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Abstract

Whispering, characterized by its soft, breathy, and hushed qualities, serves as a distinct
form of speech commonly employed for private communication and can also occur in cases
of pathological speech. The acoustic characteristics of whispered speech differ substantially
from normally phonated speech and the scarcity of adequate training data leads to low
automatic speech recognition (ASR) performance. This project aims to build an ASR
system that can recognize both normal and whispered speech and discover which acoustic
characteristics of whispered speech have an impact on whispered speech recognition. In
my study, I use signal processing techniques that transform the spectral characteristics of
normal speech to those of pseudo-whispered speech, called pseudo-whispered-based data
augmentation. I enhance an End-to-End ASR system by incorporating pseudo-whispered
speech and state-of-the-art (SOTA) data augmentation methods, speed perturbation and
SpecAugment, yielding an 18.2% relative reduction in word error rate compared to the
strongest baseline. Results for the accented speaker groups in the wTIMIT database show
the best results for US English. Further investigation uncovers that the lack of pitch in
whispered speech has the largest impact on the performance of whispered speech ASR.
Index Terms: Whispered speech, pseudo-whisper, end-to-end speech recognition, signal
processing
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1
Introduction

1.1 Motivation
Whispering is a unique form of human speech characterized by distinct acoustic properties
compared to normally phonated speech. It serves the purpose of engaging in private and
subtle conversations or avoiding disturbances in environments like libraries or meetings. In
addition to its common applications, whispered speech also occurs in pathological speech
contexts: speech from individuals who face vocal system challenges such as diseases
affecting the vocal folds or post-larynx surgery [1, 2] often is whisper-like. Moreover,
whispering has been found to be beneficial in reducing or avoiding stuttering [3].

Automatic Speech Recognition (ASR) systems have become ubiquitous in our daily
lives, particularly when integrated into virtual assistants on devices like smartphones and
home devices (e.g., Apple Siri and Amazon Alexa). While ASR is primarily designed for
normal voice interactions, there are situations that necessitate whispered speech to ensure
privacy and subtlety during conversations, especially in sensitive or confidential matters.

In recent years, End-to-End (E2E) ASR approaches such as Connectionist temporal
classification (CTC) [4], Attention-based encoder-decoder [5], Hybrid CTC/Attention [6]
and Conformer models [7] have achieved state-of-the-art performance and become a trend
in ASR community. There are several major advantages of E2E models over traditional
hybrid models [8]. One of the greatest advantages is that E2E models use a single objective
function consistent with the ASR objective to optimize the whole network, while traditional
hybrid models optimize individual components separately, which cannot guarantee the
global optimum.

However, ASR models are predominantly trained and employed for normally phonated
speech, and they struggle to perform well on whispered speech [9, 10]. Whispered speech
exhibits distinctive characteristics compared to phonated speech, primarily due to the
absence of vocal fold vibrations and glottal source excitation. Additionally, whispered
speech displays unique features such as an upward shift in formant frequencies of vowels
[9, 11–14], wider formant bandwidths for whispered vowels [9, 11, 12], a flatter spectrum for
voiced consonants [9], and lower energy [15]. These distinct acoustic characteristics pose
difficulties for ASR systems trained on normally phonated speech to recognise whispered
speech, creating a mismatched train/test scenario. Moreover, the limited availability of
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whispered speech data for training often leads to unsatisfactory performance when ASR
systems are trained specifically on whispered speech.

To address these challenges, various methods have been proposed in the literature to
improve whispered speech recognition. One of the first research focusing on the automatic
recognition of whispered speech is started by Ito et al. [9] in 2005. They first introduced a
specific ASR system for whispered speech, designed for communication over mobile phones
in noisy environments. Their research explored different scenarios involving mismatched
training and testing, showing severe degradation in ASR when using mismatched data
(trained on normal speech and tested on whispered speech). And they also showed that
ASR systems that are trained on normal speech can be adapted to recognize whispered
speech by using a small amount of whispered speech data, which can improve the accuracy
of whispered speech recognition to around 66%.

After that, several approaches have been proposed in the literature to improve whis-
pered speech ASR. These methods include using Teager Energy Cepstral Coefficients
instead of traditional Mel-frequency cepstral coefficients (MFCCs) [16], showing large
improvements for Serbian whispered speech. [12] proposed a method to generate pseudo-
whispered speech segments using denoising autoencoders showing considerable perfor-
mance improvements on their own dataset. In recent years, Chang et al. [17] showed that
a system trained with a frequency-weighted SpecAugment, a frequency-divided Convolu-
tional Neural Network extractor, a layer-wise transfer learning approach, and pre-training
outperformed their baseline with about 44% relative improvement in character error rate
on whispered speech from wTIMIT [18]. Gudepu et al. [19] generated whispered speech
from normal speech using Generative Adversarial Networks-based voice conversion (VC)
techniques for training data augmentation obtaining the current best results on wTIMIT:
29.4% word error rate (WER). Other methods used multimodal data including articulatory
cues from motion data [2, 20] and visual information [21]. Although these techniques
show that it is possible to improve the recognition of whispered speech, there is still a
performance gap with normal speech.

Even though we manage to improve the recognition performance of whispered speech,
it is still worth discovering which acoustic characteristics of whispered speech have an
impact on whispered speech recognition and how they lead to a performance gap between
normal and whispered speech recognition.

1.2 ResearchQuestions
This thesis addresses two primary objectives:

1. Dealing with the data scarcity problem by generating artificial whispered speech to
augment the training data for improved E2E whispered speech ASR;

2. Understanding the (detrimental) effects of the specific acoustic characteristics of
whispered speech on whispered speech recognition performance.

Regarding the second objective, using signal processing techniques would be a suitable
approach as it allows for specific modification of one or multiple acoustic features of
speech. And signal processing techniques offer the advantage of not requiring extra data
for training. To that end, signal processing methods are considered to convert normal
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speech to pseudo-whispered speech in two independent steps. These steps allow us to create
“intermediate forms” of normal-to-whispered speech, which in turn allow us to investigate
the effect of the specific acoustic characteristics of whispered speech on whispered speech
ASR.

Specifically, the research questions are:

• RQ1: Can we improve ASR systems performance for whispered speech by generating
artificial whispered speech data through signal processing techniques as additional
training data?

• RQ2: Which and to what extent do acoustic characteristics of whispered speech
impact whispered speech recognition performance?

1.3 Outline
In this thesis, Chapter 2 provides detailed background information for this work. Chapter
3 introduces the datasets, proposed method, and experimental setup. Chapter 4 presents
the experimental results. Chapter 5 discusses the results, answers the RQs, talks about
limitations and future research, and gives conclusions.
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2
Background

In this chapter, I provide detailed background information for this thesis. First, the introduction
of whispered speech and the acoustic comparison between normal and whispered speech is
given in Section 2.1. Then, in Section 2.2, basic signal processing methods are introduced,
including the source-filter model and linear predictive coding. ASR-related knowledge, i.e.
traditional ASR, E2E ASR, and dictionary are explained in Section 2.3, evaluation metrics in
Section 2.4, and data augmentation techniques in Section 2.5.
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2.1 Whispered speech
Whispered speech has characteristics that differ from normally phonated speech. Normally
phonated speech is produced by modulation of the airflow from the lungs by the vibrations
of the vocal folds, while there is no vibration of the vocal folds in whispered speech. Due
to the absence of vocal fold vibrations, whispering lacks the fundamental frequency of the
voice and much prosodic information. Furthermore, whispered speech has significantly
lower energy compared to normally phonated speech [15], and the slope of the spectrum
is much flatter than in normal speech [22]. In addition, in real-world environments where
background noise is present, the signal-to-noise ratio (SNR) of whispered speech is low.
Therefore, processing and recognition of whispered speech are expected to be more difficult
than normal speech.

2.1.1 Acoustic analysis
To understand the acoustic differences between normal and whispered speech, a detailed
comparison is given below.

