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A B S T R A C T

The Strut-and-Tie model (STM) is an efficient technique for the design of
concrete structures, but the creation of suitable truss structures gets compli-
cated when these structures become more complex. The topology optimiza-
tion (TO) is a convenient technique that has been used in recent years for the
creation of trusses of complex structures for the STM.

This thesis presents a process for the creation of suitable truss structures
for the STM using the results obtained with the TO, as well as, an evaluation
of them to see which is the most optimal truss structure according to the total
amount of tension force present on the full truss, this total amount of tension
force is the selected evaluation criterion. Three deep concrete beams were
analyzed using two topology optimization (SIMP and BESO approaches) for
the generation of stress paths, these approaches are based on the minimiza-
tion of the strain energy. The procedure starts with the computation of the
principal stresses over the results of the topology optimization, then bar el-
ements are placed over the stress paths of these diagrams creating a first
(harsh) layout of the trusses. These trusses were not always found stable,
but all the trusses were stabilized because, in this way, it is easy to calculate
the axial force of in the truss elements, thus satisfy a basic requirement of the
STM. To stabilize the truss structures two methods were explored. (i) The
addition of new members outside of the stress paths (stabilizers), the essen-
tial characteristic of these new elements is that the axial force in them should
be zero to not change the stress distribution found during the optimization
process. A sensitivity analysis of the stabilizers was performed to track how
the axial force changes in these members depending on the position of the
nodes connected to them, this process was necessary because when an ele-
ment outside the stress paths has axial force the stress diagrams have been
changed. (ii) The creation of substructures within the stress paths, this pro-
cess stabilizes the global structure without the addition of members outside
the stress paths. Finally, a structural analysis was performed to obtain the
axial forces in each member of the truss structure, and through an analysis
of these results, the total amount of tension forces in the truss was computed.
The truss with the minimum value of total tension force is assumed as the
most optimal structure for each case. It is clear through the analysis that
the variation of the input parameters does not cause large variations in the
results of the topology optimization, but it has an impact in the stabilization
process and the performance of the structures according to the evaluation
criterion. Furthermore, it has been proved that suitable trusses for the STM
can be created using any of the two selected optimization approaches ob-
taining good results, and a similar performance according to the evaluation
criterion.
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1 I N T R O D U C T I O N

1.1 general overview

During the design of reinforced concrete structures two types of regions that
can be identified, (i) Bernoulli regions (B regions), where the Bernoulli’s Hy-
pothesis (plane sections remain plane after the deformation of the structure)
is valid, and (ii) Disturbed region (D regions), where the stress or strains
have a non-linear or complex distributions. The D regions can happen for
two main reasons, (i) openings or sudden changes in the geometry of the
structure, and (ii) application of concentrated loads or the presence of point
supports [10]. Disturbed regions represent a problem for simple methods
of analysis, because in these regions the Bernoulli hypothesis is not valid
anymore. Innovative design methods as the Strut-and-Tie method or finite
element analysis have been used to design structures with D regions. The
Strut-and-Tie method (STM) is used as a basic approach for the design of
non-standard concrete structures, especially for structures with disturbed re-
gions. The STM is formed by three types of elements, the struts are elements
under compression, the ties are elements under tension, and the nodes are
elements created by the intersection of two or more struts/ties. The STM
always gives a safe lower bound analysis for the final capacity of a structure,
this model assumes that the concrete can carry only compressive stresses,
and the tensile stresses will be carried by the reinforcement present on the
beam [11].

Optimization processes have been used in many fields of engineering, and
of the industry in general. The term optimization refers to find an optimal
shape or material distribution for given conditions. In structural engineering,
the optimization process has been used in recent years to find the most eco-
nomical, or optimal shape of structures. These concepts, precisely the Topol-
ogy Optimization (TO) are applied in this thesis to deep concrete beams, to
obtain valid truss structures for the creating of the STM these beams.

This thesis focused on obtaining optimal truss structures for three deep
concrete beams (Bernoulli’s hypothesis is not valid), that could be used as
the STM of these structures. Many approaches can be used to find these
truss structures, but in this thesis, two approaches based on the minimiza-
tion of the strain energy are used, the simplified isotropic material with
penalization (SIMP) approach, this approach is the most popular approach
for topology optimization, and the bi-directional evolutionary structural op-
timization (BESO) approach, this approach is a relatively new and it started
as an extension of the evolutionary structural optimization approach. The
results obtained from the optimization process are compared to see how the
created truss structures differ from one approach to the other. Once that,

1
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these truss structures have been created a stability check was performed on
them, in case they were non-stable, they were stabilized to perform struc-
tural analysis. Having stable trusses is not an essential requirement for the
STM, but it makes easier the calculation of the axial force in the elements of
the trusses. Finally, to find the most optimal truss structure, according to the
evaluation criteria, which satisfy the optimization process, the total amount
of tension force in the ties of each truss is determined. It was assumed that
the optimal truss structure for each case was the one with minimum total
tension force.

Figure 1.1: Overview

1.2 objectives and research questions

The main objectives of this thesis are:

1. Generation of truss structures based on the results obtained during
the Topology optimization for each studied case. The truss structures
that are created should be consistent with the results of the topology
optimization.

2. Implementation of the topology optimization to MATLAB scripts
for deep concrete beams using different approaches. Two different
approaches of topology optimization are analyzed, the SIMP and BESO
approach. The creation of the MATLAB scripts is be based on previous
educational scripts.

3. Determination of the most optimal truss structure for each case based
on an specific evaluation criterion. The determination of the most op-
timal truss is based on the total minimum tensile force in the truss.

In order to achieve these objectives the following research questions would
be answered:

a Can suitable truss structures for the Strut-and-Tie model always be created
from the results obtained in the topology optimization ?
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b What is the influence of the input parameters for each approach, and
to what extent do these approaches differ in the results of the topology
optimization, and truss generation ?

c Which aspects should be considered to stabilize the truss structures ob-
tained using topology optimization?

d How sensitive are the stabilizers of the trusses to change the stress dia-
grams obtained with the topology optimization?

e Which is the most optimal approach (SIMP or BESO) for topology opti-
mization to create truss structures based on the results of the optimization
process according to the evaluation criteria?

1.3 research structure

This study will be divided on five stages, specific results are expected on
each stage of the study.

i Literature Review. - This first stage of the study consists on the review
of previous studies about TO and STMs, familiarization with different
approaches of the TO, creation of truss structures based on TO, improv-
ing programing skills through the implementation and modification of
an educational script.

ii Topological Optimization implementation. - In this second stage of the
study, MATLAB scripts are created for the SIMP and BESO approaches.
They will be based on a well-known educational code which use a SIMP
approach for a symmetric simple supported beam. The topology opti-
mization is applied to the three deep concrete beams.

iii Truss Structure Generation. - The third stage of the study consists
on the generation of truss structures for the STM, they are generated
based on the results obtained from the TO. Always considering that the
elements of the trusses should be within the stress diagrams of the TO.

iv Evaluation of Truss Structures. – In this stage, different trusses for each
case are evaluated, to determinate the axial force on its members. These
forces will be used to determinate the total amount of tension force in
the structure.

v Conclusions. - In this final stage, conclusions, recommendations, and
further research will be state. Besides, all the parts of the thesis will be
putting together.



2 L I T E R AT U R E R E V I E W

2.1 strut-and-tie model

2.1.1 Introduction and Principle of the Strut-and-Tie model

The Strut-and-Tie method as is known today was proposed by Schlaich,
Schäfer,and Jennewein, (1987), it appeared as a generalization of the truss
model proposed by Ritter (1899). The main difference between these meth-
ods are, (i) in Ritter truss structures all the elements have inclinations of 0

◦,
90

◦, or 45
◦, while the Strut-and-Tie model allows to its elements have any

inclination, (ii)Ritter truss structures are valid only for beam regions (B re-
gions), in B regions the Bernoulli hypothesis of linear strains distribution is
valid, B regions are the parts of the structure with constant, or gradually
changes in depth, and where the load is evenly distributed. Whereas the
Strut-and-Tie model is valid for B regions and for disturbed regions (D re-
gions), D regions have two origins. (i) Geometrical, due to the presence of
holes or discontinuities in the beam, and large relations h/l (deep beams)
(ii) Mechanical, for the application of point loads, or support reactions of the
beam [10] [12]. In these kind of regions the Bernoulli hypothesis of linear
strains is not valid anymore, because the strains, and stresses have non-linear
distributions, Figure 2.1 shows B and D regions for a simply supported beam
under distributed load.

The Strut-and-Tie method uses a generalized design concept that could be
applied to all kinds of structures, and to all the parts of a structure. The
Strut-and-Tie method can also be applied to prestressed concrete structures.
[3] [8]. Truss models represent an idealized scheme where the stress distri-
bution of a structure can be represented by struts, ties, and nodes (Figure
2.2). The struts are compression fields that are idealized as compression
members, the ties are tension members that in most of cases are resisted by
the reinforcement, and the nodes are points where the struts, ties, and exter-
nal forces intersect, for equilibrium conditions in a node at least three forces
should be present [8].

Figure 2.1: Different regions in a beam [1].

The main objective of the Strut-and-Tie model is describing the structural
behavior in a fully cracked state of a RC structure. The Strut-and-Tie model

4
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Figure 2.2: Elements of the Strut-and-Tie model [2].

is based on the concept that the inner forces of a structure could be repre-
sented as stress trajectories, or load paths. However, placing truss elements
for the Strut-and-Tie model within the load paths neglects some capacity of
the structure at the moment of determining the ultimate load capacity. On
the other hand, an advantage of this procedure is that one model can be
used for serviceability capacity, and ultimate capacity applying the theory
of plasticity. Since disturbed regions (D regions) can have many load paths,
the Strut-and-Tie model for a RC structure is not unique, the models would
depend on the desire and expertise of the designer, for instance, the safest
model will vary from the cheapest one, etc. [1] [3].

The Strut-and-Tie model gives always a lower bound limit for the analysis
of a structure, because it is based on the lower-bound theorem. The lower-
bound theorem states that “if an equilibrium distribution of stress can be
found which balances the applied loads, and is everywhere below yield or
at yield, the structure will not collapse or will be just at the point of collapse.”
The use of limit analysis theorems for the Strut-and-Tie model comes from
two assumptions. (i) Perfect plastic material, the material of the structure
has not hardened or softening. (ii) Small deformations, the structure suffers
only small deformations, thus the geometry of the structure does not change,
for this reason, the principle of virtual work can be used to calculate the limit
theorems. [8] [13] . Since, the Strut-and-Tie model analyze the structure at
the moment of collapse, the model should satisfy two conditions for consid-
ering a model acceptable, (i) equilibrium condition, and (ii) yield criterion.
This method can be used with different materials, being specially useful for
materials with a low tension capacity [8].

2.1.2 Truss Structures Generation

The generation of truss structures are essential for the creation of Strut-and-
Tie models (STMs), but this truss structures are not unique, meaning that
for a specific beam, several truss structures can be found. The Strut-and-Tie
model changes depending on the loading, and support conditions, in other
words, a simple supported beam would have different a STM, if the beam is
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under the action of a point load, than if the same beam is under the action
of a distributed load. The trusses that would be used for the creation of the
Strut-and-Tie should be statically admissible like systems [14], it means that the
structure should satisfy equilibrium conditions under the applied force.

Several authors have chosen as the best Strut-and-Tie model the one that
provides maximum stiffness for a given volume constrains, for concrete
structures, since this material allows only limited plastic deformations, the
internal structure (truss structure) should be one that keeps the deformations
within this limit[3] [14]. On the other hand, Schlaich et al. [15] proposed that
the best Strut-and-Tie model is the one with shortest ties. However, the best
Strut-and-Tie model model will depend on the needs of the designer.

The most popular technique to find Strut-and-Tie models is using an elas-
tic stress distribution, and the load paths method. This method oriented the
struts and ties in the direction of the principal stress trajectories. Following
the load paths will produce trusses with smoothly curved elements, in order
to obtain a truss like structure these curved elements should be replaced by
straight elements forming polygons. Once that all the curved elements have
been replaced, it would be necessary to add some extra elements (struts or
ties) to the truss structure to guarantee transverse equilibrium and truss sta-
bility [3] [8]. The final result after the addition of the extra elements is the
Strut-and-Tie model. This process is illustrated in Figure 2.3. One drawback
of this approach is, that for complex geometries or loading conditions, find-
ing the Strut-and-Tie model becomes complex and time consuming a solu-
tion for this cases is using topology optimization to create the Strut-and-Tie
model [7].

Figure 2.3: Truss generation process: (a) Discrete Model; (b) Load paths of the struc-
ture; (c) Structure after elements addition. [3].

A useful technique to find the location and direction of the elements of the
trusses within the stress paths is performing an finite element analysis, in
this analysis the stresses paths in the principal directions can be calculated.
Then according to the load path method to obtain a truss like structure, the
truss elements can be placed at the middle of the principal stress diagrams
[3][8].
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2.1.3 Truss Stability

A truss structure is defined as any structure where its elements resist only
axial forces, and the bending moment at the joints is zero. There are three
basic types of structures: (i) simple structures, these kind of structures are
constructed from a triangle, however, it does not mean that the truss consist
of only triangles. (ii) compound structures, they are formed by the connec-
tion of multiple simple trusses. (iii) complex structures, this type of trusses
can not be classified as a simple or compound structure, but they satisfy
force and stability criteria [4].

A important concept in the stability of trusses is the determinacy of a
structure, it is given by the relation between the number of unknowns of
the system and the number of equations of equilibrium to solve them. In
this way, the unknowns of the system are the number “b” of forces in ev-
ery member (one unknown per member), and the number “r” of support
reactions. On the other hand, the number of equations of equilibrium are
function of the number of nodes or joints in the structure. Since, it is neces-
sary to satisfy the equilibrium in both directions, the sum of forces in both
directions should be equal to zero, Fx = 0 and Fy = 0. Based on it, there
are two equations of equilibrium per node (“2j”). The degree of determinacy
is given by the comparison of the total number of unknowns with the total
number of equations of equilibrium Equation 2.1 shows the three possible
cases that can be expected:

b + r < 2j Unstable structure

b + r = 2j Statically determinate structure

b + r > 2j Statically indeterminate structure

(2.1)

Although the stability of a truss is not a fundamental requirement for the
Strut-and-Tie model, the truss is stabilized to easily obtain the axial forces
acting in its members. There are two cases where the structure can be un-
stable, even if the structure satisfy the determinacy criteria. The first case
is known as external stability, the structure is unstable, if all of its reactions
are concurrent or parallel, these case is shown in Figure 2.4. The second
case is the internal stability, a structure is unstable if its joints do not hold
in affixed position. It means that its joints can move in a “rigid body” sense
with respect to other joints, the truss of Figure 2.5 is unstable because there
are not elements that restrain the movement between joints ”E” and ”B”, or
between joints ”F” and ”C”[4].

In case of having unstable truss structures due to the lack of elements
b + r < 2j, it is necessary to add the missing number of elements to create
a stable truss in which a structural analysis can be performed to obtain the
internal axial forces [4]. This is the case in most of trusses of the Strut-and-
Tie models, it does not mean that the structure would collapse due to lack of
stability, it means that “any movement of the model nodes evokes diagonal
compression forces in the concrete, which stabilize the system” Thus, these
additional elements in most cases do no help to carry loads of the structures,
in other words, the forces in these additional members are zero or close
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(a) Concurrent reactions (Unstable
structure).

(b) Parallel reactions (Unstable struc-
ture)

Figure 2.4: External Stability [4]

Figure 2.5: Internal Stability [4]

to zero because the function of these additional elements is stabilizing the
structure. [8].

2.1.4 Principal Stresses Calculation

The principal stresses of a element are the maximum and minimum normal
stress that the elements of a structure experience, these stresses occur in the
surfaces where the shear stress is zero [16]. The discretization of the beam
was made using four-noded quadrilateral elements, these elements have two
degrees of freedom per node. The unknown fields of these elements are
found interpolating the polynomial shape functions of each element. To find
the element shape functions basic relationships from continuum mechanics
were used to. So, the displacement and strain fields for a element of the
beam, are give by Equations 2.2 and 2.3 respectively,

uh = Nae (2.2)

εh = Bae (2.3)

where the matrix N contains the element shape functions for a element,
the matrix B contains the derivaties of the element shape functions with
respect to the unknown fields (displacements in x and y), and ae represents
the elements displacements.
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Linear shape functions are used to obtain the matrices N and B, as quadri-
lateral elements are being used the shape functions for the ith node on a
bi-unit square are given by Equation 2.4.

Ni(ξ, η) =
1
4
(1 + ξiξ)(1 + ηiη) (2.4)

For the calculation of the stresses σxx, σyy, numerical integration and isopara-
metric mapping are used. For the numerical integration a 2x2 Gauss integra-
tion scheme is used. The stress is given by Equation 2.5, where matrix De

is the elastic stiffness matrix for a element. Substituting Equation 2.3 in
2.5, Equation 2.6 is obtained [17] [16]. This equations will be used for the
calculation of the stresses of the elements.

σ = Deε (2.5)

σ = DBu (2.6)

Since 2D elements are used for the discretization of the beam , the use
of Equation 2.6 gives three values of stresses σxx, σyy, σxy, the matrix repre-
sentation of this stress tensor is showed in Equation 2.7. Once that these
stresses have been computed, the value of the stresses in the principal direc-
tions σ1, σ2 can be found. Solving Equation 2.8 for λ the principal stresses
are found [17].

Σ =

[
σxx σxy

σyx σyy

]
(2.7)

det(Σ − λI) = 0

det
[

σxx − λ σxy

σyx σyy − λ

]
= 0

(2.8)

After obtaining the stresses in the principal directions for the results of the
topology optimization, bar elements are placed within these stress paths.

