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Abstract

Twisted and coiled polymer muscles (TCPMs) show promise to function as artificial muscles,
because of their lightweight, low cost, large contraction, and respectively low hysteresis. A
TCPM contracts when it is heated and extends when it is cooled. Different modeling and
controlling techniques have been implemented. Van der Weijde et al. [2019] implemented a
self-sensing model that does not need large apparatus for measurements of force and deflection.
The goal of this thesis is to design a force controller that works with this model. Parameter
estimation of the self-sensing model is done. The fit of the model is not high enough for
control. A first order black-box model is estimated and used instead. A P and PI controller
is simulated and tested on the setup. The force oscillates around the reference value. This
is because the actual model is of order 2. A D-action needs to be added to dampen the
oscillations. The integral action reduces the max to min and vice versa input behavior. The
model parameter differs for each TCPM. The controller parameters have to be adjusted for
each TCPM. This is impractical in large-scale applications. Further research can be done into
using model-free controllers.
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Chapter 1

Introduction

The interest in obtaining actuators with similar behavior and characteristics as biological
muscles increases. Haines et al. [2014] propose an artificial muscle made of a twisted and
coiled polymeric fiber. This is called a twisted coiled polymer muscle (TCPM). These TCPMs
contract when heated and extend when cooled down. They have several advantages over
other artificial muscles such as shape memory alloys. The advantages are its low weight, large
contractions, high load-carrying capabilities, respectively low hysteresis compared to other
types of artificial muscles, and low cost.

Different types of models and controllers have been researched and implemented to describe
the TCPM and control its deflection and force. The most common model is a combination of
a thermomechanical and thermoelectric model, such as Yip and Niemeyer [2015], Simeonov
et al. [2018], Sutton et al. [2016], Masuya et al. [2018], Suzuki and Kamamichi [2018], and
Wu and Tadesse [2017]. Open and closed-loop controllers have been implemented by for
example Jafarzadeh et al. [2018], Yip and Niemeyer [2017], Yip and Niemeyer [2017], Masuya
et al. [2018], Zhang et al. [2017], Sutton et al. [2016], Arakawa et al. [2016]. Each TCPM
is produced differently. The most applied form of heating is Joule heating. Other forms
are using hot air (Abbas and Zhao [2017] and Cherubini et al. [2015]) and water (Yip and
Niemeyer [2017] and Wu et al. [2015]. The most used cooling process is air, either moving or
still. Others have used water (Yip and Niemeyer [2017] and Wu et al. [2015]).

The current controllers need large apparatus to determine the force and strength. This is
not practical in robotic applications. An example is the assistive wrist orthosis designed by
Sutton et al. [2016]. This orthosis uses TCPMs as actuators of which the force needs to be
measured and adjusted. Van der Weijde et al. [2019] implemented a self-sensing model such
that large apparatus for measurements are not necessary anymore. A small device called the
muscle drive (MD) measures the decay time, a measure of inductance. The decay time can
be used to determine the deflection and the force of the TCPM. The goal of this thesis is
to implement a controller to control the force of a TCPM that works with the self-sensing
model.

This goal is not achieved since the self-sensing model did not obtain the desired results (see
Chapter 3). A black-box model that relates the input to the output is used instead. It is
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2 Introduction

shown that a TCPM can be controlled by using a P or PI-controller on a first order black-box
model. A disadvantage is that each produced TCPM behaves differently. This means that
the modeling process and controller design needs to be repeated for each TCPM. This is not
achievable for large-scale applications.

The working principle and production process of a TCPM is explained in Chapter 2. In this
chapter, the experimental setup is also explained. The self-sensing model and its parameter
estimation are discussed in Chapter 3. The modeling of the TCPM without the self-sensing
model is explained in Chapter 4. The controller design is discussed in Chapter 5. Last, the
conclusions and further research recommendations are discussed in Chapter 6.
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Chapter 2

Twisted and coiled polymer muscles

An understanding of the TCPM is necessary to be able to design a model and a controller.
This chapter explains the working principle of a polymer muscle, its production process,
and the setup used. The working principle and the general production process of a twisted
and coiled polymer muscle are discussed in Section 2-1. The used production process of the
TCPMs and the experimental setup are discussed in Section 2-2 and Section 2-3.

2-1 Working principle and general production process

Polymeric fibers contract when it is heated because it has a negative thermal expansion in
axial direction. Twisting and coiling the fiber increases this strain. The increase depends
on parameters such as the polymeric material, its dimensions, the load during twisting, the
number of applied twists, and the coil diameter (Van Der Weijde et al. [2016]).

Polymeric fibers consist of chains. The polymeric fiber is in an amorphous phase, which
means that most of its chains are not arranged in a pattern. These chains are bridged by
crystalline bridges, which contain chains arranged in a pattern. These crystalline regions
enable small thermal expansion coefficients. The fiber undergoes the process of cold drawn
tension. This aligns the fiber in the direction of the drawing and ensures larger contractions
and expansions because more crystalline regions are created. The fiber obtained from this
process is called the precursor fiber and is the fiber available in shops, e.g. fishing line and
sewing thread. The precursor fiber is twisted, creating helically oriented chains (Shafari and
Li [2015]). The load used for twisting the fiber is crucial. Too large weight will break the
fiber, while too little weight will snarl the fiber. The helically oriented chains contract during
twisting, which leads to a radial expansion of the twisted fiber. This generates a torque in the
opposite direction of the twist. The twisted fiber can function as a torsional muscle (Haines
et al. [2014]). Coiling is needed to change the function of the fiber back to an actuator in
axial direction. Two different processes can be used to obtain the coiling: twist-insertion
by continuing twisting the fiber and thermal annealing of a twisted fiber coiled around a
mandrel. Twist-insertion leads to auto-coiling. The twisted fiber will coil automatically
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4 Twisted and coiled polymer muscles

when twist insertion is continued after the maximum number of twists of the fiber has been
reached. A down-side of this technique is that the fiber can untwist, especially under load
(Haines et al. [2014]). Thermal annealing of a twisted fiber coiled around a mandrel does not
exhibit this disadvantage. The twisted fiber is wrapped around a mandrel, which leads to
a spring-shaped muscle. Thermal annealing ensures that the shape remains after removing
the mandrel. Thermal annealing is the process of heating the TCPM for a certain period of
time with a temperature higher than the maximum operating temperature, but lower than
the melting temperature of the polymeric fiber (Shafari and Li [2015]). Coiling the TCPM
around a mandrel can be done in two directions. The muscle will contract when heated if
the coiling is performed in the same direction as the twist. The TCPM will extend when
heated if the coiling is done in the opposite direction as the twist. Haines et al. [2014] call
this respectively homochiral and heterochiral.

2-2 Used production process

A homochiral TCPM is produced for the experiments in this thesis. The precursor fiber is
made of nylon and has a diameter of 0.8 mm. A schematic overview of the setup used to twist
the fiber is given in Figure 2-1.

Number  Part

Weigth

Rope

Pulley

Connection bracket
Polymeric fiber
Axis

Rotary motor

N

b = B RV

TNRNSN NRNRN

Figure 2-1: Schematic overview of the setup used to twist the polymeric fiber.
The nylon fiber is twisted together with a constantan wire with a diameter of 0.3 mm. The
constantan wire is added to be able to heat the TCPM via Joule heating. A constantan wire

is used because its resistance is almost constant with temperature. The advantage is that the
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2-3 Experimental setup 5

deflection estimator in Section 3-1-1 can be simplified. The twist is inserted until auto-coiling
starts as shown in Figure 2-2a. Figure 2-2b shows the twisted fiber.

