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Quantile hydrologic model selection and model structure deficiency
assessment: 1. Theory
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[1] A theory for quantile based hydrologic model selection and model structure deficiency
assessment is presented. The paper demonstrates that the degree to which a model selection
problem is constrained by the model structure (measured by the Lagrange multipliers of the
constraints) quantifies structural deficiency. This leads to a formal definition of model
structure deficiency (or rigidity). Model structure deficiency introduces a bias in the
prediction of an observed quantile, which is often not equal across quantiles. Structure
deficiency is therefore diagnosed when any two quantile predictions for a given model
structure cross since unequal bias across quantiles result in quantile predictions crossing.
The analysis further suggests that the optimal value of quantile specific loss functions order
different model structures by its structure deficiencies over a range of quantiles. In addition
to such novelties, quantile hydrologic model selection is a frequentist approach that seeks to

complement existing Bayesian approaches to hydrological model uncertainty.

Citation:
Res., 49, doi:10.1002/wrcer.20411.

1. Introduction

[2] Current practice of uncertainty assessment of hydrologic
models hypothesizes potential sources of errors, assumes that
it obey certain distribution types and nests these distributions
within a Bayesian inference framework [Kavetski et al., 2006
Thyer et al., 2009; Schoups and Vrugt, 2010; Smith et al.,
2010]. Bayesian inference therefore allows simultaneous mod-
eling of uncertainties due to model and measurement errors.
These methods are powerful and yield useful insights for
improving model structures. A validation of assumptions is
generally made by Q-Q plots by mapping observed quantiles
to prediction quantiles for a variable of interest [Thyer et al.,
2009; Schoups and Vrugt, 2010]. A Q-Q plot verifies whether
the prediction quantiles follow the observed quantiles, thereby
assessing the applicability of the model assumptions.

[3] An extension of quantile regression to hydrologic
model selection is proposed, which aims to identify a model,
for a given model structure, by minimizing a loss function
that asymmetrically penalizes the positive and negative
residuals. Here a residual is defined as the difference
between a prediction and the observed [Koenker and Basset,
1978]. The penalty determines the quantile of the observed
data at which the model is being estimated. This contrasts
likelihood methods that model an entire distribution by
assuming a likelihood function. The likelihood methods do
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not model 1 quantile at a time. It is equivalent to estimating
a model such that the prediction of a variable of interest is as
close as possible to a desired quantile of its observations.
Observed quantiles may exactly be predicted when the
model structure contains the truth. Quantile hydrologic
model estimation presented here can be seen as equivalent to
an inverse approach to Q-Q plot verification. A model is
selected to match an observed quantile as closely as possible,
instead of using the quantile to judge how well a model
(selected independently using another inference method)
replicates that quantile. The underlying motivation is to
compare two model structures in terms of its deficiencies in
representing the underlying processes (“truth”). In contrast
to Bayesian approaches to model selection [such as Kavetski
et al., 2006; Thyer et al., 2009; Schoups and Vrugt,
2010] where various sources of errors can be explicitly mod-
eled, no assumption on the cumulative distribution of the
residuals is made, where a distribution of residuals is due
to unknown measurement errors and model structure
deficiency.

[4] A Bayesian approach [Marshall et al., 2006; Kavet-
ski et al., 2006; Schoups and Vrugt, 2010] to model selec-
tion is limited in certain aspects. The model parameters
sampled based on a formal likelihood function is from a
posterior parameter distribution only if the underlying proc-
esses belong to the model space or that the model space is
fully specified [Davidson and MacKinnon, 2004, p. 399]. It
is only then that the posterior distribution can be assumed
to be proportional to the likelihood function based on
Bayes rule and hence it is only then that model estimation
(selection) can be based on a likelihood function. This is
critical in studying model structure deficiency (in the sense
of how limited a model structure is in representing the
underlying processes). Innovating a complex error model
such as in Schoups and Vrugt [2010] may ameliorate such
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concerns in practice. However, a simple model error that
cannot be represented by the family of additive skew expo-
nential power distributed [DiCiccio and Monti, 2004] error
is sufficient to show the limitations of even such complex
error models. For example, when the error due to model
structure deficiency is correlated with model predictions
[Pande et al., 2012a], it leads to an effect that is different
from the heteroscedasticity effect. Any estimation tech-
nique that ignores its presence (dependence of error on
model predictions) leads to a biased model estimate [Heck-
man, 2005]. Yet another limitation is that a posterior den-
sity is conditional on data, which for small samples can
itself be uncertain due to sampling uncertainty [Pande et
al., 2009]. This though equally holds for the method pro-
posed here.

[s] A Bayesian approach is superior to the proposed
method when its assumptions on the error structure hold.
This is because the assumptions on the error model struc-
ture define the likelihood function, which when valid yield
the “true” parameter values of a hydrological model at the
likelihood maximum. For example, Schoups and Vrugt
[2010] assume that the error distribution belongs to a fam-
ily of additive skew exponential power distribution [DiCic-
cio and Monti, 2004]. The method proposed in the paper
makes no assumption on the structure of uncertainty due to
underlying processes or measurement errors. This makes it
difficult to isolate the uncertainty due to model structure
from measurement uncertainty. However, more often than
not, the assumptions on error structure (not just distribu-
tional but also how the model error enters the assumed
error structure) do not hold. It is in this respect, i.e., of not
distinguishing between different sources of error, that the
presented method is similar in essence to the generalized
likelihood uncertainty estimation (GLUE) methodology
[Beven et al., 2008]. The measurement uncertainty may,
however, be isolated from model structure uncertainty by
using noise (due to measurement error) adapted data based
on measurement error benchmarking studies [McMillan et
al., 2012].

[6] Thus a motivation behind this paper is to propose a
model selection and deficiency assessment approach that is
atleast not constrained by the requirement to possess
“strong” a priori information about reality [Vapnik, 2002,
p. 118]. Quantile hydrological model selection and assess-
ment of model structure deficiencies based on it is therefore
proposed. Its central idea is that a bias in model estimation
by a method that does not assume any error model contains
useful information on model structure deficiencies. Further,
such an assessment is holistic when it is over the entire
range of predictions (such as quantiles of flows with quan-
tiles ranging from 0 to 1) of a model structure. It employs a
loss function of Koenker and Basset [1978], based on abso-
lute deviations, as an objective function for estimating
models that removes the need to identify quantiles of an
observed time series.

[7] A deficient model structure constrains how well a
quantile of observed variable of interest can be modeled.
Different model structures may constrain its prediction of
the same quantile in different manner, introducing different
bias in predicting observed quantiles over a range of quan-
tile values. The paper demonstrates that quantile model
selection incorporates quantile specific bias due to model

structure deficiencies in the asymmetric loss function. The
loss function thereby allows an ordering of model struc-
tures based on their flexibility to model a quantile. Further,
model structure deficiencies may induce two quantile pre-
dictions of a model structure to cross, yielding a useful di-
agnosis of structure deficiency. The methodology in the
paper thus provides both quantile model predictions for a
given model structure and insights into model structure
deficiencies for a collection of model structures.

[8] Quantile hydrological model selection is not the same
as a standard quantile regression where the underlying
model space is of linear functions. Though the standard
quantile regression is also a quantile model selection prob-
lem, its model space is restricted (since it is linear). Thus,
the extension of quantile model selection to a hydrological
model space is nontrivial. This is where the need to formally
analyze the properties of quantile “hydrological” model
selection arises. One property that is crucial is the noncross-
ing of quantile predictions [Koenker and Basset, 1978 ; Key-
zer and Pande, 2009]. The conditions under which quantile
predictions do not cross therefore need to be made explicit.
Its formal treatment is beneficial as it formalizes the notion
of model bias due to model structure deficiencies and the
conditions reveal that if quantile hydrological predictions
cross, it is due to model structure deficiency. It also reveals
that bias in predicting observed quantiles due to structure
deficiencies is independent of model parameter dimension-
ality and is time invariant. These are two strong properties
that further allow us to compare different structures in terms
of its structural deficiencies.

[o] This paper develops the theory of quantile hydrologi-
cal model selection and deficiency assessment. Its compan-
ion paper [Pande, 2013] implements the theory in detail
and studies cases of a parsimonious dryland model devel-
oped for western India [Pande et al., 2012a, 2011, 2010],
model structures for Guadalupe river basin [Schoups
and Vrugt, 2010] and validates the performance of quantile
model selection and deficiency assessment on French
Broad River basin data using a flexible model structure.

[10] The paper is organized as follows. Section 2 first
introduces the methodology, with implementations on a lin-
ear regression model, on a simple three-parameter hydro-
logical model with a threshold and two case studies with
complex hydrological models as examples. The latter three
studies also compare and contrast the approach with Bayes-
ian and point statistics approaches to model selection to
elucidate the utility of the approach. A formal analysis of
quantile hydrological model selection is then presented in
section 3 that expands upon and generalizes the observa-
tions made in section 2. Section 4 then discusses the formal
results, finally concluding with section 5.

2. Methodology

2.1.
[11] Consider a data generating processes DGP1,

An Example of Quantile Regression

Vi = O.SXI' + 0.2+ &,
£ = 1;

where, x; is independently and uniformly distributed, 7 is
normally distributed with mean 0 and variance 0.25, and i
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Quantile model selection describes the (a) concept behind quantile model selection, T is the

true model output space while M* indicates optimized model output space as a result of chosen structure
(b) three different quantile (25, 50, and 75 percentiles) linear models on data generated by DGP1 are
obtained such that the ratio of number of positive to negative residuals are /4, 1, and 3/4 respectively.
(c and d) The frequency distributions of the residuals for 25 and 75 percentile models, shown in Figure
1b, showing that ratio of positive to negative residuals is approximately !/3 and 3/4 respectively.

indexes data points with i=1,..., N where N is the sample
size.

[12] Let us assume that one can regress a 7 quantile spe-
cific parametric (linear) function y . = a,x + b, by mini-
mizing a certain objective function (to be discussed in
section 2.2) S, such that the frequency ratio of resulting
positive residuals, i.e., y; —y ;, > 0, to negative residuals,
ie,yi—y,;.<0,is 7/(1 — 7). This is described by Fig-
ures 1b—1d. Figure 1b shows the data set and displays three
linear functions corresponding to 7=10.25, 0.5, and 0.75.
Figures 1c¢ and 1d show the frequency distribution of resid-
uals corresponding to 7=10.25 and 0.75. Note that the esti-
mation of parameters {a,,b;} such that frequency

(y . < y) /frequency (}7 > y) = 7/1 — 7 is equivalent to
finding a prediction model y . that matches the 7th quantile
of observed y (since frequency (j/ < y) = 7). Note that

this example is a case when the model structure (a set of
linear functions) contains the “truth” since DGP1 is a lin-
ear function with a random intercept that has variance pro-

portional to x*. Thus the model structure used in not
binding (is not constraining the predictions or is not defi-
cient). At the same time note that the three quantile predic-
tions do not cross. This may indicate that the quantile
predictions do not cross when a model structure is not bind-
ing. Quantile specific parameter estimation, under no con-
straints posed by the model structure (here model structure
is class of linear functions), is therefore equivalent to an
inverse method of quantile matching that Q-Q plots other-
wise aim to verify.

[13] Figure la further describes a situation when a given
model structure is deficient. It shows a two-dimensional
output space, wherein each axis represents a dimension cor-
responding to a data point. Thus, the output space is N
dimensional when N is the sample size. T is the “true”
model output space, which is a collection of all possible
output points mapped by nature as a result of all possible
input forcings x. Let the dashed lines in T represent its
three quantiles (say 0.25, 0.5, 0.75 quantiles). A quantile
observation y conditional on a given input forcing x (shown
by red circles in T) is located on these iso-quantile lines of



PANDE: QUANTILE MODEL SELECTION

T. Consider a model structure &= {m(a):a € A} as a
collection of several models m(«) which result from a cer-
tain choice of parameter values. This equivalently repre-
sents a model structure output space. Figure la represents
optimized model output space M* such that some measure
of distance between observed quantile and modeled quan-
tile prediction is minimum for each quantile and for a given
input forcing x. This norm measures the distance between
two points in the output space and is shown in Figure 1a by
the magnitude of lines connecting points on iso-quantile
lines of T and M*. A nonlinear monotonic function of this
measure is called asymmetric loss function p, in this paper
(also referred to as the loss function of Koenker and Basset
[1978]).

[14] We show in the following section that two model
structures that differ in its deficiencies to encapsulate T
have different p, curves. The closeness of p, curve to 0 can
judge the least deficient model structure in a pair. This
forms a basis to compare different model structures.

