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Abstract

Endoscopic capsules have been a very interesting idea in which a lot of progress has been developed lately.
These are capsules with electronics inside of them instead of the regular pill. The capsule can be used for
a lot of different applications. This thesis documents the design process of data management and control
module of a endoscopic capsule with multiple sensing units. In this process subjects such as component
selection for the control unit, the transmission unit and the reason behind these selections. In the end the
data is being wireless transmitted and managed by a CC2650 MCU of TI. Also the data from the sensor are
being managed correctly and then sent to the transmitter. The transmitter then should be able to send up
to 5m from inside the human body and the average current of the wireless transmission is a average of 23.36
µA and a transmission time per package of 2.736ms. The transmitted data is then received on a development
board of the CC2650 and shown real time in a matlab graph.
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1
Introduction

Endoscopy is a way of looking into the body and is an important part of medicine nowadays. Endoscopy is
still used mostly in a traditional way with endoscopes which are small tubes that are used to investigate the
Gastrointestinal(GI) tract. Due to technological advancements instead of using small tubes endoscopy can be
performed by using a endoscope in capsule form which is called capsule endoscopy(CE). Capsule endoscopy
is a important tool to investigate the small bowel since this can not be done completely with traditional en-
doscopes[1]. Investigating the small bowel is important because there are some symptoms of diseases that
can be spotted in the small bowel. Thus these symptoms can not be spotted using traditional endoscopy [2].
Using capsule endoscopy is a safe and non-invasive way of doing that[3].

The goal of this project is to design such a capsule that does not just have a camera like the commer-
cially available endoscopic capsules[4] but add sensing units to it that can measure useful parameters in the
gastrointestinal(GI) tract in real time. The system consists of a controller unit, multiple sensing units, power
management and data transmission. For designing the system we have split the workload into to three sub-
groups: the sensor group, power management group and the data transmission & control group. This thesis
is about the product delivered by the data transmission & control group. The part that is worked on by the
data transmission & control group is highlighted in figure 1.1.

Camera

Pressure
Sensor

Temperature
sensor

Batteries Power
management

TransmitterControl unit Receiver Unit PC

Figure 1.1: Endoscopic capsule on system level

1.1. System design
1.1.1. Top level design
In order to design the endoscopic capsule, first the capsule needs to be considered as a system that consists
of several modules that are interconnected to deliver the desired behavior.

The system or the capsule is considered as a black box which uses input values and creates the expected
output. This way the input and the output can be determined and the functionality of the system at a top
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2 1. Introduction

level can be described. The input in this case are physical signals picked from the body and the output would
be the illustration of this signals as values in a graphical user interface. See figure 1.2.

System
Biological physical 

signals from the body
Illustration of the 
measured values

Figure 1.2: Input/output system overview

After determining the input, the output and the functionality of the system, the black box is divided in sev-
eral components that each has its own functionality and interconnected with each other. By designing each
component, together the parts should create the desired output using the input. The design steps followed
to determine the components of the system and their functionality are:

• Determining which input and output interfaces are necessary for the system.

• Determining a main part which connects the input interface with the output interface.

• Further dividing the input interface, output interface and the main part into smaller modules that can
deliver the overall functionality.

• Determining a block to deliver the energy required for the system to be able to function.

By following the design steps described above, the system can be described in several components. See
figure 1.3 for the top level overview. The components of the system are as follows:

• Input interface:

– Temperature sensor

– Pressure sensor

• Main block:

– Digital IC

• Output interface:

– RF (transmitter and receiver)

– Graphical User Interface

• Energy:
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Figure 1.3: System modules

– Power management

– Batteries

The last design step is to design each component of the system. In the next chapters the design of the RF,
the Digital IC and GUI modules will be discussed. These three components together are responsible for data
management and control.

1.1.2. System components
In this paragraph the functionality of each component of the system will be briefly discussed so the overall
functionality of digital IC and RF in the system will be clear. In the next sections the design of the digital IC
and the RF blocks will be explained in detail.

Sensors
The physical signals from the body are physical signals which need to be translated to analog electrical sig-
nals and eventually to digital electrical signals. The digital values that describe the information of the desired
quantities of the human body can be further processed a digital IC to eventually be illustrated in a user in-
terface. By using the physical signals as input from the human body the output can be generated as digital
translated signals which serves as input for the digital IC block.

Digital IC
This part of the system is responsible for data management by capturing data from the sensors and deliver it
to the transmitter. Digital IC, as the brain of the system, controls and communicates with other modules and
processes data in an efficient manner in terms of power and performance. The output serves as input of the
RF module which transmits and receives the processed data.

RF
The RF module consists of a transmitter and a receiver which both of the components uses an antenna. This
part of the system is responsible to deliver the captured and processed data from the capsule in the body to a
workstation outside the body. From the workstation the values can be illustrated in a user interface.

GUI
The final stage of the system is the graphical user interface. GUI illustrates the measured values in the first
stage of the process in an understandable manner for the users.

Power management
The endoscopic capsule uses power to be able to function and that applies for each part described above.
Power management is a crucial part of the system since it is important that the system should be able to
function optimally in the period of time that it is required. Also this part delivers power using batteries and
converters.
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1.1.3. Data management and control
This part of the system contains the digital IC module and the RF module. See the previous paragraph for a
brief description of the modules. In this section the components of this part of the system and their interac-
tions with each other and with the system will be discussed.

Figure 1.4 shows the interactions and the connections of the components of the data management and con-
trol module. The digital IC should contain the control unit, timer and the data processing blocks and the RF
module should contain an antenna and an antenna interface in order to function as described in the previous
paragraph.

The control unit is responsible to determine the timing of the behavior of the different blocks. It uses a timer
to synchronize the reading of the sensor and setups the communication with the sensor and the antenna
interface. Each a request is done by the control unit, the sensor interface gives data to the data processing
block where data are processed. Afterwards the data is sent to the antenna via the antenna interface.

Figure 1.4: Data management and transmission architecture

In the next chapters the implementation of the system design will be discussed in detail. The abstract
system design was necessary to design the individual modules of the system. In this theses the design of
the digital IC and the RF blocks will be explained. Both of the modules describe the behavior of the data
management and control of the system.

1.2. State of art analysis
Capsule endoscopy has come a long way already. There are endoscopic capsules that are already commer-
cially available such as the pillcam of Medtronic. These are endoscopic capsule that just have a camera. The
next step that has to be made for capsule endoscopy is to make the capsules have multiple sensing units
added to the camera so that there is extra information linked to the images.
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There is also research being done into wireless powering such an endoscopic capsule [5]. This would
enable more features for a endoscopic capsule since if there is wireless powering there is less worries about
power since there will be a constant supply of energy. This would be a huge advantage compared to the system
which at the moment are powered by batteries. Now there is also research being done on if UWB-transmission
is possible trough the body [6]. When UWB-transmission will be available for endoscopic capsules the frame
rates and resolution of the cameras used can be upped quite a bit since the data rate will be very high when
using UWB-transmission.

1.3. Document Structure
In this section the document structure will be given. In chapter 2 the requirements of the system and the
requirements of the data management and control which follows from the system requirements are given.
Then in chapter 3 there will be a break down of the complete system for the endoscopic capsule. After that in
chapter 4 and 5 the design of the Digital IC and Data transmission will be explained. All the decisions made
with all the reasons and component selection. After that in chapter 6 there will be further elaborated on the
graphical user interface (GUI) and how it got implemented. In chapter 7 the performance of the designed
system will be tested and how the implementation went. with in chapter 8 and 9 the discussion conclusion
recommendation and future work.





2
Requirements

As first fase of the project, the requirements of the product was gathered and grouped together under func-
tional and non-functional requirements.

