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Chapter 6
Physical and Data-Driven Models
Hybridisation for Modelling the Dynamic
State of a Four-Stroke Marine Diesel
Engine

Andrea Coraddu , Miltiadis Kalikatzarakis , Gerasimos Theotokatos ,
Rinze Geertsma , and Luca Oneto

Abstract Accurate, reliable, and computationally inexpensive models of the
dynamic state of combustion engines are a fundamental tool to investigate new
engine designs, develop optimal control strategies, and monitor their performance.
The use of those models would allow to improve the engine cost-efficiency trade-off,
operational robustness, and environmental impact. To address this challenge, two
state-of-the-art alternatives in literature exist. The first one is to develop high fidelity
physical models (e.g., mean value engine, zero-dimensional, and one-dimensional
models) exploiting the physical principles that regulate engine behaviour. The sec-
ond one is to exploit historical data produced by the modern engine control and
automation systems or by high-fidelity simulators to feed data-driven models (e.g.,
shallow and deep machine learning models) able to learn an accurate digital twin of
the system without any prior knowledge. The main issues of the former approach
are its complexity and the high (in some case prohibitive) computational require-
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ments. While the main issues of the latter approach are the unpredictability of their
behaviour (guarantees can be proved only for their average behaviour) and the need
for large amount of historical data. In this work, following a recent promising line of
research, we describe a modelling framework that is able to hybridise physical and
data driven models, delivering a solution able to take the best of the two approaches,
resulting in accurate, reliable, and computationally inexpensive models. In partic-
ular, we will focus on modelling the dynamic state of a four-stroke diesel engine
testing the performance (both in terms of accuracy, reliability, and computational
requirements) of this solution against state-of-the-art physical modelling approaches
on real-world operational data.

Keywords Marine diesel engine · Physical models · Data-driven models ·
Hybridisation

6.1 Introduction

In recent years the maritime industry has been challenged by several issues. The
volatile bunker prices affect cargo transportation costs and the shipowners’ competi-
tiveness and operations viability (García-Martos et al. 2013). Strict regulations are in
place to limit emissions (Committee 2011) with the aim of reducing CO2 emissions
from shipping by 40–50% (Commission 2013a, b). As a result of this combination,
energy efficiency and environmental sustainability of maritime operations are cur-
rently the primary challenges to be faced by the maritime industry. Shipowners and
operators are adopting several measures to lower fuel consumption and associated
emissions (Chiong et al. 2021; Lion et al. 2020), and researchers in the field are
developing innovative technologies and methods that can increase the environmen-
tal efficiency and cost-effectiveness of ship operations (Xing et al. 2020; Ni et al.
2020).

Improvements in energy efficiency can be obtained by a variety of design and
retrofit measures (Lindstad et al. 2015; Gucwa and Schäfer 2013), such as hull design
optimisation (Tillig et al. 2015; Lindstad and Eskeland 2015), adoption of alternative
fuels (Chiong et al. 2021), and alternative energy sources (Bouman et al. 2017), as
well as operational measures (Zis and Psaraftis 2018; Xing et al. 2020), including
speed optimisation (Wen et al. 2017; Fagerholt and Psaraftis 2015; Psaraftis and
Kontovas 2014), better capacity utilisation (Xing et al. 2020), and advanced route
planning execution methods (Yu et al. 2021; Zis et al. 2020).

Nevertheless, it is widely known that for the majority of the vessels operating
today, themain engines and to a lesser extent the auxiliary engines are themain factors
of energy losses (Baldi et al. 2014, 2015). For this reason, engine manufacturers are
focusing on further increasing Diesel Engine (DE) power density and enhancing
operating performance (Lion et al. 2020).

Identifying and adopting new technologies in marine DEs is limited by the expen-
sive design (Baldi et al. 2015), prototyping and experimentation processes (Kamal
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and Hui 2013). To mitigate these issues, computational models have been devel-
oped to simulate the physical processes occurring in a DE under steady-state (Larsen
et al. 2015) and transient conditions (Theotokatos and Kyrtatos 2003) as a rapid
and cost-effective prototyping tool (Merker et al. 2005). A common effort in the
development of all computational models is towards improving their accuracy and
reliability (Oberkampf and Trucano 2002). As such, the model verification, calibra-
tion, and validation processes occupy a central role, based on which the predictive
capabilities of the model are assessed to justify its use for the application of inter-
est (Oberkampf et al. 2004).

In the literature it is possible to find three main approaches to the DEs: Physi-
cal Models (PMs), Data-Driven Models (DDMs), and Hybrid Models (HMs). PM
requires a deep knowledge of the physical phenomena (Grimmelius 2003; Grim-
melius et al. 2007). The higher is the detail in the modelling of the equations which
describe the physical phenomena, the higher is the expected accuracy of the results
and the computational time required for the simulation. The second approach, instead,
infers the desired model directly from historical data collected by on board machin-
ery and does not require any a-priori knowledge of the underlying physical phenom-
ena (Coraddu et al. 2021a). However, since these models are not supported by any
physical interpretation, they need a significant amount of data to be built. The third
approach is a combination of the previous ones and it is based on the integration of a
PM and DDM into a single model. The DDMmodel compensates for the secondary
effects not modelled by the PM and the PM helps the DDM in reducing the amount
of historical data required to train it (Oneto et al. 2016).

A literature review on PMs, DDMs, and HMs for DE is reported in Sect. 6.2
showing that a complete and clear description of a modelling framework able to
hybridise PMs and DDMs is not yet readily available. For this reason, this chapter is
devoted to the presentation of this framework combining the computational efficiency
of the 0D PM with the level of accuracy of the DDM.

With this goal inmind, first a 0DDEmodelwill be proposed and validated for both
steady-state and transient operations. This analysis will underline the high predictive
capabilities of the PM in steady-state operations, and will also reveal the limited
predictive capabilities under transient operation. Subsequently, different DDMs will
be developed, tested, and compared. These models will leverage the information
encapsulated in historical data to produce accurate predictions on a set of perfor-
mance parameters of the DE. Finally, we will present the hybridisation framework
where a set of HMs will be proposed, leveraging on both the DDMs and the PM
previously developed. The authors will showcase the performance in terms of accu-
racy, reliability, and computational requirements of the HMs, clearly demonstrating
the superiority of the proposed hybridisation framework on a comprehensive dataset
containing real operational data from amarine DE for a time period of approximately
3 years.

The rest of the paper is organised as follows. Section 6.2 presents the state-of-the-
art in PMs, DDMs, and HMs for marine DEs. Section 6.3 describes the hybridisation
framework, starting from the theory of the PMs and DDMs and then going into the
details of the HMs. Section 6.4 presents a specific DE case study and the related
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historical data available. Section 6.5 demonstrates the advantages and disadvantages
of the different approaches presented in Sect. 6.3. Section 6.6 concludes this work.

6.2 Related Work

This section is devoted to the review of PMs, DDMs, and HMs for marine DEs.
Note that the models can be categorised also according to other criteria (Grimmelius
2003). The choice that wemade reflects the experience and knowledge on the subject.

6.2.1 Physical Models

PMs are the most traditional models for DE development, design, optimisation, and
performance evaluation with extensive work carried out over several decades (Grim-
melius et al. 2007).Many insightful reviews on this subject can be found (Grimmelius
et al. 2007; Geertsma et al. 2017; Merker et al. 2005). All these reviews agree on
the fact that the choice of the most suitable model strongly depends on the scope of
work, the application requirements, and the available computational tools (Johnson
et al. 2010). In general, to the best of the authors knowledge, PMs achieve errors
well within the tolerance margins provided by engine manufacturers in steady state
conditions, whereas reported results during transient operations tend to be less accu-
rate.

Among PMs, Mean Value Engine Models (MVEMs) are a common choice when
low computational effort is required (Maroteaux and Saad 2015; Guzzella and Onder
2009; He and Lin 2007; Lee et al. 2013; Miglianti et al. 2020, 2019). MVEMs
are approximate first-principle models that adequately predict engine performance
parameters, and are prevalent in applications in which the engine is considered as just
one component of a wider system, or for control strategies development (Malkhede
et al. 2005; Guan et al. 2014; Theotokatos 2010; Grimmelius et al. 2010; Theotokatos
2008; Nikzadfar and Shamekhi 2015; Geertsma et al. 2017; Theotokatos et al. 2018;
Geertsma et al. 2018; Guzzella and Onder 2009).

MVEM can be classified in the following two categories: (a) not considering the
engine manifolds dynamics; (b) including the engine manifold dynamics. Category
(a) employs only two differential equations for calculating the engine and TC rota-
tional speeds. Category (b) employs additional equations to calculate the pressure and
temperature of the engine manifolds. MVEMs employ simpler approaches to esti-
mate the engine parameters on an engine cycle basis. These models are employed
in cases where calculations of low computational cost are required, with the most
common example being the engine control system design.

0D models employ a more detailed formulation and are capable of predicting the
in-cycle variations of the engine parameters. The latter are employed in the cases
where the in-cylinder parameters (pressure, temperature, composition) variations are
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required leading to a more accurate estimation of the engine performance parame-
ters. For instance, Llamas and Eriksson (2018) developed a control-oriented MVEM
for a large two-stroke engine with Exhaust Gas Recirculation (EGR), with relative
errors under 3.35% for steady state operations. A similar study was performed by
the authors of Dahl et al. (Dahl et al. 2018), who also developed an MVEM for
control strategy design, reporting errors smaller than 5% for all engine parameters
under steady state conditions. In both these studies (Llamas and Eriksson 2018;
Dahl et al. 2018), the authors did not report results under transient operation, never-
theless general trends of the real engine parameters were adequately captured. The
authors of Sui et al. (2017) exploited an MVEM to investigate the performance of a
medium-speed DE during preliminary design. The results of the in-cylinder process
showed good correspondence with the test data across all process parameters, includ-
ing in-cylinder temperatures, with satisfactory accuracy and adaptability to variable
operating conditions. Authors of Sapra et al. (2017) studied back pressure effects
on the performance of a marine DE, by means of an MVEM. Although quantitative
performance metrics for the model are not reported, the graphical representation of
the results indicates average relative percentage errors of around 4% for the turbine
inlet temperature across all operating conditions.

More sophisticated approaches, with respect to MVEMs, are zero-dimensional
(0D), one-dimensional (1D), and three-dimensional (3D) models that operate on
a per-crank basis (Merker et al. 2005). These approaches are more computation-
ally demanding compared to MVEMs, however they can predict the detailed gas
processes inside the cylinders (Mohammadkhani et al. 2019; Stoumpos et al. 2018,
2020). For instance, authors ofGuan et al. (2015) investigated a two-strokemarineDE
with emphasis on part load operating conditions using a 0D model validated against
experimental data obtained from engine shop tests in steady state operations. Very
small errors were reported for loads between 25–100%, ranging between 0.6–2%.
Authors of Larsen et al. (2015) also developed a 0D model, with a similar validation
approach, reporting a root mean square deviation of approximately 1% across all
engine performance parameters. Authors of Sapra et al. (2020) compared the capa-
bilities of Seiliger-based and double Wiebe function-based 0D models to capture
hydrogen-natural gas combustion in a marine engine for different fuel blends and
engine loads. In this study, very small errors were reported for in-cylinder process
parameters, ranging between 0.1–2.4%.

