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Abstract

Last few decades the autonomous driving research field has shown exponential growth. The
social benefits, which include increased safety, mobility and productivity, are the main factor
that drive this growth. One of the most difficult problems that vehicle engineers must solve
to develop autonomous vehicles is the motion planning problem.

They must solve the motion planning problem for environments ranging from unstructured
to structured, such as parallel parking up to high-speed highway driving. Current literature
presents many implementations that solve either the structured or unstructured planning
environment or a small range of environments. Yet, the generic implementation of a single
motion planning method, that can plan in the full range of environments, is still an open
question.

The aim of this thesis is to address the identified gap in the literature, by realizing a real-time
implementation of a single motion planning method, that shows human-like and safe driving
behavior and can deal with any environment it encounters.

In this thesis, a method is proposed that solves the planning problem by enhancing the Closed-
Loop Rapidly-exploring Random Tree (CL-RRT) algorithm for planning on curved structured
roads. The planner is aware of the road curvature and deforms the motion plan so it follows
the shape of the road. Extensive simulations have demonstrated that the proposed method
can improve the path quality on curved highway roads when compared with the standard
RRT and CL-RRT. Although the method can plan in any environment it encounters, it
demonstrated limitations in its capability of dealing with complex dynamic environments.
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Chapter 1

Introduction

1-1 Backgrounds

Last few decades the research on Autonomous Vehicles has been growing rapidly. This be-
comes clear when inspecting the number of publications on Autonomous Driving, presented
in Figure 1-1. The illustrated exponential growth is driven by the benefits that Autonomous
Driving can offer society. Autonomous driving has the potential of eliminating all human
error, thereby increasing traffic safety. Furthermore, passengers can engage in other activities
while driving towards their destination. This can increase their productivity.

Figure 1-1: Autonomous Driving publications. Obtained from Scopus
with search terms: "Autonomous" AND "Driving"

To realize these benefits, the Autonomous Vehicle (AV) must completely take over all driv-
ing tasks. These tasks include perceiving the environment, planning motion through the
environment and controlling the vehicle to follow the desired trajectory. To achieve a fully
Autonomous Vehicle, complicated systems must be designed. These systems must exhibit the
desired performance for safe operation in complex dynamic environments. The research in
this thesis focuses on the motion planning layer of the AV.

A motion planner suitable for autonomous driving must be able to plan in environments
ranging from unstructured to structured. Each of these environments introduces unique
challenges for the planner.

Master of Science Thesis Berend van den Berg



4 Introduction

1-2 Analysis of the Operating Domain

Structured environment
Structured environments are encountered most often by the AV. These environments include
urban and rural roads, with the most extreme example being highways (see Figure 1-2).
Highways are designed such that the vehicle’s lateral acceleration is constrained under nor-
mal operating conditions. Thereby safe driving can be achieved at high speeds. This is
accomplished by constraining the road curvature and curvature transitions [1]. These con-
straints result in roads that have simple geometry. Even though this scenario presents simple
geometry, it still introduces several challenges. The scenario is highly dynamic because of the
high speeds that are involved. Hence, the planner must be capable of dealing with dynamic
obstacles and guaranteeing vehicle stability.

Unstructured environment
Contrary to structured environments, in unstructured environments dynamics are often less
important. An example of such an environment is an urban parking lot (see Figure 1-3). Here,
the planner mostly deals with static obstacles (being parked cars). The lack of geometric
structure makes presents the planner with a new challenge: motion must be planned through
an area with cluttered many obstacles and tight passages. Thus, maneuverability becomes
important for the planner.

Planner requirements
The environments introduced in the previous sections are the most extreme examples the
vehicle can encounter. We can consider anything in between as a combination of the two. For
example: performing a parking maneuver to steer the vehicle into a parking spot parallel to
the lane. If a planner is constructed that can deal with the two extremes, it is safe to assume
it can plan in any environment. This results in the following requirements for the planner:

− Dynamic obstacles must be safely avoided
− Vehicle stability must be guaranteed up to high speeds
− Reverse driving must be possible for performing complex maneuvers
− Computational time must be short enough for real-time implementation

Figure 1-2: Structured highway scenario1 Figure 1-3: Unstructured parking sce-
nario2

1Reprinted from BMW Group, Retrieved December 10, 2019, from
https://mediapool.bmwgroup.com/cache/P9/201108/P90081822/P90081822-research-project-highly-
automated-driving-on-highways-08-2011-2250px.jpg

2Reprinted from Planning the path for a Self-Driving Car on a Highway, In TowardsData-
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1-3 Objectives 5

1-3 Objectives

The research performed in this thesis has the aim to:

’Realize a real-time implementation of a single motion planning method, applied to
Autonomous Driving, that demonstrates human-like and safe driving, and is flexible
enough to deal with any environment it encounters.’

Since the start of the research, the focus has been on realizing this with a Rapidly-exploring
Random Tree (RRT) based method. Therefore, we composed the following research questions
to guide the research:

1. Can an RRT based generic motion planning algorithm be developed, that is capable of
planning motion in real-time, for environments ranging from unstructured to structured
while considering stability and non-holonomic constraints of the vehicle?

(a) Which flaws do current planners present?
(b) How can the performance of these planners be enhanced?
(c) How can the generality of the proposed method be proved?
(d) How does the performance of the proposed method compare to others?

A comprehensive literature survey was done before starting the research. This survey is
presented in Chapter 3. The survey revealed that Closed-Loop RRT is most suitable for
our objective. Additional research questions were defined that steered the research into this
direction:

2. How can the Closed-Loop RRT be enhanced to satisfy the requirements?

(a) How can structured road planning be improved?
(b) How can dynamic obstacles be considered during planning?
(c) Under which conditions can vehicle stability be guaranteed?

The research that was performed had the objective to prove our hypothesis:
’The Closed-Loop Rapidly-exploring Random Tree can be enhanced such that it
becomes capable of planning motion for highway driving also. Thereby, we can realize
a generic implementation of the algorithm, which can plan motion for environments
ranging from unstructured to structured.’

Science, Retrieved December 10, 2019, from https://hips.hearstapps.com/hmg-prod/amv-prod-cad-assets/wp-
content/uploads/2015/02/2016-Volvo-XC90-T6-223-626x382.jpg
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6 Introduction

1-4 Thesis content and organization

Chapter 2 introduces several basic motion planning definitions that are required for obtaining
an understanding of the motion planning problem. Readers familiar with motion planning
can skip this chapter missing no important information. Those who are not, are recommended
to read this chapter in preparation to the rest of the thesis.

Chapter 3 analyzes works related to RRT motion planning. It describes how the RRT algo-
rithm works, and which variants exist. Reading this chapter can enhance the readability of
the article for those who are not familiar with RRT motion planning.

Part 1 presents the main results in the form of a conference article for the IEEE Intelligent
Vehicles Symposium. In this article, the state-of-the-art and preliminaries for the proposed
method are discussed. Then, it is discussed how the proposed method builds on the preceding
method. The proposed method is evaluated with a variety of structured and unstructured
simulation scenarios.

Part 2 provides material that gives further insight into the topics discussed in the article.
Chapter 4 present the stability analysis which forms the foundation for the stability criteria
that are considered during motion planning. In Chapter 5 specifics are discussed on the im-
plementation of the lateral controller presented in the article. Chapter 6 presents simulation
results that are complementary to the results presented in the scientific article. Lastly, Chap-
ter 7 discusses some necessities for reproducing the results of the statistical analysis presented
in the article.

Part 3 consists of several self-contained appendices with supplementary material. These
appendices are mainly interesting to those interested in reproducing the motion planner im-
plementation.

Berend van den Berg Master of Science Thesis



Chapter 2

Motion planning definitions

Definition 1 (Workspace). The workspace is the environment where the vehicle and ob-
stacles live in. Autonomous vehicles navigate on a 3-dimensional surface that can be locally
approximated as a flat 2-dimensional plane. Therefore, the workspace can be described as
W = R2. Obstacles within this workspace are defined as the obstacle region O ⊂ W and the
region that the vehicle (Agent) occupies as A ⊂W .

Definition 2 (Configuration space). The configuration space C is the set of all possible
vehicle configurations. For planar vehicles, the 2-Dimensional (2D) pose of the vehicle (x, y, θ)
is often considered as a configuration. Again an obstacle region Cobs is defined and an obstacle
free region Cfree = C \ Cobs [3].

Definition 3 (State space). The state-space must be used when problems are time-varying.
The state space is defined as the configuration space, extended with the time element X =
C × T . The obstacle space Xfree and obstacle free space Xfree = X \Xobs.

The goal of motion planning is to plan a path from an initial configuration to a goal con-
figuration. This path must only traverse the obstacle-free space. When planning motion for

Figure 2-1: Basic motion planning problem [2]

Master of Science Thesis Berend van den Berg



8 Motion planning definitions

vehicles, the problem is subject to a set of differential constraints D. These constraints often
arise from rolling contact or momentum conservation laws [4]. When only first-order con-
straints are present, the problem is referred to as nonholonomic motion planning. When both
constraints of first- and second-order are present, the problem is referred to as kinodynamic
motion planning. Often a cost function is used for finding the optimal path. The formal path
planning definition is introduced in Problem 1. For time-varying problems, the trajectory
planning problem is introduced in Problem 2.