2.1. Functional Requirements
The functional requirements of the system are requirements about what the system should do. In functional
requirements now mandatory requirement to which the system must comply with and trade-off require-
ments which would be preferred to comply with but is not necessary. The functional requirements are the
following:

• The user must be able to see the result of the measurements in a graphical user interface. See figure 2.1
which illustrates the use case diagram.

• The capsule should be able to measure the temperature and the pressure

• The capsule should be water proof

• The capsule could consist of a image sensor to detect images

• The measurements must be real-time

• The measurements must be transmitted wireless

• The capsules must have at least one sensing unit.

• The capsule should last for 24 hours

View measured 
values

<<include>>

Receiving values 
from the pill

Figure 2.1: Use case diagram
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2.2. Non-Functional Requirements
The non-functional requirements are the requirements of how the system should work. There are between
the non functional requirements also mandatory and trade off requirements as described in the functional
requirements. The non functional requirements are the following:

• The capsule could be able to be reused

• The capsule could be safe for a human body to swallow

• The capsule should have a diameter of 11 cm and a length of 23cm

• The capsule could be swallowed by a human.

• The data from the capsule should be able to be received in a range of 5 m from inside a human body

• The data rate must be at least 16 bits per second



3
Digital IC

In this chapter the design of the digital IC module will be discussed after explaining the functionalities of the
components in the previous chapter.

There are two choices for the implementation of the digital IC, either a micro-controller or logic based circuit.
[7] [8].
Logic based digital IC would be a better design choice than a micro-controller in terms of performance and
efficiency while the micro-controller is more flexible, simple and contains more features. In this project the
choice went to the micro-controller CC2650 for its simplicity to program and the flexibility to change or add
more features.[8]

3.1. Modules
The digital IC component consists of three main modules: sensor interface, actuator interface and a control
unit. The sensor interface is an important part for the sensors to communicate with the control unit. See
figure 3.1 for the model scheme.

3.1.1. Sensor interfaces
The sensor interface which is called a sensor controller integrated in the micro-controller opens the com-
munication with the sensors using the I2C protocol and read the values from the sensors. In order to save
power, capturing the sensor values is synchronized with a frequency of 1Hz since the temperature and the
pressure of a human body does not change so frequently. Each time the values is read from the sensors the
sensor controller generates an interrupt in the main code on the CPU. The value of the sensors is passed by
the sensor controller and captured by the interrupt function in the CPU.

3.1.2. Transmitter interfaces
The antenna interface or the RF core integrated in the micro-controller is responsible to deliver the processed
data by the CPU to the antenna. After the communication is opened between the CPU and the RF core, each
time when processing data is done the CPU sends a signal to the RF core to deliver the packet. After the
transmission is successful the function that is used to send the packet returns a value to the CPU while the
CPU continues with the main code since the RF core contains it own processing unit. [9]

3.1.3. CPU
This unit is the main control unit of the Digital IC. CPU acts as a control unit of the entire system connect-
ing different component with each other. This control unit interconnects the sensor interface, transmitter
interface and the power management in order to synchronize and monitor the components of the system.

3.2. Design
The design of the digital IC is done by software and that is why the design explained in this paragraph is
mostly about software design and the design choices.

9
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Temperature 
sensor

Pressure 
sensor

Communication 
Interface

Communication 
Interface

Sensor 
Controller

Interrupt 
Controller

CPU

Transmitter

Figure 3.1: Digital IC modules

3.2.1. Real-time architecture

In order to create a real-time system, the communication between the sensor interface and the transmitter
interface and processing data should be real-time. By using a real-time software architecture the control unit
can respond directly if needed. By using a RTOS (real-time software architecture) the power of the sensor
controller, RF core and the CPU can be managed such it consumes as low as possible power.

There are one task, one semaphore and one interrupts used in the CPU and one interrupts and task in the RF
core. When the interrupt from the sensor controller is generated in the CPU, the semaphore that holds the
task that captures and processes the data will be freed which afterwards the task can be run. This way pro-
cessing and sending data to the RF core will not be done in an interrupt function since an interrupt function
cannot be interrupted in RTOS and also the task will be run by CPU only if necessary which is done by the
semaphore.

At the start of the program the CPU configures the sensors and the transmitter and opens the communi-
cations with the transmitter and the sensors. Afterwards the CPU goes to the idle mode to save power. Each
time a semaphore is freed by the interrupts the task runs once and the transmitter sends the data to the an-
tenna. And again the system goes idle. The model of the behavior of the control unit is described in the state
diagram shown in figure 3.2. See appendix C for the main code of the CPU. See appendix C for the complete
main code of the CPU.
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Figure 3.2: Digital IC state diagram





4
Data transmission

In this chapter the design of the wireless data transmission(RF part in chapter 3) will be discussed. Data
transmission part consists of the transmission and the receiver part shown in figure 1.1. The design is based
on the requirements in chapter 2. The choices made during the design and the thought process behind them
will be explained in this chapter.

4.1. Selection protocol
The first design step that had to be made was to choose a transmission protocol. This had to be done since
there is limited amount of time and the design of the capsule had to be done with off the shelf components.
The choice between the following wireless transmission protocols has been made: Zigbee, Bluetooth, TI pro-
prietary mode and WiFi. The TI proprietary mode is not a conventional protocol. It is a protocol supported by
a lot of TI MCU’s and is a highly t protocol where transmission power, Symbol Rate, Modulation types can all
be modified. This is in between here since most of the low power MCUs are from TI and support this. There
are of course more protocols such as Zwave, UWB or 6LowPAN. But these are not looked into since these
protocols are not integrated into commercially available micro controller units or transceivers/transmitters.

Table 4.1: Comparison of different protocols

WiFi [10] Bluetooth [11][12] Zigbee [11] TI-Proprietary

Max Data Rate 1.2Gbps 2500Kbps 250Kbps 1000Kbps
Low-Power X X X
Carrier Frequency 2.4/5GHz 2.4GHz 2.4GHz; 915/868 MHz 433/868/915 MHz; 2.4GHz

4.1.1. Data Rate
In chapter 2 the requirements for the data rate can be found. Since the sampling rate of the sensors will be
very low, about 1 Hz and a maximum of 3 Hz. All the protocols will suffice as can be seen in table 4.1.

4.1.2. Power consumption
WiFi has a high data rate but the problem is that there are no low power alternative of WiFi. This means that
the requirement for lifetime of the pill would never be achieved so this choice falls of. Now three alternatives
remain with low power modes. In [13] the power consumption of multiple low power wireless communica-
tions protocols is tested in which Bluetooth comes out on top of Zigbee in terms of power consumption. Now
the hard part is comparing these results to the ti proprietary mode. There is no literature available about this
so even tough it is known that is low power its performance versus Bluetooth an Zigbee is unknown but would
probably not be a lot worse then Bluetooth or Zigbee.

4.1.3. carrier frequency
Al these different protocols work in the unlicensed wireless frequencies, which can be seen in table 4.2. From
table 4.2 the frequency that are allowed here in Europe can be found which is useful to know before choos-

13



14 4. Data transmission

ing components. As can be seen in table 4.1 most of the protocols do use the 2.4 GHz frequency band. This
has a problem which is that Electromagnetic waves in this frequency band get absorbed a lot by water [14].
Since the human body consists mostly of water there is interference of the human body outside of the fre-
quency range of 1 MHz - 1GHz [15] [16]. So the optimal Protocols would be Zigbee or TI proprietary mode
in spite of this there has been looked into transmission power needed for Zigbee transmission for capsule
endoscopy [14]. Using this information 2.4GHz transmission can still be used the problem know is that the
power consumption will be higher.

