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Abstract
The prevalence of partial differential equations (PDEs) in modeling physics and the low
speeds of numerical solvers demands more efficient solving methods. For this purpose,
machine learning based methods have been proposed, but these are typically discrete,
difficult to interpret and require large amounts of ground truth data to train. To ad-
dress these issues, we propose a novel machine learning based solver that builds upon
advancements in Gaussian based reconstruction. Our method represents the solution
to a time-dependent target PDE purely in terms of Gaussians, making it completely
continuous and meshless. These Gaussians are evolved by means of an autoregressive
neural network that is applied to each Gaussian, integrating information from a local
neighborhood of Gaussians. This enables the change of position, scale, rotation and
value of the Gaussians to model the solution in a particle-like manner. Extensive ex-
periments show the potential for Gaussians to model arbitrary physical phenomena. We
also compare our approach to ground truth data and various state of the art methods,
which demonstrates that the method performs well on short-term prediction, but does
not match the state of the art for long-term prediction.
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1 Introduction
Partial differential equations (PDEs) are at the core of modeling physical phenom-
ena. Through PDEs, complex behaviors can be characterized with only a few rela-
tively simple equations. However, solving these equations is non-trivial and finding
exact solutions is often intractable, instead requiring complex numerical methods to
find a high-quality approximate solution [40]. This numerical approximation neces-
sitates computationally expensive solvers that must be applied separately to distinct
problems described by the same PDE. To improve the efficiency of this approxima-
tion, researchers have applied various machine learning techniques to this problem
[1, 19, 32]. Some of these methods learn the approximation using a large amount of
ground truth data from a numerical solver [17, 50]. However, a lack of training data
can hinder these types of approaches, so another type of machine learning method has
been proposed that makes use of physics-informed neural networks (PINNs), where
a physics-informed loss term used for training is derived directly from a target PDE,
which requires no ground truth data to train the model [32, 42]. With these approaches,
the majority of the computation is shifted to training the model on a target PDE, and
the inference of this model is significantly faster than applying a numerical solver. In
essence, the trained model will then contain a black-box solution to the PDE and it can
be applied to unseen problems and rapidly provide an approximate solution. Typically,
these approaches sacrifices some quality for the gain in performance when compared
to numerical methods.

Recent advances in neural three-dimensional scene reconstruction have seen a lot
of attention with neural radiance fields (NeRF) [9, 24] and 3D Gaussian splatting (3D-
GS) [4, 14]. With NeRF an implicit representation of a 3D scene is learned through
a model that can then produce an image of the scene from any viewpoint. On the
other hand, 3D-GS provides an explicit representation of a 3D scene in terms of three-
dimensional Gaussians, which can also be used to produce an image of the scene from
any viewpoint. Both methods are trained by learning to closely represent a set of im-
ages of the scene from different viewpoints. 3D-GS provides much faster inference
than NeRF, while still producing comparable reconstruction results, due to its explicit
instead representation.

In this work, we combine insights from physics-informed machine learning and
Gaussian splatting to form physics-informed Gaussian splatting, as illustrated in Fig-
ure 1. Namely, we wish to use the representational quality of Gaussians and the fast
inference of physics-informed machine learning to model solutions to arbitrary time-
dependent PDEs. Although some previous works explore dynamic Gaussian splatting
[7, 21, 35, 49], also within the context of modeling physics [8, 12, 22, 52], none of
these works explore the use of Gaussians for the purpose of solving PDEs. To that end,
we perform extensive experiments on the Burgers’ equation and Navier-Stokes equa-
tions to evaluate the representational and dynamic quality of Gaussians for this purpose
and develop a method to dynamically update arbitrary sets of Gaussians to model solu-
tions to a target PDE. We also compare our method to state of the art PINNs produces
reasonable results for short-term prediction, but does not match the quality of state of
the art approaches for long-term prediction. Our method is continuous, meshless and
can potentially be integrated into 3D-GS methods. However, our approach is, in part,
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limited by the initialization of the Gaussians, for which the number and arrangement of
the Gaussians is highly relevant to the quality of the simulation and is also a significant
bottleneck in terms of performance.
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Figure 1: Illustration of an Archimedean spiral modeled with Gaussians.

With this work, we aim to answer the following research question:

What is the potential of a Gaussian representation for physics-informed machine
learning, i.e., can a respective representation be dynamically updated to represent
physical phenomena with high accuracy?

Specifically within the context of time-dependent phenomena pertaining to fluid
dynamics, e.g. Burgers’ equation and Navier-Stokes equations. To explore different
aspects of the research question, we have devised the following sub-questions that we
aim to answer throughout this work:

• How can the initial Gaussians be distributed effectively?

The Gaussians ought to be able to represent any initial condition and be suitable
for updating dynamically.

• How does the number of Gaussians affect the performance and quality?

Densifying and pruning the Gaussians adaptively over time should aid in answer-
ing this.

• How can information from neighboring Gaussians best be integrated?

A k-nearest neighbor approach might be insufficient when the Gaussians become
anisotropic.
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2 Background & Related Work
In the following sections, we begin with a brief introduction of partial differential
equations (PDEs), which are at the core of our investigations. Then, we provide an
overview of how these PDEs are typically solved using machine learning and describe
prior works in this area. Lastly, we discuss recent work in static and dynamic scene
reconstruction and Gaussian splatting [14], which forms the foundation of our method.

2.1 Partial Differential Equations
Physical phenomena are often characterized by partial differential equations (PDEs)
[40]. These equations describe the change of one or multiple variables in a system over
time and/or space.

An example of a simple space-dependent PDE is the Poisson equation:

∇2u(x) = f(x)

Here f(x) and u(x) are two functions of space, where f is given and describes the
environment, and we want to find the solution u describing the physical phenomena for
any point in space x.

An example of a time- and space-dependent PDE is the diffusion equation:

u̇(t,x) = ∇2u(t,x)

Where u̇ is the first-order time derivative of u(t,x) and we again want to solve for
u, this time for any point in time t and space x.

Whereas such simpler examples can be solved analytically, more complex PDEs
do not have a known solution and as such need to be solved numerically. Finding a
numerical solution to a PDE usually requires a simplification of the problem by means
of discretization. In our case only discretization of the temporal domain is of interest
(the reason for this will be explained in Section 2.2), for which we employ the standard
backward Euler method. This is more stable than the forward Euler method and less
complex than higher order discretizations.

For simplicity we assume our target PDE will be in the following form:

u̇(t,x) = g(t,x)

Where g(t,x) constitutes every term that does not involve the time derivative. The
backward Euler method then gives the following:

uk+1 = uk + htgk+1

Where tk is the k-th time step in our discretization, ht = tk+1 − tk, uk = u(tk,x)
and gk = g(tk,x). The smaller the time step ht, the more accurate this time dis-
cretization becomes, but the longer the optimization of the same time span will take.
Substituting the relevant PDE into this expression then gives us an equation we can
approximate. However, solving this also requires a priori knowledge about the domain
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Ω of our problem and its boundary domain ∂Ω, along with the boundary conditions
and the initial conditions as follows:

u(0,x) = u0(x), x ∈ Ω (Initial condition)
u(t,x) = b(t,x), x ∈ ∂Ω (Dirichlet Boundary condition)

∇u(t,x) = b(t,x), x ∈ ∂Ω (Neumann Boundary condition)

The initial condition serves as the starting state of the phenomena and the boundary
conditions describes what happens at the boundaries of a domain, such as the walls of
a box.

The following equations are two well-known PDEs used in fluid dynamics, which
are later to be approximated by our method.

Burgers’ equation is often used as a simplified expression for the flow of a fluid as
follows:

u̇ = ν∇2u− u
∂u

∂x

Where u(t,x) is a scalar field describing the velocity of the fluid and ν is the
kinematic viscosity.

Navier-Stokes equations are a more complete description of fluid flow as described
by the following system of equations (vorticity form, assumes an incompressible fluid):

∇ · u = 0

ẇ = ν∇2w − u · ∇w + g

Where u(t,x) is a vector field describing the velocity, w(t,x) = ∇×u(t,x) is the
vorticity, g(t,x) are external forces and ν is again the kinematic viscosity.

The complexity of a fluid flow is often predicted with the Reynolds number Re,
which is defined as follows:

Re =
uL

ν
(1)

Where u is the flow speed and L is the length of the system (i.e. the size of the do-
main). The Reynolds number is an indicator of the turbulence, so a higher Re indicates
more expected turbulence.

Another equation that can be used for describing fluid-like behavior of periodic waves
on a membrane is the damped wave equation. It has multiple definitions, but we use
a simplified model, which is defined as follows:
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u̇ = ν∇2z − γu

ż = u

Where u(t,x) is a scalar field describing the velocity, z(t,x) is the height field, ν
is the stiffness constant an γ is the damping constant.