Coiling is done by wrapping the twisted fiber around a mandrel with a diameter of 5mm
and a length of 50mm. This process is shown in Figure 2-2c. The number of obtained
windings is 46. The weight used during twist insertion is approximately 3.00 N. The process
of thermal annealing is applied to ensure that the shape of the TCPM remains after removing
the mandrel. The muscle is placed in an oven with a temperature of 165 °C for an hour. The
muscle is then cooled and removed from the mandrel. The resulting muscle can be seen in
Figure 2-2d. An overview of this data is given in Table 2-1. Jumper heads are soldered at
the ends of the constantan wire. A voltage supplier can be connected to the jumper heads
for Joule heating. Eye terminals are mounted on the ends of the nylon fiber to be able to use
the TCPM in the setup.

Table 2-1: Overview of the TCPM properties and the production properties.

Property Value
Fiber material Nylon
Fiber diameter 0.8 mm
Resistance wire material Constantan
Resistance wire diameter 0.3 mm
Coil diameter 5 mm
Coil length 50 mm
Number of windings 46

Load of twist insertion ~ 3.00N
Thermal annealing temperature | 165 °C
Thermal annealing time 1hr

2-3 Experimental setup

An experimental setup is needed to produce input and output data for model design and to
evaluate the performances of the controllers. The produced TCPM is mounted onto a loadcell
in a Universal Testing Machine (UTM). This apparatus, the Mark10 ESM303, applies and
measures the deflection and force on the TCPM. It has a resolution of 0.02mm. The load
cell of the UTM is a Mark10 M5-05 Force Gauge and has a resolution of 0.5 mN. A cooling
fan is put in front of the TCPM holder to quicken the cooling process. An image of the
setup is given in Figure 2-3a. The UTM is controlled via a Python script written by Joost
van der Weijde and adapted to the purposes of this thesis. A Muscle Drive (MD) is used to
control the process of Joule heating (Van der Weijde et al. [2019]). This module is designed
by Joost van der Weijde and also uses a Python script. The MD can be used to send the
duty cycle needed for a certain voltage to heat or stop heating the TCPM. It can also be
used to measure the inductance of the muscle. The inductance can be used to determine the
deflection and force of the TCPM. This is called self-sensing, see Chapter 3. An advantage is
that no large equipment is needed in practical applications to determine the deflection and
force of a TCPM. An image of the MD is given in Figure 2-3b The MD is connected to a
voltage supplier.

Master of Science Thesis T.R. Robeerts



6 Twisted and coiled polymer muscles

(a) The TCPM is twisted until it auto-coils. (b) The twisted fiber.

(c) The twisted fiber is wrapped around a mandrel. (d) The TCPM after the production is finished.

Figure 2-2: Production process of a TCPM.
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2-3 Experimental setup 7

MARK10 M5-05 and the cooling fan. heating.

Figure 2-3: Experimental setup.
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8 Twisted and coiled polymer muscles

The TCPM needs to be connected to the experimental setup and the experimental setup needs
to be calibrated. Figure 2-3a is labeled to explain this more clearly. One end of the TCPM
is connected to the movable arm of the UTM (A). The force measured by the load gauge (B)
is set to 0 when the TCPM is suspended. The loose end of the TCPM is then connected to
the bottom side of the TCPM (C). This side is fixed. The TCPM is then stretched such that
it just starts to be under tension with a force of 0.2 N. The measured position of the UTM is
calibrated to 0.

The TCPMs produced with the production process described in Section 2-2 are used on this
experimental setup to determine the model parameters, see Chapter 3 and Chapter 4, and to
evaluate the designed controllers, see Chapter 5.

T.R. Robeerts Master of Science Thesis



Chapter 3

Self-sensing model

Van der Weijde et al. [2019] implemented a self-sensing model. This model can estimate the
force and the deflection of a TCPM using its decay time, a measure of the inductance. The
advantage is that large apparatus to measure the position and force, such as the UTM, can be
replaced with a smaller one, for example, the MD. This makes it more suitable for practical
implementations. First, the model designed by Van der Weijde et al. [2019] is discussed.
Then, how the parameters of this model are estimated. Last, its performance on the setup is
analyzed.

3-1 The self-sensing model

The self-sensing model consists of three submodels: a deflection estimator, a temperature
model, and a force model. An overview is given in Figure 3-1. The deflection estimator
estimates deflection () based on the decay time (L) measured by the MD. The temperature
model estimates the contribution of temperature to the force (7') based on the power input
send to the TCPM. This temperature is not the actual temperature in the TCPM, but
it explains the contribution. The force model uses the estimate of Athe deflection and the

contribution of the temperature to estimate the force of the TCPM (F'). Each submodel will
now be discussed in further detail.

3-1-1 The deflection estimator

The deflection estimator describes the relation between a measure of inductance (the decay
time) and the deflection. The inductance of a coil is in its simplest form given by (Serway
and Jewett [2013]):

N2
L(Ax) = po Twrz (3-1)

Master of Science Thesis T.R. Robeerts



10 Self-sensing model

L Deflection X
o . .
estimation
Force ~ Y R
del F oo\, Forx
P Temperature mo ° >
o, P [T
model

Figure 3-1: Schematic overview of the self-sensing model.

where pg is the magnetic permeability, N the number of windings in the coil, [ the length of
the coil, and r the radius of the windings. This equation is not accurate enough for springs
with finite lengths, a distance between the windings, and a round wire. The TCPM has
all of these three characteristics. Corrections on the equation are therefore necessary. Van
Der Weijde et al. [2015] researches various corrections and proposes the simplified model:

L= % + Ao (3-2)

where ), is the scaling parameter and Ay the offset. Its values can be determined with
parameter estimation. This model fits the general shape of the curve of inductance and the
parameters can be estimated with a limited data set. This model is still not accurate enough
for the general TCPM, because of the changes in behavior due to temperature changes. The
TCPM is heated and this changes the material properties and the geometry. Van Der Weijde
et al. [2016] adds a temperature term to the model, because an increase in temperature leads
to an offset in the inductance. The model for the inductance becomes:

L(t) = i(t)/\”jr)\l + ArT(t) + Ao (3-3)

where Ar is the fitted parameter for the temperature contribution. The length is changed
to an addition of z(t) and \;, where x(t) is the deflection function and A; a parameter that
relates to the initial length of the TCPM. Note that T and L do not represent the physical
temperature and inductance, but a measurement proportionally related. The measure of the
inductance determined with the MD is the decay time.

In the used deflection estimator the added temperature term is neglected because a metal
wire with a resistance almost constant with varying temperature is used, namely constantan
(see Section 2-2). This simplifies the model to the equation in (3-2). Rewriting this equation
leads to the deflection estimator of the self-sensing model (Van der Weijde et al. [2019]:

T.R. Robeerts Master of Science Thesis



3-1 The self-sensing model 11

e = M) — M)
= T

3-1-2 The temperature model

The temperature model describes the relationship between the power input and the contribu-
tion of the temperature to the force. It is assumed that the TCPM is heated homogeneously.
The duration of this is neglected. Van der Weijde et al. [2019] states the relationship between
the contribution of the temperature and the power (P(t)) is of first order:

T(t) = kpP(t) — kT (t) (3-5)

where kp represents the coefficient of conductive heating and k. the coefficient of convective
cooling. The relation between the power input and the duty cycle is added to this model since
the duty cycle is used as input for control in this thesis instead of the power. The relation
between the duty cycle (D(t)) and the power is (Van der Weijde et al. [2019]):

P(t) = D(t)2Rm(}U£) (3-6)

where R,, is the resistance measured at the two ends of TCPM, R;, the resistance measured at
the connectors to the power supply, and U, the voltage applied at the connectors. The duty
cycle is directly saved by the MD. Determining the power also needs the resistances of the
TCPM. This is a measured value and has inaccuracies. The value of the resistance changes
when the resistance is measured at a slightly higher or lower position.

