a generational garbage collector is based on the assumption that the pro-
moted objects are unlikely to die soon, it is conservative’. In our experiments
we found that promoted objects which become garbage must be kept alive for
finalization. This in turn keeps other objects alive that would have been oth-
erwise reclaimed. In our case the grade of conservativeness was given by the
objects’ promote age; the greater the promote age, the more conservative the
collector. The more conservative the collector, the more memory the system
that uses the garbage collector needs. This can be observed in Figure 5.15
which depicts the maximum amount of memory needed for the YG (young

The term conservate as applied to garbage collection refers to the property of a garbage
collector to make “conservative” approximations about object liveness.
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Figure 5.15: Young heap peak size in the jess benchmark

heap peak size). The young heap peak size is diminishing with growing pro-
mote age.

As is evident in Figure 5.15, the biggest young heap is needed when objects
are promoted as soon as possible (i.e. after they have survived one garbage
collection). The least heap memory required for young object is when no ob-
jects are promoted. This correspond to a non-generational collector. However,
as the Figure 5.15 suggests, an amount of memory not far from the minimum
is achievable if a reasonably small promote age is used. This provides a conve-
nient trade-off between execution time and memory consumption. The advan-
tage of a relatively small promote age is that the number of objects the garbage
collector has to deal with is smaller since more objects are promoted to the
OG.

Figure 5.16 depicts the sum of the sizes of the promoted objects. The less the
promote age is, the more objects are promoted. After a pattern similar to that of
Figure 5.15, at a reasonably small age, the total amount of promoted memory

139



R L e )

EE -

E
{

E

Eraga
(X
LI TN TR T ¢ e

EEE T e

T L e L PR D ]
w o
" B 3

Figure 5.16: Total amount of promoted memory jess benchmark

is close to the smallest promoted memory. Thus, if a reasonably small age is
used, a relatively small heap for the older objects is needed.

The number of garbage collections performed by the modified JVM is repre-
sented in Figure 5.17 as a function of the promote age. When the promote
age is small, the objects are promoted faster and the young objects’ heap fills
more slowly. Thus, a smaller number of collections is required. If the promote
age is large, old objects remain longer in the heap and the heap becomes full
faster. Thus, more collections are required. The dependency of promote age
and number of minor collections required is almost linear as Figure 5.17 sug-
gests. However, the heap size required diminishes drastically with the promote
age as Figure 5.15 shows. This suggests that even if a greater promote age
requires a greater number of garbage collections, the total time required for
garbage collection is likely to be less even for a greater promote age. In our
implementation, time-performance characteristics remain nearly the same for
different promote ages. This is because even if the young objects’ heap dimen-
sion decreases with the promote age, memory needs to be scanned for pointers
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Figure 5.17: Number of collections required for different promote ages in the
jess benchmark

by the collector in order to find old-to-young intergenerational pointers.

5.6 Conclusions

In this chapter we described the results of a number of experiments. We first
described a DSP vector multiply. We compared this for a number of machines
and presented relative performance improvement. We showed that when com-
pared with a single-issue pipelined stack machine, a significant speedup can be
realized. We also showed that out-of-order execution machines are particularly
attractive for stack-based Java code. This is due in part to the large number of
dependencies generated by stack references. A reasonable out-of-order imple-
mentation may yield a performance improvement of 2.7x in comparison with
a single-issue stack model.

We also showed that a Link Translation Buffer can be effective in accelerating
Java dynamic method invocation. We assumed a 100x speedup for resolved
references that are loaded into the LTB cache. This is reasonable assumption
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because Java classes must be resolved in a complicated manner which involves
multiple traversals through the Constant Pool. Using this assumption, a pro-
gram with 20% dynamic references can experience a 25% speedup under fully
associative cache parameters.

We compared the performance of a number of Java Virtual Machines using a
tensor-based FFT library that we developed. We did this to compare the claim
that Java-based programs are significantly slower than C-based programs. The
Java-optimized tensor library competed attractively with C-based counterparts.
It was able to achieve performance within 30% for some kernels.

We have shown that accurate garbage collection for Java is possible if Java ob-
jects are separated from other dynamically allocated objects used internally by
the interpreting JVM. The copy collector implementation showed that a JVM
using a copying garbage collector can allocate dynamic memory much faster
than a JVM that uses a mark and sweep collector. Fast dynamic memory al-
location is especially important in interpreting programs which allocate many
small objects. An accurate collector implementation for Java requires that at
the moments a garbage collection cycle can occur a stack map is available in
order to tell the collector which locations on the Java stack are pointers. The
maintaining of a stack map structure incurs much overhead over the execution
of the interpreting JVM. Therefore a significant time-performance improve-
ment is to be expected if this could be partially or totally implemented in hard-
ware. A generational garbage collector for Java can take advantage of the Java
objects tendency to die relatively very young. If a promoting policy is used in
which the age of an object is measured as the number of collections to which it
has survived, different memory-execution time trade-offs could be possible by
simply adjusting the promote age. However, in order to take full advantage of
the generational hypothesis, write-barriers needed for generational collections
need to be efficiently implemented. Significant performance improvement is
therefore expected if they are implemented in hardware.

In the next chapter we summarize all of our work and comment on open prob-
lems.
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Science per se has little to do with politics, its results and how
to use them definitely a lot. — Stamatis Vassiliadis.

Chapter 6

Conclusions

N this chapter we summarize the results of our study. We first consid-

ered the JAVA language and its characteristics. As indicated in Chapter

1, JAVA is a C++-like programming language designed for general-
purpose object-oriented programming[1]. The language includes a number of
useful programming features including programmer defined parallelism sup-
port in the form of threads with synchronization, strong typing, garbage col-
lection, classes, inheritance, and dynamic linking. The JAVA Virtual Machine
(JVM) is a stack based instruction set designed to efficiently transport pro-
grams across the Internet and allow register poor processors to efficiently exe-
cute JAVA bytecode[2]. Chapter 1 described various methods of implementing
a JAVA Virtual Machine. Both hardware and software strategies have been em-
ployed. The earliest JVMs were implemented as interpreters. In this method
a software program emulates the JAVA Virtual Machine. Just-in-time compila-
tion is a technique where the JAVA program is compiled just prior to execution
and the resulting native code is executed. Because of the overhead and latency
of compiling every method, flash compilation techniques evolved. We de-
scribed this hybrid approach where a highly optimizing just-in-time compiler
is integrated into the runtime environment. The compiler only optimizes loops
where a performance gain is likely. Offline compilers were also described. In
this technique the entire JAVA program is translated into native code prior to
execution. This technique requires all methods to be available at compilation
time. Chapter 1 also introduced the hardware technique of direct execution. At
the time we began our investigation (circa 1996), the most prominent project
was Sun’s picoJava [47-49]. Since this time, JAVA direct execution has ex-
ploded. Chapter 1 also reviewed some of the more recent direct execution
projects. Finally, we concluded chapter 1 with a list of open issues that we
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desired to investigate.