Problem 1 (Path planning).

arg min J(σ) subject to
σ(0) = qinit

σ(1) = qgoal

σ(α) = Cfree

D(σ(α), σ′(α), σ′′(α), ...)
∀α ∈ [0, 1]
∀α ∈ [0, 1]

Problem 2 (Trajectory planning).

arg min J(π) subject to
π(0) = xinit

π(T ) = xgoal

π(t) = Xfree

D(π(t), π′(t), π′′(t), ...)
∀t ∈ [0, T ]
∀t ∈ [0, T ]

Definition 4 (Complexity). The complexity of a Motion Planning algorithm can be de-
scribed by an upper and lower bound. The upper bound can be established by evaluating
the run-time of an implementation. The lower bound is the minimum theoretical complexity
that a class of algorithms can have. This gives a good prior estimate of the difficulty of the
problem to be solved. Several classes of complexity exist in literature [2]:

• P: can be solved in polynomial time
• NP: can be solved in polynomial time by a nondeterministic Turing machine
• PSPACE: no more than polynomial amount of storage is used
• EXPTIME: can be solved in O(2nk) time, for some integer k

A lower bound was established for a 2D path planning problem with curvature constraint in
[5]. In this article the problem was proven to be NP-hard. Hence, no exact solution exists for
the problem that remains to be solved during this thesis.

Definition 5 (Properties of Path Planning Methods).

• Completeness: A motion planning algorithm is complete if for any input it correctly
reports whether a solution exists in a finite amount of time. This solution must also be
returned within a finite amount of time [2].
• Optimality: Return a feasible path that optimizes performance in finite time.
• Anytime: Can be terminated at any time, but solution quality improves with compu-
tation time.
• Asymptotic Optimality: The algorithm returns a sequence of solutions that converge to
the optimal solution.

Berend van den Berg Master of Science Thesis



Chapter 3

Related works

The objective of this chapter is to provide a comprehensive review of the state-of-the-art
related to RRT motion planning. The survey is limited to reviewing the literature on non-
holonomic and kinodynamic motion planning only.

First the basic theory behind the RRT is discussed, explaining step by step how the algorithm
works. This will provide a key understanding of how the method works, which is required
for analyzing all its basic components in section 3-2. This understanding is required when
advancing to more complex RRT variants, which are discussed in section 3-3. Last, a concise
comparison will be provided. This comparison includes the complexity, optimality and real-
time applicability.

Master of Science Thesis Berend van den Berg



10 Related works

3-1 Motion planning with Rapidly-exploring Random Trees

The Rapidly-exploring Random Tree (RRT) was introduced by LaValle as an algorithm that
is particularly suitable for planning motion for kinodynamic systems [3]. It uses an efficient
data structure and sampling scheme to quickly search high-dimensional spaces that have
both algebraic constraints (arising from obstacles) and differential constraints (arising from
nonholonomy and dynamics). Due to the nature of the RRT algorithm, exploration is biased
to unexplored areas [6]. The algorithm avoids explicitly constructing the obstacle region and
instead conducts a search that probes the configuration space with a sampling scheme. This
probing is enabled by a collision detection module, which the motion planning algorithm
considers as a ’black box’ (see Figure 3-1).

Figure 3-1: Sampling-based planning structure with "black box" collision detection [2]

To keep things simple during the introduction, the algorithm will be introduced for planning
in the configuration space. Extending this to state-space planning is straightforward. The
RRT algorithm builds a tree-like structure (see Figure 3-2) consisting of nodes and edges. A
node contains a vehicle state and a parent node from which it was reached. The edge stores
the control input that is used to connect two nodes. The build rrt operation is shown in
Algorithm 1. Here, the tree is initialized with the initial configuration of the vehicle (line 1).
Then, repeatedly a random configuration is sampled (line 2-3). This configuration and the
tree itself are used as input for the extend operation, shown in Algorithm 2.

Algorithm 1: BUILD_RRT(xinit)
1 T .init(xinit)
2 for k = 1 to K do
3 xrand ←− RANDOM_STATE()
4 EXTEND(T , xrand)
5 return T ;

Figure 3-2: Kinodynamic RRT tree [6]

As the name indicates, the extend operation is used for extending the tree towards the sampled
configuration (see Figure 3-3). First, the nearest neighboring node of the sampled configura-
tion is determined using a distance measure (line 1). This node is then selected for expansion
(line 2). A new configuration is generated through a forward simulation towards the randomly
sampled configuration. The input of the simulation can be either selected randomly or be
selected as most promising from a discrete set of inputs. The simulated trajectory is checked

Berend van den Berg Master of Science Thesis



3-2 Analysis of the algorithm components 11

against collision constraints and if it is collision-free, the node is added to the tree (line 3)
and an edge in line (4).

Algorithm 2: EXTEND(T , x)
1 xnear ←− NEAREST_NEIGHBOR(x, T )
2 if NEW_STATE(x, xnear, xnew, unew) then
3 T .add_vertex(xnew)
4 T .add_edge(xnear, xnew, unew)
5 if xnew = x then
6 return Reached
7 else
8 return Advanced

9 return Trapped
Figure 3-3: Tree extend operation

Ever since the introduction of the algorithm, it has been a popular research topic. This has led
to many variants of the algorithm which enhance performance for specific scenarios. Although
the algorithms can behave very different, they all consist of certain basic components. These
components will be introduced in the next subsection.

3-2 Analysis of the algorithm components

All variants of the algorithm are build of the following components:

• Sampling Function: sample a point in the configuration space
• Metric: a measure to determine the distance between two configurations
• Steer Function: connect samples while considering kinematic or dynamic constraints
• Collision detection: check whether a generated edge is collision-free

Because these components have major impact on the behavior and performance of the algo-
rithm, they will be introduced in the following subsections.

3-2-1 Sampling Function

The ideal algorithm would consider all possible configurations to determine the optimal path.
Due to the complexity of the problem, and the limited time available for finding a solution, it
is often not realistic to search the entire configuration space. This problem can be solved by
sacrificing completeness for computational feasibility [7]. With sparse configuration sampling,
the algorithm can perform a faster search. The goal of the sampling function is to sample
these configurations.

When the algorithm runs for infinite time, the entire configuration space would be sampled,
giving a complete representation. Yet, this is often not feasible due to timing constraints.
Thus, the algorithm is terminated early. At the moment of termination, the sampled config-
urations should be properly distributed over the configuration space.

Master of Science Thesis Berend van den Berg



12 Related works

The standard RRT algorithm has a uniform sampling strategy. This gives it a strong bias
towards unexplored areas. In structured environments, such a sampling strategy may not be
optimal. Various strategies were developed for enhanced sampling in structured environments.
Some examples are sampling around the medial axis, sampling around obstacle boundaries,
Gaussian-shaped sampling, the bridge-test for sampling in narrow passages and goal biased
sampling [8]. A numerical comparison is presented in [7]. Performance on structured roads
can be enhanced by sampling about the road center-line [9]. Once a sample is generated, a
node must be selected for expansion using the metric.

3-2-2 Metric

The metric is the measure that is used for calculating the distance between two points in
the configuration space. It is used for finding the closest neighboring node to select for
expansion. For holonomic systems, the metric is often defined as the Euclidean distance
between two points. Nonholonomic systems need a more complicated metric. This is because
some maneuvers can be required before two points can be connected. The length of the
shortest path possible path (geodesic) is often used as a metric for nonholonomic systems [2].
An algebraic solution for a kinematic vehicle model was developed in [10]. This algorithm
returns the shortest possible path between two configurations. It considers a simple car that
can only drive forward and has a limited turning radius.

3-2-3 Steer Function

After a node is selected, it must be expanded towards the sampled configuration. The steer
function is responsible for this. Finding a path that connects both configurations exactly,
requires solving a two-point Boundary Value Problem (BVP). For nonholonomic and dynam-
ical systems, it is often nontrivial to find a closed-form solution to the BVP. This makes the
problem a rather time-consuming process.

Solving a BVP for every sample can be avoided through the use of an approximate steer
function. These methods often use a simulator to generate new configurations [2, 3, 4, 6, 11].
The simulator performs a forward simulation of the robot dynamics by applying control inputs
to the model. For a car, these inputs can be the steering angle and forward velocity. One
option is to select the inputs randomly. Another possibility is to simulate all possible inputs
and select the path that comes closest to the sample. This method was implemented for a
car in [12].

Many methods exist for solving the BVP. For holonomic systems the solution is straightfor-
ward. Just connect the configurations with a straight line. Nonholonomic systems require
more complicated methods due to the differential constraints. The nonholonomic BVP was
solved exactly for a kinematic vehicle model with a fixed cornering radius [10]. The solution
considers forward driving only. Later, it was extended with backward driving functionality
[13] (see Figure 3-4 b-d). Although these methods solve the problem, they produce paths that
contain curvature discontinuities. Therefore, a nonholonomic system may struggle to track
the planned path. To address this shortcoming, alternatives were developed that enhance
the paths with continuous curvature transitions [14, 15]. All the before mentioned methods
use a fixed cornering radius for constructing paths. This makes them feasible for vehicles

Berend van den Berg Master of Science Thesis
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(a) (b) (c) (d)

Figure 3-4: Dubins and Reeds-Shepp’s shortest paths: A,B,C are Dubins, D is Reeds-Shepp [13]

Figure 3-5: Spline fitting to a piece-wise linear path. Adapted from [19].

moving at slow speeds, where vehicle dynamics can be neglected. For fast-moving vehicles,
the dynamics become relevant and alternative methods are required.