3-1-3 The force model

The force model describes the relationship between the estimated force and the estimated
deflection and temperature contribution. Van der Weijde et al. [2019] combines a Standard
Linear Solid model (Roylance [2001]) with a temperature term as follows:

F(t) = Fi(t) + T(t) + Fo(t) (3-7)

where Fj is a force offset and Fj is the contribution by the SLS model. F; can be determined
with:

Cc

k1ko
—=z

E(t) Fi(t) + (t) + (k1 + ka2)2(t) (3-8)

where k1 and k2 are stiffnesses and ¢ is the damping coefficient. These parameters and Fj
can be fitted using input and output data.

Master of Science Thesis T.R. Robeerts



12 Self-sensing model

3-2 Parameter estimation

The parameters of the self-sensing model need to be determined to predict the deflection and
the force of the TCPM for control. For each TCPM these parameters differ. This means
that for each used TCPM the parameters have to be determined. The process of parameter
estimation is described here. First, the input signal is described. Then, data processing is
needed to perform parameter estimation. Then, the method of parameter estimation itself.
Last, the results are discussed.

3-2-1 Input signal

First the muscle is trained by applying a 600 s multi-sine signal to the deflection and power.
The duty cycle and deflection are varied as input for the identification of the parameters of the
self-sensing model. The same signal construction is used for both. First, the muscle is warmed
up by applying a 250s multi-sine. Then a 200s multi-sine followed by a 200s random-step
signal with some rest in between is used for identification data. Last, a multi-sine of 100s and
a random-step signal of 120 s with some rest in between is applied for validation data. This is
based on the work done by Van der Weijde et al. [2019]. The multi-sine is implemented with
the following equation:

N
m(t) = ag + Z a; sin(27 fit + ¢;) (3-9)

=1

where NV is the number of components in the multi-sine, ag the signal offset, a; the amplitude
of the i*® component, f; its frequency, and ¢; its phase. The phases are determined with:

7i2

¢i = ¢o — N (3-10)
where ¢q is a phase offset. The used frequency interval is [10~24 10~ !] Hz which is spaced
equally with N. N is set to 7. The random-step signal is created using the following equation:

H
g(t) =bo+ > _bih(t—7) (3-11)
i=1

where H is the number of steps, by the signal offset, b; the height of the i*" step, 7; its
step time, and h the Heaviside step function. The step times are determined with a random
generator. This random generator is similar to the construction of step times for generalized
binary noise (Tulleken [1990]). The step sizes are sampled from the uniform distribution [0,
0.25(gmax — Gmin)], where gmax and gmin represent the upper and lower limits of the power
respectively. To prevent overheating the maximum of the duty cycle is set to 85%. The MD
requires a minimum duty cycle of 15% to measure accurately. A virtual coin toss determines
in which direction the step goes. The direction is made opposite when this means that the
step size exceeds the maximum or is lower than the minimum value. The signal is scaled so
that it includes the upper and lower limits of the deflection and the duty cycle.
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3-2 Parameter estimation 13

The input signals used for the estimation of the parameters in the self-sensing model is given
in Figure 3-2. It can be seen that during the run the duty cycle does not go below its minimum
of 15% or above its maximum of 85%. The minimum and maximum used for the deflection
is set to 10 mm and 30 mm to avoid nonlinear behavior caused by the touching of coils. The
first 500s are used for identification. The rest of the data is used for validation.

Deflection over time

deflection in mm

0 100 200 300 400 500 600 700 800 900
time ins

Duty cycle over time
100 ¥ y

duty cycle in %

0 100 200 300 400 500 600 700 800 900
timeins

Figure 3-2: The duty cycle and deflection used as input signal for the identification of the
parameters of the self-sensing model.

3-2-2 Data processing

The input and output data need to be processed and filtered before it can be used in the
parameter estimation. The data is processed in the same way as Van der Weijde et al. [2019]
implemented. The instants of time on which the UTM measures the force and the MD saves
the duty cycle are not equal. The input and output data are resampled to 16 Hz. A 2-sample
moving average filter and a 15-sample median filter is applied to the data to avoid spikes.
The measured force is also filtered with a Butterworth low-pass filter. The amount of ripple
allowed in the passband is set to 0.25 dB and the attenuation of the stopband is set to 0.75 dB.

The example of input given in Figure 3-2 is already resampled. The resampled and filtered
measured force is given in Figure 3-3.

3-2-3 Estimation of the parameters

The parameter estimation of the self-sensing model requires the values for R,,, Ry, and Up.
The values for two TCPMs are given in Table 3-1. The resistances are lower than the values
obtained by Van der Weijde et al. [2019]. This shows that the production process by hand
influences the resistance of the constantan wire.

First, kp, ke, Fo, ¢, k1 en ko are identified. These are the parameters in the temperature
and force model. The squared error between the measured and estimated force is minimized.
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Figure 3-3: The duty cycle used as input signal for model estimation and an example of the
obtained filtered measured force.

Table 3-1: The resistances of the TCPM and the applied voltage.

Property | Value TCPM1 Value TCPM2 Value Van der Weijde et al. [2019]

Ry, 9.60 Q2 9.82Q 10.182
Ry 9.96 Q2 10.22Q 10.752
Uy TV TV vV

The measured force is obtained with the UTM and the estimated force is obtained with the
temperature and force model. This optimization is done by using MATLAB’s nonlinear
least-squares optimization. The Levenberg-Marquardt algorithm (LMA) is used for this. The
algorithm is shown in Appendix B-2. Then, the parameters of the deflection estimator, A,
Ar, and A, are estimated similarly by minimizing the squared error between the applied de-
flection and the estimated deflection. The estimated deflection is obtained with the deflection
estimator. The obtained parameters can differ for each try of parameter estimation, because
of the used optimizing algorithm. The obtained parameters are given in Table 3-2. Param-
eters for two muscles and the parameters of Van Der Weijde are given to show that these
parameters differ for each TCPM, but are mostly in the same order of magnitude.

The analysis of the estimation error of the deflection and the force is done in a similar way
as Van der Weijde et al. [2019]. The Root Mean Square Error (RMSE) is used to quantify
the estimation error. The quality of the fit is also checked by analyzing the R? value. This is
given by:

n A

where n is the number of data point, y; is the data itself, 7 is their mean, and f; the estimates.
The fit of a TCPM is shown in Figure 3-4. The applied power is determined by the duty
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3-2 Parameter estimation 15

Table 3-2: The fitted parameters of the self-sensing model.

Parameter | Value TCPM 1 Value TCPM 2 Value Van der Weijde et al. [2019]
Az 6.29 2.64 2.81

pY 19.9 21.9 28.8

o 0.389 0.477 0.433

Kp 2.9-1073 5.2-1073 7.2-1073

Ke 102.1-1073 142.8 1073 131.6-1073

k1 15.3-1073 89.1073 10.8-1073

ko 5.4-1073 2.1-1073 2.7-1073

c 7.1-1073 3.5-1073 4.3-1073

Fy 141.4-1073 82.7-1073 106.9-1073

cycle, see Equation (3-6). The fit of the other TCPM is given in Appendix A-1.