2.2. Implementation of Quantile Model Selection
on Arbitrary Model Structure

[15] Consider an observed data set {y;,x;},_, , where
v €R, x; € RM. Here N is the sample size and M is the
dimensionality of x;. Let X be a N x M matrix with x; being
the ith row. Let F = {f(p;x),p € A } be a class of func-
tions whose parameter set ff needs to be estimated from the
observed data set. A 7-quantile specific function and corre-
sponding parameters are estimated by minimizing an asym-
metrically weighted loss function [Koenker and Basset,
1978] p,.,

XN: [ =m)lyi =/ (Bixi) - + 7l =/ (Bs i)l ).
Here,
i —/ (B x| {|yx* ()l o 3=/ (Bix) <0
and
i — /(B {'yt— (b5 i S %) >0

[16] The above estimation can alternatively be formu-
lated as (QE1) [see Keyzer and Pande, 2009],

N
W(r;y,X) = min [(1—7)e; +7¢]
B g g P
st
yi—f(Bixi) —gf <0
—vi+f(Bixi) —e7 <0
e.er >0

[17] This formulation can be extended to conceptual
water balance models, which is the scope of this paper, as
in the following simple generalization. Let S, denote the
storage of a reservoir and let its outflux be a function of the
storage denoted by f(S;, k). Here k € K represents a set of
parameters (for example, slow and fast runoff coefficients),

K represents the range of parameters and corresponds to a
particular model structure. Let {y,x},_, , represent
observed data set where y, € R., x; € §R+ represents
observed outflux and input forcing, respectively, at time .
Let x = {x;},_, y represent the input forcing vector and
let S, be the initial soil moisture condition. A 7-quantile
specific function and the corresponding parameters based
on outflux observations can be estimated by the program

(QE2):

N
W(r;y,x) = min [(1-7)e, +7¢]
keK.e, e/ 547
st
Ve 7f(Stak) - 8?’ S 0
v +f(S,k)—g7 <0
St+l =S =x _f(Sn k)

+ -
ele, >0

2.3. A Comparison of Quantile Model Selection With
Bayesian and Point Statistics Based Inference

[18] Three case studies now examine quantile model
selection and contrast it with Bayesian and point statistics
based inference. Two of these studies are synthetic in na-
ture. The section concludes with a synthesis of observations
from the three case studies and conceptually illustrates how
quantile model selection incorporates structural deficiency
assessment. These arguments are then formalized in the
theory presented in section 3.

[19] A common theme across the three case studies is the
inference (or the estimation) of models from deficient
model structures. This is achieved in the first two case stud-
ies by synthetically generating time series of streamflow
based on models that are more complex than the model
structure(s) used for inference. In the third case study, a
real data set is used to infer models using two model struc-
tures under an assumption that a model structure is always
deficient.

[20] The first case study synthetically generates a stream-
flow data set using a linear reservoir model with a threshold
on a synthetic rainfall time series. It then uses a linear res-
ervoir model (without a threshold) structure to (i) infer
quantile models (one for each quantile for a range of quan-
tiles between 0 and 1) using quantile model selection, (ii)
infer posterior distributions of the recession parameter (the
only parameter of the linear reservoir model) using three
different likelihood measures, and (iii) compare and con-
trast the two approaches in terms of the diagnosis of struc-
tural deficiencies. In particular, the case study discusses the
validity of the three likelihood measures as probability
measures and the crossing of quantile predictions as a diag-
nostic of structure deficiency.

[21] The second synthetic case study builds upon the first
in complexity. It uses the climatic forcing of the French
Broad river basin over 5 years and uses a more complex
conceptual rainfall runoff model (with multiple parameters
and states) to generate a synthetic streamflow time series.
Two subcase studies are examined: without additive noise
and with 10% heteroscedastic Gaussian additive noise on
the synthesized streamflow. Two model structures (a linear
reservoir model and a linear reservoir model with a thresh-
old) are then used to infer models. The inference is again
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based on quantile model selection and Bayesian inference
using a general likelihood function. Three approximations
of the marginal likelihood that are often used for Bayesian
model selection are used. The two inference methods are
again compared and contrasted with particular attention to
(i) how the crossing of quantile predictions is associated
with the degree to which a model structure is deficient
(measured by approximation of bias in predicting quantiles
that result from the deficiencies), (ii) how the crossing of
quantile predictions identifies the quantile locations of
model structure deficiencies, and (iii) how the ordering of
model structures based on the loss function of quantile
model selection ranks model structures and contrast it with
the orderings based on Bayesian measures and point
statistics.

[22] The third case study adds more complexity to the
second case study by using the French Broad river basin
data set and inferring models using two complex concep-
tual rainfall runoff model structures (with multiple parame-
ters and states), a linear reservoir with a threshold model
structure and a linear reservoir (without a threshold) model
structure. All four model structures are such that they are
nested. A comparative analysis between the approaches as
in the second synthetic case study is again performed.

[23] In all the three case studies, the asymmetric loss
functions are minimized using the SCE-UA algorithm
[Duan et al., 1992]. SCE-UA searches for a global opti-
mum by independently (but periodically shuffled) evolving
m complexes each containing p parameter sets based on
operations such as expansion, contractions and reflection.
Readers are referred to Duan et al. [1992] for additional
details. For the study m is fixed at 20, p =41 with a conver-
gence criteria of 0.1% (change in objective function) and
the search is terminated after 100,000 objective function
evaluations if no convergence is achieved.

2.3.1. Inference of a Linear Reservoir Model on Data
Synthetically Generated by a Thresholded Linear
Reservoir Model

[24] This section discusses quantile model selection and
contrasts it with Bayesian inference based on three likeli-
hood measures. Both the approaches infer a linear reservoir
model (a one parameter model) on a synthetic data set gen-
erated by a linear reservoir model with a threshold (a three
parameter model).

[25] Figure 2a displays the linear reservoir with a thresh-
old model, with two recession parameters, for slow (k [1/
T]) and fast runoff (k; [1/T]) respectively and a threshold
Smax [L]. A data set, D, of total flow of length N=150 is
generated (observations representing the underlying proc-
esses) by assuming {k, ki, Smax } = {0.1,0.5,3} and forcing
the model with a triangular type rainfall. Figure 2b shows
the precipitation forcing, total and overland flows where
the latter represents the fast component of the flow when
the storage exceeds Sya.x. The max (and similarly min)
operators are smoothed as max(a,b) — log(exp
(a) + exp(b)). The threshold is therefore smoothed.

[26] A linear reservoir without a threshold model struc-
ture is then used to identify models that best represent the
underlying processes. A linear reservoir with a threshold
model structure contains the linear reservoir without a
threshold model structure (since the latter is the former
with infinite threshold). Data that are generated by a linear
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Figure 2. The synthetic case study of a thresholded linear
reservoir model: (a) the thresholded linear reservoir model
and (b) simulated synthetic data, D, that includes rainfall
and flow over T = 50 time steps.

reservoir with a finite threshold model is used to infer a lin-
ear reservoir model (that is without a threshold). The linear
reservoir model structure without a threshold is therefore
deficient in representing the data. Such structure deficiency
is nontrivial and nonideal especially because the error (re-
sidual) structure is complex. As is shown later in this sec-
tion, even a complex likelihood function is unable to
replicate it. No noise is added to the data for two reasons:
(1) the added noise can only represent measurement errors
since the structure error has already been represented and
the quantile model selection does not distinguish between
structure and measurement errors (though it can done based
on a priori specification of measurement errors based on
benchmarking studies (such as McMillan et al. [2012]) and
(2) the induced error structure is complex enough, addi-
tional complexity by adding noise to it is a relative
distraction.

[27] We first consider a Bayesian approach by using
three likelihood functions: Gaussian, Laplace, and the Gen-
eralized Likelihood (GL) function of Schoups and Vrugt
[2010]. The Kernel density Independence Sampling based
Monte Carlo Scheme (KISMCS) is used for sampling pa-
rameters from the likelihood functions. Further details of
KISMCS are provided in Appendix A. We note that param-
eter, 6, sampling based on any likelihood function L(6, D)
is a sampling from its corresponding posterior P(6|D) only
when the likelihood function is fully specified [Davidson
and MacKinnon, 2004, p. 399]. Here full specification
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Sampled distribution of a single reservoir model’s parameter, k; [1/T], using three likelihood

function (Gaussian, Laplace, and Generalized) on data D. 10 quantiles (0.05:0.10:0.95) of the parameter
distribution over 10 MCMC simulations are shown in the first row. The blue line in each of the three sub-
plots represents the true parameter value (= 0.1). The second row show the log-likelihood values of the
sampled parameter points once KISMCS has converged for each of its 10 simulations.

means that even if the model (as represented by a parame-
ter set #) belongs to a deficient model structure, the likeli-
hood function specifies the missing information (the
deficiency) correctly. It is widely accepted that estimation
of a model based on an incorrectly specified (or misspeci-
fied) likelihood function leads to results that are often
meaningless or misleading [see, e.g., White, 1982; Berk,
1966; Fisher, 1922].

[28] The description of error, made by a single parameter
linear reservoir without a threshold model in representing a
thresholded three parameter linear reservoir model (the
underlying process), by Gaussian or Laplace distribution is
not its full specification. The general likelihood function of
Schoups and Vrugt [2010] offers a better alternative but
still it is not a full specification. It ignores the correlation
between model prediction and residuals when the model
structure is deficient. In practice though and in the synthetic
study here, it apparently leads to biased parameter esti-
mates (though smaller bias than when using the other two
likelihood functions) of the single reservoir model. Thus
one may conjecture that a model specification with GL will
grow weaker when the bias effect due to model prediction-
residuals correlation grows stronger relative to other struc-
tural deficiency effects.

[20] Figure 3 corroborates these statements. Its shows
the distribution over 10 runs of KISMCS of 10 quantiles of
the sampled parameter of the linear reservoir model
inferred from the synthetic data D. Note that D is generated
by a linear reservoir with a threshold model with parame-
ters {k, ki, Smax} = {0.1,0.5,3}. Since the linear reservoir

model with a threshold subsumes a linear reservoir model,
the “true” recession parameter of the linear reservoir sub-
sumed in D is k=0.1.

[30] The second row of Figure 3 displays the log-
likelihood values, solely to demonstrate consistent conver-
gence of KISMCS. The Gaussian and Laplace likelihood
function lead to parameter sampling that appear to be more
biased than GL based, indicating better but not complete
specification of structure deficiency by the GL function.
The “true” value of the linear reservoir model is indicated
by the blue line. Again we note that the “true” value of the
linear reservoir without a threshold model when the under-
lying “truth” is a thresholded linear reservoir corresponds
to the slow flow component since it is only the slow flow
component of the total observed flow that can possibly be
identified by a linear model conceptualization.

[31] All three likelihood functions yield point (and true)
estimates of the parameters when the thresholded linear
reservoir model structure (the “true” structure) is used
instead of a linear reservoir model structure (without a
threshold) (not shown here).

[32] Finally Figure 4 shows the performance of quantile
model selection using the single linear reservoir without a
threshold model structure on the data set D. We note that
its implementation does not require full specification since
one is interested in relating the loss function to structural
deficiencies. It is sufficient that the loss function measures
some distance to reality. Figure 4a shows that 0.05-0.95
quantile prediction coverage does not cover all the observa-
tions as a direct consequence of structural deficiencies.
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and (c) the asymmetric loss function values for the two model structures (“truth” = the thresholded lin-
ear reservoir model, “linear” = linear reservoir model) over the quantiles.

[33] Further, the fifth-percentile prediction crosses the
95th percentile prediction. The observations contain infor-
mation on the thresholding behavior of the flow that the
model structure (of a linear reservoir without a threshold) is
unable to replicate. This restricts the predictions of its best
performing models at certain quantiles. The degree to
which the structure binds (restricts) the prediction of its
best performing model at a quantile captures the essence of
model structure deficiency. These restrictions appear to be
different at low flows and high flows, implying that struc-
tural deficiency is different at different flow quantiles. The
low flows and high flows are inaccurately predicted, due to
uneven deficiencies over quantiles, to the extent that low
flow predictions cross the high flow predictions. The cross-
ing of quantile predictions thus diagnoses structural
deficiency.

[34] It needs to be emphasized here that structural defi-
ciency need not always lead to the crossing of quantiles.
The connection between the crossing of quantile predic-
tions and structural deficiency is further analyzed in the fol-
lowing subsections and formalized in section 3.

[35] Figures 4b and 4c show the distributions of quan-
tiles over 10 simulations and the asymmetric loss function
values for the “truth” (i.e., when a linear reservoir model
with a threshold model structure is used for inference) and
the linear reservoir without a threshold model structure.
Figure 4c points to the possibility that as one reduces struc-
tural deficiency at each quantile, through structural
improvement, the loss function moves towards zero at each
quantile. The parameter distribution in Figure 4b is also in-
terpretable, being the parameter values corresponding to
the respective quantile predictors.

[36] Quantile model selection provides true estimates of
the parameters when the true model structure is used (not
shown here) and the estimates are constant across quantiles.
2.3.2. Inference Using Deficient Model Structures on
Data Synthetically Generated by a Complex Rainfall-
Runoff Model

[37] The French Broad river basin data climatic forcing
data of 5 years (1970—-1975) is used to generate a synthetic
streamflow time series. A complex conceptual rainfall run-
off model with multiple states and parameters is used to
generate the synthetic streamflow (see Appendix C for the
description of model structure 3 used for streamflow gener-
ation, its structure and the parameter values used). In order
to focus solely on the impact of nonlinear mapping of
effective precipitation to streamflow, the evaporation
scheme of the complex model is suppressed. It is done by
forcing the evaporation flux of the model to be equal to the
minimum of observed precipitation and potential evapora-
tion. Further, two sets of synthetic streamflow data sets are
generated : one without any additive noise and one in which
10% heteroscedastic Gaussian noise that is added to the
generated streamflow.

[38] The linear reservoir without a threshold model
structure (structure 1 in Appendix C) and the linear reser-
voir with a threshold model structure (structure 2 in Appen-
dix C) are then used to infer quantile models (note that a
quantile model is a model inferred using a model structure
at that quantile; thus multiple quantile models are obtained
for each model structure). Nine quantiles values ranging
from 0.1 to 0.9 are considered.