2.2 topology optimization

2.2.1 Introduction

In the field of structural optimization, it is necessary to differentiate two
types of optimization procedures, (1) shape or macro-structure optimization
(geometry optimization), and (2) topology or micro-structure optimization
(material optimization). In the former one, the initial domain can change
during the optimization process meaning, that at the end of the optimization
the geometry of the beam could have changed with respect to the geometry
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of the initial problem. Whereas in the latter one the design domain is pre-
scribed at the beginning of the optimization process, it remains unalterable
during the optimization process, meaning that the shape of the beam will
still be the same, but the internal distribution of the material will not be
evenly distributed. [18] Figure 2.6 illustrates the difference between shape
and topology optimization.

Figure 2.6: Comparison between shape and topology optimization [5]

Topology Optimization is a theoretical and numerical producer, in order
to find the most optimal stress trajectory, and load paths for given condi-
tions. The topology optimization deals with the material distribution in a
structure for a given loading, and supports conditions. The topology opti-
mization assumes that the initial volume of material in a structure is more
than the necessary amount to satisfy the given conditions. So, the load
or stress paths of a structure can be taken as the remaining elements after
the optimization (elements removing) process.[19] [20]. The topology opti-
mization starts with an even distribution of material over all the continuum
domain of the structure, this material is considered porous, in the way that
these porous can become larger when this happens areas without material
start appearing. Then the optimization itself consists in determining which
elements of the domain of the structure should have material and which
of them no. The optimization procedure is based on a gradual removal of
elements from the domain of the structure that contribute least to carrying
the applied loads. Based on this principle, two types of elements are identi-
fied, (i) 0 density elements (voids), they are elements that do not contribute
to carrying loads, (ii) 1 density elements (solid), they represent the part of
the structure that is carrying the loads. Figure 2.7 shows these two types of
elements in the result of the topology optimization for a rectangular simple
supported beam. The outcome of the optimization process is considered as a
harsh description of the boundaries of the structure, it represents the global
optimum topology for the given conditions [9] [21] .

Figure 2.7: Types of elements after the topology optimization
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(a) truss elements

(b) four-noded quadrilateral elements

Figure 2.8: Discretization of topology Optimization domains [6].

The principle of the topology optimization is the minimization of an ob-
jective function or variable, to find an optimal distribution of material [1].
In order to achieve it, the design domain is discretized using structural el-
ements, the most common elements used for the discretization are truss
elements or continuum elements (Figure 2.8).

In this thesis, the optimization process was performed using four-noded
quadrilateral plane stress continuum elements. There are many approaches
that have been studied in topology optimization the two approaches selected
in this thesis are: (i) the Simplified Isotropic Material with Penalization
(SIMP) approach, (ii) Bi-directional Evolutionary Structural Optimization
(BESO) approach.

2.2.2 Simplified Isotropic Material with Penalization (SIMP) Approach.

The Simplified Isotropic Material with Penalization (SIMP) approach was
developed in the late eighties. It was introduced as an alternative to the
homogenization approach which simplifies the formulation and improves
the convergence of the solutions. This method is also known as power-law,
material interpolation, or density approach. Currently, the SIMP approach
is the most famous topological optimization approach based on a finite el-
ement numerical formulation. The principle of the SIMP approach is the
maximization of the stiffness through the minimization of the total strain
energy (mean compliance), this method introduces as continuous variable
the density (ρ) of the material, with values in the range 0 < ρ ≤ 1. For
problems of constant thickness, the variable ρ can be taken as the thickness
of the material, density, or cost of the material [18][22].
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The relation between the density of the material and the Young’s modulus
is given by Equation 2.9.

E(ρi) = g(pi)E0 = ρ
p
i E0, (2.9)

where ρ is the density of the material, p is the penalization factor, and E0

is the Young’s modulus of the solid material. If the penalization p is not
considered, or its value is assumed as ρ = 1, the solution of the optimization
problem with respect to the compliance would consist of essentially ”grey”
elements. ”Grey” elements are elements that after the process of optimiza-
tion have density values within the range 0 - 1. These elements are directly
affected by the value of p. Many authors have studied the effect of choosing
different values of p, concluding that the value which assures a good con-
vergence is p = 3, solutions using p = 3 give results with mostly 0 density
or 1 density elements (black-and-white results). Too high or too low values
of p cause too much grey areas or too fast convergence. [9] [18] [22].

The numerical formulation used for this thesis corresponds to the one
used by Sigmund in his educational algorithm for topology optimization
[9]. The domain of the structure is assumed to be formed by 2D rectangular
four node plane stress elements (Figure 2.8.b). In this case, the topology
optimization takes as objective function the compliance of structure which
is given by Equation 2.10, and Equation 2.11.

c(x) = UTKU =
N

∑
e=1

(xe)
puT

e k0ue, (2.10)

With,

V(x)

V0
= f

KU = F

0 < xmin ≤ 1

(2.11)

where c is the compliance of the structure, U is the variable for global
displacements, F is the global external forces applied to the structure, K is
global stiffness matrix, ue is element displacement vector, ke is local stiffness
matrix, x is vector of the design variables, and xmin is the vector of minimum
densities.

Even though, the density of removed elements, in theory, is zero, for the
numerical calculations they should be taken as non-zero values to avoid
singularity problems, in the SIMP approach is conceived to provide fading
stiffness when the value of the stiffness reaches a pre-established minimum
value [9] [20].

The principle of the SIMP approach is based on finding the equilibrium of
the external loads for a given amount of material. This amount of material
that is a fraction of the volume of the structure before the optimization is
known as Volfrac. Generally, the use of low values of Volfrac grants the
achievement of truss-like structures [20]. Figure 2.9 shows the effect in the
results of the topology optimization for two different values of Volfrac.
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(a) Vol f rac = 0.40 (b) Vol f rac = 0.65

Figure 2.9: Comparison between results for different values of Vol f rac

Another important parameter in results obtained with the SIMP approach
is the minimum radius (rmin). It refers to the effect that an element has with
its surroundings. This value is normalized by the size of the elements (mesh
size) of the beam, “The sensitivity filter modifies element sensitivity values
to be weighted averages of their neighbors within a mesh independent ra-
dius rmin”. The rmin can also be consider as a size filter, since it leaves a
grey are of a width rmin between black elements and white elements. [18].
Figure 2.10 illustrates this difference.

(a) rmin = 1.1 (b) rmin = 2

Figure 2.10: Comparison between results for different rmin

The SIMP approach has a constant volume in every iteration, this value is
given as a input input parameter, but the value of the compliance is being op-
timize (reduce) gradually until it converges to a minimum value that satisfy
the loading and support conditions. The process of optimization is shown
in Figure 2.11. Huang and Xie proved that the SIMP approach converges to
a higher value of compliance than other methods such as the ESO, BESO or
continuation method. However, the SIMP approach works better with larger
mesh elements size than methods that do not use the mesh-independency
filter, such as the ESO approach. [23].

2.2.3 Bi-directional Evolutionary Structural Optimization (BESO) Approach.

The Bi-directional Evolutionary Structural Optimization (BESO) approach,
appeared as an extension of the Evolutionary Structural Optimization (ESO)
approach, where besides of the hard killing strategies used by the ESO ap-
proach, the BESO approach incorporates bi-directional schemes. These types
of schemes allow the addition of new elements next to the elements with the
highest strain energy. Both methods ESO/BESO are based on the same prin-
ciple, minimization of total strain energy of the structure. Both methods
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(a) Iteration n=1 (b) Iteration n=2

(c) Iteration n=5 (d) Iteration n=66

Figure 2.11: Process of optimization SIMP approach. Volfrac=0.3

gradually remove inefficient material (elements with lowest strain energy)
from the original domain of the structure, in order to obtain a maximum
stiffness. These evolutionary approaches are based on the concept that after
the elimination process of inefficient material, the remaining material rep-
resents an optimal material distribution for the given loading and support
conditions. One benefit of the BESO approach over the ESO approach is that
the BESO approach is more stable, and less depended on the selection of pa-
rameters because, it uses a mesh-independency filter, similar to the one used
in the SIMP approach [18] [23] [24]. In the BESO approach the optimization
is given by the minimization of Equation 2.12 subject to Equation 2.13.

c(x) =
1
2

UTKU (2.12)

V∗ −
N

∑
i=1

(Ve)xi,

xi = xmin or 1

(2.13)

where, C is the mean compliance of the structure, K is the global stiffness
matrix, u is the vector of global displacements, N is the number of elements,
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and xi is the density of the i element, in the same manner than in the SIMP
approach elements with values lower than a prescribed minimum will be
assumed as voids (0 density) [23].

Reintroducing elements during the optimization process means that ele-
ments which at some point of the optimization were assumed as voids (0
density elements), can be reintroduced in further steps as solid elements (1
density elements). The criteria used for these optimization approach states
that “the strain energy densities of solid elements are always higher than
those of soft elements”. [23]. During FEM calculations void elements are
removed from the global stiffness matrix (K), it is done by assigning a very
small value close to zero (theoretically, it should be zero but to avoid singu-
larities in the calculation a very small value is assumed) to the local stiffness
matrix of the elements (Ke) that were removed during the optimization. In
this way, the algorithm used for assembling the global stiffness matrix does
not change during the whole optimization process [24].

The sensitivity number for the ith element in the BESO approach is given
as αi, from Equation 2.14 can be seen that if the value of the penalization p
goes to infinity, the sensitivity changes to Equation 2.15 which corresponds
to the value of the sensitivity for the ESO approach. Thus, the ESO approach
can be seen as a special case of the BESO approach, when the value of p tends
to infinity [23].

αi = − 1
p

∂C
∂xi

=


1
2

uT
i K0

i ui when xi = 1

pp−1
min
2

uT
i K0

i ui when xi = xmin

(2.14)

αi = − 1
p

∂C
∂xi

=


1
2

uT
i K0

i ui when xi = 1

0 when xi = xmin

(2.15)

An important parameter in the final shape of the optimization process is
the element removal ratio ER. This value represents the maximum percent-
age of elements that can be removed from the structure in each iteration. The
value of ER remains constant during the whole optimization process. It has
been proved that lower values of ER (1%-3%) give good solutions to the opti-
mization problem. [23] Figure 2.12 shows a comparison of the optimization
results using different values of ER.

(a) ER = 2% (b) ER = 10%

Figure 2.12: Comparison between results for different ER
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In contrast with the SIMP approach, the ESO/BESO approach do not have
a constant volume during the whole optimization process, where the struc-
ture starts with an initial volume of 1 (entire structure domain) and it gradu-
ally converges to the desired volume volfrac [23]. Figure 2.13 shows this pro-
cess. Another difference between the results of the BESO and ESO approach
is that the BESO approach does not have ”grey” elements in its result, all
remaining elements have densities of 0 or 1.

(a) Iteration n=1, volfrac=0.979 (b) Iteration n=8, volfrac=0.85

(c) Iteration n=19, volfrac=0.68 (d) Iteration n=70, volfrac=0.30

Figure 2.13: Process of optimization BESO approach. Volfrac=0.3, ER=2%

2.3 topological optimization for strut-and-tie
models

The Strut-and-Tie model is idealized as a mechanism that transfers the load
at the ultimate limit state of an RC structure, this load transfer follows the
load paths from the point where the load is applied to the supports. There
are two main aspects that the Strut-and-Tie model should always satisfy,
stress constrains and equilibrium. The Strut-and-Tie models can be found
using the elastic stress distribution, frame analysis, load path method, etc.
But, the problem with these classical methods arises when the structure has
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complex geometry or the loading conditions. A solution for finding the
Strut–and-Tie model in these complex cases is the application of topology
optimization as a tool for finding truss-like structures [7] [25] [8].

During the creation process of the truss structures for the Strut–and-Tie
models, the topology optimization was conceived as a method to find op-
timal layouts by distributing a given amount of material within the bound-
aries of the initial domain of the structure. The results obtained from the
topology optimization will determine the general configuration of the trusses,
these optimization results are taken as the stress paths of the structure for the
given load and support conditions. It has been observed that small values
of volume constrains, value that in the topology optimization approaches is
know as the input parameter volfrac, produces better truss structures than
large values, because large values produce more branched and articulate
trusses. Generally these truss structures can be used as optimal Strut-and-
Tie model [14] [20].

The creation process of the Strut-and-Tie model using topology optimiza-
tion starts with the determination of the optimal topology of the analyzed
structure (Figure 2.14.a ), here all the inefficient parts of the domain are
eliminated, getting an optimal material distribution for the given load and
support conditions. Then truss elements are positioned at the compression
and tension areas of the topology optimization results. After placing these
truss elements the obtained truss structure is assumed to be the Strut-and-
Tie model (Figure 2.14.b ). This truss structure is used to determine the
element’s force and the necessary amount of reinforcement for the analyzed
structure. The difference between the Strut-and-Tie model created using
topology optimization, and using elastic stress with the load path method is
shown in Figure 2.14.b and 2.14.c [7].

2.3.1 Evaluation Criteria.

Determining which truss-like structure is the most optimal for each case
would always depend on the selected evaluation criteria. For this reason, it
is necessary to have well-established the evaluation criteria before deciding
which truss-like structure is the best option.

Generally, the most economic RC beam is the one that has the least amount
of reinforcement, this reinforcement is linearly related to the tension forces
in the elements. Considering this relation, the selected evaluation criterion in
this thesis is the total tensile force in the truss structures after the application
of the load. To accurately evaluate this criterion, the parameter H was calcu-
lated. This parameter is considered as a way to optimize a model because it
quantifies the magnitude and the distance that a load has to travel from its
application point to the supports of the structure. In this way, the smallest
value of H corresponds to the best truss-like structure [3] [26]. Equation 2.16

gives the formulation for the parameter H.

H =
N

∑
i=1

TiLi (2.16)
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(a) Optimal topology

(b) Strut-and-Tie model using Topology optimization

(c) Strut-and-Tie model classical methods

Figure 2.14: Creation process of Strut-and-Tie model using topology optimization,
and Strut-and-Tie model using classical methods [7].

where, Ti is the tensile force acting on the i element, Li is the length of the
i member under tensile force.

In addition to the parameter H, the stress in the struts of the structure
was computed to check that this stress was smaller than the maximum al-
lowed stress in the concrete fcd. Idealized prismatic struts were assumed
to check the stresses in the concrete (Figure 2.15). These types of struts are
the simplest type of struts. They are generally used to model compressive
stress-blocks of beam elements [8].

Figure 2.15: Types of struts in a deep beam [8].
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Equation 2.17 gives the expression to determine the width of a compres-
sive strut for a general case. Figure 2.16.a shows the layout of a general node
zone. Since in this thesis the reinforcement layout was not determined. It
was assumed that all the necessary reinforcement is placed in one row of
bars ending within the nodal zone (Figure 2.16.b), this makes that WT = 0.
Using these assumptions in Equation 2.17 the width of the obtained strut
is reduced. Equation 2.18 gives the expression to determinate the reduced
width of the strut [8].

(a) General nodal zone. (b) Nodal zone for single row of bars.

Figure 2.16: Nodal zones [8].

Wc = WTcosθ + a∗sinθ (2.17)

wc = a∗sinθ (2.18)

where a is the length of the supports, θ is the angle of the strut, and wt is
a distance given by the reinforcement layout.



3 M E T H O D S

This chapter contains a description of the methods, procedures, verification,
MATLAB scripts, and all considerations used for the generation, and evalu-
ation of the truss-like structures.

3.1 procedure and case description

3.1.1 Procedure Description

To check the influence of the input parameters in the different topology op-
timization approaches three cases were analyzed, (i) a deep concrete beam
(Figure 3.2), (ii) a deep concrete beam whit a hole in a side (Figure 3.3), and
(iii) a dapped deep concrete beam with a hole in the middle (Figure 3.4). The
following procedure was applied to these three studied cases.

The first step in the creation of a truss structure starts with the application
of the topology optimization to the full domain of the beam, the obtained
results are consider to be the optimal material distribution for the given sup-
port and material conditions. MATLAB scripts were used to obtain this opti-
mal material distribution, in all the cases four-noded plane square elements,
with an element size of 100 mm were used. This process was done using
two different topology optimization approaches, (i) the Simplified Isotropic
Material with Penalization (SIMP), (ii) the Bi-directional Evolutionary Struc-
tural Optimization (BESO). Then a finite element analysis was performed
over the result of the optimization process, to get principal stress diagrams
of the new material distribution. This calculation was implemented in the
MATLAB scripts used for the topology optimization process. Additionally, a
finite element analysis (FEA) over the full domain of the three studied beams
was performed using the commercial FEM software DIANA FEA.

Once the principal stress diagrams were obtained, truss elements were
placed within these diagrams getting a first truss structure for each case.
The stability of these preliminary truss structures should be analyzed to be
able to a perform structural analysis on them. In case that a truss structure
is unstable, it should be stabilized by adding additional elements or chang-
ing the configuration of the elements in the structure. Additionally, to the
trusses where stabilizers were added a sensitivity analysis was performed to
check how the forces in these additional elements change depending on the
position of the nodes of the structure. This analysis was done because when
the forces in the stabilizers start to increase, the proposed truss structure
does not correspond anymore to the stress diagrams obtained during the
optimization process. After the stabilization of the truss structures, a struc-

20
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tural truss analysis to obtain the axial forces in each member was done in the
commercial software Rhinoceros, using Grasshopper and Karamba plugins.

Finally, with the results obtained from the structural analysis the total
tension force was computed according to the evaluation criterion. The evalu-
ation of the truss structures was also done for some STM from the literature.
Based on the evaluation criterion the most optimal truss structure was deter-
minate for each of the studied cases. Figure 3.1 shows all the steps described
in this process.

Figure 3.1: Description chart for the generation and evaluation of truss structures.

3.1.2 Case Description

In this section the geometry, position of the loads, and support conditions of
the discrete models are described.