Several attempts to combine MVEM and 0D, 1D, or 3D models have been
proposed, enhancing the predictive abilities of MVEMs with lower computational
requirements than their 0D, 1D, or 3D counterparts (Livanos et al. 2007; Ding et al.
2010; Baldi et al. 2015; Maroteaux and Saad 2015; Tang et al. 2017).

In fact, in cases where low computational cost is required whilst the predictive
capability for the engine in-cylinder parameters must be retained, approaches com-
bining MVEMs and 0D models have been employed. In such cases, one engine
cylinder (typically the closed cycle) is modelled by employing the 0D approach and
interfaced with the MVEM. This provides the advantage of negating the extensive
calibration process of the MVEM (which is typically based on data derived from
either experiments or simulations with more detailed models) required to predict the
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engine performance parameters. For instance, authors of Baldi et al. (2015) combined
MVEM and 0D models to investigate the propulsion behaviour of a handymax-size
product carrier under constant and variable engine speed operations. The model was
validated against experimental data from the engine’s shop tests, for loads ranging
between 50–110%. High accuracy was reported, with errors ranging between 1.9–
2.7%. Furthermore, the authors concluded that their proposal provides a favourable
time-accuracy trade-off and it can be used in cases where information, not provided
by an MVEM, is required.

The integration of a 1D with a Computational Fluid Dynamics (CFD) based 3D
model was proposed by the authors of Wang et al. (2020). The authors conducted a
parametric investigation of a large four-stroke dual-fuelmarineDE to identify the pre-
injection effects on the engine combustion, knocking, and emission parameters. This
modelling approach was validated under steady-state conditions in four operating
points within a range of 25–100% of the nominal load. Near-zero deviation was
reported for most parameters, whereas the maximum deviation for NOx emissions
was about 2%. Finally, the authors of Hao et al. (2021) aimed to improve the in-
cylinder fuel/air mixing process of heavy-duty DEs, which they modelled utilising
CFD methods. Their simulations were validated in terms of the spray liquid/vapour
penetration, heat release rate, and in-cylinder pressures, at various operational, and
environmental conditions, reporting very low discrepancies.

When it comes to computational requirements, MVEMs are calibrated by using
data from measurements or more detailed models. They typically exhibit absolute
errors of less than 2%. However, outside the calibration envelope, their performance
deteriorates. For 0D/1D models (where 0D refers to modelling the in-cylinder pro-
cesses or volumes, whereas 1D refers to the modelling of pipes and manifolds), the
expected typical errors are in the range of ± 5%. The more significant errors are
exhibited for predicting the exhaust gas temperature and emissions, whereas errors
for the other engine performance parameters are typically in the range± 3%. Finally,
evaluating the error is challenging for CFDmodels as the available measured param-
eters are pretty limited in most cases (typically the in-cylinder pressure diagram).
However, the model set-up process consists of several steps (geometry, injection and
mixing process, meshing studies in fixed combustion chambers (bombs), testing of
various existing sub models) culminating in the set up of the final model version.
In addition, several quantitative verification studies are typically carried out, thus
providing confidence to the users that the model performance is appropriate.

We can conclude then that PMs can adequately capture most process parameters
of a DE under a broad range of operating conditions. However, there is a clear trade-
off between accuracy and computational requirements. In fact, the most detailed 3D
models cannot run in real-time, whereas MVEMs lack accuracy, especially during
transient operations.
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6.2.2 Data-Driven Models

DDMs have been successfully applied in a variety of maritime applications, provided
that the necessary quality and quantity of historical data is actually available (Coraddu
et al. 2016, 2017, 2019, 2020, 2019, 2021a, b; Cipollini et al. 2018a, b; Stoumpos
et al. 2020).

For instance, the Nikzadfar and Shamekhi (2014) developed an Artificial Neural
Network (ANN) to study the relative contribution of several operating parameters to
the performance of a DE. The authors utilised 4000 steady-state operating points to
train theANN, generated bymeans of numerical simulation, covering the entire enve-
lope of the DE. Although the authors did not provide quantitative results regarding
the model accuracy, graphical representation showed a relative difference of approx-
imately 5%. Authors of Shin et al. (2020) developed an ANN to predict the NOx

emissions of a DE under transient operation. Highly accurate results were reported,
with the developed ANN being able to predict NOx with errors around 1.6%, com-
parable to the accuracy of physical NOx measurement devices, with typical error
margins of 1%. The ability of ANNs to predict performance parameters of a DE
was also demonstrated by the authors of Ozener et al. (2013) predicting a variety of
performance parameters and emissions with coefficient of determination (R2) values
over 0.95. A hydrogen dual-engine for automotive applications was the case study
of the authors of Syed et al. (2017): ANNs proved to be extremely efficient, with
near-zero errors being reported for the prediction of specific fuel consumption and
a variety of emissions. A similar study was conducted by the authors of Liu et al.
(2018) employing an ANN to predict the emissions and various performance param-
eters of a spark ignition engine fueled with butanol-gasoline blends. In this study,
ANNs were able to predict the performances of the engine with very high R2 values.

DDMs are frequently used in the field of condition monitoring of DEs, as they
are extremely efficient at detecting and isolating faults and have proven to increase
the reliability and decrease the probability of producing false alarms (Ahmed et al.
2015). For instance, authors of Namigtle-Jimenez (2020) developed 3ANNs for fault
detection and diagnosis of a DE, utilising only the pressure signal of the injection rail.
They demonstrated that the proposed ANNs were able to detect and isolate the faulty
injector of the electronic fuel system with 100% classification accuracy in offline
training scenarios and near 100% accuracy in online scenarios. The authors of Wang
et al. (2021) proposed a random convolutional ANN for health monitoring of DEs,
relying on vibration measurements. Considering the very high accuracy of the devel-
oped ANN on this task, the authors concluded that, compared to traditional methods
based on signal analysis techniques and shallow classifiers, their approach can auto-
matically learn high-level representative features from the raw vibration signals and
eliminate the necessity of the time-consuming manual feature extraction. A similar
study was performed by the authors of Wang et al. (2019) presenting a Bayesian
ANN-based approach for fault isolation in a DE fuel injection system under the
presence of uncertainties. With the proposed approach, the authors demonstrated
that symptoms under multiple faults could be decoupled into symptoms correspond-
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ing to each individual fault. This greatly reduced the prior knowledge needed for the
diagnosis, decreased the complexity of the application, and significantly improved
computational efficiency. The authors of Palmer and Bollas (2019) demonstrated the
ability of DDMs to predict and isolate faults. More specifically, the authors showed
that when proper fault detection and isolation test designs are selected, even the
relatively simple combination of principal component analysis and k-nearest neigh-
bours classifier could provide satisfactory results in fault detection. Likewise, the
authors of Ahmed et al. (2015) trained an ANN employing a new estimation strat-
egy known as the smooth variable structure filter to detect the engine’s faults. This
approach demonstrated stability and generalisation accuracy exhibiting improved
performance compared with the first order back propagation algorithm and similar
performance compared with the extended Kalman filter. Fault detection was also the
scope of the work of the authors of Wang et al. (2020) where a noise-based method
based on ANNs and wavelet packet analysis was presented. The authors concluded
that ANNs are effective for feature extraction of engine fault noises in time and fre-
quency domains, and are powerful for sound feature classification and recognition
of the engine’s faults. A further example is reported by the authors of Coraddu et
al. (2021b) where multiple DDMs for weakly supervised marine dual fuel engines
health monitoring were designed, presented, and tested. The proposed framework
relied on a digital twin of the engine or on novelty detection algorithms which were
compared against state-of-the-art fully supervised approaches. Utilising data from
the validated simulation model of Stoumpos et al. (2020), the authors demonstrated
that their approach can overcome the problematic requirement for a large amount
of labelled samples, that are rarely available, with a decrease in performance of less
than 1% compared to state-of-the-art fully-supervised approaches.

6.2.3 Hybrid Models

HMs are a quite recent modelling approach, especially in the maritime field, and
just very few works showed the advantages of a hybrid approach, with respect to
pure PMs and DDMs (Coraddu et al. 2021a, 2018; Miglianti et al. 2019, 2020). For
instance, in Coraddu et al. (2017) the authors show that it is possible to effectively
predict fuel consumption with HMs. Moreover, in Coraddu et al. (2018, 2021a), the
authors also attempted to model the engine exhaust gas temperature with HMs under
steady state and transient conditions.

Authors of Mishra and Subbarao (2021) compared the performance of a PM, a
DDM, and an HM to predict dynamic combustion control parameters of a Reactivity
Controlled Compression Ignition engine across five engine loads. The parameters
included the start of combustion, the 50%mass fraction burnt crank angle, and com-
bustion peak pressure. The authors compared the model predictions with measured
data from experiments, concluding that the prediction capability of the HM was far
superior to the DDM and PM across all parameters.
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Authors of Bidarvatan et al. (2014) developed an HM to predict several perfor-
mance parameters of Homegeneous Charge Compression Ignition (HCCI) engines.
Namely, the the 50% mass fraction burnt crank angle, the indicated mean effective
pressure, exhaust temperature, and concentration of CO, total unburned hydrocar-
bons andNOx. The proposedHMcombined a PMand 3ANNs, designed tominimise
computational time requirements, with minimal sacrifice in accuracy. The authors
compared the predictions of the proposed HM with experimental data at 309 steady
state and transient conditions for two HCCI engines, concluding that the HM offered
approximately 80% better accuracy compared to the PM, or 60% compared to the
DDM.

As expected, the amount of literature available on the HMs is limited, being this
a relatively new and still partially explored research field. Moreover, focusing on
the marine DE applications, to the authors best knowledge, a complete and clear
description of a modelling framework for marine DEs able to hybridise PMs and
DDMs is not yet readily available.

6.3 Modelling

This section is devoted first to the presentation of a state-of-the-art 0D PM (see
Sect. 6.3.1) and DDM (see Sect. 6.3.2). Then the hybridisation framework is pre-
sented together with the proposed HM (see Sect. 6.3.3).

6.3.1 Zero Dimensional Diesel Engine Model

The DE PM has been developed utilising a modular approach, in which the engine
scavenging air and exhaust gas receivers are modelled as control volumes, whereas
the compressor and turbine are modelled as flow elements. The exhaust receiver
contains states for pressure p, temperature T , and exhaust gas composition g. The
gas composition of the air path has been assumed constant. The engine boundaries
are modelled using fixed fluid elements of constant pressure and temperature, and
shaft elements are utilised to compute the rotational speed of the turbocharger ωtc

and crankshaft ωe. Finally, for the in-cylinder process we exploited a two-zone 0D
approach, with state quantities being the in-cylinder pressure, temperature, gas com-
position, and air-fuel equivalence ratio λ for each zone. The layout and state variables
of the developed model are presented in Fig. 6.1. The governing equations of all rel-
evant components is discussed in the the following.

