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ABSTRACT

The Food-Energy-Water (FEW)
nexus for urban sustainability
needs to be analyzed via an inte-
grative rather than a sectoral or
silo approach, reflecting the
ongoing transition from separate
infrastructure systems to an inte-
grated social-ecological-infrastruc-
ture system. As technology hubs
can provide food, energy, water
resources via decentralized and/
or centralized facilities, there is
an acute need to optimize FEW infrastructures by considering cost-benefit-risk tradeoffs
with respect to multiple sustainability indicators. This paper identifies, categorizes, and
analyzes global trends with respect to contemporary FEW technology metrics that high-
lights the possible optimal integration of a broad spectrum of technology hubs for pos-
sible cost-benefit-risk tradeoffs. The challenges related to multiscale and multiagent
modeling processes for the simulation of urban FEW systems were discussed with
respect to the aspects of scaling-up, optimization process, and risk assessment. Our
review reveals that this field is growing at a rapid pace and the previous selection of
analytical methodologies, nexus criteria, and sustainability indicators largely depended
on individual FEW nexus conditions disparately, and full-scale cost-benefit-risk tradeoffs
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were very rare. Therefore, the potential full-scale technology integration in three
ongoing cases of urban FEW systems in Miami (the United States), Marseille (France),
and Amsterdam (the Netherlands) were demonstrated in due purpose finally.

KEYWORDS Food-Energy-Water nexus; Technology hubs integration; Cost-benefit-risk tradeoff

1. Introduction

Globally, more than half of the population lives in urban areas that pre-
dominantly rely upon external supplies of food, energy, water, and other
resources. Based on recent studies (OECD, 2012; UN, 2014b; Fabiola &
Dalila, 2016), by 2050 the world’s population is projected to grow to about
9.5 billion, with more than 70% of the world’s population living in cities.
This is anticipated to result in a 70% increase of total food demand
between 2005 and 2050 (FAO, 2009), a 55% increase of total global water
demand in 2050 as compared to 2000 (OECD, 2012), and a 30% increase
of global primary energy demand in 2040 compared to 2017 levels (IEA,
2017). Intensive production and consumption of materials and goods alters
land use and cover, biodiversity, and hydrosystems both locally and region-
ally, and the subsequent urban waste discharge impacts biogeochemical
cycles and climate from the local to the global scale (Grimm et al., 2008).
Consequences of rapid urbanization and increased resource demands in cit-
ies are further exacerbated by social factors related to poorly integrated
resource management, changing managerial policies, land resources degrad-
ation, feedbacks of climate change, and economic fluctuations (Muller,
2007), and hence, to sustainable development (Zhang, Chen et al., 2018).
The integrated management of these intertwined Food-Energy-Water
(FEW) infrastructure systems is becoming increasingly important, as food,
energy, and water sectors are strongly interconnected and interdependent,
and the synergies among these three core infrastructure systems play a cen-
tral role in sustainable development (Zhang, Chen et al., 2018; Grady et al.,
2019). Different scales of FEW nexuses clustered across different commun-
ities are often considered complex large-scale systems with multidimen-
sional, multidisciplinary, and multilayer natures.
The interlinkages among the FEW sectors are numerous, with multiple

layers of interdependencies and interconnections associated with the avail-
able resources, internal cohesion among communities involved, and exter-
nal climatic, geopolitical, demographic, and socioeconomic drivers. The
governance structure of a FEW nexus is also an emerging key topic of dis-
cussion at all levels of government agencies due to its extraordinary
importance. The current governance structure is oftentimes fragmental,
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which may weaken the sustainable use of resources and the achievement of
long-term food, water, and energy security (Rasul, 2016). For this reason,
the consolidation of FEW nexuses at various scales is also related to an
integrated decision-making process through which the relevant policy-
makers and stakeholders must perform tradeoffs among their cost, benefit,
and risk concerns (Kaddoura & Khatib, 2017; Kurian, 2017). The integrated
philosophy of the theoretical framework of a FEW nexus is illustrated
in Figure 1. Guidelines around a framework for the development of cross-
sectoral policies are emerging, although they are not all-inclusive (Albrecht
et al., 2018). These guidelines lead to the insurance of food and nutritional
security, the creation of sound energy mixes, the effective supply of essen-
tial water resources, and the maintenance of environmental integrity.
According to Figure 1, interchanging flows of food, energy, and water in

a FEW nexus play central roles in life support. Enhanced understanding of
the complex interactions among multiple life support systems can lead to
better strategies, policies, and technologies (Healy et al., 2015; Artioli et al.,
2017; Dai et al., 2018). In recent years, fresh water supplies have become
increasingly scarce and unpredictable as a result of extreme weather events
such as long-term droughts and unexpected flooding, and large amounts of
water are required in the production of agricultural crops and the gener-
ation of liquid fuel and electricity. According to the United Nations World
Water Development Report, 69% of global freshwater withdrawals are con-
sumed by agriculture crop production, and 75% of all industrial water
withdrawals are committed to energy production (OECD, 2012; UN,
2014a,b; Fabiola & Dalila, 2016). On the other hand, about 30% of total

Figure 1. Theoretical framework of urban FEW nexus systems.
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global energy consumption is dedicated to food production and the associ-
ated supply chain (UN, 2014b). About 15% of water is used in the energy
sector, and 18% of the total energy used globally is consumed by the water
sector (Machell et al., 2015). The food supply chain can mobilize virtual
water flows from water rich to water scarce regions, and can even help
transport biofuel crops from fuel rich to fuel lean regions to provide sus-
tenance in a renewed FEW nexus. Thus, reducing water and energy con-
sumption becomes one of the most important prerequisites for sustainable
development, as energy saving can lower the pressure on demands for water
resources, and increasing efficiency in water use can reduce the amount of
energy required for distribution, transport, and treatment of water (Dai
et al., 2018). As a consequence, understanding the underlying processes and
their sectorial interactions is critical for different FEW systems (Cai et al.,
2018). Deepened insights via a system engineering approach can support sus-
tainable resources management regionally and globally.
About a decade more ago, scientists began to notice the importance of

the interdependence among the various individual eco-systems, and there-
fore began to dedicate more time and effort to nexus studies in terms of
the systems engineering concept of “system of systems” such as a city
within a megacity. For example, Scott et al. (2011) highlighted some funda-
mental water-energy coupling and relevant policy challenges, including the
influence of physical and social dynamics of energy-water development on
the wider demand of resources, and the impact of the water-energy nexus
on global changes. These global changes include rapid urbanization, eco-
nomic development and globalization, population growth, climate change,
environmental externalities, and interlinked markets through globalization.
In order to build and operate a successful FEW nexus under such a global
change impact, it is important to closely consider both current and future
opportunities in technological advancements, such as possible disruptive
technologies in the renewable/alternative energy supply. Thus, critical
thinking, research, and relevant policies are essential for triggering innova-
tions among these interrelated sectors for seeking environmentally benign,
cost-effective, forward-looking, and risk-informed sustainable solutions in
support of sustainable development.
In recent years, an increasing academic effort has been directed to

improve FEW nexus research and education in terms of nexus understand-
ing, framework development, methods and indicators development, and
governance and policy issues, in addition to some training programs.
Although the FEW nexus proposes a promising conceptual framework, the
philosophy for a successful transdisciplinary use of a FEW nexus and its
associated engineering design strategies is still very limited (Walker et al.,
2014; Albrecht et al., 2018). Such shortfalls have increased the need for
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systematically evaluating the interlinkages of food, energy, and water sys-
tems and/or the development of policies/culture-driven decision-making
processes in different developing and developed countries. This effort will
enable us to assess possible planning scenarios for further sustainable devel-
opment in different types of cities, from small, to medium, to megacity
scale based on sustainability criteria. Therefore, this study presents a com-
prehensive review by analyzing the contemporary issues related to different
FEW nexuses with multiple spatiotemporal scales.
As a companion study to Part I, this review article aims to generate sev-

eral contributions to the FEW nexus research community by: 1) illustrating
the existing FEW nexus focus and coverage, 2) analyzing the challenges of
FEW nexus research based on the selected critical literature, 3) providing
some typical examples for the integration of technology hubs in different
FEW systems with case-based engineering studies, 4) summarizing the chal-
lenges of implementing effective FEW nexuses, and 5) creating a multilayer
managerial framework for urban FEW nexuses to address the challenges
highlighted in this comprehensive review.