[39] Figure 5 compares the quantile model predictions of
the two model structures. Both the models structures have
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Figure 5. Synthetic case study. The time series perform-
ances of quantile models selected from (a) model structure
1 (linear reservoir without a threshold model structure) and
(b) model structure 2 (linear reservoir with a threshold
model structure) are shown. Both the structures have evap-
oration defined as min(precipitation, potential evaporation).
The y axis is in log scale. 80% quantile confidence interval,
median model predictions, and observations for the last 75
days of 1970-1975 calibration period are shown. The 80%
qCI for the two model structures are tight and overlap with
the median prediction.

tight quantile confidence interval (the confidence quantile
interval is 80% since the quantiles range from 0.1 to 0.9).
The incapacity of the model structure 1 to replicate the
observed low flows is evident. Meanwhile, both the model
structures slightly overpredict medium flows (falling and
rising parts of the time series). An underprediction (over-
prediction) of an observed quantile is equivalent to predict-
ing the quantile with a positive (negative) bias. It is
necessary to emphasize that this bias is not the bias that is
estimated by averaging the errors in predicting a time series
over its length. It is a quantile specific bias that represents
the error that a model makes in replicating the observed
quantile of a variable of interest. See, for example, equation
(3.3a) for its formal specification. Figure 6 shows an ap-
proximate estimation of the bias in predicting various quan-
tiles (formal specification of the bias is provided in section
3 and the details of how the approximation is estimated are
provided in Appendix D). It shows that the main difference
between the model structures is the positive bias of model
structure 1 at low quantiles. The result suggests that the ab-
sence of a threshold affects the performance of a model at
low flows. This is also observed in Figure 5a when con-
trasted with the performance of model structure 2 (a linear
reservoir with a threshold model structure) in Figure 5b.
Both the model structures appear to have biases of same
(negative) sign in predicting medium quantiles. This is pos-
sibly due to the absence of multiple reservoirs. We note
here that the estimated bias is an approximation (a first-
order one, see Appendix D). The consideration of now
ignored higher order terms may further differentiate the
two model structures in terms of their structural deficien-
cies. Nonetheless, Figure 6 clearly demonstrates that the

structure 1 is more deficient than the structure 2 due to the
absence of a threshold though both the model structures are
deficient.

[40] The asymmetric loss function contains complete in-
formation about model structure deficiencies at various
quantiles (this is formally shown in section 3). Figure 7
shows the asymmetric loss functions for the two structures.
It shows that structure 1 is more deficient than structure 2
at all considered quantiles. This additional evidence sup-
ports the argument that structure 1 is more deficient than
structure 2 at least in predicting low flows. Point statistics
such as coverage probability (percentage of observations
that lie within the 80% qCI), Nash-Sutcliffe, standard bias
(the mean error in predicting a time series) and mean abso-
lute error are also considered (shown in the figure). They
are calculated on prediction models that are obtained from
the respective model structures by minimizing mean abso-
lute error (a standard performance metric). These statistics
also support the argument that model structure 1 is more
deficient than model structure 2.

[41] The question whether structural deficiency leads to
quantile prediction crossing is now considered. It is not
counterintuitive that quantile predictions may cross over
time when different predictions have different biases. A de-
ficient model structure though need not necessarily lead to
its quantile predictions to cross over time. However, if
quantile predictions do cross then the model structure is
surely deficient (this is formally shown to hold in section
3). Do quantile predictions cross in either of the structural
deficiency cases considered in this section?

[42] In order to demonstrate whether the quantile predic-
tions cross, the number of quantile prediction crossing is
calculated based on the ordering of quantiles predictions at
each (daily) time step (over 6 years of data). If quantile pre-
dictions do not cross then the predictions have the same
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Figure 6. Synthetic case study. The first-order bias (\)
approximations of the model structures defined in Figure 5
across a range of quantile values between 0 and 1 are
shown. Structure 1 has positive bias at low quantiles (low
flows). Both the model structures have negative bias at me-
dium quantiles (medium flows). Model structure 2 has neg-
ative bias in replicating low quantiles (low flows) as well.
Structure 1 appears to be more deficient than structure 2 at
nearly all the quantiles.
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Figure 7. Synthetic case study. Asymmetric loss function
(p,)) for model structures defined in Figure 5 at various
quantile values 7. The loss function values are quantile-
wise closer to 0 for structure 2 than structure 1. Also shown
are the traditional statistics of median predictors from the
two model structures. The subscripts correspond to a model
structure; CP = fraction of observations covered by the
80% qCI, NS =Nash-Sutcliffe, BS=standard bias,
AE = 0.5 * mean absolute error.

order as the set of quantiles values {10%, 20%, 30%, ...,
90%}. That is, at a considered time step the 10% quantile
prediction is below the 20% quantile prediction, the 20%
quantile prediction is below the 30% quantile prediction
and so on. If quantile predictions cross then the ordering of
the predictions is one possible permutation of the set of
quantile values. Thus if quantile predictions do not cross at
a given time step then the number of quantile prediction
crossings is 0. The maximum number of quantile prediction
crossings at a particular time step is the number of permuta-
tions of the set of quantile values. A kernel density estimate
of the number of quantile crossings with flow magnitudes
at corresponding time steps is then created to demonstrate
the “density” of quantile crossing at different flow levels.
Since model structure deficiency is a necessary but not a
sufficient condition for quantile prediction crossing, the lat-
ter can only in certain circumstances be used to assess the
differences in structural deficiencies of two model struc-
tures. The “density” of quantile prediction crossing of two
structures is however expected to be different if the differ-
ence in respective deficiencies is large.

[43] Figure 8 plots these densities for the two model
structures. The quantile prediction crossings are dense at
low flows for both the structures.

[44] Finally, three Bayesian model selection criteria are
estimated for the two model structures. These criteria are
BIC, harmonic mean of the log-likelihood values of param-
eter sets sampled from the posterior distribution [Kass and
Raftery, 1995] and the marginal likelihood approximation
of Chib and Jeliazkov [2001] used in Marshall et al.
[2006]. Details of Bayesian model structure selection crite-
ria are described in Appendix E. KISMCS is used to sample
points from the posterior parameter distributions of the two
model structures. The GL function is used (as discussed in
section 2.3.1).

[45] Table 1 compares the quantiles of the obtained pos-
terior distribution using KISCMS as well as the Bayesian
model selection criteria for the two model structures. It also
provides the parameter values and the asymmetric loss
function of quantile prediction models (that use quantile
model selection to infer the prediction models). We here
re-emphasize that the quantiles of the posterior distribution
are not pointwise comparable with the parameters of the
quantile prediction models. The ranges of the obtained pa-
rameters can, however, be compared. The “true” parameter
values are K; = 25 days and Ky = 4 days. One expects to
retrieve these values or atleast one of them if the problem
of model selection is well specified. For example, consider
the case of Bayesian inference of a model using a linear
reservoir model structure without a threshold. If the likeli-
hood function specifies all the processes that the linear res-
ervoir model structure does not consider (such as the
overland flow, routing of the total flow and percolation
from the unsaturated zone), then the parameter value corre-
sponding to the slow flow (K, = 25 days) can be retrieved.
But if the likelihood function does not completely specify
all the missing processes, biased valued may be obtained.

[46] Table 1 demonstrates that biased parameter esti-
mates are achieved through Bayesian inference. In the lin-
ear reservoir without a threshold model structure, the
estimated parameter distribution lies between 25 and 4
days (true values of the parameters corresponding to the
fast and slow responses). Such biased performance, though
to a lesser extent, persists in the case of linear reservoir
with a threshold model structure. The parameter ranges in
this case appear to be closer to the true values. The three
Bayesian criteria are close to each other for each of the
considered model structures and support the preference of
the linear reservoir with a threshold model structure over
the linear reservoir model structure (without a threshold).

[47] The inferred parameter distributions shift to lower
magnitudes under 10% heteroscedastic errors. The
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Figure 8. Synthetic case study. Kernel density estimates
of the number of crossing of quantile predictions for model
structures as defined in Figure 5. It displays the density of
quantile crossing with the magnitude of flows. The quantile
crossings are dense at low flows for both the models, indi-
cating that both the model structures are deficient.
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Table 1. A Comparison of Bayesian Inference Using a GL Function With Quantile Model Selection for Two Model Structures
(1 =Linear Reservoir Without a Threshold Model Structure; 2 = Linear Reservoir With a Threshold Model Structure) on 6 Years of

Synthetically Generated Daily Streamflow”

No Noise 10% Heteroskedastic Gaussian Noise
10th Percentile 50th Percentile 90th Percentile 10th Percentile 50th Percentile 90th Percentile
Bayesian Inference With a General Likelihood (GL) Measure
Model structure 1
K, 15.53 16.40 17.30 10.27 10.79 11.27
BIC =—-684.9 HM1 =—-667.1 HM2 = —725.8 BIC=—1431.1 HM1 = —1412.0 HM2 = —1465.9
Model structure 2
K, 25.36 28.97 33.49 16.66 20.17 24.13
K, 9.40 9.70 9.90 6.05 6.45 6.84
BIC =—-500.1 HM1 = —479.4 HM2 = —541.1 BIC =—1278.1HM1 = —1298.5 HM2 = —1330.2
No Noise 10% Heteroskedastic Noise
10th Percentile 50th Percentile 90th Percentile 10th Percentile 50th Percentile 90th Percentile
Quantile Model Selection
Model structure 1
pPr 0.20 0.20 0.20 0.23 0.23 0.24
K, 6.04 6.03 6.01 6.03 6.02 6.02
Model structure 2
K, 14.14 14.23 14.28 14.83 14.86 14.88
Ky 5.33 533 5.33 5.47 5.46 5.46
Dy 0.17 0.17 0.17 0.20 0.20 0.20

“The data are generated using a complex rainfall-runoff model. Two cases of no noise and 10% heteroscedastic Gaussian noise are considered. See sec-

tion 2.3.2 for further description.

parameter distribution for the linear reservoir without a
threshold model structure remains between 4 and 25 days.
Meanwhile, the inferred parameter ranges for the linear res-
ervoir with a threshold model structure appear to have
moved closer to the true parameter values. The Bayesian
model selection criteria again support the preference for the
linear reservoir with a threshold model structure over the lin-
ear reservoir without a threshold model structure. The crite-
ria values under heteroscedastic noise case are lower for the
two model structures than the corresponding criteria values
under no noise case. This is attributable to higher noise to
signal ratio in the former case than in the latter case.

[48] Quantile model selection infers recession parame-
ters in a relatively robust manner (across the noise levels)
for the two model structures. This is because the 80% quan-
tile ranges, i.e., the difference between the 10th and the
90th percentile, of the parameters are small. The estimated
parameters of the linear reservoir without a threshold
model structure corresponding to the 10%, 50%, and the
90% quantile models are closer to 4 days (true parameter
value corresponding to fast flow). Meanwhile, in the case
of linear reservoir with a threshold model structure, the
quantile parameter estimates corresponding to fast (over-
land) flow are closer to 4 days and the quantile parameter
estimates corresponding to slow flow are closer to 25 days.
Nonetheless, the quantile parameter estimates for both the
model structures and noise levels remain biased as a result
of inherent structural deficiencies. The asymmetric loss
functions for both zero noise and 10% heteroscedastic noise
cases support the preference of the linear reservoir with a
threshold model structure over the linear reservoir without
a threshold model structure. For a given model structure,
the asymmetric loss function increases in magnitude with
noise level for each quantile value. This is possibly due to
increasing noise to signal ratio.
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[49] Quantile model selection did not assume any noise
model when inferring parameter distributions under the
10% heteroscedastic noise case. Yet quantile model selec-
tion is robust in inferring the parameters of the two model
structures. However, a general description of noise in quan-
tile model selection may isolate hydrological model struc-
tural deficiencies better than quantile model selection
without a noise model.

2.3.3. Inference Using Model Structures With
Increasing Complexity on French Broad Basin Data

[50] The two model structures that are used for inference
and the model structure that is used to generate the syn-
thetic data in the previous section are 3 of the 4 model
structures used in this section. The fourth model structure
is the flexible model structure described in Appendix C that
models evaporation as a nonlinear function of unsaturated
zone storage. Thus, the structure complexity varies gradu-
ally in terms of its nonlinearity. The simplest structure is
the linear reservoir without a threshold model structure
(model structure 1) with evaporation defined as the mini-
mum of daily precipitation and potential evaporation. A
fundamental nonlinearity is introduced by considering a
linear reservoir with a threshold model structure (model
structure 2). It also has evaporation defined as minimum of
precipitation and potential evaporation. The third model
structure (model structure 3) has multiple reservoirs,
smooth (thresholded) transformation of precipitation to
overland flow (with a thresholded response as a particular
case) and defines evaporation as the minimum of precipita-
tion and potential evaporation. It is more complex than the
first and second model structures. The fourth model struc-
ture (model structure 4) is most complex of all the struc-
tures. Note that the 4 model structures are nested in the
sense that model structure 1 is a special case of model
structure 2, model structure 2 is a special case of model
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Figure 9. French Broad river basin case study. The time series performances of quantile models
selected from (a) model structure 1 (linear reservoir without a threshold model structure), (b) model
structure 2 (linear reservoir with a threshold model structure), (c) model structure 3 (a complex model
structure with multiple states but with evaporation = min(precipitation, potential evaporation), and
(d) model structure 4 (same as model structure 3 except that the evaporation is a nonlinear function of a
storage that represents the unsaturated zone) are shown. The 80%qCI gradually increases in width with
increasing complexity of model structures from 1 to 4. The y axis is in log scale. 80% quantile confi-
dence interval, median model predictions and observations for the last 75 days of 1970—-1975 calibration

period are shown.

structure 3 and model structure 3 is a special case of model
structure 4. The daily streamflow, precipitation and poten-
tial evaporation data of French Broad River basin from
1970 to 1975 are used. The KISMCS sampler with General
Likelihood measure (used in section 2.3.1) and 3 Bayesian
model selection criteria used in the previous sections are
used for Bayesian inference. Point statistics such as cover-
age probability (percentage of observations that lie within
the 80% qCI), Nash-Sutcliffe, standard bias (the mean error
in predicting a time series) and mean absolute error are also
considered. They are calculated on prediction models that
are obtained from the respective model structures by mini-
mizing mean absolute error (a standard performance
metric).

