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Abstract— This paper proposes a model for charge scheduling
of electric vehicles in last-mile distribution that takes into
account battery degradation. A mixed integer linear program-
ming formulation is proposed that minimizes labor, battery
degradation and time-dependent energy costs. The benefit of
implementing charge schedule optimization is assessed for a
real-life case study at e-grocer Picnic. It is shown that charging
optimization yields an overall reduction of charging costs by
25.2% when compared to the current operational charging
performance. Furthermore, the impacts of three different shift
schedule types, the increase in vehicle battery size and the
coordinated charging are investigated. It turns out that more
energy demanding shift schedules result in higher average
charging cost per charged amount of energy. The introduction
of a larger battery size as well as coordinated charging show
potential for decreasing overall costs.

I. INTRODUCTION

The advances in information and communication tech-
nologies are changing the way transportation and logistics
systems are operating. In the context of freight transportation,
consumers are using online systems and becoming more
time-sensitive even though they would like to keep the
prices reasonable. This overall brings challenges to cities,
e-commerce and logistics companies. Together with the
environmental considerations, it is clear that we need a
paradigm shift to increase the sustainability of operations
without comprising on the efficiency. Freight transportation,
currently dominated by fossil fuelled vehicles, contributes
largely to sustainability problems, including noise and air
pollution, global warming and oil dependency [1]. The adop-
tion of electric vehicles (EVs) could solve these problems
by enabling cleaner transport [2]. The attractiveness of EVs
is related to [3]: total cost of ownership (TCO), technol-
ogy readiness and local and national regulations. However,
substituting conventional internal combustion engine (ICE)
vehicles with EVs within the transportation and logistics
sector is not straightforward. In contrast to ICE vehicles, EVs
have to refuel frequently due to limited battery capacities.
Moreover, the recharging process of an EV is more time
consuming. These raise challenges in terms of strategic,
planning, and operational perspectives [4].

The increased potential of EVs led to the development
of optimization problems both at strategic and operational
levels. We refer to a recent review by Schiffer et al. (2019)
for both levels of models [5]. On the strategic side, the
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needed fleet size (e.g., [6]) and the location of the charging
infrastructure (e.g., [7], [8]) are studied. When it comes to
operational level models, electric vehicle routing problems
(E-VRP) are introduced in order to consider the limited
range of EVs while optimizing the routes. Some consider full
charging of batteries at each charge event (e.g., [9]) whereas
others enhance the model with partial charging possibilities.
Montoya et al. (2017) [10] worked on E-VRP with piece-
wise linear representation of the nonlinear charging process.
They were the first ones to consider nonlinearity and showed
that more accurate representation of the charging process
is important for reaching efficient operations with EVs. A
different operational problem is the electric vehicle schedul-
ing problem (E-VSP) with the assumption of pre-determined
vehicle routes which is also what we focus on in this paper.

We focus on the depot charge scheduling from the perspec-
tive of the fleet owner. The fleet is considered to operate a
multi-shift schedule, i.e., multiple trips per day. It is assumed
that individual trips, which span a number of customer
orders, do not exceed vehicle range which allows charging
only at the depot. A relevant study is by Pelletier et al. (2018)
[11] who introduce the Electric Freight Vehicle Charge
Scheduling Problem (EFV-CSP). They focus on optimising
the depot charge planning over the course of multiple days
for a given set of routes for a small fleet of electric freight
vehicles. Sundstrom et al. (2010) [12] propose a charge
scheduling optimisation model with the goal of minimising
charging costs, while ensuring satisfactory state-of-energy
levels for the vehicles and not exceeding the amount of
available wind power. A different type of problem discussed
by Sassi et al. in (2014a) [13], (2014b) [14] and (2017)
[15] that covers the subject of unidirectional depot charge
scheduling for fleet owners is the Simultaneous Electric
Vehicle Scheduling and Optimal Charging Problem.

