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Latent class models for capturing unobserved heterogeneity in major global 
causes of mortality: The cases of traffic crashes and COVID-19 
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A B S T R A C T   

Existing models for correlating global mortality rates with underlying country-specific factors overlook the 
variations in the effects of these factors on mortality across different countries. These may arise from social, 
cultural, and political complexities which are usually not measurable and are therefore referred to as unobserved 
heterogeneity in the statistical literature. Unobserved heterogeneity leads to biased parameter estimates in the 
models, erroneous inferences about the effects of factors contributing to mortalities, and ultimately inefficient 
policies. In this paper, latent class modelling is proposed for capturing such unobserved heterogeneity on the 
cases of traffic mortality and COVID-19 mortality. The ‘pyramid’ model of safety management is used as a 
common framework for model formulation. The proposed latent class model is an extension of the Negative 
Binomial (NB) model used in risk epidemiology. The model is tested with data from 105 countries, retrieved from 
international databases, including socioeconomic, infrastructure, exposure, transport, and COVID-19 variables. 
The results suggest that there exist two (different) latent country classes in both causes of mortality. The 
probability of a country belonging to a certain latent class is a much more efficient metric of country membership 
than previous deterministic groupings (e.g. income or geographic). Variables such as the elderly population, the 
GDP per capita or the level of motorization, have different effects in different country classes; these effects are 
not identifiable by conventional statistical modelling. The impact of ignoring unobserved heterogeneity in 
country mortality modelling is shown by comparing the results with those of conventional NB models.   

Background and objectives 

Global mortality rates by different causes have been a critical ques-
tion receiving continuous attention in the safety and epidemiology dis-
ciplines. Several studies have attempted to explore country-specific 
differences in mortality rates and the role of socioeconomic factors 
affecting them, in order to identify good practices that can inform policy 
making at national, regional and global level. Country benchmarking, i. 
e. a process to identify best practice, the ways in which positive results 
are achieved in these countries, and the ways in which these can be 
implemented to other countries, is a useful tool for addressing the 
burden from a certain cause of mortality (Wegman & Oppe, 2010; Bert 
et al., 2022). Moreover, the impact of macroscopic country character-
istics on mortalities can improve predictions of their evolution and 
reveal potential areas of intervention (UNECE Sustainable Transport 
Division, 2018). 

One recent example of a critical cause of mortality is the Covid-19 
pandemic which was declared by the World Health Organisation 

(WHO) on 11 March 2020 and within that first year brought 1.96 million 
fatalities (WHO, 2020; 2022). Countries responded to this outbreak by 
means of various restrictions aiming to prevent the spread of the virus, 
as well as to support the health sector. However, there were considerable 
differences in the type of implemented measures and their compliance / 
enforcement, resulting in different mortality outcomes. Numerous 
recent studies aimed to identify these relationships at the international 
level. 

Another long-lasting example is the global “epidemic” of traffic fa-
talities (more than 1.35 million people annually all over the world) – 
being the leading cause of death for people aged between 25–55 years 
(WHO, 2018). Several studies have attempted to model its development 
in order to transfer knowledge from good performing countries and 
proactively anticipate future developments; for instance, lessons to be 
leaned by low-to-middle-income countries in view of their transport 
development, safety improvements to be anticipated by the penetration 
of new vehicle technologies etc. 

While the two causes of mortality are fundamentally different from 
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the microscopic perspective, it has been noted in the literature that there 
are common macroscopic factors affecting the size of the final outcomes 
(fatalities) in both causes of mortality, ranging from cultural and insti-
tutional factors, to specific regulations and policies in place, as well as 
factors related to the behaviour of individuals (Papadimitriou & Afghari, 
2023). However, there are notable differences in countries around the 
world arising from unobserved country-specific factors (e.g. social 
structures, cultural attributes, political complexities, etc.) which are 
often difficult to measure and take into account in macroscopic statis-
tical modelling of mortality rates. Therefore, the existing statistical 
analysis methods used for correlating mortality rates with their under-
lying factors are “primitive”, in many cases as simple as basic re-
gressions, and they have not considered the complexities associated with 
the above differences. One of these complexities is varied effects of 
factors on mortality rates (i.e. most studies have assumed a fixed effect 
of those factors across all countries whereas this may not be totally ac-
curate). This is referred to as unobserved heterogeneity in the statistical 
literature and, if it is not accounted for, leads to biased and inefficient 
parameter estimates in the statistical models, results in erroneous in-
ferences about the effects of factors contributing to mortalities, and ul-
timately leads to inefficient policies for mitigating the mortalities. 
Therefore, there is a need to use more proper techniques to address this 
unobserved heterogeneity in country comparisons. Econometric 
modelling disposes the theoretical and practical tools to model these 
complexities, and can be used to get more insight on how to model 
complex relationships between macroscopic factors and major mortality 
causes. 

The objective of this paper is to understand unobserved heteroge-
neity in the effects of macroscopic factors that are associated with 
mortality causes, by leveraging our learnings from advanced econo-
metric modelling. For that purpose, a number of latent class models are 
developed to model mortality rates for two critical causes of mortality: 
traffic crashes and COVID-19 infections. The main motivation for 
choosing these two causes of mortality is that recent studies have shown 
that they have a similar annual burden of casualties (Colonna and Intini, 
2020), they share several attributes at global level, and they can be 
described by analogous macroscopic safety mechanisms (Papadimitriou 
& Afghari, 2023) – albeit their significant operational differences. In 
addition, studies have repeatedly shown that COVID-19 pandemic 
significantly influenced transport systems in general (De Vos, 2020; 
Peralvo et al., 2022), and road traffic risk in particular (Katrakazas et al., 
2020; Saladié et al., 2020). As such, global data from international 
mortality databases (traffic fatality and COVID-19) are used in this study 
to apply and compare these models with the classical Poisson-family 
statistical models that are typically used in ecological studies model-
ling rare events in a cross-sectional framework. 

This paper is structured as follows: Section 2 presents a literature 
review on the available macroscopic modelling techniques for traffic- 
related and COVID-19 related fatalities. Section 3 presents our concep-
tual framework, research hypotheses and model formulation, which 
expands the classical Negative Binomial model into a Latent Class model 
that can capture the latent classes underlying the observations; it also 
presents the data collected to develop the models. Section 4 includes the 
modelling results for both causes of mortality. Section 5 presents a dis-
cussion of the findings, followed by conclusions (section 6). 

