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A B S T R A C T 

The increased decentralisation and heterogeneity of critical infrastructure systems pose a threat to 

the safe and secure operation of critical infrastructures by complicating cybersecurity procedures. 

The increased frequency and impact of cyberthreats have led to the desire to develop coherent 

security policies. In order to explore the effects of such policies, an ecosystem-level framework for 

cyberincidents in critical infrastructure systems has been developed. This framework can be used to 

explore the effects of conceptual defensive strategy designs. The aggregation of these concepts was 

operationalised around a central degree of critical infrastructure operability. A practical application 

of the framework is provided in the form of an agent-based modelling study that is capable of 

simulating the effects of coherent defensive strategies. The framework by itself is limited to 

exploratory modelling for the sake of generalisability and requires further specification of concepts 

based on representative infrastructure scenarios for more advanced analysis and design of tangible 

security policies.  

© 2014 Template by Elsevier B.V. All rights reserved.    

 

1. Introduction 

Over the past decades, the role and characteristics of critical infrastructures have changed significantly. Critical infrastructures are defined as 

infrastructures for which the unhindered functional operation is vital to the functioning of crucial elements of society, such as electricity grids and drinking 

water facilities [1, 2]. Traditional critical infrastructure systems were developed as centralised and closed monolithic entities that control system operation 

[3-5]. Recent technological developments and the emergence of smart city thinking have changed critical infrastructures into widely interconnected networks 

of smaller distributed and heterogeneous systems [3, 6, 7]. These changes enable more efficient operation of critical infrastructure systems, but also increased 

their susceptibility to attacks from both cyber and physical domains [8-10]. Recent prominent examples of large-scale cyber-physical attacks on critical 

infrastructures include Stuxnet [10, 11] and the Ukrainian power grid blackout [12, 13]. 

The increased vulnerability from cyberattacks is the result of increased reliance on information availability and hindered agility from differences in 

security standards and protocols [6, 14, 15]. Additionally, integrating IT infrastructure with traditional physical infrastructure systems complicates security 

practices, as legacy components were never designed to incorporate cybersecurity elements [3, 5, 11]. Increasing the resilience of critical infrastructures 

against cyber-physical threats requires identification of threats with these issues accounted for [11, 16]. This involves establishing which issues arise from 

interconnected and interdependent networks of system components and how cyberthreats are dealt with across these networks. The perspective required to 

analyse the effectiveness of coherent security standards encompasses an ecosystem-level view on cybersecurity incidents that take place [5]. 

The importance of ecosystem-level analysis emerges from the lack of research the effects of coherent cybersecurity policies and control mechanisms 

that are capable of resisting the effects of increasingly sophisticated coordinated attacks [3]. The increased frequency and impact of cyberattacks on key 

assets for critical infrastructures calls for effective defensive strategies, which are currently lacking in applicability [16]. Security strategies should 

incorporate elements that effectively thwart intrusions by design and optimise the awareness of current threats to system operation within the ecosystem 

[11, 16]. There is, however, currently no major framework that incorporates and operationalises elements that should be included in ecosystem-level analysis 
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for critical infrastructure cybersecurity incidents. This study seeks to address the academic knowledge gap by enhancing knowledge required to conduct 

such ecosystem-level analysis. 

The main aim of this study is to identify concepts that define an ecosystem of critical infrastructures, aggregating elements that together are capable of 

describing interaction within this ecosystem. The research objectives are defined as follows: 

1 Identify and specify concepts that describe cybersecurity concerns in an ecosystem of critical infrastructures. 

2 Formalise the set of conceptual elements into an operationalised framework 

3 Demonstrate proof of concept of this framework through an agent-based modelling application 

These objectives seek to address the main lack of knowledge and formulate a framework that can be used to assess the fitness and effectiveness of 

different types of defensive strategies. Since the creation of such a framework encompasses design science, the framework should comply with design 

science practices. Peffers, Tuunanen [17] lay out six activities: identifying the problem, defining objectives for a solution, designing the artefact, 

demonstrating the usefulness of the artefact, evaluating the artefact and communicating the artefact. As such, this study pays particular attention to these 

activities. The first two steps were already addressed in this section, the four remaining steps will be conducted throughout this article. First, related work is 

addressed in section 2. Section 3 discusses the elements incorporated in the framework, in line with the first research objective. Section 4 details the steps 

taken to operationalise these concepts coherently. Section 5 provides insight into a practical application of this framework in the form of an agent-based 

simulation model. Section 6 discusses the main insights and limitations to using the framework in an attempt to communicate its benefits. 

2. Related work 

Related work to this study is divided into three different categories: work proposing an ecosystem-level approach to learn more about the effects of 

security policies, work applying an ecosystem modelling approach and work using agent-based modelling to simulate cybersecurity issues. 