Case 1

This first studied case (Figure 3.2) refers to a simply supported deep square
concrete beam, these supports have a width of 200 mm. This beam has a
side dimension of l = 4400 mm, a constant thickness of t = 100 mm. It is
under the action of two point loads of magnitude F = 100KN, the loads are
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applied to single points in the model. These loads are located at a distance
of 1100 mm from both of the top corners of the beam.

Figure 3.2: Case 1.- Deep concrete beam

Case 2

The second studied case (Figure 3.3) refers to a simply supported deep con-
crete beam with a square hole. The supports have a width of 200 mm, the
square hole is located to a distance of 500 mm in the vertical and horizon-
tal directions from the bottom left corner, it has a side dimension of 1500
mm. The beam dimensions are l = 7400 mm by h = 4700 mm, with a con-
stant thickness of 100 mm. The beam is under the action of one point load
F = 100kN, applied to a single point in the model, located to a distance of
4900 mm from the top left corner.

Figure 3.3: Case 2.- Deep concrete beam with a hole
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Case 3

The third studied case (Figure 3.4) refers to a simply supported dapped
deep concrete beam with a hole. The supports have a width of 100 mm, the
beam outer dimensions are l = 6400 mm by h = 3000 mm with a constant
thickness of 100 mm. The beam has a dapped end in the top right corner
with dimensions of 1800 mm in the horizontal direction, by 1200 mm in the
vertical direction. The beam is under the action of one point load F = 100kN
located to a distance of 2200 mm from the top left corner, this load is applied
in a single point of the model. The hole is located to a distance of 1200 mm
in the horizontal direction, and 1000 mm in the vertical direction from the
bottom left corner. The opening has a rectangular shape with dimensions of
2000 mm in the horizontal direction and 1000 mm in the vertical direction.

Figure 3.4: Case 3.- Dapped deep concrete beam with an opening

3.2 stress paths generation using topology op-
timization

In this section, the MATLAB scripts used for the generation of the topology
optimization of both approaches along their input variables are described.

3.2.1 Simplified Isotropic Material with Penalization (SIMP) Approach

The MATLAB script used for application of topology optimization was based
on the educational script proposed by Sigmund [9]. This MATLAB script per-
forms the topology optimization for a simply supported symmetric beam
under the action of one point load at the mid-span. Figure 3.5 shows the dis-
crete model used by Sigmund [9], Figure 3.6 shows the result of the topology
optimization using this MATLAB script.

General modifications were done to this script. First, the domain of the
beam was extended to the full length of it, so the results show the full beam
not only one half of it. This modification was necessary because only the first
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Figure 3.5: Discrete model used for the SIMP approach [9]

Figure 3.6: Result of the Topology Optimization

studied case is symmetric. Second, the loading conditions were modified
to adapt them to any number and position according to each case. The
addition of holes within the boundaries of the beam was also done in the
script done by Sigmund [9]. However, it was done only for circular holes at
a specific position with a given size, the position and size of the hole were
changed, given the possibility to define it as input values according to each
case. Finally, for the third case, the position and size of the dapped were
introduced as input values. Appendix A shows the MATLAB script used for
the calculation of the topology optimization using the SIMP approach.

The input parameter nelx and nely refer to the number of elements in
x and y directions, respectively. These numbers always refer to the outer
perimeter of the beam, which are given by the dimension of the beam in each
direction over the size of the used finite element (100mm). For instance for
Case 2 the number of elements are nelx = 74 and nely = 47, in the same way
for Case 3 are nelx = 64 and nely = 30. The next input parameter is volfrac
as it was described in Section 2.2, it defines the fraction of the volume that
is desired after the optimization process. To observe the difference in results
of the topology optimization several values of this parameter were used.
Table 3.1 shows the values selected for volfrac at the moment of applying the
topology optimization.

The value of the penalization factor p was taken as three for all the studied
cases, and for all the different combinations of the other input parameters.
This value of p assures a good convergence of results (Section 2.2). As well
as volfrac the value of the input parameter rmin was vary to observe the effect
that it produces in every case in the ideal material distribution obtained after
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Table 3.1: Values of volfrac for Topology Optimization

SIMP Approach BESO Approach

volfrac
0.3 0.3
0.4 0.4
0.5 0.5

Table 3.2: Values of rmin for Topology Optimization

SIMP BESO

rmin
1.1 1.1
1.5 1.5

the topology optimization. Several values of rmin were analyzed, but some
of them were not considered because of the great similitude among their
results. Table shows the selected values for rmin.

This variation of values of volfrac and rmin were used for all the three
studied cases.

The input parameters xdapped and ydapped refers to the dimensions of the
dapped measured from the top left corner, in case that the dapped would
be in a different position, it would be necessary to adapt the code to the
desired position. The values of these two input parameters should be given
as a number of elements, in this way for Case 3 the value of xdapped and
ydapped are 18 and 12, respectively. Case 1 and Case 2 have no dapped so
the value for these parameters should be defined as zero.

The last four parameters are used for the definition and position of the
hole. The first two xhole and yhole are the dimensions that the hole has in
x and y direction respectively. The last two input parameters xdistance and
ydistance refer to the position of the hole in the beam, the values of these
parameters should also be given as a number of elements and the reference
point for them is the bottom left corner. Table 3.3 shows the values of these
four input parameters for the three cases.

3.2.2 Bi-directional Evolutionary Structural Optimization (BESO) Approach

The MATLAB script used for the generation of the optimal topology using
the BESO approach is based on the script given by Huang and Xie [23], this
code is also based on the educational code developed by Sigmund [9] this
is the one used in the SIMP approach. Similar modifications to the ones

Table 3.3: Input parameters for the definition of the hole into the MATLAB

Case 1 Case 2 Case 3

xhole 0 15 20

yhole 0 15 10

xdistance 0 0 12

ydistance 0 0 10
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described for the MATLAB script used in the SIMP approach were done to
this script to satisfy the geometry and load conditions of each case. Ap-
pendix B shows the MATLAB script used for the calculation of the topology
optimization using the BESO approach.

Most of the input parameters used in this approach are the same as the
ones used in the SIMP approach, so the definition and values of these pa-
rameters are the same. The only difference in the input parameters is that
the BESO approach has a new input parameter er, it refers to the element
removal ratio (Section 2.2), instead of the penalization factor p in the SIMP
approach. The value assumed for all the three cases for the er is 2%.

3.3 principal stress calculation.

The calculation of the principal stress diagrams over the results of the topol-
ogy optimization is necessary to know which parts of the new material dis-
tribution obtained in the optimization process are under compression or
tension. This calculation was also performed over the full beam domain us-
ing the commercial finite element analysis software DIANA FEA. Having
the results of the principal-stresses over the full beam domain and over the
optimal material distribution gave the possibility to check if the compression
and tension areas are consistent between them.

Principal Stress calculation over the optimal material distribution

The principal stress diagrams were calculated using a MATLAB script. Where,
first the shape functions of the four-noded quadrilateral elements are ob-
tained in a symbolic form, then the principal stresses were obtained using
numerical integration. Appendix A and Appendix B contain the function
stress this function was used for calculation of the principal stress. In the ob-
tained diagrams to have concordance with the results obtained from the FEA
for the full beam, the blue areas represent areas in compression, these areas
are obtained when the value of the principal stress in the elements (Equation
2.8) is smaller than zero. Whereas, the red areas represent areas in tension,
in these areas the value of the principal stress is higher than zero. Figure
3.7 shows an example of the principal stress diagrams obtained. Knowing
which areas are in compression or tension is more important than the value
of the stresses in these areas because for the evaluation process of the trusses
bar elements were placed within these paths.

Principal Stress calculation over the full beam domain

Finite element analyses were performed over the three studied cases, these
analyses were done using the commercial software DIANA FEA. In these
analyses, a linear elastic behavior of the materials was assumed. The full
domain of the beams was modeled, the supports and loading conditions cor-
respond to the ones shown in the discrete models (Figure 3.2 to Figure 3.4).
To be consistent with the analysis of the material distribution obtained from
the optimization process, four-noded quadrilateral elements with a size di-
mension of 100 mm were used in the FEA models. In the visualization of the
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Figure 3.7: Example of principal stress diagrams over the ideal material distribution

results the same color convention than the one used in the MATLAB script
was assumed, blue for areas in tension and red for areas in compression.
It made clear the comparison and understanding of results. Appendix C
shows the principal stress diagrams for all of the studied cases.

3.4 generation and stabilization of truss struc-
tures

The generation of the truss-like structures followed a manual process. This
process consist that once the principal stress diagrams are obtained, the bar
elements can be located within the stress paths connecting all the branches
of the diagrams. At the end of this process, the result is a truss structure
that could be used as the skeleton of the Strut-and-Tie model. The genera-
tion process started placing elements next to the fixed points of the beams
domain. These points are the supports of the beams and the locations of
the point loads. The position of these points cannot change because they
are taken from the discrete model, this type of nodes are known as external
nodes, in all the studied cases these nodes are in the outer perimeter of the
beams. The rest of the nodes are the ones formed by the intersection of two
or more bar elements. This type of nodes are known as internal nodes. The
internal nodes do not have a fixed position, but the constraints for the possi-
ble positions are the limits of the stress paths in the principal stress diagrams.
Furthermore, it is necessary to consider that at the moment of placing the
bar elements they do not have to cross areas that in the discrete model have
no material such as holes or the dapped for cases two and three.
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In most cases, after placing the bar elements within the stress paths the
created truss structures were statically unstable, because of it, it was not pos-
sible to perform a truss analysis in these structures yet. Even thought,having
a stable truss structure is not an essential condition for the STM, it was nec-
essary to make these structures statically stable to perform an structural
analysis on them using only truss elements. In most cases to stabilize a truss
structure it was necessary to add some additional elements, which were not
given by the results of the topology optimization. These additional elements
are called stabilizers, the number of stabilizers required to stabilize a truss
structure are given by Equation 2.1. The stabilizers do not change the stress
diagrams obtained during the optimization process, because the main char-
acteristic of them is that the axial force of them should always be equal to
zero. Therefore, there is no specific rule or procedure for placing the stabi-
lizers, as long as, after the truss analysis the axial force on these elements is
zero. Figure 3.8 shows an example of a stable truss structure after placing
the bar elements within the stress paths and the addition of the stabilizers
for the example shown in Figure 3.7. Applying Equation 2.1 to this example
gives b+ r = 7 and 2j = 8, so the necessary amount of stabilizers that should
been added is one.

Figure 3.8: Stabilization of truss structures adding stabilizers.

There are also cases in which the simple addition of stabilizer did not
lead to a good solution, because the addition of extra elements changed
the stress distribution diagrams obtained from the topology optimization, in
other words the force in the stabilizer was not zero. In these types of truss
structures, it was necessary to add some other elements or create substruc-
tures within the stress paths, to create stable truss structures. In the same
way than for the case of the stabilizer there is not a exact or unique pro-
cedure to do it. Figure 3.9 shows a possible solution for this type of truss
structures.
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Figure 3.9: Stabilization of trusses without adding of stabilizers.

3.5 truss structures analysis.

3.5.1 Structural Analysis

The structural analysis of the stable truss structures was done in the com-
mercial software Rhinoceros, using Grasshopper with the Karamba plug-in.
This software was chosen because of the facility that it provides at the mo-
ment of parametrizing the trusses. Parametrizing the proposed trusses saves
time in the moment of analyzing the impact that different positions of nodes
would have in the truss structure. This aspect was very important because
a large number of possible truss structures were analyzed for each case and
the different positions that each node can have in every solution. To use
the benefits of this software, it was necessary to create a visual script in
Grasshopper for each analyzed truss structure. Besides, it was necessary to
add a section for evaluation of the truss to the visual scripts. Figure 3.10

shows a visual script used for the evaluation of a specific truss structure.

Figure 3.10: Visual script used for the evaluation of a truss structure.

Once that all the visual scripts were created, it was possible to analyze the
forces in the members of all the trusses. Besides, all the solutions that were
found applying the SIMP and BESO approach, visual scripts were created
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for Strut-and-Tie models from literature for each studied case (Figure 3.11).
Analyzing these cases from literature gave the possibility to compare their
results with the results from the proposed truss structures given a better
understanding of the performance of the proposed structures according to
the chosen evaluation criteria. Figure 3.11 shows the STM chosen from lit-
erature for the three cases. For Case 1 and Case 2 the STM selected are the
ones proposed by Schlaich and Schäfer [8], in the Case 3 two models from
literarure are used; (i) the STM proposed by Novak-Sprenger, and (ii) the
STM proposed by Zhong et al [2]

(a) STM for Case 1 [8] (b) STM for Case 2 [8]

(c) Novak-Sprenger STM for Case 3

(d) Zhong et al. STM for Case 3

Figure 3.11: STM models from literature for the studied cases.
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3.5.2 Sensitivity Analysis

Once the principal stress paths were obtained, and the bar elements were
placed within them, some of the obtained truss structures required the ad-
dition of extra elements (stabilizers) to create suitable stable truss structures
for the structural analysis. The truss analysis showed that the axial force in
the stabilizers is zero. But, an inquiry that aroused was, what would happen
with the axial force in the stabilizers, if the position of the nodes changes?
In order to answer this inquiry, a sensitivity analysis to the stabilizers was
performed.

The proposed sensitivity analysis consisted of evaluating the change of
the axial force in the stabilizer when the position of the nodes that connect
the stabilizers with the truss elements, or the position of the elements that
share a node with the stabilizers change. The results of this analysis show
when the proposed truss structure is not consistent anymore with the stress
diagrams obtained in the optimization process, because the force in the sta-
bilizer starts to increase due to a specific position of some nodes. To check
this effect, every time that the position of a node changed respected to the
proposed position the force in the stabilizer was registered. Since all the
elements of the truss structure must be within the stress paths, this was the
restriction for the possible positions of these nodes.

Sensitive analysis Case 1

In Case 1, for both approaches, the stabilizer connects the bottom left node
with the one on the top right corner of the truss. The possible positions of
these nodes are very limited, due to the horizontal position of both nodes
cannot change because their position is given by the location of the point
loads and the supports. So, the only possible parameter that would change
in a sensitivity analysis is the vertical position of the top horizontal bar.
Table 3.4, shows the possible y coordinated of the two nodes that the top bar
shares.

Table 3.4: Coordinates for sensitivity analysis Case 1

Y COORDINATES

SIMP Approach BESO Approach

4.1 —
3.98 3.6
3.85 3.5
3.72 3.4
3.6 —

Sensitive analysis Case 2

In both approaches, one of the nodes of the stabilizer corresponds to the
node where the point load is applied (external node). So, this node cannot
move in any direction. On the other hand, the bottom node of the stabilizer
can freely move in both directions as long as all the elements that share this
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node remain within the stress diagrams. Here not only the position of the
node that the truss elements share with the stabilizer has an effect on the
forces in the stabilizer, but it is also possible that the change of position of
other nodes in the structure causes an effect in the stabilizer. To chose the
possible positions of the points, first the areas within the nodes can freely
move were determined. Figure 3.12 shows these areas for both approaches.

(a) Areas for SIMP approach (b) Areas for BESO approach

Figure 3.12: Areas within the nodes can move in Case 2

For a better understanding of how this analysis works, a sensitivity anal-
ysis for only node 2 of the BESO approach was performed. Here, the sensi-
tivity analysis consisted of displacing this node in X and Y direction (Figure
3.13) , and register the axial force in the stabilizer for each position of the
node.

Figure 3.13: Nodal displacements for node 2. Case 2 BESO approach

To analyze the sensitivity of the force in the stabilizer, several positions for
each node were selected. Table 3.5 and Table 3.6 show the selected positions
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for each analyzed node in both approaches. With these positions all the
possible combinations for the three selected nodes were analyzed.

Table 3.5: Coordinates for sensitivity analysis Case 2-SIMP approach (Figure3.12.a)

NODE 1 NODE 2 NODE 3

COORDINATE X Y X Y X Y

POSITION 1 0.6 3.33 2.6 1.37 3.7 0

POSITION 2 0.66 3.19 2.86 1.24 3.46 0

POSITION 3 0.74 3.29 2.85 1.51 3.86 0.18

POSITION 4 —- —- 2.77 1.39 3.94 0

POSITION 5 —- —- 2.89 1.36 —- —-

Table 3.6: Coordinates for sensitivity analysis Case 2-BESO approach (Figure3.12.b)

NODE 1 NODE 2 NODE 3

COORDINATE X Y X Y X Y

POSITION 1 0.96 3.59 1.83 2.07 3.29 1.08

POSITION 2 1.06 3.66 1.76 2.19 3.24 0.99

POSITION 3 1.04 3.5 1.93 2.16 3.21 1.13

POSITION 4 —- —- 1.94 1.99 3.32 1.17

POSITION 5 —- —- —- —- 3.38 1.05

Sensitive analysis Case 3

In this case the sensitivity analysis was applied to the truss structure ob-
tained using the SIMP approach only. Here the stabilizer connects two inter-
nal nodes of the structure, for the sensitivity analysis a third node was also
considered, this additional node was considered because the two elements
that share nodes with the stabilizer also share this additional node. Figure
3.14 shows the areas where the selected nodes can move, Table 3.7 shows
the position of these nodes, likewise Case 2 all the possible combinations
with these nodes were analyzed to check the sensitivity of the force in the
stabilizer.

Figure 3.14: Areas within the nodes can move in Case 3.
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Table 3.7: Coordinates for sensitivity analysis Case 3-SIMP approach (Figure3.14)

NODE 1 NODE 2 NODE 3

COORDINATES X Y X Y X Y

POSITION 1 0 1 3.24 0 5.65 1

POSITION 2 0.39 0.81 3.04 0 5.36 0.89

POSITION 3 0.43 0.98 3.1 0.25 5.5 0.73

POSITION 4 0.4 1.15 —- —- 5.81 0.74

POSITION 5 0.27 0.97 —- —- —- —-

3.6 evaluation criteria.

The selected evaluation criteria for the obtained truss structures after the
optimization and stabilization process are (i) the total amount of tension
force in the truss structure and (ii) the concrete stress in the struts of the
truss structure.