Table 4.2: Relevant unlicensed wireless frequencies

Wireless Frequency Frequency Bandwidth Country/Region

High Freq. ISM
2400-2483 MHz
5725-5875 MHz

20 MHz
40 MHz

Worldwide

Mid ISM

433-434 MHz
315 MHz

865-868 MHz

902-928 MHz

KHz Range

200-500 KHz

MHz

Worldwide

Europe

U.S., Canada,
Australia

UWB 3.1-10.6 GHz >500MHz International

4.1.4. Chosen protocol
The final chosen protocol is the TI Proprietary mode since it is possible to have wireless data transmission in
the sub GHz range and have a high enough data rate. The power consumption is unknown with respect to
Bluetooth an Zigbee. This is not a big problem since it is still low power and has configurable transmission
power to low values much lower then Zigbee and Bluetooth.

4.2. MCU or transceiver/transmitter unit
The first choice that had to be made was to decide between a stand alone transmitter/transceiver or a MCU
with a transmission part integrated since the controller unit will be a MCU. Since most MCUs without a
transmission part had the same size as MCUs with transmission part it would safe space to have a MCu with
a transmission part because then a transceiver/transmitter is not needed.

4.3. Chosen Component
The final chosen component is The TI CC2650 MCU as mentioned before in chapter 3. This component
supports TI Proprietary mode and Bluetooth transmission. This is chosen because in case the project would
extend to adding more sensing units or even a camera it would be able to still be able to implement this using
the higher data rates. So the main reason was the flexibility of the project and the prototype. In the end only
the TI proprietary mode is used about which more will be told in the following sections. Even tough it works
in the 2.4 GHz range on the cc2650 this will still be good enough to make the pill last long enough and have a
theoretical acceptable range from inside the human body.

4.4. TI Proprietary mode
In this section the TI proprietary mode will be explained, SmartRF studio and its settings will be discussed
and a little of what happens inside the MCU when it should transmit something.

4.4.1. SmartRF Studio
SmartRF studio is a TI supported tool that can be used to generate configuration files for the data trans-
mission for its MCUs. These files are then used in Code Composer Studio and included in the projects to
configure the wireless data transmission. in figures 4.1 and 4.2 all the configurable parameters of the trans-
mitted package and the received package can be seen. Also on the top of those figures the modulation type
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can be seen which is 2-GFSK which stands for Gaussian frequency shift keying. In figure 4.1 and 4.2 also pa-
rameters such as the symbol rate transmission power, receiver bandwidth, carrier frequency and deviation
can be seen. In this figure they are already set to their final value. The reason that this symbol rate at the
end is not important is because sending a package is done manually in the code so if in the code no packet is
send it will not unnecessarily send packages. So this symbol rate is not a set symbol rate but just a maximum.
The symbol rate in this case thus put in there to make sure that the deviation is is at the minimum half the
maximum symbol rate and the receiver bandwidth is at least twice the maximum symbol rate.

In figure 4.1 the configurations of the transmitted package can be seen which is a package with a preamble
and a sync word which also can be seen in figure 4.1. Since the packet length will be fixed this is not included
in the packet but in the configuration file.

Figure 4.1: SmartRF studio Transmit package settings

In figure 4.2 also the configurations of the received package can be seen. This had to be consistent with
the transmitted package because the receiver unit should expect the a package with the same overhead as the
package that is being transmitted.
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Figure 4.2: SmartRF studio Receive package settings

4.4.2. Gaussian frequency shift keying

To know why certain configurations is used a little about the modulation type used has to be explained. Gaus-
sian frequency shift keying is a modulation technique where the digital filter first goes trough a Gaussian filter
and then gets modulated as a frequency shift keying to have a better base-band bandwidth performance [17]
[18]. In the smartRF settings the symbol rate is set to 50 kBaud the deviation should be at least half that to
make sure there are no overlapping signals on certain frequencies where in this case is thus chosen for a de-
viation of 50 kHz. The occupied bandwidth of a FSK modulated signal is equal to the symbol rate + twice the
deviation. Thus in this case the occupied bandwidth is equal to 50 + 100 = 150kHz. In the smart RF settings
the RX bandwidth is set to 220 kHz since this was the lowest after 150 kHz.

4.5. Antenna

For selecting the antenna there were three different choices that could be made. To choice was between a chip
antenna, a PCB antenna or a wire antenna[19]. Since chip antennas are the smallest possible antennas that
can be found that is the antenna that is used. This is because the end goal is to work towards an endoscopic
pill and is one of the trade off requirements. So thinking of size while making choices is a important part.
Since in the data sheet [8] the antenna matching circuit is given for a antenna with a 50 ohm input impedance
so a corresponding antenna is chosen with a 50 ohm input impedance. the antenna chosen is the Wurth
Elektronik SMT Antenna 7488930245. And its matching circuit can be found in figure 4.3
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Figure 4.3: Antenna matching circuit

4.6. Implementation
Everything mentioned before in this chapter is now used when making the system work. The Transmitter was
in this case just the cc2650 programmed correctly to transmit the temperature and pressure every second.
The receiver unit is now a development board, the launchpad of the cc2650. The launchpad receives the
transmitted package and the send it to the PC trough the serial com port using uart. The code for the cc2650
is written in code composer studio with help of the user guide [7] and coding examples in code composer
studio.

4.7. Transmission power
The transmission power set is a important parameter to set the rang of the wireless data transmission. The
maximum range can be estimated using friis equation which can be found in formula 4.1.

PR

PT
= GT GR c2

(4πR f )2 (4.1)

In [14] the transmission power that is needed for Zigbee trough an animal is tested. in here the minimum
needed transmission power is equal to 533 µW for a transmission range of 2 m. The assumption now is
that this also works for the TI proprietary mode since the carrier frequency is almost the same and that the
interference of the human body will be the same as the pig use in [14]. Rewriting equation 4.1 a bit will turn
it into 4.2.

PR (4π f )2

c2GT GR
= PT

R2
max

(4.2)

Equation 4.2 now can be used to estimate the needed transmission power for a certain range since all the
parameters on the left will not change so with the information from [14] since there the ratio is known for a
signal travelling trough an animals body. Where this is equal to 133.25 ·10−6 in the requirements it says that
the range should be 5 m so that means that the transmission power should be around 3.3mW which is around
5dBm which is set into the configuration files as can be seen in figures 4.1 and 4.2.

4.8. Transmission Flow
The sensors that are going to be used are a pressure sensor and a temperature sensor. The sensors used are TI
TMP 112B temperature sensor and the TE MS5534C barometer module. The sensors each has a 2 byte output.
These bytes are then send to the cc2650 and then being processed as can be seen in figure 4.4.
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Temperature
Sensor

Pressure Sensor

CC2650

2 Bytes

2 Bytes
Modulated 4 Bytes + Header

Figure 4.4: High level description of data flow

In figure 4.5 a overview of the RF-core in the cc2650 can be seen with its external dependencies. Inside the
CC2650 when a transmission happens the main CPU the Cortex-M3 will send a command to the RF-core CPU
a Cortex-M0. This command is then scheduled and performed by the Cortex-M0. The modern, Frequency
synthesizer and RF interfaces is where the modulation happens of the digital data or the demodulation of the
received signal.

Figure 4.5: High level description RF functionality CC2650 [8]

4.9. Receiver

For the receiver a CC2650 launchpad will be used. This is the development board for the c2650 which is made
by TI. The launchpad has an integrated antenna so this was very easy to implement. The flow chart of the
reception can be seen in figure 4.6. This launchpad then transmits this data using UART to the PC. In the PC
then this data is being processed and shown on the screen.
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UART
Launchpad CC2650 PC

Received signal

Figure 4.6: Data flow at the Receiver end





5
GUI

GUI as the last stage in the process which delivers the required output for the system will be discussed in this
chapter. The Graphical User Interface illustrates the measured values by the sensors in a real-time manner.
The temperature and the pressure values are given in a graph that changes with time. See figure 5.1.

Figure 5.1: Sensor values plots

5.1. Receiver
After receiving the values from the transmitter it is sent to the the workstation where the values are illustrated.
The receiver waits forever for packets to be received. Each time a packet is received an interrupt function is
called where the information is extracted from the packet and sent to the GUI. The packets are sent using
UART protocol to the graphical user interface where the receiver is connected to a com port using USB. See
appendix D for the C code of the receiver.