A method that is not constrained to paths with fixed curvature, is to fit splines between the
configurations (see Figure 3-5). By adding constraints on the spline connections, a continuous
curvature path can be guaranteed. An upper bound can be defined for the curvature of the
path [16].

Lastly, the BVP can be solved through the shooting method [17, 18]. This method iteratively
solves the equations of motion for a given BVP. Compared to exact solutions, this method
can require more computational effort to find the solution.

3-2-4 Collision Detection

Once a path segment is generated by the steer function, the next task is to check whether
it will result in a collision. The choice of the collision detection algorithm has major impact
on the computational performance of motion planning methods [2, 20, 21, 22]. Therefore,
it is important to use an efficient method. Besides checking whether a collision occurs or
not, occasionally the distance to the closest obstacle is logged for path quality assessment. A
common approach is to use multiple phases in the detection algorithm [2].

During the broad phase, the goal is to avoid exhaustive collision checking. The computational
effort is reduced for complex collision checks by simplifying the problem. This can be done
for obstacles that are so far apart that the exact geometry is not relevant. During this phase,
simple geometry shapes are used for modeling the obstacles. Some of the options are fitting
a circle, using an axis-aligned bounding box, an oriented bounding box or a convex polygon
(see Figure 3-6).

Master of Science Thesis Berend van den Berg
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(a) (b) (c) (d)

Figure 3-6: Modelling obstacles with a bounding geometric shape [2]. (a) circle, (b) axis aligned
bounding box, (c) object oriented bounding box, (d) convex polygon.

The narrow phase is only entered when the obstacles are so close together that a more
complicated and accurate obstacle representation is required. Two main categories exist which
are hierarchical methods and incremental methods. More information on these methods can
be found in [2].

3-3 Exploring variants of the algorithm

In an attempt to enhance the properties of the RRT, many variants of were developed that
make adjustments in its components. The main focus is on reducing the algorithm run-time
and the cost of the solution.

3-3-1 Reducing the Metric sensitivity

The node that is nearest to the sample is expanded and checked against constraints. These
are computational expensive operations. An improper metric could lead to more failing
expansions. Thus, performance is influenced much by the choice of the metric. The Resolution
Complete RRT (RC-RRT) [23, 24] was developed to reduce the metric sensitivity. It does this
by logging exploration, collisions, and applied inputs for each node. It uses this information
during the nearest node selection as follows. If a control input has already been applied, it
will not be considered again. If a control input leads to a collision, the node is penalized in
the Constraint Violation Probability (CVP). When the CVP of a node increases, the chance
that it will be selected for expansion decreases.

The Reachability Guided RRT (RG-RRT) [25] also reduces the metric sensitivity. It does
this by accounting for the limitations of the system’s dynamics, by defining a reachable set
for each node. A node can only be selected for expansion when the generated sample lies
within its reachable set. This method no longer requires a system-specific metric. Instead,
the Euclidean distance can be used.

3-3-2 Improving the performance in Heterogeneous Environments

The Environment Guided RRT (EG-RRT) [26] is a combination of the RC-RRT and RG-RRT.
The results of this algorithm showed that it had a better exploration strength. It produces
paths faster while having a lower probability of collision.

Berend van den Berg Master of Science Thesis
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(a) RRT (b) RRT*

Figure 3-7: Final path of RRT compared with RRT* [27]

3-3-3 Introducing optimality

The authors of [27] prove that the RRT almost always converges to a sub-optimal solu-
tion. This sub-optimality may express itself in the planning of a meandering path. The
Asymptocically Optimal RRT (RRT*) addresses this issue by ensuring asymptotic optimality
of the solution [27, 28]. This method works as follows. During exploration, a cost function is
used for logging path quality. The sample is then connected to the node with the lowest cost.
It then rewires all nodes in an area around the selected node to the produce the cheapest
paths. For a comparison of the RRT and RRT* algorithms, see Figure 3-7. The method was
applied to nonholonomic [18] and kinodynamic systems [29]. Although asymptotic optimality
is introduced, the re-wiring operation does add extra complexity to the algorithm, which may
restrict real-time applications to using exact steer functions only.

3-3-4 Enhancing the RRT* convergence rate

The Informed RRT* (I-RRT*) [30] aims to enhance the convergence rate of the RRT*. Before
a solution is found, this algorithm behaves the same as the RRT*. After a solution is found, a
hyper-spheroid is drawn around the initial and goal configuration. Samples are from there on
only generated within this ellipse. The size of the ellipsoid is reduced as the solution converges
to the optimum (see Figure 3-8). Another variant that aims to increase the convergence rate
is the RRT#. It applies relaxation methods to quickly identify the region that contains the
optimal solution, and uses to bias the exploration.

3-3-5 Adaptive sampling around obstacles

The Adaptive RRT (A-RRT) [31] improves performance in heterogeneous environments. It
does this by adapting growth through a selection method consisting of two levels. The first
level selects groups of expansion methods according to the visibility of the node being ex-
panded. The second level uses a cost-sensitive learning approach to select a sampler from a
group of expansion methods.

Master of Science Thesis Berend van den Berg



16 Related works

Figure 3-8: The Informed-RRT* algorithm [30]

Figure 3-9: Forward simulation versus closed-loop simulation

3-3-6 Closed-Loop RRT

The Closed-Loop RRT (CL-RRT) [9, 32, 33] has a design philosophy that varies from the
standard RRT. Where the RRT plans with Open Loop (OL) vehicle dynamics, the CL-RRT
does this with Closed Loop (CL) dynamics. The OL dynamics simulate vehicle inputs, e.g.
steer angle and longitudinal velocity. The CL dynamics simulate the controller inputs, e.g. a
reference path and velocity (see Figure 3-9).

The CL-RRT has several advantages when compared to the OL RRT. First of all, stability
can be guaranteed for complex nonlinear system, by using a stabilizing controller. Secondly,
the effect of modeling errors can be decreased by applying appropriate controllers.

The algorithm builds two trees. The first tree is built by sampling the vehicle workspace and
generating a reference. This reference consists of a path and velocity profile, consisting of a
series of data points (xref ,yref ,vcmd) with a single driving direction. The reference path is
used for generating a second tree. This tree consists of trajectories that are generated through
closed-loop prediction (see Figure 3-9). Contrary to the RRT, the CL-RRT has no constraint
on path length. This can result in longer path segments. Recent studies have shown that
robust feasibility, as well as a bounded error, can be guaranteed for the CL-RRT.

To improve path quality over time, the algorithm is extended with optimization heuristics
[34]. Although this does not offer the same optimality guarantees as the RRT*, it does show
better optimality than the standard RRT.

Where the standard RRT requires many samples to reach the goal, the CL-RRT can reach
the goal with only a few. This is because the segment length is not constrained, and the
algorithm has a strong goal biased.

Berend van den Berg Master of Science Thesis
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Figure 3-10: Planning with Closed-Loop RRT: Building two trees. The first tree contains piece-
wise linear references and the second tree closed-loop trajectories. Green: feasible trajectory. Red:
infeasible trajectory. Orange: references. [9]

3-4 Concise overview of discussed variants

A concise literature overview of the algorithm variants that were discussed in the previous
section is presented in Table 3-1.

Table 3-1: Consise overview of reviewed RRT variants

Algorithm Author Contributions
RRT [6] S. LaValle RRT Algorithm
RRT* [28] S. Karaman, E. Frazzioli Converge to optimal solution
RRT# [35] O. Arslan, P. Tsiotras Improve RRT* convergence rate
RC-RRT [23] P. Cheng, S. LaValle Reduce metric sensitivity
RG-RRT [25] A. Shkolnik et al. Node connection based on reachable set
EG-RRT [26] L. Jaillet et al. Combine RC-RRT and RG-RRT
I-RRT* [30] J. Gammell et al. Improving the convergence rate
A-RRT [31] J. Denny et al. Adaptive sampling around obstacles
CL-RRT [9] Y. Kuwata et al. Planning over closed-loop dynamics

Master of Science Thesis Berend van den Berg



18 Related works

Berend van den Berg Master of Science Thesis



Part I

Scientific article

Master of Science Thesis Berend van den Berg





1

Curvature Aware Motion Planning with
Closed-Loop Rapidly-exploring Random Trees

Berend van den Berg∗, Bruno Brito∗, Javier Alonso-Mora∗ and Mohsen Alirezaei†‡

Abstract—The development of a generic motion planning
algorithm for Autonomous Driving, that can plan motion in
environments ranging from unstructured to structured, is
still an open question. This article presents a motion plan-
ning framework that can plan motion for environments
ranging from unstructured parking to structured highway
driving. The presented method is based on the Closed-
Loop Rapidly-exploring Random Tree, and is enhanced
for motion planning on curved structured roads. Given
the road center line, obstacle positions, initial pose and
goal pose, the proposed method plans motion on a virtual
straight road. Afterwards, the planner deforms the motion
plan to follow the road curvature. Extensive simulations
have demonstrated that the proposed method can improve
the path quality on curved highway roads when compared
with the standard RRT and CL-RRT. Although the method
can plan in any environment it encounters, it demonstrated
limitations in its capability of dealing with complex dy-
namic environments.