2.2 Physics-Informed Neural Networks
Traditionally, performing physical simulations described by complex partial differen-
tial equations has required the use of computationally expensive numerical solvers [40].
As with many computationally challenging problems, machine learning has been ap-
plied at an attempt to improve their efficiency [1, 19, 32]. As with many machine
learning methods, the problem can be approached by training on large amounts of data
[17, 50]. However, a lack of training data for some problems and difficulty in obtaining
high-quality ground truth data has prompted the creation of a new approach that can
learn from the target PDE, reducing or even eliminating the use of ground truth data. In
the context of solving PDEs, these latter approaches are often called physics-informed
machine learning, due to a (physics-informed) loss term derived from a corresponding
target PDE [20, 32, 42]. This means the governing equation(s) and boundary condi-
tions all induce a loss term that has to be minimized by some machine learning model.
Many of these approaches thus make use of physics-informed neural networks (PINNs)
to model the PDE solution.

The loss terms are simply defined as the residual of the PDE and boundary condi-
tions, i.e. the difference between the right-hand side and left-hand side of the equations.
Typically the mean squared error of the residuals is used to more strongly penalize
higher deviations and to ensure the losses are non-negative. This gives us the following
loss terms:

LPDE = MSE(u̇(t,x)− f(t,x)),x ∈ Ω (PDE loss)
LBC = MSE(u(t,x)− b(t,x)),x ∈ ∂Ω (Dirichlet BC loss)

LBC = MSE(∇u(t,x)− b(t,x)),x ∈ ∂Ω (Neumann BC loss)

Here x represents any point in the domain, so an exact solution would require an
integral over the domain, which can only be computed exactly with analytical meth-
ods that are typically time consuming or intractable for complex problems. Instead,
x is sampled randomly in continuous-space methods, or on a mesh in discrete-space
methods, in order to approximate the integral describing the loss terms.

In these loss terms, typically only the derivatives over time require discretization,
due to the convenient automatic differentiation present in neural networks, by defini-
tion. This automatic differentiation can be performed over any input to the network,
such as spatial coordinates.
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Initially, such physics-informed losses have been combined with small datasets
containing ground truth data [31, 36]. Some more recent approaches avoid ground truth
data altogether and successfuly learn to solve PDEs solely from the physics-informed
loss [44, 46]. Training these models requires careful tuning of the weights of each PDE
loss term involved. To overcome this, the loss function can be made adaptive based on
the loss magnitude [51], or based on the loss statistics (such as the rate of improvement)
[2]. Another method directs initial optimization towards earlier time steps by weighting
with the inverse exponential of the loss sum at each time step [46].

A recent method embeds (some of) the PDE directly into the network architecture
[23] by computing a finite difference approximation of the PDE for the input state,
producing high-quality results. However, the method has only been trained on ground
truth data from a numerical solver and compared to a baseline represented by a convo-
lutional network, so it is unclear how it compares to more complex models.

There have been numerous different architectures proposed for solving PDEs, in-
cluding but not limited to: convolutional networks [43, 44, 50], recurrent networks
[37], transformers [56], neural operators [16, 18], Bayesian networks [53], evolution-
ary algorithms [1, 37] and Gaussian processes regression [10, 26].

2.3 Gaussian Splatting
Reconstructing a thee-dimensional scene from a collection of input images has seen
a lot of attention in computer graphics and beyond since the introduction of neural
radiance fields (NeRF) [4, 9, 14, 24]. This approach implicitly learns to represent a 3D
scene from any viewpoint through a neural representation, taking as input a coordinate
and view direction and estimating the color and density. A differentiable renderer then
applies ray marching to produce an image for a target viewpoint. Given a collection
of ground truth images of the desired scene from different viewpoints, the training
proceeds by rendering the scene from different viewpoints through the differentiable
renderer and comparing them directly to the expected ground truth images of those
viewpoints, backpropagating the resulting reconstruction loss between the predictions
and the reference images. This trained model can then be used, for example, to render
the scene from unseen viewpoints.

Though some improvements have been made to the training and inference effi-
ciency of NeRF [25, 54], real-time inference is still difficult to achieve. To that end, a
recently repopularized method in computer graphics, 3D Gaussian splatting (3D-GS),
instead makes use of a collection of unnormalized Gaussian distributions to represent
a 3 dimensional scene [14, 58]. This approach directly learns the parameters of these
Gaussians, along with a color and the opacity for each Gaussian, in order to repre-
sent a scene. Subsequently, much higher training and especially inference speeds are
achieved without sacrificing quality. The collection of 3D Gaussians is rendered to a
2D image for a given viewpoint using a differentiable renderer. First, the mean µ and
covariance matrix Σ of the 3D Gaussians are projected to screen space in the form of a
2D mean µ′ and 2D covariance matrix Σ′ as follows [58]:

9



µ′ = PV µ

Σ′ = JV ΣV TJT

Here V is the camera view matrix, P the projection matrix and J the Jacobian of
the affine approximation of the projection matrix. Next, the resulting 2D Gaussians are
rasterized [14]. This is achieved by alpha-blending the N sorted 2D Gaussians to get
the color C for each pixel as follows:

C(x) =
N∑
i=1

ciαi(x)

i−1∏
j=1

(1− αj(x))

αi(x) = σi exp(−
1

2
(x− µ′

i)
TΣ′

i(x− µ′
i)) (2)

Where x is the coordinate of the pixel and ci, σi, µ′
i and Σ′

i are the color, opacity,
mean vector and covariance matrix for Gaussian i, respectively.

With this differentiable rendering, training 3D-GS is strikingly similar to that of
NeRF, only requiring a few adaptations to create an initial distribution of Gaussians
and to densify the Gaussians in empty regions. Besides the increase in performance,
another advantage of 3D-GS is its better interpretability. Where NeRF is essentially a
black box, mapping a position and view direction to a color, 3D-GS stores all relevant
information in the form of easily interpretable Gaussian distributions and their auxiliary
variables.

2.3.1 Dynamic Gaussian Splatting

The popularity of 3D Gaussian splatting has sparked interest in using the approach for
dynamic scenes. Various methods have been proposed to reconstruct dynamic scenes,
or 3D videos, both for NeRF [6, 28] and 3D-GS [21, 35, 49]. In the latter case, the
approach is often called 4D Gaussian splatting (4D-GS) for the additional temporal
dimension

For NeRF, these methods either include a time component as an extra network
parameter [6], or warp the ray position through a separate machine learning model
when rendering [28].

For 4D-GS, the Gaussians are typically translated, scaled and rotated, either through
an implicit time-dependent machine learning model [35, 49], or an explicit represen-
tation of the transformations [21]. Another approach instead uses 4D Gaussians to
represent all dimensions (i.e. spatial and temporal) of the dynamic scene [7], requir-
ing no updates of the Gaussians during inference, but instead a specialized rendering
algorithm that takes slices in the temporal dimension.

More recently, the large 4D Gaussian reconstruction model (L4GM) [33] has been
proposed, which generates a set of Gaussians per-frame for a given single-view video
input, using a trained prior based on the earlier large multi-view Gaussian model
(LGM) [38] for generating 3D Gaussians based on a static single-view image. This
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means the Gaussians are generated for every frame and not evolved from frame to
frame, though temporal and view consistency are achieved through self-attention.

2.3.2 Physics-Informed Gaussian Splatting

Making use of Gaussian splatting for physics-based simulations is underexplored in
the literature. Unlike 3D-GS for regular dynamic scenes, the dynamics and extent of
a physics-based simulation are unknown beforehand, as they are typically described
by unknown initial conditions and PDEs that have no known exact solution (e.g. the
Navier-Stokes equations). As such, solving them requires a different approach that
integrates information from the current state of the simulation and from the governing
PDE, instead of training the Gaussians on a single dynamic scene. The following
works explore physics-based simulations within the context of 3D-GS, but none of the
approaches aim to approximate solutions to PDEs.

PhysGaussian [52] enables interactive deformation of 3D-GS models by conserving
mass and momentum through a material point method within a combined Lagrangian
and Eulerian view, where the Gaussians are treated as discrete particle clouds. Their
realistic and accurate deformations can range from plastic to static, but no effort is
made to simulate any PDE besides the simple conservation principles.

DreamPhysics [12] and Physics3D [22] both use the material point method to gen-
erate high-quality simulations of Gaussians obtained from 3D-GS. They also both al-
low for inverse physics by obtaining physical parameters from a video diffusion prior.
However, the material point method performs an approximate simulation that is typi-
cally not real-time and physically plausible, but not necessarily physically accurate.

Gaussian Splashing [8] integrates a position-based dynamics approach with 3D-
GS models to combine fluids interacting with solids. Here, both the fluid and solid
particles are represented by Gaussians, making their interaction seamless. However,
like the material point method, the position-based dynamics method is a simulation
based on constraints and approximations and is not necessarily physically accurate.
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3 Methodology
In the following sections, we describe the methodology devised for solving time-
dependent PDEs using Gaussians and machine learning. The method is heavily in-
spired by PINNs (Section 2.2), 3D-GS (Section 2.3.2) and related methods. We begin
by describing how our method uses a mixture of Gaussians to represent solutions to
PDEs, followed by how these Gaussians are initialized. Next, we provide a descrip-
tion of the machine learning model used to evolve the Gaussians dynamically, which is
trained through a physics-informed loss (see Section 2.2). The experimental setup for
training and evaluating the model is further explained in Section 5. Then we elaborate
upon the refinement process, which is used to add or remove certain Gaussians. Lastly,
we discuss how Gaussians can be used to represent the boundary conditions involved
in solving PDEs. An overview of our method is shown in Figure 2.