Types of security policies in the form of control mechanisms are widely discussed across academia. The majority of research is performed around the 

creation of specific control mechanisms applicable to single systems. Cárdenas, Amin [18] describe the effects of an anomaly-based intrusion detection 

mechanism that adapts to a wide variety of attack types, highlighting performance in terms of detection rate and false alarms. Similarly, Ntalampiras [19] 

proposes an anomaly-based intrusion detection method in which an ensemble of mechanisms is used to account for multiple contributing factors, such as 

time or system load. Patel, Taghavi [20] provide an overview of intrusion prevention and detection systems that account for sensitivity and specificity, while 

discussing their connection to the resulting defensive decisions made. Specifically, this helps address the expected consequences from implementing each 

type of control in isolation. What these authors do not address however, is the implication of operating such mechanisms in an environment where other 

interconnected critical infrastructure systems are present. 

The need for ecosystem-level analysis of defensive strategies requires a frame of reference for specifying the aggregation of concepts that make up a 

system. Since this is not done yet for the topic of this study, these articles relate to similar yet different problems. Rutkowski, Kadobayashi [21] describe a 

process by which decomposed cybersecurity processes are discussed in the light of their relevance to the overall process of exchanging information in a 

secure fashion. The authors identified four different domains in which different types of entities process information while applying different concepts. This 

architectural approach helps identify the complete set of relevant concepts. Singh [22] discusses a similar approach by which a cybersecurity ecosystem for 

multi-agent systems are specified. To this end, the ecosystem is perceived as an isolated microsociety. All elements included in the model should be closed 

off by their definition and relate to other concepts in at least one way and architecturally juxtapose each concept in such a way that all concepts relate to a 

central concept.   

Lastly, agent-based modelling, which will be used to demonstrate the practical application of the framework, is an often-discussed method for 

cybersecurity purposes. Charitoudi and Blyth [23] establish a model simulating the impact of cascading failures within an interconnected and heterogeneous 

network. They found that agent-based models perform well at observing the impact of dependencies for critical systems. Janssen and Sharpanskykh [24] 

devised a simulation model for security checkpoint intrusion, specifically focusing on coherent impact assessment in an agent-based model. These two 

articles indicate that agent-based modelling can work under the desired circumstances of an ecosystem-level model for critical infrastructures, but this has 

not been done yet given the lack of a framework for ecosystems of critical infrastructures. 

3. Integrated ecosystem-level framework 

In order to understand the effects of cyberattacks beyond the intrusion of a single system, an ecosystem-level framework for the aggregation of concepts 

is required. This corresponds with the third step for design science, the actual design of a framework. The aggregation is depicted in Fig. 1. The aggregation 

distinguishes concepts between four separate entities: attackers, infrastructure nodes, infrastructure operators and users. This is done to cover real-world 

facets of interaction while establishing a central concept that connects all entities in the form of infrastructure nodes. The elements will be individually 

discussed to shed light on defining elements. A step towards operationalising the framework is mapping interaction that takes place among these entities. 

This resulted in the ecosystem interaction model shown in Fig. 2. Depicted are the three types of actors, interacting with the central entity in the form of 

infrastructure nodes. 
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Infrastructure nodes 

Infrastructure nodes are central in interaction within the ecosystem, as is depicted in Fig. 2. An infrastructure node is a system within a critical 

infrastructure network and represents any system that is to some extent linked to infrastructure operation or is capable of causing societal consequences. 

Infrastructure nodes are defined by five generalisable concepts. 

The first and most prominent concept is infrastructure node operability. The central degree of operability represents the direct performance or 

productiveness of an infrastructure node [25, 26]. Disruptions caused by cyberattacks or erroneous defensive decisions directly tie in to operability of 

infrastructure nodes [27]. A conscious decision was made to define operability within this light, operability as a formalism enables integration of other 

elements, as the effects can be related to a central degree of operability and inoperability, which ensures further conceptualisation is possible [28]. Following 

this definition of operability, the framework maintains extensibility into more specific critical infrastructure domains, where additional factors can be defined 

to determine operability. 

The second concept is the presence of functional dependencies between infrastructure nodes. Dependencies are functional directional relationships 

between two infrastructure nodes, where the dependent node relies on robust operation of the other node, and are considered a crucial element for security 

purposes of critical infrastructures [26, 29]. Interdependencies are then the bidirectional equivalent, or the combination of two separate dependencies [26]. 

Dependencies are generalised regardless of whether these are cyber, physical, geographic or logical dependencies, as the influence coefficient assigned to a 

dependency directly determines perturbation of node operability [25]. This generalisation of dependencies following an influence coefficient enables 

universal application of the effects dependencies exert within an ecosystem [30]. The importance of these effects are crucial, as they are not fully understood 

yet central to the challenge of improving resilience and robustness of current and next generations of critical infrastructures [5]. 