Index Terms—RRT, Autonomous Driving, Curvature,
Frénet, Closed-Loop

I. INTRODUCTION

AAUTONOMOUS DRIVING requires a motion
planner to define a motion plan from its current

position to a goal position. A motion planner suitable for
Autonomous Driving must be able to plan in environ-
ments ranging from unstructured to structured. Unstruc-
tured environments are often urban environments such as
parking lots. Here, there are low speed limits and vehicle
maneuverability is most important for the planner. On
the other hand, there are structured environments with
simplistic road geometry, such as highway driving. Due
to the high speeds involved, the dynamic feasibility of
the motion plan becomes crucial for safe driving.

Current literature presents many motion planner im-
plementations that solve either the structured [1], [2],
[3] or unstructured planning environment [4], [5]. Some
implementations even solve a wider range of environ-
ments [6], [7], [8]. Yet, the generic implementation of
a single motion planning method, that can plan in the
full range of environments, is still an open question.
A generic motion planner would eliminate the need for
scenario identification that is required with a modular
approach. This article addresses the identified gap in
the literature with a generic implementation of a Closed-
Loop Rapidly-exploring Random Tree (CL-RRT) based
algorithm that is enhanced for driving on structured
roads.
∗ The authors are with the department of Cognitive Robotics, Delft

University of Technology, 2628 CD, Delft, The Netherlands† The author is with Siemens Industry Software and Services B.V.,
Digital Industry Software Simulation and Testing Services, 5708 JZ,
Helmond, The Netherlands‡ The author is with the department of Mechanical Engineering,
TU Eindhoven, 5600 MB, Eindhoven, The Netherlands

The paper is organized as follows. First, work related
to RRT motion planning is discussed. This is followed
by our contributions. Next, the motion planning problem
is introduced. Preliminaries for the proposed method
are discussed, followed by the method itself. Lastly, the
proposed method is tested by means of simulations with
static and dynamic obstacles.

A. Related work

The RRT [9] can quickly search high-dimensional
spaces that have both algebraic constraints (arising from
obstacles) and differential constraints (arising from non-
holonomy and dynamics). This makes the algorithm
extremely useful for real-time applications. The algo-
rithm incrementally builds a tree of paths by connecting
randomly sampled configurations. This connection is
made with either exact or approximate steer functions,
which are usually based on vehicle kinematics or dy-
namics. The advantage of approximate steer methods
is that they avoid the need for solving a Boundary
Value Problem (BVP) for each sample, which can be
a computationally expensive operation for differentially
constrained systems [10]. Therefore, planning motion
real-time with a probabilistic sampling-based planner
with a nonholonomic or kinodynamic vehicle model is
often restricted to the use of approximate steer functions
only.

Although the RRT has many benefits with respect
to traditional combinatorial path planning methods, a
shortcoming can still be identified: the algorithm often
converges to a sub-optimal solution [11]. This sub-
optimality may express itself in the path quality by e.g.
producing a meandering path.

Early variants of the algorithm enhance the solu-
tion quality by adding an optimization heuristic during
nearest neighbor selection [7], [12], [13], or prune
the path after a solution is found [14]. However, this
does not guarantee asymptotic optimality. Therefore, the
RRT* introduces a rewiring operation that can guarantee
asymptotic convergence towards the optimal solution
[11], [15], [16]. Due to the number of BVP that must
be solved during rewiring, the real-time implementation
may be restricted to the use of exact steer functions only
(e.g. [17]).

An approach that avoids the need of solving BVP,
is to use the Closed-Loop RRT (CL-RRT) [7], [18].
This variant samples in the controller’s input space (e.g.
a path and reference velocity) instead of the vehicle
inputs (e.g. steer angle and velocity). The controller
inputs are used for simulating a closed-loop trajectory
of the vehicle controlled by lateral- and longitudinal
controllers.



Traditional RRT algorithms sample directly the vehi-
cle inputs and have a steer function with short prediction
horizon. Usually far less than a second. Therefore, these
methods require many samples (and thus path segments)
to reach the goal. In contrast, the CL-RRT can generate
path segments of several seconds. Therefore, this variant
requires far less samples to reach the goal, and may
suffer less from path meandering issues than traditional
variants. Therefore, the proposed method is based on the
CL-RRT.

Due to the piece-wise linear nature of the controller
inputs, the CL-RRT is not capable of accurately fol-
lowing the curved roads. This issue remains to be
solved before it can be applied to high speed driving
on structured roads.

B. Contributions

In this article, we present the following contributions:
• A generic implementation of a RRT [9] based mo-

tion planning algorithm that can plan in structured
and unstructured environments

• Combine the Closed-Loop RRT [18] variant with a
path bending method that improves path quality in
structured environments

II. PROBLEM FORMULATION

Several assumptions are used during the problem
definition:
• Obstacle positions are known
• Vehicle states are known
• Goal positions are provided by a mission planner
• Lane marking coefficients are provided by a lane

detection system

A. Vehicle representation

The Autonomous Vehicle (AV) operates on a plane.
Hence, its workspace is W ∈ R2. The dynamics of
the AV are represented by a set of nonlinear dynamic
equations:

ẋ(t) = f(x(t),u(t)), x(0) = x0 (1)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the vehicle
states and inputs respectively and x(0) is the initial
state of the vehicle. The model used in the presented
implementation consists of seven states (nx = 7), which
are further introduced in section III-A3. The body of the
AV is modeled with a 2-Dimensional Oriented Bounding
Box (2D-OBB) that is aligned with the vehicle heading.
The region of the state-space that the body of the AV
occupies is denoted as A(x) ∈ X .

B. Obstacle constraints

Static and dynamic obstacles are considered. Both are
modeled as 2D-OBB, of which the heading is aligned
with the road (or the vehicle when no road is detected).
The region in the state-space that violates the collision
constraints is denoted with Xobs. Future positions of
dynamic obstacles are predicted by linear extrapolation
of their velocity.

C. Dynamic constraints

Several additional constraints arise from vehicle sta-
bility criteria, dynamic limitations and actuator satura-
tion. The set of states that violate these constraints are
denoted with Xdyn.

D. Feasible trajectory

Let T ∈ RN×nx be a trajectory obtained by advanc-
ing the vehicle model (1) N steps. A feasible trajectory
satisfies obstacle constraints, dynamic constraints and its
inputs lay within the set of admissible inputs:

A(x) ∈ Xfree = X \ (Xobs ∪Xdyn) (2)
u(t) ∈ U ∀t ∈ [0, T ]

E. Motion planning problem

The objective is to find a feasible trajectory from an
initial state to the goal region of the state-space Xgoal,
while minimizing the cost:

arg min J(x(t)) subject to
(1), (2)

x(T ) ∈ Xgoal

III. PRELIMINARIES

A. Closed-loop RRT

The CL-RRT incrementally builds a tree of feasible
trajectories towards the goal. During each tree expansion
step (see algorithm 1), first a random sample is generated
in the workspace (line 1). Tree nodes are then sorted
using heuristics (line 2). Multiple nearest nodes are
selected (line 3), which in turn, are expanded until a
feasible trajectory is generated (line 5-9). If a new node
is added, a goal biased expansion is attempted (lines 10-
12). If this expansion is feasible (line 13), it is added to
the tree (line 14).

Algorithm 1: ExpandTree(T ) [18]
1 Get random sample S ∈ R2.
2 Sort nodes n using heuristics.
3 Select Nnear nearest neighbors.
4 for all n ∈ Nnear do
5 Form a reference command from n to s
6 Obtain a trajectory x(t) ∈ [t1, t2] by doing a

simulation until the end of reference is reached.
7 if x(t) is feasible ∀t ∈ [t1, t2] then
8 T .add node
9 break

10 if a node was added then
11 Form a reference command from S to goal.
12 Obtain a trajectory x(t) ∈ [t2, t3] by doing a

simulation until the end of the goal reference is
reached.

13 if x(t) is feasible ∀t ∈ [t2, t3] then
14 T .add node

15 return
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Fig. 1: Schematic overview of the proposed method: Clane: lane marking coefficients, OOBB : obstacle Oriented
Bounding Box, xcar: vehicle states, xgoal: goal states, acmd: acceleration command, δcmd: steer angle command.

1) Node sorting: Two heuristics are used for sorting
the nodes: exploration and optimization. The exploration
heuristic (3) sorts in ascending order based on the
distance to the sample. The optimization heuristic (4)
sorts based on total time to reach the sample. One of
these heuristics is selected probabilistically.

Jexp = LDubins(P, S) (3)

Jopt = Jopt,parent +
LDubins(P, S)

v
(4)

Here, S ∈ R2 is the sample, P ∈ R2S is the parent
node pose, and LDubins is Dubins path length from the
parent node to the sample, and v is the sampled speed.
Equations 3 and 4 are only used for estimating costs for
connecting the nodes. The actual cost is updated after
doing a closed-loop prediction of the vehicle trajectory.