After computing all the evaluation criteria parameters of each truss struc-
ture, including the structures taken from the literature, their results were
compared to see which approach gives the most optimal truss structure ac-
cording to these specific criteria. The best approach for each case was taken
as the one that gave the lowest total tension force in the structure as long as
the value of the stress in the concrete remains smaller than the maximum
allowed.

3.6.1 Total Amount of Tension Force and Reinforcement.

The total amount of tension force was taken as the parameter H (Equation
2.16 ) this parameter corresponds to the summation of the product between
the tension force in each member in [KN] and its length in [m]. The parame-
ter H was computed for every proposed structure of the three cases, once the
parameter H has been calculated for all of these structures, it was possible to
determinate the most optimal truss-like structure according to this criterion.

To compute this parameter the axial forces of the truss elements under
the loading conditions taken from the discrete models were tabulated, then
a sub-table with only the elements under tension force was created, this
process was done for all the proposed truss-structures for every studied case
and to the truss structures taken from literature. An example of this type
of subtable is 3.8. From this table the parameter H was calculated applying
Equation 2.16.

The necessary amount of reinforcement is linearly related with the total
amount of tension force in the bar elements. This value is calculated for each
truss structures as an addition to the tension force. Appendix D shows the
necessary amount of reinforcement for each truss structure. The necessary
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Table 3.8: Example of subtable to compute H for Case 2 using SIMP Approach

ELEMENT FORCE (kN) LENGTH (m)

E 30.34 2.82

G 7.33 1.63

I 30.92 1.76

J 9.04 2.2
K 34.04 3.5

amount of reinforcing steel for a given tension force was compute using
Equation3.1:

Asreq =
TEd ∗ γs

f y
(3.1)

where T [KN] is the tension force of the demand in a truss element, γs is
the partial factor for reinforcing steel, according to [27] the value of γs should
be taken as 1.15, and f y is the characteristic resistance of the reinforcing steel,
here it is taken as f y = 420 [MPa].

3.6.2 Compressive Stress in the Concrete.

The stress in the concrete was calculated to ensure that the beam do not
fail due to compressive stresses in the members in compression of the truss
structure (struts). So, as long as the stress in the concrete remains smaller
than the maximum permitted value fcd = 30 [MPa], the criterion that is
consider to determine the optimal truss structure was the minimum total
tension force.

The force used to determinate the stress in the concrete was the compres-
sion force of each strut, the beams in all the three cases were assumed to
have a constant thickness of 100mm, and as a prismatic shape of the struts
were assumed the width of them taken for the calculation is given by Equa-
tion 2.18. Then the stress in the concrete was calculated using Equation 3.2
.

σci =
Ci

Ai
(3.2)

where Ci [N] is the compression force of the i − th strut, Ai [mm2] is the
area of the concrete corresponding to the width of the i − th strut.



4 R E S U LT S A N D D I S C U S S I O N .

This chapter consists of the results found in all the stages of the study, from
the topology optimization to the evaluation of the final truss structures ac-
cording to the evaluation criteria, with their respectively discussion and in-
terpretation. Figure 4.1 shows the followed scheme to present the results of
the study.

Figure 4.1: Scheme followed for the presentation of results.

4.1 ideal material distribution

The results obtained after applying the topology optimization to the full
domain of a beam are considered to be the ideal material distribution of

36
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it. These material distributions were calculated for both approaches (SIMP
and BESO approach). The results shown in this section correspond to the
ones obtained with the variation of the input parameters volfrac and rmin.
This variation was done for both approaches of the topology optimization
(TO), obtaining six different results per case per approach. To check the
effects that the variation of the input parameters produce in the results of
the TO, two types of comparisons were made, (i) comparing results from the
same approach, here the influence of the input parameters volfrac and rmin
was analyzed, and (ii) a global comparison between the results of the two
approaches.

4.1.1 Material Distribution for Case 1

Figure 4.2 and Figure 4.3 show the ideal material distributions for Case 1

using SIMP and BESO approaches, respectively. First, the results of the
same approach are compared among them (variation of the input parameters
volfrac and rmin). Then in a more general way, the results obtained using
these approaches are compared with each other.

Comparing, Figure 4.2.a with Figure 4.2.b, Figure 4.2.c with Figure 4.2.d,
and Figure 4.2.e with Figure 4.2.f, the effect that the variation of rmin has
on the results of the TO is seen. It is seen that the variation of rmin had
a small impact in the results of the ideal material distribution, neither the
shape nor the thickness of the paths had a significant change in any of these
cases. The only visible change is the transition between white (voids) areas
to black (solid) areas.

In the same way, making a comparison among Figure 4.2.a, Figure 4.2.b
and Figure 4.2.c, and Figure 4.2.d, Figure 4.2.e, and Figure 4.2.f. the effect
that the variation of volfrac has on the results of the TO is seen. It is seen that
the shape of the material distribution did not change, but the thickness of the
paths got thicker as the value of volfrac increased. The same corresponding
comparisons for the BESO approach (Figure 4.3) were made, from them, it is
seen that the effects of the input parameters on the variation of results when
volfrac and rmin changed are similar to the ones of the SIMP approach.

Comparing the corresponding results from the SIMP and BESO approaches,
it is observed that for Case 1, there is not a big difference in the global shape
of the new material distribution and in the thickness of the stress paths.
Some factors that might have contributed are given by the characteristics of
the discrete model (Figure 3.2): relation height over length h/l = 1, symmet-
ric loading conditions, absence of holes on the beam domain, and the simple
support conditions.

Due to the large similarity of the results in the material distribution after
the variation of the input parameters, for both approaches, it is assumed that
every structure created using these results would have similar performance
in the Strut-and-Tie model.
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(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.4, rmin=1.1 (c) Volfrac=0.5, rmin=1.1

(d) Volfrac=0.3, rmin=1.5 (e) Volfrac=0.4, rmin=1.5 (f ) Volfrac=0.5, rmin=1.5

Figure 4.2: Results of Topology Optimization using SIMP approach Case 1.

(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.4, rmin=1.1 (c) Volfrac=0.5, rmin=1.1

(d) Volfrac=0.3, rmin=1.5 (e) Volfrac=0.4, rmin=1.5 (f ) Volfrac=0.5, rmin=1.5

Figure 4.3: Results of Topology Optimization using BESO approach Case 1.

4.1.2 Material Distribution for Case 2

Figure 4.4 and Figure 4.5 show the ideal material distribution for Case 2

using SIMP and BESO approaches, respectively. In the same way that it
was done for Case 1, the results from the same approach are first compared



4.1 ideal material distribution 39

among them. Then in a more general way, the results obtained using these
approaches are compared with each other.

First, only the results of the SIMP approach were compared (Figure 4.4).
To see the effect of rmin it was compared Figure 4.4.a with Figure 4.4.b,
Figure 4.4.c with Figure 4.4.d, and Figure 4.4.e with Figure 4.4.f, from them
it is seen that the global shape of the material distribution did not change,
but in the results with values of rmin = 1.5, the material distribution is
less branched than the one obtained using values of rmin = 1.1. Also, the
thickness of the internal paths is a little thicker when rmin = 1.5 than when
rmin = 1.1, this was expected because larger rmin has a bigger influence
in the surrounding area of an element. In the case of the results of the
BESO approach (Figure 4.5) the same corresponding comparisons that the
ones for the SIMP approach were made, these results exhibited a similar
behavior than the ones of the SIMP approach having less branched results
when rmin = 1.5 than when rmin = 1.1, the effect is more visible in for
values of volfrac=0.5

On the other hand, to see the effect of volfrac comparisons among Figure
4.4.a, Figure 4.4.c, and Figure 4.4.e for a value of rmin = 1.1, and among Fig-
ure 4.4.b, Figure 4.4.d, and Figure 4.4.f for a value of rmin = 1.5 were made.
From these comparisons was observed that the global shape of the results
remained almost the same, the paths got ticker and some small branches
started appearing as the value of volfrac increased. Similar comparisons were
made with the results of the BESO approach (Figure 4.4). These results have
a larger variation among them than the ones obtained with the SIMP ap-
proach. Here the paths got thicker, some more branches appeared. There is
a change in the global shape when the value of volfrac=0.5, the shape of this
result is very similar to the ones obtained using the SIMP approach.

Comparing, the results between the SIMP and BESO approach, it is seen
that the difference between the results of the topology optimization is manly
appreciate in the area below the hole, the main difference is that in the results
from the SIMP approach there are some stress paths surrounding the hole,
while , in the results of the BESO approach the area below the hole has no
stress paths at all except for only one case (Figure 4.4.e). A consequence of
that is that the results of the SIMP approach cover more surface area than
the ones of the BESO approach, this characteristic would be useful in the
moment of the reinforcement layout design.

In this case, the results obtained with the variation of the input parameters
are considerably larger than for Case 1. Here the trusses created based on
these results would be different from each other, so it would be expected
that the structural performance of them in the Strut-and-Tie would not be
similar, this effect is analyzed in Section 4.3.

4.1.3 Material Distribution for Case 3

Figure 4.6 and Figure 4.7 show the results of the ideal material distribution
for Case 3 after the topology optimization using the SIMP and BESO ap-
proaches, respectively. In the same way that it was done for the other two
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(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.3, rmin=1.5

(c) Volfrac=0.4, rmin=1.1 (d) Volfrac=0.4, rmin=1.5

(e) Volfrac=0.5, rmin=1.1 (f ) Volfrac=0.5, rmin=1.5

Figure 4.4: Results of Topology Optimization using SIMP approach Case 2.

cases, first the results from the same approach are compared among them,
and then in a more general way, the results obtained using these approaches
are compared with each other.

To see the effect of rmin on the results using the SIMP approach the fol-
lowing comparisons were made, Figure 4.6.a with Figure 4.6.b, Figure 4.6.c
with Figure 4.6.d, and Figure 4.6.e with Figure 4.6.f. It is seen that there
is almost no difference between these results, the biggest difference occurs
when vol f rac = 0.4, here the result of the optimization when rmin = 1.1
has one more internal path than the one when rmin = 1.15. For the rest
of the values of volfrac, there is not a big difference between results. In the
same manner, the corresponding comparisons are made to see the effect of
rmin on the results of the BESO approach (Figure 4.7). Likewise, in the SIMP
approach, here the only noticeable difference in the shape of the results are
observed when of vol f rac = 0.4. The result obtained using rmin = 1.1 has
an additional internal path, and the inclination of another path differs from
the result obtained using rmin = 1.5.

Now to check the effect that volfrac has on the results of the TO using the
SIMP approach, the following comparisons were made, Figure 4.6.a, Figure
4.6.c, and Figure 4.6.e for a value of rmin = 1.1, and among Figure 4.6.b,
Figure 4.6.d, and Figure 4.6.f for a value of rmin = 1.5. In contrast to the
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(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.3, rmin=1.5

(c) Volfrac=0.4, rmin=1.1 (d) Volfrac=0.4, rmin=1.5

(e) Volfrac=0.5, rmin=1.1 (f ) Volfrac=0.5, rmin=1.5

Figure 4.5: Results of Topology Optimization using BESO approach Case 2.

previous cases, in this case, the main difference occurred between the results
of vol f rac = 0.3 and vol f rac = 0.4. This effect is also seen with the corre-
sponding comparisons of the BESO approach. The results corresponding to
vol f rac = 0.4 have internal material paths, while the ones obtained using
vol f rac = 0.3 have only external ones. The difference between the results of
vol f rac = 0.4 and vol f rac = 0.5 is almost only the thickness of the paths.

Comparing the results from the SIMP and BESO approaches, it is seen that
there is no big difference in the material distribution between their results.
In fact, for values of vol f rac = 0.3, there is almost no visual difference in
the results. The large similitude between these results of the two approaches
is due to the small surface area of the beam that the hole and the dapped
provoked. Although the discontinuities in the discrete model should cause
different material distributions depending on the approach, it is seen that
the small available surface area of the beam had a bigger influence on the
results.

In this case, the variation of the input parameter rmin had almost no
influence on the trusses for the Strut-and-Tie model. However, the differ-
ence in results is mostly observed for values of vol f rac = 0.3, to values of
vol f rac = 0.4 and vol f rac = 0.5 where the results are similar due to the
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small surface area of the beam. The difference, in the results of the material
distribution, would influence the trusses for the Strut-and-Tie model, this
effect is analyzed in Section 4.3.

In this case the variation of results

(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.3, rmin=1.5

(c) Volfrac=0.4, rmin=1.1 (d) Volfrac=0.4, rmin=1.5

(e) Volfrac=0.5, rmin=1.1 (f ) Volfrac=0.5, rmin=1.5

Figure 4.6: Results of Topology Optimization using SIMP approach Case 3.

4.2 principal stress calculation

Once the new material distribution was obtained using the topology opti-
mization, it was necessary to calculate the principal stresses of these results
to see which paths are under compression and which of them under tension.
Also, the principal stresses of the full domain of the beams were calculated
using an FEA software. The results of the principal stresses of the new ma-
terial distributions were compared with the results of the full beam domain,
to check if the areas in compression or tension remain the same after the
optimization process.

The principal stress diagrams of the results obtained during the optimiza-
tion process were computed for every solution of all the three studied cases.
Due to the similitude showed among the results of the same approach, only
one stress diagram per approach per case is shown. Comparing one result
per approach was enough to analyze the similarity between the principal
stress over the results of the optimization with the results of the full domain.

Figure 4.8, Figure 4.9, and Figure 4.10 show the principal stress diagrams
for Case 1, Case 2, and Case 3, respectively. Each figure consists of two sub-
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(a) Volfrac=0.3, rmin=1.1 (b) Volfrac=0.3, rmin=1.5

(c) Volfrac=0.4, rmin=1.1 (d) Volfrac=0.4, rmin=1.5

(e) Volfrac=0.5, rmin=1.1 (f ) Volfrac=0.5, rmin=1.5

Figure 4.7: Results of Topology Optimization using BESO approach Case 3.

figures, one for the results obtained using the SIMP approach, and another
one for the results of the BESO approach. In these figures, the areas in com-
pression are blue, while the elements in tension are red. Appendix C shows
the principal stress diagrams obtained using the software DIANA FEA.

(a) SIMP Approach (b) BESO Approach

Figure 4.8: Principal Stress over the optimal material distribution Case 1.
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(a) SIMP Approach (b) BESO Approach

Figure 4.9: Principal Stress over the optimal material distribution Case 2.

(a) SIMP Approach

(b) BESO Approach

Figure 4.10: Principal Stress over the optimal material distribution Case 3.

4.2.1 Comparison of Results.

Figure 4.11 shows the overlay of the principal stress diagrams of the new
material distribution and the full beam for both approaches in Case 1. In
general terms, it could be said that the principal stress diagram of the mate-
rial distribution after the optimization process are consistent with the ones of
the full beam because they match the main areas in tension and compression.
Comparing Figure 4.11.a and Figure 4.11.b, it was seen that the position of
the top compression strut in the BESO approach is a little closer to the po-
sition of the of it on the full beam diagram. However, the thickness of this
strut is more similar for the SIMP approach than for the BESO approach.

Figure 4.12 shows the overlay of the principal stress diagrams of the new
material distribution and the full beam for both approaches in Case 2. First,
analyzing Figure 4.12.a it is seen that the main areas in compression and
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(a) SIMP Approach (b) BESO Approach (c)

Figure 4.11: Overlay of principal stress diagrams Case 1.

tension are consistent between the results of the SIMP approach and the
full model. On the other hand, the result from the BESO approach (Figure
4.12.b) shows consistency in the most areas in compression but for the ones
in tension it is seen that this model ignores some of them. This effect is seen
especially in the elements around the hole. In the case, the principal stress
diagrams obtained using the SIMP approach is closer to the results from the
full beam.

(a) SIMP Approach

(b) BESO Approach

Figure 4.12: Overlay of principal stress diagrams Case 2.

Figure 4.13 shows the overlay of the principal stress diagrams of the new
material distribution and the full beam for both approaches in Case 3. There
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is a considerable similarity between the principal stresses diagrams obtained
using the FEA software for the full domain and the ones obtained over the
results of the topology optimization. It is considered that the results of
the new material distributions are consistent with the one of the full beam
because most of the areas in tension are also considered in both diagrams.

(a) SIMP Approach

(b) BESO Approach

Figure 4.13: Overlay of principal stress diagrams Case 3.

Even though, in all of the cases, the results from the new material distri-
bution are similar to the ones obtained from the full model, there are some
areas in compression and tension that are ignored in these results. To cre-
ate the truss structures these results were taken straight away, but in case
that these results would be used to design a reinforcement layout additional
conditions about the tensile areas that are not present in the results of the
optimization process should be taking into account.

4.3 creation and stabilization of truss structures

To find the truss structures that were used in the structural analysis the
procedure described in Section 3.4 was followed.

4.3.1 Case 1

As it was stated in Section 4.1, for the Case 1 the variation of the input param-
eters does not have a notable influence in the trusses for the Strut-and-Tie
model, so only one truss was analyzed for each approach. Figure 4.14 shows
the resulting stable truss structures for Case 1 using the SIMP and BESO ap-
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proaches, all the elements that were placed within the stress paths (green
lines) of both approaches are considered as elements of the original struc-
ture. To stabilize these truss structures, the strategy that was followed was
the addition of stabilizers. In this case for the SIMP and BESO approaches
the stabilization process was simple because the necessary element to stabi-
lize the structure (stabilizer) had only one possible position where it could
be placed, that was from the bottom node to the opposite top one. A fast way
to recognize which element is only acting as a stabilizer is that the stabilizer
is the only element that is outside the stress paths (purple line).