[s1] Figure 9 plots the performance of quantile model
selection for the four model structures over the last 75 days
of 1970-1975 period. The deficiencies of model structures
to explain the observations reduce with increasing com-
plexity. Note that quantile predictions of model structures 1
and 2 are tight as indicated by its 80% quantile confidence
interval (80% qCI). However, structure 1 is most deficient
in explaining medium to low flows. Model structure 3 has
slightly looser 80%qCI but appears to have similar struc-
tural deficiency as model structure 2. Finally, model struc-
ture 4 is the least deficient structure with widest 80% qCI.
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[52] Figure 10 plots the first order approximation of bias
in quantile prediction (formal specification of the bias is
provided in section 3 and the details of how the approxima-
tion is estimated are provided in Appendix D). The first
three model structures show bias in predicting low to me-
dium quantiles while structure 4 has relatively minor bias
in predicting any of the quantiles. Overall, model structure
deficiency reduces as one move from structure 1 to struc-
ture 4 for nearly all quantiles. Further, model structures
1 and 2 appear to have lower bias than structure 3 in pre-
dicting lowest 2 quantiles. It may be due to the approximate
nature of bias estimation (higher-order terms may reveal
additional differences).

[53] Figure 11 plots the asymmetric loss functions for
the four model structures. The asymmetric loss function at
a given quantile contains full information about structural
deficiency in predicting the quantile. This is formally
shown in section 3 (see Proposition 4). The figure demon-
strates that model structure 1 is the most deficient structure
while model structure 4 is the least deficient model struc-
ture. Further, model structure 2 is less deficient than model
structure 1 for all the quantiles. The model structure 3 is
less deficient than model structure 2 at lower quantiles
while they are indistinguishable in their deficiencies at
higher quantiles. The lower deficiency of model structure 3
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Figure 10. French Broad river basin case study. The first-order bias (\) approximations of model struc-
tures as defined in Figure 9 across a range of quantile values between 0 and 1 are shown. The bias gradu-
ally decreases with increasing complexity especially at low to medium quantiles.

can be attributed to a distributed representation of rainfall-
overland flow thresholding behavior as well as richer con-
ceptualizations of percolation, slow flow and flow routing.
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Figure 11. French Broad river basin case study. Asym-

metric loss function (p,)) for model structures defined in
Figure 9 at various quantile values 7. The loss function val-
ues are quantile-wise closest to 0 for structure 4 and far-
thest for structure 1. The asymmetric loss function thus
orders structures 1, 2, 3, and 4 as decreasing in structural
deficiency. Also shown are the traditional statistics of me-
dian predictors from the 4 model structures. The subscripts
correspond to a model structure; CP = fraction of observa-
tions covered by the 80% qCI, NS =Nash-Sutcliffe,
BS = standard bias, AE = 0.5 * mean absolute error.
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The model structure deficiencies of structure 4 are signifi-
cantly lower than the other three structures for nearly all
the quantiles. This can be attributed to the evaporation
scheme that the first three model structures suppress.

[54] The three Bayesian criteria (Table 2) further support
the argument that deficiency decreases from structure 1 to
structure 4. The point statistics, i.e., coverage probability
(percentage of observations that lie within the 80% qCI),
Nash-Sutcliffe, standard bias (the mean error in predicting
a time series) and mean absolute error (Figure 11), also
suggest the same. It is worth mentioning that Nash-
Sutcliffe and standard bias statistics suggest that structure 1
is marginally less deficient than structure 2 while the other
two statistics suggest the opposite. The piecewise linear
recession limb of the observed streamflow (in log-scale)
around the day 1400 supports the latter (Figure 9), that a
linear reservoir response is indeed not an adequate
description.

[55] Figure 12 plots the density of the number of quantile
crossings with the magnitudes of the observed flows. The
density plots of quantile predictions reinforce the argument
that the model structures are deficient at low flow quantiles.
The quantile predictions cross at low flows for all the 4

Table 2. Bayesian Statistics for the Four Model Structures on
French Broad River Basin Case Study

Structure 1 Structure 2 Structure 3 Structure 4

BIC —497.80 —369.73 23.34 196.55
HM1 —479.39 —349.37 36.33 214.47
HM2 —537.00 —426.00 —32.71 167.55
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French Broad river basin case study. Kernel density estimates of the number of crossing of

quantile predictions for model structures as defined in Figure 9. It displays the density of quantile cross-
ing with the magnitude of flows. The quantile crossings are dense at low flows for all the models, though
structure 4 appears to have lower quantile crossings at low flow.

model structures though the number of quantile predictions
are low for structure 4.

2.3.4. Synthesis of Observations and a Conceptual
Description of Deficiency Assessment

[s6] The comparative assessment of model structures
based on first order bias estimation, asymmetric loss func-
tion and density of quantile crossing correctly reveals the
gradient of structure deficiencies over both synthetic and
real data sets. The quantile-specific deficiency assessment
provides local (in distribution) information on deficiencies
than a traditional statistics based method such as Nash-
Sutcliffe. The quantiles may be associated with the proba-
bility with which different processes combine. It is in this
sense that quantile model selection based deficiency assess-
ment may locally assess structure deficiencies. It also dis-
tinguishes between precision and accuracy of a model
structure in replicating observations of a variable of inter-
est. A simple model structure, such as a linear reservoir
model structure, has tight 80% quantile confidence interval.
This leads to poor coverage probability of predictions.
However, its structural deficiencies (bias in predicting
quantiles) depend on the underlying processes as well.

[57] The assessment of model structure deficiencies
based on quantile model selection is corroborated both by
traditional point statistics such as Nash-Sutcliffe, mean
absolute error and standard bias (mean of time series error
of a median prediction from the observed) as well as
Bayesian model selection criteria. The traditional statistics
are calculated on a model selected by minimizing mean
absolute error: a traditional performance metric. The
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Bayesian selection criteria are calculated on the posterior
parameter distribution using KISMCS (a Markov Chain
Monte Carlo sampler) and a General Likelihood measure
(used in section 2.3.1). It also provides quantile specific in-
formation on structure deficiency and does not assume full
specification, unlike traditional point statistics or Bayesian
based inference methods. Quantile specific model parame-
ters are also interpretable as those that correspond to a
model that attempts to predict the observed quantile. There-
fore, the parameter ranges obtained from Bayesian infer-
ence and quantile model selection are not always identical.

[58] The model structures considered in previous sec-
tions that increase in complexity are nested. Hence a more
complex structure can never be more deficient than a less
complex (but a nested) model structure since the latter is a
particular case of the former. A more complex model struc-
ture is as deficient as the nested but less complex model
structure in the worst case. In better cases, it is less defi-
cient due to the nonoverlapping structure that is missing
from the less complex structure that enables it to approxi-
mate the underlying processes better.

[59] The case studies infer a least deficient model struc-
ture at a particular quantile from a set of candidate struc-
tures based on the ordering of the asymmetric loss
functions of candidate structures at the quantile. One may
argue that large complexity of model structures may lead to
incorrect inferences. However, complexity can only mis-
guide structure selection on small sample size; a large sam-
ple size (as considered in the presented case studies) is
sufficient for accurately identifying structure deficiencies.
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Figure 13. An illustration of bias (\) and quantile cross-
ing for two model structures S1 and S2. Structure S1 is de-
ficient and underpredicts high flows (high quantiles), thus
A1 >0 at high quantiles. Structure S2 is deficient and over-
predicts low flows, thus A\, < 0 at low quantiles. A deficient
model structure may be such that bias has opposite signs at
high and low flows. The quantile predictions for a given
model structure may also end up crossing due to its
deficiencies.

This is because the effect of structure complexity on the
variation of its finite sample performance vanishes when
the sample size is sufficiently large (based on a law of large
numbers type argument).

[60] Figure 13 illustrates two extremes of model struc-
ture deficiency in streamflow prediction. A model structure
is unable to appropriately model low flows on one end
while the other model structure is unable to model high
flows on the other end. This deficiency of a model structure
to represent either low or high flows is also partly reflected
in its narrow qCI (quantile confidence interval).

[61] It also shows that two different quantile predictions
cross for a given model structure as a result. Figure 14 con-
ceptualizes the reason behind it for a simple case when the
length of a time series of a variable of prediction interest is
more than 2. Only two dimensions of the prediction (out-
put) space are shown. It shows the joint cumulative distri-
bution F(y) of observing a prediction variable of interest y,
where y is a 2-dimensional vector, y={y(1),y(2)}. Thus
for two given quantiles 7 = 0.2 and 7 = 0.3, (probable)
observations of y as a function of input forcing vector x can
be traced. These traces are represented by the dashed lines
on the cumulative distribution surface. Two red circles on
these two traces represent probable observation of y for a
given value of input forcing (say Xo). Different observa-
tions for the same value of input forcing (x() are allowed to
represent the stochastic influence of unobserved biotic or
abiotic variables on the variable of prediction interest. Let
the model structure that is used to infer quantile models of
the underlying process be more deficient in exglaining T =
0.2 than 7 = 0.3. This results in biases A" and A\~
such that A™=%2 > \™=%3_ The inferred quantile models
then “at best” model quantiles 0.2+ X""? and 0.3 +
A"=%3 instead of 0.2 and 0.3. The order of (probable) pre-
dictions at quantiles 7=0.2 and 7= 0.3 thus ends up
being the reverse of the order of quantile values {0.2, 0.3}.
This is shown by the projections of 0.2 + A7~ and 0.3 +
A7=03 quantiles on the y(1)—»(2) plane. This reverse order-
ing due to the bias that is introduced by model structure
deficiencies leads quantile predictions of a given model
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structure to cross. A formal treatment of the quantile pre-
dictions crossing is provided in section 3 that proves that it
is a consequence of model structure deficiency.

[62] The asymmetric loss function value at a particular
quantile contains full information of bias due to structural
deficiency at the quantile. The loss function is minimized
when inferring a quantile model from a given model struc-
ture. Thus, the loss function value at a given quantile is
higher for a model structure that is constraining the minimi-
zation of the loss function more than another model struc-
ture. Since the constraints posed by a model structure is due
to its structural deficiencies, the loss function values for a set
of candidate structures at a given quantile orders the struc-
tures in terms of its deficiencies. This has been demonstrated
in previous sections and it is further formalized in section 3.

3. A Formal Analysis of Quantile Model
Selection

[63] We now present a formal analysis of QE2 that has
been defined in section 2.2. The formal analysis defines the
problem of quantile model selection problem as a con-
strained minimization problem, where in the constraints are
posed by the model structure. Model structure constraints
are therefore also formalized. The analysis then proceeds

Figure 14. An illustration of quantile prediction crossing
for a deficient model structure. The y plane represents a
space of predictions at two consecutive time steps. A joint
cumulative distribution F(y) of observing a prediction vari-
able of interest y, where y is a 2 dimensional vector,
y={y(1),y(2)}. Thus for two given quantiles 7=0.2 and
7=0.3, (probable) observations of y as a function of input
forcing vector x can be traced (dashed lines). Two red
circles on these two traces represent probable observation
of y for a given value of input forcing (say Xx¢). Different
observations for the same value of input forcing (x¢) are
allowed. A deficient model structure infers quantile models
at %uantiles 7=0.2 and 7=0.3 with biases A\"°? and
A7=%3 such that \™=%2 > \7=%2_ The inferred %uantile mod-
els then “at best” model quantiles 0.2 + \"="? and 0.3 +
A7=%3 instead of 0.2 and 0.3. The order of (probable) pre-
dictions at quantiles 7=0.2 and 7= 0.3 thus ends up being
reverse of the order of quantile values {0.2, 0.3} as shown
by the projections of 0.2 + A"=%? and 0.3 + \=** quan-
tiles on the y(1) —y(2) plane. This reverse ordering implies
a crossing of quantile predictions of a given model
structure.
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with a set of assumptions that in general hold for hydrologi-
cal model estimation problems.

[64] First, it is shown that a minimum exists. Then the
necessary conditions that a minimum should satisfy are
shown based on a formal definition of model structure defi-
ciency. The necessary conditions show how structure defi-
ciencies affect optimal model selection. These conditions
also expose how certain properties of hydrological model
predictive equations can lead to an interplay between
model structure deficiencies and predicting quantiles based
on hydrological models.