Chapter 2 was dedicated to providing a formal architectural description of the
JAVA Virtual Machine. JVM instructions are not confined to a fixed length
however all of the opcodes in the JAVA Virtual Machine are 8-bits[3]. This al-
lows for efficient decoding of instructions while not requiring all instructions
to be 32-bits or longer. Generally speaking, the JAVA language supports many
of the basic data representation types'. In contrast to C, their values are not
implementation dependent[59]. In addition, the JAVA language also supports
char which is a 16-bit unsigned Unicode character and a true boolear?
for relational and logical operators. While JAVA does not allow operations
on C-style pointers, it does have the concept of a reference type. There are
three kinds: class, interface, and array types. These objects are
created on a dynamically allocated heap. Multiple references may exist to
the same object. The reference values are handles (e.g. pointers) to the ob-
ject. The distinction is that a reference can not be operated on arithmetically
as is often done in C-style pointers. Operations in the JAVA Virtual Machine
are strongly typed. The 8-bit opcode imposes the availability of only 256 op-
codes, this results in the tradeoff that nearly all operations are performed as
integers or IEEE-754 floating point. An interesting JAVA definition is that
the JAVA Virtual Machine does not indicate overflow or underflow during
operations on integer data types[3]. There are also load and store instruc-
tions which move values from memory locations to the operand stack in a very
RISC-like manner. In addition to standard operations, there is direct support
for method invocation, synchronization, exceptions, and arrays. Of the more
unusual instructions, the iinc is a memory-to-memory instruction that incre-
ments the contents of a local variable location by a signed constant. There are
two variable length instructions’ - tableswitch and lookupswitch.
In Chapter 2, we gave a brief overview of the JAVA Virtual Machine architec-
ture. We described how stack machines operate in general and also how the
stack-based JAVA Virtual Machine operates. We showed how a simple JAVA
program is translated to JAVA Virtual Machine bytecode and how it executes.
We gave an architectural overview of the JAVA Virtual Machine. We described
the storage organization and each of the spaces the JAVA Virtual Machine can

1e.g. byte, short, int, long, float, and double.

“Note that while the JAVA language supports a boolean datatype, the JAVA Virtual Ma-
chine does not support it.

3This is in contrast with instructions of variable length where the length of the instruction is
fixed but variable.
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access. We described how this memory is accessed and how index arithmetic
is computed. We also described all JAVA Virtual Machine operations and the
data upon which they operate. Finally, we described how instructions execute
and their control structures. This chapter gave the background for the work
which we described in following chapters where we showed how our RISC-
based architecture can efficiently translate JAVA Virtual Machine instructions
into our instruction set. Chapter 2 also laid the foundation to understand why
certain techniques which we have developed accelerate JAVA execution. The
following chapters explained in detail the techniques we have developed as a
result of our research.

Chapter 3 was dedicated to the description of the DELFT-JAVA architecture -
a 32-bit RISC-based architecture. More specifically we described how to ac-
celerate JAVA execution and provided details of the DELFT-JAVA architecture
for executing JAVA Virtual Machine bytecode. Before we began our discus-
sion we briefly described the design philosophy underlying our approach. The
basic architecture implemented a Media Processor with Signal Processing ca-
pabilities. The architecture took the perspective that to maximally accelerate
a compiled application, the machine language should accurately reflect the
type of operations the compiler specified. Except where JAVA Virtual Machine
operations were unusually complex, we preferred to allow the compiler to op-
timize directly to the implementation. This was independent of any particular
organization. The architecture was then a superset of the JAVA Virtual Ma-
chine and provided operations that were necessary for system execution (e.g.
I/O, supervision, etc.). Rather than just supporting the JAVA Virtual Machine,
the architecture took a more general purpose approach. While it continued to
support JAVA Virtual Machine specific constructs, it also was intended to be
programmed from a number of additional high-level languages including C
and C++. Chapter 2 also introduced dynamic instruction translation, a new
approach to JAVA hardware acceleration, which was used in the DELFT-JAVA
processor. In hardware assisted dynamic translation, JAVA Virtual Machine
instructions were translated on-the-fly into the DELFT-JAVA instruction set.
The hardware requirements to perform this translation was not excessive. In
general, we dynamically translated about 80 percent of JAVA Virtual Machine
instructions. Consequently, support for some JAVA language constructs were
also incorporated into the processor’s ISA. Without the special instruction sup-
port, many cycles may be required to emulate the operations. A key point
of our architecture was introduced - where it is easy to dynamically translate
JAVA Virtual Machine bytecode into DELFT-JAVA instructions, no instruction
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set support is provided. For those JAVA Virtual Machine bytecode which are
highly complex, instruction set support is provided to allow acceleration of the
function through microarchitectural support. This technique allowed applica-
tion level parallelism inherent in the JAVA language to be efficiently utilized
as instruction level parallelism while providing support for other common pro-
gramming languages such as C/C++. In addition to the basic RISC design
philosophy, there were some key organization structures that we deemed ap-
propriate to provide architectural support for. In particular, we supported the
following important categories: 1) Synchronization for multithreaded organi-
zations, 2) garbage collection, 3) array bounds checking, 4) real-time caches,
5) multiple machines which can time-share the same datapath (e.g. the JAVA
Virtual Machine and Media Processing functions) and 6) vector operations.

Chapter 4 was dedicated to describing the organization of our processor. We in-
troduced microarchitectural support for dynamic translation, dynamic linking,
and provided mechanisms for multiple thread units, multiple instruction issue,
dependency collapsing, and other features common to modern superscalar pro-
cessors. These techniques took advantage of key JAVA language properties to
transparently extract parallelism without programmer intervention. First we
described our hardware support for JAVA Virtual Machine dynamic translation.
We described how indirect access to the register file provides the basic mech-
anism required to dynamically translate JAVA Virtual Machine instructions.
Then we provided an example of the translation process. Next we described
special hardware features we incorporated to assist in translation. Finally, we
listed instructions which are not translated and have special architectural sup-
port. Since JAVA translation produced a large number of instruction depen-
dencies, superscalar techniques effectively accelerate JAVA execution. Using
a form of hardware register allocation, we transformed stack bottlenecks into
pipeline dependencies which are later removed using register renaming and
interlock collapsing arithmetic units. Second, we described how we support
dynamic method invocation. We provided background on dynamic method
invocation. Next we described the Link Translation Buffer (LTB) and its op-
eration including enhancements which can be made to the LTB. Finally, we
described our concurrent multithreaded organization and how multiple thread
units and multiple instruction issue efficiently accelerate JAVA program execu-
tion. We also briefly described how the indirect registers and Link Translation
Buffer operated within the description of the microarchitecture. We then de-
scribed some features of the architecture that are not primarily for JAVA execu-
tion but allow speedup of native methods. Finally we described some related
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work on multithreaded architectures and presented some conclusions.