(a) SIMP Approach (b) BESO Approach

Figure 4.14: Stable Truss Structures for Case 1

4.3.2 Case 2

In this case, the variability of the material distributions results is noticeable,
thus several trusses were created to analyzed the possible effect that the vari-
ation of the input parameter would have in the Strut-and-Tie model. Here
the strategy followed for stabilizing a structure, and the color convention for
the elements of the original structure (elements within the stress paths) and
for stabilizer (elements outside of stress paths) was the same than the ones
used in Case 1. Figure 4.15.a and 4.15.b shows the resulting stable structures
for values of vol f rac = 0.3 and rmin = 1.5 using the SIMP and BESO ap-
proaches. In this case, there were a couple of possible positions were the
stabilizer could have been placed in every approach, but the position chosen
position in both approaches was very similar. The stabilizer is connecting
the node where the point load is applied (external node) with an internal
node close to the hole, for the selected values of the input parameters the
stabilization process was simple and only one stabilizer was needed. On
the other hand, Figure 4.15.c and Figure 4.15.d shows the trusses created
using a value vol f rac = 0.5. In this case the stabilization process for large
values of volfrac was more complicate than the one for a lower value of vol-
frac. To stabilize these structures was necessary the addition of three extra
elements outside of the stress paths or the creation of one substructure and
the addition of two extra elements.
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(a) SIMP Approach volfrac=0.3 (b) BESO Approach volfrac=0.3

(c) SIMP Approach volfrac=0.5 (d) BESO Approach volfrac=0.5

Figure 4.15: Stable Truss Structures for Case 2

4.3.3 Case 3

Figure 4.16 shows the resulting stable structures for Case 3 using the SIMP
and BESO approaches. The same color convention depending on the type
of elements used in the previous cases was used in Case 3, here for the
stabilization process, two strategies were used, the addition of stabilizers,
and the creation of substructures within the stress paths.

In the SIMP approach, the stabilizer (purple line) is connecting two inter-
nal nodes in the bottom part of the beam (Figure 4.16.a), there were other
alternatives for the addition of the stabilizer but it was seen that this one
is the one that interfered less with the stress diagrams form the topology
optimization. In the case of the BESO approach (Figure 4.16.b) the stabilizer
is connecting an internal node, with an external node that correspond to the
rigth support of the beam.

The rest of alternatives where the stabilization strategy was creating sub-
structures within the stress paths are shown in Figure 4.17 for the SIMP
approach, and in Figure 4.17 for the BESO approach.

The stabilization process for truss structures created based on the results
of vol f rac = 0.4 and vol f rac = 0.5 is similar due to the small surface area
and the large value of volfrac, it makes that the created trusses do no differ
much between them. On the other hand, using values of vol f rac = 0.3
the resulting trusses are quite different, then, the stabilization process also
differs. Figure 4.19 shows a stable truss structure for a value of vol f rac = 0.3.
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(a) SIMP Approach (b) BESO Approach

Figure 4.16: Stable Truss Structures for Case 3

(a) Alternative truss 1 (b) Alternative truss 2

(c) Alternative truss 3

Figure 4.17: Alternatives for stable trusses using SIMP approach Case 3

(a) Alternative truss 1 (b) Alternative truss 2

Figure 4.18: Alternatives for stable trusses using BESO approach Case 3

To stabilize this truss only one additional element was required, but it was
not possible to find a position where this additional element has zero axial-
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force (Section 4.4), consequently, with the addition of the stabilizer the stress
diagram form the topology optimization changed.

Figure 4.19: Stable truss for Case 3, volfrac=0.3

4.4 structural analysis of trusses

When the stable trusses have been found for each studied case, the structural
analysis of these trusses was made using Rhinoceros with Grasshopper and
Karamba plug-ins. The results of the structural analysis give the axial forces
in all the members of the trusses.

4.4.1 Case 1

Figure 4.20 shows the results of the structural analysis for the proposed
trusses in Case 1. It can be seen that the value of the axial force in the sta-
bilizer for both approaches is zero. So, the stress diagrams found in Section
4.2 did not change. Also, it is seen that the axial forces in the elements of the
trusses have the same sign than the stress diagrams over the results of the
topology optimization.

(a) SIMP Approach (b) BESO Approach

Figure 4.20: Truss Analysis for Case 1.

The resulting trusses obtained from this analysis are shown in Figure 4.21,
in these structures, the stabilizers have been removed because they were



4.4 structural analysis of trusses 51

necessary just for the structural analysis of the trusses. Figure 4.21 also
shows the small existing difference in the final trusses using SIMP and BESO
approach. Table 4.1 shows a summary of the axial force in every element for
the SIMP and BESO approaches. There is a small difference in the values
of the axial force between the elements of the SIMP approach with their
corresponding ones in the BESO approach.

(a) SIMP Approach (b) BESO Approach

Figure 4.21: Final trusses for Case 1.

Table 4.1: Summary of axial forces for trusses of Case 1 (Figure 4.21)

SIMP APPROACH BESO APPROACH

ELEMENT FORCE (kN) LENGTH (m) FORCE (kN) LENGTH (m)

A -100.00 0.53 -100.00 0.9
B -100.00 0.53 -100.00 0.9
C -25.97 2.2 -28.57 2.2
D -103.32 3.85 -104.00 3.55

E -103.32 3.85 -104.00 3.55

F 25.97 4.2 28.57 4.2

4.4.2 Case 2

Figure 4.22 shows the results of the structural analysis for the proposed
stable trusses corresponding to a vol f rac = 0.3. In the same way, that in
Case 1 the stress diagrams found in Section 4.2 did not change because
for both approaches the force in the stabilizers is equal to zero. The final
trusses resulting from this analysis are shown in Figure 4.23. In this case,
the stabilizers were only required to obtain the forces in the elements of
the original truss. Table 4.2 shows the axial forces in each member of the
trusses for the SIMP and BESO approach. The highest values of tensile and
compressive forces between the two trusses were found in elements C and
G of the truss from the BESO approach, but this values alone said nothing
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about the performance of the trusses, the performance of them according to
the evaluation criteria is evaluated in Section 4.6.

(a) SIMP Approach (b) BESO Approach

Figure 4.22: Truss Analysis for Case 2.

(a) SIMP Approach (b) BESO Approach

Figure 4.23: Final trusses for Case 2.

Table 4.2: Summary of axial forces for trusses of Case 2

SIMP APPROACH BESO APPROACH

Element Force (kN) Length (m) Element Force (kN) Length (m)
A -29.86 4.41 A -35.86 4.00

B -24.76 4.80 B -13.47 3.93

C -74.86 5.26 C -87.15 5.28

D -31.23 2.80 D -35.86 1.44

E 30.34 2.82 E 20.36 1.75
F -33.33 0.63 F 24.99 1.88
G 7.33 1.63 G 41.63 1.76
H -3.64 1.76 H 41.12 4.06
I 30.92 1.76 I -35.86 2.51

J 9.04 2.20
K 34.04 3.50

A structural analysis was performed also to the truss obtained using the
BESO approach with a value of vol f rac = 0.5 (Figure 4.15.d). The purpose
of this analysis was to check if, even though the stabilization process of
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this structure was more complicated than for trusses with lower values of
volfrac, the total tension force in the structure is lower than the force in the
other trusses. Figure 4.24 shows the results of the structural analysis for this
structure, and Figure 4.25 shows the resultant truss structures.

(a) SIMP Approach (b) BESO Approach

Figure 4.24: Truss analysis for stable structures vol f rac = 0.5

(a) SIMP Approach (b) BESO Approach

Figure 4.25: Stable truss structures using vol f rac = 0.5

4.4.3 Case 3

Figure 4.26 shows the results of the structural analysis for the stable truss
obtained using a volume of vol f rac = 0.3, it is seen that even though, the sta-
bilization process was simple, the truss does not fulfill the essential require-
ment for a stabilizer (zero axial force). Consequently, this truss is considered
not valid for the evaluation criteria because it changes the stress diagram
obtained in the topology optimization.

Figure 4.26: Truss analysis for stable structure vol f rac = 0.3
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Figure 4.27 shows the results of the structural analysis for all the proposed
truss alternatives using the SIMP approach. In alternative one (Figure 4.27.a)
is observed that the force in the stabilizer is very close to zero, so it was
assumed that it did not change the stress diagrams of Section 4.2. Due to the
difficulty to find this position where the stabilizer does not change the stress
diagrams, other alternatives that did not require stabilizers were proposed
(Figure 4.27.b to Figure 4.27.d), in these trusses, substructures were created
in different parts of the stress diagrams. Figure 4.28 shows the final trusses
proposed using the SIMP approach, the values of the axial forces in each
member of this trusses are shown in Table 4.3 for the alternatives one and
two, and in Table 4.4 for alternatives three and four.

(a) Alternative 1 (Using a stabilizer) (b) Alternative 2

(c) Alternative 3 (d) Alternative 4

Figure 4.27: Truss Analysis for trusses obtained using SIMP approach Case 3

Similar to the SIMP approach, for the BESO approach the first alternative
was stabilized adding one stabilizer and the other alternatives creating sub-
structures within the stress path. Figure 4.29 shows the truss analysis for the
alternatives proposed for the BESO approach, Figure 4.30 shows the final
trusses corresponding to this analysis. Table 4.5 shows the axial forces for
the truss elements of alternatives one and two, and Table 4.6 for alternative
three.

From the results of the truss analysis, it is seen that in the trusses where
substructures were created within the stress paths, although, the stress dia-
gram showed areas in compression, some elements of the proposed trusses
could be in tension. This effect of having one or more truss elements un-
der tension in areas where the stress paths are in compression is due to the
equilibrium of the extra node that is introduced when the substructure is
created.

It is important to notice that, even though the strategy of creation sub-
structures seems to work always stabilizing the truss structures, the angles
formed between the elements near these substructures might not satisfy the
requirements of the minimum angle between two elements for the Strut-and-
Tie model. This criterion should be considered at the moment of dimension-
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(a) Alternative one (using a stabilizer) (b) Alternative 2

(c) Alternative 3 (d) Alternative 4

Figure 4.28: Alternatives of final trusses using SIMP approach for Case 3.

Table 4.3: Summary of axial forces for trusses using SIMP approach of Case 3 (1/2)
Alternative 1 Alternative 2

Element Force (kN) Length (m) Element Force (kN) Length (m)

A -80.35 1.41 A -81.73 1.4
B -78.45 1.46 B -80.07 1.45

C 14.03 2.23 C 16.46 2.24
D -70.15 1.5 D -78.29 1.38

E -26.77 1.98 E 9.63 1.28
F -52.40 2.65 F -24.32 2.01

G 49.91 3.36 G -53.04 2.74

H 31.45 2.56 H 42.12 0.6
I -66.13 1 I -73.29 0.94

J 0.00 3.25 J 8.47 1.03
K 18.63 2.96 K 45.80 2.66
L -38.66 1.05 L 28.68 2.55

M 3.78 3.25
N 20.00 2.95

O -39.38 0.91

ing the Strut-and-Tie model, being necessary to verify it according to the
specific design code that is being used.

Appendix E shows the tables with the summary of the axial forces for the
truss structures taken from the literature (Figure 3.11).
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Table 4.4: Summary of axial forces for trusses using SIMP approach of Case 3 (2/2)
Alternative 3 Alternative 4

Element Force (kN) Length (m) Element Force (kN) Length(m)

A -95.90 1.4 A -89.94 1.4
B -30.84 1.45 B -49.63 1.45

C -53.51 1.47 C -32.62 1.47

D 36.73 2.24 D 28.09 2.24
E 10.90 0.4 E 6.64 0.4
F -71.50 1.24 F -60.32 1.39

G -14.31 2.01 G -11.19 1.28

H 8.04 2.46 H -15.03 2.01

I -52.67 2.46 I -17.60 2.46

J -70.11 1.01 J -32.10 2.46

K 14.81 3.03 K 32.92 0.6
L 27.53 2.11 L 27.46 2.66
M 23.82 0.46 M 18.37 2.11
N 23.30 3.25 N 14.52 0.46
O 11.29 2.95 O -56.25 0.94

P 25.60 1.11 P -13.23 1.04

Q -58.72 1.2 Q 15.27 3.25
R 23.96 2.95
S -6.00 1.11

T -45.8 1.2

(a) Alternative 1 (using a stabilizer) (b) Alternative 2

(c) Alternative 3

Figure 4.29: Truss Analysis for trusses obtained using BESO approach Case 3

4.5 sensitivity analysis

Sensitivity analyses were performed in the trusses where stabilizers were
used to check how the axial force in the stabilizer varies when the positions
of the nodes change. In this section, all the results of these analyses are
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(a) Alternative 1 (b) Alternative 2

(c) Alternative 3

Figure 4.30: Alternatives of final trusses using BESO approach for Case 3

Table 4.5: Summary of axial forces for trusses using BESO approach of Case 3 (1/2)

Alternative 1 Alternative 2

Element Force (kN) Length (m) Element Force (kN) Length (m)

A -89.00 1.38 A -81.78 1.38

B -30.03 1.49 B -76.98 1.49

C -49.38 1.89 C 16.22 2.22
D 26.41 2.22 D -59.34 1.22

E 7.68 0.45 E -11.89 1.1
F -71.16 1.17 F -18.46 2.08

G -11.77 2.02 G -8.85 2.32

H -9.18 2.31 H -46.44 2.57

I -42.79 2.17 I 33.68 0.5
J 19.73 2.90 J -49.95 1.14

K 18.46 1.94 K -19.98 1.19

L 15.45 0.72 L 29.16 2.56
M -69.95 1.13 M 24.14 1.93
N 22.80 3.07 N 20.81 0.72
O 24.09 3.13 O 18.94 3.07
P -41.56 1.03 P 24.09 3.13

Q -39.35 1.02

presented in a graphical way, Appendix F shows all the combinations for
Case 2 and Case 3 with the corresponding axial force in the stabilizer for the
sensitivity analysis.

In cases two and three the analyzed nodes are free to move in both direc-
tions (x and y), so the variation of the coordinates of several points results in
4D graph. Due difficulty of interpretation of this type of graphs, in the sub-
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Table 4.6: Summary of axial forces for trusses using BESO approach of Case 3 (2/2)

Alternative 3

Element Force (kN) Length (m)

A -90.28 1.38

B -26.09 1.49

C -53.31 1.88

D 27.92 2.22
E 10.53 0.46
F -42.16 1.22

G -31.02 1.1
H -11.25 2.08

I -6.54 2.32

J -44.28 2.9
K 23.92 0.5
L 15.92 2.56

M 1.82 1.93
N 15.36 0.72
O -35.49 1.14

P -36.89 1.19

Q 25.64 3.06
R 24.09 3.14
S -39.35 1.02

section corresponding to Case 2, the results of a example of the sensitivity
analysis of a single point is presented.

4.5.1 Case 1

In this case, there was no variation in the axial force of the stabilizer for any
possible position of the upper bar according to Table 1. Similar results were
observed for the truss obtained using the BESO approach. Figure 1 shows
the results of the sensitivity analysis for the SIMP and BESO approaches. It
can be seen that for all the possible positions of the upper bar the force in
the stabilizer remains as zero, in both approaches. Thus, the stabilizer added
in Case 1 is considered to be non-sensitive, consequently, the stress diagram
found for this case did not change when the position of the selected nodes
changed.

4.5.2 Case 2

First the results of the sensitivity analysis only for point 2 are shown, then
the results for the change in the position of the three analyzed nodes is
present.

Figure 4.32 shows the variation of the force in the stabilizer when only
one coordinate of the node varies. It is seen that for both coordinates (x
and y) the variation of the force in the stabilizer is almost linear, with its
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Figure 4.31: Sensitivity analysis results for trusses of Case 1.

minimum close to zero. The behavior of the stabilizer in both cases is similar
because when the node moves away from its original position the force in
the stabilizer started to increase, having Y coordinate a larger influence in
the sensitivity of it.
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(b) Alternative 1

Figure 4.32: Alternatives for final trusses using BESO approach for Case 3

Figure 4.33 shows the variation of the force in the stabilizer when only
node two is moved from its original position. It is observed that in the line
that the node is displaced there are two points where the force is minimum
and two points where the force remains almost constant. In this example is
seen that the variation of the force in the stabilizer is not linearly depending
on the position of the node, the position of the node can be placed in more
than one point without changing the principal stress diagram.

Finally, for the full sensitivity analysis of the trusses of Case 2, three nodes
were considered to verify the effect that the change of their position would
have on the force in the stabilizer. 60 possible combinations per each ap-
proach were analyzed. In the results, the x-axis corresponds to the positions
of node one, and the y-axis corresponds to the positions of node three, both
of them according to Table 3.5 for the SIMP approach, and Table 3.6 for the
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Figure 4.33: Sensitivity analysis results for trusses using BESO approach of Case 2.

BESO approach. The z-axis represents the percentage of the applied axial
force (100KN) acting on the stabilizer, Figure 4.34 and Figure 4.35 show the
results of the sensitivity analysis for the SIMP and BESO approaches, respec-
tively.

Figure 4.34: Sensitivity analysis results for trusses using BESO approach of Case 2.

It is observed that the force in the stabilizer of the truss obtained using
the SIMP approach is very susceptible to change when the position of the
nodes changed. In Figure 4.34, it is seen that there is not a specific position
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of any node that provokes the largest force in the stabilizer for all positions
of the two other nodes. The combination that gives the largest value of the
force in the stabilizer (15.1%) for this truss is position one for node one,
position three for node two, and position two for node three. It was found
that there were ten different possible combinations (16% of the total amount
of combinations) of nodes positions where it was assumed that the principal
stress diagram did not change because the axial force present in the stabilizer
is less than 1% of the applied force.

Figure 4.35: Sensitivity analysis results for trusses using SIMP approach of Case 2.

In the case of the truss obtaining using the BESO approach, Figure 4.34,
it is seen that the force in the stabilizer is also very susceptible to change
depending on the position of the nodes of elements that are connected to the
stabilizer. Contrary to the results from the SIMP approach, in this case it was
observed that position three of node two (yellow *) is the one that gives the
largest forces in the stabilizer for all the other possible positions of the nodes,
from them the combination that gives the largest global value of the axial
force in the stabilizer (9.48%) is position three for nodes one and two, and
position two for node three. There are 14 different possible combinations
(23% of the total amount of combinations) of nodes positions where it was
assumed that the principal stress diagram did not change because the axial
force present in the stabilizer was less than 1% of the applied force.