  

Initialize

Refinement

Next time step

Solution
t

Solution
t+1

Evolve Gaussians

Dynamics 
Network

Δ

Densify Prune

Figure 2: Overview of our method used to dynamically update Gaussians to model so-
lutions to a target PDE. First, the Gaussians are initialized according to some known
initial condition. Then, the Gaussians are repeatedly evolved and refined in an itera-
tive process to model the solution over an arbitrary number of time steps. Evolving the
Gaussians is done through a dynamics network trained on the target PDE. The refine-
ment step first prunes (removes) small or nearly invisible Gaussians and then densifies
(splits) Gaussians in turbulent regions according to an appropriate metric.

3.1 Gaussian Splatting for PDEs
With our approach, we wish to sample an n-dimensional solution to a target PDE from
an m-dimensional domain. To that end, we adapt the 3D-GS algorithm [14] described
in Section 2.3.2, which has originally been designed to render a 3D scene to a 2D
image. Unlike 3D-GS, we do not perform alpha-blending and rasterization, instead we
sample and combine all Gaussians for a given sample point. This is very similar to a
mixture of Gaussian distributions, but without applying any normalization (see Figure
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3). The normalization factor is discarded for simplicity; it can instead be learned as
part of the Gaussian parameters (see below). By using this mixture of Gaussians, our
solution is continuous, which means we are able to sample any point within the domain.

Figure 3: Three unnormalized Gaussians (dashed lines) combined into a single mix-
ture function (solid line). This mixture function is used to represent an approximate
solution to the target PDE.

The value y at a sample point x is computed by sampling from N Gaussians as
follows:

y(x) =

N∑
i=1

αi(x)ui (3)

αi(x) = exp(−1

2
(x− µi)

TΣi(x− µi))

Where for Gaussian i, ui is the value, and αi is a function of x as in Equation (2),
but without the opacity and the projection to 2D. The value ui is here assumed to be
a scalar, but it can also be represented by a vector or even a tensor for more complex
problems. For example, when solving the Navier-Stokes equation, we want to know
the velocity at each point in our domain. Where the velocity is represented as an m-
dimensional vector field, .i.e. u ∈ Rm. Since these variables are deeply intertwined,
the same Gaussians can be used to for both elements of the vector.

The mean µi is simply represented as an m-dimensional vector, but the covariance
matrix Σi requires special attention, since it has to be symmetric and semi-positive def-
inite (SPD) by definition. 3D-GS achieves this by constructing the covariance matrix
from a diagonal matrix (scale) and a quaternion (rotation). However, since a quaternion
is difficult to generalize to arbitrary dimensions, we decided to use an LDL decompo-
sition instead, which gives us the following symmetric covariance matrix:
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Σ = LDLT

=

(
1 0
c 1

)(
s1 0
0 s2

)(
1 c
0 1

)
(in 2D)

=

(
s1 s1c

2

s1c
2 s2 + s1c

2

)
(in 2D)

This matrix is SPD when its eigenvalues are non-negative, which is the case when
s1s2 ≥ 0, so we define si = exp(s′i). Such a decomposition generalizes to any dimen-
sion, except 1D, where we only have a variance σ2 and no covariance terms.

Our goal is to match y(x) as closely as possible to the solution of our PDE within
the domain. This essentially makes y(x) a finite decomposition of the solution func-
tion, in terms of Gaussians. However, the solution is typically unknown for complex
non-linear PDEs, which makes an exact decomposition of the function impossible. As
such, we require a further approximation, which is aided by our dynamic Gaussians.

Because y(x) approximates our solution function u(x), we can derive approximate
spatial derivatives to be used in computing the residual:

u(x) ≈ y(x)

∂

∂x
u(x) ≈ ∂

∂x
y(x) = −

N∑
i=1

viαi(x)Σix

This can be repeated to compute the Laplacian term and any further spatial deriva-
tives. Furthermore, the derivative with respect to any of the Gaussian parameters (i.e.
vi, µi, σi and Σi) can be derived in a similar manner, which makes the Gaussian sam-
pling completely differentiable.

3.2 Initializing Gaussians
In a time-dependent PDE, the initial conditions at time t = 0 are typically given in the
form of a function (e.g. u0(x), x ∈ Ω, see Section 2.1). First, we need to obtain a set
of Gaussians that represent these initial conditions and are then evolved from there to
represent the solution to the target PDE.

To go from an initial function defined on a domain to a collection of Gaussians, we
again draw inspiration from 3D Gaussian splatting [14]. Akin to Gaussian splatting,
we directly update the Gaussian parameters through gradient descent, by comparing
our current result to the desired initial condition. Unlike Gaussian splatting, we cannot
directly use reconstruction loss for this training, because we typically want to represent
a continuous function, instead of an image. Therefore, we use our sampling method
(see Section 3.1) to sample points randomly from our domain and compare the sample
output to the output of the initial function at the same coordinate. This random sam-
pling can adhere to any distribution, as to emphasize important regions by sampling
more often in those regions. However, a uniform distribution over the domain is most
general, and no further distributions will be explored in this work.
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Once a running average of the sample loss reaches a specified threshold or a max-
imum number of steps, the process is halted. Ideally, the resulting collection of Gaus-
sians will cluster around regions with high information density – or a high local vari-
ance – since more turbulence is expected in these regions. Accordingly, since these
regions require finer Gaussians during initialization to represent the high-frequency
details, we expect this will occur naturally during training.

The similarity of our sampling with a mixture of Gaussians suggests that instead
of gradient descent (GD), we could apply expectation maximization (EM) [3], which
is often used for finding the maximum likelihood estimate for a mixture of Gaussians.
However, the use of EM for Gaussian mixtures is typically limited to clustering, using
at most a few dozen Gaussians. Although it should be possible to adapt EM to our
use case, it is still an iterative optimization process and we do not expect much benefit
compared to GD, so we have chosen to use GD for the initialization, which is well-
established for a large number of Gaussians (i.e. 100K-500K [14]).

3.3 Dynamic Gaussians
There exist many different approaches for dynamically updating a collection of Gaus-
sians, as described in Sections 2.3.1 and 2.3.2. However, these approaches are either
direct simulations with knowledge of the solution function to the PDE, or are optimized
for a single scenario. Instead, we require an approach that generalizes to different sce-
narios, without explicit a priori knowledge of the solution to the target PDE. To achieve
this, we have chosen to use an autoregressive model that integrates information from
the current state of the Gaussians and the PDE, and generates a prediction for the next
state. To that end, we have opted to use a deep neural network that outputs the deltas
(change) of the parameters for each Gaussian. This enables us to learn some implicit
representation of the solution function to a PDE encoded in the network and generalize
to multiple scenarios. An illustration of our method is shown in Figure 2.

Although completely continuous methods for dynamic Gaussians exist [21], these
are designed for representing a single dynamic scene by fitting a curve to each Gaussian
parameter, whereas we aim to to represent a multitude of scenarios based on arbitrary
initial conditions. As such, an independent fitting of each Gaussian would not gener-
alize well, nor enable the integration of neighborhood information. Furthermore, we
expect the increased flexibility of a neural network compared to fitting a curve to be
a requirement for complex physical phenomena. Another alternative would be to rep-
resent the PDE solution with Gaussians that extend into the temporal dimension [7],
which would be based on the initial condition, similar to the 3D Fourier Neural Oper-
ator [17]. However, Gaussians do not extend into the time domain as well as Fourier
decompositions, since Gaussians decay to zero and sine waves do not. As such, it
would be difficult to imagine extending this to longer time sequences, especially since
it is difficult to imagine adapting the Gaussians over time when they already extend into
the temporal dimension. Instead, we require some form of discretization of the problem
in the time domain, for which we use the backward Euler method, as described in Sec-
tion 2.1. Nevertheless, it is possible to perform (linear) interpolation of the Gaussians
between two time steps to gain an approximately continuous representation.
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3.3.1 Model Architecture

An overview of the architecture of our network is shown in Figure 4. It is inspired
by PointNet [29] in that it is divided into an encoder, an aggregation component and
a decoder. This architecture enables an arbitrary number of Gaussians to aggregated
and updated. The encoder in our network computes a latent vector for each Gaussian
and its parameters, compared to points in PointNet. The aggregation component in our
network aggregates latent vectors of the neighbors of each Gaussian separately, where
PointNet aggregates all latent vectors into a single global latent vector. The decoder in
our network is similar to the segmentation network of PointNet, where we compute the
deltas for each Gaussian based on the local latent vector of that Gaussian, compared to
computing the labels for each point based on the global latent vector in PointNet. A
detailed description of the individual components is provided in the paragraphs below.
An approach like this enables the use of an arbitrary number of Gaussians, but it does
mean the model needs to be applied to each Gaussian separately. Furthermore, the
separate application implies a lack of coordination between the Gaussians, which could
be a limiting factor in terms of expressiveness. However, we expect that the local
latent vector – which describes the state of the neighboring Gaussians – will enable the
incorporation of the changes of its neighbors effectively. Furthermore, the principle of
locality in classical physics ensures that any particle is directly influenced only by its
surrounding particles, which means distant Gaussians are unlikely to affect one another
on a small time scale and they need not be considered in the update.
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Figure 4: Overview of the network architecture used in our method. Gaussian param-
eters are input into the network, then aggregated into a local latent vector, and lastly
the network ouputs the change in Gaussian parameters ∆. Here n is the number of
Gaussians, m the input size, l the latent size and δ the output size.