[65] One fundamental property of quantile predictions is
that that it should not cross, i.e., no two quantile predictions
should cross each other at any time 7. Thus the extension of
more commonly used quantile regression on a class of lin-
ear functions to arbitrarily nonlinear hydrological models is
nontrivial since nonlinearities may lead to quantile cross-
ing. This essentially motivates a formal study of conditions
under which quantile hydrological predictions do not cross
and conditions under which the quantile predictions may
cross. The analysis reveals that model structure deficiencies
play a crucial role. Since model structure deficiencies con-
strain quantile model estimation and prediction, structure
deficiencies can also be implicitly inferred from the per-
formance of model structures across different structures.

[66] The formal analysis imparts objectivity to the
assessment of model structure deficiencies without sub-
scribing to several simulations. It is also testable, since the
statements on the interplay between model structure defi-
ciency assessment, quantile prediction noncrossing and
model structure deficiencies that are proposed in the fol-
lowing hold as long as the stated assumptions hold. These
propositions are falsified and thus are not applicable in
cases that contradict any of these assumptions (though in
many cases, propositions may not be sensitive to some of
the assumptions).

[67] The outline of the following analysis is as follows.
Proposition 1 first states that quantile model predictions do
not cross in the simplest case when model structure defi-
ciency is absent. Its proof indicates that model structure defi-
ciencies introduce an effect that makes estimated quantile
predictions to cross. Building upon Proposition 1 it is further
argued that model structure deficiencies introduce bias in
hydrological modeling of observed quantiles. Proposition 2
states the necessary conditions observed by optimal model
parameters in presence of model structure deficiencies. It is
used to show that monotonicity of the model predictive equa-
tion in atleast one of the parameters is sufficient to ensure
that the bias that is introduced due to model structure defi-
ciency is independent of parameter dimensionality and that it
is time invariant. This is done by first showing that when a
model structure is deficient, it leads to a representation of
deficiency in terms of Lagrange multipliers of the constrained
minimization problem of quantile model estimation.

[68] These are powerful results based on a formal and
rigorous treatment of structural deficiencies. This becomes
evident in Proposition 3, which states that the asymmetric
loss function values can order model in terms of their
biases. This proposition is subsequently used in corollary 4
to propose that the optimal value of asymmetric loss func-
tion orders corresponding model structures in terms of its
deficiencies.
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[60] Note that the formal analysis contributes to several
questions. It studies the effect of structure deficiency on
quantile predictions by formalizing an otherwise abstract
notion of structure deficiency, nontrivial extension of quan-
tile regression to hydrological modeling, and comparative
assessment of model structures in terms of its deficiencies
through the ordering of optimal asymmetric loss function
values.

[70] To begin with, the definitions of model structure as
a constraint set and the objective function of quantile model
selection problem are provided. It is followed by the
assumptions made.

[71] Definition 1: A model structure is defined as a con-
straint set

C(x) = {{S,k}|n (S, k;x) =0,r=1,.,N —1,S e R k € K,
x €N C 3?14},

where
h,(S7 k; X) =841 =8 —x; +f(S,,k),

,,,,, w~ 18 a N dimensional vector of state varia-
bles (without loss of generality it is assumed that there is
only one storage variable per time step), N is a compact
subset of M-dimensional positive real space and K is the
parameter set of the model structure. As is shown later, the
results of the paper are insensitive to the dimensionality of
S;. Thus, we retain it as such with any loss of generality.

[72] Definition 2: The objective function of QE2 is
(earlier referred to as p,),

N
aSikirx) = [ 310 = rl = (k0] + 7~ (511,
t=1

p(ylx)dy/N.

[73] Note the expectation operation in the definition
above. It implies that the analysis is for large sample sizes.
Some simplifying assumptions are made below in order to
elucidate key points on the existence of a minimum, on the
necessary conditions for a minimum, on model structure
deficiency and on the asymmetric loss function as a mea-
sure of model structure deficiency.

[74] Assumption 1: The parameter set K that defines the
model structure for a given model equation is compact.

[75] Assumption 2: The model equation f(S;; k) is dif-
ferentiable, is monotonic in at least one element of k and
increasing in S, Further é%- is independent of 5)71; where
kj, ky are two distinct elements of k.

[76] Assumption 3: Input forcing vector is nonzero, i.e.,
X = {xl,"axta "7XN} # 0.

[77] Assumption 4: Initial model storage is sufficiently
greater than 0, i.e., S, >> 0.

[78] Assumption 5: The observed variable of interest is
bounded, i.e.,y <y <7y.

[79] Assumption 6: The cumulative probability density
F(y|x) is differentiable and

F(x\y" ,X) =0,vy" <y <y

where y't = {yl, -.7yr—17yr+17--»yN}~
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[s0] Assumption 7. We avail of a global optimizer that
can identify a minimum of a quantile model selection
problem.

[81] We first prove that the minimum of QE2 exists
under the above stated assumptions and definitions. It is
followed by a formal definition of model structure defi-
ciency. Then the necessary conditions that a minimum of
QE2 should obey when a model structure is not binding
(deficient) are derived.

3.1.

[s2] The program QE2 is a form of a finite horizon opti-
mal control problem [Lyon and Pande, 2006]. Existence of
solution to QE2 can be proved based on a variant of Weier-
strass theorem [Mordukhovich, 1976], which suggests that
a minimum of a continuous function is attainable on a com-
pact set.

[83] We note that the constraint set C(x) defined as
below is compact due to the compactness of N, the continu-
ity of f{S;, k) in S, and k and the compactness of K
(assumptions 1 and 2). Note that the assumptions on R,
f(.,.) and K ensure that S, is bounded for any ¢ leading to
the compactness of C(x). Further, let the objective function
of QE2 be redefined by the substitution mentioned previ-
ously and consider its expectation with respect to the condi-
tional probability of y on x (p(y/x) with a differentiable
cumulative density function F(y/x) (Assumption 6), where

y==1.. N

Existence of a Minimum of QE2

4(8,k7,x) = / 10 =7 =8 WL+ 7l = (SR,
p(y|x)dy/N,

which is continuous in (S,K).
[84] Thus, QE2 has a solution.

3.2. Necessary Conditions for a Minimum and Model
Structure Deficiency

[8s] Let (S*,k*) be a global minimum (Assumption
7) given that such a minimum exists. This optimum
will be nonzero for nonzero x and for sufficiently large
(Assumptions 3 and 4) initial storage. The necessary
condition for (S*,k*) to be a global minimum (Lemma
3.7 of Avriel [1976] and Bertsekas and Ozdaglar
[2002]) is:

w'z >0, Vz € Tc(S*, kK x), w € 9q(S*, k*; ), (3.1)
where Jg(S*,k*1) is the set of all subgradients of ¢ at
S* K" (see Avriel [1976] for definitions) and
Tc(S*, k*x) is the tangent cone of the constraint set C
at S K.

[86] Condition (3.1) provides us with a sufficient condi-
tion for quantile noncrossing, i.e., when two quantile pre-
dictions do not intersect for any x. It also links model
structure deficiency to quantile crossing under certain con-
ditions. We note that when (S",k”) is in the interior of the
constraint set C(x), which is the case when the constraint
set (the model structure) is not binding (i.e., the model
structure does not constrain hydrological modeling of an
observed quantile),
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Te(S*, Kk x) = %/, (3.2)
where J is the sum of the sizes of vectors S* and k” [Bertse-
kas and Ozdaglar, 2002]. Condition (3.2) leads to the case
stated in Proposition 1. Condition (3.2) along with (3.1)
requires the set of subgradients dg(S’, k*;7) to contain a
zero. Thus when 0g(S*,k*; 7) contains a 0, the constraints
(represented by the tangent cone 7;) are not binding and do
not affect the optimum.

[87] Definition 3: A model structure represented by the
set K that obeys condition (3.2) is not deficient.

[88] Definition 3 implies that the model space or struc-
ture is flexible enough not to constrain the attainment of the
minimum of the objective function. A model structure is
deficient when condition (3.2) does not hold. i.e.,
To(S * k *;x) # R,

[89] We first examine the case when a model structure
is not binding (i.e., not deficient) before elaborating on a
more general case of model structure deficiency. The lat-
ter is the case where the possibility of quantile crossing
appears. We then provide necessary conditions for quan-
tile noncrossing for deficient model structures such as in
section 2.3. It provides insights into how model structure
deficiency introduces biases in quantile predictions and as
a result into how optimal values of the asymmetric loss
function can order model structures in terms of its
deficiencies.

[90] Proposition 1: Let Definitions 1-3 and Assump-
tions 1-4 hold. Let f (Sf s kT*) be a 7 quantile model, with
(S[ *;kT*) solution to QE2. Then quantile model predic-
tions do not cross, i.e., f(S7'*; K™*) < f(S/**; k™*) for any
O<m <M<l

[o1] The proofis provided in Appendix B.

[92] We now analyze the case when model structures do
not obey condition (3.2), i.e., the case of deficient model
structures.

[93] Proposition 2: Let definitions and assumptions
hold. The model structure is deficient in the sense that
To(S*, Kk x) # R, Let £(S,*;k*) be a 7 quantile model,
with (S/*; k*) the solution to QE2. Then (S;*; k*) obeys the
following necessary conditions:

N
Z [Pr(y, < (S, K")|x) — 7+ AM]Vif (S5 k") =0 (3.3)
=1

U (S5 k)

Py, <SSR =7+ M =—ge=— =X + Ay =0,V = 1, N (3.4)
1

where Vi is the gradient operator with respect to k (i.e.,

_ |0 0
vk - |:37k17%5"a

pliers corresponding to the constraints 4.

[04] The proof is provided in the appendix. We here note
that if the prediction equation is a function of more than
one states, as is generally the case, equation (3.4) can be
restated as,

070‘“}) and A\, # 0 are the Lagrange multi-

Pr(y, < (S, K)x) — 7+ A,ngf(&*; k*) — A+ A
=0, Vt=1,.,N
(3.4')
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where S,* is a vector of states that influences the prediction
variable of interest at time 7. However as shown later, such
a modification does not affect the results. Thus, the equa-
tion of form (3.4) is retained throughout the paper without
any loss of generality.

[os] Let A\J* be the Lagrange multipliers that obey (3.3)
and (3.4). For A" =0,vt=1,..,N;Vr, (3.3)=3.4) col-
lapse to the case of Proposition 1. In case when the con-
straints set is binding, there is some ¢ and 7 such that
Al* # 0. Also the magnitude of A\[* indicates the strength
with which the model structure is binding at a quantile 7
and time ¢ as it is equal to the bias in estimating the 7 -th
quantile of F(y|x) (as to be shown in equation (3.3a)). The
Lagrange multipliers therefore define the degree of model
structure deficiency. As is also shown later, the optimized
objective function, i.e., the asymmetric loss function,
encapsulates the total effect of model deficiency at all time
steps at a given quantile level. A comparison of the asym-
metric loss functions of two model structures at a given
quantile thus measures the degree of flexibility that one
model structure offers relative to the other (relative defi-
ciency of one with respect to the other).

3.3. Necessary Conditions for Noncrossing Quantile
Models in Presence of Model Structure Deficiency

[96] The Lagrange multipliers that measure model struc-
ture deficiencies can lead to crossing of quantile predic-
tions. Model structure deficiencies at different quantiles
can thus lead to the violation of a desirable property that
quantile predictions should not cross at any point in time.

[97] For a given model structure, the predictions of a 7-
quantile specific estimated model may not be ordered by 7.
In this case the estimated quantile models cross and do not
correspond to the respective quantiles of F(y|x). A deficient
model structure is therefore a necessary condition for quan-
tile predictions to cross. Thus crossing of quantile predic-
tions is a diagnostic of model structure deficiency. This
becomes evident upon further inspection of (3.3) and (3.4).

[98] Equations (3.3) and (3.4) under Assumption 2 that f°
is monotonic in atleast one element of k and increasing in

S,leadto,Vt=1,..,N:
[Pr(y, <f(S5k = )|x) =7+ A\] =0, (3.3a)
_ _ U (S+17: k")
)\t - (1 —aSrH )\t+1
f (817 K"
— Pl <SSt kx) — 1) LETKD (54
08141
[99] Substituting (3.3a) into (3.4a) yields

A= At = AW (3.5)

[100] Equation (3.3a) along with (3.5) suggest that the As
act as bias in predicting observed quantiles. Further if for
two quantiles 71 < 75, )\TZ and )\T‘ are such that 7 —
)\T‘ > T — )\Tz then from equation (3.3a)
Pr(y, <f(S ik, ;KT x) > Pr(y, < f(S2*;k™*)|x) or that
the quantile predictions cross. Here (S,2*;k™*) solves
[Pr(y, <f(S7*;k™)x) =7+ A]] =0. Thus structure
deficiencies can lead quantile predictions to cross. However
if quantile predictions do cross, it is surely due to nonzero
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As or the bias due to model structure deficiencies. Thus a
necessary and sufficient condition for two quantile models
not to cross at quantiles 7y, 7, such that 7y < 7, is 7 —
)\,T‘* <7y —A? forallt=1, ,N.