Figures 2.1 and 2.2 present the time-domain waveforms and time-frequency domain
spectrograms of the same sentence “I gave them several choices and let them set the priorities.”
produced by female speaker 101 in a normal and whispered voice in wTIMIT corpus [18].
The amplitude of whispered speech signal is smaller than that of normal speech signal.
The spectrogram of whispered speech appears to have less clear articulatory features and
a different acoustic profile compared to normal speech. These differences are primarily
due to the altered vocal production mechanism and reduced vocal fold activity during
whispering. In whispered speech, voicing harmonics are significantly attenuated or absent,
resulting in a lack of distinct harmonic patterns (red box in Figure 2.2) and the formant
structure is often less pronounced and less distinct compared to normal speech.
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Figure 2.1: Waveforms of the same sentence produced by the same speaker in a normal and whispered voice in
wTIMIT corpus.
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Figure 2.2: Spectrograms of the same sentence produced by the same speaker in a normal and whispered voice in
wTIMIT corpus. The red box shows an example of harmonic patterns that is present in normal speech but absent
in whispered speech.

Compared to normally phonated speech, whispered speech has:

No fundamental freqency (F0)
The Fundamental Frequency (F0) is the physical measure of the rate at which the vocal
folds vibrate during speech production. Pitch is the perceptual attribute of a sound that
allows us to differentiate between low and high sounds. In the context of human speech, it
refers to the perceived "highness" or "lowness" of a person’s voice. Pitch is the perceptual
outcome of the physical phenomenon of F0.

Figure 2.3 shows the pitch information of the same sentence “I gave them several choices
and let them set the priorities.” produced by female speaker 101 in a normal and whispered
voice in wTIMIT corpus, extracted by the WORLD vocoder [23]. Since voicing is absent
when whispering, whispered speech signals theoretically have no F0/pitch. Because of the
F0 estimation algorithm in the WORLD vocoder, the result may not match completely with
the theory. But we can still say in whispered speech, pitch is more or less absent.

An upward shift in format freqencies of vowels
The format frequencies of vowels in normal speech are generally higher than that in
whispered speech [9, 11–14]. Table 2.1 shows the first and second formant frequencies,
F1 and F2, estimated from a typical spectrum of each of the five vowels in the Serbian
language for normal and whispered speech of the same speaker with the same context.
The mean shift for the first formants for all four vowels (/i/, /e/, /a/, and /o/) is 264 Hz and
for second formants is 153 Hz in [11]. The whispered vowel /u/, in comparison to the other
four vowels, shows a completely different behaviour.
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Figure 2.3: Pitch information of the same sentence produced by the same female speaker in normal and whispered
voice.

Table 2.1: Mean values of first and second formant frequencies (F1 and F2) of normal and whispered vowels in the
Serbian language for male and female speakers derived from [11].

Frequencies /i/ /e/ /a/ /o/ /u/

[Hz] normal whisp. normal whisp. normal whisp. normal whisp. normal whisp.

F1 male 341 492 534 812 708 955 503 724 337 196
female 357 535 588 868 826 1113 513 842 365 226

F2 male 2140 2306 1830 1756 1192 1433 912 1187 688 685
female 2573 2683 2141 2265 1403 1586 1067 1267 831 742

Wider formant bandwidths for whispered vowels
The formant bandwidths of whispered vowels are wider than that of normal vowels
[9, 11, 12]. Considering broader phone classes (unvoiced/voiced phones), it also shows
a similar pattern that unvoiced formants exhibit broader bandwidths than the voiced
ones [12]. Table 2.2 shows the formant bandwidths estimation of whispered vowels, in
comparison with voiced vowels. Results are obtained as mean values of bandwidth for all
speakers and the last column is obtained as mean over all five vowels. The bandwidths for
all formants in whispered vowels are wider than those in normal vowels.

Table 2.2: Mean formant bandwidths of first and second formants (F1 and F2) for voiced and whispered vowels in
the Serbian language, and mean over all five vowels, derived from [11].

Bandwidths Vowels Mean

[Hz] /i/ /e/ /a/ /o/ /u/ bandwidths

Formants normal whisp. normal whisp. normal whisp. normal whisp. normal whisp. normal whisp.

F1 45.8 160.1 54.5 102.5 63.0 116.5 68.1 104.1 59.2 111.6 58.1 119.0
F2 48.7 104.0 44.6 131.6 67.4 133.6 576 136.0 90.7 105.2 61.8 122.1
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2.2 Signal processing methods
In this section, I introduce some signal processing methods which are the basis of the
methodology chapter. Specifically, the algorithm in methodology is based on the Source-
Filter theory and Linear Predictive Coding.

2.2.1 Source-filter model of speech production
In the source-filter theory, speech signals are composed of a combination of a sound source,
such as the vocal folds, a linear acoustic filter, known as the vocal tract, and a differentiator
(simulating lip radiation effects) [24]. Written in an equation, a time-domain speech signal
is produced by a sound source modulated by a linear filter, which can be stated as

𝑠(𝑛) = 𝑢(𝑛) ∗ ℎ(𝑛)
= 𝑢(𝑛) ∗ 𝑣(𝑛) ∗ 𝑙(𝑛)

(2.1)

where 𝑠(𝑛) denotes the time-domain speech signal, 𝑢(𝑛) denotes the sound source repre-
senting the excitation, ℎ(𝑛) denotes the linear transfer function, 𝑣(𝑛) denotes the vocal
tract filter, 𝑙(𝑛) denotes the lip radiation differentiator and ∗ is convolution.

Source
A speech signal can be classified as voiced or unvoiced depending on whether the vocal
folds are oscillating or not. In the voiced speech, the source originates from the vibrations
of the vocal folds, generating a glottal flow waveform with fundamental frequency 𝐹0
which is often referred to as the pitch. Unvoiced speech is a non-periodic, noise-like signal,
caused by air passing through a narrow constriction of the vocal tract. Hence the source of
unvoiced speech is often modelled as white noise. In general, normal speech consists of
voiced vowels interspersed with voiced and unvoiced consonants, whereas real whispers
are unvoiced [25].

Filter
In the source-filter theory, the source signal is then passed through and modulated by
an acoustic filter. The shape of the vocal tract and consequently the positions of the
articulators (i.e., jaw, tongue, velum, lips, mouth, teeth, and hard palate) provide a crucial
factor to determine the characteristics of this filter [26]. The source-filter model can be
stated in the z-domain as

𝑆(𝑧) = 𝐸(𝑧) ⋅𝐺(𝑧)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑈 (𝑧)

⋅𝑉 (𝑧) ⋅𝐿(𝑧)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻 (𝑧)

(2.2)

where 𝑆(𝑧) is the speech spectrum, 𝐸(𝑧) is the excitation, 𝐺(𝑧) is the glottal contribution,
𝑉 (𝑧) is the vocal tract filter, and 𝐿(𝑧) is the lip radiation. 𝐸(𝑧) and 𝐺(𝑧) are often combined
and called the glottal excitation. 𝑉 (𝑧) and 𝐿(𝑧) are often combined and called the transfer
function.

Figure 2.4 shows a diagram of the source-filter model of speech production derived
from [27] as described in Eq. 2.2.
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Glottal excitation U(z)

Vocal tract V(z)

Lip Radiation L(z)

Speech S(z)

Figure 2.4: Source-filter model of speech production derived from [27]. The speech signal is described as a cascade
of three processes: (i) glottal excitation, (ii) vocal tract filtering, and (iii) lip radiation.

2.2.2 Linear Predictive Coding
Linear Predictive Coding (LPC) or Linear Predictive (LP) analysis is a signal processing
method to model human voice production based on the source-filter model. As mentioned
in Eq. 2.1, time-domain speech signals are produced by a sound source 𝑢(𝑛) going through
a linear filter ℎ(𝑛). LPC is a method to estimate vocal tract filter ℎ(𝑛) and residual 𝑢(𝑛)
from a speech signal 𝑠(𝑛).