The third concept is the complex network architecture by which infrastructure nodes are connected. The cyber-architecture applied to a critical 

infrastructure network determines how nodes are organised, connected and how dependencies are structured [4]. The network topology for a critical 

infrastructure system determines how control is effectuated across the network, or how losses are suffered due to node inoperability [6, 31, 32]. By extent, 

the topology affects security practices structurally and should be included to maintain agility of the framework. 

The fourth concept revolves around vulnerabilities. The presence and overall impact of vulnerabilities is rooted in the nature of a critical infrastructure 

system and impacts the susceptibility of a node to cyberattacks [3, 4]. Vulnerabilities should be included in a framework for ecosystem-level analysis, but 

could be modelled as simply as a factor for cyberattack success rates. Other possibilities include game theoretic principles that encompass a specific, in-

depth representation of optimisation processes for both attackers and defenders [9]. 

The fifth concept is the severity of consequences for node inoperability. Consequences from successful cyberattacks and inoperability in general are 

significant and difficult to establish accurately [3]. Losses can be categorised as physical, economic and social losses [33]. The main implication from the 

severity of consequences is that a degree of tolerated risk is not representative for critical infrastructures. Any consequences sustained are undesired by 

definition, and cybersecurity is purely related to attack-defence scenarios as opposed to security investments [9]. 

Attackers 

Attackers are malicious actors seeking to disrupt infrastructure node operation. This is achieved through cyberattacks that inflict damage in the form of 

inoperability if they manage to successfully exploit node vulnerabilities. By separating attackers from cyberattacks, the model gains another layer of 

interaction. In many cases, security practices depend on actions taken to secure assets as well as actions taken by cyberattackers. Attackers interact with 

Fig. 1: Ecosystem aggregation model 

Fig. 2: Ecosystem interaction model 
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entities the ecosystem by targeting infrastructure operators based on their motivations and rationality. They initiate attacks on infrastructure nodes, which 

prompts infrastructure operators to make defensive decisions. 

The first concept attributed to attackers are different attacker types. Understanding how threats against the system emerge requires mapping the 

background of attackers that would act against the system. Attackers capable and willing to inflict damage to critical infrastructures are typically advanced 

persistent threats (APTs) [34], such as foreign adversaries, cyberterrorists or cybercriminals [35]. The type of attacker determines their motivation and 

capabilities for conducting attacks. Establishing attacker types as an element of the framework allows for different decision-making processes to be included 

and forms an interface for possible inclusion of game-theoretic principles. As such, attacker types can be used to establish their capabilities, target selection 

procedures and other characteristics. 

The second concept, attacker motivation, determines the types of losses attackers are willing to inflict and subsequently determine the types of attacks 

they are willing to use. Cyberterrorists are typically out to inflict physical losses and bodily harm, and will therefore select other targets and methods than 

attackers seeking to inflict financial harm [3]. 

The third concept relates to the capabilities of attackers in terms of possible attack vectors. Sophisticated attacks, such as Stuxnet, are only feasible for 

highly capable attackers [10, 11]. Assigning different capabilities to different attacker profiles increases the agility of the framework in dealing with typical 

threat landscapes [36]. Both the capabilities and motivations of attackers are directly tied into the first concept of attacker types, as the attacker type can 

partially or fully determine the set of capabilities, motivations and more. By separating these three concepts, the framework can be used to represent both 

simple and sophisticated processes at many levels of granularity by which interaction is modelled. 

The fourth concept is situational awareness, the degree to which actors are capable of making rational decisions [37]. Attackers make decisions based 

on the information and knowledge available to them in assessing whether they should and which target is selected [24]. This is largely established based on 

the perceived damage they would inflict as well as their loss type preference, which together forms a degree of perceived utility [9]. Situational awareness 

should be included as a facet of any model for securing critical infrastructures, as the concept goes hand in hand with the desired level of sophistication for 

decision-making. 

Infrastructure operators 

Infrastructure operators, also referred to as defenders, are the entities tasked with securing resilient and robust operability of infrastructure nodes. They 

interact with the ecosystem by asserting control over a set of infrastructure nodes through making defensive decisions. This process involves discerning 

between threats and user traffic. 

The first concept addressed is the usage of control mechanisms to address cyber-risk within the ecosystem. Deviating from the traditional definition of 

cyber-risk as an enumerable factor of risk over time, critical infrastructures instead deal with immediate decisions as opposed to investment decisions made 

over time. Control mechanisms are used to thwart cyberattacks and ensure node operability. Three types of controls are identified: prevention mechanisms 

that filter out traffic as either an attack or user traffic, detection mechanisms that attempt to classify and assess any unprevented intrusions in terms of impact 

and response mechanisms that provide means to remove active attacks [18, 38]. Further specification of mechanisms is possible, and in many cases required, 

but should follow the same high-level definition provided by this framework. This ensures that specific instances of research can be related to one another, 

paving the way for design of coherent technological artefacts or security policies.  