2. Methodology: Meta-analysis of FEW Nexus literature

In this paper, a comprehensive meta-analysis is conducted for a systematic
review based on well-established literature databases, such as Web of
Science and Scopus, with relevant key words, including nexus, water-food-
energy nexus, water-energy nexus, water-food nexus, nexus technology, nexus
methods, nexus tools, nexus criteria, urban water-energy-energy nexus, urban
nexus, nexus sustainability, nexus indicators, nexus policy, optimization, cli-
mate-related nexus, etc. Within this survey, we focused on peer-reviewed
journal articles. About 100 papers were selected for further analysis, and
more than 87% of these selected papers were published after 2017. The
analyzed literature, with the names of authors, titles, and journals, are sum-
marized in Supplementary Information (S-Table 1). Due to the nature of
the research, these journal articles were published by a wide range of jour-
nals, covering resource management, science, engineering and technology,
modeling, computational analysis, policy and public administration,
sustainable development, urban development, etc. (Figures 2 and 3),
highlighting the interdisciplinary research endeavor of various types of
FEW systems.
The selected papers were then screened and classified according to the

predefined 10 criteria, including the study location; type of study; type of
nexus; approach of analysis; methodology and tools adopted; type of data,
including the sources; scale of nexus analysis; nexus highlights, etc. The cri-
teria can provide significant insights for identifying trends and topics
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regarding existing nexuses. It may lead to improved understanding of the
focal point of nexus research based on the temporal and spatial contexts.
The selected papers were then analyzed in-depth according to the variation
of nexus considerations, nexus issues, indicators chosen, technology
adopted, feasibility and challenges, etc., with respect to 12 case-specific
comprehensive studies. In addition, several popular methods and tools
were critically analyzed according to scope, externalities, level of

Figure 2. Selected nexus research published in scientific journals.

Figure 3. Nexus related publications by field.
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integration, and limitations in different case studies. Three case specific
implementations of FEW initiatives, along with the integration of potential
FEW technology hubs across USA and Europe, were discussed as a demon-
stration and typical examples in practices. Based on the outcomes, an inte-
grated nexus assessment model is proposed for comprehensive urban
sustainability assessment in the context of sustainable urban systems.

3. Results and discussion

3.1. Featured analysis of the FEW Nexus literature

The global research of the FEW nexus based on the selected literature is
shown in Figure 4. The highest representation is from the USA (35%), and
then the UK, and China, respectively. North America (mainly USA) and
Europe lead the world, accounting for about 69% of the nexus related
research publications together, while publications from Asia, Oceania,
Africa, and South America accounted for about 26%, 2%, 2%, and 1%,
respectively.
These papers can be categorized from three different perspectives to

understand the goals and trends. In terms of article type, about 43%
were case-specific and mainly focused on different nexus applications in
particular geographic locations (Wang et al., 2017; Chen et al., 2018;
Uddameri & Reible, 2018; Campana et al., 2018; Hailemariam et al., 2019).
Approximately 34% of nexus studies were based primarily on the analysis
of conceptual frameworks, understanding of nexus and nexus develop-
ments, policy and governance, risks and opportunities, synergies and trade-
offs, nexus research opportunities, and so on (Romero-Lankao et al., 2018;

Figure 4. Geographical representation of selected research regarding the FEW nexus.
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Fader et al., 2018; Bergendahl et al., 2018). The remaining 23% of studies
focused on current nexus structure, developments, integration, methods
and tools, etc., by synthesizing existing nexus-related studies (Al-Saidi &
Elagib, 2017; D’Odorico et al., 2018; Mannan et al., 2018). In terms of
spatial scales, about 34% of the nexus studies were of global scale (mostly
analysis and review papers), while 15% were regional (both analysis and
case-specific applications), 10% were national scale (similar to regional),
and 33% were case-specific studies with local implications (Figure 5).
A more comprehensive illustration of existing nexus research is shown in

Figure 6, in which black lines represent a focus on the study of a particular
resource (e.g., food, energy, or water), yellow lines indicate the study of
integrated systems with two principal resources, and gray dashed lines
emphasize the interlinkages of subsections of different nexuses. In terms of
focus and level of integration, 29 papers focused on the FEW nexus, but
these mostly aimed to conduct general analysis and systematic review,
whereas 10 papers focused on water (Larsen & Drews, 2019; Rosa &
D’Odorico, 2019), 5 on food (Abdelkader et al., 2018; Neto et al., 2018;
Zhang, Campana et al., 2018), 4 on energy (Yuan et al., 2018; Ahjum et al.,
2018; Whitney et al., 2019), 9 on water-energy nexus (Engstr€om et al.,
2017; Wang et al., 2017; Wang et al., 2019; Liu et al., 2019), 2 on energy-
food (Hanes et al., 2018), and 1 on water-food (Zhang & Vesselinov, 2017).
The rest of the articles applied nexus research from various angles. They
include, but are not limited to, agricultural drought management
(Campana et al., 2018), bio-fuels (Moioli et al., 2018), governance and pol-
icy (Rasul & Sharma, 2016; Artioli et al., 2017; Pahl-Wostl, 2019; M€arker
et al., 2018), waste and wastewater (Wang et al., 2018), climate vulnerability

Figure 5. Type of study with FEW nexus related research.
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(Howarth & Monasterolo, 2017), projecting paths to FEW nexus sustain-
ability through ontology (Babaie et al., 2019), linking food-water systems
for enhancing child health in developing regions (Oerther et al., 2019), and
nexus knowledge and understanding (Howarth & Monasterolo, 2016;
Martinez et al., 2018) under different nexus systems. However, the compre-
hensive case-based practical application of an interconnected and inter-
dependent FEW nexus with the adoption of existing and emerging
technologies for a particular region is still limited (e.g., White et al., 2018).

3.2. Methodological considerations in the existing Nexus research

3.2.1. Nexus thinking
The FEW nexus approach is defined as an approach that integrates
resource management systems and governance at various scales across the
three different sectors. This approach is designed to reduce the negative
surplus and enhance the efficiency of resources consumption via integrated
planning and management toward sustainable development goals (Liu
et al., 2018). Although the effective implementation of the nexus approach
is still in its infancy, different approaches have been proposed and used to
enhance the knowledge of FEW systems in different spatiotemporal scales
and forms, and evaluate possible tradeoffs related to synergies among the
three key resource systems. Some specific examples are provided herein to
analyze how a FEW nexus approach is adopted from different perspectives

Figure 6. Nexus focus and integration.
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in the existing literature. The scale could be as small as a local community
or as large as the globe, which requires using gross domestic product
(GDP) as an economic indicator.
For example, Smajgl et al. (2016) proposed a dynamic framework for a

FEW nexus in the Mekong region, where the Delphi technique was used to
promote the learning of nexus interactions to decision-makers. Rasul (2016)
provided a holistic nexus framework in Southeast Asia by integrating policies
and strategies in the three resource sectors. Strengthening cross-sectoral
coordination, harmonizing public policies, aligning cross-sectoral strat-
egies including incentive structures, strengthening regulation, and facili-
tating smart investment in nexus technologies were the main elements
highlighted in the framework. For improving operationalization and deci-
sion-making processes, de Vito et al. (2017) proposed an index-based
approach including the irrigation-water footprint, the energy footprint for
irrigation, and irrigation water-cost footprint indexes for sustainability
assessment of irrigation practices. Very recently, by using system dynamic
models with a Monte-Carlo simulation scheme, Su�snik (2018) analyzed
the FEW-GDP system globally and found that GDP is more deeply corre-
lated to electricity consumption and water withdrawals than food produc-
tion, but strong causal influence was found in food-GDP sectors based on
the causal analysis. In addition, Hussien et al. (2017) and Hussien et al.
(2018) used a bottom-up approach with a case study to model the FEW
nexus. By reviewing recent studies, Tian et al. (2018) proposed an inte-
grated FEW nexus model that coupled ecosystem and economic consider-
ations with a regional climate model to understand the interactions of the
ecosystem–human–climate systems that can be quantitatively evaluated
and used as sustainability indicators of the agricultural system. An online
open access simulation and visualization tool was proposed by Xue et al.
(2018) to analyze different circular economy scenarios associated with
their respective FEW nexuses. The tool can display the impacts of FEW
policies and technologies both qualitatively and quantitatively, including
different indicators of social, economic, and environmental aspects. The
tool is a good initiative for understanding the local FEW nexus with an
emphasis on circular economy. However, Vakilifard et al. (2018) pointed
out that the development of optimization models for capturing spatial
aspects and environmental indicators and impacts is the main challenge
for the frameworks and strategies of the existing nexus literature. The
study also highlighted that models are limited in current nexus research
in that they only consider uncertainties associated with the future water
demand and renewable energy supply. All the highlighted literature exhib-
its the potential for the inclusion of the further development of a nexus
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approach in terms of methodology development, scales of nexus, and dif-
ferent considerations including the selection of indicators, etc.