In the theory of LPC, the source signal 𝑢(𝑛) is either an impulse train for voiced speech
or random white noise for unvoiced speech and the filter ℎ(𝑛) is a p-th order all-pole filter.
Figure 2.5 shows the speech production model under the hypothesis of the source-filter
theory with LPC.

The reason why I introduce LPC here is that LPC is the basis of the method used for
removing glottal information, which is introduced in section 3.2.1.

Figure 2.5: Speech production model with LPC1. The source signal 𝑢(𝑛) is either an impulse train for voiced
speech or random white noise for unvoiced speech. Then the source signal is modulated by the filter ℎ(𝑛) and the
output is the speech signal 𝑠(𝑛).

1Source: https://jmvalin.ca/demo/lpcnet/.

https://jmvalin.ca/demo/lpcnet/
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2.3 Automatic Speech Recognition
This section first briefly gives an overview of ASR systems and introduces the dictionary
in ASR. Then several E2E ASR models are introduced. After that, the evaluation metrics
and two SOTA data augmentation methods, speech perturbation and SpecAugment, are
presented.

2.3.1 Overview
Traditional ASR
An ASR system produces the most likely word sequence given a speech signal. The
problem of speech recognition is defined as the conversion of spoken utterances into
textual sentences by a machine. In the traditional ASR framework, the Bayesian decision
rule is employed to find the most probable text sequence, 𝑌 , given the observation sequence,
𝑋 :

𝑌 = argmax
Y

𝑝(𝑌 ∣ 𝑋 ) = argmax
Y

𝑝(𝑋 ∣ 𝑌 )𝑝(𝑌 ) (2.3)

where 𝑝(𝑋 ∣ 𝑌 ) is calculated by the acoustic model and 𝑃(𝑌 ) is modeled by the language
model.

Figure 2.6 illustrates a framework of the traditional ASR system. First, acoustic features
are extracted from the input speech using signal processing methods. Notably, log-mel
filterbanks are used as the acoustic features in this project, which are also commonly used
in deep neural network-based ASR systems. The log-mel filterbanks are calculated by
mapping the spectrogram of a signal from the frequency (Hz) scale to the Mel scale. Then
the acoustic model is trained to model the probability of a phoneme sequence based on
the given acoustic features; the language model is trained on the text data to produce
the probability of a certain word sequence; and the lexicon is given as a handcrafted
pronunciation dictionary that maps phonemes to words. The most likely word sequence
(transcripts) are searched by the multiplication of the output probabilities computed from
the acoustic model and the language model as in Eq. 2.3.

Speech

Acoustic Model Language Model Lexicon

Feature
Extraction Search Space Transcripts

Acoustic
Features

Figure 2.6: The framework of traditional ASR system.
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End-to-End ASR
E2E ASR systems are designed to map the input acoustic feature sequence𝑋 = (𝑥1, ..., 𝑥𝑇 ), i.e.
log-mel filterbanks, to the output transcription 𝑌 = (𝑦1, ..., 𝑦𝑈 ). However, the length of the
input sequence is equal to or longer than, i.e. 𝑇 ≥ 𝑈 . This characteristic poses a challenge
when computing the loss function during training. Within E2E architectures, two major
approaches tackle the task of aligning input acoustic features and output label sequences
while computing the loss function between these sequences of variable lengths. These
methods encompass the Connectionist Temporal Classification (CTC) [4] and Attention-
based Encoder-Decoder [5].

2.3.2 Dictionary
Most E2E ASR models use character-based vocabularies: characters, subwords, or words. In
this thesis, I introduce the character-level dictionary and Byte Pair Encoding (BPE) token
dictionary.

Character-level dictionary
The character-level dictionary holds a straightforward structure. In English, words are con-
structed from a fixed set of characters. Consequently, an English character-level dictionary
primarily comprises the 26 letters of the alphabet along with a selection of special tokens,
such as unknown tokens <unk>, word delimiters <space>, and more.

BPE token dictionary
Byte Pair Encoding (BPE) [28] is originally a simple lossless data compression algorithm in
which the most common pairs of consecutive bytes of data are replaced with a byte that
does not occur within that data. It was initially adopted as a tokenizer for neural machine
translation [29] and has since been widely adopted for many Natural Language Processing
tasks as it is simple yet offers a good balance between character and word representations
as well as being deterministic, which makes it computationally inexpensive. And now BPE
is a popular subword tokenization method in ASR tasks for building a robust vocabulary.

BPE tokenization algorithm first initializes the symbol vocabulary with the character
vocabulary and represents each word as a sequence of characters. Then it iteratively counts
all symbol pairs and replaces each occurrence of the most frequent pair (‘A’, ‘B’) with a
new symbol ‘AB’. It continues to count and merge, creating new longer character strings,
until the vocabulary size reaches the desired limit N, an adjustable hyperparameter of the
algorithm.

Table 2.3 shows an example of a character-level dictionary and a BPE token dictionary
(vocabulary size 𝑁 = 100) generated from the combined dataset TIMIT + wTIMIT.

2.3.3 CTC-based End-to-End Models
The Connectionist Temporal Classification (CTC) approach, introduced by Graves et al. [4],
employs an intermediate label representation denoted as 𝝅 = (𝜋1,⋯ ,𝜋𝑇 ). This represen-
tation allows for label repetitions and the presence of a special blank label (−) signifying
emission without labels, i.e., 𝜋𝑡 ∈ {1,⋯ ,𝐾 }∪{−}. CTC trains the model to maximize 𝑃(𝑌 ∣𝑋 ),
the probability distribution over all possible label sequences Φ(𝑌 ′):
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Table 2.3: Example of a character-level dictionary (left), and BPE token dictionary (right) generated from the
combined dataset TIMIT + wTIMIT.

Character BPE
<unk> <unk>
<space> ’

’ a
a age
b al
c an
d ate
e b
f c
g ce
h ch
i d
... ...

𝑃(𝑌 ∣ 𝑋 ) = ∑
𝝅∈Φ(𝑌 ′)

𝑃(𝝅 ∣ 𝑋 ) (2.4)

where 𝑌 ′ is a modified label sequence of 𝑌 , which is made by inserting the blank symbols
between each label and the beginning and the end for allowing blanks in the output, i.e.,
𝑌 = (𝑐,𝑎, 𝑡), 𝑌 ′ = (−, 𝑐,−, 𝑎,−, 𝑡,−).

CTC is generally applied on top of Recurrent Neural Networks (RNNs). Each RNN
output unit is interpreted as the probability of observing the corresponding label at a
particular time. The probability of label sequence 𝑃(𝝅 ∣𝑋 ) is modelled as being conditionally
independent by the product of the network outputs:

𝑃(𝝅 ∣ 𝑋 ) ≈
𝑇
∏
𝑡=1

𝑃 (𝜋𝑡 ∣ 𝑋 ) =
𝑇
∏
𝑡=1

𝑞𝑡 (𝜋𝑡) (2.5)

where 𝑞𝑡 (𝜋𝑡) denotes the softmax activation of 𝜋𝑡 label in RNN output layer 𝑞 at time 𝑡.
The CTC loss to be minimized is defined as the negative log-likelihood of the ground

truth character sequence 𝑌 ∗, i.e.