5.2. Design
The GUI is written in MatLab and uses an interrupt function every time a value is received and sent to the
workstation. See appendix A for the main Matlab code and appendix B for the interrupt function code.

The main code initializes and allocates the communication with the receiver and stays in an infinite loop
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waiting for a packet to be received from the receiver.
The interrupt function collects four bytes data received from the UART and applies some additional calcu-
lation to combine some packets in order extract the required information from the packet. By shifting the
plot or in other words deleting the first received data and adding the last received data to the plot, the plot
changes every time it receives a packet from the receiver. This way the plot is considered a real-time plot of
the temperature and the pressure values. A plot that changes each time a packet is received as shown in figure
5.1.



6
Testing and Prototype

In this chapter all the results will be discussed of the implementation. Also the prototype and its relevant

6.1. Data Transmission

6.1.1. Testing of the transmission

The first test was to just send one byte wireless from one launchpad to another launchpad. So for this test
an additional launchpad was needed. After receiving the results are then read the results that are received er
then being seen from puTTY or code composer studio on the PC. After this worked no matter what package
would be send would be no problem. So now knowing that the data transmission worked multiple extra test
of the characteristics of this transmission can be done.

6.1.2. Average current Consumption and Transmission time

There have been test done to see the power consumption of the MCU when it is transmitting a package. The
measurement setup is a 10 ohm resistor in series with the MCU with a oscilloscope measuring the voltage
with a x10 probe. It is a 10 ohm resistor because that was the lowest resistance that was available and a 10x
probe so that the voltage would be equal to the current so that the current would be immediately measured.
This setup can be seen in figure 6.1.

Figure 6.1: Setup measurement power consumption transmission

Using this setup the MCU was just sending data without doing anything else. There where two measure-
ments done one while sending 1 Byte and 1 sending 100 Bytes with a transmission power of 5 dBm. These
results can be found in figures 6.2 and 6.3.
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Figure 6.2: Current measurement sending 1 Byte

Figure 6.3: Current measurement sending 100 Byte

Using figures 6.2 and 6.3 an estimation can be made for the average current. In this estimation figure 6.2
is the transmission of just the package header. In both figures the pre-transmission period can be seen. This
is the period where the preparation for the transmission happens such as the modulation. This period takes
2ms and has an average current of about 4mA. After this pre-transmission period it will start transmitting
data with a estimated current of 10mA. From figure 6.2 it is possible to see that the MCU transmits for about
0.6ms. So as a rough estimate the transmission of the header and the CRC checksum, 0.55 ms will suffice as
transmission time of the header since it has a payload of 1 byte. To have a good estimation for the average
current per package sent per second and the transmission time for every payload length. In figure 6.3 it
can be seen that when sending 100 bytes plus the header that it takes about 5.2 ms so when removing the
header length to that 4.65 ms is left for 100 bytes so it takes an extra 0.0465ms for every byte send. with
this information the formula for the transmission time(6.1) and the average current(6.2) can be constructed.
Where the n is the amount of bits per payload and k the amount of packages per second. So for a payload of
4 bytes and 1 package per second a average current of 23.36 µA and a transmission time of 2.736ms.

TT X = 2.55+0.046 ·n (6.1)

I AV G
T X = ((2ms ·4m A)+ ((0.55ms +0.046ms ·n) ·10m A)) ·k (6.2)
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6.2. Digital IC
In this chapter the test of the digital IC will be discussed. The test of this component plays a main role since
it controls other parts of the system.
First the values received from the sensor interface and the output to the transmitter interface needs to be
tested. This intermediate steps will show if the module generates the desired output and if it captures the
input.
Then the software architecture is tested to show if it delivers real-time behavior and switches to low power
modes.

From the plot shown in figure 5.1 the temperature and the pressure values detected by the sensors can be
observed. From this plot it can be concluded that the output values of the system are as required. By chang-
ing the temperature and the pressure the graph responses with the correct values using the setup as shown in
figure 6.4.
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Figure 6.4: Current consumption of the endoscopic capsule during the process

The graph in figure 6.4 shows the current during a period of time by using a 10 ohm resistance to measure
the current. When the CPU is idle the current is approximately 0A and that is required for the system in order
to save power. At a certain moment the current jumps from 0A to 0,4mA when the digital IC is capturing data,
processing it and sent to the transmitter. The peak shown in the plot before the system goes idle is when the
system is transmitting data and the current that is used at that moment is approximately 1,6 mA. From this it
can be concluded that the digital IC is working as required in terms of functionality and power efficiency.

As tools the debugger and a test board is used to test the digital IC during the design. These tools is used
as intermediate test setups in order to verify the design choices. All in all the endoscopic capsule works as
desired and the next chapters will continue to discuss the test results.

6.3. Prototype
6.3.1. Breadboard prototype
The breadboard prototype consists out of the cc2650 launchpad development board as substitute of the stand
alone cc2650, the antenna and its matching circuit. All the sensors are connected to the launchpad which
then sends the data received to another launchpad which is connected to the PC that then shows the data
on the Matlab GUI. To make the whole system complete everything now is also powered by batteries and the
converters so that this is a stand alone system. This can be seen to be working again when looking at the
figure 5.1. The power consumption of the whole system can be seen in figure 6.5.
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Using figure 6.5 to get an average current consumption of the prototype is hard because of all the noise due
to the converter. So to get an average current multi-meters were used which measured a average current of
0.83mA. Due to the batteries having a capacity of 30 mAh the system will work for a little longer then 60 hours
because of the efficiency of the converters(85.1%) and the 2 batteries (30mAh with 3.3V each) in series that
will supply 198mWh. This means the requirement for the lifetime of the system mentioned in chapter 2 is
achieved.
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Figure 6.5: Current consumption breadboard prototype

6.3.2. PCB Prototype
The was also an attempt to creating a PCB Prototype, the PCB design and the 3D-design of a capsule are
already finished. In figure 6.6 the designed pcb can be seen with the highlighted part is the data and man-
agment groups part on the pcb. On the PCB the biggest part of the data management and control part is the
matching circuit for the antenna. The PCB has already arrived and the 3D-Design is already printed but the
assembly has to be done still. So also no test have been done for this prototype. See figure 6.7 for the currently
product.

Pictures/PILL_PCB(1).png

Figure 6.6: Designed PCB prototype

Figure 6.7: The endoscopic capsule



7
Discussion

In the beginning of the project after the components were selected a bunch of programming had to be done.
All the libraries needed had to be found on known how to be used. Everything is explained in the user guide
of the CC2650 MCU but it took a long time to complete. In the end the programming worked out in time with
the help of some by ti provided examples that made understanding the user manual a lot easier.

In the end the range of the transmission from inside the human body has not been tested even tough there
has been thought about it even in the 2.4GHz frequency range where there is a lot of absorption of water. Also
there was not a way to isolate the MCU and test it separately. So instead having a clear separate test for the
MCU the implementation was the test for the MCU. In the end the capsule also was not in a size required for a
pill which was unfortunate due to time restrictions. There were also multiple thing that would be interesting
to test such as the latency from acquiring the data to showing it in the GUI.

The prototype itself in the end was working but unfortunately not to many test have been since there has
been a lot of work done in improving the system and in the end the test were a little bit neglected and also
imitating a human body is hard to do. So even tough the system works and a lot of the requirements have
been met, the performance of the system can not be specified.

7.1. Teamwork
There were three teams working on this project together on completing the complete system mentioned in
the introduction. To make sure some of the requirements were met a lot of communication had to be done in
between sub groups. Especially for the data management and control part since here everything is combined
and then send to the PC.