The second concept is in itself an aggregation of control mechanisms, as a defensive strategy or security policy. A defensive strategy is defined as a 

configuration of rules and practices for control mechanisms. This defines how threats are dealt with and could be used for analysis of comparative 

performance for defensive strategies. The inclusion of defensive strategies is required for operationalisation of high-level interaction, while defensive 

strategies are more contextual for more specific analysis. 

The third concept is threat awareness for defensive decisions. Threat awareness represents the knowledge about active threats in the ecosystem available 

to defenders. During the 2015 Ukrainian power grid attack, the presence of threats within individual subsystems was considered marginal, whereas the 

overall ecosystem-level threat landscape would have prompted more serious measures [12]. Awareness of threats determines defensive decisions made, and 

this link can be operationalised on both high and low levels of granularity. 

The fourth concept, extending the degree of threat awareness is the situational awareness for defenders. Similarly to situational awareness for attackers, 

this determines the availability of information for decision-making. Situational awareness extends threat awareness by awareness of deviations in system 

operability [38] and results from defender capabilities to detect intrusions without raising false alarms [39]. The situational awareness feeds into the defensive 

decisions made in response to events that affect the threat landscape. 

Users 

Users are incorporated in the framework as an entity that ensure the functioning of an infrastructure node. They represent traffic that is crucial for 

functional operation for nodes. Failing to facilitate access for user traffic directly affects infrastructure node operability. Users were identified to not require 

further conceptual specification on an ecosystem level. However, depending on the context of desired analysis, users can play a minimal role for which this 

definition suffices as well as a crucial role that requires further elaboration. 

4. Operationalising the ecosystem as a complex adaptive system 

Without operationalisation of concepts defined as part of the framework, the ecosystem aggregation model is nothing more than a collection of 

generalised concepts. In order to establish a useful model for analysis of ecosystem-level effects of defensive strategies, these concepts should be 

operationalised into clearly defined and constrained interaction. To this end, complex adaptive systems (CAS) thinking is applied, as it provides several 

applicable definitions and core concepts that correspond with the devised framework. First, the CAS thinking paradigm is detailed. This is followed by 

defining the operationalised model concept as a collection of entities and actions. 
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4.1 Defining complex adaptive systems 

Complex adaptive systems thinking is a school of thought that involves systems that are both complex and adaptive. Complexity in this sense means the 

degree by which top-down system behaviour can be understood and adaptiveness represents the degree by which parts of the system organise themselves to 

improve performance [41]. A key definition of CAS is given in Waldrop [42], as systems are perceived as “a dynamic network of many agents acting in 

parallel, constantly acting and reacting to what other agents are doing.”, in which agents represent single entities that operate based on behavioural rules, 

actions and states [41]. 

The main elements of complex adaptive systems are the way in which bottom-up interaction emerges into coherent system behaviour [42, 43], chaotic 

behaviour from model elements [41] and the non-optimality of system elements [43]. The involvement of aggregate system behaviour being substantially 

different than the collection of actions taken by parts of the system highlights how such an approach could contribute to cybersecurity analysis for critical 

infrastructures [43]. Such frameworks should incorporate a CAS perspective, as the behaviour for coherent security policies is currently not understood 

despite the prevalence of analysis of single systems [16]. 

The applicability of complex adaptive systems to this ecosystem requires further elaboration. CAS perceives systems as dynamic networks of 

heterogeneous agents, which corresponds with the definition of critical infrastructure systems as vast networks of heterogeneous system components [6, 7]. 

Decisions made related to each infrastructure node or infrastructure operator are based on the situational awareness at the moment of decision-making. 

Higher-level strategic decisions are not typically made within the frame of reference for analysis, as the development of such strategies depends on uncertain 

future developments [44]. Chaotic elements are also identified in cybersecurity decisions for critical infrastructures, as the set of behavioural rules is 

consistent, whereas activities surrounding cyberattacks are inconsistent. The aggregation model could therefore be operationalised using a set of formalisms 

that define the states, actions and interactions in the system. 

4.2 Concept operationalisation 

Operationalising the framework within the light of CAS requires specification of the main actions and states used by agents. In the light of the design 

science practices defined by Peffers, Tuunanen [17], this step further specifies the design. Eventual practical application would require full specification of 

all elements involved in implementing a simulation model, but this is sensitive to requirements and assumptions applied. The list of main states and actions 

following descriptions given in section 3 are listed in Table 1. 

 

Table 1: Main agent states and actions 

 Infrastructure nodes Attackers Infrastructure node operators Users 

States 

- Operability 

- Associated losses 

- Vulnerability 

- Loss preferences 

- Knowledge 

- Attack 

capabilities 

- Perceived operability 

- Defensive strategy 

- Type of control mechanisms 

- Criticality of traffic 

- Frequency of traffic 

Actions 

- Affect dependent 

nodes 

- Sustain losses for 

inoperability 

- Select target 

- Launch attack 

- Apply prevention mechanisms 

- Apply detection mechanisms 

- Assess impact of detected 

threats 

- Apply response mechanism 

- Generate traffic to 

infrastructure node 

 

These states and actions involve the main interaction that takes place in the ecosystem as depicted in Fig. 2. However, these states and actions are still 

rather vague. For the framework to have any use, methods to operationalise the main elements should be provided. The operationalisation should not only 

support the original research objective, but should also be in line with the knowledge gap this study seeks to address. Factors should be operationalised in 

such a way that high-level interaction can be quantified, albeit to in an abstract manner, while specific, low-level interaction is still coherent with other facets 

of the framework.  