Input Besides the Gaussian parameters, i.e. the mean µ, covariance Σ and value
u, additional information is computed to guide the model. Firstly, we compute the
spatial derivatives – namely the first-order spatial derivatives and the Laplacian – of
our solution at the location of the means of each Gaussian by accumulating the spatial
derivatives of all Gaussians at those points. These spatial derivatives, along with the
parameters describing the problem are then used to compute the right-hand side of the
target PDE f(t,x) at the same points [23]. All these input variables are combined to
give the model a better understanding of the current state of the solution.
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Figure 5: Architecture for the encoder and decoder components of the network. The
encoder encodes the Gaussian parameters into latent vectors and the decoder decodes
local latent vectors into the change in Gaussian parameters ∆. See Figure 4 for the
role of these components in the network.

Encoder & Decoder The encoder and decoder components are shown in Figures
5a and 5b, respectively. Besides some minor changes, mostly in the width and depth
of the network, these components remain largely similar to the encoder and segmen-
tation decoder networks from PointNet [29]. However, we have removed the batch
normalization from each layer and replaced ReLU with the hyperbolic tangent for the
activation, since we found these changes to work better on our problem spaces. The
reason for the poor performance of ReLU can likely be explained by the large deltas
produced by the network with this activation, which makes the model diverge rapidly
and often during training.

For the encoder, more input parameters are considered, as mentioned above, which
are all transformed by the input transform. Each input parameter has its own trans-
formation matrix, which is constructed from an average pooling over all Gaussian pa-
rameters and the same transformations are used for each Gaussian. The goal of this
input transform is to enable the model to learn invariances (e.g. different scales) of the
problem. We do not consider a local neighborhood of Gaussians here, since we intend
for the model to learn global invariances. Once all the input has been transformed, it
is processed by an MLP to compute a latent vector for each Gaussian. Unlike Point-
Net, this latent vector is not transformed again, since the latent size L in our case is
much smaller (64 in our case and 1024 in PointNet). It is important to note that we do
not encode the mean µ in the latent vector, since the absolute position in space is not
relevant for the PDEs we are considering, so we discard it after transforming the input
to prevent overfitting the model on the data. Instead, we wish to encode information
about the position of a Gaussian relative to its neighbors, which will be described in
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ponent to factor in the relevance of each neighbor. See Figure 4 for the role of this
component in the network.

the neighbor aggregation below.
For the decoder, we keep the skip connection from the individual Gaussian latent

vectors, which encode the Gaussian parameters, since the deltas will be directly applied
to (some of) these parameters. This means that for every Gaussian we combine its
latent vector with the local feature vector describing its neighbors. This combined
latent vector is then processed by a deep network to compute the output deltas. These
output deltas represent the change in Gaussian parameters at each time step.

Neighbor Aggregation Unlike the encoder and decoder components, the neighbor
aggregation significantly diverges from PointNet, which uses a simple max pooling to
obtain a global latent vector. Instead, we aim to find a local latent vector for each Gaus-
sian that describes its neighboring Gaussians. To that end, we perform a kind of con-
volution on the Gaussians, akin to DeltaConv [48], but with an additional component
inspired by attention [41], which enables the network to attend to neighbors differently;
we denote the component σ-attention. An illustration of the neighbor aggregation is
shown in Figure 6.

We begin by convolving the Gaussians, which entails finding all p overlapping
neighboring Gaussians for each Gaussian. Here, p is distinct for each Gaussian, which
enables the model to generalize to arbitrary configurations. However, configurations
where p falls outside the typical range seen during training are likely to be challenging,
since the model might not be able to effectively aggregate the number neighbors and
decode the resulting latent vector.

For every Gaussian, we apply k σ-attention heads on each of its neighbors, where
k should be larger for more complex problems. This attention mechanism does not
attend the neighbors with each other, only with the current Gaussian.

Before performing the σ-attention, each latent vector is processed by two shallow
MLPs for each attention head: one for computing the keys Kj and one for the queries
Qi, both using the latent vectors Lj from the encoder. This means for each Gaussian,
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we obtain k key vectors and k query vectors of length h. The query vectors are used to
’query’ the neighbors of a Gaussian through the corresponding key vectors, in order to
determine the relevance of each neighbor, which will then be multiplied with its latent
vector to compute the contribution of the neighbor to the local latent vector. As with
regular attention, the dot product of these vectors Qi ·Kj then provides the relevance
of neighbor Gaussian j for Gaussian i.

Next, the unnormalized neighbor latent vector L̂ij is computed by multiplying the
L × L value matrix V with the the positionally embedded latent vector L̂Dij

. This
positional embedding is similar to the positional embedding used in transformers, but
instead of embedding the absolute position, it embeds the distance to the current Gaus-
sian. We thus denote it a distance embedding.

This embedding is formed by first multiplying (element-wise) the latent vector Lj

with a learned embedding vector, and then adding a different learned embedding vector,
in order to model a linear transformation. Both embedded latent vectors are created
by first embedding the distance dij = µi − µj , i.e. the vector from the mean of
the neighbor to the mean of the current Gaussian. Then we multiply two trainable
matrices of size L × E – one for the additive distance transform TAdd and one for the
multiplicative distance transform TMul – with the embedding vector of size E × 1.

The embeddings are shared across attention heads, but are evaluated between the
Gaussians and each of its neighbors. We chose to use both an additive and a multi-
plicative embedding to allow the direction of the neighbor to affect the sign of certain
latent features, which is impossible to achieve with only an additive embedding. The
additive embedding is kept to still enable the distance to be added as a feature to the
latent vector.

For the embedding vector, we use a Fourier feature mapping [30] that maps the
low-dimensional distance vector to a high-dimensional embedding vector D(dij) as
follows:

D(dij) = [sin(F1dij), cos(F1dij), . . . , sin(FEdij), cos(FEdij), 1]
T

Where Fi ∼ N (0, 10) is randomly initialized and not trainable, i.e. it remains static
once initialized. We found these parameters to give a nice spread around the origin.

Next, the embedded latent vector is computed as follows:

L̂Dij
= TAddD(dij) + TMulD(dij)⊙ Lj

Where TAdd is the additive distance transform, TMul is the multiplicative distance
transform, Lj is the latent vector of Gaussian j and ⊙ is the element-wise product.

With that, we compute the attended latent vector as follows:

L̂ij = (Qi ·Kj) · αj(µi) · V L̂Dij

Where Qi is the query vector of Gaussian i, Kj is the key vector of Gaussian j, αj

is the density of Gaussian j at the mean µi of Gaussian i and V is the value matrix.
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Lastly, the local feature vector is computed by simply summing over the latent
vectors of all its neighbors and normalizing:

L′
i =

1∑
j αj(µi)

∑
j

L̂ij

Regular attention applies softmax over the weights of the individual latent vectors
to normalize them relative to each other. However, we chose to not impose such strong
constraints between the neighbors, as to enable them to contribute independent fea-
tures to the local latent vector. Instead, we normalize by the total density, to enable
processing any number of Gaussians, both distant and proximate.

Naturally, these computations have to be repeated separately for each of the k at-
tention heads, after which the k feature vectors are simply be concatenated to arrive at
the final latent vector describing the local neighborhood.

3.4 Pruning & Densification
The method defined thus far does not change the number of Gaussians after initializa-
tion (see Section 3.2), even though that number might not be sufficient for the entire
simulation. As such, underdefined regions should be densified by adding Gaussians to
those regions. Furthermore, redundant or unnecessary Gaussians should be pruned for
efficiency, since the model will still need to update these Gaussians.

In 3D Gaussian Splatting [14], Gaussians are added and removed in a refinement
step, where densification adds new Gaussians and pruning removes Gaussians. These
steps are necessary for scene reconstruction because it would otherwise be difficult to
determine the required number of Gaussians for a given scene beforehand and result
in regions that are under- or overreconstructed. Furthermore, it addresses issues with
local minima in Gaussian mixtures [5].

The refinement step in 3D-GS is applied periodically during training, which makes
it unsuitable for our approach, since we do not perform any optimization steps after
training, but we still need to prune and densify during inference.