CTC ≜ −ln𝑃 (𝑌 ∗ ∣ 𝑋 ) (2.6)

2.3.4 Attention-based Encoder-Decoder Models
Another branch of the E2E system is the Attention-based Encoder-Decoder architecture [5].
Unlike the CTC approach, the attention model does not make any conditional independence
assumptions, and directly estimates the posterior, 𝑃(𝑌 ∣ 𝑋 ) on the basis of a probabilistic
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chain rule, as follows:

𝑃(𝑌 ∣ 𝑋 ) =∏
𝑢

𝑃 (𝑦𝑢 ∣ 𝑦1∶𝑢−1,𝑋 ) (2.7)

𝐡 = Encoder (𝑋 ) (2.8)
𝑦𝑢 ∼ AttentionDecoder(𝐡, 𝑦1∶𝑢−1) . (2.9)

The framework consists of two RNNs: Encoder and AttentionDecoder so that it is able
to learn two different lengths of sequences based on the cross-entropy criterion. Encoder
transforms 𝑋 , to high-level representation 𝐡 = (ℎ1,⋯ , ℎ𝐿) in Eq. 2.8, then AttentionDecoder
produces the probability distribution over characters, 𝑦𝑢, conditioned on ℎ and all the
characters seen previously 𝑦1∶𝑢−1 in Eq. 2.9. 𝐿 is the number of the frames of Encoder
output, and 𝐿 < 𝑇 . Here, a special start-of-sentence(sos)/end-of-sentence(eos) token is
added to the target set, so that the decoder completes the generation of the hypothesis
when (eos) is emitted. The loss function of the attention model is computed from Eq. 2.7 as:

Attention ≜ −ln𝑃 (𝑌 ∗ ∣ 𝑋 ) = −∑
𝑢
ln𝑃 (𝑦∗𝑢 ∣ 𝑦

∗
1∶𝑢−1,𝑋) (2.10)

where 𝑃 (𝑦∗𝑢 ∣ 𝑦∗1∶𝑢−1,𝑋) is the ground truth of the previous characters.

2.3.5 Hybrid CTC/Attention Models
The biggest advantage of CTC is that it preserves the monotonic relationship between
acoustic frames and output labels, which fits the ASR tasks. However, there are some
drawbacks of CTC. The CTC assumes that the outputs are conditionally independent of
each other, which is a wrong assumption to make when dealing with speech. Another
drawback is that the alignments are many-to-one mappings, where multiple inputs can be
aligned to at most one output.

One of the advantages of using Attention-based models is not requiring conditional
independence assumptions compared to CTC-based models. However, the attention is too
flexible to satisfy monotonic alignment constraints in speech recognition tasks.

Since CTC and Attention models both have their advantages and limitations, it can be
useful to integrate them, preserve their advantages and avoid their limitations. The Hybrid
CTC/Attention model utilizes both benefits of CTC and Attention during the training and
decoding steps in ASR.

The training method of the Hybrid CTC/Attention model uses a CTC objective function
as an auxiliary task to train the Attention model encoder within the multiobjective learning
(MOL) framework. Figure 2.7 illustrates the overall architecture of the framework, where the
same BLSTM is shared with the CTC and Attention encoder networks. The multiobjective
learning loss function is represented as follows by using both CTC in Eq. 2.6 and Attention
model in Eq. 2.10:

MOL = 𝜆CTC+(1−𝜆)Attention (2.11)

with a tunable parameter 𝜆 ∶ 0 ≤ 𝜆 ≤ 1.
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Figure 2.7: Hybrid CTC/attention based end-to-end framework from [6]. The shared encoder is trained by both
CTC and attention model objectives simultaneously. The shared encoder transforms the input sequence 𝑥 into
high-level features 𝐡, the location-based attention decoder generates the character sequence 𝑦.

2.3.6 Conformer-based Hybrid CTC/Attention Models
In the previously mentioned Hybrid CTC/Attention Models, the encoders are all RNNs.
In recent years, Gulati et al. [7] proposed a novel architecture with a combination of
self-attention and convolution in ASR models, which is named Conformer. It has achieved
the SOTA performance in many widely-used datasets in the field of ASR [30]. Conformer
combines convolution neural networks and transformers to model both local and global
dependencies of an audio sequence in a parameter-efficient way.

The Conformer model [30] consists of a Conformer encoder proposed in [7] and a
Transformer decoder. It predicts a target sequence 𝑌 of characters or BPE tokens from an
input sequence of 80-dimensional log-mel filterbank features with/without 3-dimensional
pitch features. 𝑋 is first sub-sampled in a convolutional layer by a factor of 4 and then fed
into the encoder and decoder to compute the cross-entropy loss. The encoder output is
also used to compute a CTC loss for joint CTC/attention training and decoding.

2.4 Evaluation metrics
Word Error Rate (WER) is chosen as the metric to evaluate the performance of the ASR
systems in this project. The WER is computed as:

𝑊𝐸𝑅 =
𝑆+𝐷+ 𝐼

𝑁
=

𝑆+𝐷+ 𝐼
𝑆+𝐷+𝐶

(2.12)

where 𝑆 is the number of substitutions, 𝐷 is the number of deletions, 𝐼 is the number of
insertions, 𝐶 is the number of correct words, and 𝑁 is the number of words in the reference.
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2.5 Data augmentation
Data augmentation has been proposed as a method to generate additional training data
for ASR. It proves to be an effective method for dealing with data sparsity and improving
the performance of normal speech recognition [31, 32] as well as abnormal speech recog-
nition [17, 19, 33]. Here I introduce two widely-used data augmentation methods: speed
perturbation [31] and SpecAugment [32].

2.5.1 Speed perturbation
Speed perturbation is a widely-used data augmentation method for speech [31]. It changes
the speed of the audio signal, producing a faster or slower version of the original signal with
a speed factor. When the speed factor is larger than 1.0, the speech signal is accelerated;
when the speed factor is smaller than 1.0, the speech signal is decelerated.

2.5.2 SpecAugment
SpecAugment is another popular way for speech data augmentation [32]. There are three
augmentation policies in SpecAugment:

• Time Warping: This policy is to warp the spectrogram in the time axis randomly.
Unlike speed perturbation, this method does not increase or reduce the duration but
squeezes and stretches the spectrogram locally.

• FrequencyMasking: Here, some consecutive Mel frequency channels are randomly
masked.

• Time Masking: This method is similar to frequency masking but randomly masks
consecutive time steps of a spectrogram.
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3
Methodology

In this chapter, I introduce the datasets, proposed method, and experimental setup. In section
3.1, the three datasets used in this project are introduced in detail. Section 3.2 presents the
proposed approach to convert from normal to pseudo-whispered speech, Pseudo-whispered
speech conversion. The experimental setup including the data pre-processing, feature extraction,
ASR systems, and data augmentation specifics are given in section 3.3.
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3.1 Datasets
In this section, all datasets used in this thesis are introduced. TheWhispered TIMIT [18] and
TIMIT [34] datasets are used to train ASR systems for baseline experiments. AndWhispered
TIMIT, TIMIT and LibriSpeech [35] datasets are used to generate pseudo-whispered speech
data.

3.1.1 Whispered TIMIT
TheWhispered TIMIT (wTIMIT) corpus [18] consists of 450 phonetically balanced sentences
in both normal (wTIMIT-n) and whispered (wTIMIT-w) speech from speakers from two
accent groups: US and Singaporean English with 28 (12 male and 16 female) and 20 (12
male and 8 female) speakers, respectively.

wTIMIT was originally partitioned into a training and test set [18]. To prevent over-
fitting the E2E models, a re-partitioning of wTIMIT into training, development, and test
sets is needed. Preliminary experiments performed in [17] showed that a partitioning of
the training and test data where there was no speaker overlap in the training and test set,
degraded performance by approximately 10% relatively compared to a partitioning of the
training and test data where the same speaker could occur in both. This relatively small
difference in performance was attributed to the pitch being mostly absent in whispered
speech. Also given the fact that partitioning by speakers can lead to less data that can be
used as training data, [17] suggested that prohibiting speaker overlap between the training
and test sets is unnecessary. Following [17], wTIMIT was re-partitioned into a training,
development, and test set allowing speaker overlap. Each data set consisted of 400/25/25
sentences, respectively, split from the 450 sentences.

Table 3.1: Subsets of wTIMIT.