2. Literature review 

A literature review was conducted aiming to identify the main cross- 
country factors (from macroscopic perspective) associated with traffic 
and COVID-19 mortalities (epidemiological studies) and the existing 
methods to study the effects of the above factors on traffic and COVID-19 
mortalities. A literature search was carried out to identify the most 
relevant and representative studies of cross-country macroscopic 
modelling of the two causes of mortality. The following types of studies 
were excluded: studies with only descriptive analysis, studies only 

comparing a few countries (<10), longitudinal COVID-19 studies. In the 
COVID-19 context, the focus was on studies looking at the 1st year of the 
pandemic (2020). Moreover, grey literature publications were eventu-
ally excluded. 

2.1. Traffic mortality 

In the traffic safety field, cross-country comparisons have been the 
focus of analysis by several international organisations, e.g. WHO, the 
EC, the UN etc. Several researchers have used regional (e.g. European) 
or global data to develop statistical and econometric models of traffic 
mortality. Because of the difficulty in obtaining accurate and compa-
rable measures of traffic exposure (e.g. vehicle- and person-kilometres of 
travel) at global level, the mortality rate is typically used as a dependent 
variable, while correcting for the level of motorization and / or 
vulnerable road users’ exposure by means of other independent vari-
ables (e.g. vehicle ownership, bicycle ownership). The majority of 
relevant studies aims to i) develop prediction models for the future 
development of traffic fatalities, or ii) investigate the impact of specific 
interventions on mortality, with the impacts of economic recessions 
receiving a lot of attention. 

In the first family of models, studies focused on the methodological 
challenges of modelling macroscopic developments of fatalities and 
exposure (vehicle-kilometres-based, or population-based) by means of 
pertinent time series analysis techniques. In Lassarre (2001) structural 
time series models were developed for road safety developments in 
Europe, whereas Commandeur et al. (2013) further developed a 
framework for the application of state-space models in these countries 
by specifying the pertinent ways to account for unobserved trends. 
Borsos et al. (2012) proposed a function to model the dynamic impact of 
motorization on traffic fatalities. In Antoniou et al. (2016), a method-
ological framework was proposed for modelling temporal panel data of 
traffic mortalities, taking into account both the panel size and the time 
horizon size. These studies focus on the temporal dimension of traffic 
mortality. 

In the second family of studies, the correlation between traffic 
mortality and socioeconomic developments is examined; these are 
expressed by the gross domestic product (GDP) per capita, the level of 
motorisation or the unemployment rate (Page, 2001; Kopits & Cropper, 
2005; Yannis et al., 2011). A dedicated group of studies take an in-depth 
look into socioeconomic disruptions e.g. the energy crisis of the decade 
of 1980 (Hedlund et al., 1982), or the more recent economic recession of 
2008, either from a long-term (Kweon, 2015) or from a short-term dif-
ferences perspective (Yannis et al., 2014). 

An attempt to model both short-term temporal developments of 
mortality and the cross-sectional unobserved factors of the countries 
panel was presented by (UNECE Sustainable Transport Division, 2018), 
where a short-term prediction model was developed on global mortality 
data within the 3-year intervals of WHO data. This research tested a 
geographical grouping of countries, which accounted for a minor share 
of the variability in the data. 

While numerous studies have investigated unobserved heterogeneity 
in traffic crash occurrence and severity at microscopic or local level (e.g. 
Mannering et al., 2016; Yu et al., 2019) and found it to be a significant 
factor affecting model accuracy, the knowledge from these microscopic 
studies has not been transferred and applied to macroscopic traffic 
safety modelling at global level. 

2.2. COVID-19 mortality 

There are numerous recent studies that use ANOVA and basic cor-
relation tests, or linear / log-linear regression models to compare 
country mortality rates from COVID-19 (Liu & Eggleston, 2022; Kapit-
sinis, 2021; Bouba et al., 2021), while seldom taking into account the 
panel effect or the impact of unobserved factors (e.g. geographical, 
cultural). 

E. Papadimitriou et al.                                                                                                                                                                                                                         



Transportation Research Interdisciplinary Perspectives 26 (2024) 101147

3

There were a few attempts to take into account latent country 
characteristics in the modelling, however in a cluster-based or fixed- 
effects approach. In Marginean & Orastean (2022) the authors clus-
tered the 27 European countries on the basis of their health spending, 
and correlated the three groups identified with the COVID-19 health 
outcomes. El Mouhayyar et al. (2022) analysed data from 187 countries, 
grouped on the basis of the UN regional classification, by means of 
square-root adjusted multiple regression models; the authors note the 
potential presence of “ecological fallacy” in their inferences: the 
aggregate country effects may not fully represent partial country char-
acteristics. Liang et al. (2020) applied linear regressions to a cross- 
sectional dataset of 169 countries, while checking for the variability of 
the results with respect to four country classifications (low, moderate, 
high): on the basis of their per capita incomes, government effectiveness 
scores, proportions of population aged 65 or older, and numbers of 
hospital beds. Focusing on the effect of numbers of tests, the study found 
a negative correlation of Covid-19 mortality with test number, and the 
correlation varied with country characteristics. 

A few studies took a non-parametric or machine learning approach to 
modelling COVID-19 related mortality. Chen et al. (2023) applied a 
fuzzy-set qualitative comparative analysis on years of life lost (YLL) for 
2021 in 80 countries, and identified several different configurations, and 
four distinct ‘pathways’ to the final outcomes. As the authors state, 
overall “some countries failed differently, whereas others succeeded differ-
ently”, which clearly indicates the presence of unobserved heterogene-
ity. Arulanandam et al. (2021) developed a non-parametric regression 
model for the impact of obesity on COVID-19 mortality in 154 countries. 
They authors note a low robustness of the effects of their control vari-
ables (socioeconomic factors), which is an indication of unobserved 
heterogeneity between countries. 

One of the few studies that accounted for unobserved effects in 
COVID-19 mortality outcomes is that of Bjørnskov (2021), which 
compared European countries’ lockdown policies with final outcomes. 
The author proposed a multilevel model with seasonal effects, lagged 
policy implementation effects, and country fixed effects; two methodo-
logical issues are noted: i) the endogeneity between public policy and 
mortality outcomes, and ii) the lack of knowledge (at the time) about the 
impact of the virus incubation period (hence the inclusion of lagged 
effects). The findings suggest that mortality outcomes were independent 
from the policy measures over the long term, although some significant 
short-term effects could be identified. Other studies exploiting the fea-
tures of advanced econometric modelling are those of Antonietti et al. 
(2023) who included country-level variables and week-level variables, 
as well as a geographical random effect over 138 countries, and Deba-
jyoti et al. (2023) who developed a dynamic panel regression model to 
account for daily patterns of COVID-19 mortality together with static 
socioeconomic indicators and region-specific control variables for 119 
countries. 