2) Closed-loop prediction: During closed-loop pre-
diction, a virtual car is driven along a generated ref-
erence. This reference consists of a path and velocity
profile, and is further discussed in section IV-A2. The
prediction produces trajectory, which is added to the tree
if it satisfies (2). The prediction requires a vehicle model,
which is introduced in the next section, and lateral- and
longitudinal controllers, which are introduced in section
IV-A5.

3) Vehicle model: To constrain the algorithm com-
plexity, a kinematic vehicle model is applied. It has
been previously demonstrated that this model can be
consistent for planning feasible trajectories as long as
its lateral acceleration remains small [19]. The vehicle
model (5-7), is extended with understeer behavior (7),
steer dynamics (8), acceleration dynamics (9, 10), and
actuator constraints (11-13).

ẋ = u cos(θ) (5)
ẏ = u sin(θ) (6)

θ̇ =
u tan(δ)

u2Kus

g + L
(7)

δ̇ = Td
−1(δcmd − δ) (8)

u̇ = a (9)

ȧ = Ta
−1(acmd − a)

(10)

amin ≤ a ≤ amax (11)
||δ|| ≤ δmax (12)

||δ̇|| ≤ δ̇max (13)

Here, the parameters are defined as follows. (x, y, θ) is
the 2-dimensional pose of the vehicle’s rear axle center
in world coordinates, δ is the steering angle of the front
wheels, L is the wheelbase, u and a are the longitudinal
velocity and acceleration, Kus is the vehicle’s understeer
coefficient. δcmd and acmd are the control commands
determined by the lateral and longitudinal controllers.
Lastly, Ta and Td represent the first order lag of the
steering system and longitudinal dynamics.

B. Vehicle stability

The vehicle dynamics can be accurately modeled
using the linear dynamic bicycle model, when the fol-
lowing constraints satisfied:
• the vehicle operates in the linear tire region
• steer angles remain small and vary slowly
• longitudinal velocity varies slowly

Following stability analysis, it can be concluded that
the vehicle remains stable when it shows under-steering
behavior (Kus < 0). By constraining the lateral acceler-
ation, the vehicle operates in the linear tire region and
the dynamic bicycle model is valid. Hence, a trajec-
tory is dynamically feasible when ay ≤ amax, where
amax = 0.3g.

IV. METHOD

A schematic overview of the proposed method is
presented in Figure 1. Sensors equipped on the vehicle
detect the obstacles and the lane markings. The mission
planner uses this data to define a local goal and sends
this goal to the motion planner. The motion controller
makes the vehicle follow the motion plan through Model
Predictive Contouring Control [20]. The motion plan-
ning method consists of three steps:

1) Transform the planner inputs from the curved road
to a virtual straightened road.

2) Build a tree towards the goal using the CL-RRT.
3) Bend the motion plan back to the curved road.
First, several adjustments to the CL-RRT are dis-

cussed (Section IV-A). After this, the specifics on the
proposed road transformations are discussed (Section
IV-B). Last, the applied real-time planning method is
discussed in Section IV-C.

A. CL-RRT modifications

1) Cost function: A cost function is introduced for
path selection. This function includes path length, path
curvature, and deviation from lane center:

Jsel =
n=N∑

n=1

i=I∑

i=1

(
w1u∆t+ w2κn,i + w3Dn,i

)
(14)

In this function the parameters are defined as follows. n
are the path segments, i are the iterations of the closed-
loop prediction of segment n, wk, k = 1, 2, 3 are the
cost weights, u is the longitudinal velocity, ∆t is the
prediction step size, κn,i is the curvature of the path,
and Dn,i is the distance to the goal lane.



Fig. 2: Velocity profile design
Fig. 3: Generic lateral control concept
[21]

Fig. 4: Road straightening

Fig. 5: Reference path generation: from the initial pose,
the tree is initialized with a node at distance dLA (green).
From here, several regular expansions are performed
(blue). Lastly, a goal biased expansion is done extended
with look-ahead distance dLA, which is aligned with the
goal heading (red)

2) Reference generation: A single reference point
consists of a position (pos ∈ R2) and a velocity
(vcmd ∈ R). A reference command consists of N points
(pos, vcmd)N and a single driving direction.

The first step in reference generation is to construct
a path through 2-dimensional space (see Figure 5).
A reference path is a linear interpolation between the
previous node’s reference and the generated sample. A
goal biased reference is a reference that is extended with
a section to align the vehicle with the goal. The length
of this section is coupled to the look-ahead distance of
the lateral controller (see section IV-A5). This ensures
that the vehicle can always reach the goal before the end
of the path is reached.

The second step if to design a velocity profile. For
simplicity, a trapezoidal profile is used (see Figure 2).
The design procedure of this profile works as follows.
The first step is to determine whether the maximum
maximum velocity can be reached, while ensuring a
minimum coasting time of tmin, see (15). Here, the
first, second and third terms represent the acceleration,
coast and brake distance respectively. D is the total
path length. If (15) can be satisfied, the coast velocity
(vcoast) is set to be the maximum velocity. Else, the
coast velocity must be determined in an alternative way.
If the end velocity is greater than the start velocity,
vcoast is set to the end velocity. Else, vcoast is chosen
such that (16) is satisfied.

v2max − v20
2aacc

+ vmaxtmin +
v2max − v2end

2adec
< D (15)

v2coast − v20
2aacc

+ vcoasttmin +
v2coast − v2end

2adec
= D (16)

Although the reference command is similar to the one
used by [22], the difference is still a small difference.
Instead of always stopping at the end of a reference, the
proposed profile allows adjustment of the end velocity.

3) Goal region: The goal provided to the plan-
ner consists of a 2-dimensional pose and a velocity
(x, y, θ, v). These goals would be generated by a mission
planner that can scale the goal velocity based on the
current road scenario. The goal region is defined in (17),
where RG, HG, VG are the goal radius, heading error
and velocity error, respectively.
∥∥∥∥
[
x− xG
y − yG

]∥∥∥∥ ≤ RG, θ − θG ≤ HG, v − vG ≤ VG
(17)

4) Sampling: In unstructured environments, the plan-
ner samples around the vehicle and the goal position
(x, y). Whenever road information is available, sampling
is done with respect to the road center-line (S, ρ, see
Figure 4).

5) Controllers: Lateral control of the virtual vehicle
is done with the single point preview controller [21].
The lateral error at the preview point (see Figure 3) is
used to calculate the steer command (18). The location
of the preview point is velocity dependent (19).

δcmd = 2

(
l +Kusu

2

d2LA

)
ye,FB (18)

dLA = b+ xLA = b+ utLA (19)

The parameters are defined as follows. l is the wheel
base, Kus is the under-steer gradient, u is the longitu-
dinal velocity, b is the distance from the rear axle to
the center of gravity, and tLA the look-ahead time. The
look-ahead time varies to enhance maneuverability dur-
ing parking and curvature smoothness during highway
driving.

Longitudinal control is done with the same PI con-
troller (20) as in [18].

acmd = Kp(vcmd − v) +Ki

∫ t

0

(vcmd − v)dτ (20)

B. Road transformation

A common approach to enhance motion planners for
planning on structured roads is to deform the motion
plan to follow the shape of the road [2], [3], [8].
Inspired by this work, the proposed method simplifies
the planning scenario by planning motion on a virtual
straightened road. After defining a motion plan within
this frame, it is bent back to the curved road.

Obviously, the piece-wise linear reference path cannot
accurately follow the road curvature when motion is
planned directly on the curved road. The virtual straight
road allows the planner to remain using the piece-wise
references, while now being able to construct references
that accurately follow the road curvature. Additionally,
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planning directly on the curved road would result in
corner-cutting when using distance-based optimization
heuristics. The proposed approach avoids this issue.

Transforming a state (x ∈ Rnx) from the curved to
the straight road involves the transformation of a pose
C(x, y, θ) and the steering angle (δ). The remaining
states (v, a, ȧ) do not change during the transformation.

1) Straightened road definition: First, a second-order
spatial parametrization of the road center-line (21) must
be obtained. This can be provided by perception hard-
ware such as the Mobileye lane-detection system.

Cycl(x) = c2x
2 + c1x+ c0 (21)

Next, a straightened road is defined that originates at
the y-axis (22) and is tangent to (21). See Figure 4.

Sycl(x) =
dCycl
dx

∣∣∣
x=0

+ c0 = c1x+ c0 (22)

The connection between both roads is established by
an intermediate Frénet frame (23). Here, C(x, y, θ) is the
pose on the curved road, F (S, ρ, θ) the pose in the Frénet
frame, and S(x, y, θ) the pose on the virtual straightened
road.

C(x, y, θ)⇐⇒ F (S, ρ, θ)⇐⇒ S(x, y, θ) (23)

2) Arc-length parametrization: The Frénet frame link
requires an arc-length parametrization for the curved and
straightened road. Arc length of a curve is defined as
(24).