4.5.3 Case 3

In the same way that in Case 2, 60 possible combinations were analyzed for
the truss obtained using the SIMP approach, Figure 4.36 shows the varia-
tion of the force in the stabilizer expressed as a percentage of the external
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applied force (100KN), using the same axis convention that the one used for
Case 2, the x-axis corresponds to the position of point one, and the y-axis
corresponds to the position of point three both of them according to Table
3.7.

Figure 4.36: Sensitivity analysis results for trusses using SIMP approach of Case 3

It is seen that the force in the stabilizer is very susceptible to change when
the positions of the nodes change. A similar situation that the one seen
for the BESO approach of Case 2 is observed in this case. Position three
of node two (yellow *) always gives the largest axial force in the stabilizer
for all the other positions of the other two nodes. The combination that
gave the largest axial force (99.57%) of all the possible combinations was
position two for node one, and position three for nodes two and three. This
model is extremely sensitive to change the principal stress diagrams, having
only four possible solutions (0.07%) of the 60 combinations where the stress
diagram was assumed to not changed because the force in the stabilizer was
less than 1% of the applied load, all of these combinations corresponded to
combinations where position of nodes one and two are located in position
one.

4.6 evaluation of trusses

The evaluation criteria for the proposed trusses are divided into two parts,
(i) the total amount of tension force in the truss elements, this force is given
by the parameter H (Equation 3.1), and (ii) the compression stress in the
struts. These parameters were computed for every proposed truss structure
obtained in Section 3.5 and for all the trusses taken from the literature ac-
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cording to Section 4.4. The selection of the most optimal truss structure will
be based on the minimum value of H, the value of the compressive stress in
the struts was used only to check that the concrete does not fail due to it.

4.6.1 Evaluation Criteria for Case 1

Table 4.7 shows the calculation of the H for truss obtained using the SIMP
approach (Figure 4.21.a) because this structure has only one element under
tension forces the total value of H for the truss is given only by this member.
Likewise in the case of the BESO approach, the total value of H correspond-
ing to Figure 4.21.b is given by Table 4.8, and Table 4.9 gives the total value
of H for the STM taken from the literature (Figure 3.11.a ).

Table 4.7: Computation of H, SIMP approach Case 1

Element Force (kN) Length (m) H (kNm)

F 25.97 4.2 109.074

Table 4.8: Computation of H, BESO approach Case 1

Element Force (kN) Length (m) H (kNm)

F 28.57 4.2 119.99

Table 4.9: Computation of H, model from literature [8] (Figure 3.11.a)

Element Force (kN) Length (m) H (kNm)

F 42.74 4.2 179.51

These tables show that the truss with the lowest total tension force is the
truss obtaining using the SIMP approach. In none of the struts of the trusses
obtained using the SIMP and the BESO approaches or the ones from the
truss from the literature, the compressive stress in the concrete was critical.
The maximum compressive stress was found in the truss from literature,
elements D and E (Figure 3.11.a) are under a compressive stress of 6MPa.
Considering these results, it is assumed that the best truss structure accord-
ing to the evaluation criteria is, the one obtained using the SIMP approach
(Figure 4.21.a ). The small difference between the results of the SIMP and
BESO approach (8.5%) was expected because, the results of the optimization
process and the created truss are very similar, the small difference in the
total tension force is due to the angle formed between the struts and the tie
in the bottom of the beam.

4.6.2 Evaluation Criteria for Case 2

Analogous as Case 1, in this case, Table 4.10, Table 4.11, and Table 4.14 show
the computation of H for the trusses generated using the SIMP (Figure 4.23.a
and Figure 4.23.c) and BESO (Figure 4.23.b and Figure 4.23.d) approaches,
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and for the truss of the STM taken from the literature (Figure 3.11.b ), re-
spectively.

Table 4.10: Computation of H, SIMP approach vol f rac = 0.3 (Figure 4.23.a)

Element Force (kN) Length (m) TiLi (kNm)

E 30.34 2.82 85.56

G 7.33 1.63 11.95

I 30.92 1.76 54.42

J 9.04 2.2 19.89

K 34.04 3.5 119.14

H [kNm] 290.95

Table 4.11: Computation of H, BESO approach vol f rac = 0.3 (Figure 4.23.b)

Element Force (kN) Length (m) TiLi (kNm)

E 20.36 1.75 35.63

F 24.99 1.88 46.98

G 41.63 1.76 73.27

H 41.12 4.06 166.95

H [kNm] 322.83

Table 4.12: Computation of H, SIMP approach vol f rac = 0.5 (Figure 4.23.c)

Element Force (kN) Length (m) TiLi (kNm)

D 29.08 2.94 85.50

H 27.06 0.39 10.55

M 29.10 1.38 40.16

O 32.73 3.07 100.48

K 8.60 1.5 12.90

N 12.57 2.79 35.07

G 7.52 4.71 35.42

E 5.33 2.97 15.83

H [kNm] 335.91

The trusses created for this case have many members under the action of
tension forces, then the total value of H was given by the summation of the
partial H values of each member. The truss took from the literature (Figure
3.11.b ) was determined to get a large value of stiffness (low displacement
under the load), this structure was found splitting the point force in two
forces of different magnitude, and then finding the individual trusses for
each point loads [8]. For these reasons, it would not be a good point of
reference comparing the value of H of this truss with the ones of the other
trusses.

Comparing the trusses obtained using the topology optimization, the one
that has a minimum value of H is the one obtained using the SIMP approach
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Table 4.13: Computation of H, BESO approach vol f rac = 0.5 (Figure 4.23.d)

Element Force (kN) Length (m) TiLi (KN,m)

F 19.76 1.56 30.83

J 29.45 1.81 53.30

K 42.17 3.27 137.90

P 34.99 2.73 95.52

O 19.75 1.17 23.11

I 11.13 2.75 30.61

H [kNm] 371.26

Table 4.14: Computation of H, model from literature [8] (Figure 3.11.b)

Element Force (kN) Length (m) TiLi (kNm)

C.2 8.24 1.00 8.24

H 30.26 5.34 161.59

J 10.65 1.03 10.97

K 10.24 0.99 10.14

N 19.22 0.99 19.03

O 20.89 0.99 20.68

P 20.89 1.10 22.98

Q 19.22 0.99 19.03

U 9.73 1.13 10.99

V 10.95 1.10 12.05

X 8.31 1.81 15.04

Y 32.46 3.16 102.57

Z1.2 9.50 1.04 9.88

H [kNm] 423.19

for a value of vol f rac = 0.3 (Figure 4.23.a), in these trusses also all the
elements in compression had stresses lower than the maximum admissible.
Thus, for Case 2 the truss found using the SIMP approach is consider as the
most optimal according to the chosen evaluation criterion, this truss has a
value of H that is 9.9% smaller than the best option of the trusses obtained
using the BESO approach.

Furthermore, it is observed that the trusses obtained using a value of
vol f rac = 0.5 had larger values of the total tension force than the ones using
a value vol f rac = 0.3. Thus, in this case, the trusses created using lower
values of vol f rac for the topology optimization generated trusses that are
easily stabilized and have a better performance according to the evaluation
criterion.

4.6.3 Evaluation Criteria for Case 3

Several trusses were created for each approach of this case, therefore the
value of H had to be calculated for every alternative. Table 4.15, Table 4.16,
Table 4.17, Table 4.18 show the calculation of H for the four alternatives using
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the SIMP approach, likewise Table 4.19, Table 4.20, Table 4.21 for the alterna-
tives using the BESO approach, and finally Table 4.22, Table 4.23 show the
calculation of H for the Novak-Sprenger and Zhong et al. models, respec-
tively.

Table 4.15: Computation of H, SIMP approach Case 3 (Alternative 1 Figure4.28.a)

Element Force (kN) Length (m) TiLi (kNm)

C 14.03 2.23 31.29

G 49.91 3.36 167.70

H 31.45 2.56 80.51

K 18.63 2.96 55.14

H [kNm] 334.64

Table 4.16: Computation of H, SIMP approach Case 3 (Alternative 2 Figure4.28.b)

Element Force (kN) Length (m) TiLi (kNm)

C 16.46 2.24 36.87

E 9.63 1.28 12.33

H 42.12 0.6 25.27

J 8.47 1.03 8.72

K 45.80 2.66 121.83

L 28.68 2.55 73.13

M 3.78 3.25 12.29

N 20.00 2.95 59.00

H [kNm] 349.44

Table 4.17: Computation of H, SIMP approach Case 3 (Alternative 3 Figure4.28.c)

Element Force (kN) Length (m) TiLi (kNm)

D 36.73 2.24 82.28

E 10.90 0.4 4.36

H 8.04 2.46 19.78

K 14.81 3.03 44.87

L 27.53 2.11 58.09

M 23.82 0.46 10.96

N 23.30 3.25 75.73

O 11.29 2.95 33.31

P 25.60 1.11 28.42

H [kNm] 357.78

In this case also the two models taken from the literature have much
higher values of H than any of the created trusses using the SIMP or BESO
approaches. A possible explanation is that these models cover a bigger sur-
face area than the ones created using the results of the topology optimization,
it could also be argued that the trusses from the literature for all the studied
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Table 4.18: Computation of H, SIMP approach Case 3 (Alternative 4 Figure4.28.d)

Element Force (kN) Length (m) TiLi (kNm)

D 28.09 2.24 62.92

E 6.64 0.4 2.66

K 32.92 0.6 19.75

L 27.46 2.66 73.04

M 18.37 2.11 38.76

N 14.52 0.46 6.68

Q 15.27 3.25 49.63

R 23.96 2.95 70.68

H [kNm] 324.12

Table 4.19: Computation of H, BESO approach Case 3 (Alternative 1 Figure4.30.a))

Element Force (kN) Length (m) TiLi (kNm)

D 26.41 2.22 58.6302

E 7.68 0.45 3.456

J 19.73 2.90 57.217

K 18.46 1.94 35.8124

L 15.45 0.72 11.124

N 22.80 3.07 69.996

O 24.09 3.13 75.4017

H [kNm] 311.64

Table 4.20: Computation of H, BESO approach Case 3 (Alternative 2 Figure4.30.b))

Element Force (kN) Length (m) TiLi (kNm)

D 20.48 2.22 45.47

J 25.24 2.90 73.20

K 21.84 1.93 42.15

L 18.82 0.72 13.55

M 20.39 3.06 62.39

N 24.09 3.14 75.64

H [kNm] 312.40

cases were created to get a maximum stiffness (minimum displacement) and
the tension force was not a design parameter.
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Table 4.21: Computation of H, BESO approach Case 3 (Alternative 3 Figure4.30.c))

Element Force (kN) Length (m) TiLi (kNm)

D 27.92 2.22 61.98

E 10.53 0.46 4.84

K 23.92 0.5 11.96

L 15.92 2.56 40.76

M 1.82 1.93 3.51

N 15.36 0.72 11.06

Q 25.64 3.07 78.71

R 24.09 3.13 75.40

H [kNm] 288.23

Table 4.22: Computation of H, STM by Novak-Sprenger [2] (Figure 3.11.c)

Element Force (kN) Length (m) TiLi (kNm)

C 44.55 2.34 104.25

G 31.43 1.11 34.89

I 20.03 1.11 22.23

J 15.83 0.84 13.30

K 11.40 1.06 12.08

M 40.06 1.06 42.46

N 15.83 0.84 13.30

Q 59.14 0.95 56.18

R 15.83 0.84 13.30

U 78.21 2.18 170.50

X 34.17 0.84 28.70

Z 37.05 0.91 33.72

H [kNm] 544.91

Table 4.23: Computation of H, STM by Zhong et al.[2] (Figure 3.11.d)

Element Force (kN) Length (m) TiLi (kNm)

C 8.50 1.89 16.07

G 39.17 2.44 95.57

L 34.53 1.17 40.40

N 25.13 1.17 29.40

O 13.95 0.84 11.72

P 18.54 2.47 45.79

R 63.84 2.47 157.68

U 13.52 1.56 21.09

V 52.66 2.57 135.34

H [kNm] 553.07

Among the four possible trusses obtained using the SIMP approach, it is
seen that the maximum variation of H is 9.4% between alternatives two and
three, being alternative three the one that has the minimum value of H, and
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alternative two has the highest one. On the other hand, among the three
alternatives obtained using the BESO approach, the maximum variation in
H is 8.3% between alternative one and alternative three, being the best one
with the lowest value of H alternative three and the one with the highest
alternative one. It is also observed that every truss created using the BESO
approach gives a lower value of H than any truss obtained using the SIMP
approach. Thus, the extra internal element (branch in the stress diagram)
gives a better response to the trusses in terms of minimum tension force.

From this relations, it could be assumed that in Case 3, the alternatives that
give the lowest values of H are the ones where substructures were created
within the stress paths in both sides of the structure. As well as, all the
previous cases the compressive stress is lower than the maximum allowed,
thus it is not a decisive factor at the moment of selecting the most optimal
truss according to the evaluation criteria. In this case, the difference between
the minimum value of H of the 2 approaches is 12.5%, being the best option
according to the evaluation of the BESO approach, and the most optimal
truss structure is the alternative three created using this approach.

For all the studied cases the difference in results between the two ap-
proaches was around 10%, the results with the stabilization methods were
also similar. Thus, it is assumed that the two methods are suitable to created
stable trusses that could be used in the STM.



5 C O N C L U S I O N S A N D
R E C O M M E N DAT I O N S

5.1 conclusions

The objective of this thesis was to generate and compare truss structures
based on the results of two approaches of topology optimization that could
be used in Strut-and-Tie models. Three cases of deep concrete beams were
selected for this study, the number of discontinuities in the domain of the
beams increased gradually for each case. The scripts used for the topology
optimization were based on educational scripts developed by Sigmund [9].

The main findings for the research questions are briefly described here:

a Can suitable truss structures for the Strut-and-Tie model always be cre-
ated from the results obtained in the topology optimization ?

Considering all the results obtained in this thesis for the three studied
cases, it is assumed that the SIMP and BESO approaches of the topology
optimization are similarly efficient, and it would always be possible to
obtain suitable truss structures for the Strut-and-Tie model.

b What is the influence of the input parameters for each approach, and
to what extent do these approaches differ in the results of the topology
optimization, and truss generation ?

The main influence of the input parameters on the results of the topol-
ogy optimization are, (i) the thickness of the stress (material) paths, it was
mainly observed with the variation of volfrac, the stress paths got thicker
as the value of it increased, and (ii) the number of internal branches in
the results, this effect had a opposite effect between the input parameters,
the results were more branched when the value of volfrac increased, while,
they were less branched for larger values of rmin. Even though, in most
cases, the variation of the input parameters did not change the global
topology of the results, the extra creation of internal branches, or hav-
ing paths thicker stress paths made that, the stabilization process became
more difficult and in some case not possible to do it without changing the
stress paths of the topology optimization.

The small difference in the results according to the evaluation criterion for
all the studied cases, the fact that there is no a big difference between the
results of the two topology optimization approaches, also the global shape
of the results did not change between the results of each approach, and
that only some changes appeared in the areas surrounding the disconti-
nuities of the models making that some truss structures differ from each
other, lead to the assumption that the two approaches are equally suitable
for the creation of stable truss structures that can be used in the STM.

70
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c Which aspects should be considered to stabilize the truss structures
obtained using topology optimization?

The stabilization of the trusses is necessary to perform a structural anal-
ysis of them and make it easier for the calculation of the axial forces in
the elements. The first aspect that should be determined is the number of
stabilizers that should be added to the original truss. After the stabilizers
are placed, it is necessary to verify that the axial forces on them are zero,
in case that the force in them is not zero, the proposed truss does not cor-
respond anymore with the results of the topology optimization, thus the
positions of some nodes should change to get a zero force on it, always
considering that all the elements of the truss should be within the stress
paths. If after this process, it is not possible to get a zero force in the stabi-
lizers, additional elements within the stress paths instead of the stabilizers
should be added to create substructures that help to stabilize the whole
structure. This process was proved to works for all the proposed trusses
of the three cases studied in this thesis.

d How sensitive are the stabilizers of the trusses to change the stress dia-
grams obtained with the topology optimization?

Even though, having a very sensitive truss does not mean that this struc-
ture will have a bad performance in the Strut-and-Tie, a very sensitive
truss implies that with a small change on the position of the nodes the
proposed structure will not correspond anymore to the stress paths ob-
tained during the topology optimization. The sensitivity of the stabilizers
depends completely on the complexity of the trusses. In Case 1, the truss
is simple and there was only one possible position to add a stabilizer,
thus there were no changes in the axial force of the stabilizer for all the
analyzed positions of the nodes, then the stabilizers were assumed to be
non-sensitive. On the other hand, the trusses of Case 2 and Case 3 are very
sensitive because the axial force in the stabilizers changed easily when the
positions of the nodes changed. For these two cases, it was proved that a
better stabilization strategy to get a minimum tension force was the cre-
ation of substructures within the stress paths.

e Which is the most optimal approach (SIMP or BESO) for topology opti-
mization to create truss structures based on the results of the optimiza-
tion process according to the evaluation criteria?

Considering only the total amount of tension force in the structure, from
the three cases, in two of them the most optimal truss was obtained using
the SIMP approach, and in the third one, it was obtained using the BESO
approach. Because the difference in results for all the cases was around
10 %, then it could not be said that one approach is better than the other
just based on this criterion. Additional factors like the percentage of beam
surface area cover by the proposed truss, stiffness of the structure, compu-
tational cost, etc. These factors, among others, should be included in the
evaluation to assume that one approach is better.
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5.2 recommendations

1. Dimensioning of the Strut-and-Tie model.

Making an accurate and complete dimensioning of the Strut-and-Tie
model using the truss structures obtained in this thesis would be use-
ful to see the real performance of the proposed trusses. It is also im-
portant to consider the minimum angles allowed between the elements
of the truss according to an specific design code, this criterion would
be specially important to check for the trusses that are stabilized using
the creation of substructures within the stress paths.