[101] Note that if the equation of form (3.4’) rather than
(3.4) is used, allowing for more than one state variable to
influence the prediction variable of interest, condition
(3.4a) still holds except that it now holds for all the ele-
ments of S 17 Let the vector S 1" have R element, i.c.,
S = {S,H*,Sfﬂ*,. SfH*} Then equation (3. 4a)
transforms into, Vr = 1,.

of (Serske

(#6),

r+1
- <Pr(y,+1 §f<§t+l*;k*)ix) - 7‘)

[102] Substituting (3.3a) into (3.4a") still yields (3.5).
Thus, we retain the formulation for a single state variable
without any loss of generality as consequent results depend
solely on (3.3a) and (3.5).

[103] An inspection of ((3.3)—(3.4)) and equations
(3.3a), (3.4a), and (3.5) reveal that the bias is independent
of parameter dimensionality and it is time invariant.
These are two powerful properties that are revealed by
the formal analysis. This is because the monotonicity
assumption (monotonicity of the predictive equation in
atleast one parameter) in Assumption 2 forces the quan-
tile prediction to match the observed quantile upto a con-
stant (bias) independently of parameter dimensionality.
However, parameter dimensionality may effect quantile
specific model estimation on finite sample due to model
complexity (through arguments related to rates of conver-
gence of estimators [see, e.g., Pande et al., 2009,
2012b]). The theoretical development here is only for
large sample sizes.

[104] The following proposition reveals the main prop-
erty of the asymmetric loss function (the objective function
of QE2 at the optimum) used in this paper, showing that an
ordering of its optimal values orders different model struc-
tures in terms of its deficiency.

[105] Proposition 3: Let Definitions 1-2 and Assump-
tions 1-6 hold. Let ¢(S, k; 7,x) be defined as in Definition
2 for the two 7-quantile estimators as g, and g, respectively
such that ¢ — ¢ > 0. Let f; = f; QS,;k(landfz = /(S5 k)
be two arbitrary quantile estimators such that (a) bias in f>
or f; (Pr(y; < fo|x) — 7 or Pr(y, < fi|x) — 7) has the same
value for all 7, (b) bias in f; has the same sign as bias in f7,
i.e., sgn(Pr(y; < fp|x) — 7) = sgn(Pr(y, < fi|x) — 7) at any
time ¢. Then the magnitude of bias in f> > the magnitude of
bias in f}, i.e., [Pr(y, <fo|x) — 7| > |Pr(y, < fi|x) — 7| at
any time ¢. Or,

92— ¢q1 > 0= [Pr(y; < fofx) = 7| > [Pr(y; <filx) —7].

[106] The proof of the proposition is provided in Appen-
dix B. A corollary of Proposition 3 is provided in the fol-
lowing that suggests that deficiency of a model structure in
optimally modeling a quantile 7 can be measured relative
to the deficiency of another using the asymmetric loss func-
tion. The bias in optimally modeling the 7-th quantile of

Ar

af(s:t-%—l*i k*>

. (3.4d")
0874
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F(y|x) is represented by \* that is a Lagrange multiplier
(due to (3.5) and (3.3a)) corresponding to the model struc-
ture constraints defined as C(x) in Definition 1. In effect,
the Lagrange multipliers measure this bias, which has been
defined as model structure deficiency. Thus, note that Prop-
osition 3 allows an ordering of model structures at a partic-
ular quantile in terms of its respective bias in optimally
estimating the 7-th quantile of F(y|x). Corollary 4 is an
application of proposition when definitions of and
assumptions hold.

[107] Corollary 4: Let definitions and assumptions
hold. Let model structure deficiency, or the bias in opti-
mally estimating the 7-th quantile of F(yix) by a model
structure (a model structure represented by K), be defined
by the Lagrange multiplier A** given by equations (3.3a),
(3.4a), and (3.5). Let ¢(S*, k*; 7,x,K) be the asymmetric
loss function (objective function in Definition at the opti-
mum). Further let K; and K, represent two model struc-
tures such that sgn(\1*) = sgn(\*2*) and let ¢, and ¢,
represent the value of its asymmetric loss function at the
optimum. Then

[s] 1) gy —qy <0 = X7 < XS,

[109] 2) ¢, —q, =0= M| = AR,

[110] Proof: 1) Let f; and f; in Proposition represent the
optimal estimators from the two model structures K; and
K, respectively. It then follows from equations (3.3a) and
(3.5) that the bias in £ or f; (Pr(y, < fo]x) — 7 = A& or
Pr(y, < fi|x) — 7 = A¥1") has the same value for all 7 (time
invariance). Since it is given that sgn(A\X1") = sgn(\<"),
it follows from Proposition that ¢ —¢2 < 0=
< AL

[111] 2) Follows from proposition for the case when pro-
posed inequality holds with equality. |

[112] Corollary 4 suggests that differences in biases of
optimal quantile estimators, due to differences in their
structural deficiency, are nonlinearly measured by the dif-
ferences in optimal ¢ (the asymmetric loss function). Thus
an ordering of model structures by optimal ¢ (the asymmet-
ric loss function) provides an ordering of model structures
in terms of their deficiencies. Note that, for any two flexible
model structures, i.e., when condition (3.2) holds for two
model structures, the difference between the asymmetric
loss functions is also 0 (in addition to case 2 within corol-
lary 4). The difference in the asymmetric loss functions
will be nonzero only in the situation when two model struc-
tures are deficient to different degrees at a given quantile. It
is nonnegative, as corollary 4 suggests, when model struc-
ture 2 is more deficient than model structure 1. The differ-
ence in the asymmetric loss function however can be
positive for one quantile while negative for another since
the ordering of model structures due to corollary 4 holds
for one quantile at a time. The asymmetric loss function
thus identifies relative deficiencies of model structures at
different quantiles of a variable of interest.

4. Discussion

[113] Model structure deficiency (rigidity) is encapsu-
lated by the asymmetric loss function. Thus explicit quanti-
fication of model structure rigidity (deficiency) in terms of
bias in estimating the 7-th quantile of F(y|x) as represented
by the Lagrange multipliers can be relaxed as long as one
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can obtain a global minimum. A difference in the asymmet-
ric loss functions of two model structures is a function of
the underlying data generating process that is reflected in
the conditional cumulative density function F(y|x). The cu-
mulative density function in turn is a function of the under-
lying processes and measurement errors which for given
input forcings generate a time series of variable of interest
such as streamflow, evaporation or storage. Its decomposi-
tion into respective components requires assumptions on
the structure of processes or measurement errors [Renard et
al., 2010], which we refrain from in this study. We how-
ever remark that an assumption on the structure of mea-
surement errors is sufficient, as it reveals the distribution of
measurement-error-corrected conditional distribution of y
on x given F(y|x) (uncorrected conditional distribution).
[114] No assumption is made on the structure of the cumu-
lative distribution of observed variable of interest y condi-
tioned on input forcing x, F(y|x) (except continuity of F,
boundedness of y and near zero probability of occurrence of
y at its lower bound). This distribution is a function of under-
lying processes as well as of measurement errors present in
the data set. Acceptable assumptions on the latter allow re-
solution of these two sources, allowing inference of model
structure uncertainty. Measurement error vectors can be
generated to create multiple instantiations of measurement-
error-corrected data sets. An ordering based on deficiency of
model structures can then be an ordering based on model
structure uncertainty when the objective function is an aver-
age of asymmetric loss function over these multiple instan-
tiation of measurement-error-corrected data sets. However,
it remains a relative assessment of one model structure with
respect to others. We intend to pursue this in future work.

4.1. Personal Belief in Defining Model Structure
Deficiency ?

[115] The only “personal belief” that has been invoked
in the analysis is the existence of “truth.” It however is
inconsequential to the presented analysis if the truth
“cannot” be realized by our knowledge in the form of
variety of hydrological model structures. But if a model
structure can replicate the truth, the truth lies in the N
dimensional (output) space spanned by this model struc-
ture. Here N represents the number of sample points and
can even be infinity.

[116] It is not a matter of personal belief to know that
when a solution lies in the interior of a constraint set, the
constraint set is not binding on the problem of finding the
solution. A constraint set in context of the paper is a model
structure and the solution represents a model that replicates
the “truth.” The model structure is thus defined not to be
deficient when it contains the “truth.”

[117] The complement of this definition then defines a
deficient model structure, which does not require any set of
beliefs. The definition of a deficient model structure as
stated in the paper then follows after a few more steps.
Hence the definition of a deficient model structure is sub-
ject to a personal belief on the existence of truth (such as
the underlying physical laws), absence of which would, in
my opinion, nullify the essence of any model structure
improvement exercise.

[118] It has been duly noted in the paper at several places
that quantile model selection at present does not distinguish
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between structural errors and measurement errors. A solu-
tion to distinguish between the two (and thus topic for
future research) has also been proposed in the paper. There-
fore a perfect hydrological model (one that is an exact rep-
resentation of the complete system) driven with corrupted
input data from potentially unknown initial states may con-
strain the estimation of quantiles of the observed (cor-
rupted) output. The “perfect” hydrological model structure
is deficient if the “perfect” hydrological model structure
on its own cannot see the truth given the uncertainties.

[119] We use observations as a representation of the
“truth.” If the representation of truth is corrupted, one
needs models for measurement errors to “reveal” the truth
so that the “perfect” model structure can be put to use in
an unconstrained manner. It is however possible that the
“perfect” model structure is sufficiently complex and can
model measurement errors alongside the processes even
though we may not be able identify how it does so. Why
deficiency may reduce with increasing complexity is
because known measurement error models can often be
represented by hydrologic model concepts. Then the truth
lies within the output space of the “perfect” model struc-
ture and it is no longer deemed deficient even though we
cannot isolate process representation from measurement
erTors.

[120] Consider an example (similar to the one in the pa-
per) to demonstrate two cases (i) when the “perfect” model
is not sufficiently complex and (ii) when it is sufficiently
complex to contain the observations. The truth corrupted
by noise is what we observe.

[121] Let the truth be represented by y* = 3,* + (3, *x.
Let it be corrupted by additive noise &€ = nx* (defining
measurement errors) where x is iid random variable and 7
is normally distributed with mean 0 and variance 1. The
observations are then given by y = y* + €. Let g,),(7) for
0 < 7 < 1 represent the 7th quantile of observations y con-
ditioned on a given x. Conceptually, quantile hydrological
model selection attempts to model a quantile of observa-
tions conditioned on a given data set. It is straightforward
to note that,

qy\x(T) = qy*\x(T) + qs\x(T) - ﬂ*o + /3*1)6 + qr/lx(T)xz
= 0%+ 8 1x+ 977(7)x2~

[122] Now consider the first case when we attempt to
model g, (7) by using a class of linear functions. Note
that the class of linear functions is “perfect” in the sense
that the “truth” (observations treated for their corrupted
selves) comes from this class of functions. However the
class of linear functions is unable to see the “truth” within
the observations due to measurement errors. Thus, using
the class of linear regressors without treating for measure-
ment errors leads to bias of ¢,(7)x? in estimating the 7th
quantile.

[123] Now consider the second case in two parts. First
consider a class of quadratic functions. If a class of linear
functions is deemed “perfect,” so is the class of quadratic
functions since it contains the class of linear functions. If
we again attempt to model the 7th quantile of the observa-
tions, the bias in the case of the class of linear regressors is
now absorbed by the coefficient of the quadratic term in the
case of the class of quadratic functions. The model struc-
ture is then deemed sufficiently complex and not deficient.
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[124] Naturally, the above construct does not allow us to
distinguish between the truth and corruption. Let some
benchmark study on measurement errors suggest that the
corruption is additive and distributed as 7x*> with 7 distrib-
uted as Gaussian with unknown mean and a positive stand-
ard deviation, the truth can be revealed and model structure
deficiency can be isolated (if any) from the measurement
corruption. The case of using the “perfect” model structure
of the class of linear regressors is straightforward and is
similar to the class of quadratic functions case presented
previously. Instead consider the class of constants. We use
the class of functions of type (3, + (B,x*> with the first
addendum representing our class of models (of constants)
to represent the “truth” while the second addendum is to
reveal the “truth” (which we know represents the corrup-
tion based on certain benchmarking). Then, when modeling
the 7th quantile of the observations, the bias in representing
the truth is $*;x while the specification of corruption is
recovered in the estimate of 3,. In particular, we recover
qn(7) (the cdf of n) through 7th quantile estimate of
(B,when 7 is varied between 0 and 1. We can then estimate
the mean and the variance of corruption accordingly.

[125] We here note that an improvement in a model
structure, even without first decorrupting observations (to
reveal the truth), such that deficiency reduces, in itself
ensures that we are improving the conceptualization of
both the truth and the measurement error jointly. What
we do not know is how to distinguish between the two.
We can distinguish between the two if we have bench-
marking studies that can define the type of measurement
errors that we have. For example, consider the case
above. If we move from a model structure of a class of
constant functions via the class of linear functions to a
class of quadratic functions, the bias (deficiency) in mod-
eling a 7th quantile of observations reduces from 5*;x +
¢, (T)x* via g,(7)x* to 0 for x>0. This would suggest to
a modeler, who is unaware of the type of measurement
errors, that she is reducing deficiency even though she is
unable to distinguish between the sources. Once the mod-
eler becomes aware of the type of measurement errors
(through certain benchmarking studies), she would be
able to distinguish the effect of structure deficiency from
the effect of measurement errors.