S(x) =

∫ xmax

0

√
1 +

(
dy

dx

)2

dx (24)

Here, xmax is chosen beyond the goal position.
Equation 24 can be easily solved analytically for a first
order equation. Hence, this approach can be used for the
arc-length parametrization of (22). Solving (24) for the
second order equation (21) requires solving a fifth order
root which is generally too complex to solve analytically.
Therefore, instead an approximate method is used for the
curved road parametrization. A series of points (S, x)
are generated by numerically calculating the arc-length
of (21). These points are used for fitting a polynomial
to obtain the approximate parametrization (25).

S(x) = s2x
2 + s1x+ s0 (25)

3) Transformation: The transformation starts with lo-
cating the closest point on (21). Using (21) and (25), the
pose is transformed to the local Frénet frame F (S, ρ, θ).
The inverse of (22) is then used for transforming the
pose to the straight road S(x, y, θ). Remaining is the
transformation of δ, which is solved by subtracting the
steer angle required for following the road center at S.

The introduced transformations are used for trans-
forming all planner inputs to the straightened road.
The CL-RRT then solves the motion planning problem
and returns a trajectory (T ). Each point in T is then
transformed back to the curved road by doing the inverse
of the previously described transformations.

Additional path curvature (κ) is introduced when
bending the motion plan to follow the road curvature.

This is directly correlated with lateral acceleration: ay =
u2κ. Hence, additional lateral acceleration is introduced
during bending. This acceleration is included into the
dynamics constraints by determining an upper bound.
Path curvature is defined as κ(x) = y′′/(1+y′2)

3
2 , where

y = (21). The upper bound is determined by solving
dκ/dx = 0.

C. Dealing with dynamic environments

The motion planner predicts future positions of ob-
stacles and continuously re-plans the motion. The real-
time motion planning framework in Algorithm 2 was
implemented. First the planner updates all inputs (line
1). These inputs, together with the previously committed
path, are transformed to the straightened scenario (lines
2-4). Committed path that has been passed is removed
(line 5), and the tree is initialized (line 6). While time is
available, the tree expands (line 7-8). The planner selects
the best path and commits to a small section of the path
(lines 9-11). Lastly, the motion plan is transformed to
world coordinates and sent to the controller (lines 12-
15).

Algorithm 2: Plan motion
1 Update xcar, xgoal, Xobs, Road
2 Transform motion plan (MP) from World (W) to Car

(C)
3 if Road exists then
4 Transform xgoal, Xobs andMP from C to S
5 Delete parts ofMP that have been passed
6 Initialize tree T with last node ofMP
7 while t < t + ∆t do
8 ExpandTree(T )

9 Select best path that reaches the goal
10 if Tp < Tcommit then
11 Commit to motion until Tp + Tnew ≥ Tcommit

12 if Road exists then
13 Transform committed path andMP from S to C
14 Transform committed path andMP from C toW
15 Send committed path to controller and add it toMP

V. SIMULATION RESULTS

The proposed method is validated by evaluating its
capability of planning parking and highway maneuvers.
Any other environment can be considered as being
a combination of the two. The coming sections will
discuss the following scenarios:
• V-B: Parking with static obstacles
• V-C: Highway with static obstacles
• V-D: Dynamic obstacle avoidance

A. Simulation environment

Simulations were performed on a mobile workstation
with i7-3630QM processor, running at 2.4Ghz. The
computer has 8Gb memory. The simulations with static
obstacles were programmed in MATLAB R2019b. The
simulations with dynamic obstacles use a C++ (ROS)
implementation that was optimized for real-time per-
formance. The C++ planner is capable of exploring
approximately 1000 nodes per second. It plans motion
with an update rate of 5Hz.



TABLE I: Vehicle parame-
ters

Parameter Value Unit
δmax 0.52 rad

δ̇max 0.3294 rad/s
Td 0.3 −
Ta 0.3 −
amin −6 ms2

amax 2 ms2

L 2.7 m
Kus 0.014 −
ρ 5.95 m
wbody 2 m
Lbody 4.7 m
lr 1 m

TABLE II: Planner param-
eters

Parameter Value Unit
aacc 1 ms2

adec −1 ms2

tmin 1 s
ay,max 0.3 g
tla,parking 1 s
tla,highway 1.4 s
Kp 4 −
Ki 0.05 −
Pexp 0.7 −
Popt 0.3 −

Fig. 6: Parallel parking: results for single motion query
with 200 samples. Grey: obstacle bounding box, black:
feasible trajectory, green: selected trajectory, yellow:
reference of selected trajectory, red arrow: initial pose,
blue arrow: goal pose.

The vehicle parameters used during simulation are
defined in Table I. Here, wbody and Lbody are the width
and length of the vehicle body. lr is the distance from
the rear of the vehicle body to the rear axle coordinate
frame.

The applied motion planner configuration parameters
are defined in Table II.

B. Urban parking with static obstacles

Parking functionality of the CL-RRT has been previ-
ously demonstrated in [18]. Therefore, parking experi-
ment results are discussed briefly only. The planner was
tested with parallel and perpendicular parking. During
parallel parking, the length and width of the parking
spot are 7.5 and 2 meters respectively. For perpendicular
parking, the parking spot width is set to be 4 meters.

Figure 6 shows a single motion plan query for the
parallel parking scenario. The motion planner can plan
trajectories that guide the vehicle into a tight parking
spots. Notice here that the vehicle trajectory (green) is
used during collision detection. Therefore, the reference
(yellow) may cross the obstacle region (grey).

Motion was planned 100 times for each scenario, with
the iteration limit set to 200. The planner was able to
plan motion for the parallel and perpendicular scenarios
with success rates of 71% and 83%, respectively.

C. Highway driving with static obstacle

A constant curvature highway is considered, con-
sisting of 2 lanes. The planning horizon is set to 5
seconds. The tested scenarios were lane following and
lane changing. An example of a considered scenario is
shown in Figure 7. Notice here that the tree was built
on the straightened road. Only the selected trajectory is
deformed to follow the follow curved road.

1) Compared algorithms: The proposed method was
compared with the standard RRT and CL-RRT, which
both plan directly on the curved road. The algorithms
all use the same optimization heuristics and collision
detection.

The RRT uses a kinematic bicycle model without ac-
tuator constraints. During node expansion, a predefined
set of steer inputs is simulated. The best input is selected
and will not be considered again. The steer angles (δn)
are linearly distributed over [−δmax, δmax], with n =
1...11, and δmax = 0.0312 radians. The simulation
horizon is set to 0.25 seconds.

2) Road configurations: The goal is located 150
meters ahead of the vehicle and can be on either of
the lanes. The goal is to reach the goal region while
minimizing (14). The vehicle has a constant speed of
120km/h.

In total, 20 roads are considered, with the radius
linearly distributed between 450 and 5000 m. Each
algorithm plans motion 100 times for each road config-
uration. An obstacle is randomly placed on either one
of the two lanes and moves after each query. A total of
2000 motion queries are performed for each algorithm.
The computation time for each query is constrained to
4 seconds.

3) Results: Figure 8 presents the main results. Plot a)
shows the evolution of the path cost as computation time
elapses. Plot b) shows the cost of the selected path versus
the road radius. Both plots only consider motion queries
that successfully reach the goal at some point during
planning. The bold lines represent the means and the
shaded areas the standard deviation. Additional results
are presented in Table III.

D. Dynamic obstacle avoidance

The capability of dealing with dynamic obstacles is
evaluated with a pedestrian avoidance scenario that was
realized in the ROS Gazebo simulation environment.
During this simulation, the goal is to drive to the end of
the road while avoiding collision with two pedestrians
(see Figure 9). The pedestrian cross the road at random-
ized moments.

An additional cost term is added to (14)
to increase the distance between obstacles:∑p=Np

p=0 w4exp(−w5Dobs,p). Here, w4 and w5 are
the cost weights and Dobs,p the distance to obstacle p.

1) Results: A total of 100 simulations were per-
formed with the MPCC configured for trajectory track-
ing only. From those simulations, three resulted in a
collision, and seven came uncomfortably close to a
pedestrian. Often the maneuvers performed for avoiding
the pedestrian included a lot steering.

VI. DISCUSSION

The results from the parking scenario show that the
planner is able to plan with a relatively high success rate.
Although the presented results for the parking scenarios
appear to be of good quality, the planner can also
produce paths that are sub-optimal. This can result in
a trajectory that does more maneuvers than is necessary
for parking the car. On structured highway roads, this
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Fig. 7: Planned motion for curved highway. R = 750m, v=120km/h. Left: curved highway. Right: virtual straightened
highway. Grey: obstacle bounding box, black: feasible trajectory, green: selected trajectory, yellow: reference of
selected trajectory.