Gas composition and properties—The working fluid of the engine is considered to
be a mixture of the following 11 species: CO2, H2O , N2, O2, CO, H2, O, H, OH, NO,
and N. As such, the concentration vector in an arbitrary control volume is defined as
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Fig. 6.1 Layout of the PM with all relevant components and state variables

g =
[
mCO2 ,mH2O ,mN2 ,mO2 ,mCO,mH2 ,mO,mH,mOH,mNO

]

mtot
, (6.1)

where mi is the mass flow of species i and m tot = ∑11
i=1 mi . Arbitrarily, N is not

included in the concentration vector since it can be computed as the remaining part,
to ensure that the mass conservation law is not violated and to act as a sanity check
of the numerical integration.

The thermodynamic properties of the gas are calculated using the NASA polyno-
mials (McBride et al. 2002), under the assumption of a thermally perfect gas. The
concentration along the air path is assumed constant and equal to the standard air
concentration.

Control Volumes—The control volumes are modelled using the open thermody-
namic system concept (Watson and Janota 1982; Heywood 1988) which use as
inputs p, T , and the composition of the working medium contained in the adja-
cent elements. Considering the control volumes as cylindrical solenoids (neglecting
dissociation effects and the kinetic energy of the flows entering/exiting the receivers)
and assuming ideal gas, the change of rate in the mass stored in the volume m can
be expressed as
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dm

dt
=

∑

i

ṁ in,i −
∑

j

ṁout, j , (6.2)

where ṁi is the mass flow rate of stream i and the subscripts in, out refer to flows
entering and exiting the control volume respectively. Note that, the mass rate of
change does not need to be integrated since it only represents the difference between
entering and exiting mass flow rates.

The temperature rate of change is derived from the energy conservation as

dT

dt
= Q̇ + ∑

i mhin,i − ∑
j mhout, j − u dm

dt

mcv

, (6.3)

where mh refers to the enthalpy flow rate (entering mhin,i and exiting mhout,i for the
stream i), Q̇ = k A(T − Tamb) represents the heat transfer from the control volume to
the surrounding environment, with k being the heat transfer coefficient, A = πd2/4
being the heat transfer area, and u is the internal energy.

The heat transfer coefficient can be computed as (Merker et al. 2005)

k = 0.024
κ

d

[

1 −
(
d

l

) 2
3

]

Re0.786Pr0.45, (6.4)

where l and d refer to the length and inner diameter of the control volume and κ

being the heat conductivity, evaluated as

κ = 3.65182 10−4T 0.748. (6.5)

The Prandtl number Pr has been kept constant and equal to 0.731 and the Reynolds
number Re is evaluated on the average mass flow rate of the input and output streams
ṁavg as

Re = ṁavgd

Aν
, (6.6)

with ν being the kinematic viscosity computed as

ν = 5.17791 10−7T 0.62. (6.7)

Due to to the lack of information regarding the geometry of the control volumes,
their inner diameters d and lengths l are considered as calibration parameters.

Moreover, considering the control volume as a well-stirred mixer, the dynamics
of the concentration states can be derived as (Llamas and Eriksson 2019)

∂ gout
∂t

= RT

pV

∑

j

(
gin, j − gout

)
ṁ in, j , (6.8)



156 A. Coraddu et al.

where R = R(g, T ) is the gas mixture constant, V is the control volume, gin, j is the
composition of gas of the input stream j , and gout is the composition of gas of the
output stream. Note that in the case of the scavenging air receiver, under the simpli-
fication of constant fresh air composition, these derivatives have been set to zero.

The pressure of the working medium contained in each control volume is calcu-
lated using the ideal gas law equation, from which the pressure’s rate of change can
be computed as

dp

dt
= R

V

(
T
dm

dt
+ m

dT

dt

)
. (6.9)

Valves—Themass flow rate through a valve is computed assuming subsonic or sonic
flow through a flow restriction (Heywood 1988), with the valve opening signal (lift)
uv as input

ṁv=Aeff(uv)
p√
RT

Ψ, Ψ =

⎧
⎪⎨

⎪⎩

Π
1
γ

√
2γ

γ−1

(
1−Π

γ−1
γ

)
, if Π>

(
2

γ+1

) γ

γ−1

√
γ

(
2

γ+1

) γ+1
2(γ−1)

, otherwise

, (6.10)

where uv is chosen as the percentage lift of the valve, Π refers to the ratio of the
static pressure downstream of the restriction to the upstream stagnation pressure,
γ = γ (g, T ) is the ratio of specific heats of the medium, and Aeff = μ(uv)Aref refers
to the effective area of the valve computed as the product of a reference area Aref

with the appropriate flow coefficient μ(uv) (Heywood 1988).
The bypass valve is assumed to be activated if the pressure on the compressor

exceeds 90% of the surge limit for the instantaneous flow rate. Furthermore, we
have assumed a linear opening characteristic, with the reference area considered as
a calibration parameter. For the intake and exhaust valves, we utilised a non-linear
characteristic, parameterised on the basis of the maximum cross-flow area of the
inlet Aiv and exhaust valves Aev and the crank-angle duration that the valve stays at
its maximum lift denoted as vmdiv and vmdev (Merker et al. 2005).

Air cooler, Air Filter, and Exhaust Pipe—Pressure losses in all these components,
as well as air cooler effectiveness, have been modelled as quadratic functions of their
corresponding input mass flow rate (Theotokatos 2010; Theotokatos et al. 2018)

Δpac=
2∑

i=0

ṁi
accac,i , Δpaf=

2∑

i=0

ṁi
afcaf,i ,

Δpep=
2∑

i=0

ṁi
epcep,i , εac=

2∑

i=0

ṁi
accace,i , (6.11)

where the subscripts ac, af, and ep refer to the air cooler, air filter, and exhaust pipe,
respectively. cac,i , caf,i , cepi , and cace,i are considered calibration parameters.
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As a consequence, the temperature at the air cooler outlet is given by

T out
ac = εacTw + (1 − εac)T

in
ac , (6.12)

where εac refers to the heat exchanger effectiveness, Tw corresponds to the temper-
ature of the cooling water, and T in

ac is the temperature of the working medium at the
inlet.
Turbocharger—The engine is equipped with two turbocharging units operating in
parallel to supply the engine with sufficient air mass flow. We modelled the com-
pressor using its steady state performancemap, which provides the relations between
the compressor performance variables: reference flow rate, pressure ratio, reference
speed, and isentropic efficiency. The rotational speed and pressure ratio are consid-
ered as inputs to the model, which allows the computation of the reference flow rate
ṁ and isentropic efficiency ηc as reported in (Theotokatos and Tzelepis 2015; Baldi
et al. 2015)

ṁ = fmc

(
Πc, T

in
c , ωtc

)
, ηc = fηc

(
Πc, T

in
c , ωtc

)
, (6.13)

where fmc and fηc are functions that have been interpolated based on the the compres-
sor maps, representing the compressor mass flow rate and efficiency, respectively.
Πc is the pressure ratio of the compressor, and T in

c is the compressor inlet temper-
ature. After accounting for pressure losses in the air cooler and air filter, Πc can be
computed as

Πc = psc + Δpac
pamb − Δpaf

, (6.14)

where psc is the pressure of the scavenging receiver and pamb is the ambient pressure.
The temperature at the outlet of the compressor is given by (Watson and Janota 1982)

T out
c = T in

c

⎛

⎝1 + Π
γ−1
γ

c − 1

ηc

⎞

⎠ . (6.15)

For the turbine, we exploited its swallowing capacity and efficiency maps, which
allow the calculation of the turbine flow rate ṁt and isentropic efficiency ηt as

ṁt = fmt

(
Πt , T

in
t , ωtc

)
, ηt = fηt

(
Πt , T

in
t , ωtc

)
. (6.16)

where fmt and fηt are functions that have been interpolated based on the the turbine
maps, representing the turbine mass flow rate and efficiency, respectively. Πt is the
pressure ratio of the turbine, and T in

t is the turbine inlet temperature. The turbine
pressure ratio is computed by taking the exhaust pipe pressure losses Δpep into
account as

Πt = per
pamb + Δpep

, (6.17)
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where per is the pressure of the exhaust receiver. The temperature at the turbine outlet
T out
t can be computed from the turbine isentropic efficiency definition as

T out
t = T in

t ηt

(
1 − Π

γ−1
γ

t

)
, (6.18)

The rotational speed of the turbochargers ωtc is a model state, defined by the power
balance between compressor and turbocharger as

dωtc

dt
= Ptηmech

tc − Pc
Jtcωtc

, (6.19)

where Pt = ṁtΔht , Pc = ṁcΔhc refer to the turbine and compressor power, respec-
tively, withΔht ,Δhc being the enthalpy difference between the inlet and outlet of the
turbine and compressor. Jtc refers to the turbocharger shaft inertia and ηmech

tc corre-
sponds to the mechanical efficiency of the turbocharger unit, accounting for friction
losses. Jtc and ηmech

tc are considered calibration parameters.

Cylinder—For the in-cylinder process, apart from the assumptions on the working
medium described before, we have further neglected valve leakage and blow-by.
Furthermore, the temperatures at the cylinder wall Tcw, head Thw, piston wall Tpw,
liner wall Tlw, exhaust valve wall Tevw, as well as the injected fuel temperature T f

are considered all uniform and constant. In fact, the temperature variations of the
inner cylinder surface during the thermodynamic cycle are trivial compared to the
temperature variations of the combustion gases (Descieux and Feidt 2007; Rakopou-
los et al. 2004). Moreover, we have assumed a uniform cylinder pressure and that
the combustion chamber volume consists of two zones. The burned zone contains
incompletely oxidised fuel (denoted with the subscript b), whereas the unburned
zone contains air and fuel (denoted with the subscript u). Each zone is spatially
homogeneous, separated by a massless and infinitesimally thin flame, and no heat
transfer takes place between the two zones. A schematic of the two combustion zone
model is presented in Fig. 6.2. The main equations governing the two combustion
zone model include the conservation of mass

dm

dθ
= dmu

dθ
+ dmb

dθ
= dm f

dθ
+ dma

dθ
(6.20)

where the subscripts u and b refer the the unburned and burned zone, respectively,
and the subscripts a, f refer to air and fuel, respectively. The equations of state for
the working medium in each zone can be described as

pVu = muRuTu, pVb = mbRbTb, (6.21)

and the evolution of volume derivative with respect to crank angle in the two zones
as
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Fig. 6.2 Energy flow of the
two combustion zone model

dV

dθ
= dVu

dθ
+ dVb

dθ
, (6.22)

in which the instantaneous cylinder volume can be expressed as a function of crank-
angle θ according to the kinematics of the crankshaft as (Merker et al. 2005;Heywood
1988)

V (θ)=Vc+B2 π

4
(lr+a−s(θ)) , s(θ)=a+ cos θ+

√
l2r − a2 sin θ2, (6.23)

where Vc = Vs/(CR − 1) is the combustion chamber volume, Vs is the stroke vol-
ume, CR is the geometric compression ration, B is the bore diameter, lr is the
connecting rod length, and a is the crank radius.