2.3. Research gaps 

Cross-country comparison of mortalities around the world can 
identify macroscopic factors contributing to the global burden of mor-
talities and benchmark best policy practices to combat them effectively. 
From the above literature review, it is concluded that several method-
ological and knowledge gaps exist in the modelling of global causes of 
mortality:  

(i) Statistical tests, ANOVA and simple linear regression models have 
been widely used for such a comparison. However, these tech-
niques only look at the effects of the macroscopic factors on the 
mean mortality of the countries and overlook the differences in 
these effects arising from the social structures, cultural attributes, 
and political complexities. Traffic and COVID-19 deaths are two 
examples of major global mortalities that have been studied 
extensively but without considering these differences.  

(ii) At the same time, previous studies in both contexts suggest that 
there are common macroscopic factors behind the two causes of 
mortality. As such, there is a need for a methodological frame-
work that can disentangle the effects of observed and unobserved 
macroscopic factors contributing to global mortalities and cap-
ture the resulted heterogeneity across countries. 

This study aims to address this research gap by formulating a com-
mon conceptual model for macroscopic causes of global mortalities, and 
then by developing a latent class statistical modelling framework which 
looks at the different effects of these factors on mortalities across 
different countries (or group of countries). 

3. Methods and data 

To the best of the author’s knowledge, there are no global studies 
explicitly taking into account the unobserved factors that express the 
heterogeneity between countries’ mortality rates. A few studies attempt 
to correct for this bias (both in the traffic safety and COVID-19 contexts), 
by grouping (or clustering) countries into economic or geographical 
groups, however this is not sufficient. Such a clustering approach is 
deterministic separating countries into clusters without any un-
certainties (i.e. a country can only belong to one cluster). However the 
heterogeneity between countries is determined by a number of unob-
served cultural and socioeconomic factors, making it difficult to 
formulate a distinct grouping with certainty. In this paper, it is postu-
lated that these unobserved factors may be optimally represented by 
latent classes with probabilities (i.e. a country can belong to multiple 
latent classes with probabilities that sum to unity across all the classes). 

A first step for implementing this analysis is the selection of a con-
ceptual framework allowing for the parallel examination of the two 
causes of mortality in an accordant way. For that purpose, we introduce 
the pyramid model for traffic safety systems analysis (Koornstra et al., 
2002; Wegman et al., 2005), which can assist in variables selection. 
Subsequently, we propose a poisson-family latent class modelling 
approach. 

3.1. Conceptual framework: The pyramid of systems safety management 

The proposed pyramid, also known as the ‘SUNflower’ model 
(Koornstra et al., 2002; Wegman et al., 2005) has been used by several 
national and international studies as an appropriate framework to 
describe road safety management systems at a specific ‘snapshot’ in 
time. Since its introduction, several variations of its structure and con-
tents have been proposed e.g. by the World Bank road safety manage-
ment capacity evaluation protocol (Bliss & Breene, 2009), the European 
Road Safety Observatory country profiles (European Road Safety Ob-
servatory, 2021), or the UNECE SafeFITS global road safety model 
(UNECE Sustainable Transport Division, 2018) (see Fig. 1). 

Despite slight context-specific adjustments, the overall framework 
can be described as follows: 

• The first (bottom) layer, Structure and Culture, reflects the institu-
tional, economic, cultural and regulatory characteristics (i.e. policy 
input) of each country, that are background factors related to road 
safety performance. Typically, characteristics of the transport system 
such as exposure, urbanisation, modal split and road network type 
are included in this layer, although in (UNECE Sustainable Transport 
Division, 2018) they were in a separate layer.  

• Measures and Programmes (policy output), at the second layer, are 
the result of structural and economical characteristics and include 
the legislation and measures in place to contain risk factors, as well 
as their enforcement.  

• To link the above layers to the actual traffic safety outcomes in a 
country, an intermediate layer specifies the operational level of 
safety in that country, including key performance indicators (KPIs) – 
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also referred to as Safety Performance Indicators (SPIs) − on road 
safety, they include metrics related to user behaviour (e.g. speeding, 
drinking and driving, use of protective systems etc.), the state of the 
road network and vehicle fleet etc.  

• The risk outcomes in terms of fatalities are then assumed to be the 
result of this interaction between layers from the bottom up.  

• A fifth layer of the pyramid includes the socioeconomic cost of 
mortality, as the final outcome. 

A limited number of studies have attempted to quantitatively model 
traffic fatalities on the basis of the pyramid; these studies typically es-
timate composite variables for each layer of the pyramid, including 
several indicators to calculate a score for each layer − for example, 
Hermans et al. (2009), Papadimitriou & Yannis (2013) for bench-
marking purposes, and the SafeFITS model (UNECE Sustainable Trans-
port Division, 2018) for forecasting road safety developments. In this 
paper, we argue that the ‘pyramid’ model could be a suitable conceptual 
framework to serve as a backbone for modelling different causes of 
mortality in a consistent way. 

3.2. Research hypotheses 

The main background hypothesis of this research is that:  

(a) Both causes of mortality can be described on the basis of the 
pyramid model for safety management systems for a given 
‘snapshot’ in time;  

(b) There are certain common observed and unobserved attributes 
that affect the final outcomes of the two causes of mortality, e.g. 
socioeconomic, geographical, cultural, policy-related, exposure 
and behaviour-related; biases will occur if unobserved attributes 
are not accounted for.  

(c) There are also distinct factors that are explicitly critical to one 
cause of mortality or the other, caused by their different 
mechanisms. 

The ‘pyramid’ framework has been applied to traffic safety in several 
studies, and it has been established that certain indicators are concep-
tually related to different layers of the pyramid. An analogous taxonomy 
regarding the Covid-19 pandemic is proposed in this research and 
different types of indicators are identified that are relevant to the 
different layers of the pyramid as shown in Table 1. The purpose of this 

exercise is to allow developing a coherent and analogous model 
formulation, introduce explanatory variables in a structured way, and 
represent all the layers of the examined systems. This is particularly 
important given that the number and types of variables that have been 
examined in previous studies (of traffic and COVID-19 mortalities) is 
extremely diverse and in most cases focuses on a particular set of vari-
ables. However, this exercise does not imply that the two causes of 
mortality are affected by the same variables. 

For instance, structural factors in the traffic mortality context include 

Structure and culture

Safety measures and programmes

Safety performance indicators

Number of killed
and injured

Social
costs

Fig. 1. Generic structure of the pyramid of road safety management systems [sources: adapted from (Koornstra et al., 2002; ERSO, 2021) – left panel, Bliss & Breen, 
2009 – right panel]. 