TABLE III: Statistic results of motion planning for a constant curvature highway for Rn ∈ [450, 5000], n = 1...20.
The radii are linearly distributed. Each algorithm plans 100 times for each road configuration. Considered are 0
and 1 obstacles (randomized location for each query), and scenarios Lane Following (LF) and Lane Change (LC).
Here, the proposed method is denoted with CL-B.

config. % failures Final cost: mean (Std) Samples explored: mean (Std) First goal comp. time: mean (Std)
RRT CL CL-B RRT CL CL-B RRT CL CL-B RRT CL CL-B

0 obs, LF 13.8 6.0 0.0 32 (25) 9 (31) 1 (2) 351 (27) 35 (6) 35 (7) 0.8 (0.7) 0.5 (0.5) 0.6 (0.3)
1 obs, LF 23.5 18.8 1.2 33 (23) 23 (46) 10 (15) 330 (35) 20 (5) 22 (6) 1.2 (0.9) 1.2 (1.0) 1.2 (0.8)
0 obs, LC 19.4 0.1 0.0 36 (23) 10 (37) 1 (3) 376 (20) 37 (6) 39 (7) 0.8 (0.8) 0.3 (0.3) 0.4 (0.2)
1 obs, LC 28.4 1.5 0.3 35 (22) 24 (48) 7 (11) 363 (28) 20 (4) 23 (6) 1.1 (0.9) 0.9 (0.7) 1.0 (0.7)

a) Cost vs computation
time b) Cost vs radius

Fig. 8: Highway comparison results

Fig. 9: Pedestrian avoidance simulation: red: feasible
trajectory, yellow: feasible trajectory that reaches the
goal, green: selected trajectory, pink: pedestrian path.

is less noticeable due to the simplistic geometry and
heavily goal biased expansion.

The presented highway results in Figure 8 a) reveal
that the proposed method (CL-RRT-B) plans paths of
significantly lower cost compared to RRT and CL-RRT.
It also shows that while CL-RRT and the proposed
method improve the path quality over time, the RRT
easily gets stuck in its initial solution. The presented
highway results in Figure a) reveal that the proposed
method (CL-RRT-B) plans significantly lower cost paths
compared to RRT and CL-RRT. It also shows that while
CL-RRT and the proposed method improve the path
quality over time, the RRT easily gets stuck in its initial
solution. The results also showed that the proposed
method is able to accurately track the lane center line

without any meandering.
Figure 8 b) clearly demonstrates the advantage of the

proposed method. On curved roads, the RRT and CL-
RRT plan paths with a considerably higher cost than
the proposed method. The proposed method is capable
of planning low-cost paths for the entire range of road
curvatures that were considered. The plot shows that
the CL-RRT cost converges to the proposed method
as the radius increases. This can be easily explained
by the fact that the deformation of the curved to the
straight virtual road decreases as radius increases, and
thus the CL-RRT-B essentially becomes the same as
the CL-RRT. The Dutch directive for highway design
states that the highway radius must be at least 750
meters [23]. Therefore, it can be concluded that the
proposed method can plan significantly better on roads
with realistic curvature, compared to the RRT and CL-
RRT.

Table III reveals that the proposed method is more
reliable (has fewer failures) and produces cheaper paths
on the considered curved roads. Furthermore, the CL-
RRT and CL-RRT-B explore significantly fewer samples
than the RRT. This is obvious since a single sample leads
to a significantly longer path section than the RRT.

Dealing with dynamic obstacles has proven to be
challenging for the planner. The deterministic velocity
profile can explain this. Because the velocity profile
limits the velocity space exploration, the only option
may be to drive around the obstacle. Therefore, the
planner may resort to a path that requires large steering
angles instead of e.g. braking and letting the pedestrian
pass.

VII. CONCLUSION

This article proposed a motion planning framework
that is based on the Closed-Loop RRT, and aims to
improve path quality in structured environments with
curved roads. A generic implementation was realized,
which was evaluated in unstructured parking environ-
ments and structured highway roads. Simulation results
showed that the proposed method significantly improves



path quality on curved roads, compared to the RRT and
Closed-Loop RRT. Simulations with moving pedestrians
have demonstrated that the planner has limitations in its
ability of dealing with dynamic obstacles. This is caused
by limited exploration of the velocity space, making
the planner prefer excessive steering maneuvers over
changing its velocity.

To address the identified shortcoming, future research
could focus on adapting the algorithm to explore the
velocity dimension in a more comprehensive manner.
Additionally, further research on the optimality and how
to improve it may also be included.
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Chapter 4

Vehicle stability analysis

4-1 Assumptions

During the derivation of the stability conditions, several assumptions are made that allow the
use of the single-track vehicle model:

1. Vehicle roll, pitch and vertical motion are neglected
2. Suspension dynamics are neglected
3. Steer angles remain small
4. Longitudinal velocity is constant (or varies negligible slow)
5. The vehicle operates in the linear region of the tire response

4-2 Dynamic vehicle model

Assumptions 1 and 2 allow the modeling of the vehicle body as a single point mass located at
the center of gravity. Furthermore, the wheels on the front and rear axles are merged. This
gives the single-track (bicycle) model (see Figure 4-1).
The model linearizes trigonometric equations that are a function of the steering angle, and
thus, the model can only be used when the steering angle remains small. Longitudinal dynam-
ics are not included in the model. Hence, velocity must remain constant (or vary negligible
slow). The complex nonlinear tire response is simplified by constraining the operation to the
linear region only. This reduces the complexity and makes analytic analysis of the stability
possible. Using these assumptions, the linear dynamic bicycle model can be derived (4-1).

[
v̇
ṙ

]
=

 −Cf +Cr

mu
lrCr−lf Cf

mu − u
lrCr−lf Cf

Izu − l2f Cf +l2rCr

Izu

[v
r

]
+
[

Cf

m
lf Cr

Iz

]
δ (4-1)

The parameters are defined as follows. v is the lateral velocity, r is the yaw-rate, δ is the
steering angle of the front wheels, Cf and Cr are the front and rear tire cornering stiffness, u
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32 Vehicle stability analysis

Figure 4-1: Single track vehicle model [36]

is the longitudinal velocity, m is the vehicle mass, lr and lf are the distances from the center
of mass to the front and rear axle respectively. Lastly, Iz is the inertia around the vertical
axis.

4-3 Stability Criterion derivation

The Routh-Hurwitz stability criterion is used for determining when the vehicle becomes un-
stable. Hence, the characteristic equation of the model must be defined (4-2) det(sI−A) = 0.

s2 +
(
Cf + Cr

mu
+
l2fCf + l2rCr

Izu

)
s+

(
Cf + Cr

mu

)( l2fCf + l2rCr

Izu

)
−
(
lrCr − lfCf

Izu

)(
lrCr − lfCf

mu
− u

)
= 0 (4-2)

According to the Routh-Hurwitz criterion, a second-degree polynomial P (s) = s2 + a1s+ a0
is stable if both coefficients satisfy ai > 0, where i = 1, 2. Since all vehicle parameters are
positive, clearly a1 is always positive. Therefore, only condition (4-3) remains to be satisfied.

(
Cf + Cr

mu

)( l2fCf + l2rCr

Izu

)
−
(
lrCr − lfCf

Izu

)(
lrCr − lfCf

mu
− u

)
> 0 (4-3)

The first term is always positive because of the vehicle parameters. Simplifying the second
part of (4-3) gives the final stability criterion (4-4). Hence, stability can be guaranteed as
long as the assumptions are valid and the vehicle shows understeer behavior (Kus > 0).

lrCr − lfCf > 0 (4-4)
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4-4 Considering vehicle stability during planning 33

4-4 Considering vehicle stability during planning

The vehicle considered in the article has a positive understeer gradient. Therefore, vehicle
stability can be guaranteed as long as the linear dynamic bicycle model is an accurate ap-
proximation of the complex nonlinear vehicle dynamics. The assumptions in Section 4-1 must
be valid.

The proposed motion planning method is constrained to planning under normal operating
conditions. Highly dynamic scenarios such as emergency evasion maneuvers can not be
planned. For normal operating conditions, the model used in the stability analysis is accurate
enough. This is enforced by a lateral acceleration constraint during closed-loop prediction.
Additionally, the velocity profile design allows the vehicle to have very limited longitudinal
accelerations. Hence, the model can be used for stability analysis.
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Chapter 5

Lateral Controller Implementation

The piece-wise linear nature of the reference generation results in non-smooth reference paths.
The vehicle is not able to track this path accurately because of the nonholonomic constraints.
By using a controller with a preview point, the path is smoothened and obtains continuous
curvature. Hence, the vehicle can now track the path when appropriate controllers are applied.
Furthermore, the planner has a strong bias to explore the goal region. To reach the goal with
success, the vehicle must first align with the goal heading. By using the preview controller,
the virtual car sees the goal coming and can align itself with the goal before reaching it.

The proposed algorithm has severe complexity, and computational resources are limited.
Thus, to realize a real-time implementation, the algorithm is restricted to using simple con-
trollers. Using complex controllers such as Model Predictive Control (MPC) would result in
a too high computational burden. Furthermore, it has been demonstrated in [37] that the
preview controller can outperform MPC for lateral control purposes.

The lateral controller requires a single measurement of the lateral error at the preview point,
located at a look-ahead distance (DLA) in front of the vehicle. The lateral error is calculated
as follows. First, the point on the reference path is located that minimized the distance to the
preview point. This point and its two adjacent points are transformed to the car coordinate
frame followed by a translation to the preview point. A second-order Lagrange interpolation
is then used for calculating the controller error.