In Chapter 5 we described the results of a number of experiments. We first
described a DSP vector multiply. We compared this for a number of machine
organizations and presented relative performance improvement. We showed
that when compared with a single-issue pipelined stack machine, a speedup
of more than 2x can be realized. We also showed that out-of-order execu-
tion machines are particularly attractive for stack-based JAVA code. This is
due in part to the large number of dependencies generated by stack references.
A reasonable out-of-order implementation may yield a performance improve-
ment of 2.7x in comparison with a single-issue stack model. We also showed
that a Link Translation Buffer can be effective in accelerating JAVA dynamic
method invocation. We assumed a 100x speedup for resolved references that
are loaded into the LTB cache. This is reasonable assumption because JAVA
classes must be resolved in a complicated manner which involves multiple
traversals through the Constant Pool. Using this assumption, a program with
20% dynamic references can experience a 25% speedup under fully associative
cache parameters. Finally, we compared the performance of a number of Java
Virtual Machines using a tensor-based FFT library that we developed. We did
this to compare the claim that Java-based programs are significantly slower
than C-based programs. The Java-optimized tensor library competed attrac-
tively with C-based counterparts. It was able to achieve performance within
30% for some kernels.

At the beginning of our investigation we desired to answer the following ques-
tions:

e [s it possible to improve JAVA execution time with hardware?

e [s it possible to dynamically translate JAVA Virtual Machine instructions
in hardware?

e [s it possible to accelerate JAVA dynamic linking?
e [s it possible to accelerate garbage collection in hardware?

e Is it possible to apply modern computer organizations to accelerate JAVA
execution?

e [s it possible to overcome ILP limiting stack bottlenecks in JAVA byte-
code?
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e Is it possible to take advantage of the inherent parallelism expressed in
the JAVA language?

When we began our study in 1996, we theorized that it was possible to signif-
icantly enhance JAVA Virtual Machine execution when hardware support was
provided. We found this to be the case. Using a technique called dynamic hard-
ware translation we were able to translate JAVA bytecode into a RISC-based ar-
chitecture on-the-fly thereby allowing modern architectural and organizational
techniques to be utilized in accelerating JAVA execution. A minority of in-
structions specified by the JAVA Virtual Machine were found to be difficult to
dynamically translate. In these rare cases special architectural support was pro-
vided so that a particular processor instantiation could implement them in an
efficient manner. We found architectural performance improvements of more
than 2x were realizable versus other stack-based hardware methods. Given
the frequency advancements of modern RISC processors, dynamic instruction
translation is a significant technique for accelerating

Since JAVA specifies dynamically bound method invocation, we also investi-
gated the feasibility of accelerating this using hardware techniques. This led
to the Link Translation Buffer. This method cache was shown to be able to
accelerate a JAVA program by up to 25%. It was also proposed that this cache
could be extended to accelerate other JAVA specific constructs.

We investigated the lifetime of objects in JAVA programs and used the results to
understand the requirements for garbage collection. We studied two particular
collectors and investigated what hardware could help accelerate garbage col-
lection. The copy collector had lower allocation costs and less fragmentation.
The generational collector was very efficient because our analysis showed that
the lifetime of most JAVA objects is very short.

Using modern superscalar organizational techniques, we designed a simultane-
ous multithreaded architecture capable of efficiently execution JAVA programs.
This organization provided hardware support for multiple context instruction
issue and global instruction scheduling. The organization supported multiple
concurrent execution of threads which shared global execution units. We de-
fined a context as a hardware supported thread unit. Each context assumed
that the processor’s organization incorporated (logically) an instruction cache,
a decode unit, a local instruction scheduler, a local instruction issue unit, and
an instruction retire unit. A context did not include any shared resources such
as a first level (L1) cache, execution units, a register file, global instruction
schedulers, nor global issue units. The important point of this architecture was
that it transformed stack-based dependence hazards into pipeline hazards. The
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superscalar hardware was then able to issue multiple instructions using regis-
ter renaming and other out-of-order execution techniques. Multiple contexts
which could issue instructions simultaneously also provided acceleration and
transparently extracted the parallelism expressed in the JAVA language.

6.1 Major Contributions

This section discusses the major contributions of our study.

B Dynamic Translation: Using the statically determinable typestate prop-
erty of JAVA bytecode, we proposed that it would be possible to dynamically
translate JAVA bytecode into another instruction set architecture with minimal
hardware. The DELFT-JAVA processor was the first to propose this technique.
We found that 80% of JAVA bytecode was easily translated dynamically into
the DELFT-JAVA instruction set architecture. For the remaining more complex
instructions we found it to be beneficial to provide instruction set support. This
was particularly true of dynamic linking instructions and complicated change
of control instructions.

B Indirect Register Access: To facilitate the translation process we showed
that indirect access to the register file was an efficient solution. The register
file could in effect function as a stack-cache allowing transparent JAVA byte-
code execution. Special hardware was proposed that would automatically spill
and fill the register file based on heuristic algorithms inspired from other stack-
based languages and processors. The DELFT-JAVA processor, however, always
executed direct register addresses. This was accomplished through a two phase
translation process whereby the JAVA instruction to be executed was first trans-
lated into an indirect register address. Subsequently, the indirect address was
converted to a direct physical address. This dual-translation technique was
trivial to implement in machines that already support register renaming and
was found to be efficient for JAVA bytecode execution.

B Link Translation Buffer: We created a transparent organizational tech-
nique for accelerating dynamic linking. When a method is called in a JAVA
class, the Constant Pool, which is string based, must be resolved. The reso-
lution process is very complex and may take many thousands of cycles on a
typical processor. The Link Translation Buffer caches the relevant informa-
tion that was obtained through the constant pool and places it in hardware for
future use. Because JAVA programmers are encouraged to use many small
subroutines, this technique is important in accelerating the translation process.
Our technique is effective in storing the information.
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B Dependence conversion: A very subtle feature of our approach is that we
convert stack-based dependencies into pipeline dependencies. These pipeline
dependencies are then later removed through superscalar techniques such as
register renaming. Because stack-based instruction sets created bottlenecks
on the top of the stack, it is important to try to remove these dependencies.
Our approach removes the bottlenecks by translating the problem into another
problem that is already solved by our approach. This yields to highly parallel
execution without additional hardware.

B Multithreaded Organization used for Java acceleration: The JAVA lan-
guage is multithreaded. Parallelism is already expressed by the programmer.
Furthermore, the JAVA language specifies that JAVA programmers must write
thread-safe programs. This is in contrast to other languages such as C and C++
that are inherently serial. JAVA programs must protect critical sections with the
synchronized keyword. Otherwise, the semantics of the language allow paral-
lel execution of code. This is an ideal situation for processor architects. It
turns out that a simultaneous multithreaded processor organization is efficient
at exploiting the parallelism inherent in JAVA programs. The DELFT-JAVA pro-
cessor takes advantage of this situation to exploit multiple threads concurrently
executing.