3.2.2. Methods and strategies
This section provides an overview of different methods and strategies used
in nexus research. In existing nexus studies, several useful methods were
adopted for analyzing and correlating different nexus backgrounds. The
common methods include mathematical modeling (Kenway et al., 2011;
Wang et al., 2017; Xie et al., 2018), life cycle assessment (LCA) (Meldrum
et al., 2013; Wang et al., 2018; Bozeman et al., 2019), network modeling
(Zimmerman et al., 2018), agent-based modeling (Bieber et al., 2018),
spreadsheet models using numerical equations (Wilkinson, 2000), surveys
with factor analysis (Bullock & Bowman, 2018), system dynamics model
(Hussien et al., 2017), and geographic information system (GIS) (Gurdak
et al., 2017; Uddameri & Reible, 2018). Among them, LCA is becoming a
popular method (Wang & Zimmerman, 2011; Mannan et al., 2018), as
LCA considers both direct and indirect inputs and outputs of resources
(Retamal et al., 2008; Wang et al., 2018). Forecasting models were used in
studying climate variability and energy and water consumption (Hoffman,
2010; Ali, 2018; Chen et al., 2018). Visual display tools, including GIS
(Uddameri & Reible, 2018), Sankey diagrams (Chen et al., 2018), and sys-
tem dynamics (Hussien et al., 2018) were also used to understand resource
production, distribution, and consumption. In addition, qualitative methods
were utilized to analyze the governance and policy of a nexus to facilitate
the decision-making process and public awareness (Artioli et al., 2017;
Bullock & Bowman, 2018). So far, most of the methods were used for a
specific sectoral analysis, either in water or energy (Dai et al., 2018;
Yoon, 2018). In addition, some of the common methods and tools used,
data required, their implications, and associated challenges in practical
case-specific studies are shown in Tables 1 and 2. An emerging trend is
coupling models from different disciplines and communities (e.g., earth
system model, agent-based model, and system dynamics model) that repre-
sent the social-ecological-infrastructural systems for better quantifying and
characterizing urban FEW systems.

3.2.3. Tools and techniques
This section explicitly analyzes different tools and techniques used in exist-
ing literature for evaluating different FEW systems. Previous reviews have
explored some of the important nexus assessment tools, including the
Water, Energy, Nexus Tool 2.0; Energy intensity; Multi-Regional
Input�Output analysis model; Multi-Scale Integrated Assessment of
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Society and Ecosystem Metabolism; The Global Change Assessment Model
in the USA; Water Evaluation and Planning system and Long Range
Energy Alternatives Planning; Platform for Regional Integrated Modeling
and Analysis; Water Analysis Tool for Energy Resources; Multi-Regional
Nexus Network; Water-Energy Sustainability Tool Web; FAO Nexus
Assessment Methodology; WBCSD Nexus Tool, and the Water, Energy and
Food Security Nexus Optimization Model (Kaddoura & Khatib, 2017; Dai
et al., 2018).
However, the tools above have rarely been adopted in recent case-specific

nexus studies, with the exception of the input-output analysis and mathem-
atical programing. Tools adopted (in respect to their methods) in some of
the case-specific nexus studies are summarized in Tables 1 and 2. For
example, Yuan et al. (2018) analyzed bioenergy production rates and com-
pared the advantages of bioenergy to the existing policy on renewable
energy in Taiwan through an integrated LCA, linear programing, and cli-
mate change simulation model under the nexus paradigm. The study found
that electricity generation using biofuel (e.g., bio-coal) produced from rice
straw is environmentally sustainable. In addition, Kumazawa et al. (2017)
proposed a knowledge sharing and collaboration tool for interdisciplinary
research based on an ontology engineering approach, which is a type of
semantic web technology that offers common terms, concepts, and seman-
tics. Ahjum et al. (2018) conducted a case study of a water-for-energy
development nexus based on the South African national energy-economic
system model. The model is a non-spatial national representation of energy
goods, service flows, and energy technologies with associated costs and
emissions. Based on the modeling of water-for-energy for a specific region,
the study concluded that energy supply choice is influenced by several fac-
tors, such as water cost, quality, etc.; the integrated water supply network is
more climate resilient, and there’s a risk for stranded water supply infra-
structure. However, the model is mainly focused on power generation, des-
pite highlighting the need for water for food, environmental extremes,
political influences, technology changes, national/regional attributions, etc.
Thus, more factors need to be integrated and analyzed in the FEW nexus
system for sustainable development.

3.3. Integration of technology hubs for FEW systems – Comparative
case studies

This section provides three examples of the integration of technology hubs
into different coastal FEW systems in cultural contexts worldwide, includ-
ing Miami, Florida in the United States, Amsterdam in the Netherlands,
and Marseille in France.
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3.3.1. FEW systems in Dania Beach, Miami, Florida
3.3.1.1. Study region. Miami, located in South Florida, is an economic, finan-
cial, and cultural hub, and one of the most attractive tourist destinations in
the world. The Greater Miami Area covers an area of about 15,890 km2, the
4th-largest urban area in the US, and had a population of more than 6 million
in 2017. The city of Miami is the center of the Greater Miami Area, promot-
ing economic development, entertainment and media, and international trade,
and is considered the largest urban economy in Florida and the 12th largest
in the US (MMA, 2019), with a continuously expanding population.
Our study was conducted at the community scale and focused on the

Dania Beach Patch (DBP) – one of the exemplary urban community
gardens and leading initiatives of urban farming in south Florida, USA
(Figure 7). DBP occupies �6,475m2, measuring 30-m from east-west, and
21.5-m from north-south (1.7 acre of land), and is located in and primarily
serves a low-income community (�1,000 households) classified as a ‘food
desert’ by the US Department of Agriculture (USDA). According to the

Figure 7. Study region of Dania Beach Patch, its geographic location (upper left), community
scale at which it is located and serving (lower left), spatial extent (middle), and illustrations of
existing on-site practices such as grow bags, hydroponics, and rooftop rainwater harvesting.
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USDA, about 13.5 million people in these census tracts have low access to
sources of healthful food; this area is therefore designated as a food desert
with a need for improvement of food security.

3.3.1.2. Social-environmental benefits. DBP was converted from a dumpsite
and initially sponsored through a suite of collaborative efforts among the
City of Dania Beach, the Dania Beach Community Redevelopment Agency,
and the Broward Regional Health Planning Council. It was originally devel-
oped to eliminate urban blight, improve quality of life by providing green
spaces in highly impervious urban residential districts, and provide com-
munity access to locally grown, fresh food. Another major goal of DBP is
to enhance food nutrition and facilitate connections between all residents
of the community. DBP also provides trainings throughout the community
(e.g., urban growers, residents) on sustainable urban agriculture manage-
ment and practices, as well as temporary employment and volunteer oppor-
tunities. It is dedicated to promoting healthy living through different
educational and outreach activities, which have been held regularly and
made accessible to residents, students, and regional schools. Since its emer-
gence in 2012, through support from various local and federal agencies and
private foundations, it has evolved into one of the largest community gar-
dens in Broward County. DBP has also established a local farmers’ market
that provides a variety of affordable and fresh vegetables to the community
residents. With recent support from the USDA, DBP is now launching a
number of “mobile farmers’ markets” to expand its reach to the adjoining
neighborhoods, with particular focus on meeting the food demands of low-
income communities and thus better addressing food insecurity.