The first thing to notice is that the estimate of the deflection is not accurate as the fit obtained
by Van der Weijde et al. [2019]. This is validated by the values of the RMSE and the R? value
given in Table 3-3. The deflection estimate is not accurate in the first few seconds in contrast
to what Van der Weijde et al. [2019] obtained. The deflection estimate increases in accuracy
when time continues, but is still not as accurate as the estimates obtained by Van der Weijde
et al. [2019]. The estimate of the force is more accurate. The estimate of the deflection plays
a role in the force model. The error in the estimate of the deflection can cause problems for
the estimate of the force on the setup.

Table 3-3: The R? and RMSE values for the deflection and force.

TCPM 1 Van der Weijde et al. [2019]
Identification Validation Identification Validation

R?> RMSE R?> RMSE R® RMSE R?> RMSE
x | 0.57 340mm 0.71 3.09mm 0.96 0.97mm 1.00 0.39mm
F 1091 27.8mN 091 30.0mN 097 12.8mN 0.98 12.7mN

3-2-4 Results

The accuracy of the self-sensing model is tested on the setup to see whether the model can
be used in the control of the TCPM. The UTM varies the position and force by using a
combination of step signals, sinusoidal signals, and constant signals. The self-sensing model
with the obtained parameters is used to calculate what the force and the position would be.
The results are shown in Figure 3-5.

The estimate of the deflection is more accurate than the estimate of the force. This is the
opposite than what is obtained in the identification and validation. The position estimate
is used in the force model increasing the inaccuracies caused by the error in the deflection
estimate. The RMSE and the R? value are determined to quantify the accuracy of the self-
sensing model. These values are given in Table 3-4.

The R? values are negative. This means that the estimated data does not follow the trend
of the measured data. The RMSE values for the force are also a lot higher than in the
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16 Self-sensing model

Table 3-4: The RMSE and R? value for the experimental data.

| R? RMSE
x | -4.358 5.88 mm
F|-0.956 113.9mN

identification and validation data. The accuracy of the force estimate is not high enough for
proper control and the reference value will not be obtained. At constant force, the self-sensing
underestimates the force. It also underestimates the rate of change in the force. Therefore it
is decided not to include the self-sensing model in the force-control of the TCPM.
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Figure 3-4: The top figure shows the applied power over time. The middle figure shows the true
and estimated deflection for the identification and validation data set. The bottom figure shows

the true and estimated measured force for the identification and validation data set.
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Figure 3-5: The measured deflection and force by the UTM compared to the estimated deflection
and force using the self-sensing model.
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Chapter 4

Modeling

The modeling of the TCPM is discussed in this chapter. A model can be used in the design of a
controller for the deflection and the force of the TCPM. Different types of models can be found
in the literature for a TCPM such as phenomenological modeling, macroscopic modeling, and
black-box modeling. Shafari and Li [2015] propose a phenomenological model describing the
microstructural processes during the fabrication of a TCPM. These types of models contain
a large number of parameters and include many details. The model of the relation between
the actuation strains in molecules caused by the twisting process in the model of Shafari and
Li [2015] is not needed to design a proper functioning controller. Therefore only macroscopic
modeling and black-box modeling will be discussed here. Afterward, the modeling approach
used on the setup (see Section 2-3) is explained.

4-1 Modeling in literature

First, the basic macroscopic modeling of a TCPM found in literature is discussed. Then, the
black-box modeling.

4-1-1 Macroscopic modeling

The basic macroscopic model is proposed by Yip and Niemeyer [2015]. It describes the
dynamic behavior of a TCPM using mechanical systems such as springs and dampers. The
behavior of a TCPM can be described with a series connection of a thermomechanical and a
thermoelectric model. This is schematically shown in Figure 4-1 (Yip and Niemeyer [2015]).
The input is the power (P(t)) and the output can either be chosen as the force generated by
the TCPM (F) or the deflection of the TCPM (z). The output depends on the purpose of
the TCPM. It can be used in force-control tasks and position-control tasks.

The thermomechanical model describes the relation between strain, force, and temperature.
One of the benefits of a TCPM is that its dynamic behavior is less influenced by hysteresis
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P(t) Thermoelectric | T(t) ThermE)- Forx
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Figure 4-1: Block diagram of a TCPM model with a series connection of a thermomechanical
and a thermoelectric model.

than other artificial muscles such as shape memory alloys (Haines et al. [2014]). The hysteresis
is mostly visible in the relation between the force and the strain. The obtained force at a
certain strain depends on whether the muscle is extending or contracting and how far it has
been expanded or contracted before. Yip and Niemeyer [2015] show that the shape of this
relation remains constant and that its values shift with temperature. They state that the
hysteric behavior can be modeled with a linear spring-damper system. The force can be
either increased or decreased by changing the temperature. The thermomechanical model is
given by the following equation (Yip and Niemeyer [2015]):

F=k(l—1o)+cl+b(T —Tp) (4-1)

where [ is the loaded length, [y the initial length, k the stiffness, ¢ the damping, b a thermal
constant, T the temperature of the TCPM, and Tj the initial temperature of the TCPM.

The thermoelectric model describes the process of Joule heating. Applying a voltage to
a metal wire will heat up the wire, because of its electrical resistance. The metal wire is
intertwined with the TCPM and increases the temperature of the polymeric fiber. Heat is
lost to the environment and must be taken into account. Heating the TCPM is a faster
process than cooling the TCPM. The thermoelectric model is given by the following equation
(Yip and Niemeyer [2015]):

d7(1)

C
th—

= P(t) - )‘(T - Tamb) (4'2)

where C}y, is the thermal mass, P(t) the power applied to the TCPM, A the absolute thermal
conductivity in ambient temperature, and T,.,;, the ambient temperature.

The thermo-electric model is more dominant in the dynamics (Arakawa et al. [2016]). It
takes longer to heat and to cool the TCPM than it takes time for the force or deflection
to increase or decrease based on the temperature of the TCPM. Other macroscopic models
are based on this model. Wu and Tadesse [2017] include the pre-stress of the TCPM in
the thermomechanical model and notice that the electrical resistance is commonly used as a
constant, but that in reality, it changes over time with temperature. This must be included
if a more accurate model is needed. In the self-sensing model, this changing resistance is
mentioned but excluded because a constantan wire is used for Joule heating (see Section 3-
1-1). Sutton et al. [2016] have adjusted the thermoelectric model by ignoring the effects of
radiation. Simeonov et al. [2018] have extended the model to be able to use it for bundled
TCPMs. Zhang et al. [2017] have designed a model based on the hysteresis behavior. This
model is not discussed further as it is shown that the macroscopic model described in this
section can obtain sufficient controlling results. The macroscopic model gives insight into the
dynamic behavior of a TCPM, but the exact values of the parameters such as the stiffness
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and the damping constant are not necessary for designing a functioning controller. Fewer
parameters need to be determined when using black-box modeling.

4-1-2 Black-box modeling

A model of a given order is fitted to the input and output data in black-box modeling. It
is useful to have an idea of the order of the system to decrease the workload. The thermo-
mechanical and thermo-electric model described in the macroscopic modeling can both be
described with a first order transfer function. Arakawa et al. [2016] apply this approach in
their design of a controller:

C1
GTP(S) =
st (4-3)
3
GXT(S) - S+ c3

where c1, co, c3. ¢4 are black-box parameters. The complete model of a TCPM has order two
because two first order models are connected in series. Four parameters need to be estimated
using this black-box model instead of five in the macroscopic model in Section 4-1-1. The
input Arakawa et al. [2016] use is the voltage. The voltage needs to be squared and divided
by the resistance of the TCPM to obtain power. The output they use is the position. A
schematic overview of the model is shown in Figure 4-2.