Table 1 
Taxonomy of traffic and Covid-19 indicators for different management layers.   

Traffic mortality indicators Covid-19 mortality 
indicators 

Structural  • GDP per capita  
• Demographics  
• Population density, 

urbanisation, state of road 
network  

• Existence / funding of a 
road safety Lead Agency  

• Existence of fatality 
reduction vision, strategy & 
targets  

• …  

• Life expectancy  
• Demographics  
• Human life quality index  
• Prevalence of diseases  
• Number of hospital beds  
• … 

Exposure  • Vehicle-kilometres of travel  
• Level of motorization  
• Share of vulnerable road 

users  
• …  

• Number of cases / 
infections  

• Share of vulnerable 
groups  

• … 
Programmes and 

measures  
• Duration and intensity of 

traffic enforcement  
• Speed limits  
• Alcohol limits  
• Road & vehicle standards  
• …  

• Duration and intensity of 
enforcement  

• Mobility restrictions  
• Activity closures  
• Social distancing  
• Vaccination campaigns  
• Personal protection 

measures  
• … 

KPIs  • Share of drivers exceeding 
speed limits  

• Share of drivers under the 
influence of alcohol  

• Share of road users using 
protective devices  

• …  

• Share of population 
complying with 
measures  

• Reproduction rate (R)  
• … 

Final outcomes  • Number of fatalities  • Number of fatalities  
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socioeconomic and demographic indicators, together with indicators 
related to the state of the road and urban environment, as well as the 
institutional setup and organisation of road safety management in a 
country. Analogous indicators for the Covid-19 mortality may also 
include socioeconomic and demographics, as well as indicators related 
to the quality of the healthcare system and the overall wellbeing of the 
population. 

Regarding exposure, there are well known traffic risk indicators e.g. 
vehicle-kilometres of travel, and relevant indicators in the Covid-19 
context concern the number of infections. Of course, there is a funda-
mental difference: traffic fatalities are happen ’immediately’ after 
crashes that are random localised events, often involving human error or 
infrastructural deficiencies. In contrast, Covid-19 fatalities arise from a 
viral infection that spreads from person to person. Therefore, it is 
acknowledged that the mechanism of exposure and outcome is funda-
mentally different between the two causes; however, the role of expo-
sure is key, and it is important to include it in the analysis. In both cases, 
the share of vulnerable groups of each pandemic among the population 
also need to be taken into account. 

Programs and measures, in the next layer, may include in each case 
the specific regulations and measures in place for risk prevention and 
control; in the traffic mortality case, these range from speed limits and 
protective devices, to vehicle and road regulations, while in the Covid- 
19 case they mostly include social distancing, hygiene measures, 
mobility restrictions and activity area closures. It is noted that the latter 
type of measures are very rare and in practice not applicable in the 
traffic context, although it is well known that traffic mortality decreases 
with decreased exposure. In both cases, the enforcement of measures is a 
key additional component. 

Finally, the ‘behavioural’ layer of KPIs may be the most challenging 
to assign specific quantitative indicators to. In the traffic context, the 
behaviour of drivers regarding key regulations is typically used through 
a number of indicators (see Table 1). In the case of the Covid-19 
pandemic, there are no data available measuring the compliance of 
the population. However, it can be assumed that the virus reproduction 
rate (R) is an approximation of the operational level of risk, since it 
expresses the speed of virus spread among the population and the risk of 
observing more fatalities as a result. 

The selection of indicators in Table 1 is not exhaustive; it serves as an 
indicative classification of certain commonly used indicators in traffic 
safety and other epidemiological studies, in order to facilitate models 
formulation – a full description of the data used in this research is given 
in the section 3.5. 

3.3. Poisson-family modelling 

Let Yi represent the total number of mortalities in the ith country. The 
epidemiology and traffic safety literature have shown that Yi follows a 
Poisson-family distribution, namely a negative binomial (NB) dis-
tirbution with mean μi and inverse dispersion parameter φ: 

Yi NB(μi,φ)

Assuming an exponential function for the mean of the negative binomial 
distribution, the total predicted fatality count (μi) in the ith country can 
be expressed as a function of exogenous explanatory variables: 

μi = exp(
∑

βXi + εi) (1)  

where Xi are other explanatory variables and β are estimated regression 
parameters (including the intercept) and exp(εi) is a random error term, 
which follows a Gamma distribution with mean 1 and variance 1/φ . The 
probability of the total number of fatalities is then stated as: 

P(yi = Yi) =
Γ(yi + φ)
yi!Γ(φ)

[
φ

φ + μi

]φ[ μi

φ + μi

]yi

(2)  

where Γ(.) is the gamma function. The log-likelihood function (LL) of the 
model is obtained by applying the logarithm transformation and sum-
ming it over observations to yield: 

LL =
∑N

i=1
log(P(yi = Yi)) (3)  

This model is referred to as the Negative Binomial (NB) count model for 
fatalities (e.g. traffic fatalities) and is now extended into the latent class 
specification to account for unobserved heterogeneity in the data. 

3.4. Latent class modelling 

Assuming that there are S number of latent classes over the popu-
lation, the probability of observations belonging to each distinct class, P 
(Cs), can be computed using a logit model with the following 
specifications: 

P(Cs) =
eUs

∑S
s=1eβXi

and Us = ΩsZs (4)  

where Ω is the vector of parameters (including an intercept), and Z is the 
vector of class-specific covariates (including the intercept). Such cova-
riates determine the probabilities of observations being assigned to each 
specific class. 

Within each class, the probability Yi of conditioned to that class can 
be computed using the equation (2). Applying the rules of conditional 
probabilities, the marginal probability of the latent class Negative 
Binomial regression model is stated as: 

P(Yi) =
∑S

s=1
P(Yi|Cs) × P(Cs) (5)  

where P(Yi) is the unconditional probability of total number of mor-
talities, P(Yi|Cs) is the conditional probability of total number of mor-
talitiesin class Cs (same as equation (2), and P(Cs) is the probability of 
class Cs. 

The overall log-likelihood function can be determined by the product 
of equation (5) over the entire observations. The Maximum Likelihood 
Estimation (MLE) approach is employed for the estimation of the latent 
class regression model. 

In the above formulation of the latent class model, the classes are 
assumed to be latent across observations, and thus the number of latent 
classes is not known a priori. Therefore, the model is empirically tested 
with a different number of classes (S), and the preferred number of 
classes is selected based on the model with the superior statistical fit. 
Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) are employed to compare the statistical fit of the model candidates 
(Washington et al., 2020). 