Our model contributes to the charge scheduling literature
in various dimensions. First, the labor cost is taken into ac-
count with a fixed penalty for each performed charging event.
Second, the battery wear costs are considered as lithium-ion
batteries are subject to deterioration of the electro-chemical
properties over time, ultimately resulting in a performance
and range deterioration of the vehicle [16]. We incorporate a
SOC dependent battery degradation model proposed by Han
et al. (2014) [17] by adopting a discrete wear cost function.
The nonlinearity of the degradation cost with respect to SOC
is handled with additional continuous decision variables.
Furthermore, this paper is distinct with experiments based
on real data from a Dutch e-grocer Picnic, that operates a
last-mile distribution with over 700 EVs [18].
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II. MODEL FORMULATION

The charge scheduling problem is formulated as a MILP.
We first present the basic version and then the extensions
with battery degradation and coordinated charging.

A. Basic Model Formulation

As mentioned before, vehicle routes are assumed to be
decided prior to our model and that energy requirements
of these trips are estimated to be inputs to the model. The
entire time horizon is discretized into a number of fixed time
periods ¢t € T. The periods corresponding to hub opening
and closing times are defined as t,pen, and tepose. A set of
homogeneous vehicles k € K is characterized by maximum
and minimum allowable battery SOC, socy,q, and s0Cpin,
and battery energy capacity ¥ (kWh). Moreover, the SOC at
the beginning of an operational day is specified as socsiqrt-
Every vehicle has to execute a known sequence of trips from
the set r € R. Trips can be further defined by their departure
period (3, arrival period .. and energy requirement Asoc,
(%). The vehicle that executes a certain trip r, is denoted by
V., and the preceding trip is defined as ... Moreover, let the
set Ay contain the arrival periods of all trips that belong to
vehicle k. The charger types given by s € S are characterized
by their charge rate Ps; (kW), the SOC differential that can
be charged in one period A\ (%) and amount of available
chargers per type K. Let the binary decision variable x; 1, s
be 1, if a charger of type s is charging vehicle k during period
t, and O otherwise. A continuous variable soc; ;, denotes the
SOC of vehicle k at the start of period ¢. y keeps track of the
peak charging power that is drawn from the grid during the
entire time horizon. Binary variable z; j, equals 1 if a charge
event starts for vehicle k£ in period ¢, and O otherwise. To
count the number of charge events, an integer variable N is
introduced. The peak power demand is constrained by the
grid capacity G. The model minimizes the total costs:

Z Z th7k,sPsAtCt + ]\TCe

teT ke K seS

(1)

where the first term represents the cost of the charged energy
as a function the total charged energy during a charging
period (if z; 1 s = 1 it is the charge rate, P, times the length
of each time period, A;) and the time-dependent energy costs
c; (€/kWh); the second term accounts for the labor costs with
a fixed cost per charge event c®.

Constraints (2) prevent a vehicle from being charged while
serving the trips, i.e., maintains depot-charging. Constraints
(3) limit the amount of chargers of type s that can be used
during every period to K5, while constraints (4) enforce that
each vehicle can be charged by only one charger at the same
time. Constraints (5) keep track of the peak charging power
that is drawn from the grid during the entire time horizon
and constraint (6) limits this peak charging power to the grid
capacity. Lastly, constraints (7) and (8) are used to identify
the period that corresponds to the start of a charging event.

237

Constraints (9) and (10) define the binary decision variables.

Qo

SN av,.=0 VreR ()
t=Br s€S

>z <K, VteT,seS\{1} (3)
keK
> wpps <1 VteT ke K (4)
s€S

S>> Paks<y VkeK,teT (5)
keK seS
0<y<G (6)
Zik > Tigs — Ti—1ks VEEK,teT\{l},se€S (7)
21k 2 T1k,s Vke K,s€S (8)
Tek,s €10,1} VteT, ke K,s€S (9)
zir € 40,1} VteT, ke K (10)
80Cq,. v, = socg,. v. — Asoc, vre R (11)
50Ct |y = SOCt—1 s + ZAswtq,k,s

s€S
Vke K,teT\{1},t ¢ Ay (12)

S0Cmin < S0Ct K < 80Cmax vk € K,t eT (13)
SOC1,k = SOCstart Vk e K (14)

Constraints (11) relate the SOC of the vehicle at trip de-
parture to the SOC at trip arrival by reducing it with the
trip energy requirement Asoc,.. During charging, constraints
(12) enforce the increase of the SOC of a vehicle with the
SOC differential that corresponds to a certain charge rate
As. Constraints (13) ensure that the SOC of a vehicle always
stays between the minimum and maximum allowable SOC.
Constraints (14) set the SOC of the vehicle at the start of
the time horizon.