V(t) V2 P(t) T(t) X
—¥ T Grp(s) Gyr(s) —

Y

¥

Figure 4-2: Block diagram of the model implemented by Arawaka et. al. Arakawa et al. [2016].

Arakawa et al. [2016] and Yip and Niemeyer [2015] both use second order models. Jafarzadeh
et al. [2018] obtain a better fit with a first order discrete-time state-space model than with
higher orders. The input they use is the voltage squared and the output is the force. They
show that the steady-state relation between the force and the electrical power is close to
linear with an error of around 5%. They also show that the steady-state relation between
the voltage squared and the force is close to linear, but with an error of arround 10 %. The
accuracy is above 90 % and Jafarzadeh et al. [2018] state that their model is accurate enough
to implement a linear controller and that a nonlinear controller is not needed.

4-2 Model estimation

The black-box modeling approach is used to obtain a model for the TCPM. A force-control
task is considered and the extension is kept constant. An example of an application is holding
a breakable stiff object. The muscle lengths are kept constant and the force needs to be
controlled to hold the object without breaking it or letting it fall. The position of the setup
is kept constant at 20 mm stretch with the UTM. The zero position of the UTM is when the
force of the TCPM is 0.2N at room temperature (see Section 2-3). The initial length of the
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TCPM is approximately 46 mm. The length of the muscle at 0.2 N is approximately 50 mm.
This means that the total stretch is approximately 70 — 46 =24 mm, which is an elongation
of about 52 %.

First order and second order models are fitted because of the results obtained by Arakawa
et al. [2016], Yip and Niemeyer [2015], and Jafarzadeh et al. [2018]. It is uncertain which
system order will be a better fit because literature has shown different results. It is expected
that a first order system might have a better fit, because the length of the TCPM is kept
constant. This will influence the thermo-mechanical model described in Section 4-1-1. The
damping term will disappear and the order of the thermo-mechanical model will decrease to
zero. The force generated by the TCPM is measured and used as the output signal. The input
signal is the duty cycle send to the muscle drive. The input signal is constructed similarly as
the input signals used for the self-sensing model, see Section 3-2-1. The same data processing
steps have been applied as described in Section 3-2-2. An example of the duty cycle input
with the obtained filtered measured force is given in Figure 4-3.
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Figure 4-3: The duty cycle used as input signal for model estimation and an example of the
obtained filtered measured force.

It can be seen in the figures that the data is separated into four different sets. The first set
is the warming up, and will not be used for identification. The other three sets are used for
identification and validation. Multiple combinations of the sets have been tried to obtain the
model with the best fit. The model estimation is done in MATLAB and uses the toolbox
System Identifaction. The data needs to be detrended before the model can be estimated.
This is done by using the detrend-function. This function removes the best straight-fit line
from the data.

Four types of models are used for model estimation. A transfer model is fitted on the detrended
data by using the tfest-function. A transfer function has the following structure:

by S™ + bpy_1s™ L 4L
8" + ap_18" 1 4 ...

+b18+b0
+ai1s+ag

Gs) = (4-4)
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where n is the number of poles and m the number of zeros. These numbers need to be
defined in the tfest-function. The function initializes the parameters by using the simplified
refined Instrument Variable (SRIV) method described by Young and Jakeman [1980]. The
parameters are updated by using a nonlinear least-squared method to minimize the weighted
prediction error norm. The nonlinear least-squares method is a combination of line search
algorithms. Each method is tried in sequence at each iteration. The first decent direction
leading to a reduction in the estimation cost is used. The line search methods are the subspace
Gauss-Newton search, the Levenberg-Marquardt least squares search, the adaptive subspace
Gauss-Newton search, and the steepest descent least squares search. The algorithms of these
methods are given in Appendix B.

Another model that has been fitted is a state-space model. The used function is sses. The
order (nz) needs to be defined. The standard form of a state space is:

8
—~~
=

I

2

=

t) + Bu(t) + Ke(t)

t) + Du(t) + e(t) (4-5)

<
—~
=

I
Q

8
—~

where A, B, C, D, and K are state-space matrices. The default value of D is equal to
zero. The ssest-function uses a noniterative subspace state-space estimation approach for the
initialization of the estimates. It updates the estimates using the prediction error minimization
(PEM) approach. The goal is to minimize the cost function with numerical optimization. This
is a weighted norm of the prediction error:

N
Vi (G H) = S0 (1) (46)

t=1

where e(t) is the error between the measured output and the predicted output. The cost
function becomes more accurate for a larger number of data samples (V).

Another model is the estimate output-error polynomial model (oe). This model relates in-
puts to outputs while also including white noise as an additive output disturbance. The
corresponding equation is:

y(t) = ﬁgg;u@ )+ el) (47)

The oe-function works in a similar manner as the tfest-function. The difference is that in the
oe-function the model is specified with polynomial degrees instead of the numbers of poles and
zeros. The polynomial degrees that need to be specified are the order of the polynomial B(q)
(np), the order of the polynomial F'(q) (ny), and the input delay (nx). The tfest-function is
faster and more accurate in continous-time estimation according to MATLAB.

The last model is the autoregressive with extra input (ARX) model. This model is also known
as the autoregressive with exogenous variables model. The structure of the model is given by:

y(t)+ary(t—1)+ ...+ anay(t —na) = bju(t —nk)+... +bypu(t —nb—nk+1) +e(t) (4-8)
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where na is the number of poles, nb is the number of zeros, nk is the dead time and e(t)
is the white-noise disturbance value. The dead time is the number of input samples that
occur before the input affects the output. The arx-function minimizes the one step ahead
prediction error between the measured en predicted outputs. The parameters vector (6) is
estimated with the following equation:

0= (JT7) gy (4-9)

where J is the regressor matrix.

The obtained models are also updated with other data sets to see if the accuracy of the models
increases. This is done by using the pem-function. This function updates the parameters of
the initial model to fit the given data. It uses prediction-error minimization (described at the
state-space model) to update the parameters.

4-3 Results

First order and second order models have been tried to find the model with the highest
fit. This is based on what is found in the literature. The Normalized Root Mean Square
Error (NRMSE) is used to analyze the goodness of the fit. First, a closer look is taken into
the transfer function models. First and second order models are estimated with each data
set described in Section 4-2. The model is then validated against all three data sets by using
the compare-function. This function simulates the response of the model and compares it to
the measurement data. It calculates the NRMSE and plots all the data in a figure. These
figures are shown in Figure 4-4. The titles of the figures describe which data set is used for
validation. In the legend, the transfer functions are labeled. The first number describes the
data set used for identification. The number after the underscore describes the order of the
transfer function. No zeros are used.

The first and second order models have similar NRMSE values, but the first order models have
most of the time a slightly better fit. It was expected that the first order models would have
a significantly higher NRMSE value because the length is kept constant. This expectation is
also based on the results Jafarzadeh et al. [2018] obtained. The models are updated using
the pem-function and the two data sets not used for identification. The resulting figures are
shown in Figure 4-5. The performance of the models mostly slightly increase with an order of
0-1%. Again, the first order models have a slightly better fit than the second order models.

This process is repeated for multiple muscles. Figures from another muscle is shown in
Appendix A-2 and multiple muscles in Appendix A-3. The trend that the first order models
have a slightly better fit is visible in all muscles. Appendix A-3 include higher order models.