To make sure the power management would be done correctly also a lot of communication between the
power management group had to be done with the other subgroups. Predicted current consumption of their
respective part was given so that the power management group a estimation of the consumed power by the
system. So in the case of the data management and control group for example the power consumption test
in chapter 6.

From the sensor group the data management and control group needed to know how the raw data would
look like. So that the raw data that would be received could be converted into understandable data.
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8
Conclusion & Future work

8.1. conclusion
In this thesis the first steps towards the data management and control for a complete endoscopic capsule
have been made. Where the digital IC of the system is implemented using a MCU of TI. Transmitting is also
done using the same MCU where the modulation type is set to Gaussian frequency shift keying with a de-
viation of 50KHz and a receiver bandwidth of 220 KHz. The MCU makes the pressure and the temperature
sensor measure their value and sends them once a second to the receiver which then sends the data to the
serial port and matlab makes a real time plot of this data. For the receiver unit The development board of
TI, the launchpad for the cc2650 is used. When looking at the requirements in chapter 2 all the mandatory
requirements have been accomplished. All the mandatory requirements were that the data must be trans-
mitted wirelessly. Another mandatory requirement was that the data must be able to be seen in real time.
the final mandatory requirement was for the system to have at least on sensing unit. The data is being trans-
mitted wireless using TI Proprietary mode, the data can be followed real time which happens in the matlab
GUI and that there are now two sensing units instead of the mandatory one sensing unit. Of all the trade off
requirements the capsule has managed to comply to a few but not all. One of the trade-off requirements that
has been accomplished is that the capsule now has two sensing units the pressure sensor and temperature
sensor. And another is that the system can run for 24 hours. All the other trade off requirements unfortunately
could not be accomplished in the limited time period.

8.2. Future Work
In this section the ways to further improve the work that has been discussed in this thesis and maybe future
developments of the endoscopic pill.

8.2.1. Data transmission
For the Data transmission the first thing that has to be done is change the carrier frequency so that less of
the signals strength will be absorbed by the water in the human body. This is a quick but effective strategy to
lessen the power used in the data transmission.

Another Way to reduce the size is instead of using a MCU for the digital IC and transmission to have self
designed ASIC and transmitter in the pill to save space.
As mentioned in the introduction UWB can be very uesfull for very high resolution images so looking into
how to improve the designs that are being used know by following the tips in [6].

8.2.2. Digital IC
In the current design a micro-controller is used as the digital integrated circuit of the capsule which interfaces
with the sensors and the actuators and synchronizes and controls the system. The real-time software archi-
tecture is used for the design of the control unit to guarantee real-time response and multi-tasking if needed.
The down-side of a CPU is that it does not actually delivers a real-time behavior but by using the architecture
the system is real-time enough for the design purposes.
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Figure 8.1: Digital IC modules [20]

A CPU uses assembly instructions that are executed one by one where on the other a logic based integrated
circuit would execute more instructions at the same time. CPU uses also more power than a logic based
circuit since it is a general purpose control unit and a logic based circuit would use only power needed to
function. Because a micro-controller is a general purpose unit it is also larger than a logic based circuit in
size. That is why a logic based digital IC would be a better design if there was more time and resources for the
project.

The state diagram or the behavior of the control unit would not be different than one used for the micro-
controller. See figure 8.2 for the state diagram which can be used for the logic based circuit. The power saving
would be different in a logic based design. A RTOS uses software to jump to different modes and is micro-
controller dependent how the low power mode functions. A logic based circuit saves power by using different
clock signals for different modules and states. See figure 8.3.

The digital IC consists of several modules as described in the previous chapters and the design of those mod-
ules is different to realise in a micro-controller since the general purpose processor is pre designed and it is
not open for modifications. On the other in a logic based design the modules can be designed independently
and efficient as possible. The circuit would interconnect the modules and using a controller to send control
signals to each module at a efficient way. See figure 8.1.
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Figure 8.2: State diagram of the controller [20]

Figure 8.3: Clock management of the digital IC module [20]
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A
Main GUI code

1 close a l l
2 clear
3 cl c
4

5 % Global var iables
6 t imeInterval = 5 ;
7

8 % Open port
9 delete ( i n s t r f i n d a l l ) ; %Solved unavailable port error

10 MyPort = s e r i a l ( ’COM11’ ) ;
11 MyPort . BytesAvailableFcnCount = 1 ;
12 MyPort . BytesAvailableFcnMode = ’ byte ’ ;
13 MyPort . BytesAvailableFcn = { @mycallback , t imeInterval } ;
14 fopen ( MyPort ) ;
15 disp ( MyPort )
16 disp ( ’ S t a r t reading ’ )
17

18 global temp ;
19 global count ;
20 global press ;
21 press = zeros ( timeInterval , 1) ;
22 temp = zeros ( timeInterval , 1) ;
23 count = 1 ;
24

25 % S t a r t /Stop button
26 c = uicontrol ( ’ S t y l e ’ , ’ pushbutton ’ , ’ Str ing ’ , ’ S t a r t /Stop ’ , ’ Callback ’ , { @pushbutton_callback , MyPort } ) ;
27

28 % I n f i n i t e loop
29 while ( true )
30 end
31

32 % Deallocating memories
33 f c l o s e ( MyPort ) ; %Disconnect port
34 delete ( MyPort ) ; %Remove port from memory
35 clear MyPort ; %Clean port object from workspace
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B
Interrupt GUI code

1 function mycallback ( obj , ~ , length )
2 global temp ;
3 global count ;
4 global press ;
5 x = linspace ( 0 , length , length ) ;
6

7 tmp = fread ( obj , 1 ) ;
8

9 i f (tmp>0)
10 Data = fread ( obj , 3 ) ;
11 temperature = tmp*(2^8)+Data ( 1 ) ;
12 % temperature = temperature /10; % temperature pressure sensor
13 temperature = temperature * 0.0625;
14 pressure = Data ( 2 ) *(2^8)+Data ( 3 ) ;
15 pressure = pressure / 10;
16 f p r i n t f ( ’ Temperature : %.2 f Celsius \n Pressure : %.2 f mbar\nCount : %d\n\n ’ , temperature , pressure ,

count ) ;
17

18 i f (temp( length ) ==0)
19 temp( count ) = temperature ;
20 press ( count ) = pressure ;
21 else
22 i =1;
23 while ( i <length )
24 temp( i ) = temp( i +1) ;
25 press ( i ) = press ( i +1) ;
26 i = i +1;
27 end
28 temp( length ) = temperature ;
29 press ( length ) = pressure ;
30 end
31

32 subplot ( 2 , 1 , 1 ) ;
33 plot ( x , temp)
34 ylim ([23 40])
35 xlim ( [ 0 length ] )
36 xlabel ( ’Time ’ )
37 ylabel ( ’ Temperature in Celsius ’ )
38 t i t l e ( ’ Temperature ’ ) ;
39 subplot ( 2 , 1 , 2 ) ;
40 plot ( x , press )
41 ylim ([1000 1100])
42 xlim ( [ 0 length ] )
43 xlabel ( ’Time ’ )
44 ylabel ( ’ Pressure in mbar ’ )
45 t i t l e ( ’ Pressure ’ ) ;
46 drawnow ;
47 count = count + 1 ;
48

49 end
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38 B. Interrupt GUI code

50

51 end



C
Transmitter code

1

2 /*
3 * T i t e l : Transmitter
4 * Module : D i g i t a l IC of the p i l l
5 * Author : Group E
6 */
7

8 /* XDCtools Header f i l e s */
9 #include <xdc/ std . h>

10 #include <xdc/runtime/System . h>
11

12 /* BIOS Header f i l e s */
13 #include < t i / sysbios /BIOS . h>
14 #include < t i / sysbios / knl /Clock . h>
15 #include < t i / sysbios / knl /Task . h>
16