S>> mp=N (15)
teT keK

topen

> k=0 Vk € K (16)

t=tciose
Constraint (15) counts the number of charge events for labor
cost computation. Constraints (16) prevent charging events
from occurring during the night closing times of the hub.

B. Model Extension I: Battery Degradation

Typically, battery manufacturers specify the cycle lifetime
of batteries with the Achievable Cycle Count (ACC) for
different Depth of Discharge (DOD) points, which indicates
how many times a battery can be charged/discharged before
it reaches the end of its lifetime. For defining the relation
between ACC and DOD, it is typically assumed that the bat-
tery is always discharged from 100% SOC, which represents
the situation in which a battery is always cycled from full
charge. However, in reality batteries are cycled in different
SOC ranges and the ACC-DOD characteristics need to be
transformed into a practical battery wear model in order to
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Fig. 1: Discrete and continuous wear costs [17]

facilitate its use in charge scheduling models. The battery
wear model that was proposed by Han et al. (2014) [17]
does exactly this and we use this model to incorporate battery
wear behavior in the charge scheduling model. They propose
a wear density function (WDF) that represents the average
cost per unit of energy transfer based on SOC. A continuous
and discrete time battery wear function are derived using
both the battery price and ACC-DOD data as shown in
Figure 1. In this work, we adopt the discrete-time model and
extend the basic MILP with a discrete wear cost function.
The formulation is applicable for cases when the wear cost
function is increasing with respect to SOC, i.e., more battery
degradation occurs during cycling at higher SOC values.
The SOC of the batteries is split into a number of intervals
d € D of equal size Ay (%), with the upper SOC value
of an interval corresponding to U,. The battery wear cost
is represented by Wy in €/kWh for every SOC interval d.
A new continuous variable, soc}"r, is introduced that keeps
track of the part of every SOC interval that is used to charge
vehicle £ between arrival of trip p, and departure of trip
r. For example, if a vehicle is charged from 40% to 55%
SOC between trip r = p, and r = z, the corresponding
used SOC intervals become soc;ﬂ = 10% and 8084 o= =5%
respectlvely Lastly, let a binary decision variable =7 equal

1, if the corresponding SOC interval is used for charglng the
vehicle before trip r and after p,., and O otherwise.

Z Z th7k7ngAtct 4+ Nc© + Z Z 2Esoc:£TWd

teT keK seS rERED
(17)

The objective function now (17) comprises three terms of
which the first two represent the energy costs and labor
costs as in equation (1). The third term is introduced to
take into account the costs related to battery degradation.
The total charged amount of energy per interval is derived
by multiplying the SOC variation in every interval socL
with the battery energy capacity E (kWh), and then the
corresponding degradation cost is determined by multiplying
those factors with the degradation cost Wy that depends
on the SOC interval. Since cyclic aging affects the battery
health during charging and discharging, a final multiplication
by a factor of two is required to calculate the total battery
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degradation.

Z socd = 80Cg, v, — 80Cq,, .V, Vre R
deD
(18)
0< soc;',r < Adxfif‘r Vde D,r € R
19)
soc;T < Uq — socy,, v, +100 — xdh 100 Vde D,re R
(20)

Constraints (2) - (16) are still valid for this model extension.
In addition, constraints (18) ensure that the total charged
energy (the sum of all socd over intervals) satisfies the
energy need of vehicle k& between trips p, and 7. Constraints
(19) limit the marginal SOC that can charged in a SOC
interval between zero and the maximum amount that can
be charged in one interval, Ay. Constraints (20) limit the
amount that can be charged in interval soc,}, based on the
upper SOC value of that interval and the SOC of the vehicle
after the last trip. Note that this constraint will be binding
only when the corresponding SOC interval is used (i.e., if
x5 d '.=1) and it is only valid in the case of non- decreasmg
wear cost with respect to SOC.