4.2. Convergence of Quantile Model Selection: Finite
Sample Performance

[126] One may then argue that increasing complexity
leads to overfitting. Indeed it may if the sample size is
small. This has also been noted in the paper. The theory is
presented for large sample sizes (note the expectation oper-
ator). The theory is either applicable for large samples or
for the cases in which the complexity is regularized so that
the effect of complexity on model estimation is minimum.
All the examples and the case studies either are for large
samples (all flexible model case studies span 6 years) or the
complexity of the problem has been controlled for (the case
of dryland model where several constraints common to the
two structures are considered to regularize the model selec-
tion problem). The case study in section 2.3.1 is a cyclic
one, extending the data to infinity does not affect the result.
The same applies for the parsimonious case study of
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western India (in Pande [2013]) since we are modeling a
seasonal cycle.

[127] The simulation results can be sensitive to small
data sizes just as in the case of any other calibration/model
selection problem (including Bayesian estimators). For a
given small amount of data, it may be more sensitive to
boundary quantiles (that are close to either 0 or 1). This has
also been stated in the paper. However, the choice of abso-
lute error deviations when selecting a particular quantile
model is a robust estimator that is insensitive to outliers.
Since the sensitivity of estimation to small sample sizes is
often (but not always) due to outliers, it is relatively (rela-
tive to other measures such as square of residuals) robust.

[128] A question remains whether the estimator con-
verges as the sample size goes to infinity. By convergence |
mean the convergence of a quantile model estimated on fi-
nite sample to a quantile model estimated on infinite sam-
ple. The complexity of a model structures affects its rate of
convergence [see, e.g., Pande et al., 2009, 2012; L. Arkes-
teijn and S. Pande, On hydrological model complexity, its
geometrical interpretations and prediction uncertainty, sub-
mitted to Water Resources Research, 2013]. Structures
with large complexity converge slower than the structures
with low complexity. However, the convergence is ensured
as long as the complexity is finite. The complexities of
most hydrological model structures, including the ones
used in this paper, are finite based on recent results for a
class of hydrological models [Pande et al., 2012b], for k-
nearest neighbor hydrological models [Pande et al., 2009]
and for the flexible model structures used in this study
(Arkesteijn and Pande, submitted manuscript, 2013). Thus,
the convergence at large sample size is almost ensured.

[120] Since the complexity of model structures is the
same for any quantile, one may argue that the rate of con-
vergences should also be the same. However, the rate of
convergence of an estimation depends both on the perform-
ance measure and the model structure used. The perform-
ance measure plays the role of transforming the effect of
model structure complexity on model estimation [see, e.g.,
Pande et al., 2012b; Arkesteijn and Pande, submitted
manuscript, 2013]. Since the performance measure in quan-
tile model selection problem is an asymmetric loss function
that is composed of absolute deviations, the complexity of
the estimation problem remains finite. However since the
asymmetry of the loss function depends on the quantile
under study, the complexity of the estimation problem may
differ for different quantile model selection problems. To
summarize, convergence is ensured for quantiles, when
using conceptual model structures as used in this study
though the rate of convergence may be different for differ-
ent quantiles.

4.3. Consistency of Bayesian Estimators

[130] One of the arguments of the paper has been that
unless a likelihood function is fully specified it does not
lead to an appropriate posterior distribution. A model selec-
tion based on inappropriate posterior distribution may be
inappropriate as well. However distributions that satisfy the
axioms of probability are still distributions. Nonetheless,
distributions that are not fully specified are “personal
degrees of belief” [Bernardo and Smith, 1994, p. 35] and
thus are subjective. This is in spite of a framework within
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which it may not make sense to use adjectives such as
“objective” [Bernardo and Smith, 1994, p. 35]. This is
because one arrives at such a framework by assuming that
the notion of “rational beliefs” based on accumulated in-
formation cannot be separated from the notion of “rational
actions” [Bernardo and Smith, 1994, p. 15].

[131] Based on the assumption that a model selection
problem is no different from a choice problem under uncer-
tainty, one can indeed invoke von Neumann-Morgenstern
[1947]’s expected utility theory. Within such or other asso-
ciated frameworks, a distribution need not even be additive.
See, for example, Gilboa [1987]’s seminal article for a dis-
cussion on the generalization of expected utility maximiza-
tion under “personal belief” of uncertainty.

[132] However, whether a choice of a model under (per-
sonal beliefs of) uncertainty is asymptotically consistent
still remains a question. The proof of convergence of prior
belief to the “true” posterior necessarily requires that the
latter is in the support of the former [see, e.g., Freedman,
1963, 1965; Barron, 1988; Feldman, 1991]. A belief is a
distribution defined on the set of distributions that possibly
generated the observations. If the problem is misspecified,
i.e., none in the set of distributions (which a modeler
assumes based on her specification of the likelihood func-
tion) generated the observations, the convergence of poste-
rior beliefs (for any given prior belief) to the true posterior
distribution is impossible (see, for example, the discussion
of the assumptions and results of Feldman [1991]; also see
Theorem 1 of Freedman [1963], in particular regarding the
topological carrier of a prior belief). The case studies pre-
sented in sections 2.3.1 and 2.3.2 showcase the examples of
model misspecification, where no prior specification on the
Generalized Likelihood function may result in a consistent
estimation of the posterior.

[133] Indeed the role of prior specification is well recog-
nized in cases when model misspecification is absent. How-
ever even in these cases of “strong a priori belief,” the
convergence of Bayesian beliefs to the true posterior is not
ensured without additional conditions [Feldman, 1991].

5. Conclusions

[134] A theory for quantile model selection and model
structure deficiency assessment was presented in this paper.
The case studies and the formal analysis of quantile model
selection problem suggested that degree of model structure
deficiencies (or rigidities) as measured by the Lagrange
multipliers corresponding to the model structure constraints
are embedded in the asymmetric loss function.

[135] The unique contribution of this paper was the math-
ematical formulation of quantile model selection problem
in the Lagrangian form. It elucidated why the asymmetric
loss function can be used to assess model structure defi-
ciency. The degree of model structure deficiency was
reflected in the Lagrange multipliers of the constraints
posed by a model structure on a quantile model selection
problem. This also led to the formal definition of model
structure deficiency (or rigidity) and the formulation of a
sufficient condition for model structure flexibility. This for-
mal analysis was presented for a predictive equation with
reasonable assumptions that hold in general for
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hydrological models. The case studies further supported
that the formal analysis holds for hydrological models in
general.

[136] One main insight from the formal analysis of quan-
tile model selection problem was that the asymmetric loss
function at any quantile can order model structures by its
structure deficiencies. Further it was shown that crossing of
two quantile predictions is necessarily due to model struc-
ture deficiency. This was also revealed by various case
studies that were undertaken. It also revealed that the bias
due to structure deficiency is independent of model param-
eter dimensionality and is time invariant. The analysis cru-
cially depended on two assumptions that a model
prediction of a variable of interest is nondecreasing in state
variables and is monotonic in one of the parameters, such
as recession parameters. Neither of these two assumptions
is unrealistic when fluxes such as evaporation or stream-
flow are considered. Another assumption of differentiabil-
ity of a model structure predictive equation may seem
restrictive but it can be relaxed.

Appendix A: Description of Kernel Density
Independence Sampling-Based Monte Carlo
Scheme (KISMCS)

[137] KISMCS is a Markov Chain Monte Carlo method
with Metropolis-Hastings updates [Kuczera and Parent,
1998] using an independence sampler [Brooks, 1998].
The independence sampler ensures that candidate obser-
vations are drawn independently of the current state of a
chain, thereby ensuring efficient exploration of the target
distribution [Pasarica and Gelman, 2010]. The M-H ac-
ceptance-rejection criteria are also used to sample across
n chains, which ensures that the chains are well mixed.
Kernel density estimation [Haerdle, 2004] on last m sam-
ples in a chain is used to calculate standardized impor-
tance weights [Kuczera and Parent, 1998 ; Givens and
Raftery, 1996] within the independence sampler to
ensure fast convergence of sampled points to the target
distribution. An overdispersed distribution, a multivari-
ate ¢-distribution, is used as the kernel [Gelman and
Rubin, 1992] to ensure exhaustive exploration of the pa-
rameter space. The convergence proof of the algorithm is
standard [Roberts and Smith, 1994] but is beyond the
scope of this paper. Exhaustive tests of the algorithm and
its comparison with other MCMC algorithms is a topic
for future study.

[138] The algorithm is implemented with m =600, a
Gaussian reference bandwidth for multivariate ¢ distribu-
tion, sampled parameter covariance matrix updates every
600 function evaluations and the number of chains,
n=parameter dimensionality of a model under
consideration.

Appendix B

[139] Proposition 1: Let Definitions 1-3 and Assump-
tions 1-4 hold. Let /(S7*; k™) be a 7 quantile model. Then
quantile models selected are noncrossing, i.c.,
SIS KT < f(S72% k™) for 1 < 7).

[140] Proof: Definition 3 along with condition (3.1)
yields necessary conditions for an unconstrained minimum,
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0 € 9gq(S*,k"7) (B1)
[141] Thus, the following holds for the 0 element of
0q(S*,k*7) based on condition (B1):

N
/Z (IO =/ (S5 K)) = 7IVf (S5 K))p(y[x)dy =0,
=1
or

N
D [Pr(y <S(S55K)x) = TIVA(S k) =0 (B2)
=1

where /(v) is an indicator function, which takes a value of 1
when v < 0, else 0.

[142] Finally, condition (B2) yields (under Assumption 2
that f'(S;; k) is monotonic in at least one element of k or
f(S;;K) is increasing in ),

Pr(y: <f(S/"skx)[x) —7 =0,

Vi=1,.,N, (B3)

[143] Note for example, that under the assumption of
%S’;k) >0,Vt=1,..,N, Left Hand Side of condition (B2)
can only be 0 when condition (B3) holds.

[144] Let 7-quantile model estimates be indexed by 7.
Let (S7*,k™*) and (S™*, k™) satisfy condition (3.4a) for
T71< T,. From equation (B3) and under Assumption 6 that
Pr(y, < px) is continuous nondecreasing function in 4,

t=1,.,N

Pr(y, < f(S]'5K77)[x) < Pr(y, < f(S77 k™7)[x), ¥
N.

= F(STKT) < S(ST K, V=1,

[145] Thus conditioned on x quantile models selected are
noncrossing for the case when the model structure is not
deficient [obeys equation (3.2)],

F(STKT) < f(STPHK),  Ve=1,.,N.

[146] Proposition 2: Let Definitions 1-2 and Assump-
tion 1-4 hold. The model structure is deficient in the sense
that To(S*,k*;x) # R, Let £(S,*;k*) be a 7 quantile
model, with (S;*; k*) solution to QE2. Then (S;*; k*) obeys
the following necessary conditions:

D [Pr(y <S(S7TK)[X) — T+ AV (S5 k) =0 (3.3)

t=1

U (S5 k)

[Pr(y <f (S5 K)[x) — 7+ A as,

=1,.,N

“ A+ A =0, V1

(3-4)

where Vy is the gradient operator with respect to k and \; #
0 are the Lagrange multipliers corresponding to constraints
h,.
[147] Proof: Gradients of /,, 1.e., Vi, exist (due to differ-
entiability of funder Assumption 2 though this assumption
can be relaxed without affecting the conclusions in what
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follows). For a nonzero minimum, columns of a matrix H

N
with rows Vi, (S*,k*),t=1,..,N, will be linearly inde- ;[Pr(y' SSESKOR) =7 MV (5K =0

i) 9 90 0 =
pendent where V(1) = [5e, a0 a5 -] (B) given o gy ) ZECKD g gm
Assumption 2. Note that H,,« =0(t- th row and ¢’-th column a8,

of H), for ¢,/ < N,t# {¢,f + 1} thereby ensuring linear ) ) )

independence of first N columns. Linear independence ~ Where Vicis the gradient operator with respect to k.

amongst columns j= N+/, _Jis due to Assumption 2. [1§0] Proposition 3: Let Definitions 1-2 and Assn—
[14s] Thus, QE2 satisfies Mangasarian-Fromovitz type Mmptions 1-6 hold. Let ¢ (S, k;, X). be defined as in

constraint qualification [Mangasarian and Fromovitz, ~Definition 2 for the two 7-quantile estimators as ¢, and ¢,

1967], thereby admitting Lagrange multipliers (sce CQ1 of ~ respectively such that ¢, —g; > 0. Let /i = fi (S:;k) and

Bertsekas and Ozdaglar [2002]). Hh=fr (S P k) be two arbitrary quantile estimators such that
[149] Any solution (S*,k*) of QE2 then obeys the fol- (a) bias in f; or f; (Pr(y, < fo]x) — 7 or Pr(y, < fi[x) — 7)
lowing [Bertsekas and Ozdaglar, 2002], has the same value for all 7, (b) bias in f> has the same sign

as bias in f;, ie, sgn(Pr(y, <folx)—7) =

N sgn(Pr(y; < fi|x) — 7) at any time ¢. Then the magnitude of

Z [Pr(y, < f(S/":K)|x) — 7]V/ (S, k) bias in f5 > the magnitude of bias in f}, i.e., |Pr(y, < f|x) —
-1 7| > |Pr(y; < fi|x) — 7] at any time ¢. Or,

N
FRATHS I =0 22 0= Prly < AN) — 7| = Pr( < i) — 7.
1=

. . 151] Proof: Consider the objective function,
where \; # 0 are the Lagrange multipliers corresponding to [is1] )
constraints /,. The above necessary conditions for S; and
k read as:

N
1

y
s - (3
y

= D)y =S (7K A+ Tl — £ (S K p(yIx)dy/N

t=1

y
1 * * * *
- / [(1= )y — 7S K]+ 7l — /(S K], ]p(yIx)dy

t:l

o . o : =1 +1}, (B6)
[152] Following is a decomposition of objective function
for an arbitrary estimate of 7-quantile (not a result of pere
minimization):
B F(r) 5

v 7 - » 1,1 = / [ﬁ(yt) - T} dy, + T/ (1 — ﬁ(y,))dy, (B7)

Z x)dy (B4) J /
where y and y is the upper and lower bound N-vectors of y f
and y ' is y vector without y, (Assumption 5), i.e., y* = = [F(y,) — 7]dv, (B8)
{y17"7yt717yt+17"ayN}and FJ1<7.)