17 /* TI−RTOS Header f i l e s */
18 // #include < t i / dr i vers /I2C . h>
19 #include < t i / dr iv ers /PIN . h>
20 // #include < t i / dr i vers / SPI . h>
21 #include < t i / dr iv ers /UART. h>
22 // #include < t i / dr i vers /Watchdog . h>
23

24 /* Board Header f i l e s */
25 #include "Board . h"
26 #include < s c i f . h>
27 #include < d r i v e r l i b / rf_prop_mailbox . h>
28

29 /* SmartRF s e t t i n g s */
30 #include " smartr f_sett ings / smartr f_sett ings . h"
31 #include < d r i v e r l i b /aon_ioc . h>
32

33

34 #define TASKSTACKSIZE 1024
35 #define TX_TASK_PRIORITY 3
36 #define TMP_TASK_PRIORITY 2
37 #define PR_TASK_PRIORITY 1
38 #define TMP_ARGUMENT 100000 / Clock_tickPeriod
39 #define PR_ARGUMENT 100000 / Clock_tickPeriod
40 #define TX_ARGUMENT 100000 / Clock_tickPeriod
41 #define PAYLOAD_LENGTH 30
42 #define N 100
43 #define wait_time 10000000
44 #define PRESSURE_SAMPLES 4
45

46 /* Task variables */
47 Char txTaskStack [TASKSTACKSIZE ] ;
48 Task_Struct txTask ;
49 Task_Params taskParams ;
50

39
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51 /* Semaphore variables */
52 Semaphore_Struct semStruct1 ;
53 Semaphore_Handle semTX ;
54 Semaphore_Params semParams ;
55

56 /* RF variables */
57 RF_Params rfParams ;
58 RF_Object rfObject ;
59 RF_Handle rfHandle ;
60

61 /* UART variables */
62 UART_Handle uart ;
63 UART_Params uartParams ;
64

65 /* Temporary packet var iables */
66 uint32_t time ;
67 uint8_t packet [PAYLOAD_LENGTH] ;
68

69 /* Pin driver handle */
70 PIN_Handle ledPinHandle ;
71 PIN_State ledPinState ;
72 PIN_Config ledPinTable [ ] = {
73 Board_LED0 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX

, // Red led
74 Board_LED1 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX

, // Green led
75 IOID_0 | PIN_INPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX, //

DOUT
76 IOID_12 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,

// SCLK
77 IOID_15 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,

// DIN
78 IOID_21 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,

// MCLK
79 PIN_TERMINATE
80 } ;
81

82 i n t temperature ;
83 i n t pressure ;
84

85

86 /* reading pressure sensor : */
87

88 unsigned i n t c o e f f i c i e n t s _ [ 6 ] ;
89

90 // send command MS b i t f i r s t
91 void SendCommand( unsigned long cmd, s i z e _ t nbits )
92 {
93 while ( nbits−−)
94 {
95 i f (cmd & ( unsigned long ) (1 << nbits ) )
96 PIN_setOutputValue ( ledPinHandle , IOID_15 , 1) ;
97 else
98 PIN_setOutputValue ( ledPinHandle , IOID_15 , 0) ;
99

100 PIN_setOutputValue ( ledPinHandle , IOID_12 , 1) ;
101 PIN_setOutputValue ( ledPinHandle , IOID_12 , 0) ;
102 }
103 }
104

105 /* Reset the sensor */
106 void ResetSensor ( )
107 {
108 SendCommand(0 x155540 , 21) ; // 1010101010101010 + 00000
109 }
110

111 /* Read one word from the sensor */
112 unsigned i n t ReadWord( void )
113 {
114 unsigned i n t w;
115 unsigned i n t clk = 16;
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116 w = 0 ;
117 while ( clk−−)
118 {
119 PIN_setOutputValue ( ledPinHandle , IOID_12 , 1) ;
120 PIN_setOutputValue ( ledPinHandle , IOID_12 , 0) ;
121 w | = ( PIN_getInputValue ( IOID_0 ) << clk ) ;
122 }
123 PIN_setOutputValue ( ledPinHandle , IOID_12 , 1) ;
124 PIN_setOutputValue ( ledPinHandle , IOID_12 , 0) ;
125

126 return w;
127 }
128

129 /* Read the c o e f f i c i e n t from the sensor */
130 s i z e _ t ReadCoefficient ( unsigned char addr )
131 {
132 // 111 + 6 b i t coeff addr + 000 + 1 clk ( send0 )
133 unsigned long cmd = ( unsigned long ) 0x1C00 | ( ( ( unsigned long ) addr ) << 4) ;
134 SendCommand(cmd, 1 3 ) ;
135 return ReadWord ( ) ;
136 }
137

138 /* Read the c o e f f i c i e n t s from the sensor */
139 void ReadCoefficients ( void )
140 {
141 unsigned i n t wb = ReadCoefficient (0 x16 ) ;
142 unsigned i n t wa = ReadCoefficient (0 x15 ) ;
143

144 c o e f f i c i e n t s _ [ 0 ] = ( unsigned i n t ) ( (wa >> 1) & ( unsigned i n t ) 0x7FFF ) ;
145 c o e f f i c i e n t s _ [ 4 ] = ( unsigned i n t ) ( ( ( wa & 0x1 ) << 10) | ( (wb >> 6) & ( unsigned i n t ) 0x3FF ) ) ;
146 c o e f f i c i e n t s _ [ 5 ] = ( unsigned i n t ) (wb & 0x3F ) ;
147

148 wb = ReadCoefficient (0x1A ) ;
149 wa = ReadCoefficient (0 x19 ) ;
150

151 c o e f f i c i e n t s _ [ 3 ] = ( unsigned i n t ) ( (wa >> 6) & 0x3FF ) ;
152 c o e f f i c i e n t s _ [ 1 ] = ( unsigned i n t ) ( ( ( wa & 0x3F ) << 6) | (wb & 0x3F ) ) ;
153 c o e f f i c i e n t s _ [ 2 ] = ( unsigned i n t ) ( (wb >> 6) & 0x3FF ) ;
154

155 # i f d e f DEBUG
156 // for ( s i z e _ t i =0; i <6; ++ i )
157 // {
158 // S e r i a l . print ( C o e f f i c i e n t ) ;
159 // S e r i a l . print ( i + 1 , DEC) ;
160 // S e r i a l . print ( : ) ;
161 // S e r i a l . pr int ln ( c o e f f i c i e n t s _ [ i ] , DEC) ;
162 // }
163 #endif
164 }
165

166 /* Calculate the pressure value */
167 long ConvertPressureTemperature ( )
168 {
169 const long UT1 = ( c o e f f i c i e n t s _ [ 4 ] << 3) + 20224;
170 const long dT = ( long ) temperature − UT1;
171 const long TEMP = 200 + ( ( dT * ( c o e f f i c i e n t s _ [ 5 ] + 50) ) >> 10) ;
172 const long OFF = ( c o e f f i c i e n t s _ [ 1 ] <<2) + ( ( ( c o e f f i c i e n t s _ [ 3 ] −512) * dT) >> 12) ;
173 const long SENS = c o e f f i c i e n t s _ [ 0 ] + ( ( c o e f f i c i e n t s _ [ 2 ] * dT) >> 10) + 24576;
174 const long X = ( ( SENS* ( ( long ) pressure − 7168) ) >> 14) − OFF;
175 pressure = ( ( X * 10) >> 5) + 2500;
176 temperature = TEMP;
177

178 long T2 = 0 , P2 = 0 ;
179 i f (TEMP < 200)
180 {
181 T2 = (11 * ( c o e f f i c i e n t s _ [ 5 ] + 24) * (200 − TEMP) * (200 − TEMP) ) >> 20;
182 P2 = (3 * T2 * ( pressure − 3500) ) >> 14;
183 pressure = pressure − P2 ;
184 temperature = temperature − T2 ;
185 }
186
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187 return pressure ;
188 }
189