B Thread level parallelism in Java converted to ILP: Another subtle feature
in the DELFT-JAVA organization is that we convert thread-level parallelism in
to Instruction Level Parallelism (ILP). Once the instructions are translated into
a RISC-based form, they are aggregated from multiple hardware contexts and
issued as a single global packet. If this was not done then the number of exe-
cution units required would be equal to the number of thread units multiplied
by the peak issue rate. This technique allows a single set of execution units to
be shared allowing higher utilization and less cost.

B Multiple machines which can time-share a datapath: One of the results
of our design is that a processor that can execute both JAVA bytecode and pro-
grams compiled from other high-level languages is possible. For languages
such as C and C++, a RISC-based model would be presented to the compiler.
JAVA compilers do not require any modifications to execute on our proces-
sor. The operating system is responsible for controlling which machine view
executes through the use of a branchJVM instruction.

B JVM performance characterization of DSP/FFT execution: As part of
our studies we showed that the JAVA Virtual Machine is capable of approaching
C performance for some DSP kernels. During our optimization studies, we
created a very efficient FFT implementation. We compared this against other
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interpreted languages and compiled languages. The FFT JAVA code has been
requested by a number of universities and research labs.

B Tensor algebra as a basis for optimizing Java programs: As part of the
DSP performance studies, we optimized the JAVA programs using tensor alge-
bra. We derived equations for the number of thread units available and showed
how to distribute the FFT computation among multiple thread units. Other
researchers have shown how this could automated in a compiler.

B Garbage collection study: We investigated the effects of garbage collec-
tion and how hardware may accelerate garbage collection. An important result
is that the lifetime of JAVA objects is very short. This suggests that a copy col-
lector may be more efficient for JAVA programs because of the need to allocate
objects quickly. We successfully separated JAVA objects from Kaffe-specific
objects. This allowed us to implement an accurate generational copy collector.

6.2 Open Issues

B Complete JVM simulator and simulation: In our models we did not re-
quire full a JAVA Virtual Machine to verify the architectural soundness of our
ideas. We desired to show that it is possible to accelerate JAVA bytecode exe-
cution through hardware means. A simulation model was sufficient to validate
the proof of concept. Future work could extend the models to allow complete
simulation of a JAVA Virtual Machine. This would provide complete applica-
tion performance speedup and serve to refine our estimates.

H Multithreaded execution with full OS results: Our simulation results are
based on uni-processor models that assume certain scheduling policies for mul-
tithreaded execution. To have a complete and accurate picture of multithreaded
operation, a full operating system should be implemented with a choice of
thread scheduling policies. The effect of the scheduling heuristics could then
be studied.

B Characterizing cache effects on the LTB: In our analysis we did not quan-
tify performance degradation under various parameters including LTB asso-
ciativity, multithreading, and non-unit latency memory access. As a further
extention it would be interesting to use the instruction address as a caller’s ob-
ject id. This may provide a benefit similar to Sun’s quick instructions without
requiring additional opcodes. Another advantage of using the instruction ad-
dress is that the 16-bit constant pool location does not need to be stored in the
Link Translation Buffer. However, potentially more entries may be registered
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for the same object since more than one instruction address may invoke the
same method.

B Using an LTB to hold additional data: In our study we hinted that the
Link Translation Buffer could be used to hold additional information such as
synchronization data. We did not carry this far enough to confirm its useful-
ness. We postulate that this would be an efficient organizational technique to
implement monitors but further investigation is necessary.

B Garbage collection: In our studies we used garbage collectors that have
variable timeframes for execution. Embedded and DSP environments require
deterministic system responses. The collector that most closely fits this re-
quirement is the reference counting collector. Reference counting collectors
impose their own set of design constraints. These should be investigated so
that real-time JAVA performance can be guaranteed.
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Samenvatting

De Delft-Java Engine
Clair Johnston Glossner

In dit proefschrift beschrijven wij de DELFT-JAVA Engine - een op RISC
gebaseerde 32-bits architectuur die zorgt voor hoge prestaties bij de uitvoer
van JAVA programma’s. Nauwkeuriger uitgedrukt beschrijven wij een micro-
architectuur die de uitvoer van JAVA versnelt en verschaffen wij gedetailleerde
informatie over de DELFT-JAVA Engine voor de uitvoer van JAVA Virtual Ma-
chine bytecode. De basis architectuur implementeert een Media Processor met
Signal Processing mogelijkheden. De invalshoek van de aanpak is dat voor
het maximaal versnellen van een gecompileerde applicatie de machinetaal een
nauwkeurige afspiegeling behoort te zijn van de operatie typen die de compiler
specificeert. Behalve in het geval dat de JAVA Virtual Machine operaties onge-
woon gecompliceerd zijn, geven wij er de voorkeur aan om de compiler toe te
staan om direkt voor de applicatie te optimaliseren. Dit is onafhankelijk van
een bepaalde machine organisatie. In dit geval is de architectuur een super-
set van de JAVA Virtual Machine en zorgt zij voor operaties die noodzakelijk
zijn voor de systeem uitvoer (e.g., I/O, overzicht, etc.). In plaats van het uit-
sluitend ondersteunen van de JAVA Virtual Machine volgt de architectuur een
meer algemene aanpak in zoverre dat zij ook bedoeld is om geprogrammeerd te
worden voor een aantal extra high-level talen inclusief C en C++. Verder intro-
duceren wij het concept van het dynamisch vertalen van JAVA instructies, een
nieuwe aanpak bij het hardwarematig versnellen van JAVA. Bij het hardware
ondersteund dynamisch vertalen worden JAVA instrukties meteen vertaald naar
de DELFT-JAVA instructie set. De hardware vereisten om deze vertaling uit te
voeren zijn niet buitensporig. Als gevolg hiervan is ondersteuning voor JAVA
taalconstructies ook ingebouwd in de Intructie Set Architectuur van de proces-
sor. Deze techniek zorgt ervoor dat het parallellisme op applicatie niveau, dat
inherent aanwezig is in de JAVA taal, op efficiente wijze gebruikt kan worden
als parallellisme op instructie niveau. Behalve dynamisch vertalen kan ook een
speciaal Link Translation Buffer (LTB) gebruikt worden om de prestaties bij
het dynamisch linken te vergroten. Verder zijn er enige organisatorische struk-
turen waarvan wij het belangrijk vinden dat er ondersteuning op architectuur
niveau plaatstvindt, zoals: a) synchronisatie voor multi-threaded organisaties,
b) garbage collection, c) controleren van array grenzen, d) real-time caches, e)
het gelijktijdig gebruik van hetzelfde data pad door meerdere machines (e.g.,
de JAVA Virtual Machine en Media Processing funkties), en f) vector/dsp op-
eraties. Middels het creéren van verscheidene modellen van de DELFT-JAVA
Engine waren wij in staat om de prestatie metrieken van kernels die op onze
processor worden uitgevoerd, te karakteriseren. Wij ontdekten dat, vergeleken



met een realiseerbare stack-based implementatie, onze aanpak de uitvoer met
een factor 2,7 versneld. Bovendien hebben wij laten zien dat out-of-order su-
perscalar machines tot 60 % van de hazards kunnen verwijderen door stack-
gebaseerde athankelijkheden om te zetten in pipeline afthankelijkheden.
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20, 2001.
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2. J. Glossner, ”’The challenges in Microelectronics associated with broad-
band access”, Semiconductor Industry Association of Japan (SIAJ), Tokyo,
Japan, November, 2000.