C. Model Extension II: Coordinated Charging

So far we focused on uncoordinated charging where the
charging starts immediately after plugging in a vehicle or
after a fixed start delay and continues until the battery is fully
charged or disconnected [19]. This may lead to high peak
demands and thereby overloading of the grid [20]. On the
other hand, coordinated smart charging optimizes time and
power demand with the objectives of minimizing charging
cost, valley filling and peak shaving [19] without interfering
with the scheduled vehicle use during the day [21]. To
be able to leverage on the possible benefits of coordinated
charging, smart chargers, connected vehicles and an energy
management system that controls the charging of the vehicles
are needed. Coordinated charging brings the flexibility to (i)
stop and start charge events any moment in time including
the hub closing times (ii) interrupt charge events without
additional costs.

In order to consider the charging event cost in coordinated
charging, not the number of charge events should be counted,
but the number of used charge opportunity intervals. A
charge opportunity interval is defined as the time between the
arrival of the preceding trip v, and departure of the trip 3.
The total number of charge opportunity intervals is equal to
the number of trips. The binary decision variable N¢, equals
1 if the charge opportunity interval corresponding to trip r
is used, and O otherwise. Multiple charge events may occur
in a given used charge opportunity interval, however it does
not incur any costs to stop and start. The only cost will be
the plugging of the vehicle after the trip in case the charging
opportunity interval afterwards is going to be used. As we
are working with operational models, we did not consider
the investment costs of smart charging infrastructure. The
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adapted objective function is given as follows:

Z Z Z Ty g s PsArer + Z Ne,c® + Z Z 2ESOCIrWd

teT keK seS reR reR deD

2D
where the second term calculates labor cost by multiplying
Nc, with ¢®. The remainder is the same as Equation (17).
Br
Z Ztw, > —M(1— Nc¢,)

t=ay,,

Br

E Zp v, < MNec,
pP=apu,

Ne, € {0,1}

VreR (22)

Vr € R (23)

VreR (24)

Constraints (22) and (23) ensure that the binary decision
variable Nc, equals 1 if the term Zf; 4y, 20, 18 larger than
0 and that it is O if no charging is performed. The linearity
of the constraints is maintained by the big constants M.
Constraint (15) needs to be discarded as the counting of
events is now different and constraints (16) are not valid
anymore since the charging can start and stop during the
closed times of the hub as long as it is plugged in. All other
constraints remain valid (2) - (14), (18) - (20).

ITII. CASE STUDY

The charge schedule optimization is evaluated with a
case study from a Dutch e-grocer, Picnic based on real-
life instances. Starting in 2015 by just serving the city of
Amersfoort, Picnic maintained an explosive growth reaching
90 cities in Netherlands and 13 cities in Germany. One dis-
tinct characteristic of Picnic is that the second-tier logistics
from the hubs to the customers is carried out by EVs.

A. Experimental setup

Three different shift schedules, characterized by shift time
windows, i.e., scheduled departure and arrival times for trips,
are considered to have an analysis of the system under
different operational profiles representing potential changes
in the demand. All shifts in these schedules are strictly
separated in time, which means trips from consecutive shifts
can be executed by the same vehicle.

e SS1 is an afternoon only schedule with 3shifts of equal
duration. The shifts have time in between that enables
vehicles to do depot charging.

SS2 contains 2 additional shifts (compared to SS1) in
the morning, which are slightly shorter in time, i.e., less
energy demanding, compared to the afternoon shifts.
SS3 includes 4 equal but longer duration of shifts with a
longer break between shifts two and three. The shifts of
SS3 are roughly 30% longer in time, i.e., more energy
demanding than SS1 and SS2.