AIC = − 2LL+2P  

BIC = − 2LL+PLog(N)

where LL is the log-likelihood of the estimated model at convergence, P 
is the number of estimated parameters, and N is the number of obser-
vations or sample size. The model with lower AIC and BIC is regarded as 
a superior model in terms of statistical fit. 

3.5. Data collection 

The data used in this research were selected from a number of in-
ternational databases and sources, in order to obtain the types of in-
dicators shown in Table 2. The traffic fatality data are retrieved from the 
WHO Global Status Report on Road Safety (2018), and the World Bank 
and International Road Federation (IRF) databases. The Covid-19 data 
and health / policy related indicators are retrieved from a publicly 
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available dataset including indicators from official sources for year 
2020, compiled by Our World in Data (Ritchie et al., 2020), including 
Covid-19 cases and mortality statistics from the Data Repository of the 
Center for Systems Science and Engineering (CSSE) at Johns Hopkins 
University (JHU). 

The descriptive statistics of the examined variables are shown in 
Table 1. Countries with population < 250,000 inhabitants were 
excluded due to very low number of fatalities, and a number of other 
countries due to lack of key indicators for either one of the mortality 
causes, as well as outliers (e.g. very high Covid-19 mortality rate for 
Peru). This resulted in a usable dataset of 105 countries; their 
geographical distribution is shown in Fig. 2. 

4. Results 

In a recent study (Papadimitriou & Afghari, 2023), it was indicated 
that both causes of mortality, and despite their differences, can be 
modelled by taking into account structural and economic indicators, 

Table 2 
Variables descriptive statistics and sources.  

Socioeconomic data Source Mean SD Min Max 

Population (million people) World Bank 66.82 197.635 2.689 1444.216 
Population density (number of people per square kilometres) World Bank 206.94 777.684 1.98 7915.731 
Mean age (years) various* 31.99 9.323 15.1 48.2 
Proportion of population with age above 65 years Various 9.933 6.648 1.144 27.049 
Proportion of population with age above 70 years Various 6.332 4.562 0.526 18.493 
GDP per capita (US dollars) Various 20.473 18.714 0.661 85.535 
Life expectancy at birth (years) Various 74.205 7.024 53.28 84.63 
Human development index** (out of 1) Various 0.749 0.154 0.394 0.957 
Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) Various 252.895 130.22 79.37 724.417 
Diabetes prevalence (% of population aged 20 to 79) in 2017 Various 7.36 3.421 0.99 17.72 
Number of hospital beds per thousand people Various 3.029 2.607 0.1 13.05 
Covid-19 data  Mean SD Min Max 
COVID-19 mortalities in 2020 CSSE-JHU 24258.4 63182.47 2 515,513 
Total confirmed cases of COVID-19 CSSE-JHU 1,054,106 3,205,886 509 28,805,150 
Mean reproduction rate (R) across 2020 various* 1.065 0.144 0.036 1.22 
Std deviation of reproduction rate across 2020 Various 0.306 0.106 0.084 0.64 
Maximum reproduction rate across 2020 Various 2.205 0.723 0.4 5.39 
Minimum reproduction rate across 2020 Various 0.608 0.201 0.1 1 
Proportion of days in 2020 with R higher than 1 Various 0.672 0.194 0 1.061 
Mean stringency index*** (out of 100) Various 61.961 12.518 14.755 87.918 
Standard deviation stringency index Various 15.504 4.656 3.06 31.031 
Maximum stringency index Various 85.415 12.45 27.31 100 
Minimum stringency index Various 17.041 13.119 0 61.11 
Traffic safety data  Mean SD Min Max 
Road traffic fatalities WHO 11249.752 38353.642 143 299,091 
Proportion of population with no access to public transport UN & EC DG REGIO 0.454 0.307 0.013 0.926 
% of paved roads on the road network (2018 or latest year available) IRF 60.665 30.109 2.920 100.00 
% of motorways on the road network (2018 or latest year available) IRF 2.422 2.335 0.010 21.410 
% of motorcycles in the vehicle fleet (2018 or latest year available) WHO 22.757 21.986 0.002 93.023 
Existence of a road safety lead agency WHO 0.924 0.267 0 1 
The lead agency is funded WHO 0.743 0.439 0 1 
Existence of national road safety strategy WHO 0.848 0.361 0 1 
The strategy is funded WHO 0.481 0.285 0 1 
Existence of fatality reduction target WHO 0.714 0.454 0 1 
Maximum speed limits on urban roads > 50 km/hr WHO 0.048 0.214 0 1 
Maximum speed limits on rural roads > 120 km/hr WHO 0.305 0.463 0 1 
BAC limits less than or equal to 0.05 g/dl WHO 0.581 0.498 0 1 
Effectiveness of seat-belt law enforcement WHO 5.92 2.315 0 10 
Effectiveness of drink-driving law enforcement WHO 5.98 2.457 0 10 
Effectiveness of speed law enforcement WHO 5.782 2.281 0 10 
Effectiveness of helmet law enforcement WHO 6.109 2.545 0 10 
Seat-Belt wearing rate-Front (2016 or latest available year)*** WHO 59.767 28.434 3.5 98 
Helmet wearing rate-driver (2016 or latest available year)*** WHO 67.8 28.179 6.2 100 

* Various official sources compiled by Our World in Data (https://github.com/owid/covid-19-data/blob/master/public/data/README.md). 
**A composite index measuring average achievement in three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of 
living. Values for 2019, imported from https://hdr.undp.org/en/indicators/137506. 
**Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled 
to a value from 0 to 100 (100 = strictest response). 
*** Missing values of seat belt and helmet wearing rates of drivers were replaced by the mean value per country income category (with low income countries defined by 
GDP<$1,036, low-middle income countries $1,036 ≤ GDP≤$4,045, high-middle income countries $4,046 ≤ GDP≤$12,035 and high income countries > 12,535, as 
per the World Bank categorization of year 2020). 

Fig. 2. Distribution of studied countries per continent in the sample.  
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policy and measures related indicators (and their enforcement), as well 
as indicators reflecting the operational level of safety (performance in-
dicators) at the given “snapshot” in time. The authors developed basic 
regression models to confirm this hypothesis on the basis of the taxon-
omy of indicators of Table 1, associated with each cause of mortality. 

A similar variable selection approach is implemented by taking in-
dicators from all layers of the ‘pyramid’, in order to account for all the 
policy and operational factors that affect the mortality outcomes, and a 
more advanced econometric modelling approach is applied. The 
following sections focus on the methodological contribution and its 
implications in terms of interpretation of the modelling results. 