Densification in 3D-GS is based on the gradients of the mean with respect to the
loss. We can estimate the loss and as such the gradients of the mean, but this is an
expensive process and the gradient of the mean is not necessarily a suitable metric for
our method, since we are minimizing different types of loss terms. As such, we need
to find a metric that works well in general (or at least for a specific PDE) and that can
be computed per Gaussian efficiently. Experiments to find such a suitable metric are
described in Section 5.3.

The splitting procedure is also slightly different from 3D-GS, as illustrated in Fig-
ure 7. Instead of moving the Gaussian in the direction of the gradient of the mean, we
find the largest principal component of the Gaussian and create two identical copies of
the original Gaussian, removing the original. The value of the two Gaussians is halved
and they are displaced in the positive and negative direction of the principal compo-
nent, with a magnitude of a single standard deviation. The largest principal component
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is the of the eigenvalue and eigenvector corresponding to the maximum eigenvalue. We
found no benefit in cloning the Gaussians.

Pruning in 3D-GS splatting is performed by removing Gaussians either with an α
below a given threshold ϵ or with a scale that is ’too large’. This approach is applicable
to our approach, except that we have combined the alpha with the color (value u in our
case), so instead we check if the norm of the value ||u||2 is below a given threshold ϵ.
Furthermore, although we can also remove Gaussians that are ’too large’ we have not
observed these to occur often during inference, and they are likely to be of importance
to the solution rather than nuisance.
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Figure 7: Example of the splitting procedure used in our densification step, based on
moving two copies with halved value in the positive and negative direction of the largest
principal component of the original Gaussian. The procedure (in 2D) is illustrated on
the top and an example (in 1D) is demonstrated on the bottom.

3.5 Boundary Conditions
So far, we have ignored the boundary conditions involved in solving PDEs, as was
described in Sections 2.1 and 2.2. Since the means of the Gaussians have not been
included in the network for computing the latent vectors, there is no way for the model
to minimize the boundary loss term LBC . Ideally, we want our model to generalize
to arbitrary domains for the same PDE, which means including the mean would be in-
sufficient, as the boundary conditions might change. As such, we need a more general
method for providing information about the boundaries to the network. One possibility
would be to add another variable to the input for each Gaussian, which is the vector
from the mean to the nearest boundary. However, we have decided to go for a simpler
and more robust approach that defines the boundary in terms of Gaussians, as shown
in Figure 8. This means we do add another input variable for each Gaussian, but it
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is simply a flag that indicates whether the Gaussian is part of the boundary or not.
In this manner, the neighbor aggregation will include boundary Gaussians, which will
provide information about the proximity of arbitrarily complex boundaries, as long as
they are sufficiently well represented. Consequently, we need to initialize the boundary
Gaussians in a suitable manner. However, since the boundary conditions are always
known beforehand, we chose to define them manually. The automatic generation of
these boundary Gaussians from the description of the initial condition is an interesting
direction for future work. Another thing to note is that the boundary conditions them-
selves can be problem-specific, meaning that they are subject to change. To address
this, we add another variable to the input of boundary Gaussians (and set it to zero for
non-boundary Gaussians), which indicates the value of the boundary condition at that
point, along with a flag that indicates whether it is a Dirichlet or Neumann boundary
condition. However, to retain focus we limit the evaluations to exclusively use con-
stant Dirichlet boundary conditions in this work (i.e. they do not change within the
experiments).

  

Figure 8: Defining PDE boundary conditions (left) by means of additional Gaussians
(right). In this example, the black box is the outer boundary, beyond which all points
ought to adhere to the boundary conditions. The same holds within the puzzle piece in
the center.

22



4 Implementation
For the implementation we use PyTorch [27] and CUDA.

4.1 Efficient Gaussian Sampling
Our sampling approach described in Section 3.1 has to accumulate information from
every Gaussian. This is clearly inefficient when dealing with a large number of Gaus-
sians. To address this, we use an optimization similar to the fast 3D Gaussian splatting
rasterization algorithm by Kerbl et al. [14].

First, the domain is tiled into equal squares based on the axis-aligned bounding
box of the sample points. In 3D-GS, the domain is a 2D image on which the Gaus-
sians are rasterized, but for our sampling approach, we generalize this optimization
to any dimension by tiling hypercubes instead of squares. Next, each sample point is
assigned to its respective tile. All Gaussians are then culled according to their 99th
percentile. This ensures that Gaussians that contribute very little to a point – at most
1% of their density – are not considered in the accumulation. Typically, this means we
sacrifice a small amount of accuracy for a large performance boost. Lastly, we apply
the aforementioned sampling in parallel (on the GPU) for every tile.

Besides the difference in accumulation of Gaussians, our implementation differs
from the 3D Gaussian splatting rasterization in that it deals with a continuous space,
where arbitrary points are sampled in the same dimension as the Gaussians reside in.
On the other hand, 3D-GS projects 3D Gaussians onto an arbitrary 2D plane with
equally spaced points representing pixels.

4.2 Efficient Neighbor Aggregation
The aggregation of neighbors is split into three steps, as described in Section 3.3.1: a
preprocessing step, a forward pass and a backward pass. First, in the preprocessing
step, the neighbors of each Gaussian are found by checking for overlap. Then, in the
forward pass, the σ-attention is applied to the neighbors of each Gaussian. Lastly, the
backward pass simply computes the gradients of the output from forward pass with
respect to the inputs. The preprocessing step only has to be applied once each time
step, which is then used for the forward and backward passes of each of the k attention
heads.

All Gaussians are evolved separately in our model, so we apply each of the steps
of our aggregation in parallel (on the GPU) for every Gaussian. Furthermore, the k
forward and backward passes for each attention head is also performed in parallel.

The forward and backward pass are difficult to optimize any further, since they are
highly sequential. Instead, it makes sense to optimize the preprocessing step. A naive
implementation simply checks all Gaussians to find out whether they overlap. We
slightly simplify this overlapping computation, by assuming the Gaussians are spheres
with a radius according to their largest principal component. Further optimization re-
quires the use of a bounding volume that enables us to skip neighbors in different
volumes. However, we found that even with 10k Gaussians, the preprocessing step
consumes less than 10% of the computation time. As such, we decided to not optimize
the implementation any further and focus our efforts elsewhere.
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5 Experiments & Evaluation
In the following sections, we discuss various experiments to evaluate the applicability
of Gaussians for modelling physical phenomena. This includes the representational
quality of Gaussians in static and dynamic scenarios.

5.1 Static Representation
The representational quality of Gaussians has been demonstrated for various 2D [55]
and 3D [14] scenarios. However, these scenes do not include turbulent examples that
are commonplace in modelling physics. Here we describe such scenarios and validate
the ability of Gaussians to represent them.

Typically, initial conditions used for modelling PDEs are smooth and relatively
simple, such as the first two examples shown in FIgure 9. However, the solution to the
PDE may become very turbulent over time, e.g. for the Navier-Stokes equations when
using high Reynolds numbers (see Equation 1). In order to verify the representational
quality of Gaussians for modelling PDEs, we will test both smooth and turbulent ex-
amples. To achieve this, we use the initialization of Gaussians described in Section 3.2
for various functions and images. For illustrative purposes, we only focus on one and
two dimensions for our experiments and evaluation, but our method is by no means
limited to these scenarios and is expected to generalize to arbitrary dimensions.

The three example functions and two turbulent example images used for this exper-
iment are shown in Figure 9, alongside the sampled results and corresponding Gaus-
sians. These solutions were each trained for 50k iterations, the final loss and total
number of Gaussians for each example are shown in Table 1.

Example Gaussians Loss
Gaussian 120 9.6e-8
Sinusoid 389 2.8e-6
Abstract 11918 3.6e-2
ΦFlow [39] 401 1.9e-4
Turbulence [47] 5534 1.5e-3

Table 1: Loss and total number of Gaussians for the initialization examples shown in
Figure 9.

These results indicate that Gaussians are excellent for representing smooth struc-
tures, evident from the low losses on the ’Gaussian’ and ’Sinusoid’ examples using
relatively few Gaussians. Furthermore, the more turbulent examples ’ΦFlow’ [39] and
’Turbulence’ that are more representative of physical phenomena can also be recon-
structed well through Gaussians. However, the ’Abstract’ example shows the difficulty
in representing sharp edges, as evidenced by the high loss, the needle-like Gaussians
and the large total number of Gaussians used. Many of the corresponding Gaussians
near the sharp discontinuities of this example are exceedingly anisotropic, i.e. the ratio
between the largest and smallest principal components is large, which results in a bleed-
ing effect into the smooth part of the ’Abstract’ example. Since such sharp discontinu-
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Figure 9: Various functions and images used for validating the representational ca-
pacity of Gaussians for modelling physical phenomena, alongside the sampled results
and corresponding Gaussians after training.
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ities are uncommon in physical phenomena, we do not further optimize our approach
to address the anisotropic Gaussians, but regularization based on the aforementioned
ratio could serve as a remedy in these cases [13]. As can be seen, especially in the
’Turbulence’ example, the Gaussians indeed center around the regions with high in-
formation density, which will be beneficial for evolving the dynamics, as more change
tends to happen around these regions.