Finally, the energy conservation equations for each combustion zone can be
expressed as

d(muuu)

dθ
= −p

dVu

dθ
−

∑

i

dQui

dθ
− hu

dmb

dθ
(6.24)

d(mbub)

dθ
= −p

dVb

dθ
−

∑

i

dQbi

dθ
+ hu

dmb

dθ
+ dQ f

dθ
(6.25)

where
∑

i
dQi

dθ for each one of the combustion zones refers to the summation of heat
transfer rates through the engine’s different parts surfaces in contact with the cylinder
gases and dQ f

dθ refers to the heat release rate.
Burn fraction and heat release rate in internal combustion engines are mostly gov-

erned by functions based on the law of Normal distribution of continuous random
variables. In this context, one of the most popular functions is the Wiebe func-
tion (Ghojel 2010; Galindo et al. 2011). While the Wiebe function by no means
describes the complex fuel air mixing in the diesel combustion process, it can pro-
vide valuable thermodynamic input for the model in terms of a realistic shape of the
heat release. In this work, we have exploited a double-Wiebe profile for the premixed
and diffusive combustion processes (Miyamoto et al. 1985; Kökkülünk et al. 2016)
as reported in (Merker et al. 2005).
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dQ f,1

dθ
= Q f,1α(m1 + 1)

(
θ − θSOC1

ΔθCD,1

)m1

e
−αi

(
θ−θSOC1
ΔθCD1

)m1+1

, (6.26)

dQ f,2

dθ
= Q f,2α(m2 + 1)

(
θ − θSOC2

ΔθCD,2

)m2

e
−α2

(
θ−θSOC2
ΔθCD2

)m2+1

, (6.27)

Q f,1 = qQ f,tot , Q f,2 = (1 − q)Q f,tot ,
dQ f,tot

dθ
= dQ f,1

dθ
+ dQ f,2

dθ
, (6.28)

where α is a factor related to the percentage of the total energy added with the fuel
at the end of combustion ηconv,total as

α = − ln
(
1 − ηconv,total

)
, (6.29)

its value is related to the combustion efficiency and it was assumed equal to 6.9 as
suggested in Theotokatos et al. (2018) and Gogoi and Baruah (2010). Moreover,
Q f,tot = m f LHV f represents the total thermal energy of the fuel released during
combustion, q is the fraction of heat release of the first Wiebe profile, θSOC,i corre-
sponds to the start of combustion, m1 and m2 are the Vibe form factors, and ΔθCD,i

denotes the combustion duration for eachWiebe profile. For the latter, the estimation
of the ignition delay Δθid is required, for example according to Sitkei (1963) as

Δθid = 6ne10
−3

(
aIGD + (

p−0.7bIGD + p−1.8cIGD
)
e

7800
6.9167RT 1.0197

)
, (6.30)

where ne is the engine rotational speed (expressed in Hz). The constants aIGD, bIGD,
cIGD are treated as calibration parameters.

In Eqs. (6.26) and (6.27), the constantsm1,m2,ΔθCD1 , andΔθCD2 for eachWiebe
profile are calibrated at the engine reference point (subscript ref) and updated for
other operating points according to Woschni and Anisits (1973)

m=(mref+Δm)

(
θIGD,ref

θIGD

)aVM(ne,ref
ne

)bVM( pIVC
pIVC,ref

· VIVC

VIVC,ref
·TIVC,ref

TIVC

)cVM

−Δm, (6.31)

ΔθCD=ΔθCD,ref

(
λref

λ

)aCD (
ne

ne,ref

)bCD

, (6.32)

The constants aCD, bCD, aVM, bVM, cVM are regarded as calibration parameters, since
their values are known to vary between engines of different types and sizes as reported
inMerker et al. (2005). The subscripts IVC,ref and IVC refer to the inlet valve closing
point at engine reference speeds ne,ref and operating speed ne, respectively.

The heat transfer between the mass trapped in the cylinder and the surrounding
areas is calculated according to the standard Newtonian relation for convective heat
transfer, as

∑

i

dQui

dθ
= kcsa

∑

i

Ai (T (θ) − Ti ), (6.33)
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Table 6.1 Coefficients for Woschni’s heat transfer model of Eqs. (6.34), (6.35)

Phase c1[−] c2[m/s K]
Intake-exhaust 6.18 + 0.417cc/cm 0

Compression 2.28 + 0.308cc/cm 0

Combustion-expansion 3.24 · 10−3

with i = {cw, hw, pw, lw, evw} referring to cylinder, head, piston, liner, and exhaust
valvewall. The heat transfer coefficient kcsa is evaluated according toWoschni (1968),
Merker et al. (2005)

kcsa = 127.93p0.8v0.8B−0.2T−0.53, (6.34)

where v is a representative velocity evaluated taking into account the mean piston
speed cm = 2Lsne (Ls is the stroke length), and the compression induced turbulence
as Merker et al. (2005)

v = c1cm + c2
VcTIC
pICVIC

(p − p0), (6.35)

where p0 is the cylinder pressure during motored operation, computed over a poly-
tropic relation from the cylinder volume according to Merker et al. (2005). The
constants c1, c2 are functions of the intake swirl cc/cm , according to Table 6.1. cc/cm
is considered as a calibration parameter. The subscript IC refers to the cylinder con-
ditions at the start of compression, when the intake valve closes.

Weexploited themethodofChenandFlynn (1965) for the evaluationof the friction
losses, according to which the friction mean effective pressure FMEP accounts for
the effect of engine speed through a quadratic law. The effect of engine load is
represented through themaximum in-cylinder pressure pmax, while the energy drawn
by accessories and all the other invariable factors is accounted for by a constant term,
as

FMEP = c f,1 + c f,2 pmax + c f,3ne + c f,4n
2
e (6.36)

where coefficients c f,1 − c f,4 are considered as calibration parameters.
The instantaneous cylinder torque is then computed by using the gross cylinder

torque, through the cylinder indicatedwork, and cylinder torque due to friction. Since
all cylinders are considered to operate under the same conditions, the brake power is
computed using the current engine speed, multiplied by the cylinder torque and the
number of cylinders in the engine.

The combustion products are evaluated exploiting the method of Rakopoulos et
al. (1994), due to its minimal computational time requirements and reasonable agree-
ment with experiments. For the burning zone, given its volume, temperature, mass of
fuel burnt and mass of air entrained, the concentration of each species can be evalu-
ated by solving a 11 × 11 non-linear system obtained from 7 non-linear equilibrium
equations and 4 linear atom balance equations. This system is converted to a 4 × 4
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non-linear system which can be solved efficiently by any root-finding algorithm [in
this study, the Newton-Raphson method (Stoer and Bulirsch 2013)]. Finally, thermal
NO has been evaluated according to the extended Zeldovich mechanism, for which
the reaction rates were selected according to Hanson and Salimian (1984).

Equations (6.20)–(6.28) form a system of first order differential equations of the
form F(θ, y, ẏ) = 0 that is solved for each crank angle step by using the classic
Runge-Kutta method (Stoer and Bulirsch 2013).

Sensor Dynamics—The thermal inertia of the temperature sensors which are
mounted on the outer surface of the exhaust pipes, is modelled according to Lla-
mas and Eriksson (2019) as

dTs
dt

= T − Ts
τs

, (6.37)

where Ts refers to the temperature including the sensor dynamics, and T is the
temperature of the working medium in the engine. The time constant τs is considered
as a calibration parameter. Dynamic response for all other sensors has been neglected,
as it is known to be in the order of milliseconds (Wahlström and Eriksson 2011).

Calculation Procedure—Inputs towards the cylinder model include the pressure,
temperature, the medium composition from the scavenging manifold, the pressure
of the exhaust manifold, engine rotational speed, and fuel injected per cycle from the
governor. Subsequently, the cylinders air and exhaust gas mass flow rates, pressures,
temperatures, the composition of the exhaust gas, and the equivalence ratio of the
exhaust gas exiting the cylinders are calculated.Additional outputs include the energy
flow of the exhaust gas exiting cylinders, the indicated power, the friction power,
brake power torque, brake specific fuel consumption, and engine brake efficiency.

For all the other components (i.e., control volumes or flow elements) the following
structure is employed. Inputs required for the flow elements are utilised from the adja-
cent flow receiver or fixed fluid structures for the engine boundaries which include
the necessary parameters to fully characterise the working medium state (tempera-
ture, pressure, composition). Subsequently, mass and energy flows through the flow
elements are computed and provided to the adjacent control volumes. In addition,
the absorbed compressor torque and produced turbine torque are calculated and used
as inputs to the turbocharger shaft element, which derives the turbocharger speed,
which, in turn, is provided to the turbine and compressor blocks.

This framework forms an additional system of first order differential equations in
the form F(t, y, ẏ) = 0, that is solved for each time step by using the classic Runge-
Kutta method (Stoer and Bulirsch 2013). In total, the model contains 50 states over
two major integration steps. Parameters include the geometric data of the engine, the
intake and exhaust valves profiles, the compressor and turbine performance maps,
the bypass valve geometric and control details, constants present in any sub-model,
and the ambient conditions for the engine boundaries. Finally, initial values are also
required for the engine and turbocharger rotational speeds, and the temperature,
pressure and composition of the working medium contained in the scavenging and
exhaust manifolds.
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ModelParameterisation—Theproposedmodel contains internal feedback systems,
hence the modelling errors of any subsystems will be propagated and amplified
towards the rest of the model. For instance, errors in the exhaust temperature will
affect the turbine power production, which will in turn alter the scavenging pressure,
and this finally will modify the exhaust temperature prediction anew. Due to this fact,
balancing out the complete model by readjusting the model parameters is essential
to obtain an overall accurate model (Llamas and Eriksson 2019).

The calibration process is treated as an optimisation problem, with the objective
being to minimise the error between the model estimated outputs and the available
measurements.

Formally, we seek the solution of the following continuous, non-convex problem

argmin
φ

L̂(φ,Dn) =
M∑

i=1

l(h(xi , φ), yi ), (6.38)

s.t. φmin ≤ φ ≤ φmax

where h refers to the outputs of the PM, φ is the set of parameters that needs to
be estimated from a given bounded space Φ, xi refers to the measurements corre-
sponding with the model inputs, and yi refers to the measurements corresponding
with the model outputs. L̂(φ,Dn) is the empirical error of the model h on the dataset
Dn = {(x1, y1), . . . , (xn, yn)}, measured according to a loss function �(h(x, θ), y).

We have adopted the absolute relative error, given by

�
(
h (xi , θ) , yi

) =
S∑

j=1

∣∣∣∣
∣
y j
i − h j (xi , θ)

y j
i

∣∣∣∣
∣

(6.39)

Note that, because y is a vector, the loss function of Eq. (6.39) refers to the sum of
relative errors of all model outputs j = (1, . . . , S) and their corresponding measured
values.