Operability 

The degree of operability can be defined as a continuous scale [25, 28]. If this scale is taken as a value between 0 and 1, an approximation of its effects 

can then be computed as the inverse of current impact. Being a central entity in the framework, it is important that operability is operationalised in a simple 

manner while facilitating interfaces for more specific driving forces. For ecosystem-level analysis, operability O can be computed from both external and 

internal impact components  𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 and 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. Multiplication between both components ensures a constraining linear relationship between impact 

components, as external disturbances in infrastructures have proven to disrupt operability of other infrastructure nodes completely [10]. Operability O is 

computed as follows: 

 𝑂 = (1 − 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) × (1 − 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) (1) 

 

The specification or level of granularity applied to each of these components can then be varied. Within the scope of this study, the decision was made 

to specify the process by which attack and defence scenarios take place as a probabilistic process. This choice was made based on the manageability of the 

model, as game theoretic processes require further specification of additional factors and assumptions. There are multiple ways to model such scenarios, but 

there is no optimal modelling approach between game theoretic processes or probability-based processes [9]. As such, whenever user traffic or attacks are 

created, there is a chance for an attack to be prevented correctly based on the true positive rate associated with the applied prevention mechanism and a 

chance for user traffic to be prevented incorrectly based on the false positive rate associated with the applied prevention mechanism. Similarly, unprevented 
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attacks can be detected based on the true positive rate of detection mechanisms and false alarms can be raised based on the false positive rate of detection 

mechanisms. This is the most straightforward way of implementing attack and defence models without establishing any factors that might not be 

generalisable. 

Internal impact is represented by the disruption of inoperability caused by affairs within a single node, such as a successful cyberattack or erroneously 

blocked user traffic. Given a set of attacks 𝐴𝑖 from the total set of active attacks A, a set of users 𝑈𝑗 from the total set of currently erroneously blocked users 

U, the associated power of an attack I and criticality of user traffic C, equation 2 denotes the internal impact component. 

  

𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =

{
 
 

 
 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

≤ 1

1, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

> 1
 (2) 

 

 

Whereas internal impact is derived from the summated impact of all attacks and erroneously blocked user traffic, external impact for a node originates 
from inoperability in nodes with outgoing dependencies to this node. Dependencies are assigned a dependency weighting that directly affects the degree of 

operability [26]. For a node with a set of dependencies 𝐷𝑘 from all inbound dependencies D, dependency weighting 𝑤𝐷𝑘 for a dependency  𝐷𝑘 and 𝑂𝑘 the 

level of operability at node k, the following equation denotes the operationalisation of external impact: 
 

𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

{
 
 

 
 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘), 𝑖𝑓 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘) ≤ 1

1,                                             𝑖𝑓 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘) > 1
 (3) 

 

Equations 2 and 3 assume that the effectiveness of attacks and the weighted effects of dependencies do not increase or decrease depending on target 

node operability and by extent is linearly dependent on attack types and attack activity. Because operability 𝑂 was previously defined as a linear product of 

both internal and external impact components, the overall perturbation of operability follows linear relationships. If this is not the case for a specific case 

that is being modelled following this framework, a logarithmic or exponential element can be added. Similarly, time-based delays could be added to these 

effects as well to represent successful yet inactive attacks or delayed dependent relationships. These modifications would have no direct effect to equations 

2 or 3. 

Impact assessment 

As stated in paragraph 3, the notion of operability provides agility to involve multiple other concepts. Situational awareness is related to the notion of 

operability, as limitations in information availability cause infrastructure operators to make decisions on their impact assessment [23, 27]. The perceived 

operability 𝑝𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of a node then determines which defensive decisions are made. 𝑝𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 can be modelled as the result of perceived values for 

𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 in the form of 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝑝𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, respectively. Impact assessment differs from true impact, as not every active attack might be 

detected, and false positives from intrusion detection might lead to incorrect decisions [20, 35]. This decision was made to comply with the involvement of 

situational awareness as described in section 3. 