190 /* Read one sample from the sensor */
191 void TriggerTemperatureSample ( void )
192 {
193 // 111 + 1001 + 000 + 2 cl ks ( send 0)
194 ResetSensor ( ) ;
195 SendCommand(0 xF20 , 12) ;
196 }
197

198 void TriggerPressureSample ( void )
199 {
200 // 111 + 1010 + 000 + 2 cl ks ( send 0)
201 ResetSensor ( ) ;
202 SendCommand(0 xF40 , 12) ;
203 }
204

205 /* Read the average value by reading multiple samples */
206 void AcquireAveragedSampleCm ( const s i z e _ t nSamples )
207 {
208 long pressAccum = 0 ;
209 i n t n ;
210 for (n = nSamples ; n ; n−−)
211 {
212 TriggerTemperatureSample ( ) ;
213 while ( PIN_getInputValue ( IOID_0 ) )
214 ;
215 temperature = ReadWord ( ) ;
216 TriggerPressureSample ( ) ;
217 while ( PIN_getInputValue ( IOID_0 ) )
218 ;
219 pressure = ReadWord ( ) ; // read pressure
220 pressAccum += ConvertPressureTemperature ( ) ;
221 }
222 long pressAvg = pressAccum / nSamples ;
223 pressure = pressAvg ;
224 }
225

226 /* acquire the pressure value from the sensor */
227 void calc_pressure ( ) {
228 AcquireAveragedSampleCm (PRESSURE_SAMPLES) ;
229 }
230

231 /* reading temperature sensor : */
232

233 // SCIF driver callback : Sensor Controller task code has generated an a l e r t interrupt
234 void scTaskAlertCallback ( void ) {
235

236 sci fClearAlert IntSource ( ) ;
237 calc_pressure ( ) ; // reading pressure sensor
238 temperature = scifTaskData . tmp112 . output . value ; // reading temperature sensor ( from Sensor Controller )
239 Semaphore_post (semTX) ; //run the transmitter task
240 scifAckAlertEvents ( ) ;
241 }
242

243 /* Task : */
244

245 /* Transmitter task */
246 void TaskFunction (UArg arg0 , UArg arg1 ) {
247

248 // i n i t i a l i s a t i o n of the r f parameters
249 RF_Params_init(&rfParams ) ;
250 RF_cmdPropTx . pktLen = PAYLOAD_LENGTH;
251 RF_cmdPropTx . pPkt = packet ;
252 RF_cmdPropTx . s t a r t T r i g g e r . triggerType = TRIG_ABSTIME ;
253 RF_cmdPropTx . s t a r t T r i g g e r . pastTrig = 1 ;
254 RF_cmdPropTx . startTime = 0 ;
255 rfHandle = RF_open(& rfObject , &RF_prop , ( RF_RadioSetup * )&RF_cmdPropRadioDivSetup , &rfParams ) ;
256 RF_postCmd( rfHandle , (RF_Op* )&RF_cmdFs , RF_PriorityNormal , NULL, 0) ;
257
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258 while ( 1 ) {
259 Semaphore_pend(semTX, BIOS_WAIT_FOREVER) ; // blocking the task
260

261 packet [ 0 ] = ( uint8_t ) ( temperature >> 8) ;
262 packet [ 1 ] = ( uint8_t ) ( temperature ) ;
263 packet [ 2 ] = ( uint8_t ) ( pressure >> 8) ;
264 packet [ 3 ] = ( uint8_t ) ( pressure ) ;
265

266 /* sending data to the antenna */
267 RF_CmdHandle cmdHandle = RF_postCmd( rfHandle , (RF_Op* )&RF_cmdPropTx , RF_PriorityNormal , NULL, 0) ;
268 i f (cmdHandle<0)
269 {
270 while ( 1 ) ;
271 }
272 RF_EventMask r e s u l t 2 = RF_pendCmd ( rfHandle , cmdHandle , 0) ;
273 RF_yield ( rfHandle ) ;
274 }
275 }
276

277 /* I n i t i a l i s a t i o n s : */
278

279 /* Tasks i n i t i a l i s a t i o n */
280 void t a s k s I n i t ( ) {
281

282 Task_Params_init(&taskParams ) ;
283 taskParams . stackSize = TASKSTACKSIZE ;
284 taskParams . p r i o r i t y = TX_TASK_PRIORITY ;
285 taskParams . stack = &txTaskStack ;
286 taskParams . arg0 = TX_ARGUMENT;
287 Task_construct(&txTask , TaskFunction , &taskParams , NULL) ;
288 }
289

290 /* Semaphore i n i t i a l i s a t i o n */
291 void semaphoresInit ( ) {
292

293 Semaphore_Params_init(&semParams) ;
294 Semaphore_construct(&semStruct1 , 1 , &semParams) ;
295 semTX = Semaphore_handle(&semStruct1 ) ;
296 }
297

298 /* i n i t i a l i s a t i o n of the pressure sensor */
299 void pressure_init ( ) {
300

301 ResetSensor ( ) ;
302 ReadCoefficients ( ) ;
303 IOCPortConfigureSet ( IOID_9 , IOC_PORT_AON_CLK32K, IOC_STD_OUTPUT) ;
304 AONIOC32kHzOutputEnable ( ) ;
305 }
306

307 /* i n i t i a l i s a t i o n of the Sensor Controller and i t s interrupt */
308 void temperature_init ( ) {
309

310 // I n i t i a l i z e the SCIF operating system abstraction layer
311 s c i f O s a l I n i t ( ) ;
312 // scifOsalRegisterCtrlReadyCallback ( scCtrlReadyCallback ) ;
313 sci fOsalRegisterTaskAlertCal lback ( scTaskAlertCallback ) ;
314

315 // I n i t i a l i z e the SCIF driver
316 s c i f I n i t (& scifDriverSetup ) ;
317

318 // Enable RTC ticks , with N Hz t i c k i n t e r v a l
319 scifStartRtcTicksNow (0 x00010000 / N) ;
320

321 // S t a r t the "TMP112" Sensor Controller task
322 sci fStartTasksNbl (1 << SCIF_TMP112_TASK_ID) ;
323 }
324

325 /* i n i t i a l i s a t i o n of the pins */
326 void p i n s _ i n i t ( ) {
327 ledPinHandle = PIN_open(& ledPinState , ledPinTable ) ;
328 }
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329

330 /*
331 * ======== main ========
332 */
333 i n t main( void ) {
334

335 Board_initGeneral ( ) ;
336 t a s k s I n i t ( ) ;
337 semaphoresInit ( ) ;
338 p i n s _ i n i t ( ) ;
339 pressure_init ( ) ;
340 temperature_init ( ) ;
341 BIOS_start ( ) ; // s t a r t RTOS kernel
342

343 return ( 0 ) ;
344 }



D
Receiver code

1

2 /*
3 * T i t e l : Receiver
4 * Module : GUI
5 * Author : Group E
6 */
7

8 /* * * * * Includes * * * * */
9 #include < s t d l i b . h>

10 #include <xdc/ std . h>
11 #include < s t d i n t . h>
12 #include <xdc/ cfg / global . h>
13 #include <xdc/runtime/System . h>
14 #include < t i / sysbios /BIOS . h>
15 #include < t i / sysbios / knl /Task . h>
16

17 /* Drivers */
18 #include < t i / dr iv ers / r f /RF . h>
19 #include < t i / dr iv ers /PIN . h>
20 #include < d r i v e r l i b / rf_prop_mailbox . h>
21 #include < t i / dr iv ers /UART. h>
22

23 /* Header f i l e s */
24 #include "Board . h"
25 #include "RFQueue . h"
26 #include " smartr f_sett ings / smartr f_sett ings . h"
27

28 /* * * * * Defines * * * * */
29 #define RX_TASK_STACK_SIZE 1024
30 #define RX_TASK_PRIORITY 2
31