Given the nature of the problem, a Derivative-Free Optimisation (DFO) method
must be exploited, as obtaining or estimating the derivatives of the physical models
with respect to the parameters is a computationally and time-intensive procedure.
The literature on DFO methods is quite large, with a variety of algorithms that can
solve different classes of problems (Conn et al. 2009; Galinier et al. 2013; Floudas
and Pardalos 2008).

In this work, we leveraged an algorithm from the class of directional direct search
methods: theMesh-Adaptive Direct Search (MADS) algorithm, which is a local opti-
misation technique with established convergence theory under some mild assump-
tions (Audet and Dennis 2006; Audet et al. 2008). MADS is an extension of the
Generalized Pattern Search algorithm (Torczon 1997; Lewis et al. 2000), specifi-
cally developed to handle non-smooth black-box problems. It is an iterative method
that uses a discretisation of the solution space, called the mesh, to select and eval-
uate new trial points, given an initial iterate. Each iteration consists of two steps:
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the search and the poll, followed by a parameter update step. If the search step suc-
ceeds (i.e., the selected trial point improves upon the current iterate), then this trial
point becomes the new iterate and the poll step is skipped. If the search step fails,
the poll step becomes mandatory. The poll is used to choose mesh points near the
current iterate and to evaluate their objective and constraint values. If the poll fails
to find a better solution, the update step will reduce the mesh size and the poll size,
to concentrate near the current iterate. The mesh size is the parameter that scales the
space discretization and the poll size is the maximum distance allowed between a
trial point and the current iterate. On the other hand, once a better solution is found,
the pol step terminates and the update step increases the mesh size. This process is
repeated until a stopping condition is satisfied.

Given that our problem is highly non-linear and non-convex, there is no guarantee
that the solution obtained corresponds to the global optima (Floudas and Pardalos
2008). In order to ensure the quality of the final solution the algorithm has been
started from a number of different initial points, and from all solutions obtained, the
best one has been chosen (Martí 2003).

The dynamic behaviour of the model is largely defined by the turbocharger iner-
tias, the control volume sizes, and the time constants of the temperature sensors. The
optimisation algorithm was initialised by a single starting point with suitable values
of the turbocharger inertia corresponding to other engines of this size, whereas the
values of the control volumes have been set to reasonable values based on the real
pipe volume sizes from the engine design drawings.

6.3.2 Data Driven Models

In the proposed context of developing a fast yet accurate dynamic model of a four-
stroke marine DE, a general modelisation framework can be defined, characterised
by an input space X ⊆ R

d , an output space Y ⊆ R
b, and an unknown relation μ :

X → Y to be learned (Shalev-Shwartz and Ben-David 2014; Hamilton 2020). For
what concerns this work, X is composed by the measurements available from the
enginemonitoring system (see Sect. 6.4), while the output spaceY refers to the target
features accounting for the engine fuel consumption, turbocharger rotational speed,
turbine outlet temperature, and exhaust manifold temperature (see Sect. 6.4).

In this context, the authors define the model h : X → Y as an artificial simplifica-
tion of μ. Analogously to what has been done in Sect. 6.3.1 we will assume to know
all the information until time t0 to make a prediction of the quantity of interest. In
particular, we will consider all the information in [t0 − Δ, t0] (see Fig. 6.3). Δ rep-
resents how much history of the different available data we want to exploit to make
predictions. Δ is an hyperparameter for which an optimal value exists: too much
history (too large Δ) will make us face with the curse of dimensionality while too
little history (too smallΔ) will limit our ability to make accurate predictions (Shalev-
Shwartz and Ben-David 2014; Oneto 2020; Hamilton 2020).
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Fig. 6.3 Input and output variables of the DDMs

Themodel h, as described in Sect. 6.1 can be obtainedwith different kinds of tech-
niques, for example, requiring some physical knowledge of the problem, as in PMs
(see Sect. 6.3.1), or the acquisition of large amounts of data, as in DDMs or using
both information (see Sect. 6.3.3). In this section we will use a state-of-the-art DDM.
Between the DDMs it is possible to identify two families of approaches (Shalev-
Shwartz and Ben-David 2014; Goodfellow et al. 2016). The first one, comprising
traditionalMachine Learningmethods, needs an initial phasewhere the featuresmust
be defined a-priori from the data via feature engineering or implicit or explicit fea-
turemapping (Shalev-Shwartz andBen-David 2014; Zheng andCasari 2018; Shawe-
Taylor and Cristianini 2004). The second family, which includes deep learning meth-
ods, automatically learns both the features and themodels from the data (Goodfellow
et al. 2016). For small cardinality datasets and outside particular applications (e.g.,
computer vision and natural language processing) Deep Learning does not perform
well since they require huge amount of data to be reliable and to outperform tradi-
tional Machine Learning models (Fernández-Delgado et al. 2014; Wainberg et al.
2016).

In the Machine Learning maps the problem our problem can be easily mapped in
a typical regression problem (Vapnik 1998; Shawe-Taylor and Cristianini 2004). In
fact, ML techniques aim at estimating the unknown relationshipμ between input and
output through a learning algorithmAH which exploits some historical data to learn
h and where H is a set of hyperparameters which characterises the generalisation
performance ofA (Oneto 2020). The historical data consists on a series ofn examples
of the input/output relationμ and are defined asDn = {(x1, y1), . . . , (xn, yn)}where
x ∈ X and y ∈ Y .
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In this paper we will leverage on a Machine Learning model coming from the
Kernel Methods family called Kernel Regularised Least Squares (KRLS) (Vovk
2013). The idea behind KRLS can be summarised as follows. During the training
phase, the quality of the learned function h(x) is measured according to a loss
function �(h(x), y) (Rosasco et al. 2004) with the empirical error

L̂n(h) = 1

n

n∑

i=1

�(h(xi ), yi ). (6.40)

A simple criterion for selecting the final model during the training phase could then
consist in simply choosing the approximating function that minimises the empirical
error L̂n(h). This approach is known as Empirical Risk Minimization (ERM) (Vap-
nik 1998). However, ERM is usually avoided in Machine Learning as it leads to
severe overfitting of the model on the training dataset. As a matter of fact, in this
case the training process could choose a model, complicated enough to perfectly
describe all the training samples (including the noise, which afflicts them). In other
words, ERM implies memorisation of data rather than learning from them. A more
effective approach is to minimise a cost function where the trade-off between accu-
racy on the training data and a measure of the complexity of the selected model is
achieved (Tikhonov and Arsenin 1979), implementing the Occam’s razor principle

h∗: min
h

L̂n(h) + Λ C(h). (6.41)

In other words, the best approximating function h∗ is chosen as the one that is
complicated enough to learn from data without overfitting them. In particular, C(·)
is a complexity measure: depending on the exploited Machine Learning approach,
different measures are realised. Instead, Λ ∈ [0,∞) is a hyperparameter, that must
be set a-priori and is not obtained as an output of the optimisation procedure: it
regulates the trade-off between the overfitting tendency, related to the minimisation
of the empirical error, and the underfitting tendency, related to the minimisation of
C(·). The optimal value forΛ is problem-dependent, and tuning this hyperparameter
is a non-trivial task, as will be discussed later in this section. In KRLS, models are
defined as

h(x) = wTϕ(x), (6.42)

where ϕ is an a-priori defined Feature Mapping (FM) (Shalev-Shwartz and Ben-
David 2014) allowing to keep the structure of h(x) linear. The complexity of the
models, in KRLS, is measured as

C(h) = ‖w‖2, (6.43)

i.e., the Euclidean norm of the set of weights describing the regressor, which is a
standard complexity measure in ML (Shalev-Shwartz and Ben-David 2014; Vovk
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2013). Regarding the loss function, the square loss is typically adopted because of
its convexity, smoothness, and statistical properties (Rosasco et al. 2004)

L̂n(h) = 1

n

n∑

i=1

�(h(xi ), yi ) = 1

n

n∑

i=1

[h(xi ) − yi ]
2 . (6.44)

Consequently, Problem (6.41) can be reformulated as

w∗: min
w

n∑

i=1

[
wTϕ(x) − yi

]2 + Λ‖w‖2. (6.45)

By exploiting the Representer Theorem (Schölkopf et al. 2001), the solution h∗ of
the Problem (6.45) can be expressed as a linear combination of the samples projected
in the space defined by ϕ

h∗(x) =
n∑

i=1

ιiϕ(xi )Tϕ(x). (6.46)

It is worth underlining that, according to the kernel trick, it is possible to reformulate
h∗(x) without an explicit knowledge of ϕ, and consequently avoiding the curse
of dimensionality of computing ϕ, by using a proper kernel function K (xi , x) =
ϕ(xi )Tϕ(x)

h∗(x) =
n∑

i=1

ιi K (xi , x). (6.47)

Several kernel functions can be retrieved in literature (Scholkopf 2001; Cristianini
and Shawe-Taylor 2000), each one with a particular property that can be exploited
based on the problem under exam. Usually the Gaussian kernel is chosen

K (xi , x) = e−γ ‖xi−x‖2 , (6.48)

because of the theoretical reasons described in Keerthi and Lin (2003), Oneto et al.
(2015) and because of its effectiveness (Fernández-Delgado et al. 2014; Wainberg
et al. 2016). γ is another hyperparameter, which regulates the nonlinearity of the
solution that must be tuned as explained later. Basically the Gaussian kernel is able
to implicitly create an infinite dimensional ϕ and thanks to this, the KRLS are able to
learn any possible function (Keerthi and Lin 2003). The KRLS problem of Eq. (6.45)
can be reformulated by exploiting kernels as

ι∗: min
ι

‖Qι − y‖2 + ΛιT Qι, (6.49)
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where y = [y1, . . . , yn]T , ι = [ι1, . . . , ιn]T , thematrixQ such thatQi, j = K (x j , xi ),
and the identity matrix I ∈ R

n×n . By setting the gradient equal to zero w.r.t. ι it is
possible to state that

(Q + ΛI ) ι∗ = y, (6.50)

which is a linear system for which effective solvers have been developed over the
years, allowing it to cope with even very large sets of training data (Young 2003).