3.3.1.3. Current status and existing technologies. Due to the infertile Myakka
soils (primary comprised of rock known as Miami limestone, sand, marl,
and muck), a high water table, and susceptibility to saltwater intrusion and
sea level rise, “grow bags” (Figure 7) are the main approach for production,
in which crops are cultivated in a contained bag of good-quality soils.
More recently, other production methods such as hydroponics and vertical
farming have been increasingly adopted to improve productivity. Major
products from DBP are seasonal roots and green vegetables, with a current
onsite production capacity of �4,990 kg (�11,000 pounds). With its focus
on environmental sustainability, a number of technologies have already
been incorporated to enhance water and energy use efficiency, such as
dripping irrigation, solar panel powered hydroponics systems, and rain bar-
rels for stormwater reclamation.
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3.3.1.4. Integrative technology hubs. In this study, we proposed the integra-
tion of four types of FEW technologies that are both feasible and desirable
based on initial feedback from operating managers and key actors of DBP.
These include: 1) green energy from photovoltaic systems installed on all
the roofs on the property (including a �500m2 pavilion and several small
buildings); 2) onsite anaerobic digestion for biogas production; 3) point-
based low impact development in the form of retention/detention pond
and rainwater harvesting/storage facilities; and 4) large-scale adoption of
urban farming technologies, including dripping irrigation and hydroponics
systems. These proposed integrative options, along with existing technolo-
gies, can be grouped to earn important opportunities for the realization of
the interconnection and interdependencies of the FEW nexus at the com-
munity scale (Figure 8). Specifically, green energy generated from PV sys-
tems can be used for supporting agriculture production (“energy for
food”), as well as for water distribution and heating water as steam
(“energy for water”). Water steams can also be used to accelerate the anaer-
obic digestion process for the production of biogas (“food for energy”) as
an alternative energy source (“water for energy”). Water harvested from
rain barrels or stored in the detention/retention ponds can be used for irri-
gation (“water for food”) and, in turn, advanced irrigation technologies can
help enhance water use efficiency and reduce overall water use (“food for
water”). Another “food for water” pathway involves the declines in virtual
water flows associated with food imports as a result of local food produc-
tion to offset external food demands.
In this community-scale FEW system in Miami, the potential costs, bene-

fits, and risks of associated technologies (highlighted in Sections 3.1-3.2 of

Figure 8. Conceptual diagram demonstrating the interdependencies and interconnections in
the FEW nexus at the community scale in Miami, USA.
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Part I) have to be critically evaluated with suitable planning scenarios, cul-
ture-oriented thinking, and site-specific characteristics in the future.
Moreover, sustainability assessment of a nexus with such technologies
should be evaluated in terms of water, carbon, and ecosystem footprints.
The metrics for sustainability assessment may be structured by means of a
suite of separate modeling efforts. As mentioned, the sustainable indicators
of water, carbon, and ecosystem footprints can be assessed to determine
the cost, benefits, and risks related to the application of the four types of
FEW technologies in DBP. These indicators, which vary for each FEW sec-
tor, can be ultimately evaluated in terms of tradeoffs after the performance
of cost-benefit-risk optimization to yield the most favorable option in terms
of sustainability, cost and risk minimization, and reduction of environmen-
tal impact. The costs are primarily associated with investment, construc-
tion, and operation, whereas the risks and benefits correspond to the
sustainability indicators. In general, employing these technologies for FEW
sectors provides benefits associated with reduction in carbon, water, and
ecosystem footprints.

3.3.2. FEW systems in Amsterdam Metropolitan Area, The Netherlands
3.3.2.1. Study region. The Amsterdam Metropolitan Area (AMA) is located
in the North-Wing of the Randstad, the major urban area in the
Netherlands. The AMA is not a governmental entity, but a corporation
with 32 municipalities including, and around, the municipality of
Amsterdam. These municipalities together cover at least 2580 km2 of land
(CBS, 2018), which is almost 6% of the total area of the Netherlands. One
of the greatest challenges of the AMA is population growth. In 2018, the
city of Amsterdam and the AMA included around 0.8 million and 2.4 mil-
lion citizens, respectively (CBS, 2018). The prognosis is that in 2025 the
population of the city of Amsterdam will grow to 0.923 million inhabitants,
and reach 1 million before 2040 (OIS Amsterdam, 2018). In the city of
Amsterdam, it is therefore expected that 89,900 extra houses will be built
between 2018 and 2040 (OIS Amsterdam, 2018). In the AMA, it is expected
that there will be an increase of 230,000 households in the same time
period (Metropoolregio Amsterdam, 2017).
Another challenge is climate change adaptation and mitigation (Van der

Hoek et al., 2017; De Stercke et al., 2018). A change in climate has already
been measured. Between 1950 and 2010, the Royal Netherlands
Meteorological Institute (KNMI, 2018) measured an increase of 1.6 �C of
the yearly average temperature in the Netherlands. Additionally, an increase
in yearly rainfall was measured from 769 millimeters in 1901 to 933 milli-
meters in 2010. The rainfall will not only increase but will also intensify.
The report also shows that during winter and summer there will be more
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extreme rain events. In summer, the number of rainy days will decrease,
which might lead to a further increase of precipitation deficits in summer.
Urban heat islands could be exacerbated in the AMA. Other challenges
connected to climate change in the Netherlands are sea level rise and saline
water intrusion. National policy aims to tackle these challenges in several
ways, including transitioning toward a circular economy and zero carbon
emissions by 2050 (Circular Economy, 2016; Ministry of Economic Affairs,
2017). This involves some national policies that, for example, promote the
transition of home heating systems from gas-fired space heaters to electric
space heaters to reduce greenhouse gas (GHG) emissions. Therefore, a FEW
nexus approach can provide insight into the interdependencies between the
three resource systems that contribute to sustainable methods for the miti-
gation of climate change impact.

3.3.2.2. Integration of technology for urban greening. This nexus system has
adopted a strategy with the potential to reduce carbon emissions via the
sequestration of carbon by urban green areas. Strohbach et al. (2012) took
a life cycle approach to the carbon footprint of urban green spaces in the
city of Leipzig, Germany. In their analysis, they included the carbon emis-
sions produced by the maintenance and transport of fertilizers, which
proves to be relevant in the carbon footprint analysis. We argue that such
an approach would be relevant for developing a good understanding of the
potential for climate change mitigation by urban green spaces. Such areas
can include trees, shrubs, and herbs, and can be located on the ground, on
walls, on roofs, and within buildings, in addition to the MUP with salient
industrial symbiosis, all of which is described in Figures 3–8 of Part I of
this series.

3.3.2.3. Site of application. The integration of green areas in the city is dis-
tributed within the urban boundaries and is performed by different actors.
The map below indicates different green roof initiatives in the city of
Amsterdam (Figure 9).

3.3.2.4. Potential impacts for FEW systems. Green spaces are often lauded for
their ability to cool cities and reduce the effect of urban heat islands (e.g.
City of Amsterdam, 2015). However, academic research on the quantifica-
tion of ecosystem services from urban green spaces seems, to our know-
ledge, to be based on a case by case basis. Quantification of ecosystem
services at a higher spatial and thematic resolution has proven to be diffi-
cult (Derkzen et a. 2017). It is possible to explore the potential of urban
green spaces by focusing on the application of green roofs. The focus
points are (a) carbon storage, (b) energy use reduction by insulation, (c)
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energy use reduction by cooling, (d) sustainable urban farming, and e)
potential energy resources such as biofuel production. These points are
described separately in detail below: 1) Carbon sequestration: Research has
shown that, for the case of Leipzig, carbon mitigation by green spaces was
not significant compared to the emissions from people (Strohbach et al.,
2012). Trees are more effective in offsetting carbon emissions than other
types of green areas, such as green roofs (Derkzen et al., 2017). 2) Energy
reduction by insulation: Santamouris et al. (2007) found that green roofs
did not significantly reduce the heating load of a school in Greece. 3)
Energy reduction by cooling: Santamouris et al. (2007) found a significant
contribution to energy efficiency within a building (6-49% depending on
the location within the building) by a green roof. Other research pointed
out that green roofs made of sedum plants do not necessarily reduce the
temperature outside the building (Solcerova et al., 2017). Nevertheless,
the same research showed that green roofs can have a cooling effect during
the night, when the effect of urban heat islands is the strongest. 4)
Sustainable urban farming: Urban farming is gaining popularity in the
Amsterdam Metropolitan Area (Van der Schans, 2010). Not only can food
be grown in urban green spaces, but also biomass may be harvested for the
production of energy. The MUP of Amsterdam, described in section
4.2.2, has the potential to contribute to the FEW system. 5) Sustainable
heating in winters: Gas vs. electricity heating was evaluated due to the
movement of national policy that largely affects greenhouse gas emissions
in the future.