First and second order state-space models have been fitted to the data as well. The resulting
figures are shown in Figure 4-6. The results obtained after updating the models is shown
in Figure 4-7. The obtained models are less reliable in comparison to the transfer function
models. Some of the second order models do not describe the behavior of the TCPM at all.
The first order models score on average again a higher NRMSE. Figures obtained by using
the data of another muscle are shown in Appendix A-4. In Appendix A-5 other orders have
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Figure 4-4: Performance of the estimated transfer functions. The titles of the figures describe
which data set is used for validation. In the legend, the transfer functions are labeled. The first
number describes the data set used for identification. The number after the underscore describes
the order of the transfer function. No zeros are used.

been tried next to first and second order models. The same trend of less reliable second order
state-space models can be seen.

Jafarzadeh et al. [2018] obtained at least 90 % accuracy with the first order model. The fit
is less accurate for the produced TCPMs. It is chosen to continue with first order models
due to the decrease in complexity. This is based on the similar NRMSE values of first and
second order models and the results obtained by Jafarzadeh et al. [2018]. First order arx and
oe models are also estimated to see which type of model has the best fit. The same division
of the data set is used. The oe, arx, tf, and ss models with the best fit are compared to each
other. The results of this are shown in Figure 4-8. The mean and standard deviation for the
models are given in Table 4-1.

Table 4-1: The mean and standard deviation of the NRMSE of the estimated models.

Model ‘ mean (p) standard deviation (o)

tf 79.26 3.66
ss 79.30 3.26
oe 79.15 2.95
arx 79.34 3.27

Next, step responses are included in the data sets. This is because first order models are used.
The data of the step responses is the fourth data set used in identification and validation.
An example of figures obtained with the step responses is shown in Figure 4-9. Comparing
the mean and standard deviations of multiple models the transfer function and the oe-models
have the best fit. Therefore, only those two types of models are used in further model
estimation. The best transfer function has a fit of 73.37+4.15%. The best oe-model has a
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Figure 4-5: Performance of the updated transfer functions. The titles of the figures describe
which data set is used for validation. In the legend, the transfer functions are labeled. The first
number describes the data set used for identification. The number after the underscore describes
the order of the transfer function. No zeros are used.

fit of 73.36+£4.10%. These NRMSE values are lower than previously obtained because the
second data set shows different behaviour than in other runs. The poles and time constants
of the models are shown in Table 4-2.

Table 4-2: The poles, damping, frequency ant time constant for the two best models.

Model ‘ Pole Time constant (s)
tf -0.0432 231
oe -0.0437 229

Next, two elongation lengths are used. The first is the 52 % described in Section 4-2. The
other is of approximately 20 %. This means that the position of the UTM is set to 5mm
instead of 20 mm. This is done to check whether a model obtained with a certain elongation
can be used on different elongations. It is expected that the NRMSEs value will decrease
because first order models are identified. The difference in length leads to a higher order
of the differential equation of the thermo-mechanical model described in Section 4-1-1. The
transfer function and the oe-model with the highest fit for the 52 % elongation is validated
on the data of the 20 % elongation and vice versa. The results are shown in Figure 4-10. The
models with number 1 use data from the 20 % elongation and the models with number 4 use
data from the 52 % elongation. The fit significantly decreases when the elongation is varied.
This means that if the muscle is used at a different elongation, the model is less accurate and
the controller designed for it will function less efficiently.

The poles and the time constants for the models are shown in Table 4-3. The larger elongation
has faster poles and a lower time constant than the shorter elongation. The cooling down
process is faster when the TCPM is stretched out more because the heat from the coils has
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Figure 4-6: Performance of the estimated state-space models. The titles of the figures describe
which data set is used for validation. In the legend, the state-space models are labeled. The
number describes the data set used for identification.

less influence on each other.

Table 4-3: The poles, damping, frequency ant time constant for the two best models.

Model | Pole Time constant (s)
tflu -0.0515 194
oelu |-0.0515 19.4
tfdu -0.0995 10.0
oedu | -0.0994 10.1

First order transfer functions and oe-models have the best fit for the produced TCPM. The
performances of the transfer functions and oe-models are comparable. It is chosen to continue
with the transfer functions, because of its implementation in SIMULINK. Last, models of two
different TCPM are validated with the data of the other TCPM. It is useful to know whether
for each produced TCPM the model estimation process needs to be repeated or the same
model can be used for different TCPM. The used elongation is 52 %. The accuracy of the
model significantly decreases when used on another TCPM. This is shown in Figure 4-11.
This means that model estimation has to be repeated for each produced muscle.

In conclusion, the chosen model is a first order transfer function. A different model has to be
estimated for each elongation and each TCPM.
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number describes the data set used for identification.

Data set 1
0.1 ‘ data_set1 (y1)|
- — —tflu: 76.82%
e 0 ——oe2u: 79.57%
2 7 $s3: 78.04%
——arx3: 78.03%
0.1t L ] | 1 = S—— I =
100 200 300 400 500 600 700 800 900 1000
time in (seconds)
Dm:mz '
0.1} ‘ ‘ ‘ —data_set2 (y1)] |
. 005F - tfu: 76.52% |y
€ «— oe2u: 75.34%
£> 0 $83: 76.11%
-0.05 ——arx3:76.15%
5 ! I LN I I - I
100 200 300 400 500 600 700 800 900 1000
ﬂm;:;s:.o::ds)
0.1 T T T
—data_set3 (y1)
. ——tf1u: 84.43% ||
$S 0 ——oe2u: 82.54% ||
2 ss3: 83.77%
——arx3: 83.84%
| |

100 200 300 400 500 600 700

time in (seconds)

= !
900 1000

Figure 4-8: Performance of the estimated models. The titles of the figures describe which data

set is used for validation. The u stands for the updated version.

T.R. Robeerts

Master of Science Thesis



4-3 Results

29

02 Step data
0171
z_ of
8 = data_set (y1)
T4\ - tf1:76.22%
\‘ —f2: 72.91%
o2l 1f3: 74.03%
—tf4: 77.15%
100 200 300 400 500

time in (seconds)

Step data

forcein N
y1

——data_set (y1)
——0e1:76.01%
——0e2:72.92%
0e3:74.03% |,
——oe4: 77.09%

200 300

time in (seconds)

Figure 4-9: Performance of the estimated models on the step data. In the legends, the models

400 500

forcein N

forcein N

Step data

data_set (y1)
——ss1: 77.05%
——s52: 76.06%

ss3: 75.39%

——ss4: 74.1%

100

200

time in (seconds)

Step data

300

400

500

—data_set (y1)
——arx1: 77.07%
——arx2: 76.14%

arx3: 75.41%)|

—arx4:74.6%

!

100

200

time in (seconds)

are labeled. The number describes the data set used for identification.

Data set elongation 20%

300

400

T
data_val5 (y1)

500

| ——tfu: 82.19% ||

0.1 ——oelu: 82.19%
= |t 62.81%
£ 0 il |—oedu: 62.78% /|
s | I

01+ =

02 L L | | | |

500 1000 1500 2000 2500 3000
time in (seconds)
02 Data set elongation 52%

forcein N
y1

T
——data_val20 (y1)
——tf1u: 58.04%
——oelu: 58.04% ||
tf4u: 77.31% z
——oe4u: 77.3%

i

I
1500

Master of Science Thesis

time in (seconds)

Figure 4-10: Performance of the estimated models on different elongations.

T.R. Robeerts



30 Modeling

Data set TCPM 1
0.2 T T T L
——data_val1 (y1)
) o ) ——tflu: 81.87%
0.1/ o \ i . ——tfou: 62.75% | |
2 \ “ A p i
§> 0 |
&
-0.1 -
02 1 1 1 1 I
500 1000 1500 2000 2500
time in (seconds)
Data set TCPM 2

data_val2 (y1)
——tf1u: 54.27%

—tf2u: 87.14%

YA

force in N

I
1500 2500

time in (seconds)

Figure 4-11: Performance of the estimated models on different TCPM.