Accent Hours Utterances

Train
Normal US 15.23 10738

SG 10.51 7999

Whisper US 15.54 10707
SG 10.64 8000

Dev
Normal US 0.95 670

SG 0.65 500

Whisper US 0.97 668
SG 0.67 500

Test
Normal US 0.94 674

SG 0.65 500

Whisper US 0.96 672
SG 0.66 500
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For the sake of simplicity, the test sets in wTIMIT and their abbreviations are listed
below:

• 𝐍𝐔𝐒: Normal speech with US accent

• 𝐍𝐒𝐆: Normal speech with SG accent

• 𝐖𝐔𝐒: Whispered speech with US accent

• 𝐖𝐒𝐆: Whispered speech with SG accent

3.1.2 TIMIT
The TIMIT corpus [34] consists of read speech and was designed to provide speech data
for acoustic-phonetic studies and for the development and evaluation of automatic speech
recognition systems. There are a total of 6300 utterances, each consisting of 10 sentences
spoken by each of the 630 speakers (438 male and 192 female) from 8 major dialect regions
across the United States. The prompts for the 6300 utterances consist of 2 dialect sentences
(SA), 450 phonetically compact sentences (SX), and 1890 phonetically-diverse sentences
(SI). All 450 prompts of wTIMIT were obtained from the SX section of the TIMIT corpus,
which makes TIMIT a good option as additional training data for normal speech and to
generate pseudo-whispered speech. Table 3.2 shows the subsets of TIMIT used in this
project and their duration and number of utterances.

Table 3.2: Subsets of TIMIT.

Hours Utterances

Train 3.15 3696
Dev 0.34 400
Test 0.16 192

3.1.3 LibriSpeech
LibriSpeech [35] is a corpus of approximately 1000 hours of 16kHz read English speech.
The data is derived from read audiobooks from the LibriVox project and has been carefully
segmented and aligned. Table 3.3 shows the three training subsets with a total size of 960
hours and their duration. The first two train-clean sets are on average of higher recording
quality and with accents closer to US English than the third training set. In this project, I
only used the train-clean-100 subset to generate pseudo-whispered speech and augment
the training data.
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Table 3.3: Subsets of the training set of LibriSpeech.

hours
per-spk
minutes

female
speakers

male
speakers

total
speakers

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

3.2 Pseudo-whispered speech conversion
The proposed method to convert normal to pseudo-whispered speech is based on that of
Cotescu et al. [36] who proposed a handcrafted digital signal processing recipe that converts
normal speech into whispered speech in three steps by making acoustic modifications to
the normal speech: 1) remove the glottal contribution using spectral subtraction; 2) shift the
first formant using frequency warping; 3) increase the formant bandwidth using moving
average filtering. The WORLD vocoder [23] is used to extract features for re-synthesizing
high-quality speech.

In step 1, instead of using spectral subtraction as in [36], I implemented a glottal
cancellation method, which does not require parameters for modelling glottal flow but
removes the glottal information directly from a given normal speech signal. Moreover,
preliminary experiments using the method from [36] showed that moving average filtering
not only widens the formant bandwidth but also up-shifts the formant frequencies. Hence,
the proposed method for pseudo-whispered speech conversion is implemented in 2 steps,
which is also shown in Figure 3.1:

• Step 1: Removing glottal information
Removing the glottal source using GFM-IAIF-based Glottal Inverse Filtering (see
section 3.2.1),

• Step 2: Changing formant information
Increasing the formant bandwidth and up-shifting the formant frequencies using
moving average filtering (see section 3.2.2).

WORLD
Vocoder

F0

Sp

Ap

Set to 0

MAF

Set to unit

zero F0

unit Ap

Spmaf
WORLD
VocoderGFM-IAIF-GC

Normal Pseudo
Whsiper
(PW)

Figure 3.1: The proposed pipeline for pseudo-whispered speech conversion, where GFM-IAIF-GC is GFM-IAIF-
based glottal cancellation and MAF is moving average filtering. Input is normal speech and the output is
pseudo-whispered speech (PW).
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3.2.1 Step 1: Removing glottal information
As introduced in section 2.2.1 Eq.2.2, a speech signal is composed of an excitation 𝐸, vocal
tract filter 𝑉 , lip radiation filter 𝐿, and glottal contribution 𝐺, which can be written in the
frequency domain as 𝑆(𝑧) = 𝐸(𝑧) ⋅𝐺(𝑧) ⋅𝑉 (𝑧) ⋅𝐿(𝑧). Glottal Inverse Filtering (GIF) estimates
the source of voiced speech, specifically the glottal volume velocity waveform. Iterative
Adaptive Inverse Filtering (IAIF) [37] is one of the most widely used algorithms for GIF.
IAIF successively models the vocal tract filter 𝑉 (𝑧), lip radiation 𝐿(𝑧), and glottis (glottal
contribution) 𝐺(𝑧) using linear prediction (LP) analysis, then removes their effect by inverse
filtering. After two iterations, it ultimately removes 𝑉 (𝑧) and 𝐿(𝑧) to leave an estimate of
the glottal flow 𝑔(𝑛), where n is the discrete-time index.

The Glottal Flow Model-based Iterative Adaptive Inverse Filtering (GFM-IAIF) [38]
is an improved version of IAIF. It constrains glottal flow by a 3𝑟𝑑 order spectral model
𝐺(𝑧) =

{
(1−𝑎𝑧−1)(1−𝑎∗𝑧−1)(1− 𝑏𝑧−1)

}−1. GFM-IAIF performs competitively for nor-
mal phonations [39], whichmakes it suitable for our case: cancelling the glottal contribution
of normally phonated speech. The GFM-IAIF method comprises four essential steps for an
accurate estimation:

In the initial step, referred to as gross glottis estimation, the spectral tilt contribution
of the glottis is eliminated from the speech signal, laying the groundwork for the vocal
tract (VT) estimation. The second step, VT gross estimation, involves the deconvolution of
the gross glottis and lip radiation filters from the original signal. The VT autoregressive
coefficients are then estimated using high-order LPC. For the third step, fine estimation
of the glottis, the signal undergoes the removal of lip radiation and the estimated VT
contributions (thus eliminating all VT formants). A 3𝑟𝑑 order LPC is utilized to ensure
the final glottis filter aligns with the glottal flow model. Lastly, the fourth step, fine VT
estimation, yields the final estimate of the vocal tract transfer function.

In the proposed method, I employ GFM-IAIF to extract glottal flow, after which the
effect of the glottis is cancelled by inverse filtering, and the output is a speech signal
without glottal contribution. This process is called GFM-IAIF-based glottal cancellation
(GFM-IAIF-GC) and is shown in Figure 3.2, where the input is a normal speech signal and
the output is a speech signal without glottal contribution.

Subsequently, 𝐹0, the spectral envelope (𝑆𝑝), and the aperiodic spectral envelope (𝐴𝑝)
are extracted from the speech signal without glottal contribution using theWORLD vocoder.
To ensure that the pitch is removed entirely, the 𝐹0 is set to zero and 𝐴𝑝 values are set to
all units.

3.2.2 Step 2: Changing formant information
To increase the formant bandwidth and up-shift the formant frequencies, I employ moving
average filtering on the spectral envelop 𝑆𝑝 extracted by the WORLD vocoder with a 400
Hz-wide triangular window across all frequency axes and get a new spectrogram 𝑆𝑝𝑚𝑎𝑓 .

The three adapted features, 𝑧𝑒𝑟𝑜 𝐹0, 𝑆𝑝𝑚𝑎𝑓 and 𝑢𝑛𝑖𝑡 𝐴𝑝 are passed to the WORLD
vocoder for re-synthesising the pseudo-whispered speech (PW). Figure 3.3 shows an
example of the conversion results, it shows a zoomed-in spectrogram of normal speech
(left panel), whispered speech (middle panel) and pseudo-whispered speech (right panel).
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Figure 3.2: GFM-IAIF-based glottal cancellation derived from [38]. The input is a normal speech signal and the
output is a speech signal without glottal contribution.
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Figure 3.3: Spectrogram of normal (left panel), whispered (middle panel), and pseudo-whispered speech (right
panel) of the words “the priorities” from the same utterance as in Figure 2.2.
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3.3 Experimental Setup
All E2E models were trained with the ESPNet toolkit [40]. The sampling rate of speech
data in the wTIMIT dataset is 44.1 kHz, while the sampling rates in TIMIT and LibriSpeech
are 16 kHz. It is necessary to keep the sample rate consistent among all datasets, hence all
speech data in wTIMIT were downsampled from 44.1 kHz to 16 kHz before the Feature
Extraction stage simply using SoX 1. The front-end features are 80 dimensional log-mel
filterbank features with 3-dimensional pitch features used for network training.