4.1. Traffic mortality 

Table 3 shows the parameter estimates and goodness-of-fit of a 
“classical” Negative Binomial model of traffic mortality. It is observed 
that the larger share of the variability in the data is captured by the 
constant term, the dispersion parameter, the population (offset variable) 
and the GDP per capita. The latter has a negative parameter, which in-
dicates that a higher GDP is associated with lower traffic mortality, 
confirming previous findings especially from industrialised countries. 

Socioeconomic and traffic policy related indicators are found to be of 
very low magnitude, and not statistically significant. These include the 
percentage of paved roads, the percentage of motorcycles in the fleet, 
the percentage of population without convenient access to public 
transport (i.e. a proxy of urbanization) and the quality of seat-belt use 
enforcement in the country. Although previous studies have found all 
these variables to have significant effects on traffic safety outcomes in 
different cross-sectional settings, our finding is not surprising. It is 
possible that the heterogeneity on the effect of these variables in 
different countries cancels out certain opposite effects (e.g. positive ef-
fect of a variable in some countries, but negative in others). 

In Table 4, the respective results of the Latent Class model of traffic 
mortality are presented. It is found that two latent classes yield a robust 
model: class 1 with probability of 23.8 % and class 2 with probability of 
76.2 %. No variables were found to significantly determine the splitting 
of the data (class membership) and only the constant terms of the classes 
play a role in this respect. The parameter estimates per class can be 
interpreted as follows:  

• GDP per capita is not significant in class 1, but it is significant in class 
2, with a negative coefficient, which is intuitive, as in the simple 
Negative Binomial model.  

• The percentage of paved roads is significant in class 1, with a 
negative coefficient which indicates that a higher share of paved 
roads in a country is associated with a lower mortality rate; however 
it is not significant in class 2.  

• The effect of the percentage of people with insufficient access to 
public transport is now statistically significant and positive in both 

classes. It is noted that the magnitude of the effect is 9 times higher in 
class 1 compared to class 2.  

• The share of motorcycles in the fleet is statistically significant and 
positive in both classes, with the magnitude of the effect being 
double in class 1 compared to class 2.  

• The quality of seat-belt use enforcement is statistically significant in 
class 1, with a positive coefficient, suggesting that a higher quality of 
enforcement is associated with higher traffic mortality. This is 
counter-intuitive, and may be indicated as a low effectiveness of 
enforcement in class 1 countries; it should be also taken into account 
that this is a self-reported variable on the basis of the assessment of a 
panel of country experts, and therefore may include some bias. This 
variable is not significant in class 2. 

These findings may imply that LMIC countries are more likely to 
belong to class 1 whereas industrialised countries are more likely to 
belong to class 2 (also looking at the constant terms of the models). The 
counter-intuitive parameter of seatbelt use enforcement in class 1 (if it is 
more likely to include LMIC) might then indicate that the perceived 
quality of enforcement is not sufficient to address the traffic safety sit-
uation in those countries. None of the tested KPI layer indicators was 
found to be statistically significant. 

The statistical fit measures (AIC and BIC) show that the latent class 
model is substantially superior to the regular NB model in terms of fit. It 
is also interesting to note that the dispersion parameter of the Negative 
Binomial distribution is only significant in Class 2, which may reflect 
that there is more remaining variability among industrialised countries 
than LMICs – this is also indicated by the fact that there is well known 
large variability of many of the identified fixed effects within LMICs, e.g. 
GDP, share of paved roads, seatbelt enforcement). 

4.2. COVID-19 mortality 

In this section, the same exercise is repeated with COVID-19 mor-
tality data. The results of a Negative Binomial regression model of 
COVID-19 mortality (not shown here for the economy of space) indi-
cated that none of the examined variables are statistically significant, 
and only the constant term and the dispersion parameter capture the 
variability in the observations. In a previous exploratory study (Papa-
dimitriou & Afghari, 2023), as well as in other cross-sectional studies 
(see section 2.2), these variables were found to be significant in an Or-
dinary Least Squares log-linear model, but it appears that their identified 
effects might be artefacts of the overdispersion in the data. The presence 
of unobserved heterogeneity will be examined next. 

In Table 5, the respective results of the Latent Class model of COVID- 
19 mortality are presented. It is found that two latent classes yield a 
robust model: class 1 with probability of 82.2 % and class 2 with 
probability of 17.8 %. In addition to the constant term, GDP per capita 
was found to significantly determine country membership; countries 

Table 3 
Parameter estimates and goodness-of-fit of the Negative Binomial model of traffic mortality.  

Variable Estimate St. E. t-Stat p-Value 95 % CI 

Constant 8.465  0.172  49.340  0.000*  8.129  8.802 
Population 0.007  0.000  16.620  0.000*  0.007  0.008 
GDP per capita − 0.030  0.006  − 5.010  0.000*  − 0.042  − 0.018 
% of paved roads 0.000  0.000  1.070  0.285  0.000  0.001 
% of population without access to public transport 0.000  0.000  − 0.580  0.560  − 0.001  0.000 
% motorcycle 0.000  0.000  − 1.800  0.071  − 0.001  0.000 
Seatbelt enforcement 0.000  0.001  − 0.930  0.355  − 0.002  0.001 
Dispersion parameter φ 0.817  0.153  5.340  0.000*  0.517  1.117 
LL − 978.300      
N 105      
P 8      
AIC 1972.6      
BIC 1993.831683      

* indicates a statistically significant effect at 95 % confidence level. 
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with higher GDP are less likely to belong in Class 1. The parameter es-
timates per class can be interpreted as follows: 

• The number of COVID-19 cases per population is an effective mea-
sure of risk exposure, as it is found to be positively associated with 
mortality rates in both classes.  

• The share of population older than 65 years is non significant in class 
1, but significant in class 2. A negative coefficient in class 2 suggests 

that a higher share of elderly in the population is associated with a 
lower mortality rate. Although there have been studies suggesting 
the opposite, it should be noted that, at the macroscopic level, a 
higher share of elderly corresponds to higher GDP and overall 
wellbeing of the population.  

• The impacts of the stringency index of COVID-related restrictions is 
non significant in class 1, but significant in class 2. More specifically, 
a higher minimum stringency index (indicating stricter baseline 

Table 4 
Parameter estimates and goodness-of-fit of the Latent Class model of traffic mortality.  