In short, Gaussians appear suitable for representing (static) solutions to complex
PDEs.

5.2 Dynamic Representation
Here we describe two types of optimization techniques for modelling time-dependent
PDEs through dynamic Gaussians, such that we can validate the use of Gaussians for
this purpose.

5.2.1 Explicit Optimization

In the following experiments, we perform an explicit optimization of a collection of
Gaussians. The Gaussians are initialized as described in Section 3.2. Once the initial
condition is sufficiently represented by the Gaussians, the solution to the desired PDE
is explicitly optimized when the problem is discretized in time. This means we have
a collection of Gaussians at each time step and use the Gaussians of the current time
step as a starting point for inference of the representation of the next time step. The
optimization is done through gradient descent with the physics-informed loss LPDE

(see Section 2.2) and our differentiable Gaussian sampling (see Section 3.1). In order
to obtain a spatially continuous approximation of the solution to the PDE, we again
sample random points within the domain and compute LPDE at those points, and then
minimizing this loss by optimizing the Gaussian parameters. For simplicity, no further
loss-terms are used in this experiment (i.e. LBC is not included here). For simplic-
ity, we do not perform any pruning or densification during the optimization, such as
described in Section 5.3.

After optimization, we wish for the resulting Gaussians to smoothly represent the
solution to the desired PDE function continuously in space and discretely in time for
the specified initial condition. With this approach, a change in initial condition requires
the Gaussians to again be optimized from the ground up, which makes it unsuitable as
an effective surrogate model for PDEs. Nevertheless, it should suffice as to provide
insights into the applicability of Gaussians for solving time-dependent PDEs.

We have performed this experiment on three 1D time-dependent problems: Burg-
ers’ equation, the diffusion equation and the wave equation. The results of this exper-
iment are shown in Figure 10. In each problem, the standard normal distribution is
used as the initial condition and a time step of ht = 0.05 is used, though the results
are displayed at different time steps (denoted ∆t). Since each problem starts with the
same number of Gaussians and we wish to compare the resulting solutions, we use
20 Gaussians for all three problems. The ground truths have been computed using a
numerical solver.
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From these experiments, it can be seen that the Gaussians can represent the PDE so-
lutions reasonably well for a variety of different equations. Nevertheless, the results are
not perfect reconstructions of the ground truth, especially for the wave equation, which
can likely be improved with a smaller time step or a different optimization method.
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(a) Burgers’ equation, ∆t = 0.25.
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(b) Diffusion equation, ∆t = 0.15.
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(c) Wave equation, ∆t = 0.1

Figure 10: Results for the explicit optimization experiments compared to the ground
truth for three different PDEs. The ground truth is shown as a solid orange line and the
prediction as a solid blue line, while the individual Gaussians making up the prediction
are shown as dashed lines of various colors.

5.2.2 Implicit Optimization

Since the aforementioned explicit optimization of Gaussians is insufficient as a gen-
eral surrogate model for PDEs, a different approach is required. For this purpose, we
propose a machine learning model that will dynamically update the parameters of each
Gaussian (as described in Section 3.3), aiming to generalize to arbitrary initial con-
ditions. To enable this, the model is trained on the desired PDE with various initial
conditions that are representative of the expected initial conditions. This training hap-
pens in a similar manner to the explicit optimization, i.e. by sampling random points
within the domain and optimizing the model on the physics-informed loss LPDE at
these points. However, we include additional loss terms: one for the boundary condi-
tion(s) LBC (see Section 2.2) and another loss term for the similarity of the Gaussians
LSIM . The similarity loss term forces the deltas output by the model to be small, such
that the Gaussians do not change more than necessary to model the solution, which
also serves to stabilize the training. This similarity loss is as follows:
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LSIM =
1

N

N∑
i

(αµ||δµi||22 + αΣ||δΣi||22 + αu||δui||22)

Where δµi, δΣi and δui are the change in mean µ, covariance matrix Σ and value u
of Gaussian i, respectively and αµ, αΣ and αu are the corresponding weighting factors.
We have found, through trial and error in our experiments, that αµ = 3, αΣ = 3 and
αu = 1 work well.

The total loss is then defined in the following manner:

L = αSIMLSIM + αPDELPDE + αBCLBC

Where αSIM , αPDE and αBC are the weighting factors of the loss terms, where
we have found αSIM = 0.1, αPDE = 1 and αBC = 1 to work well.

The similarity loss is averaged over all Gaussians, and the PDE and boundary losses
are averaged over their own set of random points, which are re-sampled every epoch of
training. An example of these two sets of randomly sampled points within a square do-
main are shown in Figure 11. To ensure that Gaussians are not susceptible to skipping
over the boundary to avoid inducing a loss, we sample the boundary points not only on
the boundary, but also further outside the domain where strictly neither the PDE nor
the boundary conditions apply. Since we only make use of constant Dirichlet boundary
conditions, this implementation is sufficient. However, for more complex boundary
conditions, an additional loss could ensure that Gaussians do not move outside of the
domain.

  BC samples            PDE samples

Domain

Figure 11: Two sets of random samples used for computing the physics-informed loss
LBC (red, inside the domain) and the boundary condition loss LPDE (blue, outside
the domain and on the boundary).

Every epoch of training, we train the model for a predefined number of steps
k = T/ht, depending on the desired time resolution T and time steps ht. The loss
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is computed on each of these steps separately and, although possible, we chose not to
propagate the gradient to previous time steps, to save on memory and training time.
Moreover, due to the vanishing gradient effect, the benefit of propagating the gradient
to previous time steps is expected to be marginal compared to the increased computa-
tion time.

In order to ensure that the loss of earlier time steps in the epoch is not sacrificed for
later time steps, we perform an accumulative (negative) exponential weighting of the
loss based on previous time steps [46].

We only train the model on the 2D case for these experiments and we use a unit
domain (x and y range between -1 and 1). Furthermore, no boundary conditions, nor
pruning or densification will be used in these experiments. These will instead be ex-
plored in Sections 5.4 and 5.3, respectively.

Since we chose not to train on any ground truth data for our model, we have to find
suitable initial conditions that enable the model to exploit the Gaussians effectively.
This initialization does not use any pre-defined initial condition, so we instead need
to find initial values for the Gaussian parameters. To that end, we experimented with
various initialization methods for the training, namely ’Uniform’, ’Uniform Noise’ and
’Random’, see Figure 12. All random sampling in this methods is from a standard nor-
mal distribution. For the ’Uniform’ method, we distribute the Gaussians uniformly in
the domain with equal variance and no covariance, then assign their values according
to a normal distribution with a randomly sampled mean and variance. This variance is
expected to be at least twice as large as the variance of the individual Gaussians. The
’Uniform Noise’ method is based on the ’Uniform’ method, but it always uses the stan-
dard normal distribution for assigning the values. Then, a small amount of randomly
sampled noise is added to the parameters of each Gaussian. Lastly, the ’Random’
method assigns all Gaussian parameters entirely randomly. For the last two methods,
we apply the hyperbolic tangent to the means of the Gaussians, in order to prevent
them being initialized outside the domain. All three methods have a random (square)
number of Gaussians chosen uniformly (between 225 and 1600) alongside the other
randomization. The randomization is applied every epoch.

Burgers’ equation We train one models on each of the three different initialization
methods for 3k epochs on the Burgers’ equation with ν = 1

10π and ht = 1.0. Then,
the first evaluation of the trained models is performed on the ’Uniform’ method the
standard normal distribution with 30 × 30 Gaussians. A second evaluation is per-
formed on the Gaussians obtained from the ’Gaussian’ initialization described in Sec-
tion 3.2. Lastly, another evaluation is performed on an instance from the ’Uniform
Noise’ method, but without perturbing the values u (the same instance is used for each
model). The final losses on the evaluations are shown in Table 2. The resulting so-
lutions and corresponding Gaussians for the uniform evaluation are shown in Figure
13.

It is clear from these results that the ’Random’ method performs the worst and
does not learn the dynamics well. On the uniform evaluation, the ’Uniform’ method
performs the best of all three methods. However, on the noisy and initial evaluation,
the ’Uniform Noise’ method significantly outperforms the ’Uniform’ method. Since
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Figure 12: Three different initialization methods we experimented with. Each is ini-
tialized with 400 Gaussians in the unit domain.

Method Evaluation 1 Evaluation 2 Evaluation 3
’Uniform’ 48.879 91.417 219.15
’Uniform Noise’ 75.458 73.221 45.336
’Random’ 117.39 99.033 51.915

Table 2: Losses on the evaluation of the three different initialization methods shown in
Figure 12.

we do not expect a uniform distribution of Gaussians in practice and want our method
to generalize and be able to integrate the addition or removal of Gaussians (see Section
5.3), we have chosen to train the Burgers’ equation model using the ’Uniform Noise’
method.
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(c) Random

Figure 13: Results of the three different initialization methods shown in Figure 12 on
the uniform evaluation.
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Figure 14: Depiction of the surface of
a torus unwrapped onto a 2D image.