3.3.1 Baseline models
First, I trained a strong baseline by investigating the

1. Training data: TIMIT plus the normal speech fromwTIMIT (TM+wTM-n) vs. TIMIT
plus both normal and whispered speech from wTIMIT (TM+wTM-wn);

2. Data augmentation: none vs. speed perturbation (SP) [31] at 90% and 110% of
the original rate of the training data and SpecAugment (SpecAug) [32] which was
used with a maximum width of each time and frequency mask of 𝑇 = 20, 𝐹 = 10,
respectively;

3. Dictionary types and sizes: six models used a character-level dictionary, and the
remaining two used a BPE token dictionary;

4. Model architectures: I compared two architectures: the Hybrid CTC/Attention
Model (Hybrid-CTC) [6] and Conformer-based Hybrid CTC/Attention Model (Con-
former) [30] (from the LibriSpeech recipe from the ESPNet framework).

In total, eight models were trained. The models were evaluated on the TIMIT and
wTIMIT-n and wTIMIT-w datasets. Performance was measured in terms of Word Error
Rate (WER) for both accent groups separately.

3.3.2 Pseudo-whisper data augmentation
The second experiment investigated the effect of adding pseudo-whispered (PW) data to the
training data on whispered speech ASR performance. To that end, the pseudo-whispered
speech was created from TIMIT, wTIMIT-n, and LibriSpeech-100h (referred to as Libri-100)
and each was successively added to the training data: first only PW speech from TIMIT
(PW(TM)), then the PW speech from wTIMIT-n (PW(wTM-n)) was added, and finally also
the PW speech from LibriSpeech-100h (PW(Libri100)). Each set of training data was used
to train both the Hybrid-CTC and Conformer architectures, yielding six models. The effect
of the pseudo-whisper data augmentation on the two accent groups was also analysed.

3.3.3 Acoustic characteristics of whispered speech
In the final experiment, the effect of the specific acoustic characteristics of whispered speech
on whispered speech ASR performance was investigated by comparing the recognition
results on speech in which either the glottal information was removed or in which the
formant bandwidth had been widened and the formant frequencies had been shifted.

To that end, I individually applied each of the two steps of the proposed pseudo-
whispered speech conversion method on the normal test set in wTIMIT and synthesized
1https://sox.sourceforge.net/
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the modified speech. Figure 3.4 shows the pipelines of generating speech without glottal
contribution (referred to as NG) and speech with widened formant bandwidth and shifted
formant frequencies (referred to as WB). The pipelines are subsets of the full pipeline in
Figure 3.1.

SpWORLD
Vocoder

F0

Ap

Set to 0

Set to unit

zero
F0

unit
Ap

WORLD
VocoderGFM-IAIF-GC

Normal NG

F0

Ap

WORLD
Vocoder Sp MAF Spmaf

WORLD
Vocoder

Normal WB

Figure 3.4: The pipeline for generating speech with only glottal cancellation (top panel) and with only a widened
formant bandwidth and shifted formant frequencies (bottom panel).

The modified speech was subsequently tested using three models: the Hybrid-CTC ar-
chitecture trained on only normal speech (row TM+wTM-n in Table 4.1); trained on normal
and whispered speech (row TM+wTM-wn in Table 4.1); and trained on normal, whispered,
and pseudo-whispered speech (TM+wTM-wn+PW(TM+wTM-n)). SP and SpecAug were
not applied to all three models in this final experiment.
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4
Results

In this chapter, we show the experimental results. Section 4.1 presents the results of the baseline
experiments. Section 4.2 gives the results of adding pseudo-whispered speech data. Section 4.3
shows the results of RQ2: Impact of acoustic characteristics.
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4.1 Baseline Experiments
Before diving into the analysis of the proposed pseudo-whisper data augmentation and its
impact on recognition performance, it is crucial to establish a strong baseline model using
the available data. Therefore, we first evaluate the performance of a model trained solely
on normal speech. By incorporating actual whispered speech in the training data and
employing SOTA data augmentation techniques, we achieved a relatively strong baseline.

Table 4.1 presents the results of the baseline models on the TIMIT and wTIMIT test sets
for the two accent groups separately and averaged over both accent groups. The first model
was trained on only normal speech (TM+wTM-n) and gave aWER of 40% (Hybrid-CTC) and
52% (Conformer) on the TM test set, while the performance on wTIMIT-n averaged over
both accent groups (𝐍𝐀𝐯𝐠) showed a fairly large WER drop of 10-20%. The performance
on whispered speech is much lower than that on normal speech, with WERs of over 100%.
Initially, training a model on normal speech alone led to a significant performance gap of
nearly 50% between normal and whispered speech recognition.

To bridge this performance gap between normal and whispered speech recognition
and try to improve recognition accuracy, we incorporated real whispered speech data
into the training set (TM+wTM-wn). This addition improved recognition performance
for whispered speech substantially, and reduced the gap with performance on normal
speech to less than 10% for both architectures, but at the cost of a slight increase in WER
for normal speech. The improvement clearly indicates the benefits of utilizing matched
training and test sets in enhancing overall ASR performance for whispered speech.

Furthermore, we investigated the effectiveness of the SOTA data augmentation tech-
niques, including speed perturbation and SpecAugment. While the Hybrid-CTC model
did not demonstrate notable improvements with these techniques, the Conformer model
demonstrated a promising improvement of more than 25% for both average normal and
whispered speech. This suggests that as the size of the training data increases, the Con-
former models outperform the Hybrid-CTC models.

Finally, we investigated the use of the BPE token dictionary as an alternative to the
character-level dictionary. Leveraging BPE enables both models to further improve the
performance, achieving WERs of 37.9% and 44.4% for normal and whispered speech for the
Conformer model. This final baseline model is selected as the baseline model to which the
models trained using additional pseudo-whispered speech will be compared.
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Table 4.1: Details of baseline ASR systems and their performances in WER (%) on TIMIT and wTIMIT

Details TM wTIMIT

Training Augmentation Hours Architecture Token #Token Test 𝐍𝐔𝐒 𝐍𝐒𝐆 𝐖𝐔𝐒 𝐖𝐒𝐆 𝐍𝐀𝐯𝐠 𝐖𝐀𝐯𝐠

TM+wTM-n None 28.89 Hybrid-CTC Char 29 40.6 45.4 59.1 99.4 105.2 51.2 101.9
Conformer Char 29 52.9 73.4 82.7 102.5 109.6 77.4 105.5

TM+wTM-wn None 55.07 Hybrid-CTC Char 29 41.2 51.5 62.8 55.3 74.4 56.3 63.5
Conformer Char 29 44.7 78.0 86.4 81.4 92.0 81.6 85.9

TM+wTM-wn SP + SpecAug 166.33 Hybrid-CTC Char 29 42.3 52.0 67.3 57.0 77.7 58.5 65.9
Conformer Char 29 38.3 49.6 58.3 53.2 68.3 53.3 59.7

TM+wTM-wn SP + SpecAug 166.33 Hybrid-CTC BPE 100 44.6 41.2 55.8 44.1 65.9 47.4 53.4
Conformer BPE 100 34.1 34.9 41.8 37.7 53.5 37.9 44.4

4.2 RQ1: Effect of pseudo-whispered speech
This section focuses on RQ1: Can we improve ASR systems performance for whis-
pered speech by generating artificial whispered speech data through signal pro-
cessing techniques as additional training data?