Given attacks 𝐴𝑖 from the set of detected attacks 𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, false positives 𝐹𝑃𝑗 from the total set of false positives 𝐹𝑃 and I the impact associated with a 

type of attack, perceived internal inoperability 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 can be computed as follows: 

 

 

 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =  

{
 
 

 
 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

≤ 1

1,                                                                     𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

> 1
 (4) 

 

Losses incurred 

 

Losses sustained 𝐿 resulting from node inoperability can be linked to this same degree of operability 𝑂. A basic operationalisation of how inoperability 

contributes to losses is to scale the possible damage given by respective loss factors linearly with the extent of inoperability. If desirable, the equation can 

be changed to contain exponential, logarithmic or other additional components. The assumed linearity enables a relatively simple model construct that 

ensured manageability of the simulation model discussed in section 5. Given a set of loss factors for each type of loss 𝐹𝑖, the overall losses are computed as 

follows: 

 𝐿 = ∑ (1 − 𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙) × 𝐹𝑖
𝐹𝑖 ∈ 𝐹

  (5) 
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Attacker utility 

As stated previously, target selection is based on situational awareness and loss preference for attackers. The target T is selected out of the set possible 

targets, given each assessed target 𝑖, the loss factor 𝐹𝑘
𝑖 for type of loss 𝑘 at node 𝑖 and loss preference 𝑃𝑘 for type of loss 𝑘, following equation 6. The process 

by which an attacker maximises utility is heavily based on game theoretic principles and is inherently based on the presence of multiple types of losses. 

 

 𝑇 = max
𝑇𝑖
( ∑ (𝑃𝑘 × 𝐹𝑘

𝑖)

𝐹𝑘 ∈ 𝐹

) (6) 

5. Practical application through agent-based modelling 

Given the possibilities for operationalisation of the framework prevented throughout the previous paragraph, a practical application can be demonstrated 

for the framework in a simulation environment. This follows the 5th activity for design science: demonstration [17]. To implement this, the framework was 

implemented in the form of an agent-based model. Agent-based modelling is an extension of complex adaptive systems and simulates system interaction as 

the collection of agent-level observations and interactions [41]. First, the model narrative and formalisation is discussed. Secondly, the experimental design 

is detailed in the light of desired insights. Thirdly, the results from the aforementioned experiments are presented. 

5.1 Model narrative 

The model was created by implementing the framework with slight deviations for model manageability purposes. Infrastructure operators and 

infrastructure nodes were grouped together as one entity, as their tasks are directly aligned, and separate agents would result in computational issues. User 

agents were grouped together as a randomly occurring event, as opposed to being agents that only conduct one action based on one state. As such, the 

simulation model consists of two types of agents directly interacting, attackers and defenders. The full overview of their interaction is shown in Appendix 

A. The model was used to analyse the behaviour of entities in the framework in terms of decision-making and incurred losses based on different defensive 

strategies. These simulations used a discrete time step of one day for a total of 1825 steps, or 5 years. The model was implemented in NetLogo [45], which 

provides an easy-to-understand software environment for modelling complex systems [46]. 

Attackers act first, as they decide whether to launch an attack or not. If they do attack, they will first select the target that yields the highest perceived 

utility. The mechanism to select a target is based on equation (6) and grows more sophisticated with higher attacker knowledge, as expected consequences 

from dependencies can also be included. Having selected their target and attack vector, attackers will initiate an attack. Attacks are modelled as single-target 

disruptive attacks and worm-based attacks capable of spreading to connected nodes. If attackers already had an active worm attack, there is a chance this 

attack spreads further across the network. 

Defenders respond to the initiation of attacks or user traffic by first applying their associated intrusion prevention mechanism. Both intrusion prevention 

and intrusion detection mechanisms are assigned sensitivity and specificity values that determine the rate at which false negatives and false positives occur. 

This circumvents making assumptions about values for vulnerabilities and threat capabilities, as these effects are instead derived from probability-based 

events. The intrusion prevention mechanism either blocks or allows traffic. Blocked traffic is removed completely, representing either a true positive or 

false positive. Blocked user traffic reduces internal operability as described in equation (2). Besides intrusion prevention, defenders go on to conduct intrusion 

detection. Should an attack be detected, the perceived inoperability for the defender increases, prompting them to make a defensive decision. Based on 

thresholds for different response mechanisms, they either make a correct decision or an incorrect decision. Incorrect decisions are either insufficient response 

when a response is warranted (overestimating operability) or a response when there is insufficient inoperability (underestimating operability). Two responses 

were implemented, alleviation and retention, respectively a light and slow intervention and a heavy and fast intervention. Responses remove existing attacks 

after a predetermined duration. After these procedures are conducted, losses are sustained following equation (5). The translation of the operationalised 

model into modelling constructs involved a balancing act between creating a manageable yet insightful model. Since the simulation model serves primarily 

as a proof of concept for simulating critical infrastructures following the designed framework, creating a manageable model was prioritised. 