¥ [157] The above shows that while /, !is 1ndependent of
[t:/ (1 =) =f(SH K| + 7l — £ (S, K) | [ ply ™, %)dy, fiS,k), I? is not. Rather, f(S,k) appears in its upper
J bound. The integral /7 is nondecreasing in quantile pre-
- diction made by f(S,,k) It would also be nonnegative in

[153] The form as above is the most generic form to pre- ¢ase¢ when fis positively biased. Since 1! is independent

serve any intertemporal dependence. of f(S,k), I, is nondecreasing in prediction made by
[154] Further, ¢ is linearly additive in /. SS,K). ] .
[155] Using integration by parts /; can be decomposed as [158] Let two estimators (may not be optimal) f; and f>
(further details in section B1) (predictions at time t with reference to time index sup-

pressed) be such that a) bias in f5 or f; (Pr(y; < fo|x) — 7

s Flr) or Pr(y, <fi|x) —7) has the same value for all 7, b)

I ={ / [F () T}dy,}+{ / [F(y) —7]dve+ T (1 —F(y))dv} bias in f, has the same sign as bias in f;, i.e.,
Fie) ¥ ¥ sgn(Pr(y, < f2]x) — 7) = sgn(Pr(y, <fi |x) —7) at any
(BS) time ¢. Then a nonnegative dlfference in the correspondlng

I, (note that £ (y,) F(y|y™, x)) implies that the magni-

[156] Equation (B5) can then be further simplified as, tude of bias in f5>>the magnitude of bias in f;, ie.,

S~
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[Pr(y; < fo|x) — 7| > |Pr(y, < fi|x) — 7| at any time . This
is now shown to hold.

[159] Let /,; be I, in (B6) for f=/f,. Similarly let /;, be 7,
in (B6) for f=f5. Then the following needs to be proved:

f
ho— Iy = / Fly™ %) — Tldy > 0 = [Pr(y, < folx) — 7]

h
> [Pr(y < filx) — 7]

[160] Let Pr(y, <fa|x) —7=A; and Pr(y, <fi|x) —7=A,.
Consider the only two cases below that obey conditions a)
and b) above.

[161] 1) Case 1: A\, A; > 0 forall z.

[162] This implies that [F(y,ly™",x) — 7] > 0 for y, = f5

and y, = f;. Further since [F(y,]y™",x) — 7] is nondecreas-
ing in y,, [F(|y™",x) — 7] > 0 for all y, between f; and 5.
Thus,

5
[1Fwdy 0~ rid > 0

Si

is only possible when

F(hly ™ x) =7l = M<[F(Aly ™ x) = 7] = =[N | < A
[163] Thus,
Itz_Itl—/[F()’rb’ —T]d}’r20<:> (B9)
Py, < A1) — 71 > [PrGy <) — 7
for any 7.
[164] 2) Case 2: \y, A1 <0
[165] Just as in case 1, we can conclude that
[F(y:]y ", x) — 7] < 0 for all for all y, between f; and f5. Thus,

S
JI

N

xX) — 7ldy; > 0

is only possible when

(F(Aily™x) =7l = Mz [F(Aly™,x) — 7] = X2
[166] Since,

AL >N = =N > =] = ] < N
[167] Thus,

f

/ Foaly™,
fi
IPr(ys < folx) — 7] > [Pe(y < fifx) — 7]

Lio—1nn = X) — 7ldy; > 0 <=

(B10)

for any ¢.

[168] Finally, note that since ¢ is linearly additive in /;

and  since the  bias, |[Pr(y; <fo|x)—7| or
[Pr(y; < fi|x) — 7], is time invariant,
@2—q20<=12-1,>0
for all ¢.
[160] This because g, — ¢q; > 0 requires /,» — I;; > 0 for

atleast one t. However, if /,, — 1,1 > 0 for atleast one ¢,
1,5 — 1,1 > 0 for all 7 since bias is time invariant.
[170] From (B9) and (B10), we thus have:

9 = q1 2 0= [Pr(y: <fo[x) — 7| = [Pr(y: <Ailx) = 7],

B1.
[171] Integration by parts:

ov du
/uadx:uvf/vadx

)

Integration by Parts

[172] Consider [, where =pOrly*,x) and

f=f(S;Kk):
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I= / (1= 1) —f1_b (), +

y

y
/ Ty —f1 POy, = A + B
Y

[173] Wheny, < f,B = 0and

A
A= [ (1=l = 1oy, = (1 = 1
Y
»
[174] For u = |y, —f],v=F(y) :/ z)dz, we have
from integration by parts: ;

A= [ —IFOI], - Fvi)av,

f
/ P
y

[175] Thus,

f
A=(1-7) / F v,

v

[176] Wheny, > f, A = 0 and

<!

5= [ 7~ 1l = 7B.

Jr

<

[177] For u= |y, —f|,v=F(y) = z)dz, we have

from integration by parts:
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¥y

B = =) — [F 0o =7 = 11EG) = [ Fovan
f f
G-~ [Foon
J
[178] Thus,
B:TBfT@—ﬁ—T/ﬁ@ym
f
[179] Finally,
I, =4A+B 5
_ [ p ot —) =7 [Fondn
= (y,)dy,—T(f—)_/) —|—7'(7—)_1) —T/F(y,)dy,

[F(y,) —Tldy + 7 (1 - F(y,))dy,

b4

A
/F(y, — 7]dy;

I(T

F

N |‘<\\|‘<\\.N\_,\:§

l

F(y, —Tdy,+7'/(1—f7(y,))dy,

v

._-|e

+

Appendix C: Model Structures Specifications

[180] Figure C1 illustrates the model structures used for
the synthetic case study (section 2.3.2) and the real world
case study (section 2.3.3). Both the studies use daily precip-
itation, potential evaporation and streamflow data set of the
French Broad river basin, USA [Duan et al., 2006] from
1970 to 1975.

[181] The linear reservoir without a threshold
model structure (model structure 1) determines flow
Q(t) as a linear function of the reservoir storage
S(t), i.e., O(t) = S(¢)/K;. The linear reservoir with a
threshold model structure, i.e., model structure 2, has
two flows: slow flow Q; = min(S(¢), Smax)/Ks and the
fast flow Oy = max(0,S(¢) — Smax)/Ky. Both the
model structures assume that E(t) = min(P(¢), E,(7)).
Therefore  they are  effectively  forced by
max (0, P(1) — E,(t)).

[182] The model structure 3 is composed of reservoirs to
model the unsaturated zone, the saturated zone and river
routing. Precipitation P(f) contributes to the unsaturated
zone. Evaporation, E(f), overland flow, R(¢), and percola-
tion to the saturated zone are generated from the unsatu-
rated zone as nonlinear functions of S,,(¢)/S,max, Where S,(7)
is the storage in the unsaturated zone and S,y 1S its stor-
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age capacity. Evaporation and overland flow are modeled
as:

E(t) =
R(t) =

Ep[l — eXp(—aESu(t)/Sumax)}/[l - exp(—ozg)}
P(t)[l — eXp(—(XFSu(t)/Sumax)]/[l - exp(—ap)]

where the parameters ax and ar are nonlinear controls and
.EP .is the potential rate of evaporation. Percolation (Qp(f))
is linearly related to S,(7)/S,max s,

Op(1)

[183] The slow flow, Q(#), is a linear function of satu-
rated zone storage, Sy(?),

= QPmaxSu(t) /Sumax-

0,(1) = S,(1)/K,
where K| is the slow flow time constant.

[184] Finally, overland flow R(f) and slow flow Q() are
routed through two (fast) linear reservoirs each with time
constant K.

[185] Table C1 summarizes relevant model structure
quantities.

[186] The synthetic case study (section 2.3.2) uses model
structure 3 to generate synthetic streamflow data. The
model structure 3 is forced by 1970-1975 daily precipitation
and potential evapotranspiration. It assumes E(f) =
min(P(t), E,(t)) and the following values for its parameters:
Symax = 10 mm, Qpmax = 2 mm/day, oy =100, ap= —15, ag
=1E-6, Kr =4 days, Kg =25 days. Thus all the model struc-
tures in the synthetic case study (section 2.3.2) are forced by
the same time series of max (0, P(¢) — E,(1)).

[187] For the real world case study (section 2.3.3), model
structure 3 with suppressed evaporation scheme, i.c.,
E(1) = min(P(t), E,(1)), is called structure 3 while model
structure 3 without the suppressed evaporation scheme, i.c.,
E(1) = Ep[1 — exp(—apSu(1) /Sumax)]/[1 — exp(—ag)], is
called model structure 4. Thus the evaporation scheme dis-
tinguishes model structures 1 to 3 from the model structure
4 and serves as a major source of deficiency for model
structures 1 to 3.

Appendix D: First-Order Approximation of Bias
That Measures Model Structure Deficiency

[188] Let F(¥) = Pr(y <¥), where conditioning varia-
bles have been suppressed.

[189] At the optimal, by (3.3a) and (3.5), the following
equality holds for a 7-quantile predictor, ylj’ed :

F( Tred)

[190] Here T is the quantile to be modeled and A is the bias
in estimating the 7™ observed quantile. The inverse of F exists
since F(w) is differentiable w.r.t. w from Assumption 6. It is
also differentiable. By first order approximation, we have

—74+A=0.

[191] Thus, the bias in predicting the Tth quantile can be
estimated as:
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Table C1. Description of Parameters (to Estimate), Variables, Coefficients, and Indices Used in the Model Structures 1-3

t

day index, {1, T}

Symbol (Units) Description Min Max
Model Structure 1 (Linear Reservoir Without a Threshold)
Parameters
K (day) Recession parameter 1 150
Variables
Q (mm/d) Flow
Model Structure 2 (Linear Reservoir With a Threshold)
Parameters
K (day) Slow flow recession parameter 1 150
Ky (day) overthreshold recession parameter 1 10
Smax (Mm) Storage capacity (threshold) 0 1000
Variables
Oy (mm/d) Fast flow
O, (mm/d) Slow flow
Model Structure 3
Parameters
Sy max (MMm) Top layer/unsaturated zone moisture parameter 0 1000
O)) max (mm/d) Maximum percolation rate 0 100
ag (=) Curvature parameter for evaporation 0 100
ap(—) Curvature parameter for overland flow —100 0
ag (—) Curvature parameter for percolation —10 10
K (day) Baseflow time constant 1 150
Ky (day) Routing time constant 1 10
Variables
S,(f) (mm) Upper layer/unsaturated zone soil water storage
Sy() (mm) Lower layer/saturated zone soil water storage
E(t) (mm/d) Evaporation
R(#) (mm/month) Overland flow
0,(t) (mm/d) Percolation
O,(1) (mm/d) Baseflow
Others
P(t)(mm/d) Precipitation
E,(t)(mm/d) Potential evapotranspiration
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[192] The quantity F~'(7) is estimated as the 7th quan-
tile of the observed time series, F~!(7 — \) is estimated by
taking the average of 7th quantile “prediction” at the indi-
ces that correspond to F~!(7) on the observed time series.
OF (1) + : : 1 i
—5-— is numerically estimated on the observed time series.

Appendix E: Bayesian Criteria Used

[193] Three Bayesian criteria are used to approximate the
marginal log likelihood of a model structure.

[194] 1. Bayesian Information Criteria (BIC) [Kass and
Raftery, 1995]:

log m(y|M) =~ log f(v|M,0") — 0.5 log (N)|6].

[195] 2. Harmonic mean of the log-likelihood values of
the posterior distribution (HM1) [Kass and Raftery, 1995]:

m

)>

i=1

1ogm(y|M)z%< (logme,e*))l) :

[196] 3. A variant of Chib and Jeliazkov [2001] (HM2):
log m(y|M) =~ log f (v|M,0") + log w(6"|M) — log 7(0"|y, M).

[197] Here m(y|M) is the marginal likelihood that data y
are from a model structure M, f (y|M, 6*) is the likelihood
that the data y are from a model that is from a structure M
and parameterized by 6*,60% represents the maximum likeli-
hood parameter estimate (MLE) for a given model structure
M, |0*| is the dimensionality of the parameter set, 7(0*|M)
is the prior probability of the MLE 6%, w(6*|y, M) is the
posterior probability of 6%, N is the sample size and m is
the size of parameter sets sampled from the posterior distri-
bution 7(6*|y, M). The General Likelihood function is used
(see section 2.3.1) for /(| M, 0).

[198] For the Bayesian criteria HM2, 7(é|y, M) is non-
parametrically estimated using multivariate kernel density
estimation. For the case studies N=2192 days and
m = 600.
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