T.R. Robeerts Master of Science Thesis



Chapter 5

Control

The used model is a transfer function of first order. The force of the TCPM needs to be
controlled. The UTM keeps the deflection constant. This is called a force-control task. An
example of an application is holding a breakable stiff object. The muscle lengths are kept
constant and the force needs to be controlled to hold the object without breaking it or letting
it fall. The correct force needs to be applied. The self-sensing model is not included in control
as explained in Section 3-2-4. First, a P-controller is designed. Then, a PI-controller.

5-1 P-controller

A high gain P-controller is designed for the TCPM. The controller is tested on the setup.
First, several step references are applied. The results are shown in Figure 5-1. It can be seen
that the obtained force oscillates around the reference value. The heating and the cooling
down of the TCPM take approximately the same time. This is because of the cooling fan.
Without the fan, the cooling down would take more time. The input is quite on-off, because
of the high Kj,-value.

The controller is also tested on a sinusoidal reference. The results are shown in Figure 5-2.
First, some step references are applied. It can be seen that when the reference goes from
0.5N to 0.3 N the TCPM does not have enough time to cool down. The time constants of the
model are slow, which can be impractical when the TCPM is implemented in for instance a
robot. The sinusoidal reference is followed with high accuracy. The filtered force still oscillates
around the reference leading to an oscillation in the sinusoidal.

The oscillations show that the system is actually of a higher order, thus order 2. The oscilla-
tions also occurred in the results of the P-controller obtained by Jafarzadeh et al. [2018], but
less frequent. An I-action is added to decrease the min-max input.
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Figure 5-1: Performance of the P-controller on step references.

5-2 Pl-controller

The Pl-controller is designed via pole-placement. The controller values can be determined
with:

J— J— J— *_
P1 — P2 + Dif K — Y41 P2

K, =
P K K

(5-1)
where p; and po are the desired poles, pis is the pole of the model, and K is the gain of the
model.

Several pole locations have been tried. To explain the response, three pole sets are discussed.
First, two poles on -100 are applied. The obtained controller values are K, = 1.06e4 and
K; = 5.29¢5. The simulated response is shown in Figure 5-3. There is a large overshoot and
the heating and cooling down processes are too fast for the real system. The input necessary
is given in Figure 5-4. In the beginning, there is still a lot of on-off input.

Next, the desired poles are placed at -10. The obtained controller values are K;,, = 1.06e3
and K; = b5.29e¢3. The simulated response is shown in Figure 5-5. The oscillations are
damped faster, but still, the speed of increasing and decreasing the force is not achievable on
the setup. The input needed is shown in Figure 5-6. The input is still on and off.

Last, the desired poles are placed on -1. The obtained controller values are K,, = 103 and
K; = 52.9. These values are more realistic to implement. The simulated response is shown
in Figure 5-7. The oscillations have decreased further. The cooling down process shown in
the step response is still not achievable on the practical implementation. The input signal
is given in Figure 5-8. The on-off behavior has decreased. The results of this simulation is
the most promising. Therefore, it is chosen to implement this controller on the experimental
setup.
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Figure 5-2: Performance of the P-controller on a sinusoidal reference.

The PI-controller used on the setup has the values K, = 103 and K; = 53. The performance
of the Pl-controller on the setup is given in Figure 5-9. It can be seen that the force still
oscillates around the reference value. The frequency of this oscillation has decreased compared
to the P-controller. The input needed is also less on-off than with the P-controller. A D-action
is needed to dampen the oscillations. This can be done in further research. The I-action can
also be extended to an anti-windup.
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Figure 5-3: Simulated responses for the system with two poles at -100.
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Figure 5-4: Simulation of the duty cycle needed for the system with two poles at -100.
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Figure 5-5: Simulated responses for the system with two poles at -10.
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Figure 5-6: Simulation of the duty cycle needed for the system with two poles at -10.
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Chapter 6

Conclusions and further research

The goal of this thesis is to implement a controller to control the force of a TCPM that
works with the self-sensing model. It is shown in Chapter 3-2-4 that the self-sensing model
is not accurate enough to be used for controller design. Van der Weijde et al. [2019] obtains
more accurate results with the self-sensing model. An explanation of this can be that the
production process of the TCPMs is not automated. This means there is a higher chance of
inconsistencies between TCPMs. The TCPMs need to be twisted at a constant velocity. This
is difficult to achieve with a drill controlled by a human. One person can be better at this job
than another. Further research can be done into whether this plays a role in the accuracy of
the self-sensing model.

A first order black-box model is fitted to the input and output data of the TCPM. The input
is the duty cycle and the output is the force. It is shown in Chapter 4-3 that the first order
models achieve the best fit. This follows results obtained by Jafarzadeh et al. [2018]. The
accuracy is less. The cause can be that Jafarzadeh et al. [2018] use a silver plated nylon wire
for Joule heating instead of a metal resistance wire. They also use still air instead of moving
air. Moving air decreases the cooling time. Another difference is that Jafarzadeh et al. [2018]
use a state-space model instead of a transfer function. Other literature has shown second
order models, but the order is decreased when keeping the stretch of the TCPM constant.
The fitted first order transfer function is accurate enough for controller design.

First, a P controller has been implemented. The measured force oscillates around the reference
force indicating that the actual model is of second order. Jafarzadeh et al. [2018] obtained
similar results. The input shifts from max to min and vice versa. An integral action is
added to reduce this behavior. The force follows step signal and sinusoidal references. It still
oscillates around the reference. To reduce this a D-action needs to be added.

The parameters of the model and therefore controller is different for each TCPM. This is
impractical in large-scale applications, such as assistive wrist orthosis and humanoid robots.
Further research can be done in designing model-free controllers and methods such as neural
networks.
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Appendix A

Figures

A-1 Fit TCPM2

The fit of the self-sensing model for TCPM 2.

A-2 Performance of first and second order transfer function models

Figures showing the performance of first order and second order transfer function estimations
are shown in this section. The results are similar with what is described in Section 4-3.

A-3 Performance of higher order transfer function models

Figures showing higher order transfer functions. The number behind the transfer function
indicates the order. Data set 1 is used for estimation.It can be seen that first, second and
third order models have the best fit. Because of literature, third order models are not included
further.

A-4 Performance of second order state-space models

A-5 Performance of higher order state-space models

Figures showing higher order transfer functions. The number behind the transfer function
indicates the order. Data set 1 is used for estimation.It can be seen that the fit of higher
order models is not consistent. Based on literature, only first and second order models are
further estimated.
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Figure A-1: The top figure shows the applied power over time. The middle figure shows the true
and estimated deflection for the identification and validation data set. The bottom figure shows
the true and estimated measured force for the identification and validation data set.
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A-5 Performance of higher order state-space models
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Figure A-5: Performance of transfer functions with different orders. No zeros are used.
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number describes the data set used for identification.
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Figure A-13: Performance of state space models with different orders.
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Appendix B

Least squares algorithms

B-1 The subspace Gauss-Newton

The subspace Gauss-Newton algorithm is given in Figure B-1.