3. J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer,
U. Shvadron, and M. Ware, ”Trends In Compilable DSP Architec-
ture”, Proceedings of SIPS-2000, Lafayette, LA, October, 2000.

4. J. Glossner, ”Compilable DSP Architecture”, University of Pennsyl-
vania Computer Science Department, March 16, 1998, Philadelphia, Pa.

5. J. Glossner, ”DSP Architecture”, Lehigh University Electrical and Com-
puter Engineering Department, October 28, 1997, Bethlehem, Pa.

Technical Reports

1. D. Batten, C.J. Glossner, N. Yadav, P. D’Arcy, S. Jinturkar, and K.
Wires, Methods of Cluster Interconnection for Reducing Register
Port Pressure, Bell Labs 1TD-98-34825D, July, 1998, pp. 1-16. A
method for reducing register file ports on wide issue clustered architec-
tures

2. CJ. Glossner, S. Jinturkar, P. D’ Arcy, and K. Wires, ’Method and Ap-
paratus for Multiple Processor Machine View Execution”, Bell Labs
ITD-98-34500A, May, 1998, pp. 1-10. A method that allows a proces-
sor to execute code written for multiple instruction set architectures on
one datapath implementation.

3. D. Batten, C. J. Glossner, P. D’Arcy, S. Jinturkar, and J. Thilo, ”Im-
patient Execution: A Method for Virtual Single-Cycle Execution in
Pipelined Processors’, Bell Labs ITD-98-34497X, May, 1998, pp. 1-
13. A register locking mechanism for pipelined processors that avoids
pipeline hazards in variable latency execution units.

4. C.J. Glossner, K. Wires, D. Batten, S. Jinturkar, J. Thilo, and P. D’ Arcy,
”’Compiler-Controlled Dynamic Dispatch: A Method for Reducing
Stalls in Pipelined Processors”, Bell Labs ITD-98-34498Y, May, 1998,
pp. 1-10. A method is proposed to dynamically regulate the data and
predication dependencies in a pipelined processor with multiple execu-
tion units.
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5. CJ. Glossner, S. Jinturkar, P. D’ Arcy, and K. Wires, ’Compiler Con-
trolled Dynamic Scheduling”, Bell Labs 1TD-98-34499Z7, May, 1998,
pp. 1-13. A method of dynamically storing multiple instruction depen-
dencies which the compiler has pre-specified.

6. Z. Li, G.G. Pechanek, C.J. Glossner, and C.H.L. Moller, ’Design and
Implementation of FFT Algorithms for M.F.A.S.T. Using Tensor Prod-
ucts”. IBM TR 29.2126, July 1996, pp. 1-19.

7. C.J. Glossner, ’Improved Performance Product 25 (IPP25) Technical
Report”. IBM TR-19.0874. pages 1-35. This technical report details the
process changes innovated to provide a 25% performance increase to an
existing process with minimal work and no circuit redesign.

Patents

1. Dean Batten, Paul G. D’ Arcy, C. John Glossner, Sanjay Jinturkar, and
Kent E. Wires, “’File replication methods and apparatus for reducing
port pressure in a clustered processor.” U.S. Patent 6230251. Issued
for Agere Systems. The invention provides techniques for reducing the
port pressure of a clustered processor. In an illustrative embodiment, the
processor includes multiple clusters of execution units, with each of the
clusters having a portion of a register file and a portion of a predicate
file associated therewith, such that a given cluster is permitted to write
to and read from its associated portions of the register and predicate
files. A replication technique in accordance with the invention reduces
port pressure by replicating, e.g., a register lock file and a predicate lock
file of the processor for each of the clusters. The replicated files vary
depending upon whether the technique is implemented with a write-only
interconnection or a read-only interconnection.

2. G.G. Pechanek, L.D.Larsen, C.J. Glossner, S. Vassiliadis, ’Distributed
Processing Array with Component Processors Performing Customized
Interpretation of Instructions.” U.S. Patent 6128720. Issued for IBM
on October 3, 2000. A multi-processor array organization is dynam-
ically configured by the inclusion of a configuration topology field in
instructions broadcast to the processors in the array. Each of the proces-
sors in the array is capable of performing a customized data selection
and storage, instruction execution, and result destination selection, by
uniquely interpreting a broadcast instruction by using the identity of the
processor executing the instruction. In this manner, processing elements
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in a large multi-processing array can be dynamically reconfigured and
have their operations customized for each processor using broadcast in-
structions.

. C. John Glossner, Paul Gerard D’Arcy, Sanjay Jinturkar, and Stama-
tis Vassiliadis. ”Multiple Machine View Execution in a Computer
System” U.S. Patent 6079010. Issued for Lucent Technologies on June
20th 2000. A computer system supporting N different machine views,
where N.gtoreq.2, includes a memory for storing instructions, a number
of execution units for processing data based on execution controls, and
N different decoders for generating the execution controls using instruc-
tions retrieved from the memory. Each of the N decoders is operative
to decode retrieved instructions in accordance with one of the N ma-
chine views. A particular one of the N decoders to be used to decode a
given retrieved instruction may be selected by a program running on the
system. In one embodiment, the decoders for the N machine views are
implemented as N separate decoders, and a multiplexer is used to select
the output of one of the N decoders for connection to one or more of the
execution units. In another embodiment, a set of reconfigurable hard-
ware is dynamically reprogrammed to implement one or more of the N
decoders as directed by the program running on the system.

. G.G.Pechanek, L.D. Larsen, C.J. Glossner, S. Vassiliadis, D.H. Mc-
Cabe, ’Selective Processing and Routing of Results among Proces-
sors Controlled by Decoding Instructions using Mask Value Derived
from Instruction Tag and Processor Identifier”. U.S. Patent 5682491.
Issued for IBM on Oct. 28, 1997. describing an array of VLIW proces-
sors and dynamic reconfiguration of interconnections. An array pro-
cessor topology reconfiguration system and method enables processor
elements in an array to dynamically reconfigure their mutual intercon-
nection for the exchange of arithmetic results between the processors.
Each processor element includes an interconnection switch which is
controlled by an instruction decoder in the processor. Instructions are
broadcast to all of the processors in the array. The instructions are
uniquely interpreted at each respective processor in the array, depend-
ing upon the processor identity.