The reference path is searched for the closest point during each calculation of the control error.
This must be done during every step of the closed-loop prediction. Thus, numerous amounts
of searches are performed during a motion query. In our implementation, this was of order
104 for a single motion query. The procedure therefore has a major impact on computational
efforts during planning. To minimize this issue, the amount of points in a path is kept at
a minimum. This is done by scaling path resolution with the vehicle velocity. The spatial
resolution of the reference path is calculated with (5-1), where tref = 0.2s and resmin = 0.2m.

res = max(|u|tref , resmin) (5-1)
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Chapter 6

Supplementary simulations

The scientific article presented in Part 1 discusses only the main results of the thesis. The
purpose of this chapter is to provide specifics on the simulation setup and present additional
simulation scenarios.

6-1 Perpendicular parking scenario

The parking scenarios discussed in the article were parallel parking and perpendicular parking.
Here, an illustration is provided that presents the perpendicular parking scenario (see Figure
6-1).

Figure 6-1: Perpendicular parking scenario: the parking spot is 4 meters wide and 5 meters long.
Black: feasible trajectory. Green: selected trajectory. Yellow: reference of selected trajectory.
Grey: obstacle bounding boxes. Red arrow: initial pose. Blue arrow: goal pose.
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6-2 Real-time highway driving with Dynamic Obstacles

This section discusses an additional highway driving simulation that was performed. A MAT-
LAB Simulink model simulates the vehicle dynamics, several perception sensors, and a mission
planner. The generated information is sent to the motion planner which is implemented in
ROS C++, which sends the motion plan back to MATLAB.

6-2-1 Driving scenario

A double-curved, two-lane highway was designed with the MATLAB Driving Scenario designer
(see Figure 6-2). The road was generated with a continuous curvature profile (see Figure 6-
4). The ego vehicle must overtake two slower moving vehicles that are driving on the most
right lane. Therefore, the vehicle must perform two lane changes. While not performing any
maneuvers, the path must follow the lane center as closely as possible. The lane changes are
initiated by the mission planner when the vehicle approaches the obstacles. The ego vehicle
has a constant speed of 120km/h and the obstacle vehicles 90km/h.

Figure 6-2: Real-time motion planning on double curved highway
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Figure 6-3: Simulation setup for real-time motion planning on highway

6-2-2 Implementation

An overview of the simulation setup is presented in Figure 6-3. Each of the components will
be further discussed in the upcoming sections.

Vehicle model
The vehicle was modeled with a dynamic bicycle model. The vehicle operates with limited
lateral acceleration. Therefore, the tires operate in the linear region and therefore a linear
model is used. Longitudinal dynamics are neglected since the scenario considers constant
speed maneuvers only.

Controller
Lateral control of the virtual vehicle is done with the same preview controller as is used during
motion planning, see Chapter 5 and the article.

Mission Planner
The mission planner generates local goals for the motion planner. These goals are located 5
seconds ahead of the vehicle. During the first section of the simulation, the mission planner
generates goals that are on the right-hand lane. When the vehicle approaches the upcoming
obstacles, the mission planner initiates a lane change maneuver. This shifts the goal to the
left lane. After passing the obstacle vehicles, the goal shifts back to the right lane. The goals
are updated for each motion query.

Sensor simulation
The Simulink model generates sensor measurements that simulate point cloud data. The
unprocessed point-cloud data is sent to the obstacle detection. Simulink also generates mea-
surements that represent the lane markings. Lane coefficients are obtained by fitting a second-
order polynomial through the center-line. The coefficients are provided to the motion planner.

Obstacle detection
Obstacle detection is implemented in ROS C++. A point cloud processing node is responsible
for generating OBB for each obstacle. Obstacles are tracked to generate a prediction of their
future positions. More details on the implementation can be found in Appendix A. The
collision check itself, which is performed countless times during motion planning, is described
in Appendix B.
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6-2-3 Results

The results for a single simulation are presented in figure 6-4. The plot presents the curvature
of the road and the vehicle. Besides that, it shows the lateral acceleration. The first peak
in the curvature indicates the moment that the vehicle first encounters the slower moving
vehicles. Here, the first lane change is initiated (see Figure 6-2). The second peak indicates
the moment that the vehicle has passed both slower moving vehicles. It then performs the
second lane change.

Figure 6-4: Real-time highway simulation results

The online highway driving results demonstrate the capability of planning motion on realistic
highway roads. The planner is able to plan motion with smooth curvature, which accurately
follows the road curvature during lane following. The results show that the planned mo-
tion converges to the road center-line, while avoiding collision with dynamic obstacles and
satisfying the stability constraints.
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Chapter 7

Setup of the Statistical Analysis

The sampling function that the proposed method uses has a great impact on its behavior.
Due to its probabilistic nature, the planned paths can vary a considerable amount between
subsequent identical motion queries. Before any conclusions can be drawn on the performance
and properties of the algorithm, a comprehensive statistical analysis must be performed. The
presented article discusses the results of the analysis. This chapter goes into detail how the
setup for the analysis was realized.
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7-1 Approximate steering RRT

The approximate Rapidly-exploring Random Tree (RRT) uses a forward simulator based on
the kinematic vehicle. The model used during the simulations is presented in 7-1.

Nonholonomic RRT
ẋ = u cos(θ)
ẏ = u sin(θ)

θ̇ = u tan (δ)
u2 Kus

g + L

Table 7-1: Approximate RRT vehicle model

The behavior of the planner can be tuned by changing the following parameters: ∆t, u, δ.

7-2 Parameter selection

The configuration of the planner has a major impact on its performance. Since only constant
velocity is considered, the selection of u is straight forward. The selection of ∆t should be
approached more carefully. When the simulation time is chosen too short, the tree will contain
so many nodes that algorithm exploration is slowed. This is due to the number of distance
measures performed during node sorting. Furthermore, it can produce a path that shows a
lot of meandering. If the time is chosen too long, the algorithm may encounter problems
regarding limited exploration. Extensive testing resulted in the final parameters selection
presented in Table 7-2.

Parameter Value
∆t 0.25 s
u 33 m/s

δmax 0.0312 rad
N 11

Table 7-2: Approximate RRT configuration

Parameter selection for the RRT algorithm has proven to be a delicate process. The con-
figuration has a major impact on performance. In contrast, configuring the Closed-Loop
RRT (CL-RRT) was quite simple. The algorithm performs rather well with merely a little
tuning.
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Appendix A

Obstacle detection implementation

The obstacle detection node was implemented using the ROS Point Cloud Library1. It uses
LIDAR point cloud sensor data for generating 2D Oriented Bounding Box (OBB). First, the
ground plane is filtered from the point cloud. The point cloud is then clustered into several
groups that represent the obstacles. Lastly, a 2D OBB is constructed around the clustered
points. By default, the boxes are aligned with the vehicle heading. When road center-line
coefficients are available from the perception part of the vehicle, the bounding boxes are
aligned with the road heading.

Obstacle tracking is realized by combining the OBB generator with a Kalman Filter (KF),
in order to estimate the internal state of the obstacle. For details on how this method works,
the reader is referred to 2. A C++ implementation3 is combined with our obstacle tracker.
For reproducability, the equations representing the obstacles are given below.

The obstacle of which we estimate its internal state is modeled using equation A-1:
x
y
ẋ
ẏ


k

=


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1



x
y
ẋ
ẏ


k−1

+ wk−1 (A-1)

The system is observed using measurement equation A-2:

[
x
y

]
=
[
1 0 0 0
0 1 0 0

]
x
y
ẋ
ẏ


k

+ vk (A-2)

1ROS, "ROS Point Cloud Library", http://wiki.ros.org/pcl
2Welch, Bishop, 2006, "An Introduction to the Kalman Filter",

http://www.cs.unc.edu/∼welch/media/pdf/kalman_intro.pdf
3Martiros, H, "Kalman Filter", https://github.com/hmartiro/kalman-cpp
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Appendix B

Collision detection implementation

The task of the collision detection module is to determine whether a generated trajectory will
lead to collision with obstacles present in its environment. Both the vehicle and obstacles are
modeled as OBB. The obstacle detection node estimates the internal state of each obstacle,
giving an estimate of its velocity.

Let T be a vehicle trajectory consisting of N points (x, y, θ, δ, v, a, t), representing the state of
the vehicle over time, and let O be the set of all static and dynamic obstacles in the vehicle’s
environment. The task of the collision module is to determine whether each point in T , leads
to a collision with an obstacle.

This problem can be reduced to determining whether a pair of OBB intersect. The process
of determining whether a pair of boxes intersect works as follows:

First, we predict the future position of the obstacle that we are checking for collisions. We
know the position and orientation of the vehicle, and how long it will take for the vehicle to
arrive to that point. Using this time, and a linear extrapolation with the obstacle’ velocity,
we determine the future position of the obstacle (see Equation B-1).[

x
y

]
prediction

=
[
x
y

]
t0

+
[
ẋ
ẏ

]
t0

∆t (B-1)

We then construct an upper bound of the box dimensions, and use it to determine whether we
should perform a more complex and accurate collision check. This upper bound is constructed
by fitting circles around both boxes. Checking if these two circles intersect is an operation
that can be very efficiently done.

Only when the simple test tells us that both circles intersect, we advance to the more complex
test. This second test is based on the Separating Axis Theorem (SAT) theorem, and checks
whether the boxes themselves intersect. This intersection test is efficiently implemented based
on the SAT 1.

1Huynh, J. (2009). Separating axis theorem for oriented bounding boxes.
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