Figure 9. Indication of green roofs in the City of Amsterdam, the Netherlands (https://maps.
amsterdam.nl/groene_daken/?LANG=en, accesses 30 January 2019).
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In Figure 10, green space could be used to grow food for biofuel
(“energy for food”), while water retention can potentially reduce energy for
cooling (“energy for water”). There are five options, including (a) carbon
storage, (b) energy use reduction by insulation, (c) energy use reduction by
cooling, (d) sustainable urban farming, and e) potential energy resources
such as biofuel production (“food for energy”). Increasing rainfall due to
climate change coupled with a nature-based solution via open green space
can also be used to reduce energy use for cooling and heating (“water for
energy”). Water retention from a nature-based solution can be used for
improving food production (“water for food”) and, in turn, reducing food
imports as a result of local food production to offset external food demands
and aid in virtual water delivery (“food for water”).
In this city-wide FEW system in Amsterdam, the potential costs, benefits,

and risks of associated technologies (highlighted in Sections 3.1-3.2 of Part
I) have to be flexibly evaluated toward limited planning scenarios, culture-
orientated thinking, and site-specific characteristics in the future. Yet sus-
tainability assessment of such a nexus with an emphasis on green space
contribution should be evaluated in terms of water, carbon, and ecosystem
footprints together given the local climate variability. The ecosystem foot-
prints may be modeled by means of a suite of separate modeling efforts.
Moreover, the analysis of the possible cost-benefit-risk tradeoff for the
adoption of green roofs in conjunction with MUP in this metropolitan
region are important for decision-making and optimization. The compari-
son of the cost, benefits, and risk associated with the three sustainable indi-
cators for each technology can ultimately aid in determining which FEW
system alternative is most feasible.

Figure 10. Conceptual diagram demonstrating the interdependencies and interconnections in
the FEW nexus for urban greening in Amsterdam, the Netherlands.
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As mentioned, the application of green roofs and green spaces minimizes
carbon footprint, reduces heat island effect and reduces cooling, thus indir-
ectly reducing energy demand and GHG emissions. Additionally, it pro-
vides urban farming for local food consumption or cultivation of crops for
biofuel production. The installation cost is minimal, although crop growth
competition and long maintenance times are risks to consider. The irriga-
tion for the maintenance of green roofs can be supplied from stormwater
collected, reused, and harvested during the wet periods, or from reclaimed
wastewater. Stormwater harvesting reduces the water footprint by decreas-
ing the demand for water resources.
The MUP of Amsterdam contains a waste to energy (WTE) facility, a

wastewater treatment plant (WWTP), and a landfill for the incinerated ash
and WWTP biomass. The MUP can offer high temperature steam and elec-
tricity for direct household heating. This additional supply chain reduces
the demand for and reliance on utility grid electricity while reducing car-
bon and ecosystem footprint via the decrease of waste disposal. Without
MUP, the operation capacity of WTE plants depends solely on the effi-
ciency of waste collection and recycling; this risk can be minimized, pro-
vided the landfill waste disposal and biomass flows are constant. Landfill
methane gas recovery for WTE can become additional benefits. To main-
tain low environmental impacts, pollution control systems and fly ash
reutilization in manufacturing are necessary. Lastly, cost will be associated
with the operation and maintenance cost of the WTE and WWTP facilities.
According to Figure 10, the MUP can enhance the interdependencies and
interconnections by providing high temperature steams from WTE and
methane gas from WWTP for district heating to replace the natural gas in
winters (“water for energy”), as well as biomass and reclaimed wastewater
for food production (“water for food”). Electricity produced by the WTE
facility can support food production (“energy for food”) and water recovery
and delivery (“energy for water”), as well.

3.3.3. FEW systems in Marseille, France
3.3.3.1. Study region. Marseille is the second biggest city in France in terms
of population. It is located at the south coast, covering an area of 241 km2.
The city has more than 850,000 inhabitants and its larger metropolitan area
(3,173 km2) has a population of 1,830,000. The city was built directly on
the coast of the Mediterranean in the Bay of Marseille, running along 57
kilometers of coastline (Figure 11). The city spreads itself from the coast to
the surroundings hills; thus, several districts are placed on the slopes or on
top of these hills. The city of Marseille is an important hub for trade and
industry in the south of France, which is linked to its extensive infrastruc-
ture. The new commercial port of the city is the biggest in France and the
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fifth largest in Europe by cargo tonnage, representing a leading factor in
the Marseille economy. Petroleum refinery and shipbuilding are the biggest
industrial sectors. Marseille is the country’s leading center of oil refinement,
and petroleum is transported to the Paris region via pipeline. Other
important industry sectors are the production of chemicals, soap, glass,
sugar, building materials, plastics, textiles, olive oil, and processed foods. In
recent years the service sector, as well as the high-tech economy, has gained
increasing importance.

3.3.3.2. Main upcoming challenges for Marseille. The upcoming challenges for
sustainable development in Marseille include the impacts of climate
change and global warming (growing heatwave frequency and intensity,
heavy rainfall events related to Med sea temperature increase at the end
of summer), potable water supply, wastewater treatment and discharge,
energy supply (especially renewable energy sources via a marine geother-
mal plant), and the production of foods and vegetables locally, along with
the maintenance of vegetated public gardens. To overcome these chal-
lenges, the FEW approach may be implemented in the Eurom�editerran�ee
area in Marseille. The first part was built in the last ten years
(Euromed1), and a second (Euromed2) will be built at a formerly relin-
quished district. The first building already exists, and the rest will be built
over the next 5 to 10 years.

3.3.3.3. Planned FEW systems in Euromediterran�ee, Marseille. The main chal-
lenges and the main initiative in terms of the FEW nexus for
Eurom�editerran�ee are shown in Figure 12. Within the proposed FEW
system, the links with energy, for example, include: 1) expansion of the

Figure 11. Location and area of intervention of Marseille, France.
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current marine geothermal plant to support the cooling operation in the
building complex and the rooftop food production in the port region, 2)
energy to treat nitrogen (N) and phosphorus (P) in Marseille WWTP
(centralized) and to produce chemical fertilizers vs. to reuse yellow and
black water as fertilizers, and 3) energy consumption for air-condition-
ing systems (vegetated areas that decrease urban temperature vs. no
vegetated areas in urban farming zone) (“energy for food”), as well as
using renewable energy for irrigation and cooling (“energy for water”).
Performing rooftop urban farming may, in turn, reduce food imports as
a result of local food production to offset external food demands, which
can help reduce virtual water consumption (“food for water”), and urban
farming may help produce biofuel as well (“food for energy”). Energy
recovery from the Marseille WWTP can be used to reduce the reliance
on utility grid energy for cooling (“water for energy”) and support food
production (“water for food”). Part of the aforementioned aspects will
be implemented in the FEW nexus in Marseille gradually throughout
the upcoming years. More focus has been given to water loops and
renewable energy production (marine geothermal plant) in regard to
urban farming and urban cooling due to constant heat wave impact in
summertime, and nutrient reuse in the FEW system under climate
change impact.
In this FEW system nearby the port area in Marseille, the potential costs,

benefits, and risks of associated technologies (highlighted in Sections 3.1-
3.2 of Part I) have to be evaluated in the future with respect to planning
scenarios regarding heat wave and thermal engineering with culture-oriented

Figure 12. Conceptual diagram demonstrating the interdependencies and interconnections in
the FEW nexus for urban greening in Marseille, France.
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thinking and site-specific characteristics. A sustainability assessment of such
a nexus with an emphasis on carbon footprints should be evaluated given
the local climate variability. The ecosystem footprints may not be salient
given the local conditions. Depending on the sociocultural context, the
availability of resources, and demand, the adoption of FEW technologies
would vary.

3.3.4. Synthesis for the three coastal FEW systems
With an emphasis on the reduction of carbon, water, and water footprints,
the following FEW technology alternatives are proposed for the urban
regions of Miami (DBP), Amsterdam, and Marseille (Euromediterran�ee) in
France. When looking into the three case studies, synthesis can be carried
out in terms of cost-benefit-risk factors. To determine the optimal integra-
tion of the FEW technologies, the analysis of the cost, benefit, and risks in
terms of the three sustainability indicators for each metropolitan region is
summarized by Table 2. It is noted that the costs are primarily associated
with investment and O&M of the technology, and thus minimizing these
costs is preferred, although the costs associated with the gain and loss of
the corresponding sustainability indicators are better described as risks.
The distinction between risks and benefits for technology adoption between
water, carbon, and ecosystem footprints is more complicated given that a
specific technology may contribute to carbon footprint reduction while
concurrently affecting the water footprint. Based on the difficulty in deci-
sion-making due to the many variables for consideration, the tradeoffs can
be assessed through decision-making strategies and governance structure.
For implementing the integrated FEW nexus and enhancing environ-