Navier-Stokes equations To enable the
comparison of our method to other methods
and to ground truth data, we train our model
on the ΦFlow [39] dataset generated by Li et
al. [17]. This dataset contains nearly ground
truth data generated from a numerical solver.
We use this data to generate initial Gaussians
with our initialization method described in
Section 3.2. However, the domain for this problem is defined on the surface of a
torus as shown in Figure 14, which means there are no boundaries and no boundary
conditions. Furthermore, the data only expresses the vorticity w(x) = ∇ × u(x), but
the underlying PDE is defined on the velocity u(x) (see Section 2.1), which has to be
converted when initializing and evaluating.

To enable the Gaussians to reside on the surface of a torus, we ensure that they are
splatted beyond the image boundaries, i.e. across the opposite boundaries. Moreover,
when the center of any Gaussian exceeds an image boundary, it is teleported to the
opposite boundary. Training the model remains unchanged, as rendering beyond the
boundaries remains entirely differentiable.

Due to the complexity of training our model on the Navier-Stokes equations using
exclusively the aforementioned losses, we have decided to add an additional recon-
struction loss term that makes use of the ground truth data. This loss term is as follows:

LRecon = MSE(w̃(t,x)− w(t,x)), x ∈ Ω

Here w̃(t,x) and w(t,x) are the ground truth data and the prediction of our model,
respectively, at time t and position x. In a like manner to the LPDE and LBC (see
Section 2.2), we approximate this reconstruction loss by averaging over many uniform
random samples within the domain. Since the ground truth data only has a limited
resolution of 64×64, but we wish our solution to be continuous, we compute the loss by
finding the nearest ground truth pixel to the sampled point. Other interpolation methods
(e.g. linear or cubic) are also possible, but any method enforces some (likely incorrect)
structure on the data, so we chose the simplest method. An example of the initialization
for three different values of ν are shown in Figure 15. These figures demonstrate that
the initialized state can interpolate both smooth (ν = 10−3 and ν = 10−4) and sharp
(ν = 10−5) features to form a continuous representation of the low resolution ground
truth data.
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(a) ν = 10−3 (b) ν = 10−4 (c) ν = 10−5

Figure 15: Example of initial conditions used for the evaluation of the Navier-Stokes
model along with the results after initialization for various values of ν. Note that
the ground truth examples are 64 × 64 pixels, so the intermediate values have to be
interpolated during initialization.
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5.3 Pruning & Densification
Here we test various criteria for densification, along with the effect of pruning. We
perform the experiments on each of our PDEs of interest separately, in order to find
the best criterion specific to each PDE. The process for pruning and densification is
described in Section 3.4.

Burgers’ equation For the Burgers’ equation, we propose three distinct criteria and
some of their combinations, which are each computed at the Gaussian means, and the
top 2nd-percentile is then split. These criteria are the change of sample value between
two time steps u̇, the Laplacian ∇2u and the inverse total density σSum. We perform
the evaluations on a model trained with the aforementioned initialization for 5k epochs.
The resulting physics-informed losses for these criteria on various different evaluations
are shown in Table 3. From these results we find that the σSum · u̇ criterion performs
best for the Burgers’ equation. An example of this densification is shown in Figure 16.

Criterion Evaluation 1 Evaluation 2 Evaluation 3 Evaluation 4
No split 75.458 73.221 45.336 141.87
u̇ 72.750 69.695 44.578 143.07
∇2u 67.726 70.605 46.157 148.42
u̇ · ∇2u 71.801 69.794 45.842 144.91
σSum 75.248 73.036 45.094 142.27
σSum · u̇ 72.000 68.284 44.627 140.61
σSum · ∇2u 66.949 71.806 46.092 143.75

Table 3: Losses for the densification criteria on various evaluations for Burgers’ equa-
tion.

Figure 16: Example of the densification of Gaussians for Burgers’ equation based on
the splitting criterion that multiplies the time derivative of the solution with the density
σSum · u̇.

Navier-Stokes equations For the Navier-Stokes equations, we use the same criteria
as for the Burgers’ equation, but we consider additional criteria, since our Navier-
Stokes model expresses the solution as a vector field instead of a scalar field, on which
additional operators can be applied. These criteria are the curl ∇×u and the divergence
∇·u. Additionally, we evaluate the criteria on u as well as on w = ∇×u when possible.
We perform the evaluations on a model trained with the aforementioned initialization
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for 5k epochs on the ν = 10−3 data. The resulting physics-informed losses for these
criteria averaged over different samples from the ν = 10−4 dataset are shown in Table
4. From these results we find that the σSum criterion performs best on average for the
evaluated Navier-Stokes equations. In fact, it is the only criterion that performs better
than the baseline without splitting.

Criterion LPDE

No split 749.66
u̇ 1080.6
∇2u 1273.0
∇× u 803.70
∇ · u 795.86
ẇ 739.22
∇2w 794.27
σSum 723.38
σSum · u̇ 791.15
σSum · ∇2u 1038.2
σSum · ∇ × u 787.43
σSum · ∇ · u 764.09
σSum · ẇ 736.81
σSum · ∇2w 763.64

Table 4: Losses for various densification criteria averaged over different samples from
the ν = 10−4 dataset for the Navier-Stokes equations.

It is important to note that for neither set of equations, the decision of the best cri-
terion is unanimous between the evaluations, even when using the same parameters,
which means different problems might benefit from different criteria. Additional crite-
ria not discussed here could also be advantageous, which is further discussed in Section
7.3.

35



5.4 Boundary Conditions
Here we verify whether the boundary Gaussians described in Section 3.5 have the
desired effect of providing boundary information to the dynamic Gaussians model.
To that end, our first experiment is a contrived example that does not make use of a
physics-informed loss. Instead, the goal is to repel/bounce the Gaussians away from
the (horizontal) boundaries. The setup of this experiment is shown in Figure 17a and
the desired outcome in Figures 17b and 17c.

To train this example, we create a new loss term that penalizes the difference be-
tween the (1D) value of the Gaussian and its change in y, i.e. the Gaussians ought to
move in the direction of their value. Furthermore, the top boundary condition (at y = 1)
is equal to −1 and the bottom boundary condition (at y = −1) is equal to 1, such that
the Gaussians change direction – they are repelled – when they reach the boundaries.
We still use the same conservation loss LCON as before, to reduce unnecessary change
in movement, except in the y-direction, and change in value, except at the boundaries.
This means the Gaussians should solely move in the y-direction, indefinitely bouncing
between the top and bottom boundaries.

  

(a) Initial Gaussians

  

+

(b) Gaussians before
reaching the top boundary

  

-

(c) Gaussians after reaching
the top boundary

Figure 17: Experimental setup and expectations for testing the boundary Gaussians.
We expect the Gaussians to bounce between the top and bottom boundaries, without
movement in the x-direction, or any change in parameters besides the value and y-
position. The Gaussians shown in the center are the only non-boundary Gaussians.

The results for the aforementioned experiment are shown in Figure 18. Although
the Gaussians do not exactly align with the expectations (since this would require care-
ful tuning of the losses and hyperparameters), we can see the Gaussians are repelled by
the boundaries as desired. This means the model can effectively integrate information
from neighboring boundary Gaussians.
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Figure 18: Results for the boundary condition experiment illustrated in Figure 17. The
sampled results are shown on the top and the corresponding Gaussians on the bottom.
Frame numbers are shown above each figure.
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5.5 Burgers’ Equation Evaluation
We evaluate our model trained on Burgers’ equation by means of a comparison to nu-
merical data. This numerical data is generated with py-pde [57], which should produce
data close to ground truth solutions when using a fine discretization. The model has
not been trained on any ground truth data, only on the physics-informed loss term and
auxiliary loss terms, and the same model is used for all evaluations. The metric used
for the comparison is the relative L2-norm, normalized by the L2-norm of the ground
truth data. In addition, we list the total physics-informed loss LPDE for the evalua-
tions. We use a latent vector size of L = 64, an embedding size of E = 25 and k = 2
attention heads.

We devise various example problems on which the evaluation is performed. Each
problem includes boundaries at the edge of the 5 × 5 domain and the initial Gaus-
sians are generated through the initialization discussed in Sections 3.2 and 5.1. First,
evaluation 1 is a simple 2D Gaussian distribution. Second, evaluation 2 contains two
2D Gaussian distributions, a narrow one to the left, and a large one to the right. The
results of these evaluations are shown in Table 5. Predictions from our model for all
three problems, alongside the ground truth data, are shown for the various time steps in
Figure 19. For a runtime comparison with the numerical solver, the py-pde [57] solver
takes around 30 seconds to solve 10 time steps on an Nvidia Tesla V100 GPU, whilst
our method takes less than 2 seconds on the same hardware.