32 /* Packet RX Configuration */
33 #define DATA_ENTRY_HEADER_SIZE 8 /* Constant header s i z e of a Generic Data Entry */
34 #define MAX_LENGTH 30 /* Max length byte the radio w i l l accept */
35 #define NUM_DATA_ENTRIES 2 /* NOTE: Only two data e n t r i e s supported at the moment */
36 #define NUM_APPENDED_BYTES 2 /* The Data Entries data f i e l d w i l l contain :
37 * 1 Header byte (RF_cmdPropRx . rxConf . bIncludeHdr = 0x1 )
38 * Max 30 payload bytes
39 * 1 status byte (RF_cmdPropRx . rxConf . bAppendStatus = 0x1 ) */
40 #define TASKSTACKSIZE 1024
41

42 /* Pin driver handle */
43 PIN_Handle ledPinHandle ;
44 PIN_State ledPinState ;
45 PIN_Config ledPinTable [ ] = {
46 Board_LED1 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,
47 Board_LED2 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,
48 PIN_TERMINATE
49 } ;
50

45
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51 /* RF variables */
52 Task_Params rxTaskParams ;
53 Task_Struct rxTask ; /* not s t a t i c so you can see in ROV */
54 uint8_t rxTaskStack [ RX_TASK_STACK_SIZE ] ;
55 RF_Object rfObject ;
56 RF_Handle rfHandle ;
57

58 /* Receive dataQueue for RF Core to f i l l in data */
59 dataQueue_t dataQueue ;
60 rfc_dataEntryGeneral_t * currentDataEntry ;
61 uint8_t packetLength ;
62 uint8_t * packetDataPointer ;
63 uint8_t packet [MAX_LENGTH + NUM_APPENDED_BYTES − 1 ] ;
64

65 /* UART variables */
66 UART_Handle uart ;
67 UART_Params uartParams ;
68

69 /* Buffer which contains a l l Data Entries for receiving data .
70 * Pragmas are needed to make sure t h i s buffer i s 4 byte aligned ( requirement from the RF Core ) */
71 # i f defined (__TI_COMPILER_VERSION__)
72 #pragma DATA_ALIGN ( rxDataEntryBuffer , 4) ;
73 s t a t i c uint8_t rxDataEntryBuffer [RF_QUEUE_DATA_ENTRY_BUFFER_SIZE(NUM_DATA_ENTRIES,
74 MAX_LENGTH,
75 NUM_APPENDED_BYTES) ] ;
76 # e l i f defined ( __IAR_SYSTEMS_ICC__ )
77 #pragma data_alignment = 4
78 s t a t i c uint8_t rxDataEntryBuffer [RF_QUEUE_DATA_ENTRY_BUFFER_SIZE(NUM_DATA_ENTRIES,
79 MAX_LENGTH,
80 NUM_APPENDED_BYTES) ] ;
81 # e l i f defined (__GNUC__)
82 s t a t i c uint8_t rxDataEntryBuffer [RF_QUEUE_DATA_ENTRY_BUFFER_SIZE(NUM_DATA_ENTRIES,
83 MAX_LENGTH, NUM_APPENDED_BYTES) ] __attr ibute__ ( ( aligned ( 4 ) ) ) ;
84 # else
85 # error This compiler i s not supported .
86 #endif
87

88 /* Rx callback function */
89 void callback ( RF_Handle h , RF_CmdHandle ch , RF_EventMask e ) {
90

91 i f ( e & RF_EventRxEntryDone ) {
92

93 /* Extract data */
94 currentDataEntry = RFQueue_getDataEntry ( ) ;
95 packetLength = * ( uint8_t * ) (&currentDataEntry−>data ) ;
96 packetDataPointer = ( uint8_t * ) (&currentDataEntry−>data + 1) ;
97 memcpy( packet , packetDataPointer , ( packetLength + 1) ) ;
98

99 /* send data to PC */
100 UART_write ( uart , packet , s i z e o f ( packet ) ) ;
101

102 PIN_setOutputValue ( ledPinHandle , Board_LED0 , ! PIN_getOutputValue ( Board_LED0 ) ) ;
103

104 RFQueue_nextEntry ( ) ;
105 }
106 }
107

108

109 void r f _ i n i t ( ) {
110

111 RF_Params rfParams ;
112 RF_Params_init(&rfParams ) ;
113

114 i f ( RFQueue_defineQueue(&dataQueue ,
115 rxDataEntryBuffer ,
116 s i z e o f ( rxDataEntryBuffer ) ,
117 NUM_DATA_ENTRIES,
118 MAX_LENGTH + NUM_APPENDED_BYTES) )
119 {
120 /* Failed to a l l o c a t e space for a l l data e n t r i e s */
121 while ( 1 ) ;
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122 }
123

124 /* Modify CMD_PROP_RX command for application needs */
125 RF_cmdPropRx . pQueue = &dataQueue ; /* Set the Data Entity queue for received data */
126 RF_cmdPropRx . rxConf . bAutoFlushIgnored = 1 ; /* Discard ignored packets from Rx queue */
127 RF_cmdPropRx . rxConf . bAutoFlushCrcErr = 1 ; /* Discard packets with CRC error from Rx queue */
128 RF_cmdPropRx . maxPktLen = MAX_LENGTH; /* Implement packet length f i l t e r i n g to avoid

PROP_ERROR_RXBUF */
129 RF_cmdPropRx . pktConf . bRepeatOk = 1 ;
130 RF_cmdPropRx . pktConf . bRepeatNok = 1 ;
131

132 /* Request access to the radio */
133 rfHandle = RF_open(& rfObject , &RF_prop , ( RF_RadioSetup * )&RF_cmdPropRadioDivSetup , &rfParams ) ;
134 RF_postCmd( rfHandle , (RF_Op* )&RF_cmdFs , RF_PriorityNormal , NULL, 0) ;
135 RF_runCmd( rfHandle , (RF_Op* )&RF_cmdPropRx , RF_PriorityNormal , &callback , IRQ_RX_ENTRY_DONE) ;
136 }
137

138 /* I n i t i a l i s a t i o n UART i n t e r f a c e */
139 void u a r t _ i n i t ( ) {
140

141 UART_Params_init(&uartParams ) ;
142 uartParams . writeDataMode = UART_DATA_BINARY;
143 uartParams . readDataMode = UART_DATA_BINARY;
144 uartParams . readReturnMode = UART_RETURN_FULL;
145 uartParams . readEcho = UART_ECHO_OFF;
146 uartParams . baudRate = 9600;
147 uart = UART_open(Board_UART0 , &uartParams ) ;
148 }
149

150 /* Rx task function */
151 void rxTaskFunction (UArg arg0 , UArg arg1 ) {
152 r f _ i n i t ( ) ;
153

154 /* forever waiting for data */
155 while ( 1 ) ;
156 }
157

158 void rxTask_init ( ) {
159

160 Task_Params_init(&rxTaskParams ) ;
161 rxTaskParams . stackSize = RX_TASK_STACK_SIZE ;
162 rxTaskParams . p r i o r i t y = RX_TASK_PRIORITY ;
163 rxTaskParams . stack = &rxTaskStack ;
164 rxTaskParams . arg0 = ( UInt ) 1000000;
165 Task_construct(&rxTask , rxTaskFunction , &rxTaskParams , NULL) ;
166 }
167

168 /* i n i t i a l i s a t i o n of the pins */
169 void p i n _ i n i t ( ) {
170 ledPinHandle = PIN_open(& ledPinState , ledPinTable ) ;
171 }
172

173 /*
174 * ===========main===============
175 */
176 i n t main( void ) {
177

178 Board_initGeneral ( ) ;
179 p i n _ i n i t ( ) ;
180 rxTask_init ( ) ;
181 u a r t _ i n i t ( ) ;
182 BIOS_start ( ) ;
183

184 return ( 0 ) ;
185 }
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