. G.G. Pechanek, S. Vassiliadis, L.D. Larsen, and C.J. Glossner, ’Array
Processor Communication Architecture with Broadcast Processor
Instructions.” U.S. Patent 5659785. Issued for IBM on Aug. 19, 1997.
Communications Architecture of the Mfast processor. A plurality of
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processor elements (PEs) are connected in a duster by a common in-
struction bus to a sequencing control unit with its associated instruction
memory. Each PE has data buses connected to at least its four nearest
PE neighbors, referred to as its North, South, East and West PE neigh-
bors. Each PE also has a general purpose register file containing several
operand registers. A common instruction is fetched from the instruction
memory by the sequencing control unit and broadcast over the instruc-
tion bus to each PE in the cluster. The instruction includes an upcode
value that controls the arithmetic or logical operation performed by an
execution unit in the PE on one or more operands in the register file. A
switch is included in each PE to interconnect it with a first PE neighbor
as the destination to which the result from the execution unit is sent. The
broadcast instruction includes a destination field that controls the switch
in the PE, to dynamically select the destination neighbor PE to which the
result is sent. An 8x8 pixel-array 2-dimensional Discrete Cosine Trans-
form (DCT) example is presented, using this invention in a folded array
topology, which executes in 18-cycles.

. G.G. Pechanek, C.J. Glossner, L. D. Larsen, S. Vassiliadis, ’Parallel
Processing System and Method Using Surrogate Instructions.” U.S.
Patent 5649135. Issued for IBM on July 15, 1997. Parallel VLIW Con-
trol for an Array of VLIW processors. A parallel processing system and
method is disclosed, which provides an improved instruction distribu-
tion mechanism for a parallel processing array. The invention broadcasts
a basic instruction to each of a plurality of processor elements. Each
processor element decodes the same instruction by combining it with a
unique offset value stored in each respective processor element, to pro-
duce a derived instruction that is unique to the processor element. A
first type of basic instruction results in the processor element perform-
ing a logical or control operation. A second type of basic instruction
results in the generation of a pointer address. The pointer address has
a unique address value because it results from combining the basic in-
struction with the unique offset value stored at the processor element.
The pointer address is used to access an alternative instruction from an
alternative instruction storage, for execution in the processor element. In
this invention, it is possible to generate a one-to-one mapping of the sur-
rogate provided address to a group of VLIWs that become individually
selectable within each PE through the use of a PE address modifying
mechanism.
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ohn Glossner is currently CTO and Executive Vice President of En-

gineering at Sandbridge Technologies, Inc. In his position with Sand-

bridge, John directs the engineering group working on JAVA-based DSPs
for cellular systems in broadband communications. Previously, John managed
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Aggregation Business Development Manager for IBM Microelectronics. Prior
to joining IBM Research, John worked for Lucent Microelectronics where he
was chief architect for wireless DSPs. As a founding member of Starcore,
John managed the software and compiler efforts. John started his career with
IBM Microelectronics in Burlington, Vermont, working on ASIC designs after
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North Carolina, John began working on DSPs in the IBM Mwave group. He
began Ph.D. studies at the University of North Carolina at Chapel Hill which
subsequently led to this thesis work completed at the Delft University of Tech-
nology.






Bibliography

[1] James Gosling, Bill Joy, and Guy Steele, editors. The Java Language
Specification. The Java Series. Addison-Wesley, Reading, MA, USA,
1996.

[2] James Gosling and Henry McGilton. The Java Language Environment:
A White Paper. Technical report, Sun Microsystems, Mountain View,
California, October 1995. Available from ftp.javasoft.com/docs.

[3] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, 1997.

[4] M. Gagnaire. An Overview of Broadband Access Technologies. In Pro-
ceedings of the IEEE, volume 85, pages 1958-1972, December 1997.

[5] J. Eyre and J. Bier. DSP Processors Hit the Mainstream. /IEEE Computer,
pages 51-59, August 1998.

[6] Junko Yoshida. Java chip vendors set for cellular skirmish. EE Times,
January 30 2001.

[7] P. Lapley. DSP Processor Fundamentals. 1IEEE press, New York, 1997.

[8] M. Saghir, P. Chow, and C. G. Lee. Towards Better DSP Architecture
and Compilers. In Proceedings of the International Conference on Signal
Processing Applications and Technology, pages 658—664, October 1994.

[9] Texas Instruments. TMS320C54x DSP Reference Set. Volume 1: CPU
and Perhipherals. Technical Report SPRU131E, Texas Instruments, June
1998.

[10] Jeff Bier. DSP16xxx Targets Communictaions Apps. Microprocessor
Report, 11(12), 1997.

165



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

G. Ungerboeck, D. Maiwald, H. P. Kaeser, P. R. Chevillat, and J. P. Be-
raud. Architecture of a Digital Signal Processor. IBM Journal of Research
and Development, 29(2), 1985.

N. L. Bernbaum, B. Blaner, D. E. Carmon, J. K. D’Addio, F. E. Grieco,
A. M. Jacoutot, M. A. Locker, B. Marshall, D. W. Milton, C. R. Ogilvie,
P. M. Schanely, P. C. Stabler, and M. Turcotte. The IBM Mwave 3780i
DSP. In Proceedings of the 1996 International Conference on Signal Pro-
cessing Applications and Technology (ICSPAT ’96), pages 12871291,
Boston, MA, October 1996.

Tom R. Halfhill. TI Cores Accelerate DSP Arms Race. Microprocessor
Report, March 6 2000.

J. Eyre and J. Bier. Carmel Enables Customizable DSP. Microprocessor
Report, 12(17), December 1998.

LSI Corporation. LSI402Z Digital Signal Processor. LSI Corporation,
20012 edition, 1999.

Gerald G. Pechanek, C. John Glossner, William F. Lawless, Daniel H.
McCabe, Chris H. L. Moller, and Steven J. Walsh. A Machine Organiza-
tion and Architecture for Highly Parallel, Scalable, Single Chip DSPs. In
Proceedings of the 1995 DSPx Technical Program Conference and Exhi-
bition, pages 42-50, San Jose, California, May 1995.

Gerald G. Pechanek, Mihilo Stojancic, Stamatis Vassiliadis, and C. John
Glossner. M.F.A.S.T.: A Single Chip, Highly Parallel Image Processing
Architecture. In Proceedings IEEE International Conference on Image
Processing, volume 1, pages 1375-1379, Arlington, Virginia, October
1995. IEEE Press.

Gerald G. Pechanek, Charles W. Kurak, C. John Glossner, Chris H. L.
Moller, and Steven J. Walsh. M.F.A.S.T.: A Highly Parallel Single Chip
DSP with a 2D IDCT Example. In Proceeding of the International Con-
ference on Signal Processing Applications and Technology, pages 69-72,
Boston, Mass., October 1995.