2. Adding the more parameters to the evaluation criteria.

The evaluation of only one parameter is not enough to decide if a
determinate approach is better than others. The addition of more pa-
rameters to the evaluation criteria would give a better understanding
of the global performance of the proposed truss structures. It would
also help the comparisons with models from literature because they
would be more representative.

3. Comparing the results of the truss model with the discrete model.

Comparing the total amount of reinforcement needed for the created
truss structure and the one for the discrete model (stress paths ob-
tained form the topology optimization) would be a good way to vali-
date the procedure used in this thesis.

4. Automatizing the generation process of the truss structures.

In this thesis the creation of the truss structures was done in a manual
way, implementing this process into the MATLAB scripts to make this
an automatic process would save a lot of time at the moment of the
creation of the trusses. Besides, the structural analysis could have been
implemented in the same MATLAB script.

5. Different formulation for the topology optimization approaches.

Using different formulations, like the hybrid approaches, for the topol-
ogy optimization would lead to different final truss structures, com-
paring these trusses with the ones obtained using the SIMP and BESO
approaches would give a better idea of the performance of the results
obtained using

6. Controlling the computational cost of each approach of topology op-
timization.

Controlling the time that each approach takes to solve the topology
optimization, and the calculation of the principal stresses would give
an idea of which approach is better to use in more complex structures
from the computational cost point of view.
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A M AT L A B S C R I P T F O R S I M P A P P R OA C H

%MATLAB Script for the calculation of the topology optimization and

%principal stress calculation

%Script Based on educational script developed by Sigmund [8]

%%Topology Optimization

function [x,sigma,sx,sy]= simp_2(nelx,nely,volfrac,penal,rmin,xdapped,

ydapped,xhole,yhole,xdistance,ydistance)

tic

% INITIALIZE

x(1:nely,1:nelx) = volfrac;

%HOLES DEFINITION

for ely = 1:nely

for elx = 1:nelx

if (elx > (nelx-xdapped)&& ely <= (ydapped)) || ((elx > xdistance &&

elx <= xdistance + xhole) && (ely > ydistance && ely <= ydistance + yhole))

passive(ely,elx) = 1;

x(ely,elx) = 0.001;

else

passive(ely,elx) = 0;

end

end

end

loop = 0;

change = 1.;

% START ITERATION

figure

while change > 0.01

loop = loop + 1;

xold = x;

% FE-ANALYSIS

[U]=FE(nelx,nely,x,penal);

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

[KE] = lk;

c = 0.;

for ely = 1:nely

for elx = 1:nelx

%upper left node number (global numbers)

n1 = (nely+1)*(elx-1)+ely;

%upper rigth node number (global numbers)

n2 = (nely+1)* elx +ely;

Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

c = c + x(ely,elx)^penal*Ue’*KE*Ue;
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dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue’*KE*Ue;

end

end

% FILTERING OF SENSITIVITIES

[dc] = check(nelx,nely,rmin,x,dc);

% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD

[x] = OC(nelx,nely,x,volfrac,dc,passive);

% PRINT RESULTS

change = max(max(abs(x-xold)));

disp([’ It.: ’ sprintf(’%4i’,loop) ’ Obj.: ’ sprintf(’%10.4f’,c) ...

’ Vol.: ’ sprintf(’%6.3f’,sum(sum(x))/(nelx*nely)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

% PLOT DENSITIES

colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);

if loop > 100

break

end

end

toc

%%Principal Stress calculation

tic

sigma=zeros(nelx,nely);

for ely = 1:nely

for elx = 1:nelx

if x(ely,elx)>0.001

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

[sigma(elx,ely),sx(elx,ely),sy(elx,ely)]=stress(Ue);

end

end

end

toc

sigma=-1*sigma’;

figure

colormap default

imagesc(sigma)

colorbar

end

% OPTIMALITY CRITERIA UPDATE

function [xnew]=OC(nelx,nely,x,volfrac,dc,passive)

l1 = 0; l2 = 100000; move = 0.2;

while (l2-l1 > 1e-4)

lmid = 0.5*(l2+l1);

xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));

xnew(find(passive))=0.001;

if sum(sum(xnew)) - volfrac*nelx*nely > 0

l1 = lmid;

else
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l2 = lmid;

end

end

end

%MESH-INDEPENDENCY FILTER

function [dcn]=check(nelx,nely,rmin,x,dc)

dcn=zeros(nely,nelx);

for i = 1:nelx

for j = 1:nely

sum=0.0;

for k = max(i-round(rmin),1): min(i+round(rmin),nelx)

for l = max(j-round(rmin),1): min(j+round(rmin), nely)

fac = rmin-sqrt((i-k)^2+(j-l)^2);

sum = sum+max(0,fac);

dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);

end

end

dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

end

end

end

%FE-ANALYSIS

function [U]=FE(nelx,nely,x,penal)

[KE] = lk;

K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

F = sparse(2*(nely+1)*(nelx+1),1); U = sparse(2*(nely+1)*(nelx+1),1);

for ely = 1:nely

for elx = 1:nelx

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1;2*n2+2;2*n1+1; 2*n1+2];

K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;

end

end

%Force location should be updated according to needs.

F(floor(nelx-nelx/3)*2*(nely+1)+2,1) = -100000;

%SIMPLY SUPPORTED BEAM

verts=union([2*(nely+1):2*(nely+1):3*2*(nely+1)],[4*(nely+1)-1]);

vertp=2*(nelx+1)*(nely+1):-2*(nely+1):2*(nelx+1)*(nely+1)-4*(nely+1);

fixeddofs = union(verts,vertp);

alldofs = 1:2*(nely+1)*(nelx+1);

freedofs = setdiff(alldofs,fixeddofs);

% SOLVING

U(freedofs,:) = K(freedofs,freedofs) \F(freedofs,:);

U(fixeddofs,:)= 0;

end
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%ELEMENT STIFFNESS MATRIX

function [KE]=lk

E = 25000;

nu = 0.2;

k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

KE = E/(1-nu^2)*...

[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

end

%Principal Stress calcultaion

function [sigma1,sx,sy] = stress(u)

syms xi eta lambda

a=1; b=1; E=25000; nu=0.2; l=1;

x1=-1; y1=-1;

x2=1; y2=-1;

x3=1; y3=1;

x4=-1; y4=1;

%Symbolic shape functions

n1=1/(4*a*b)*(xi-x2)*(eta-y4);

n2=-1/(4*a*b)*(xi-x1)*(eta-y3);

n3=1/(4*a*b)*(xi-x4)*(eta-y2);

n4=-1/(4*a*b)*(xi-x3)*(eta-y1);

B=zeros(3,8);

N=[n1 n2 n3 n4;n1 n2 n3 n4];

D=E/(1-nu^2)*[1 nu 0; nu 1 0; 0 0 (1-nu)/2];

gp = zeros(3,4);

gp(1,:) = 1.0;

gp(2,1) = -1.0/sqrt(3.0); gp(3,1) = -1.0/sqrt(3.0);

gp(2,2) = 1.0/sqrt(3.0); gp(3,2) = -1.0/sqrt(3.0);

gp(2,3) = 1.0/sqrt(3.0); gp(3,3) = 1.0/sqrt(3.0);

gp(2,4) = -1.0/sqrt(3.0); gp(3,4) = 1.0/sqrt(3.0);

x=n1*0+n2*1+n3*1+n4*0;

y=n1*0+n2*0+n3*1+n4*1;

J=[ diff(x,xi) diff(y,xi); diff(x,eta) diff(y,eta)];

%Numerical Integration

for k=gp

B=[diff(N(1,:),xi); diff(N(2,:),eta)];

x1 = k(2);

eta1 = k(3);

B=subs(B,xi,x1);

B=subs(B,eta,eta1);

J1=subs(J,xi,x1);



matlab script for simp approach 79

J1=subs(J1,eta,eta1);

B1=B’*inv(J);

B = zeros(3, 8);

for i=1:2

B(i, i:2:end) = B1(:,i)’;

end

B(3, 1:2:end) = B1(:,2)’; B(3, 2:2:end) = B1(:,1)’;

% Compute stress

stress(:,l) = D*B*u;

l = l +1;

end

sx=mean(stress(1,:));

sy=mean(stress(2,:));

sxy=mean(stress(3,:));

sigma=[sx-lambda sxy; sxy sy-lambda];

h=det(sigma);

sigma1=roots(sym2poly(h));

sigma1=sigma1(1);

end



B M AT L A B S C R I P T F O R B E S O
A P P R OA C H

%MATLAB Script for the calculation of the topology optimization and

%principal stress calculation

%Script Based on educational script developed by Huang and Xie [23] which is

%based on the one proposed by Sigmund [8].

%%Topology Optimization

function [x,sigma]= sbeso_2(nelx,nely,volfrac,er,rmin,xdapped,ydapped,xhole,

yhole,xdistance,ydistance)

tic

% INITIALIZE

x(1:nely,1:nelx) = volfrac; vol=1; i=0; change=1;penal=3;

%HOLES DEFINITION

for ely = 1:nely

for elx = 1:nelx

if (elx > (nelx-xdapped)&& ely <= (ydapped)) ||((elx > xdistance &&

elx <= xdistance + xhole) && (ely > ydistance && ely <= ydistance + yhole))

passive(ely,elx) = 1;

x(ely,elx) = 0.001;

else

passive(ely,elx) = 0;

end

end

end

figure

vol=1;

% START ITERATION

while change > 0.001

%while vol > volfrac

i = i + 1;

vol=max(vol*(1-er),volfrac);

if i>1

olddc=dc;

end

% FE-ANALYSIS

[U]=FE(nelx,nely,x,penal);

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

[KE] = lk;

c(i) = 0;

for ely = 1:nely

for elx = 1:nelx

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;
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Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

c(i) = c(i) + 0.5*x(ely,elx)^penal*Ue’*KE*Ue;

dc(ely,elx) = 0.5*x(ely,elx)^(penal-1)*Ue’*KE*Ue;

end

end

% FILTERING OF SENSITIVITIES

[dc] = check(nelx,nely,rmin,x,dc);

%Stabilization of evolutionary process

if i>1

dc=(dc+olddc)/2;

end

% BESO DESIGN UPDATE

[x] = ADDDEL(nelx,nely,vol,dc,x,passive);

% PRINT RESULTS

if i>10

change = abs(sum(c(i-9:i-5))-sum(c(i-4:i)))/sum(c(i-4:i));

end

disp([’ It.: ’ sprintf(’%4i’,i) ’ Obj.: ’ sprintf(’%10.4f’,c(i)) ...

’ Vol.: ’ sprintf(’%6.3f’,sum(sum(x))/(nelx*nely)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

% PLOT DENSITIES

colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-5);

vol=sum(sum(x))/(nelx*nely);

end

toc

%%Principal Stress calculation

tic

sigma=zeros(nelx,nely);

for ely = 1:nely

for elx = 1:nelx

if x(ely,elx)>0.001

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

sigma(elx,ely)=stress(Ue);

end

end

end

sigma=sigma’;

figure

colormap default

imagesc(-sigma)

colorbar

toc

end

%OPTIMALITY CRITERIA UPDATE

function [x]=ADDDEL(nelx,nely,volfra,dc,x,passive)

l1=min(min(dc));

l2=max(max(dc));
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while ((l2-l1)/l2 > 1.0e-4)

th=(l1+l2)/2;

x=max(0.001,sign(dc-th));

x(find(passive))=0.001;

if sum(sum(x))-volfra*(nelx*nely) > 0;

l1=th;

else

l2=th;

end

end

end

%MESH-INDEPENDENCY FILTER

function [dcf]=check(nelx,nely,rmin,x,dc)

dcf=zeros(nely,nelx);

for i = 1:nelx

for j = 1:nely

sum=0.0;

for k = max(i-floor(rmin),1): min(i+floor(rmin),nelx)

for l = max(j-floor(rmin),1): min(j+floor(rmin), nely)

fac = rmin-sqrt((i-k)^2+(j-l)^2);

sum = sum+max(0,fac);

dcf(j,i) = dcf(j,i) + max(0,fac)*dc(l,k);

end

end

dcf(j,i) = dcf(j,i)/sum;

end

end

end

%FE-ANALYSIS

function [U]=FE(nelx,nely,x,penal)

[KE] = lk;

K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);

for elx = 1:nelx

for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1;2*n2+2;2*n1+1; 2*n1+2];

K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;

end

end

%Loaction of forces should be updated according to needs.

F((nely+1)*2*22+2,1)=-100000;

%SIMPLY SUPPORTED BEAM

verts=union([2*(nely+1):2*(nely+1):2*3*(nely+1)],[4*(nely+1)-1]);

vertp=2*(nelx+1)*(nely+1):-2*(nely+1):2*(nelx+1)*(nely+1)-4*(nely+1);

fixeddofs = union(verts,vertp);

alldofs = 1:2*(nely+1)*(nelx+1);

freedofs = setdiff(alldofs,fixeddofs);
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% SOLVING

U(freedofs,:) = K(freedofs,freedofs) \F(freedofs,:);

U(fixeddofs,:)= 0;

end

% ELEMENT STIFFNESS MATRIX

function [KE]=lk

E = 25000;

nu = 0.2;

k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

KE = E/(1-nu^2)*...

[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

end

%STRESS CALCULATION

function [sigma1] = stress(u)

syms xi eta lambda

a=1; b=1; E=25000; nu=0.2; l=1;

x1=-1; y1=-1;

x2=1; y2=-1;

x3=1; y3=1;

x4=-1; y4=1;

%Symbolic shape functions

n1=1/(4*a*b)*(xi-x2)*(eta-y4);

n2=-1/(4*a*b)*(xi-x1)*(eta-y3);

n3=1/(4*a*b)*(xi-x4)*(eta-y2);

n4=-1/(4*a*b)*(xi-x3)*(eta-y1);

B=zeros(3,8);

N=[n1 n2 n3 n4;n1 n2 n3 n4];

D=E/(1-nu^2)*[1 nu 0; nu 1 0; 0 0 (1-nu)/2];

gp = zeros(3,4);

gp(1,:) = 1.0;

gp(2,1) = -1.0/sqrt(3.0); gp(3,1) = -1.0/sqrt(3.0);

gp(2,2) = 1.0/sqrt(3.0); gp(3,2) = -1.0/sqrt(3.0);

gp(2,3) = 1.0/sqrt(3.0); gp(3,3) = 1.0/sqrt(3.0);

gp(2,4) = -1.0/sqrt(3.0); gp(3,4) = 1.0/sqrt(3.0);

x=n1*0+n2*1+n3*1+n4*0;

y=n1*0+n2*0+n3*1+n4*1;

J=[ diff(x,xi) diff(y,xi); diff(x,eta) diff(y,eta)];

%Numerical Integration

for k=gp

B=[diff(N(1,:),xi); diff(N(2,:),eta)];

x1 = k(2);
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eta1 = k(3);

B=subs(B,xi,x1);

B=subs(B,eta,eta1);

J1=subs(J,xi,x1);

J1=subs(J1,eta,eta1);

B1=B’*inv(J);

B = zeros(3, 8);

for i=1:2

B(i, i:2:end) = B1(:,i)’;

end

B(3, 1:2:end) = B1(:,2)’; B(3, 2:2:end) = B1(:,1)’;

% Compute stress

stress(:,l) = D*B*u;

l = l +1;

end

sx=mean(stress(1,:));

sy=mean(stress(2,:));

sxy=mean(stress(3,:));

sigma=[sx-lambda sxy; sxy sy-lambda];

h=det(sigma);

sigma1=roots(sym2poly(h));

sigma1=sigma1(1);

end



C P R I N C I PA L S T R E S S D I A G R A M S F O R
A L L T H E S T U D I E D C A S E S

Figure C.1: Principal stresses Case 1

Figure C.2: Principal stresses Case 2
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Figure C.3: Principal stresses Case 3



D TOTA L A M O U N T O F R E I N F O R C E M E N T
F O R E A C H C A S E

Table D.1: Total amount of reinforcement steel for trusses Case 1

Case
Total tension

[KN]
Fy

[MPA]
As (req)
[mm2]

SIMPApproach 25.97 420 71.11

BESO Approach 28.57 420 78.23

STM 42.74 420 117.03

Table D.2: Total amount of reinforcement steel for trusses Case 2

Case
Total tension

[KN]
Fy

[MPA]
As (req)
[mm2]

SIMP Approach 111.67 420 305.76

BESO Approach 128.10 420 350.75

STM 210.56 420 576.53

Table D.3: Total amount of reinforcement steel for trusses Case 3

Case
Total tension

[kN]
Fy

[MPA]
As (req)
[mm2]

SIMP

Alternative 1 114.02 420 312.20

Alternative 2 174.94 420 479.00

Alternative 3 182.02 420 498.39

Alternative 4 167.23 420 457.89

BESO
Alternative 1 134.62 420 368.60

Alternative 2 130.86 420 358.31

Alternative 3 145.20 420 397.57

LITERATURE
STM N-S 403.53 420 1104.90

STM Zhong et al. 269.84 420 738.85
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E A X I A L F O R C E S F O R S T M F R O M T H E
L I T E R AT U R E .