Variable Estimate St. E. t-Stat p-Value 95 % CI 

Class 1 (class probability = 0.238) 

Constant 9.305  0.516  18.030  0.000*  8.294  10.316 
Population 0.002  0.000  6.440  0.000*  0.002  0.003 
GDP per capita − 0.007  0.007  − 1.090  0.278  − 0.021  0.006 
%of paved roads − 0.027  0.003  − 8.770  0.000*  − 0.032  − 0.021 
% of population without access to public transport − 0.021  0.007  − 3.020  0.003*  − 0.035  − 0.007 
% motorcycle 0.015  0.007  2.270  0.023*  0.002  0.028 
Seatbelt enforcement 0.375  0.078  4.820  0.000*  0.222  0.527 
Dispersion parameter 36.121  32.586  1.110  0.268  − 27.748  99.989 
Class 2 (class probability = 0.762) 
Constant 7.566  0.288  26.310  0.000*  7.002  8.130 
Population 0.042  0.004  10.930  0.000*  0.034  0.049 
GDP per capita − 0.024  0.006  − 3.750  0.000*  − 0.037  − 0.012 
% of paved roads − 0.003  0.002  − 1.080  0.279  − 0.007  0.002 
% of population without access to public transport − 0.006  0.003  − 2.000  0.045*  − 0.011  0.000 
% motorcycle 0.006  0.003  2.040  0.041*  0.000  0.012 
Seatbelt enforcement − 0.024  0.050  − 0.480  0.634  − 0.123  0.075 
Dispersion parameter 6.999  2.382  2.940  0.003*  2.331  11.667 
LL − 485.700      
N 105.000      
P 17      
AIC 1005      
BIC 1050.517326      

* indicates a significant effect; highlighted rows show fixed variables effects that differentiate between classes. 

Table 5 
Parameter estimates and goodness-of-fit of the Latent Class model of COVID-19 mortality.   

Estimate SE t Stat p Value 95 % CI 

Class 1 (class probability = 0.822)       

Constant 4.642  0.736  6.310  0.000*  3.200  6.084 
Population 0.023  0.003  7.500  0.000*  0.017  0.030 
Cases per population 0.052  0.010  5.380  0.000*  0.033  0.070 
% of population older than 65 0.037  0.033  1.130  0.256  − 0.027  0.101 
Min Stringency index 0.010  0.013  0.740  0.459  − 0.016  0.035 
St Dev of Stringency index 0.042  0.032  1.310  0.191  − 0.021  0.104 
Diabetes prevalence 0.104  0.053  1.970  0.049*  0.000  0.207 
Dispersion parameter 0.858  0.143  5.990  0.000*  0.577  1.139 
Class 2 (class probability = 0.178)       
Constant 16.236  2.116  7.670  0.000*  12.089  20.383 
Population 0.004  0.000  8.500  0.000*  0.003  0.005 
Cases per population 0.043  0.007  6.220  0.000*  0.029  0.056 
% of population older than 65 − 0.122  0.054  − 2.280  0.023*  − 0.228  − 0.017 
Min Stringency index − 0.159  0.023  − 6.820  0.000*  − 0.204  − 0.113 
St Dev of Stringency index − 0.251  0.075  − 3.370  0.001*  − 0.398  − 0.105 
Diabetes prevalence − 0.246  0.098  − 2.500  0.012*  − 0.439  − 0.053 
Dispersion parameter 2.962  2.203  1.340  0.179  − 1.355  7.279 
Class membership       
Class 1       
Constant 2.531  0.738  3.430  0.001  1.084  3.977 
GDP Per Capita − 0.049  0.025  − 1.970  0.049  − 0.097  0.000 
Class 2       
Constant Reference 
GDP Per Capita 
LL − 1038.400      
N 105.000      
P 18      
AIC 2112      
BIC 2160.5713      

* indicates a significant effect; highlighted rows show fixed variables effects that differentiate between classes. 
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restrictions to contain the spread of the virus) and a higher variation 
of the stringency index (indicating a larger range of restrictions 
implemented) are associated with lower mortality rates in class 2 
countries.  

• The prevalence of diabetes in the population has opposite effects in 
the two classes. In Class 1, a higher prevalence of diabetes is asso-
ciated with higher COVID-19 mortality (although the effect is 
marginally significant at 95 % confidence level), while in class 2 it is 
associated with a lower COVID-19 mortality. 

The results suggest that LMICs are more likely to belong to class 1, 
whereas industrialised countries are more likely to belong to class 2. 
From this perspective, the non-significant effect of stringency index in 
class 1 can be attributed to the overall low stringency of COVID-19 re-
striction policies during the year 2020 (a year in which mostly indus-
trialised countries were heavily affected by the outburst of the 
pandemic); the low size and variability of the stringency index in LMICs 
may then result in this non-significance. Accordingly, the not statisti-
cally significant effect of ageing population may be considered reason-
able given the smaller shares of elderly people in many disadvantaged 
countries. At the same time, prevalence of diabetes and ageing popula-
tion can be considered “luxuries” of the highly industrialised countries, 
who had more resources and institutional capacity to apply policies for 
successfully limiting mortality from COVID-19. 

In this case too, KPIs expressing the operational level of safety (e.g. 
the reproduction rate) were not found to be significant, while structural, 
exposure and policy indicators are found to play a more important role. 
It is possible that these KPIs, conceptually related to behavioural char-
acteristics that may result from local attitudes, safety culture and 
compliance, can not be clearly associated with fixed country effects and 
are instead captured by the latent factors included in the model. 

4.3. Commonalities between the two mortalities 

The modelling results of the two causes of mortality confirm the first 
hypothesis in this study in that there are common factors contributing to 
the two. Population is a structural measure in both causes of mortality 
which is associated with the first layer of the pyramid. Similarly, the 
GDP per capita withing the traffic mortality, and the prevalence of 
diabetes within the COVID-19 mortality are also structural measures. 
The share of paved roads and population without access to public 
transport and the share of motorcycles within he traffic mortality and 
the share of population older than 65 years old within the COVID-19 
mortality are both exposure metrics. Seatbelt enforcement influencing 
the traffic mortality and stringency index influencing the COVID-19 
mortality are factors associated with the second layer of the pyramid, 
safety measures and programs. 

These results indicate that while the two causes of mortality are 
fundamentally different in their mechanisms, from the macroscopic 
perspective, the same underlying factors contribute to both of them. This 
is intuitive, as structural factors and policies would play a key role in all 
epidemiological analyses. Moreover, the two examined causes of mor-
tality have been found to be inter-related, at least during the examined 
year; traffic fatalities were reduced in most countries, due to the 
mobility restrictions, while covid-19 fatalities were increasing. It has 
been found that many travel-related activities might increase the spread 
of viruses such as the coronavirus responsible for Covid-19. Therefore, 
the two causes of mortality have been correlated, and it is likely that 
such correlations may be observed in the future. 