5.2 Experimental design 

Since the model was designed for ecosystem-level analysis, the assumptions applied during model design involved the data points and parameter values 

used to assess behaviour across the ecosystem. Several factors that influence decision-making processes were also necessarily left out of the model, as 

implementations for these processes for ecosystem-level analysis would lose all representativeness. As such, the simulation model was not used to assess 

tangible defensive strategies as found in readily available sources, since these strategies are not defined that way. Instead, the model was used in an 

exploratory manner, following the Exploratory Modelling & Analysis (EMA) framework [47, 48]. This involves using models based on uncertain or 

generalised parameters to control for robustness across uncertain scenarios. Parameters used in the model were varied across to yield 250 unique scenarios. 

These scenarios were combined with four different defensive strategies, resulting in 1000 unique experiments. Each experiment was repeated 25 times to 

ensure extremely chaotic behaviour was suppressed, despite variability testing pointing out that the model showed robust variability and near-symmetrical 

behaviour across multiple runs. As mentioned previously, four different defensive strategies were established, in relation to threshold values for different 

responses. These are shown in Table 2. Prevention and detection mechanisms are each assigned values for sensitivity and specificity. For anomaly-based 

mechanisms, sensitivity values of 0.95 and specificity values of 0.8 were used, whereas signature-based mechanisms respectively attained sensitivity and 

specificity values of 0.8 and 0.95, based on the taxonomy by Patel, Taghavi [20]. 
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Operability as a central modelling construct can be used to simulate defensive decision-making processes. In this case, perceived operability is used for 

deciding which response mechanism is required. Since the concept is in itself intangible, the threshold used is a simplification of a complex real-world 

process. Values used for these design parameters account for differences in sensitivity and specificity for each defensive strategy. These values were 

established through a process of trial and error, where a brief run of baseline experiments was used to establish which set of thresholds performed best in a 

static environment for each strategy. 

Table 2: Defensive strategies in experimentation 

Mechanisms Strategy 1 Strategy 2 Strategy 3 Strategy 4 

Prevention  Anomaly-based Signature-based Anomaly-based Signature-based 

Detection Anomaly-based Signature-based Signature-based Anomaly-based 

Alleviation threshold 70% 80% 75% 70% 

Retention threshold 30% 20% 25% 20% 

5.3 Results 

The results of the experimental design were assessed for sensitivity to certain scenario parameters, as is practice in using EMA [48]. It was found that 

no particular sensitivities led to extreme values or unexpected clusters of values for output parameters over time. After establishing whether sensitivities 

caused significant deviations, the impact of defensive strategies was analysed, in line with the main objectives for using the framework. Following EMA 

practices, the results were interpreted as the comparison of robustness of defensive strategy designs [49]. 

Results were analysed in terms of total losses incurred, cyberattack effectiveness and the quality of defensive decisions. Each graph depicts kernel 

density plots for all defensive strategies, indicating the distribution of performance across entire simulations. Since the parameter values were assumptious 

in nature, the numerical representation in outcome parameters does not say much alone. However, these outcome parameters show relative robustness among 

defensive strategies.  

As depicted in Fig. 3, strategies 2, 3 and 4 yield comparable losses across the set of experiments, whereas strategy 1 results in substantially higher losses. 

This suggests that strategy 1, which employs both anomaly-based intrusion detection and prevention mechanisms, on average performs worse at the overall 

task of securing critical infrastructures. Since this metric indicates the average degree of inoperability under each defensive strategy, this does not help 

explain how interaction or decision-making affected by defensive strategies. By extent, any finding based solely on this metric is obfuscated by the 

assumptions under which the model was created. 

Fig. 4, Fig. 5 and Fig. 6 visualise the density of the correctness of defensive decisions made across simulation runs for all defensive strategies. 

Interestingly, it is not the first strategy that results in the least correct decisions, as this is caused by strategy 4 instead. The pattern as to whether incorrect 

decisions are caused by primarily overestimated or underestimated operability varies between these two strategies. Nearly all incorrect decisions under 

strategy 4 result from underestimated operability, whereas strategy 1 results in substantial errors due to both underestimated and overestimated assessments. 

Strategies 2 and 3 are both characterised by high accuracy in decision-making, as the former results in few incorrect decisions in general and the latter only 

leads to some errors based on overestimation.  

Fig. 7 depicts how node operational states were affected across model runs, shedding further light on differences among defensive strategies. Strategies 

2 and 3 again show similar behaviour, with few recorded cases of inoperability and a majority of nodes in normal operation. Strategy 1 deviates from other 

strategies as it is the only strategy under which inoperability is a common occurrence. The deviation in losses observed in Fig. 3 is attributable to a significant 

number of inoperable nodes, whereas other strategies result in losses due to stressed operability. Strategy 4 also deviates from strategies 2 and 3, as the 

majority of nodes are stressed instead of unhindered. This was found to be attributed to the high frequency at which strategy 4 leads to defensive decisions 

based on underestimated operability, where minor action is consistently taken whereas no action should be warranted. These tendencies are consistent with 

the average deviation in impact assessment depicted in Fig. 8, where higher values and lower values imply a tendency to respectively overestimate or 

underestimate operability and values around 0 imply accurate impact assessment.  