mental sustainability, green energy (photovoltaic systems) (S1-PVS), anaer-
obic digestion for biogas production (B1-BF/ B3-BP); LID (retention/
detention pond (SW1-RB) and rainwater harvesting/storage facilities (SW9-
GR)); and dripping irrigation (UA12-SDI) and hydroponics (UA1-H) sys-
tems have been proposed in the DBP. The goal of this FEW nexus is to
promote food security from urban farming, and energy self-reliance while
minimizing carbon, water, and ecosystem footprints at a community scale.
The use of retention water (SW1-RB) for food production, sustainable
farming (depending on suitable technologies listed in Part I), energy reduc-
tion through sustainable design (e.g., insulation), biofuel and bioenergy
(B1-BF, B2-WP and B3-BP), use of green space (for reducing the urban
heat island and cooling demand), etc. are the highlighted potential FEW
technologies in Amsterdam. Since the primary challenge and concern for
the Amsterdam Metropolitan Area in the Netherlands is its population
growth, planning for the increase in development while mitigating the car-
bon, ecosystem footprint, and environmental impact is crucial. The
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proposed technology integration for the FEW nexus system focuses on
reduction of carbon footprint through carbon sequestration by urban green
areas such as green roofs. The inclusion of MUP contributes and enhances
the FEW system. In Marseille, the potential FEW nexus would include the
use of recycled water (WWT2-CT/ WWT3-DT) for food production, using
renewable sources of energy (depending on suitable technologies listed in
Part I), bioenergy production (B1-BF, B2-WP and B3-BP), WWTP to fertil-
izer production, etc. Since one of the current renewable energy sources is
marine geothermal energy, focusing the FEW system in Marseille on bioen-
ergy can further reduce the use of petroleum-based products in the local
industry. Further, the inclusion of urban farming, water recycling, and
nutrient reuse minimizes carbon and water footprints. Less impact is also
experienced for the ecological footprint, as mining for nutrient acquisition
for fertilizers is reduced.

3.4. Challenges for innovations of urban FEW systems

Studies in Section 3.3 provide a vital viewpoint that allows readers to see
the real-world complexity. We argue that a case specific FEW nexus should
be used in an urban system analysis with respect to different socioeconomic
and cultural contexts for enhancing urban sustainability and supporting
decision making processes by integrating technologies for tradeoffs in terms
of cost, benefit, and risk with respect to sustainability criteria. However,
technology hub integration in different scenario analyses may encounter
multifaceted challenges, which will be discussed in the following
subsections.

3.4.1. Nexus themes, issues, sustainability criteria, and indicators
FEW nexus covers a wide range of themes and issues with a variety of
scales that have been analyzed via a myriad of approaches, tools, frame-
works, and techniques. The common themes of FEW nexus mainly include
resource scarcity (Dubreuil et al., 2013), the realm of sustainability (Hussey
& Pittock, 2012), and climate change impacts (Howells et al., 2013).
Furthermore, the specific issues of FEW nexus that have received particular
attention include, but are not limited to, water (Uddameri & Reible, 2018),
groundwater (Gurdak et al., 2017), wastewater (Kurian, 2017), food
(Zimmerman et al., 2018), agriculture and land (Tian et al., 2018; Chen
et al., 2018), fisheries (Endo et al., 2017), food waste (Kibler et al., 2018),
energy (Ali, 2018), the integration of climate change adaptation plans and
climate vulnerabilities (Rasul & Sharma, 2016; Howarth & Monasterolo,
2017), environmental impact (particularly GHG emissions) (Zhang &
Vesselinov, 2016; Bieber et al., 2018), managerial policies (Kaddoura &
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Khatib, 2017), and the integration of two or more of these issues for hybrid
analyses (Garcia & You, 2016; Hussien et al., 2018; Bullock &
Bowman, 2018).
In relation to climate adaptation, 28 nexus studies were identified from

the prevailing nexus research with varying levels of integration of different
FEW systems (Rasul & Sharma, 2016). In a recent study, Li et al. (2019)
identified 87 representative factors (issues) for various FEW systems based
on the structural modeling method. Nevertheless, the method of carrying
out the synergistic consideration identified in previous case studies is still a
big challenge in urban FEW systems, as urban FEW systems are oftentimes
associated with different complex themes and issues. Although studies of
FEW nexuses have been growing rapidly in the past few years, nexus
research methods have yet to mature. Specifically, the integration of tech-
nology hubs into urban FEW nexuses is still evolving, as new technologies
emerge quickly and are available for sustainable and resilient urban
developments.
One of the fundamental challenges is the selection of sustainability indi-

cators lying at the core of the interdependencies and interconnections of
FEW sectors, both of which are dependent mainly on individual preference
based on predetermined nexus criteria, their study objectives, and the scale
of study. In the prevailing nexus studies, only limited indicators were used
at the discretion of researchers. These indicators include, but are not lim-
ited to, water footprint, energy consumption, carbon footprint or GHG
emission, ecosystem footprint, etc., for environmental sustainability, in add-
ition to policy, governance, social networks, etc., for social sustainability
and capital investment, and operation and maintenance costs, etc., for eco-
nomic sustainability. The method of determining a set of suitable indicators
is still unclear.
Several studies have considered multiple indicators in different types of

nexus analysis. For instance, Saladini et al. (2018) used 12 indicators for
FEW nexus analyses in the Mediterranean area, including poverty index,
potential land use, GHG emissions, cereal yield, freshwater consumption
for agriculture, agricultural residues for energy, etc. Yuan et al. (2018) used
the mid-point and end-point indicators based on the IMPACT 2002þ life
cycle impact assessment (LCIA) method to analyze the bioenergy produc-
tion from rice straw in a food-energy nexus in Taiwan. A tele-connected
FEW nexus approach was developed and applied based on the MRIO mod-
eling in East-Asia with several indicators such as water, energy, land
requirement, and air pollution (i.e., CO2 and SOx emissions) (White et al.,
2018). Wang et al. (2018) studied waste-to-energy pathways in relation to
different waste and wastewater treatment technologies based on LCSA. In
this study, the environmental impact categories were organized based on
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the CML LCIA method (i.e., the mid-point approach developed by the
Institute of Environmental Sciences, Leiden University, the Netherlands),
and cost-subcategories, including operational cost, capital cost, and labor
costs were adopted for LCC analyses. However, some of the upstream
impacts, land use, ecosystem services and damages, potential health
impacts, cost-benefits, etc., of different systems or technologies are essential
to integrate for evaluation in the FEW nexus. In addition, the existing
nexus frameworks are unable to adequately incorporate sustainable liveli-
hoods perspectives (Biggs et al., 2015). Discussions of prioritization, incorp-
oration, and cross-linking of themes and issues are still missing between
the three resource sectors (Al-Saidi & Elagib, 2017). Integrated assessment
of a FEW nexus with optimization schemes is thus important for a multi-
criteria decision-making process. While a FEW nexus requires an essential
measure for achieving sustainable development goals, transformation of
multilevel governance at different levels would smooth out the implementa-
tion of a FEW nexus and, in turn, affect the multicriteria decision-making
process (Pahl-Wostl, 2019).
The development of indicators and benchmarking is essential for meas-

uring the sustainability performance of cities with respect to potential
future scenarios (Boyko et al., 2012). However, no specific nexus indicators
are evident so far, as previous studies were mostly based on researchers’
individual preferences regarding the selection of indicators. The consider-
ation of indicators in the nexus study that represent local, regional, and
global significance is therefore a challenge. This may be due to the lack of
extensive data and comprehensive analytical framework, as the selection of
a wide range of indicators would need plenty of data (both upstream and
downstream) along with multiple modeling tasks for model calibration and
validation. To enlarge the holistic insight, the relevant indicators selected
by some case studies are summarized in Table 3.
The assessment of technology hub integration in practice is a prerequisite

for any nexus sustainability performance. For ensuring the criticality of
urban FEW innovations, it is thus necessary to screen and select a suite of
critical sustainability indicators, such as carbon, water, and ecosystem foot-
prints, for all scenarios when these FEW technology hubs are used dis-
cretely for integration in a decentralized FEW system, for a FEW system
wherein the technologies are integrated with industrial symbiosis relation-
ships in a centralized system, or for any hybrid systems between a central-
ized system and a decentralized system.