5. Discussion 

The results of our testing latent class modelling approach on the 
traffic and COVID-19 mortality show the added value of using advanced 
statistical models to capture this type of unobserved heterogeneity in 
macroscopic country mortality modelling. It is found that neither GDP 

nor geographical classification can sufficiently capture this effect. 
Without any consideration of latent country characteristics, fixed linear 
effects of variables may be found, however the overall variability 
accounted for is low. Many of the variables that were statistically sig-
nificant in the linear model of the previous paper (Papadimitriou & 
Afghari, 2023) are not statistically significant once the Poisson as-
sumptions are employed – they are capturing the over-dispersion in the 
data and once this was accounted for they were found not statistically 
significant. On the other hand, by clearly separating countries in clusters 
or other groups, there may be too little or too much within-group 
variability that leads to difficulty in identifying country-specific effects. 

The latent class modelling proved to be efficient in setting up a latent 
background for country membership, in which countries are more likely 
to belong, but do not do so in a deterministic way. This allowed to 
identify mixed effects of certain key variables in each case. For COVID- 
19 mortality, the stringency index of policies is found to be a meaningful 
variable only in certain countries (and most probably the industrialised 
ones). For traffic mortality, the transport infrastructure, demand and 
supply variables such as the share of motorcycling, paved roads and the 
quality of public transport provisions were found to explain the fatalities 
only in certain countries (and most probably LMICs). Moreover, vari-
ables such as GDP and aged population were found to have significantly 
different magnitude and / or sign in different classes of countries. This 
appears to confirm that simple linear modelling may easily result in 
partial effects cancelling each other out at the macroscopic level. 

The results confirm that the proposed taxonomy of indicators is 
useful for the models development. Although the two causes of mortality 
have different mechanisms, and it is not fully understood whether a 
‘direct’ comparison would be meaningful (and therefore this is not the 
scope of this paper), a conceptual framework for structuring the pro-
posed models in a consistent way was needed. It was found that struc-
tural, socioeconomic and welfare characteristics, as well as policy- 
related indicators are the main determinants of the mortality rates 
when global level modelling is performed. The lack of behavioural KPIs 
in the models is somewhat counter-intuitive. However, it is also likely 
that these effects are better captured by the latent class structure tested 
here than fixed effects of the KPI variables available in the dataset, since 
such behavioural KPIs are difficult to measure reliably. Indeed, the 
available data include very few relevant indicators. 

All available variables shown in Table 2 were considered for the 
models development. Some of them were rejected and not tested due to 
very small variability between countries (e.g. the existence of a traffic 
safety Lead Agency, visions and targets for road safety). Others were 
rejected due to strong correlations with other variables (e.g. the human 
development index); in each case, the variables selected as optimal ones 
to be included were those with a significant and robust effect (i.e. effect 
that was not changing in different model formulations), which was also 
in line with the existing literature on macroscopic risk modelling in 
general. 

Our study has certain limitations. First of all, our results are depen-
dent on the quality of the data available in international databases. 
Although we used formal international statistics of both causes of 
mortality, these are known to suffer from under-reporting of fatalities or 
inaccurate reporting of independent variables. In this study, we used the 
WHO-estimated number of traffic fatalities, which is estimated on the 
basis of multivariate statistical models that take into account the degree 
of under-reporting in those countries that do not have valid data from 
death certificates. Recent studies have shown that the WHO-estimated 
fatalities are a very good estimate of the real number of fatalities, as 
later corrected by countries implementing cross-sectoral studies (e.g. 
Thailand, Tunisia) (Papadimitriou et al., 2019). Nevertheless it is 
important to be aware of these limitations and update such analyses 
once more reliable data become available. In its current form, the scope 
of our study was to demonstrate the added value of the methodology and 
not to conclude on the effects of all indicators on mortality. Recent 
opinion articles have highlighted the potential lessons to be learned by 
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the Covid-19 pandemic for traffic safety (Jobs, 2020; Yannis, 2020); our 
study can be useful in a preliminary attempt to jointly assess the two 
causes of mortality in terms of certain common underlying attributes. A 
more in-depth study, taking into account the full existing knowledge in 
the traffic and COVID-19 fatalities’ determinants, may lead to more 
conclusive models on their full macroscopic mortality mechanism. 

This paper assumes that the unobserved heterogeneity on mortality 
effects is due to cultural factors. However, cultural variables were not 
explicitly included in the dataset. Future research should test the cul-
tural dimensions of Hofstede (2001), who defined country culture on the 
basis of 6 factors: the power distance index (PDI), individualism vs. 
collectivism (IDV), masculinity versus femininity (MAS), uncertainty 
avoidance index (UAI), long term orientation versus short term 
normative orientation (LTO), and indulgence versus restraint (IVR). 

Finally, our results for the two examined causes of mortality may not 
be representative of other causes of mortality. 

6. Conclusions 

The modelling results presented above confirm our hypothesis that 
there are latent country characteristics that affect the impact of socio-
economic factors on different mortalities. The latent class structure as-
sociates a probability of country membership to a class, suggesting that 
there is not a one-to-one country membership, but each country is more 
likely to belong to a certain class on the basis of its characteristics, 
although the same country may include features that would be more 
prevalent in the other class. This is deemed to be a far more accurate 
representation of underlying country characteristics. For example, there 
are some European countries that are far less economically robust as 
others, and may resemble certain LMICs in some (but not all) areas, e.g. 
Eastern European countries. On the other hand, there may be LMICs that 
are considered as such from a geographical perspective (e.g. belonging 
to a less industrialised continent), but may exhibit good performance in 
certain socioeconomic indicators. This ambiguity in the country classi-
fication criteria can be captured by the latent class structure. 

The results of our study can be useful to both epidemiology and 
traffic safety experts working on the topics of mortality developments 
and country benchmarking. For instance, they can be useful to inter-
national organisations and researchers / research groups dealing with 
heath, transport and other causes of mortality; by developing advanced 
econometric models, new knowledge and improved understanding of 
global patterns can emerge, leading to the identification of new good 
practices. They can also be useful to policy makers in the health, 
transport or other mortalities sectors, seeking to benchmark their 
country or region in a reliable and informative way. Moreover, transport 
planners and system operators can use these models to adjust their 
transport systems according to international good practice by drawing 
from a more targeted pool of countries and settings with which they 
share common latent attributes, making thus the systems safer and more 
resilient. 

It is recommended that more in-depth research is carried out within 
each specific domain / mortality cause, in order to develop the sophis-
ticated and dedicated models needed for a full picture, on the basis of the 
methodological considerations proposed in this paper. The monitoring 
of factors that influence various sources of mortality can help anticipate 
future ‘outbursts’ and better understand the ways in which epidemi-
ology, transport and safety policies can jointly affect them, while taking 
into account the contextual factors of different countries. 
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