The problems that still have to be faced is how to tune the hyperparameters of
the approach (Λ, γ , and Δ− for the second DT) and to estimate the performance
of the final model. Model Selection (MS) and Error Estimation (EE) deal exactly
with these problems (Oneto 2020). Resampling techniques are commonly used by
researchers and practitioners since they work well in most situations and this is why
we will exploit them in this work (Oneto 2020). Other alternatives exist, based on the
Statistical Learning Theory, but they tend to underperform resampling techniques in
practice (Oneto 2020). Resampling techniques are based on a simple idea: the original
dataset Dn is resampled once or many (nr ) times, with or without replacement, to
build three independent datasets called learning, validation and test sets, respectively
Lr
l , Vr

v , and T r
t , with r ∈ {1, . . . , nr } such that

Lr
l ∩ Vr

v = �, Lr
l ∩ T r

t = �, Vr
v ∩ T r

t = �, Lr
l ∪ Vr

v ∪ T r
t = Dn. (6.51)

Subsequently, to select the best hyperparameters’ combination H = {Λ, γ, (Δ−)}
in a set of possible ones H = {H1,H2, . . .} for the algorithmAH or, in other words,
to perform the MS phase, the following procedure has to be applied:

H∗: arg min
H∈H

nr∑

r=1

M(AH(Lr
l ),Vr

v ), (6.52)

where h = AH(Lr
l ) is a model built with the algorithm A with its set of hyperpa-

rametersH and with the data Lr
l , and where M(h,Vr

v ) is a desired metric. Since the
data in Lr

l are independent from the data in Vr
v , H∗ should be the set of hyperpa-

rameters which allows achieving a small error on a data set that is independent from
the training set. Then, to evaluate the performance of the optimal model which is
h∗
A = AH∗(Dn) or, in other words, to perform the EE phase, the following procedure

has to be applied:

M(h∗
A ) = 1

nr

nr∑

r=1

M(AH∗(Lr
l ∪ Vr

v ), T r
t ). (6.53)

Since the data in Lr
l ∪ Vr

v are independent from the ones in T r
t , M( f ∗

A ) is an unbi-
ased estimator of the true performance, measured with the metric M , of the final
model (Oneto 2020). In this work we will rely on Complete k-fold cross validation
which means setting nr ≤ (n

k

)(n− n
k

k

)
, l = (k − 2) nk , v = n

k , and t = n
k and the resam-
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pling must be done without replacement (Oneto 2020). Note that, in our application,
we have a further constraint in terms of dependence in time between the samples.
For this reason, when resampling the data formDn we actually keep data of different
periods in Lr

l , Vr
v , and T r

t (Hamilton 2020).
For what concerns the metric M that we will use in our paper we will rely on

the Mean Absolute Error (MAE), the Mean Absolute Percentage of Error (MAPE)
and the Pearson Product-Moment Correlation Coefficient PPMCC (Willmott and
Matsuura 2005). Since in regression it is quite hard to synthesise the quality of a
predictor in a single metric we will also rely on visualisation techniques like the
scatter plot and histograms (Shao et al. 2017).

6.3.3 Hybrid Models

In this section we would like to depict a framework able to take into account both
the physical knowledge about the problem encapsulated in the PMs of Sect. 6.3.1
and the information hidden in the available data as the DDMs of Sect. 6.3.2, into
account. For this purpose authors will start from a simple observation: a HM, based
on the previous observation, should be able to learn from the data without being too
different, or too far away, from the PM.

From the Data Science and Machine Learning point of view, this requirement
can be straightforwardly mapped in a typical ML Multi Task Learning (MTL) prob-
lem (Baxter 2000; Caruana 1997; Evgeniou and Pontil 2004; Bakker and Heskes
2003; Argyriou et al. 2008). MTL aims at simultaneously learning two concepts,
in this case the PM and the available data, through a learning algorithm AH which
exploits the data in Dn to learn a function h which is both close to the observation,
the data Dn and the PM, namely its forecasts.

Consequently, in this case a slightly different scenario is presented where the
dataset is composed by a triple of pointsDn = {(x1, y1, p1), . . . , (xn, yn, pn)}where
pi is the output of the PM in the point xn with i ∈ {1, . . ., n}. The target is to learn a
function able to approximate both μ, namely the relation between the input x ∈ X
and the output y ∈ Y , and the PM, namely the relation between the input and the
output of the PM. Two tasks have to be learned. For this purpose there are two main
approaches: the first approach is called Shared Task Learning (STL) and the second
Independent Task Learning (ITL). While the latter independently learns a different
model for each task, the former aims to learn a model that is common between all
tasks. Awell-knownweakness of these methods is that they tend to generalise poorly
on one of the two tasks (Baxter 2000). In this work, authors show that an appealing
approach to overcome such limitations is provided by MTL (Baxter 2000; Caruana
1997; Evgeniou and Pontil 2004; Bakker and Heskes 2003; Argyriou et al. 2008).
This methodology leverages on the information between the tasks to learn more
accurate models.

In order to apply the MTL approach to this case, it is possible to modify the
KRLS problem of Eq. (6.45) to simultaneously learn a shared model and a task
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specific model which should be close to the shared model. In this way, authors
obtain a model which is able to simultaneously learn the two tasks. The model that
authors are interested in is the shared model, while the task specific models are just
used as a tool. A shared model is defined as

h(x) = wTϕ(x), (6.54)

and two task specific models as

hi (x) = wT
i ϕ(x), i ∈ {y, p}. (6.55)

Then, it is possible to state the MTL version of Eq. (6.45), as follows

w∗,w∗
y,w

∗
p : min

w,wy ,w p

n∑

i=1

[
wTϕ(x) − yi

]2 + [
wTϕ(x) − pi

]2

+
n∑

i=1

[
wT

y ϕ(x) − yi
]2 + [

wT
pϕ(x) − pi

]2

+ Λ‖w‖2 + κ(‖w − wy‖2 + ‖w − w p‖2), (6.56)

where Λ is the usual regularization of KRLS and κ ∈ [0,∞), instead, is another
hyperparameter that forces the shared model to be close to the task specific models.
Basically the MTL problem of Eq. (6.56) is a concatenation of three learning prob-
lems solved with KRLS plus a term which tries to keep a relation between all the
three different problems.

By exploiting the kernel trick as in KRLS, it is possible to reformulate Prob-
lem (6.56), as follows

ι∗: min
ι

∥∥∥∥∥
∥∥∥

⎡

⎢⎢
⎣

Q Q 0 0
Q Q 0 0
0 0 Q 0
0 0 0 Q

⎤

⎥⎥
⎦ ι −

⎡

⎢⎢
⎣

y
p
y
p

⎤

⎥⎥
⎦

∥∥∥∥∥
∥∥∥

2

+ ιT

⎡

⎢
⎢
⎣

(Λ + 2κ)Q (Λ + 2κ)Q −κQ −κQ
(Λ + 2κ)Q (Λ + 2κ)Q −κQ −κQ

−κQ −κQ κQ 0
−κQ −κQ 0 κQ

⎤

⎥
⎥
⎦ ι, (6.57)

where p = [p1, . . . , pn]T . The solution of this problem is again equivalent to solving
a linear system
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⎡

⎢⎢
⎣

Q + (Λ + 2κ)I Q + (Λ + 2κ)I −κ I −κ I
Q + (Λ + 2κ)I Q + (Λ + 2κ)I −κ I −κ I

−κ I −κ I Q + κ I 0
−κ I −κ I 0 Q + κ I

⎤

⎥⎥
⎦ ι∗ =

⎡

⎢⎢
⎣

y
p
y
p

⎤

⎥⎥
⎦ . (6.58)

The function that the authors are interested in, the shared one, can be expressed as
follows

h(x) = wTϕ(x) =
n∑

i=1

(ιi + ιi+n)K (xi , x). (6.59)

What changes here, with respect to the MS phase of the DDM described in
Sect. 6.3.2, is the MS phase where just Λ, γ , and also κ need to be tuned.

6.4 Case Study and Dataset Description

In this work, as a case study, we have exploited data acquired from a naval vessel
equippedwith aMANB&WV28-33Dmediumspeed four-strokeDE.The engine has
12 cylinders with 0.28m bore and 0.33m stroke, with aMaximumContinuous Rating
(MCR) of 5.4MW at 1000rpm and two turbochargers (TCs) operating in parallel to
deliver the necessary air. The main characteristics of the engine are summarised in
Table 6.2.

The engine is characterised by a power-to-weight and power-to-installation space
ratios favourable to fast mono-hull and multi-hull vessels, offshore patrol vessels
with either single or twin engine-gear-propeller systems or corvettes, frigates and
destroyers with combined propulsion plant configurations, such as COmbined Diesel

Table 6.2 Main characteristics of the MAN 12 V28-33D engine

Feature Value Unit

Cylinders V12, 16, 20 [–]

Bore diameter 280 [mm]

Stroke length 330 [mm]

Number of cylinders 12 [–]

Revolutions per cycle 2 [–]

Engine speed at MCR 1000 [rpm]

Brake power at 60% MCR 3240 [kW]

Brake power at 80% MCR 4320 [kW]

Brake power at MCR 5400 [kW]

Mean effective pressure 26.9 [bar]

Mean piston speed 11 [m/s]

Specific fuel consumption
(100% load)

191 [g/kWh]



172 A. Coraddu et al.

Fig. 6.4 Propulsion system layout for the holland class oceangoing patrol vessels

And Diesel (CODAD), COmbined Diesel Or Gas (CODOG), and COmbined Diesel
And Gas (CODAG). The DE under investigation is installed on board one of the
the Holland Class Oceangoing Patrol Vessels. The propulsion system of the vessel
consists of two shafts with Controllable Pitch Propellers (CPP), a gearbox, and one
DE per shaft, as shown in Fig. 6.4. This configuration is typical for multi-function
ships that require silent, manoeuvrable, highly reliable and low emission propulsion.

The Patrol vessel is equipped with a data logging system which is used by the
RoyalNetherlandsNavy both for on-boardmonitoring and control and for land-based
performance analysis. The dataset utilised consists of two different data sources: stan-
dard measurements (steady-state) performed during Shop Trials (ST) that have been
exploited to calibrate the PM model (see Sect. 6.3.1), and operational data originat-
ing from the vessel’s data logging system, used by the ship operator for performance
monitoring purposes, which has been exploited to evaluate the performance of the
PMmodel in dynamic conditions (see Sect. 6.3.1), and to train, validate, and test the
DDMs and HMs (see Sects. 6.3.2 and 6.3.3). Operational measurements are sam-
pled at 3Hz for approximately 3 calendar years for a total of 7900 h of operations.
A summary of the available measurements is reported in Table 6.3.