3.4.2. Scaling effect of different FEW systems
The scales of current nexus studies vary widely from micro-level (Kucukvar
et al., 2016; Uddameri & Reible, 2018; Hussien et al., 2018), to macro-level
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(Garcia & You, 2016; Su�snik, 2018; Chen et al., 2018) and in size from
urban district to regional scale (Chen et al., 2018b; Zhao et al., 2018), to
river basin scale, to national (Voltz & Grischek, 2018; Sperling &
Ramaswami, 2018), to global (Kurian, 2017; Chen et al., 2018), all of which
require different approaches and strategies. The micro-level study primarily
focuses on evaluating resource flows in specific sectors at the community
scale, e.g., evaluating and/or forecasting carbon or water footprints for a
specific sector, such as energy or food production, and vice-versa. Yet
resource availability, management, and forecast are considered for multiple
sectors in different geographical scales (e.g., city, region, state, country, or
transboundary regions) in macro-level nexus studies (Retamal et al., 2009;
Bazilian et al., 2011). Spatial scales should receive higher attention, particu-
larly in the, albeit complicated, policy-related nexus analysis (Bijl
et al., 2018).
Each scale of a nexus study has its unique characteristics and import-

ance. Case-specific local FEW studies are important for achieving local sus-
tainable development goals, as well as for targeting high level objectives.
However, a nexus on a national scale is important for analyzing the current
state of resource use holistically, as well as for future projection nationally.
Lee et al. (2017) conducted a case study at a regional-level nexus to ensure
an improved understanding of the use of water and energy regionally, and
to achieve maximum benefits from the nexus system. Abdelkader et al.
(2018) analyzed the food and water scenarios in Egypt based on the
national food-water model. The study projected that water and food gaps
will be inevitably widened in Egypt in the future, mainly due to population
growth and its consequent demands for more resources. However, the
physical challenges for managing resources over a large geographic region
associated with different sovereignty over regional policies are the main
barriers in a regional FEW system (Schreiner & Baleta, 2015). In addition,
global availability, flow of resources, and the use of resources can be high-
lighted based on a global scale FEW nexus. For example, Taniguchi et al.
(2017) emphasized that highly diversified sources of water are available in
the United States and the Philippines, yet this is not the case for food in
the United States, Canada, and Indonesia. This observation was mainly
drawn from two water sources, the surface water and the groundwater, for
calculating water diversity; four sources of energy including coal, oil, gas
and renewable energy for energy diversity; and five sources of food includ-
ing cereals, vegetables, fruits, livestock, and fish for food diversity.
Overall, how the effects of technology hubs cascade across spatial scales

in a FEW nexus, how the local and regional FEW systems are linked via
technology hubs, and how the cross-scale interactions can be explored, are
intricate and intertwined in applied system analysis. The implication of
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nexus research with different scales and nexus highlights is summarized in
Table 3.

3.4.3. Challenges of integration among simulation, forecasting, and optimiza-
tion models

Numerous methodological challenges are associated with the evaluation
methods of an urban FEW nexus in terms of methods, tools, data collec-
tion, indicators, physical boundaries, resource consideration, stakeholder
involvement, etc., as no standard method has been developed yet. Although
nexus studies have focused on specific aspects of nexus systems, several
improvements in the methodology, especially method adoptions, were
observed. Some of the case studies with different methods can be found in
Tables 1 and 2. As the nature of the nexus approach is often dynamic, the
definition of physical boundaries is a challenging, but important, task for
real-world nexus implementations.
Although some of methods are valuable for nexus research in specific

sectors, many of them are unable to capture interactions across nexus com-
ponents due to a deficiency of data sharing and data availability (Shannak
et al., 2018). As the studies are often dependent on data from government
reports and literature, this dependence may induce greater uncertainty due
to the quality and availability of data, aggregated data, and inconsistent
reporting (Ernst & Preston, 2017). Thus, the extensive data requirements
and poor affinities between tools for assessing individual nexus areas are
the main limitations of existing nexus tools. The appropriate selection of
multiple methods is required to evaluate integrated urban FEW nexuses
effectively, although it is time consuming, complex, and constrained by
available data.
There are manifold technological challenges associated with urban FEW

nexus implementations. Due to their dynamic nature, the integration of dif-
ferent technologies in differing FEW systems is one of the main challenges.
These challenges include, for example, the adoption (or changes) of renew-
able energy technologies and gray water recovery for food production,
waste materials for energy generation, and renewable/alternative energy for
water purification with respect to existing policies in various urban FEW
systems. One specific tool or method cannot effectively evaluate such a
complex and large-scale system with interconnection and interdependence.
In addition, only a very limited number of analytical tools are available
that can address all FEW systems, and these require transdisciplinary think-
ing for analyzing the nexus (Shannak et al., 2018). Thus, multiple tools for
dealing with different aspects of FEW nexuses should be employed for pos-
sible improvement across the sectors, and comprehensive consideration of
data quality and data sharing are necessary for robust modeling when
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dealing with interlinked resource systems with the aid of advanced sensing,
networking, and control technologies (Abegaz et al., 2018).
Developing a FEW model that can incorporate multiple scales, dimen-

sions, uncertainties, sectors, agents, and impacts is essential for addressing
multiple externalities and policies for sustainable FEW systems (Kling
et al., 2017). So far, for instance, most of the cities’ climate actions or sus-
tainability plans highlighted climate impacts without addressing other
impacts (particularly those due to sea level rise, changing rainfall patterns,
etc.) simultaneously. The majority of them primarily focused on only GHG
mitigation and ignored challenges of resource depletion and FEW linkages
(Sperling & Ramaswami, 2018). The most inextricable issue is related to
challenges in dealing with multiscale and multiagent modeling structures
when modeling various urban FEW nexus systems. Nexus systems are
intimately linked to the definition of an appropriate system boundary, inte-
gration of temporal and spatial scales, life cycle assessment over the tem-
poral domain with an optimization scheme, and modeling of the role of
multiple stakeholders. As a governance organization influences food, water,
and energy management, it is still unclear how relevant policy frameworks
can guide the decision-making process across multiple decision makers and
stakeholders toward governance or policy coherence (Weitz et al., 2017).
Howarth and Monasterolo (2016) argued for the integration of different
aspects, including communication and collaboration with relevant parties,
decision making processes impacting policies, and social and cultural
dimensions regarding the nature of responses to nexus shocks. Therefore,
integrative challenges include the integration of resource use; supply and
demand of resources; environmental, social, and economic sustainability;
and policy influence, as well as decision making processes.
The efficiency of FEW resource use should be approached by not only

managing multidimensional tradeoffs, but also by mitigating risk and
enhancing synergies (Cai et al., 2018). Thus, optimization (i.e., spatially,
temporally, sectorally) between resource use, environmental and social
impacts, benefit-cost analysis, etc., within a FEW nexus is necessary. Some
of the optimization techniques suitable for FEW nexus studies have been
adopted by a few studies and these efforts mostly focused on optimizing
the planning, design, or operation alternatives based on a few sustainability
indicators or resource constraints (Wang et al., 2018). Yet optimization by
including the multiple resources and indicators in urban FEW systems has
not been effectively developed and implemented. Data collection for the
evaluation of FEW systems is the main hindrance for conducting such opti-
mization. For example, Hanes et al. (2018) analyzed a local FEW issue
based on a single-objective optimization model in the United States. The
study evaluated the energy and food nexus by optimizing the food and
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energy co-production system under resource constraints (e.g. ecological
sustainability, constraints on food and energy production, etc.). Multi-
objective optimization was used by Zhang, Campana et al. (2018) to study
agricultural drought management under a FEW nexus. Their study discov-
ered that irrigation can help relieve the negative effect of drought on corn
production, but significantly higher investment in water and energy is
required. The study also concluded that the optimal crop yield is not essen-
tially related to the maximum crop yield due to the inherent complexity of
the nexus. Thus, future assessment of different urban FEW nexuses should
focus on how to promote the efficacy of resource tradeoffs and maximize
synergies among resources while optimizing multiple variables of concerns
and co-optimization of various subsystems, and how such optimization
schemes could vary across different scenarios with the inclusion of more
sectors, given future environmental changes.