In the following experiments, we subsequently added pseudo-whispered speech data
of TIMIT, wTIMIT, and LibriSpeech-100h to the baseline training data (trained on TM
and wTM-wn with SP + SpecAug). Table 4.2 presents the results of the pseudo-whispered
speech experiments. For ease of comparison, the results of the baseline Hybrid-CTC and
Conformer models are added (identical to those reported in Table 4.1).

Table 4.2: WER (%) on the TIMIT and wTIMIT test sets when using pseudo-whispered training data generated
from TIMIT, wTIMIT-n, and LibriSpeech-100h. Relative improvement (%) of the proposed method compared
to the baseline is also reported. Results of the chosen baseline Hybrid-CTC and Conformer models are added
(identical to those reported in Table 4.1).

Details TM wTIMIT Relative Imp.

Training Data Hours Architecture #Token Test 𝐍𝐔𝐒 𝐍𝐒𝐆 𝐖𝐔𝐒 𝐖𝐒𝐆 𝐍𝐀𝐯𝐠 𝐖𝐀𝐯𝐠 𝐍𝐀𝐯𝐠 𝐖𝐀𝐯𝐠

Baseline 166.3 Hybrid-CTC 100 44.6 41.2 55.8 44.1 65.9 47.4 53.4 - -
Conformer 100 34.1 34.9 41.8 37.7 53.5 37.9 44.4 - -

+PW(TM) 175.8 Hybrid-CTC 100 46.5 40.1 52.4 41.2 59.9 45.4 49.2 4.2 7.9
Conformer 100 36.4 32.1 35.2 33.4 40.1 33.4 36.3 11.9 18.2

+PW(TM+wTM-n) 253.6 Hybrid-CTC 100 43.4 36.1 44.3 38.0 51.8 39.6 43.9 16.5 17.8
Conformer 100 34.6 32.4 36.6 33.6 42.1 34.2 37.2 9.8 16.2

+PW(TM+wTM-n+Libri100) 557.6 Hybrid-CTC 300 16.9 35.5 55.0 39.2 63.4 43.8 49.5 7.6 7.3
Conformer 300 11.0 26.8 38.6 30.7 49.2 31.8 38.6 16.1 13.1

4.2.1 Pseudo-whisper data augmentation
In this subsection, we only focus on the results of the TM Test, the average results of
normal (𝐍𝐀𝐯𝐠) and whispered speech (𝐖𝐀𝐯𝐠), and the relative improvement the proposed
method brought.
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Adding Pseudo-whispered speech of TIMIT
In Table 4.2, rows + PW(TW) present the results obtained by incorporating only 3 hours
of pseudo-whispered speech from the TIMIT training set (with speed perturbation yielding
9 hours), and the main findings are:

• On the TM Test set, there is a slight degradation in performance for both the Hybrid-
CTC and Conformer models, with an increase in WERs of approximately 2%.

• The Hybrid-CTC model shows small improvements in performance for normal and
whispered speech compared with the baseline, with relative WER improvements of
4.2% and 7.9%, respectively.

• The Conformer model achieves larger relative improvements in performance for
normal speech and whispered speech, with relative improvements of 11.8% and 18.2%,
respectively, which is comparatively higher than the Hybrid-CTC model.

• The Conformer model performs better than the Hybrid-CTC model on all test sets.

Overall, adding only 3 hours of pseudo-whispered data from TIMIT improved the
average WER of whispered speech compared to the baseline for both models, with the
largest relative improvement for the Conformer model (18.2%). Interestingly, adding pseudo-
whispered speech also improved the WER on the normal wTIMIT speech was reduced for
both models.

Adding pseudo-whispered speech of TIMIT and wTIMIT-n
In Table 4.2, rows + PW(TM+wTM-n) show the results of adding pseudo-whispered speech
of wTIMIT-n on top of the training data used in the previous experiment (TM + wTM-wn +
PW(TM) ), and the main findings are:

• On the TM Test set, there is a slight improvement compared to the previous section.
The Hybrid-CTC model performs better than the baseline model on this test set.
However, the Conformer model still has a higher WER on the TM Test.

• For the Hybrid-CTC model, the WERs of both normal speech and whispered speech
decrease significantly, with a relative improvement of over 15% for each.

• On the other hand, the Conformer model does not achieve further enhancement
compared to only adding PW(TM), although its performance is better than the
baseline model in all cases.

• Whatsoever, the Conformer model still performs better than the Hybrid-CTC model
on all test sets.

Overall, adding the pseudo-whispered speech of the wTIMIT-n training set further
improved recognition performance for the Hybrid-CTCmodel but performance for the Con-
former model deteriorated for the normal and whispered speech. Recognition performance
on the TM test set was again similar to the baseline models.
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Adding pseudo-whispered speech of TIMIT, wTIMIT-n and LibriSpeech-100h
In Table 4.2, rows + PW(TM+wTM-n+Libri100) show the results of further adding pseudo-
whispered speech of LibriSpeech-100h, and the main findings are:

• In the TM Test set, there is a massive improvement compared to the previous sections:
the WER of TM Test drops to 16.9% (Hybrid-CTC) and 11.0% (Conformer), achieving
the best performance on TIMIT.

• Both the Hybrid-CTC and Conformer models show improvements in normal speech,
with a relative improvement of 7.6 and 16.1%. The Conformer model achieves the
best performance on wTIMIT normal speech, with a WER of 31.8%.

• On the other hand, both models do not enhance the performances on wTIMIT
whispered speech. However, they are worse than the previous models (+ PW(TM)
and + PW(TM+wTM-n) ) without adding pseudo-whispered speech of LibriSpeech-
100h.

Overall, further adding the pseudo-whispered speech generated from LibriSpeech-100h
gives the best recognition performance for normal wTIMIT speech, but it deteriorated the
performance for the whispered speech. The best whispered speech results are obtained
with the Conformer model trained with (only) the pseudo-whispered TIMIT speech added.

4.2.2 Comparing different speaker groups
In this subsection, I focus on the recognition performance on normal and whispered speech
for the two accent groups in the wTIMIT test set in Table 4.2, namely, 𝐍𝐔𝐒, 𝐍𝐒𝐆, 𝐖𝐔𝐒, and
𝐖𝐒𝐆.

Comparing the recognition performance on normal and whispered speech for the
two accent groups in the wTIMIT test set showed that Singaporean English normal and
whispered speech is consistently worse recognised than US English. This performance gap
is the largest for whispered speech.

Adding pseudo-whispered speech always improves the recognition performance of
normal and whispered US and Singaporean English, even if the pseudo-whispered speech
was based on US English only (PW(TM)). In fact, adding only the US English pseudo-
whispered speech from TIMIT gives the best result for 𝐍𝐒𝐆 and 𝐖𝐒𝐆 and reduces the
performance gap with US English to 3.1% for normal speech and 6.7% for whispered
speech for the Conformer, i.e., the smallest performance gap for whispered speech for the
Conformer.

Interestingly, adding pseudo-whispered speech from Singaporean English does not
further improve recognition performance for 𝐍𝐒𝐆 and 𝐖𝐒𝐆 for the Conformer, although it
does further improve performance for the Hybrid-CTC model, giving the best results for
normal and whispered Singaporean English for the Hybrid-CTC model.

When adding the pseudo-whispered US English from LibriSpeech (PW(Libri-100)) as
additional training data, the performance on whispered US English (𝐖𝐔𝐒) improves to
30.7%, the best result, but it adversely affects the performance on 𝐖𝐒𝐆, widening the gap
between the US and Singaporean English to 18.5% for the Conformer model and even more
for the Hybrid-CTC model. Thus, adding a large amount of pseudo-whispered speech
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based on US English negatively impacts the recognition of Singaporean English normal
and whispered speech.

4.3 RQ2: Impact of acoustic characteristics
This section focuses on RQ2: Which and to what extent do acoustic characteristics
of whispered speech impact whispered speech recognition performance?