Setk :=10
Compute xp := arg min, ||Ax — b||
Compute fi := flap) and Jy := J(xp) via (2.3) and (2.4)
while ||I£_.-‘r_f,e_-|| = ¢ and k = maxit
Compute hy := arg ming ||Jeh + fil|
Setay := 1/(1 — p*(xx) x[ hy)

Setxpp = xp +ophy

Setk:=k+1, f,,l_- = f{.l‘;_-]l, Jpoi= Jixy)
end
.f'|'|_9 = Xy

Figure B-1: An iteration of the Gauss-Newton algorithm (Fasino and Fazzi [2018])

B-2 The Levenberg-Marquardt

The Levenberg-Marquardt algorithm is given in Figure B-2.

B-3 The adaptive subspace Gauss-Newton search

Similar to Appendix B-1, but adaptive.
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Algorithm 1: A Levenberg—Marquardt algorithm.

Initialization

Choose the constants i £]0, 1], jtpin = 0and & = 1. Select xp and ptg = jipyin- Set
Yo = pol| F(xo)||* and & = po.
Forj=0,1,2,...

1. Solve (or approximately solve) (2), and let 5j denote such a solution.

flephb—fla;+s;)
e A IS T
2. Compute pj = THUETTICN R

3. lf'p'l,- = 1. then set Xjpl = Xj+ 55 and Hjs] € [max{jmin. @&/}, il and @ = M
Otherwise, set xjy) = xjand pjo) = Apj.
o 3
4. Compute iy = it |1 F )]~

Figure B-2: The Levenberg-Marquardt algorithm (Bergou et al. [2020])

B-4 The steepest descent

The steepest descent algorithm is given in Figure B-3.

Input: S, — dynamic peak set
A — step size
Output: S,,, — peak set after optimization

SteepestDescent(S,,,, 1)
SET S, = ®
FOR each element s in S,
SET s' =5
WHILE termination conditions not met DO
Decide search direction h; € R"
SET s"'=s+ A-h;
ENDWHILE
ADD 5" into S,
ENDFOR
RETURN 5,

Figure B-3: The steepest descent algorithm (Wang [2007])

T.R. Robeerts Master of Science Thesis



Bibliography

A Abbas and J Zhao. A physics based model for twisted and coiled actuator. In 2017 IEEFE
International Conference on Robotics and Automation (ICRA), 2017.

T Arakawa, K Takagi, K Tahara, and K Asaka. Position control of fishing line artificial
muscles (coiled polymer actuators) from nylon thread. In SPIE Smart Structures and
Materials + Nondestructive FEvaluation and Health Monitoring, 2016.

E H Bergou, Y Diouane, and V Kungurtsev. Convergence anc complexity analyis of a
levenberg-marquadt algorithm for inverse problems. Journal of Optimization Theory and
Applications, 185:927-944, 2020.

A Cherubini, G Moretti, R Vertechy, and M Fontana. Experimental characterization of
thermally-activated artificial muscles based on coiled nylon fishing line. AIP Advances, 5,
2015.

D Fasino and A Fazzi. A gauss-newton iteration for total least squares problems. BIT
Numerical Mathematics, 58:281-299, 2018.

C Haines, M Lima, N Li, G Spinks, J Foroughi, J Madden, S Kim, S Fang, M De Andrade,
F Goktepe, O Goktepe, S Mirvakili, S Naficy, X Lepro, J Oh, M Kozlov, S Kim, X Xu,
B Swedlove, G Wallace, and R Baughman. Artificial muscles from fishing line and sewing
thread. Science, 343:868-872, February 2014.

M Jafarzadeh, N Gans, and Tadesse Y. Control of tcp muscles using takagi-sugeno-kang fuzzy
inference system. Mechatronics, 53:124-139, 2018.

K Masuya, S Ono, K Takagi, and K Tahara. Feedforward control of twisted and coiled polymer
actuator based on a macroscopic nonlinear model focusing on energy. IEEE Robotics and
Automation Letters, 3(3):1824-1831, July 2018.

D Roylance. Engineering viscoelasticity. 2001.

R.A. Serway and J.W. Jewett. Physics for Scientists and Engineers. Cengage Learning, 9
edition, 2013.

Master of Science Thesis T.R. Robeerts



56 BIBLIOGRAPHY

S Shafari and G Li. A multiscale approach for modeling actuation response of polymeric
artificial muscles. Soft Matter, 11(19):3833-3843, March 2015.

A Simeonov, T Henderson, Z Lan, G Sundar, A Factor, J Zhang, and M Yip. Bundled super-
coiled polymer artificial muscles: design, characterization, and modeling. IEEE Robotics
and Automation Letters, 3(3):1671-1678, July 2018.

L Sutton, H Moein, A Rafiee, J Madden, and C Menon. Design of an assistive wrist orthosis
using conductive nylon actuators. In 6th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob), 2016.

M Suzuki and N Kamamichi. Simple controller design based on internal model control for
twisted and coiled polymer actuator. Actuators, 7(33), June 2018.

H J Tulleken. Generalized binary noise test-signal concept for improved identification-
experiment design. Automatica, 26(1):37-49, 1990.

J Van Der Weijde, E Vlasblom, P Dobbe, H Vallery, and M Fritschi. Force sensing for com-
pliant actuators using coil spring inductance. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015.

J Van Der Weijde, B Smit, M Fritschi, C Van De Kamp, and H Vallery. Self-sensing of
deflection, force and temperature for joule-heated twisted and coiled polymer muscles via
electrical impedance. IEEE/ASME Transactions on Mechatronics, December 2016.

J Van der Weijde, H Vallery, and R Babuska. Closed-loop control through self-sensing of a
joule-heated twisted and coiled polymer muscle. Soft Robotics, 2019.

L Wang. A comparison of three fitness prediction strategies for interactive genetic algorithms.
Journal of Information Science and Engineering, 23(2):605-616, 2007.

L Wu and Y Tadesse. Modeling of the electrical resistance of tcp muscle. In Proceedings of
the ASME 2017 International Mechanical Engineering Congress and Exposition, 2017.

L Wu, M de Andrade, R Rome, C Haines, M Lima, R Baughman, and Y Tadesse. Nylon-
muscle-actuated robotic finger. In Proceedings of SPIE: Active and Passive Smart Struc-
tures and Integrated Systems 9431, 2015.

M Yip and G Niemeyer. High-performance robotic muscles from conductive nylon sewing
thread. In 2015 IEEFE International Conference on Robotics and Automation (ICRA), May
2015.

M Yip and G Niemeyer. On the control and properties of supercoiled polymer artificial
muscles. IEEE Transactions on Robotics, 33(3):689-699, June 2017.

P. Young and A. Jakeman. Refined instrumental variable methods of recursive time-series
analysis part iii. extensions. International Journal of Control, (4):741-64, 1980.

J Zhang, A Iyer, and M Yip. Modeling and inverse compensation of hysteresis in supercoiled
polymer artificial muscles. IEEE Robotics and Automation Letters, 2(2):773-780, April
2017.

T.R. Robeerts Master of Science Thesis



List of Acronyms

TCPM twisted coiled polymer muscle

MD
UTM

muscle drive

Universal Testing Machine

RMSE Root Mean Square Error
NRMSE  Normalized Root Mean Square Error

List of Symbols

S B I

=N ST
o

SRR

b
b

S I

RSN NI

deflection

decay time, a measure of inductance
(contribution of) temperature

force

magnetic permeability

length

radius

coefficient of conductive heating
coefficient of convective cooling

power

duty cycle

resistance measured at ends of TCPM
resistance measured connectors to power supply
voltage applied at connectors

stiffness

damping coefficient

frequency

phase

step time
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58 Glossary
h Heaviside step function
b thermal constant
Cin  Thermal mass
A thermal conductivity
e error
K controller gain
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