For every shift schedule, 7 instances are generated repre-
senting the execution of one operational week based on the
database of Picnic. The time horizon is from 23:00 of the
previous day until 23:00 of the current day and is discretized
in steps of 10 minutes. Hub closing hours are 23:10 - 10:10

239

120

100

80

Energy cost [€/MW]

40
20
0
O O P P P P P P PSP PS
o5 R R 7 R o S F o S S

Fig. 2: Hourly energy prices

for the SS1 schedule and between 23:10 and 7:10 for SS2 and
SS3. A uniform fleet of light commercial vehicles considered
in the case of Picnic. The battery size is 12kWh and the
charging curve is represented by a linear charge rate of 2kW,
which sets A; to 2.78%. The SOC range of the vehicles
is restricted to 10-100% SOC in order to have an extra
safety margin to take into account the uncertainties in the
predicted energy requirement of trips. The SOC at the start
of an operational day is set at the lower bound of 10% for
comparable results for battery degradation and energy costs.

The peak power that can be drawn from the grid G is set
at 40kW h. The hourly variable energy prices, ¢, are based
on a sampled day of hourly prices from the Dutch day-ahead
energy market (APX) given in Figure 2. For every performed
charge event a fixed cost (c®) is considered. The discrete
wear density function for the battery under consideration
is determined using the ACC-DOD curve from Han et al.
(2014) as they work with a comparable battery type and
size [17]. The entire SOC range is divided into 10 intervals
of 10% SOC. Based on the battery price and size, the
average wear costs Wy (€/kWh) is computed per SOC
interval and presented in Table I. This average wear cost
computation per kWh is more convenient in order to apply it
for different battery capacities. The instance sets for different

TABLE I: The discrete wear cost per SOC interval.

SOC [%)
W, [€/kWh]

0-10
0.32

10-20
0.33

20-30
0.34

30-40
0.36

40-50
0.37

50-60
0.38

60-70
0.40

70-80
0.425

80-90
0.485

90-100
0.65

shift schedules yield a different number of trips and total
energy requirement. For a fair comparison, the results are
reported as cost per consumed amount of energy, in €/kWh.

B. Base case

The base case represents the process at Picnic in which no
charge schedule optimization is used. The costs for battery
degradation and labor are derived using operational data.
Since the SOC dependency is taken into account in the
battery wear cost model, it is required to know in which
SOC ranges the batteries are cycled during the current use
of the vehicle to derive the current battery degradation cost.
A discrete probability density function (PDF) of the SOC
during driving is derived using data from actual trips. Using
this PDF and the battery wear cost function, the average wear
cost during driving can be obtained.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 13,2021 at 14:03:46 UTC from IEEE Xplore. Restrictions apply.



100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

7.24%

34.48% 5.80%

20.04%

Base case

Charge optimisation

®m Degradation Labour Energy
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For the determination of the labor cost, we need an
understanding of the typical charge cycle currently performed
at Picnic based on the operational trip data. First, to derive
a realistic value for the average charge cycle, the average
trip arrival SOC is used and all vehicles are assumed to be
fully charged from this SOC, which is the case for Picnic.
Subtracting the average arrival SOC from a 100% SOC yields
the average charge cycle. Subsequently multiplying this with
the battery capacity gives the quantity of charged energy
that corresponds to this charge cycle. Lastly, this is divided
by the cost related to one charge event to derive the cost
per charged unit of energy, resulting in a charge event cost
in €/kWh. It is assumed that, the average energy cost per
charged amount of energy is equal to the average time-
dependent energy prices. The base case is the benchmark
for the experimental results with a total cost of 100% and
the other cases are provided in reference to this. Based on the
above assumptions for different cost components, 58.28% of
the total cost corresponds to the battery degradation, 34.48%
is the labor and 7.24% is the energy cost for the base case.