Gerald G. Pechanek, C. John Glossner, Zhiyong Li, Chris H. L. Moller,
and Stamatis Vassiliadis. Tensor Product FFT’s on M.F.A.S.T.: A Highly
Parallel Single Chip DSP. In Proceedings of DSP 95 - Digital Signal
Processing and Its Applications, Paris, France, October 1995.

166



[20] B. Case. Philips hopes to displace DSPs with VLIW. Microprocessor
Report, pages 12—-15, December 1997.

[21] C. P. Feigel. TI Introduces Four-Processor DSP Chip. Microprocessor
Report, 8(4), March 28 1994.

[22] Dave Epstein. Chromatic Raises the Multimedia Bar. Microprocessor
Report, 9(14), October 28 1995.

[23] A. Peleg and U. Weiser. MMX technology extension to the Intel archi-
tecture. I[EEE Micro, pages 42-50, August 1996.

[24] H. Nguyen and L. K. John. Exploiting SIMD Parallelism in DSP and
Multimedia Algorithms Using the AltiVec Technology. In Proceedings
of the International Conference on Supercomputing, pages 11-20, 1999.

[25] J. C. Bier, A. Shoham, H. Hakkarainen, O. Wolf, G. Blalock, and
Philip D. Lapsley. DSP on General-Purpose Processors: Performance,
Architecture, Pitfalls. Berkeley Design Technology, Inc., 1997.

[26] O. Wolf and J. Bier. StarCore Launches First Architecture. Microproces-
sor Report, 12(14), October 1998.

[27] O. Wolf and J. Bier. TigerSHARC Sinks Teeth Into VLIW. Micropro-
cessor Report, 12(16), December 1998.

[28] J. Fridman and Z. Greenfield. The TigerSHARC DSP Architecture. IEEE
Micro, 20(1):66-76, January 2000.

[29] J. Turley and H. Hakkarainen. TI’s New C6x Screams at 1,600 MIPS.
Microprocessor Report, 11(2), 1997.

[30] David Strube. High perfromance DSP technology brings new features
to digital systems. In Electronic Product Design, pages 23-26, October
1999.

[31] Gerald G. Pechanek, Stamatis Vassiliadis, and Nikos Pitsianis. ManArray
processor interconnection network: an introduction. In Euro-Par ’99 Par-
allel Processing Proceedings. (Lecture notes in computer science), pages
761-765, Toulouse, France, August/September 1999. Springer, Berlin.

[32] Gerald G. Pechanek and Stamatis Vassiliadis. The ManArray Embedded
Processor Architecture. In Proceedings of the 26-th Euromicro Confer-
ence: Informatics: inventing the future, volume I, pages 348-355, Maas-
trict, The Netherlands, September 5-7 2000.

167



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Bryan Ackland and Paul D’Arcy. A New Generation of DSP Architec-
tures. In Proceedings of the 1999 Custom Integrated Circuits Conference,
pages 531-536, 1999.

B. Ackland and et. al. A Single-Chip 1.6 Billion 16-b MAC/s Multipro-
cessor DSP. In Proceedings of the Custom Integrated Circuits Confer-
ence, pages 537-540, 1999.

Cheng-Hsueh A. Hsieh, John C. Gyllenhaal, and Wen mei W. Hwu. Java
Bytecode to Native Code Translation: The Caffeine Prototype and Pre-
liminary Results. In Proceeding of the 29th Annual Internation Sym-
posium on Microarchitecture (MICRO-29), pages 90-97, Los Alamitos,
CA, USA, December 2-4 1996. IEEE Computer Society Press.

Ali-Reza Adl-Tabatabai, Michal Cierniak, Guie-Yuan Lueh, Vishesh M.
Parikh, and James M. Stichnoth. Fast, effective code generation in a just-
in-time Java compiler. In Proceeding of the ACM SIGPLAN 98 confer-
ence on Programming Language Design and Implementation (PLDI’98),
volume 33, pages 280-290. Association for Computing Machinery, May
1998.

Gilles Muller, Barbara Moura, Fabrice Bellard, and Charles Consel.
JIT vs. Offline Compilers: Limits and Benefits of Bytecode Compila-
tion. Technical Report 1063, IRISA, Campus de Beaulieu, 35042 Rennes
Cedex, France, December 1996. http://www.irisa.fr.

Sun Microsystems. The Java Hotspot Performance Engine Architec-
ture. Sun Microsystems, 1999. http://java.sun.com/ products/ hotspot/
whitepaper.html.

Kemal Ebcioglu, Eric R. Altman, and Erdem Hokenek. A Java ILP Ma-
chine Based on Fast Dynamic Compilation. In /[EEE MASCOTS Interna-
tional Workshop on Security and Efficiency Aspects of Java, Eilat, Israel,
January 9-10 1997. IEEE Computer Society Press.

Richard Agnews. Sun’s Java HotSpot Performance Engine a Speed De-
mon. Sun Microsystems, April 1999. http://java.sun.com/ features/ 1999/
04/ jess reports/ hotspot.announce.html.

Michal Cierniak and Wei Li. Just-in-time optimizations for high-
performance Java programs. Concurrency: Practice and Experience,
9(4):1063-1073, November 1997.

168



[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman,
Tim Newsham, and Scott A. Watterson. Toba: Java For Applications - A
Way Ahead of Time (WAT) Compiler. In Proceedings Third Conference
on Object-Oriented Technologies and Systems (COOTS’97), 1997.

Hewlett Packard. HP Turbo Chai Release 2.0. Hewlett-Packard, May
1999. http://www.hp.com/emso/products/turbochai/TchaiPDF.pdf.

John Glossner, Jesse Thilo, and Stamatis Vassiliadis. Java Signal Process-
ing: FFT’s with bytecodes. In Proceedings of the 1998 ACM Workshop
on Java for High-Performance Network Computing, Stanford University,
Palo Alto, California, February 28 and March 1 1998.

John Glossner, Jesse Thilo, and Stamatis Vassiliadis. Java Signal Pro-

cessing: FFT’s with bytecodes. Journal of Concurrency and Experience,
10(11-13):1173-1178, 1998.

Cygnus. Gcj compiler, 1999.

Sun Microelectronics. picoJava I Microprocessor Core Architecture.
Technical Report WPR-0014-01, Sun Microsystems, Mountain View,
California, November 1996. Available from http://www.sun.com/ sparc/
whitepapers/ wpr-0014-01.

Marc Tremblay and Micahel O’Connor. picoJava: A Hardware Imple-
mentation of the Java Virtual Machine. In Hotchips Presentation, 1996.

Harlan McGhan and Mike O’Connor. PicoJava: A Direct Execution En-
gine For Java Bytecode. IEEE Computer, 31(10):22-30, October 1998.

L. C. Chang, L. R. Ton, M. F. Kao, and C. P. Chung. Stack operations
folding in Java processors. IEE Proceedings - Computers and Digital
Techniques, 145(5):333-343, September 1998.