3.5. Perspectives for urban FEW systems analysis

This review paper provides a comprehensive overview of the current status
of FEW nexus research by analyzing the contemporary issues arising from
the integration of technology hubs and the associated cost-benefit-risk con-
cerns via three recent case studies in Miami, Amsterdam, and Marseille.
The philosophy of applied system analysis for managing various FEW
nexuses can be developed by investigating possible tradeoffs among costs-
benefits-risks of existing and emerging FEW technologies within different
technology hubs. Integration of technology hubs with case-based engineer-
ing practices at different scales in the USA and Europe were highlighted.
By analyzing some of the featured literature, relevant themes and issues
were critically examined with respect to challenges and limitations in prac-
tical implementations. Based on these extensive discussions, key research
questions, including the potential solutions for urban FEW nexus research,
are summarized, and the development of a theoretical urban FEW frame-
work with the integration of technology hubs, indicator settings, and FEW
nexus evaluation is finally proposed for holistic urban sustainability assess-
ment. However, Wichelns (2017) pointed out that the current efforts to
implement a FEW nexus may not be able to enhance policy settings. This
may be due to the lack of a commonality in methodologies and support in
conceptual frameworks across the current FEW nexuses. Since there are no
standardized methods, tools, or approaches for analyzing various FEW nex-
uses with different spatiotemporal scales, many studies are still at the
“understanding” stage of various FEW nexus analyses (Dai et al., 2018).
Moreover, Zhang and Vesselinov (2017) suggested the community should

include resource constraints and environmental protection in practical
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FEW nexus applications. Although intersectoral tradeoffs across the three
sectors (e.g., food, energy, and water) with some external factors (e.g.,
population growth) and natural vulnerabilities (e.g., climate change) are
included in many nexus studies, integration of risk assessment in a FEW
nexus is scarce (Dargin et al., 2019). However, a micro-level FEW nexus
model was developed for a sustainable water supply by highlighting sea-
sonal variations, as documented by Hussien et al. (2018). The study eval-
uated the impact of water, food, and energy consumption based on the
seasonality effect, and the risk of shortage of per capita resources in a given
planning period. Therefore, it is important to integrate different risks into
an urban FEW system, including the risk of systematic impact (e.g., fluctu-
ating resource demand and resource availability, disruption in supply chain,
etc.) and potential cascade effect (natural disaster, climate vulnerabilities,
etc.) (Howarth & Monasterolo, 2016). Most importantly, the associated
risks of adopting different technologies in different resource systems are
intimately tied to carrying out the potential tradeoffs and retaining syner-
gies. Therefore, based on the principles (discussed in relation to the tech-
nology hubs in Section 4), the potential risks of technology integration
for different resources systems should be assessed critically in future
FEW systems.
Different techniques and tools have differing limitations given their data

collection and data quality concerns. Table 1 highlights some of the recent
tools and techniques used in different nexus applications with their
strengths, weaknesses, and limitations. However, recent advances in compu-
tational and algorithmic simulation, multilevel programing, and integration
of LCA can help solve issues with complex and large-scale FEW systems to
provide effective planning and policy decisions (Garcia & You, 2016). By
considering the existing databases, software tools, and the feasibility of its
adoption, LCA can be a key tool for FEW nexus assessments (Salmoral &
Yan, 2018). As there is no standardized methodology for quantifying the
environmental benefits of an urban FEW nexus system, an integrated LCA
method along with other nexus tools is essential for determining environ-
mental impacts and possible benefits for different scenarios (Mannan et al.,
2018). In addition, heuristic algorithms can be integrated for optimization
solvers, GIS for spatial analysis of resources, sensing systems for real-time
data collection, system dynamics for the flow of resources and graphical
representation, predictive modeling for scenario analysis with respect to dif-
ferent policies, and so on, leading to comprehensive FEW evaluations.
It is not easy to delineate the boundary of sustainability assessment to

enhance sustainable development (Das & Cabezas, 2018). Case studies con-
taining all relevant factors in FEW systems are very limited. Scenario ana-
lysis with future prediction (long-term) is still lacking in the integrated
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modeling analysis (Dai et al., 2018). With the exception of carbon and
water footprint, no sustainability indicators, such as ecosystem footprint,
were fully developed for different FEW nexus analyses. Water and energy
sectors are still the priority areas in the current literature, with less focus
on the food sector. Incorporating policy and governance paradigms into
these FEW systems is still uncommon (Artioli et al., 2017). However,
energy generation and consumption are directly related to resource deple-
tion and other environmental impacts (Ng et al., 2014; Lee et al., 2017),
and these upstream impact categories should be incorporated into sustain-
ability indicators of the FEW nexus through a holistic risk assessment. Thus,
interdisciplinary research coupling these three sectors should be conducted
cohesively with case studies of regional significance with respect to different
policies and governance structure. Developing multiscale, multiuncertainty,
multisector, and multiagent models that incorporate multiple impacts is
essential for addressing multiple externalities and exploring recognized chal-
lenges. Multi-sectoral systems analysis, a research tool for decision-making,
supporting policy and investment could be effective in urban FEW nexuses,
as this systematically analyzes the magnitude of material and energy flows
and transformation from an urban metabolism perspective (Walker et al.,
2014). Based on the applied systems analysis, this paper finally proposes a
closing remark via an integrated evaluation framework for an urban FEW
nexus to achieve Green, Resilient, Empowering, Adaptable, Transformative,
and Sustainable (GREATS) urban development (Figure 13). In this frame-
work, flows of the three most valuable resources can be quantified within a

Figure 13. Integrated framework for the assessment of an urban FEW nexus to achieve GREATS
urban development.
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designated physical boundary of varying scales in the first layer of assess-
ment, located at the multilayer building block at the upper right corner of
Figure 13. Selected sustainability criteria and indicators are highlighted,
along with multilayer evaluation methods for each indicator of different
aspects (e.g., environmental, social, economic, and technological aspects) of
the proposed FEW systems. Although it requires plenty of data collection,
LCSA can be used for the aspects of each of the three FEW nexus pillars to
assess the sustainability performance with the aid of spatial analysis techni-
ques. These spatial analysis techniques (i.e., Geographical Information
System) can be linked with system dynamics models from which the urban
growth models at large can be applied for intertwined material and energy
flow analyses via urban growth visualization. These interlinkages for formal-
izing the multiscale, multiuncertainty, multisector, and multiagent models
can serve as a neural system in the applied systems analysis.
In the second layer of assessment, the findings of the first layer can be

analyzed based on different policy or planning scenarios according to
changes of policy and /or technology adoption. In the third layer of assess-
ment, cost-benefit-risk tradeoffs using optimization models or multiagent
models can be highlighted for managing complexity and enhancing syner-
gies based on the findings of the second layer. Finally, the results of all
individual systems analyses of the three sectors can be integrated for sus-
tainability assessment and benchmarking in terms of water, carbon, and
ecosystem footprint for selected scenarios.
The results can also be supportive in a policy analysis and governance

decision-making process to justify the legitimacy of policy/law and regula-
tions in relation to the FEW systems. However, collaborations with differ-
ent stakeholders are needed for data collection, and with experts for
different modeling and analysis. Although the proposed framework is
mainly based on an urban scale, it can be enlarged into a national and glo-
bal scale as local/regional FEW systems are interconnected by local resour-
ces and can impact national and international markets as well (Kling
et al., 2017).

4. Conclusions

This thorough review reveals the contemporary themes and issues of FEW
nexus that help identify the niche of possible technological advancement
for different urban FEW systems with respect to changing environmental,
economic, and social contexts. In total, 90 scientific articles were systemat-
ically analyzed to map out the challenges and limitations of existing FEW
nexuses with some case studies. This effort led to the identification of the
spectrum of nexus considerations, nexus priority issues, sustainability
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indicators, models, methods, frameworks, and tools, toward future perspec-
tives. Moreover, several recently used nexuses across three countries
(United States, Netherlands, and France) were critically and collectively
analyzed and compared in terms of tools, nexus scope, integration, and
limitations to highlight the potential of innovative FEW systems in differ-
ent socioeconomic and cultural contexts. Moreover, sustainability assess-
ment of such nexus systems may be compared by addressing multifaceted
challenges, where the integrated framework of GREATS can be adopted for
advanced systems analysis to achieve better urban development.
Overall, although great progress has been made by individual studies, the

practical implementation of integrated urban FEW nexuses is still limited
across the globe. Issues of alternatives prioritization, indicators selection,
scenario planning, and tradeoffs are yet to be fully assessed over the three
sectors. The water-energy nexus is still a priority focus without critically
considering its relationship with the food sector. Interdependence and
interconnection among the FEW sectors were rarely confirmed and ana-
lyzed in the case studies of the reviewed literature. Cases of integrated
assessment for predicted performance integrating both present, past, and
future policy actions based on both bottom-up and top-down approaches
are still lacking. There is an acute need for integrative thinking and trans-
disciplinary approaches to address these large-scale and complex FEW sys-
tems. Although several tools for FEW nexus assessments are available, the
improvements in data collection and sharing, model calibration and valid-
ation, as well as uncertainty analysis, are also desperately needed to fully
realize the complexity embedded in multiscales, multiagents, multisectors,
and multiimpacts. Future studies should advance the understanding of
FEW systems from the perspective of system of systems engineering in
terms of different paired sectors or extended sector structure with respect
to differing indicators, evaluation criteria, tools, methodologies, etc., and
innovate the analytical strategies via top-down or bottom-up approaches
with cascade effects across scales to sort out the nature of different inter-
connected and interdependent complex FEW systems scientifically.
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