C. Experimental Results

We present a set of experiments for the proposed charge
schedule optimization. Gurobi is used as a solver on a
machine with Intel Core 17-4700MQ 2,4 GHZ processor with
8.0GB of RAM Windows 10. The maximum computational
time is set at 3600 seconds, with a gap tolerance of 1.0%.

The impact of charge schedule optimization is compared to
the base case for the SS1 schedule. The results are depicted
in Figure 3, where the presented cost corresponds to average
charging cost in €/kWh for seven operational days. An
overall charging cost reduction of 25.2% is obtained, which
is a result of a decrease of degradation, labor and energy
costs of 15.9%, 41.9% and 19.9%, respectively. Furthermore,
the reduction in battery wear can be translated into an
extended lifetime of the batteries by 19.0% .

The results for charge schedule optimisation for 3 shift
schedules are depicted in Figure 4. Note that, SS1 results are
the same the optimized results in Figure 3. It is observed that
the charging costs for SS2 and SS3 schedules are higher than
the SS1 schedule by 7% and 10%, respectively as expected.
The intensified use of vehicles throughout the day results
in an increase in energy requirement and a reduction of the
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charging flexibility, which is defined as the idle time spent
not charging [22]. This results in higher SOC cycling ranges,
i.e., higher battery degradation costs, and a higher number
of required charge events, i.e., higher labor costs. Moreover,
there is also an increase in the energy costs since decreased
time flexibility in SS2 and SS3 does not allow for selecting
when to charge.

As the battery size is an important decision for EV users
(in our case, an e-grocer), the impact of increasing the
battery size on charging cost is investigated. Note that, higher
investment costs with larger batteries and higher energy
consumption due to the increased weight of the vehicle
with a larger battery are not considered in the analysis. The
experiments for all shift schedules are repeated for a battery
of 20kWh. The average across all the shift schedules are
presented in Figure 5. A decrease of 10% is observed on the
overall charging cost as a result of the reduction in battery
degradation cost (5.9%) due to the change in cycled SOC
ranges, and more significantly the reduction of labor cost
(23.3%) due to the less number of needed charge events.

The increased flexibility during the charging process that
is enabled by smart chargers may help to reduce overall
charging cost. On and off switching during coordinated
charging may help to achieve the desired SOC levels at the
right moments in time without using many charge events,
and thereby reduce degradation and labor costs. Moreover,
the increased charging flexibility can be leveraged to charge
during times of low energy prices. Figure 6 shows a reduction
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of 7% on the total charging costs due to a decrease of all
cost components (battery degradation by 3.7%%, labor by
15.3% and energy costs by 10.9%) as expected.

IV. CONCLUSIONS

We proposed a charge schedule optimization model and
investigated the impacts on overall charging cost (consist-
ing of energy, labor and battery degradation costs) based
on a real-life case study of the last-mile distribution of
an e-grocer, Picnic. The proposed model outperforms the
benchmark (which is the representation of actual opera-
tions) by 25.2% in total costs. This shows the potential
of charge schedule optimization in last-mile services using
EVs. An immediate consequence of reduced battery wear
cost is that expected lifetime of the vehicles batteries is
extended (19.0%). Furthermore, the impacts of 3 different
shift schedules, the battery size and coordinated charging
are investigated. It turns out that more energy demanding
shift schedules result in higher average charging cost per
charged amount of energy. The introduction of a larger
battery size, shows potential for decreasing cost related to
charging (10%). Moreover, coordinated charging yields a
reduction of charging cost by 7%.

An interesting new area of research would be to consider
the scheduling of vehicles to trips and the scheduling of
charge events in a joint optimization problem. This could
generate improved results, due to the increased flexibility
of the vehicle schemes. On the other hand, these types of
problems are more complex and therefore require efficient
formulations and/or heuristics. Another area of interest lies
in the implementation of more advanced battery degradation
models, which take into account other operational factors
other than cycling SOC or that incorporate degradation
during storage. A very interesting future direction is to
consider the uncertainty in various model components such
as the required energy demand of the trips. Such a stochastic
extension will be valuable to bring the study closer to reality
and to develop robust strategies.
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