Further exploration of system behaviour involved assessing how effectively cyberattacks were dealt with for each defensive strategy. Fig. 9 shows the 

density of the average number of cyberattacks active within the model across entire simulation runs. This plot highlights how strategies 2 and 4 affect the 

ecosystem in a different manner than strategy 1 and 3. The average number of active cyberattacks is significantly higher for strategies 2 and 4, as attacks 

are thwarted less effectively due to signature-based prevention mechanisms. Due to the low and static frequency of attempted attacks (1 per time step on 

average) in the ecosystem, the way this translates over to inoperability is beneficial for strategy 2, for which underestimation of operability is not problematic 

for decision-making. As such, relying solely on one metric for performance is not insightful and the failure to prevent attacks efficiently should form a major 

caveat for any findings. In reality, the threat landscape could evolve to grow more capable or more frequent in case prevention does not work as envisioned.  

Likewise, Fig. 9 tracks all active attacks, which are all assumed to exert pressure on node operability constantly. Real-world attacks can be multi-facetted, 

surreptitiously infecting systems before such pressure is exerted. Findings for modelling studies are always a product of the assumptions by which the model 

is created. 

The implications of these findings are not that one defensive strategy performs better than others. Instead, the results of this practical application are 

rooted in the operationalisation of an ecosystem-level model that enables new insights to be gathered through exploration [41, 48, 49]. While strategy 2 

shows better performance in terms of decision-making and incurred losses, the operationalisation of these parameters relies heavily on ecosystem-level 

aggregation. Between strategies 1, 3 and 4, strategy 3 showed more robust performance overall, as the presence of cyberattacks is not substantially higher 

whereas the correctness of decisions leads to substantially lower inoperability in general. 
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Fig. 3: Average losses 

 

Fig. 4: Fraction of correct defensive decisions 

 

Fig. 5: Fraction of overestimated defensive decisions 

 

Fig. 6: Fraction of underestimated defensive decisions 

 

Fig. 7: Node operational states 
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Fig. 8: Impact assessment deviation 

 

Fig. 9: Number of active attacks 

 

6. Conclusion and discussion 

It was established in section 1 that in order to cope with the evolving threat landscape looming around critical infrastructures, more knowledge on the 

ecosystem-wide effects of defensive strategies was required. However, there was no single framework that coherently encapsulated ecosystem-level 

properties for cybersecurity of critical infrastructures. To address this gap of knowledge, this study proposed a novel framework to conceptualise and 

operationalise a model for ecosystem-level analysis of cyberincidents involving critical infrastructures. The framework incorporates generalised elements 

that define most critical infrastructures to allow for analysis of coherent security policies. The operationalisation of the framework quantifies elements used 

for interaction modelling, based around a central degree of infrastructure node operability. This was demonstrated in the form of a practical application by 

creating an agent-based model capable of simulating the effects of cyberattacks and subsequent defensive decisions. 

The main limitations to this framework are nested in the abstraction required to integrate elements on an ecosystem-level. Critical infrastructures are 

complex entities that incorporate multiple drivers for decisions made on an operational level. Boiling those decisions down to a central notion of operability 

enables exploratory modelling, but specific analysis and design of new control mechanisms for real-world application requires further specification of 

elements in the framework. This would then lead to a lower degree of generalisability of the framework. The main uses for ecosystem-level analysis are 

rooted in exploration of behavioural tendencies as opposed to quantification of performance indicators. 

Operationalising the framework into an exploratory agent-based model proved the framework can be used to generate insight into the effects of different 

defensive strategies. The observed behaviour showed how different configurations for defensive strategies resulted in tendencies to either overestimate the 

threat landscape and incur damage through unnecessary defensive decisions, to underestimate the threat landscape and take no subsequent action. Crucially, 

the model assumed all attacks to be surmountable, which real-world interpretations consider problematic [9]. Given the assumptious nature of parameter 

values, these results do not provide comparisons of direct benefits for a certain design, but instead helps understand the effects, regardless of parameter 

values used. To this end, the modelling application proved that the operational framework could be used to generate consistent behavioural patterns, albeit 

with arbitrary values and simplifications. Further usage of the framework and creation of more specific simulation models could therefore result in tangible 

research benefits. 

It is advisable to conduct further research into the effects of coherent, shared defensive strategies and security policies. For exploratory purposes, this 

study provides a framework that can be used and extended to incorporate elements that could shape the performance of such strategies. Use and extension 

of the framework is recommended for more advanced and specific research into preliminary designs of real-world defensive strategies. As such, the benefits 

of using the designed artefact can be communicated to those who can make use of it [17]. Another option is to devise similar simulation models as presented 

in paragraph 5. The framework presents a set of entities that should be accounted for, as well as the set of concepts that should be included in conceptual 

models. 
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Appendix A: Formalised agent-based model procedures 

 

 

 

Fig. 10: Flowchart for agent-based model procedures 