Lee-Ren Ton, Lung-Chung Chang, Min-Fu Kao, Han-Min Tseng, Shi-
Sheng Shang, Ruey-Liang Ma, Dze-Chaung Wang, and Chung-Ping
Chung. Instruction Folding in Java Processor. In /997 International
Conference on Parallel and Distributed Systems, pages 138—143, Seoul,
Korea, December 12-13 1997. IEEE Computer Society Press.

Sun Microelectronics. Sun Microelectronic’s picoJava 1 Posts Out-
standing Performance. Technical Report WPR-0015-01, Sun Microsys-
tems, Mountain View, California, November 1996. Available from
http://www.sun.com/ sparc/ whitepapers/ wpr-0015-01.

169



[53] C. John Glossner and Stamatis Vassiliadis. The Delft-Java Engine: An
Introduction. In Lecture Notes In Computer Science. Third International
Euro-Par Conference (Euro-Par’97 Parallel Processing), pages 766—770,
Passau, Germany, Aug. 26 - 29 1997. Springer-Verlag.

[54] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arith-
metic Units. IBM Journal of Research and Development, 11:25-33, 1967.

[55] Wes Munsil and Chia-Jiu Wang. Reducing Stack Usage in Java Bytecode
Execution. Computer Architecture News, 1(7):7-11, March 1998.

[56] Yamin Li, Sanli Li, Xianzhu Wang, and Wanming Chu. JAViR - Ex-
ploiting Instruction Level Parallelism for JAVA Machine by Using Virtual
Register. In The Second European IASTED International Conference on
Parallel and Distributed Systems, Vienna, Austria, July 1-3 1998.

[57] Advancel Logic Corporation. TinylJ Processor Core Product Datasheet.
Datasheet, July 1999.

[58] Patriot  Scientific ~ Corporation. Psc1000/a  microprocessor
datasheet. Patriot Scientific, 1997. http://www.ptsc.com/downloads/
psc1000/specs/datasheet.pdf.

[59] James Gosling. Java Intermediate Bytecodes. In ACM SIGPLAN Notices,
pages 111-118, New York, NY, January 1995. Association for Comput-
ing Machinery. ACM SIGPLAN Workshop on Intermediate Representa-
tions (IR95).

[60] William Stallings. Computer Organization and Architecture. Macmillan
Publishing Company, New York, 1987.

[61] Tim Lindholm and Frank Yellin. Inside the java virtual machine. Unix
Review, 15(1):31-39, January 1997. Adapted From [3].

[62] Sun Microsystems. The Java Virtual Machine Specification, volume Re-
lease 1.0 Beta. Sun Microsystems, Mountain View, California, August
1995.

[63] Gerrit A. Blaauw and Frederick P. Brooks Jr. Computer Architecture:
Concepts and Evolution. Addison-Wesley, Reading, MA, USA, 1997.

[64] C.G.Bell and A. Newell. Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

170



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

John Glossner and Stamatis Vassiliadis. Delft-Java Link Translation
Buffer. In Proceedings of the 24th EUROMICRO conference, volume 1,
pages 221-228, Vasteras, Sweden, August 25-27 1998.

Bil Lewis and Daniel J. Berg. Threads Primer: A Guide to Multithreaded
Programming. SunSoft Press - A Prentice Hall Title, Mountain View,
California, 1996.

Steve Kleiman, Devang Shah, and Bart Smaalders. Programming with
Threads. Sunsoft Press - A Prentice Hall Title, Mountain View, Califor-
nia, 1996.

Peter Wayner. Sun gambles on java chips. Byte, 21(11):79-85, November
1996.

S. Vassiliadis, B. Blaner, and R. J. Eickemeyer. SCISM: A Scalable Com-
pound Instruction Set Machine. IBM Journal of Research and Develop-
ment, 38(1):59-78, January 1994.

James Philips and Stamatis Vassiliadis. High-performance 3-1 interlock
collapsing ALU’s. IEEE Transactions on Computers, 43(3):257-268,
March 1994.

Brian Case. Implementing the java virtual machine. Microprocessor
Report, 10(4):12-17, March 25 1996.

Stamatis Vassiliadis, James Phillips, and Bart Blanar. Interlock Collaps-
ing ALU’s. IEEE Transactions on Computers, 42(7):825-839, July 1993.

A. Berlea, S. Cotofana, I. Athanasiu, J. Glossner, and S. Vassiliadis.
Garbage Collection for the Delft-Java Processor. In 8th IASTED Inter-
national Conference on Applied Informatics (AI-2000), pages 232-238,
Innsbruck, Austria, February 2000.

Ole Agesen and David Detlefs. Finding references in java stacks. In
OOPSLA’97 Workshop on Garbage Collection and Memory Manage-
ment, pages 766—770, Atlanta, GA, USA, October 1997.

Richard Jones and Rafael Lins. Garbage Collection, Algorithms for Au-
tomatic Dynamic Memory Management. JOHN WILEY & SONS, NY
10158-0012, USA, 1996.

171



[76] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processor. In International Symposium on Computer Architecture, vol-
ume 23, pages 414-425, Santa Margherita Ligure, Italy, June 1995.

[77] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Al-
lan Porterfield, and Burton Smith. The tera computer system. In In-
ternational Conference on Supercomputing, pages 1-6. Association for
Computing Machinery, 1990.

[78] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter,
Andrew Chang, Yevgeny Gurevich, and Whay S. Lee. The m-machine

multicomputer. Technical report, MIT Artificial Intelligence Laboratory,
1995.

[79] Wayne Yamamoto and Mario Nemirovsky. Increasing superscalar per-
formance through multistreaming. In Proceedings of the IFIP WG10.3
Working Conference on Parallel Architectures and Compilation Tech-
niques. PACT 95, pages 49-58, 1995.

[80] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism. In International
Symposium on Computer Architecture, volume 23, pages 392-403, Santa
Margherita Ligure, Italy, June 1995.

[81] Gene M. Amdahl. Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities. In Proceedings AFIPS National
Computer Conference, pages 483-485, 1967.

[82] Michael J. Flynn. Computer Architecture: Piplelined and Parallel Pro-
cessor Design. Jones and Bartlett, Boston, Mass., 1995.

[83] Marshall C. Pease. An Adaptation of the Fast Fourier Transform for
Parallel Processing. Journal of the ACM, 15(2):252-264, April 1968.

[84] C.John Glossner, Gerald G. Pechanek, Stamatis Vassiliadis, and Joe Lan-
don. High-Performance Parallel FFT Algorithms on M.f.a.s.t. Using Ten-
sor Algebra. In Proceedings of the Signal Processing Applications Con-
ference at DSPx’96, pages 529-536, San Jose Convention Center, San
Jose, Ca., March 11-14 1996.

[85] William H. Press, Saul A. Teukolskey, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, UK, 2 edition, 1992.

172



[86] Paul Wilson. Uniprocessor garbage collection techniques, 1996.

173