Table E.1: Summary of axial forces for STM from the Literature [8]. Case 1

Element Force (KN) Length (M)

A -100.00 2.05

B -100.00 2.05

C -42.74 2.2
D -108.75 2.4
E -108.75 2.4
F 42.74 4.2

Table E.2: Summary of axial forces for STM from the Literature [8]. Case 2

Element Force (KN) Length (M) Element Force (KN) Length (M)

A -21.54 4.39 K 10.24 0.99

B -7.77 1.62 L -10.65 0.99

B.1 -7.32 1.61 M -14.48 1.4
B.2 -3.09 0.51 N 19.22 0.99

C -23.78 1.54 O 20.89 0.99

C.1 -25.74 1.5 P 20.89 1.1
C.2 8.24 1 Q 19.22 0.99

D -8.81 1.04 R -14.73 1.48

D.1 -7.32 0.91 S -9.25 0.99

D.2 -14.73 1.48 T -34.38 2.23

E -21.61 4.31 U 9.73 1.13

F -23.47 4.85 V 10.95 1.1
F.1 -26.38 2 W -12.52 1.57

F.2 -24.03 2 X 8.31 1.81

G -24.15 1.61 Y 32.46 3.16

H 30.26 5.34 Z -23.62 1.49

I -14.77 1.43 Z.1 -25.84 1.52

J 10.65 1.03 Z1.2 9.50 1.04
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Table E.3: Summary of axial forces for STM proposed by Novak-Sprenger [2]. Case
3

Element Force (KN) Length (M) Element Foce (KN) Length (M)

A -90.95 1.4 N 15.83 0.84

B -90.95 1.4 O -8.63 0.95

C 44.55 2.34 P -24.79 1.26

D -59.06 1.6 Q 59.14 0.95

E -59.06 1.6 R 15.83 0.84

F -50.00 0.84 S -27.71 1.09

G 31.43 1.11 T -24.79 1.37

H -25.53 1.38 U 78.21 2.18

I 20.03 1.11 V -37.05 1.09

J 15.83 0.84 W -53.5 1.37

K 11.40 1.06 X 34.17 0.84

L -25.53 1.34 Y -50.4 1.23

M 40.06 1.06 Z 37.05 0.91

Table E.4: Summary of axial forces for STM proposed by Zhong et al. [2]. Case 3

Element Force (KN) Length (M) Element Force (KN) Length (M)

A 0.00 1.99 M -21.22 1.44

B -82.84 0.23 N 25.13 1.17

C 8.50 1.89 O 13.95 0.84

D -12.48 1.1 P 18.54 2.47

E -96.76 1.3 Q -41.15 2.61

F -96.76 1.3 R 63.84 2.47

G 39.17 2.44 S -7.60 0.84

H -67.93 1.51 T -25.83 1.31

I -22.28 1.26 U 13.52 1.56

J -47.48 2.04 V 52.66 2.57

K -50.00 0.84 W -63.81 1.51

L 34.53 1.17



F P O S I T I O N O F N O D E S F O R T H E
S E N S I T I V I T Y A N A LY S I S .

All the possible combinations of coordinates that were analyzed in the sen-
sitivity analysis with their corresponding force are presented in this section.
The coordinates correspond to the analyzed positions of nodes given in Sec-
tion 3.5

Table F.1: Coordinates for sensitivity analysis using the SIMP approach Case 2

(1/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force

X Y X Y X Y [%]

0.6 3.33 2.6 1.37 3.7 0 0.037

0.6 3.33 2.6 1.37 3.46 0 3.96

0.6 3.33 2.6 1.37 3.86 0.18 5.22

0.6 3.33 2.6 1.37 3.93 0 2.93

0.6 3.33 2.86 1.24 3.7 0 3.14

0.6 3.33 2.86 1.24 3.46 0 8.77

0.6 3.33 2.86 1.24 3.86 0.18 3.51

0.6 3.33 2.86 1.24 3.94 0 0.81

0.6 3.33 2.85 1.51 3.7 0 9.4
0.6 3.33 2.85 1.51 3.46 0 15.1
0.6 3.33 2.85 1.51 3.86 0.18 3.11

0.6 3.33 2.85 1.51 3.94 0 5.23

0.6 3.33 2.77 1.39 3.7 0 4.33

0.6 3.33 2.77 1.39 3.46 0 9.38

0.6 3.33 2.77 1.39 3.86 0.18 1.58

0.6 3.33 2.77 1.39 3.94 0 0.73

0.6 3.33 2.89 1.36 3.7 0 6.92

0.6 3.33 2.89 1.36 3.46 0 12.94

0.6 3.33 2.89 1.36 3.86 0.18 0.21

0.6 3.33 2.89 1.36 3.94 0 2.64

0.66 3.19 2.6 1.37 3.7 0 0.06

0.66 3.19 2.6 1.37 3.46 0 3.66

0.66 3.19 2.6 1.37 3.86 0.18 5.22

0.66 3.19 2.6 1.37 3.94 0 2.98

0.66 3.19 2.86 1.24 3.7 0 2.71

0.66 3.19 2.86 1.24 3.46 0 8
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Table F.2: Coordinates for sensitivity analysis using the SIMP approach Case 2

(2/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force

X Y X Y X Y [%]

0.66 3.19 2.86 1.24 3.86 0.18 3.81

0.66 3.19 2.86 1.24 3.94 0 1.15

0.66 3.19 2.85 1.51 3.7 0 8.92

0.66 3.19 2.85 1.51 3.46 0 14.3
0.66 3.19 2.85 1.51 3.86 0.18 2.75

0.66 3.19 2.85 1.51 3.94 0 4.82

0.66 3.19 2.77 1.39 3.7 0 4.07

0.66 3.19 2.77 1.39 3.46 0 8.78

0.66 3.19 2.77 1.39 3.86 0.18 1.8
0.66 3.19 2.77 1.39 3.94 0 0.48

0.66 3.19 2.89 1.36 3.7 0 6.4
0.66 3.19 2.89 1.36 3.46 0 12.07

0.66 3.19 2.89 1.36 3.86 0.18 0.17

0.66 3.19 2.89 1.36 3.94 0 2.21

0.74 3.29 2.6 1.37 3.7 0 1.84

0.74 3.29 2.6 1.37 3.46 0 1.76

0.74 3.29 2.6 1.37 3.86 0.18 6.96

0.74 3.29 2.6 1.37 3.94 0 4.68

0.74 3.29 2.86 1.24 3.7 0 0.82

0.74 3.29 2.86 1.24 3.46 0 5.93

0.74 3.29 2.86 1.24 3.86 0.18 5.62

0.74 3.29 2.86 1.24 3.94 0 2.9
0.74 3.29 2.85 1.51 3.7 0 6.8
0.74 3.29 2.85 1.51 3.46 0 12

0.74 3.29 2.85 1.51 3.86 0.18 0.7
0.74 3.29 2.85 1.51 3.94 0 2.83

0.74 3.29 2.77 1.39 3.7 0 2.14

0.74 3.29 2.77 1.39 3.46 0 6.69

0.74 3.29 2.77 1.39 3.86 0.18 3.68

0.74 3.29 2.77 1.39 3.94 0 1.34

0.74 3.29 2.89 1.36 3.7 0 4.38

0.74 3.29 2.89 1.36 3.46 0 9.86

0.74 3.29 2.89 1.36 3.86 0.18 2.11

0.74 3.29 2.89 1.36 3.94 0 1
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Table F.3: Coordinates for sensitivity analysis using the BESO approach Case 2

(1/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force

X Y X Y X Y [%]

0.96 3.59 1.83 2.07 3.29 1.08 0.026

0.96 3.59 1.83 2.07 3.24 0.99 2.42

0.96 3.59 1.83 2.07 3.21 1.13 0.064

0.96 3.59 1.83 2.07 3.32 1.17 2.31

0.96 3.59 1.83 2.07 3.38 1.05 0.62

0.96 3.59 1.76 2.19 3.29 1.08 2.63

0.96 3.59 1.76 2.19 3.24 0.99 4.93

0.96 3.59 1.76 2.19 3.21 1.13 2.79

0.96 3.59 1.76 2.19 3.32 1.17 0.5
0.96 3.59 1.76 2.19 3.38 1.05 2.01

0.96 3.59 1.93 2.16 3.29 1.08 5.89

0.96 3.59 1.93 2.16 3.24 0.99 8.36

0.96 3.59 1.93 2.16 3.21 1.13 6.17

0.96 3.59 1.93 2.16 3.32 1.17 3.62

0.96 3.59 1.93 2.16 3.38 1.05 5.13

0.96 3.59 1.94 1.99 3.29 1.08 0.22

0.96 3.59 1.94 1.99 3.24 0.99 2.41

0.96 3.59 1.94 1.99 3.21 1.13 0.13

0.96 3.59 1.94 1.99 3.32 1.17 2.68

0.96 3.59 1.94 1.99 3.38 1.05 0.85

1.06 3.66 1.83 2.07 3.29 1.08 0.38

1.06 3.66 1.83 2.07 3.24 0.99 2.88

1.06 3.66 1.83 2.07 3.21 1.13 0.51

1.06 3.66 1.83 2.07 3.32 1.17 1.94

1.06 3.66 1.83 2.07 3.38 1.05 0.26

1.06 3.66 1.76 2.19 3.29 1.08 1.7
1.06 3.66 1.76 2.19 3.24 0.99 4

1.06 3.66 1.76 2.19 3.21 1.13 1.86

1.06 3.66 1.76 2.19 3.32 1.17 0.43

1.06 3.66 1.76 2.19 3.38 1.05 1.07

1.06 3.66 1.93 2.16 3.29 1.08 4.99

1.06 3.66 1.93 2.16 3.24 0.99 7.45

1.06 3.66 1.93 2.16 3.21 1.13 5.26

1.06 3.66 1.93 2.16 3.32 1.17 2.71

1.06 3.66 1.93 2.16 3.38 1.05 4.21

1.06 3.66 1.94 1.99 3.29 1.08 1

1.06 3.66 1.94 1.99 3.24 0.99 1.64

1.06 3.66 1.94 1.99 3.21 1.13 0.91

1.06 3.66 1.94 1.99 3.32 1.17 3.46

1.06 3.66 1.94 1.99 3.38 1.05 1.63
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Table F.4: Coordinates for sensitivity analysis using the BESO approach Case 2

(2/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force [%]

X Y X Y X Y

1.04 3.5 1.83 2.07 3.29 1.08 2.42

1.04 3.5 1.83 2.07 3.24 0.99 4.87

1.04 3.5 1.83 2.07 3.21 1.13 2.51

1.04 3.5 1.83 2.07 3.32 1.17 0.13

1.04 3.5 1.83 2.07 3.38 1.05 1.82

1.04 3.5 1.76 2.19 3.29 1.08 5.41

1.04 3.5 1.76 2.19 3.24 0.99 7.7
1.04 3.5 1.76 2.19 3.21 1.13 5.56

1.04 3.5 1.76 2.19 3.32 1.17 3.28

1.04 3.5 1.76 2.19 3.38 1.05 4.78

1.04 3.5 1.93 2.16 3.29 1.08 8.56

1.04 3.5 1.93 2.16 3.24 0.99 9.48

1.04 3.5 1.93 2.16 3.21 1.13 8.84

1.04 3.5 1.93 2.16 3.32 1.17 6.29

1.04 3.5 1.93 2.16 3.38 1.05 7.79

1.04 3.5 1.94 1.99 3.29 1.08 2.04

1.04 3.5 1.94 1.99 3.24 0.99 4.68

1.04 3.5 1.94 1.99 3.21 1.13 2.13

1.04 3.5 1.94 1.99 3.32 1.17 0.42

1.04 3.5 1.94 1.99 3.38 1.05 1.41

Table F.5: Coordinates for sensitivity analysis using the SIMP approach Case 3

(1/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force

X Y X Y X Y [%]

0 1 3.24 0 5.65 1 0.1
0 1 3.24 0 5.36 0.89 0.11

0 1 3.24 0 5.5 0.73 0.12

0 1 3.24 0 5.81 0.74 0.12

0 1 3.04 0 5.65 1 3.03

0 1 3.04 0 5.36 0.89 3.24

0 1 3.04 0 5.5 0.73 3.58

0 1 3.04 0 5.81 0.74 3.52

0 1 3.1 0.25 5.65 1 13.02

0 1 3.1 0.25 5.36 0.89 14.23

0 1 3.1 0.25 5.5 0.73 16.35

0 1 3.1 0.25 5.81 0.74 15.99

0.39 0.81 3.24 0 5.65 1 51.85

0.39 0.81 3.24 0 5.36 0.89 55.28

0.39 0.81 3.24 0 5.5 0.73 61.82
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Table F.6: Coordinates for sensitivity analysis using the SIMP approach Case 3

(2/2)

Coordinates point 1 Coordinates point 2 Coordinates point 3 Force

X Y X Y X Y [%]

0.39 0.81 3.24 0 5.81 0.74 61.19

0.39 0.81 3.04 0 5.65 1 49.02

0.39 0.81 3.04 0 5.36 0.89 52.04

0.39 0.81 3.04 0 5.5 0.73 57.74

0.39 0.81 3.04 0 5.81 0.74 57.2
0.39 0.81 3.1 0.25 5.65 1 78.38

0.39 0.81 3.1 0.25 5.36 0.89 85.38

0.39 0.81 3.1 0.25 5.5 0.73 99.57

0.39 0.81 3.1 0.25 5.81 0.74 98.17

0.43 0.98 3.24 0 5.65 1 43.56

0.43 0.98 3.24 0 5.36 0.89 46.48

0.43 0.98 3.24 0 5.5 0.73 51.35

0.43 0.98 3.24 0 5.81 0.74 50.55

0.43 0.98 3.04 0 5.65 1 40.63

0.43 0.98 3.04 0 5.36 0.89 43.15

0.43 0.98 3.04 0 5.5 0.73 47.3
0.43 0.98 3.04 0 5.81 0.74 46.62

0.43 0.98 3.1 0.25 5.65 1 64.68

0.43 0.98 3.1 0.25 5.36 0.89 70.29

0.43 0.98 3.1 0.25 5.5 0.73 80.11

0.43 0.98 3.1 0.25 5.81 0.74 78.45

0.4 1.15 3.24 0 5.65 1 27.67

0.4 1.15 3.24 0 5.36 0.89 29.57

0.4 1.15 3.24 0 5.5 0.73 32.38

0.4 1.15 3.24 0 5.81 0.74 31.72

0.4 1.15 3.04 0 5.65 1 24.79

0.4 1.15 3.04 0 5.36 0.89 26.35

0.4 1.15 3.04 0 5.5 0.73 28.65

0.4 1.15 3.04 0 5.81 0.74 28.11

0.4 1.15 3.1 0.25 5.65 1 43.64

0.4 1.15 3.1 0.25 5.36 0.89 47.4
0.4 1.15 3.1 0.25 5.5 0.73 53.16

0.4 1.15 3.1 0.25 5.81 0.74 51.78

0.27 0.97 3.24 0 5.65 1 28.75

0.27 0.97 3.24 0 5.36 0.89 30.73

0.27 0.97 3.24 0 5.5 0.73 34.06

0.27 0.97 3.24 0 5.81 0.74 33.53

0.27 0.97 3.04 0 5.65 1 25.8
0.27 0.97 3.04 0 5.36 0.89 27.45

0.27 0.97 3.04 0 5.5 0.73 30.2
0.27 0.97 3.04 0 5.81 0.74 29.77

0.27 0.97 3.1 0.25 5.65 1 47.36

0.27 0.97 3.1 0.25 5.36 0.89 51.59

0.27 0.97 3.1 0.25 5.5 0.73 59.11

0.27 0.97 3.1 0.25 5.81 0.74 57.89




	1 Introduction
	1.1 General Overview
	1.2 Objectives and Research Questions 
	1.3 Research Structure

	2 Literature Review
	2.1 Strut-and-Tie Model
	2.1.1 Introduction and Principle of the Strut-and-Tie model
	2.1.2 Truss Structures Generation
	2.1.3 Truss Stability
	2.1.4  Principal Stresses Calculation

	2.2 Topology Optimization
	2.2.1 Introduction 
	2.2.2 Simplified Isotropic Material with Penalization (SIMP) Approach.
	2.2.3 Bi-directional Evolutionary Structural Optimization (BESO) Approach.

	2.3 Topological Optimization for Strut-and-Tie models
	2.3.1 Evaluation Criteria.


	3 Methods
	3.1 Procedure and Case Description
	3.1.1 Procedure Description
	3.1.2 Case Description

	3.2 Stress Paths Generation using Topology Optimization
	3.2.1 Simplified Isotropic Material with Penalization (SIMP) Approach
	3.2.2 Bi-directional Evolutionary Structural Optimization (BESO) Approach

	3.3 Principal Stress Calculation.
	3.4 Generation and Stabilization of Truss Structures
	3.5 Truss Structures Analysis.
	3.5.1 Structural Analysis
	3.5.2 Sensitivity Analysis

	3.6 Evaluation Criteria.
	3.6.1 Total Amount of Tension Force and Reinforcement.
	3.6.2 Compressive Stress in the Concrete.


	4 Results and discussion. 
	4.1 Ideal Material Distribution
	4.1.1 Material Distribution for Case 1
	4.1.2 Material Distribution for Case 2
	4.1.3 Material Distribution for Case 3

	4.2 Principal Stress Calculation
	4.2.1 Comparison of Results.

	4.3 Creation and Stabilization of Truss Structures
	4.3.1 Case 1
	4.3.2 Case 2
	4.3.3 Case 3

	4.4 Structural Analysis of Trusses
	4.4.1 Case 1
	4.4.2 Case 2
	4.4.3 Case 3

	4.5 Sensitivity Analysis
	4.5.1 Case 1
	4.5.2 Case 2
	4.5.3 Case 3

	4.6 Evaluation of Trusses
	4.6.1 Evaluation Criteria for Case 1
	4.6.2 Evaluation Criteria for Case 2
	4.6.3 Evaluation Criteria for Case 3


	5 Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations

	Bibliography
	A MATLAB Script for SIMP approach
	B MATLAB Script for BESO approach
	C Principal stress diagrams for all the studied cases
	D Total amount of reinforcement for each case
	E Axial forces for STM from the literature.
	F Position of nodes for the sensitivity analysis.