It should be noted that fuel consumption is measured using a mass flow meter
which is known to be more accurate of the more common volume flow meters as
it eliminates uncertainty on fuel density. However, measurements of fuel specific
energy content are not available. Unfortunately, the energy content of a compound
fuel canvary in quality amongmarkets, a variationwhich is known to be in the order of
± 2 MJ/kg, or approximately ± 5% (Coraddu et al. 2017). Moreover, measurements
regarding the ambient conditions of the engine’s surrounding environment are also
not available, aswell as the uncertainty of themeasurements performed during the ST.
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Table 6.3 Measurements available from the engine monitoring system

Variable name Symbol Unit

Time stamp t [hh:mm:ss]

Governor position Gp [–]

Engine rotational speed ne [rpm]

Engine torque Me [kNm]

Charge air temperature at scavenging receiver Tsc [◦C]
Charge air temperature at compressor outlet Tc,out [◦C]
Charge air temperature at compressor inlet Tc,in [◦C]
Exhaust gas temperature at turbine outlet Tt,out [◦C]
Main bearing no. 1 temperature Tb,1 [◦C]
Main bearing no. 2 temperature Tb,2 [◦C]
Main bearing no. 3 temperature Tb,3 [◦C]
Main bearing no. 4 temperature Tb,4 [◦C]
Main bearing no. 5 temperature Tb,5 [◦C]
Main bearing no. 6 temperature Tb,6 [◦C]
Main bearing no. 7 temperature Tb,7 [◦C]
Lube oil compartment no. 1 temperature Tl,1 [◦C]
Lube oil compartment no. 2 temperature Tl,2 [◦C]
Lube oil compartment no. 3 temperature Tl,3 [◦C]
Lube oil compartment no. 4 lube oil temperature Tl,4 [◦C]
Lube oil compartment no. 5 lube oil temperature Tl,5 [◦C]
Lube oil engine inlet temperature Tle,in [◦C]
Lube oil engine outlet temperature Tle,out [◦C]
High-temperature sea cooling water—inlet Tht,in [◦C]
High-temperature sea cooling water—outlet Tht,out [◦C]
Low-temperature sea cooling water—inlet Tlt,in [◦C]
Low-temperature sea cooling water—outlet Tlt,out [◦C]
Fuel oil supply temperature T f [◦C]
Charge air temperature at compressor outlet—bank A T A

c,out [◦C]
Charge air temperature at compressor outlet—bank B T B

c,out [◦C]
Charge air temperature at compressor inlet—bank A T A

c,in [◦C]
Charge air temperature at compressor inlet—bank B T B

c,in [◦C]
Charge air engine inlet pressure pca,in [Pa]

Charge air engine inlet temperature Tca,in [◦C]
Fuel consumption ṁ f [kg/h]

TC rotational speed Ntc [rpm]

Turbine outlet temperature Tt,out [◦C]
Exhaust receiver temperature Ter [◦C]
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6.5 Experimental Results

In this section, we exploited the data described in Sect. 6.4 to test the models devel-
oped in Sect. 6.3. To begin with, calibration results of the PM described in Sect. 6.5.1
are reported. Then a comparison of the performance of PMs, DDMs, and HMs in
operational dynamic conditions is reported.

6.5.1 Zero Dimensional Diesel Engine Model Calibration
Results

The PM model validation has been carried out taking into account both the standard
(steady-state) measurements performed during ST and Stationary Operations (SO).
To identify SO, the dataset was first split into a set of time intervals of continuous
operation. Within each interval, operation under stationary conditions is defined as
any continuous set of measurements for which the rotational speed and load of the
engine vary by less than 1%, for a period of at least 3 hours. For each of these
stationary conditions, the last 10 minutes of measurements were extracted and the
median value of each signal was computed. This allowed us to summarise each
stationary operation as one value per signal, for a total of 256 stationary operation
points.

To perform the calibration and validation of the PM we exploited a subset of the
data reported in Table 6.3. In particular, Table 6.4 reports the subset of the data source
exploited as input, as validation on ST and SO, and comparison with the DDM and
HM in transient analysis.

The performance metrics discussed in Sect. 6.3.2 are reported in Table 6.5 on the
ST dataset.

The reported performances indicate that the model can capture all measurements
well within 1% for engine loads ranging between 20 and 100%. The maximum com-
bustion pressure shows the highest errors, with a MAPE equal to 0.98%. The lowest
discrepancy between the PM and the measurements is reported for the temperature
at the turbine outlet, with a MAPE of only 0.01%, well within the uncertainty of
most conventional thermocouples used for this application. The prediction accuracy
for all other variables is equally good regardless of the subsystem considered.

Regarding the validation of the model in SO, we have to consider that the per-
formance of the PM have been assesses on a dataset representing the behaviour of
the engine during sailing. Unfortunately, a holistic comparison on the performance
of the PM on the ST and SO dataset is not possible as only a subset of signals is
available for this second validation as reported in Table 6.6.

Nevertheless, the metrics reported in Table 6.6 reveal that the PM is still able to
capture the performances of the DE in real operations. In fact, theMAPE on the com-
pressor outlet temperature has increased from 0.638% on the ST to 2.752% on SO.
Similarly, the scavenging manifold and turbine outlet temperatures have increased
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Table 6.4 Subset of data source from Table 6.3 exploited as PM inputs, validation on ST and SO,
and comparison with the DDM and HM in transient analysis

Variable name Symbol Unit

Input Engine rotational speed ne [rpm]

Governor position Gp [rpm]

Output for ST and SO
validation

Compressor outlet pressure pc,out [Pa]

Compressor outlet temperature Tc,out [kg/h]

Turbine outlet pressure pt,out [Pa]

Turbine outlet temperature Tt,out [◦C]
Scavenging receiver temperature Tsc [◦C]
TC Rotational speed ntc [Hz]

Maximum cylinder pressure pmax [Pa]

Specific fuel consumption sfc [g/kWh]

Output for transient
analysis

Fuel consumption ṁ f [kg/h]

TC rotational speed Ntc [Hz]

Turbine outlet temperature Tt,out [◦C]
Exhaust receiver temperature Ter [◦C]

Table 6.5 PM Performance metrics on the ST

Variable name Symbol Unit MAE MAPE
[%]

PPMCC

Compressor outlet pressure pc,out [Pa] 1.2 · 103 0.363 1.000

Compressor outlet temperature Tc,out [K] 2.750 0.638 1.000

Turbine outlet pressure pt,out [Pa] 62.354 0.060 1.000

Turbine outlet temperature Tt,out [K] 0.066 0.010 1.000

Scavenging manifold temperature Ts,in [K] 0.393 0.122 0.979

Turbocharger rotational speed ntc [Hz] 4.302 0.041 0.989

Cylinder maximum pressure pmax [Pa] 1.1 · 105 0.981 0.999

Specific fuel consumption s f c [g/kWh] 1.207 0.056 0.988

Table 6.6 Performance metrics on PM-SO dataset

Variable name Symbol Unit MAE MAPE
[%]

PPMCC

Compressor outlet temperature Tc,out [K] 11.545 2.752 0.643

Turbine outlet temperature Tt,out [K] 3.798 1.199 0.342

Scavenging manifold temperature Tsc,in [K] 17.545 2.570 −0.145

Turbocharger rotational speed ntc [Hz] 12.013 3.506 0.881

Specific fuel consumption s f c [g/kWh] 4.400 2.178 0.514
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(a) Compressor Outlet Pressure (b) Compressor Outlet Temperature

(c) Turbine Outlet Pressure (d) Turbine Outlet Temperature

(e) Scavenging Manifold Temperature (f) TC Rotational Speed

(g) Maximum Cylinder Pressure. (h) Specific Fuel Consumption.

Fig. 6.5 PM verification in steady-state conditions (ST and SO)
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Table 6.7 Subset of data source from Table 6.3 exploited as inputs and outputs of the DDM and
HM

Symbol

Input variables for DDMs and HMs ne Tl,4 Tsc Tl,5 Tc,out Tle,in
Tc,in Tle,out Tt,out Tht,in Tb,1 Tht,out
Tb,2 Tlt,in Tb,3 Tlt,out Tb,4 T f

Tb,5 T A
c,out Tb,6 T B

c,out Tb,7 T A
c,in

Tl,1 T B
c,in Tl,2 pca,in Tl,3 Tca,in

Output variables for DDMs and HMs ṁ f

Ntc

Tt,out
Ter

from 0.122 and 0.01% to 1.2 and 2.6%, respectively. Moreover, a similar decrease
in prediction capability can be observed for the specific fuel consumption and tur-
bocharger rotational speed, with the MAPEs increasing from 0.041 and 0.056% to
3.5 and 2.2%, respectively. Finally, a visual impression of the results reported in
Tables 6.5 and 6.6 is reported in Fig. 6.5 for various engine loading conditions.

6.5.2 Physical Model, Data Driven Model, and Hybrid Model

This section is devoted to the comparison between the PM, DDM, and HM. As a
first step we have to detail the inputs and the outputs of the DDM and HM. For this
purpose Table 6.7 reports the subset of Table 6.3 exploited ad inputs and outputs of
the DDM and HM.

Then we have to report the hyperparametes ranges for the DDM and HM. For the
DDM the set of hyperparameters tuned during the MS phase areH = {γ,Λ} chosen
inH = {10−4.0, 10−3.8, . . . , 10+4.0} × {10−4.0, 10−3.8, . . . , 10+4.0}. For theDDMthe
set of hyperparameters tuned during theMS phase areH = {γ,Λ, κ} chosen inH =
{10−4.0, 10−3.8, . . . , 10+4.0} × {10−4.0, 10−3.8, . . . , 10+4.0} × {10−4.0, 10−3.8, . . . ,

10+4.0}.
All the tests have been repeated 30 times, and the average results are reported

together with their t-student 95% confidence interval, to ensure the statistical validity
of the results.

Table 6.8 reports the performance (measuredwith theMAE,MAPE, and PPMCC)
of thedifferentmodels (PM,DDM,andHM) for different values ofΔ ∈ {0, 10, 20, 30}
for the different targets to to predict (ṁ f , Ntc, Tt,out, and Ter). Note that Δ = 0 means
that the authors do not exploit time series information from the past, for Δ > 0
there is no PM result. Moreover, to improve the readability and better understand
the quality of the results, Figs. 6.6, 6.7, 6.8 and 6.9 reports for Δ = 0 the scatter
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(a) PM

(b) DDM

(c) HM

Fig. 6.6 Scatter plot (measured vs. predicted) and trend in time for the ṁ f (kg/h) output feature
using the different models (PMs, DDMs, and HMs) with Δ = 0
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(a) PM

(b) DDM

(c) HM

Fig. 6.7 Scatter plot (measured vs. predicted) and trend in time for the Ntc (rpm) output feature
using the different models (PMs, DDMs, and HMs) with Δ = 0
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(a) PM

(b) DDM

(c) HM

Fig. 6.8 Scatter plot (measured vs. predicted) and trend in time for Tt,out (◦C) output feature using
the different models (PMs, DDMs, and HMs) with Δ = 0
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(a) PM

(b) DDM

(c) HM

Fig. 6.9 Scatter plot (measured vs. predicted) and trend in time for Ter (◦C) output feature using
the different models (PMs, DDMs, and HMs) with Δ = 0
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(a) DDM

(b) HM

Fig. 6.10 Scatter plot (measured vs. predicted) and trend in time for ṁ f (kg/h) output feature using
the different models (DDMs and HMs) with Δ = 20

plot (measured and predicted values) and an example of trend in time (measured and
predicted values) for the different targets using the different models (in this case PM,
DDM, and HM). Moreover, Figs. 6.10, 6.11, 6.12 and 6.13 report for the value of Δ

characterised by the best results in terms of accuracy (Δ = 20) the scatter plots (mea-
sured and predicted values) and examples of trend in time (measured and predicted
values) for DDM and HM.