Table 4.3 presents the results of the experiments on normal speech, real whispered
speech, pseudo-whispered (PW) speech and the intermediate forms of whispered speech
(see section 3.3), i.e., normal speech without glottal contributions (NG) and normal speech
with widened formant bandwidth and shifted formant frequencies (WB). Note that to create
PW, steps used to generate NG and WB are applied, or we can roughly say PW =NG+WB.

Table 4.3: WERs (%) of different test groups when the model is trained on normal speech (row TM+wTM-n in
Table 4.1); normal and whispered speech (row TM+wTM-wn in Table 4.1); and normal, whispered, and pseudo-
whispered speech (TM+wTM-wn+PW(TM+wTM-n)).

Training data Normal Whisper PW NG WB

TM + wTM-n 51.2 101.9 79.7 78.0 56.5
TM + wTM-wn 56.3 63.5 65.5 65.2 59.2
TM + wTM-wn + PW(TM+wTM-n) 55.9 61.3 59.2 59.4 62.3

When the model is trained on only normal speech (TM + wTM-n), the gap between
Normal and NG (>25%) is larger than the one between Normal and WB (5%). This in-
dicates that performance is worse for speech without glottal contribution and that the
widened formant bandwidth and shifted formant frequencies in whispered speech are less
detrimental to recognition performance. Combining NG and WB into pseudo-whispered
speech only shows a small deterioration compared to NG. This indicates that the effect of
both removing glottal information and widening the formant bandwidth and shifting the
formant frequencies is not entirely additive.

Not surprisingly, adding real whispered speech from wTIMIT-n into training data (TM
+ wTM-wn) greatly improves the recognition performance of real whispered speech. Recog-
nition performance of pseudo-whispered speech and NG speech also greatly improves, to
the level of that of real whispered speech. Performance on WB speech slightly deteriorates.
This again indicates that the glottal information is the most important acoustic information
to explain the whispered speech recognition performance.

Adding pseudo-whispered speech (TM + wTM-wn + PW(TM+wTM-n) ) improves the
recognition performance of real and pseudo-whispered speech, indicating that the pseudo-
whispered speech is close enough to real whispered speech for real whispered speech to
benefit from the added data. The recognition performance of PW is actually better than
that of real whispered speech which shows the benefit of adding matched training data.
Speech without glottal information is now actually better recognised than WB speech,
which shows that adding pseudo-whispered speech is most beneficial for NG speech and
that the benefit for WB speech is less great.
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5
Discussions and Conclusions

5.1 Discussions
For the RQ1: Can we improve ASR systems performance for whispered speech by
generating artificial whispered speech data through signal processing techniques
as additional training data?

The proposed pseudo-whisper data augmentation improves ASR performance compared
to the baseline Hybrid-CTC and Conformer models. All three experiments, i.e. +PW(TM),
+PW(TM+wTM-n) and +PW(TM+wTM-n+Libri100), have shown an improvement for
whispered speech recognition compared to the baseline. For the Hyrbid-CTC model, we
achieve an improvement from 53.4% to 43.9% on WER, with a relative improvement of
17.8%. For the Conformer model, we achieve an improvement from 44.4% to the best
result on whispered speech: 36.3% WER, with a relative improvement of 18.2%. This
WER reduction underscores the efficacy of utilizing pseudo-whispered speech as a means
of augmentation. And we also discover that accents in the training data may have an
impact on the recognition performance of different speaker groups. In the wTIMIT dataset,
there are two different accents: North American and Singaporean English. When we add
the pseudo-whisper of LibriSpeech-100h as additional training data, the amount of US-
accented speech dominates quite more in the training data. The addition of it improves the
performance of US English normal and whispered speech but has a negative impact on the
performance of Singaporean English normal and whispered speech. So when comparing
the performance between models trained on different training data, results of further
adding pseudo-whispered speech of LibriSpeech-100h are worse in the average WER over
US and SG accents.

Comparing our results to the SOTA on wTIMIT shows that our WER on whispered
speech is higher than in [19]; however, [19] does not report which accent group from
wTIMIT they use in their evaluation. Assuming that they only used the US English part of
wTIMIT, considering that they used large amounts of US English data from LibriSpeech
and their internally recorded dataset for training, our results are very close to theirs (29.4%
vs. our 30.7%) on the US English whispered speech, but using far less data. Comparing
our results to those of Chang et al. [17]: both their approach and ours showed a relative
improvement (their 44.4% in CER; our 18.2% in WER); however they only report phone
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and character error rates, making a direct comparison impossible. Agrawal et al. [10] also
achieved a WER of 8.86 % on the wTIMIT whisper test set; however they used speech
enhancement techniques like Denoising Autoencoders, Variational Autoencoders to map
speech from the whisper domain into the normal domain and recognised the speech
through an ASR model trained on normal speech instead of building an ASR system trained
on whispered speech.

For the RQ2: Which and to what extent do acoustic characteristics of whispered
speech impact whispered speech recognition performance?

For the model only trained on normal speech, the performance on speech without
glottal information (NG) is worse than speech with widened formant bandwidth and shifted
formant frequencies (WB). And when real whispered speech data is added to training data,
the performance on WB speech deteriorates. They both prove that the lack of glottal
information in whispered speech has the largest impact on whispered speech recognition.

I believe this research question brings more meaning to future research on whispered
speech recognition or related tasks. The results of the final experiment suggest that further
investigation on feature modelling for whispered ASR is needed, which may emphasize
the importance of glottal information and then improve the performance of whispered
ASR. Also now that we know the glottal information in speech plays a more important
role in whispered speech recognition and we are able to generate the speech without
glottal information, I would like to bring back the case in pathological speech contexts. For
patients with impaired larynx (vocal folds) who can only produce whispery voices, we can
try using the NG speech to enhance the ASR systems specially designed for them.

5.2 Future Research
Based on what this thesis has done and its limitations, I can provide some ideas for future
works.

In this work, I did not try training on the full 960 hours of LibriSpeech and generate
pseudo-whispered speech from it. It is a widely-used dataset and other related works on
whispered speech recognition [17, 19] also used LibriSpeech-960h. For now, our results
on whispered speech are slightly higher than those in [19]. It is worth trying to add it to
the training set so that we can compare our proposed method with theirs in a more direct
and fair way. Also, the related works, e.g. [17, 19], both used different evaluation metrics.
Especially this work used the same wTIMIT re-partition as [17], but it did not train or
report at the phone or character level. In future, conducting more experiments reporting
on phone and character error rates can help us compare with their work.

This thesis proposed a signal-processing-based normal-to-whisper conversion method
to create pseudo-whispered speech. When I listen to synthetic pseudo-whispered speech,
the quality is still not as good as real whispered speech. Although this thesis does not aim
at high naturalness or intelligibility, it is worth seeing how "good" the pseudo-whispered
speech is by measuring the naturalness, intelligibility and even speaker identity as in
[36]. And further, discover if the quality of the synthetic speech data will influence the
performance.

Based on the findings in RQ2, it shows a large impact of glottal information in whispered
speech. Many other acoustic features have also been used to train the ASR systems, or
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even modelling from the raw waveform. Glottal information or pitch is more related to the
front-end acoustic features, so I think it is worth trying new acoustic features.

5.3 Conclusions
This thesis project aims to deal with the data scarcity problem of whispered speech by
generating artificial whispered speech to augment the training data for improved E2E
whispered speech ASR and understand what acoustic characteristics of whispered speech
have the largest effect on whispered speech recognition performance. The proposed
signal-processing-based normal-to-whisper conversion method was used to create pseudo-
whispered speech from three databases, i.e. TIMIT, wTIMIT-n, and LibriSpeech-100h.
Utilizing the proposed pseudo-whispered-based data augmentation and the SOTA data
augmentation methods, i.e. speech perturbation and SpecAugment, the best model reduced
theWER of whispered speech from 44.4% to 36.3%, with an 18.2% relative reduction, leaving
only a small WER gap with normal speech. This work also showed results for the individual
speaker groups in the wTIMIT database giving the best results for US English. The final
experiment shows the lack of glottal information in whispered speech has the largest
impact on whispered speech ASR performance.
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