Compared to the PM, the proposedDDMs aremore accurate in predicting the four
targets (ṁ f , Ntc, Tt,out, and Ter), even without taking into account past information
(Δ > 0). A substantial decrease of the errors can be observed from Table 6.8 across
all the targets. Considering ṁ f , we can observe a MAPE decrease from 26.93%
(PM) to 6.30% (DDM), to 4.89% (HM). The same general trend can be reported for
Ntc, Tt,out, and Ter.

Moreover, when taking into account past information (Δ > 0), from the error
metrics reported in Table 6.8 we can observe:

– ṁ f − 90% MAPE reduction from 26.93% ±1.54% to 2.50% ±0.15%
– Ntc − 93% MAPE reduction from 15.39% ±0.75% to 0.94% ±0.05%
– Tt,out − 80% MAPE reduction from 2.53% ±0.13% to 0.48% ±0.02%
– Ter − 88% MAPE reduction from 4.81% ±0.15% to 0.56% ±0.03%
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(a) DDM

(b) HM

Fig. 6.11 Scatter plot (measured vs. predicted) and trend in time for Ntc (◦C) output feature using
the different models (DDMs and HMs) with Δ = 20

From Figs. 6.6, 6.7, 6.8 and 6.9 it is possible to observe that DDMs are capable
of fully capturing the transient behaviour of the fuel consumption (see Fig. 6.6b),
the turbocharger rotational speed mechanical transient (see Fig. 6.7b), and the ther-
modynamic transients of both the turbine outlet gases (see Fig. 6.8b) and exhaust
manifold (see Fig. 6.9b). Also from the results depicted in Figs. 6.6, 6.7, 6.8 and
6.9, it can be also observed that the DDMs are characterised by both lower bias and
lower variance, with respect to the PM. The optimal time window (Δ) is found for
a value equal to 20 seconds. For this value, minimal error metrics among all DDMs
occur. According to Table 6.8, for this time window, the MAPE for ṁ f is as low as
1.79% ± 0.08%, for Ntc the MAPE is 0.83% ± 0.05%, for Tt,out and Ter the same
metric is identical and equal to 0.40% ± 0.01%. Furthermore, from the scatter plot
of Figs. 6.10a, 6.11a, 6.12a, and 6.13a, it can be observed that minimum variance is
achieved.
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Table 6.8 Indexes of performances (MAE, MAPE, and PPMCC) of the different models (PMs,
DDMs, and HMs) for different Δ ∈ {0, 10, 20, 30} for the different quantities to predict
Δ Model MAE [◦C] MAPE [%] PPMCC

Fuel consumption ṁ f [kg/h]

0 PM 76.62 ± 4.37 26.93 ± 1.54 0.98 ± 0.01

DDM 24.11 ± 1.39 6.30 ± 0.38 0.99 ± 0.01

HM 18.64 ± 0.98 4.89 ± 0.17 1.00 ± 0.01

10 DDM 9.55 ± 0.43 2.50 ± 0.15 1.00 ± 0.01

HM 7.64 ± 0.48 2.01 ± 0.08 1.00 ± 0.01

20 DDM 6.83 ± 0.34 1.79 ± 0.08 1.00 ± 0.01

HM 5.42 ± 0.25 1.43 ± 0.09 1.00 ± 0.01

30 DDM 11.36 ± 0.57 2.98 ± 0.15 1.00 ± 0.01

HM 9.09 ± 0.60 2.39 ± 0.12 1.00 ± 0.01

TC rotational speed Ntc [rpm]

0 PM 2090.10 ± 78.43 15.39 ± 0.75 0.97 ± 0.01

DDM 302.62 ± 21.42 2.18 ± 0.15 1.00 ± 0.01

HM 214.44 ± 9.54 1.53 ± 0.08 1.00 ± 0.01

10 DDM 130.12 ± 7.63 0.94 ± 0.05 1.00 ± 0.01

HM 102.22 ± 4.02 0.74 ± 0.04 1.00 ± 0.01

20 DDM 114.57 ± 6.63 0.83 ± 0.05 1.00 ± 0.01

HM 91.78 ± 4.59 0.66 ± 0.02 1.00 ± 0.01

30 DDM 157.90 ± 7.20 1.13 ± 0.06 1.00 ± 0.01

HM 124.01 ± 7.58 0.90 ± 0.06 1.00 ± 0.01

Turbine outlet temperature Tt,out [◦C]
0 PM 9.66 ± 0.57 2.53 ± 0.13 0.92 ± 0.01

DDM 3.80 ± 0.20 0.97 ± 0.05 0.99 ± 0.01

HM 3.18 ± 0.22 0.81 ± 0.05 0.99 ± 0.01

10 DDM 1.89 ± 0.12 0.48 ± 0.02 1.00 ± 0.01

HM 1.54 ± 0.09 0.39 ± 0.02 1.00 ± 0.01

20 DDM 1.58 ± 0.11 0.40 ± 0.01 1.00 ± 0.01

HM 1.27 ± 0.04 0.32 ± 0.02 1.00 ± 0.01

30 DDM 2.26 ± 0.11 0.57 ± 0.03 1.00 ± 0.01

HM 1.76 ± 0.10 0.45 ± 0.02 1.00 ± 0.01

Exhaust manifold temperature Ter [◦C]
0 PM 19.92 ± 1.06 4.81 ± 0.15 0.96 ± 0.01

DDM 5.02 ± 0.19 1.13 ± 0.04 0.99 ± 0.01

HM 3.94 ± 0.24 0.88 ± 0.05 0.99 ± 0.01

10 DDM 2.51 ± 0.12 0.56 ± 0.03 1.00 ± 0.01

HM 1.99 ± 0.07 0.45 ± 0.03 1.00 ± 0.01

20 DDM 1.78 ± 0.10 0.40 ± 0.01 1.00 ± 0.01

HM 1.43 ± 0.05 0.32 ± 0.01 1.00 ± 0.01

30 DDM 3.23 ± 0.19 0.73 ± 0.05 1.00 ± 0.01

HM 2.57 ± 0.11 0.58 ± 0.03 1.00 ± 0.01

Note that Δ = 0 means that the authors do not exploit time series information from the past, for
Δ > 0 there is no PM result
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(a) DDM

(b) HM

Fig. 6.12 Scatter plot (measured vs. predicted) and trend in time for Tt,out (◦C) output feature using
the different models (DDMs and HMs) with Δ = 20

It should be noted that, although DDMs are computationally demanding in the
training phase, they are characterised by lower computational complexity in the feed-
forward phase, as they just require matrix manipulation methods, in contrast with
the solution of a system of first order differential equations that the PM requires
(see Sect. 6.3.1). The combination of both accurate and fast predictions, makes
DDMs an ideal candidate for real-time performance and condition estimation. How-
ever, the necessary data to reach this level of performance is rather high as reported
in (Cipollini et al. 2018a, b), which makes this type of models applicable only after
extensive measurement campaigns have been undertaken. In addition, another disad-
vantage of DDMs is the lack of interpretability as it is not supported by any physical
interpretation (Shawe-Taylor and Cristianini 2004).

To overcome those limitations we proposed the use of HMs. These allow the
exploitation of both the mechanistic knowledge of the underlying physical principles
from the PM, and any available measurements taken during the operation of the
vessel. An advantage of the HMs is their ability to exploit the coarse, but physically
supported, predictions of the PM. Therefore, HMs have much smaller requirements
regarding the use of actualmeasurements for the learning phase (Coraddu et al. 2017).
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(a) DDM

(b) HM

Fig. 6.13 Scatter plot (measured vs. predicted) and trend in time for Ter (◦C) output feature using
the different models (DDMs and HMs) with Δ = 20

While they will still require a measurement campaign in order to be deployed, they
can be reliably used already after a few months worth of measurements, in contrast
with pure DDMs that would require at least half a year of available data, before they
can be exploited.

The novelty introduced by theHMs led tomore accurate predictions of the four tar-
gets compared to the rest of the models (PM and DDMs), regardless of the time win-
dowconsidered (Δ), as canbe seen fromTable 6.8. Furthermore, the same table shows
that the optimal model is an HM with a time window of 20 seconds, which achieves
MAPEs of 1.43% ± 0.09% for ṁ f , 0.66% ± 0.02% for Ntc, 0.32% ± 0.02% for
Tt,out, and 0.32% ± 0.01% for Tt,out. This is also supported by Figs. 6.10b, 6.11b,
6.12b, and 6.13b, which show representative time-series of the predictions of the four
considered targets (ṁ f , Ntc, Tt,out, and Ter) for time windows of 20 seconds. Finally,
it can be noted that the variance has been completely eliminated, whereas the bias
has been reduced to near-zero levels.
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6.6 Conclusions and Future Perspectives

In this work the authors focused their attention on demonstrating a novel modelling
framework for the hybridisation of physical and data driven models. The proposed
framework is capable of delivering accurate, reliable, and computationally inexpen-
sive models suitable for real-time performance assessment and condition monitor-
ing applications. State-of-the-art data-driven methods have been presented, able to
exploit the information provided by on-board measurements from one Holland Class
Oceangoing Patrol Vessel, provided by the Royal Netherlands Navy and Damen
Schelde Naval Shipbuilding. First, a 0-D physical model of a medium speed two-
stroke diesel engine (MAN12V28-33D)was described in detail and validated against
measured data. The results reported in Sect. 6.5.1 showed that the automatic cali-
bration processes for stationary operations can provide suitable parameter values to
adjust the model’s response to the measured signals, capturing the stationary engine
operation for awide span of loads, ranging between 20–100%. The stationary relative
errors are in general below 3.5% for the validation data. Nonetheless, the physical
model proved to be not accurate enough to capture the engine behaviour in transient
conditions. In this respect, the dynamic validation reported in Sect. 6.5.2 showed
that the physical model model is capable of following the measured engine signals
during transients, nonetheless, its response is not accurate. Moreover, its complexity
depend upon computational requirements that are sometimes prohibitive, preventing
the use of the physical model in real time applications.

Therefore, data-driven models have been discussed and proposed in Sect. 6.3.2,
for predicting the behaviour of the engine, with a focus on four different targets: (i)
fuel consumption, (ii) turbocharger rotational speed, (iii) turbine outlet temperature,
and iv) exhaust receiver temperature. Themodels proved to be very accurate, with the
enhanced capability of exploiting time series information from the past, achieving
relative errors below 1% on the validation data, across all the considered output
features. However, due to their nature, these data-driven models are hard to interpret.

To overcome the limitations of both the physical and the data-driven models,
we proposed a hybrid approach that can take into consideration past information,
capable of improving accuracy, easily interpreted, and have low computational time
requirements. The hybridisation of physical and data driven models proved to be
extremely accurate, achieving even lower errors when compared to the simple data-
driven approach. These hybrid models can potentially also be used to improve accu-
racy of predictions for operation in other conditions than the measured ones, as
purely data-driven models cannot be used for extrapolation, but the physical model
contribution will improve hybrid model performance during extrapolation.While the
hybrid approach will still require a measurement campaign in order to be deployed,
this approach can be reliably used based on a significantly smaller dataset in com-
parison with the pure data-driven models, for the same average error, as shown in
Sect. 6.5.2.
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