Evaluation 1 Evaluation 2
L2-norm 0.1616 0.2611
LPDE 45.551 59.342

Table 5: Evaluation of our model trained on Burgers’ equation in terms of the L2-
norm relative to the ground truth data and in terms of the total physics-informed loss.

From these results, we find that the simple case (evaluation 1) can be solved with
high quality, but the more difficult case (evaluation 2) is not approximated as well by
our method, especially in the early time steps. Besides the increased difficulty, this
can also be attributed to the similarity of the two evaluations to the training data (see
Section 5.2.2), where the evaluation 1 is similar to the training data, but an example
similar to evaluation 2 is unlikely to have appeared often during training.
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(b) Evaluation 2

Figure 19: Evaluation results of our model train on Burgers’ equation using physics-
informed loss without ground truth data.

39



5.6 Navier-Stokes Equations Evaluation
For the evaluation of our model on the Navier-Stokes equations for incompressible
fluids, we compare our predictions to data produced using ΦFlow [39] by Li et al.
[17]. Again, this comparison uses the relative L2-norm with the numerical data –
which should be close to ground truth data. This same data has been used by various
state of the art methods, such as LE-PDE [50], FNO-2D [17] and FNO-3D [17] (here,
the third dimension is the temporal dimension, not an additional spatial dimension).
Moreover, we also compare with evaluations of TF-Net [45], U-Net [34] and ResNet
[11]. These additional evaluations have been performed by Li et al. [17]. All of the
aforementioned methods can integrate multiple past time steps, which our method is
currently not capable, as will be further discussed in Section 7.2. For the evaluations,
these methods integrate the first 10 time steps of the ground truth as input, and predict
the appropriate number of proceeding time steps. At an attempt to make the comparison
between our method as fair as possible, we decided to start our prediction from the
tenth time step of the simulation (i.e. T = 9). The evaluations have been performed
on various different kinematic viscocities, namely ν = 10−3, ν = 10−4 and ν =
10−5, giving respective Reynolds numbers of approximately Re = 103, Re = 104 and
Re = 105 (see Section 2.1). Unlike with the Burgers’ equation model, here we train a
separate model for each evaluation dataset, to keep in line with the other methods. We
use a latent vector size of L = 64, an embedding size of E = 33 and k = 4 attention
heads.

The results are shown in Table 6 and example predictions of our model for various
time steps and values of ν are shown in Figure 20, alongside the ground truth data for
the same time steps. The runtime is computed on the nu = 10−3 model run for 40
time steps, where ’full’ includes updating and rendering each time step and ’evo’ only
includes the rendering of the final time step. For a runtime comparison with a numerical
solver, the ΦFlow solver takes in the order of several minutes to produce the longest
data sequence (T = 50) on high-end hardware [50]. Depending on the complexity of
the initial condition, the initialization of our method – which is not included in Table 6,
since it can be precomputed – takes approximately 10 seconds on an Nvidia Tesla V100
GPU. As such, the initialization would form a significant bottleneck in real-world use,
which is further discussed in Sections 7.2 and 7.3.

These results demonstrate that our model cannot learn the long-term dependencies
of the complex partial differential equations well in its current state. We also perform an
additional evaluation of a model trained only on the first 5 time steps of the ν = 10−3
dataset, to investigate the performance on short-term prediction, of which an example
is shown in Figure 21. These results, with an L2-norm of 0.4129, demonstrate that the
model can learn the dynamics much better on a shorter time span. As such, we expect
more fine-tuning of the model might enable it to produce higher quality results in the
long-term as well, which will be discussed in Section 7.
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ν = 10−3 ν = 10−4 ν = 10−5
Runtime Runtime T = 50 T = 30 T = 20

Method full (ms) evo (ms) N = 1000 N = 1000 N = 1000
FNO-3D [17] 24 24 0.0086 0.1918 0.1893
FNO-2D [18] 140 140 0.0128 0.1559 0.1556
U-Net [34] 813 813 0.0245 0.2051 0.1982
TF-Net [45] 428 428 0.0225 0.2253 0.2268
ResNet [11] 317 317 0.0701 0.2871 0.2753
LE-PDE [50] 48 15 0.0146 0.1936 0.1862
Ours 10003 9913 0.5385 0.6037 0.4452

Table 6: Evaluation of our method on the Navier-Stokes equations using the relative
L2-norm for various numerical datasets produced with PhiFlow [39]. These results
are compared with evaluations of various different methods on the same dataset [17,
50].
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(a) ν = 10−3

Figure 20: Continued on the next page. . .
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(a) ν = 10−4
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(b) ν = 10−5

Figure 20: (Continued) Long-term evaluation results of our model trained on the
Navier-Stokes equations using physics-informed loss and ground truth data for dif-
ferent values of ν.
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Figure 21: Short-term evaluation results of our model trained on the Navier-Stokes
equations using physics-informed loss and ground truth data for ν = 10−3.
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5.7 Ablations
Although we have constructed most of our method step by step, the end result might
contain components that have little to no added benefit, or even reduce the performance
of the model. In order to verify this, we ablate different components of our architecture
individually. For these ablations, we use the Burgers’ model trained as before and
compute the physics-informed loss LPDE and the relative L2-norm as before on the
same evaluations. We train each of the ablated models for 5k epochs. The results for
the ablations of various components is shown in Table 7.

These ablations show us that the current architecture does not contain any redun-
dant components. The model performs the worst without the residual connection from
the encoder, i.e. the per-Gaussian latent vector, to the decoder, which makes sense,
since it communicates to the decoder what the current Gaussian parameters contain.
The neighbor aggregation makes a surprisingly small difference for the first evalua-
tion, likely because without it, the model learns to simply move the Gaussians to the
right based on their current value. However, for the more difficult second evaluation,
the absence of the neighbor aggregation significantly reduces the performance of the
model. Lastly, the input transformation does not appear to play a substantial role in the
architecture, but it ablating it still negatively affects the performance of the model.

Evaluation 1 Evaluation 2
Ablation (LPDE) (L2-norm) (LPDE) (L2-norm)
No Ablation 45.551 0.1616 59.342 0.2611
Input Transformation 68.176 0.1762 65.272 0.2917
Residual connection 264.871 1.386 555.931 1.731
Neighbor Aggregation 40.261 0.2263 243.27 0.7089

Table 7: Ablations of various components of the architecture and their corresponding
PDE loss and L2-norm for the Burgers’ equation evaluation.

44



6 Conclusion
In this work, we have proposed a new method for approximating partial differential
equations (PDEs), making use of physics-informed machine learning and Gaussian
splatting. We represent the solution as a set of Gaussians, which are updated by an
autoregressive machine learning model over discrete time steps. The Gaussians are
combined into a single mixture function at every time step, representing the solution to
the target PDE, and they can be interpolated between the time steps. This representation
is continuous, meshless and interpretable, making it distinct from most contemporary
methods with similar objectives. By aggregating information from a local neighbor-
hood of Gaussians, the Gaussian parameters are updated. The model can be trained
with and without ground truth data and learn the dynamics of arbitrary PDEs.

Extensive experiments and evaluations of various aspects of our method have demon-
strated its potential for solving PDEs. Although a comparison to other physics-informed
machine learning methods on the Navier-Stokes equations has revealed that our method
does not currently match state of the art methods when it comes to long-term prediction,
it does perform better on short-term prediction. Additional fine-tuning and improve-
ments are likely required to address this and other short-comings. Nevertheless, we
believe the advantages of our approach, alongside its applicability to Gaussian splat-
ting techniques, makes this work a valuable first step in the direction of solving PDEs
with Gaussians.
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7 Discussion
The results and experiments shown in previous sections demonstrate the potential for
Gaussians to represent physical phenomena in the form of solutions to partial differ-
ential equations. We have demonstrated that our method can learn purely from the
physics-informed loss, but also from ground truth data. A comparison of our model
with data from numerical solvers (see Sections 5.5 and 5.6), which is close to ground
truth data, reveals that our method can reproduce these results convincingly on small
time scales, but diverges on larger time scales due to the accumulating error and uncer-
tainty. Furthermore, we have compared our results with state of the art methods (see
Section 5.6), particularly LE-PDE [50], FNO-2D [17] and FNO-3D [17]. From this, we
have found that our method does not match the quality of the other methods on long-
term prediction, in part due to the unfair comparison, but it does again demonstrate a
reasonable quality can be achieved in short-term prediction by our method.

In the following, we discuss the advantages and limitations of our approach and the
use of Gaussians for the purpose of solving PDEs in general. Additionally, we provide
possible improvements to our method that can form the basis for future work.

7.1 Advantages
There are various advantages to the use of Gaussians for solving PDEs, which we
elaborate upon here. Firstly, a mixture of Gaussians is completely continuous, which
enables sampling the solution at any spatial resolution. Furthermore, by interpolating
the deltas, the solution can also be sampled at different temporal resolutions. This con-
tinuity is in contrast to many other PINNs that solve on a discretized grid [15, 23, 43,
32]. Nevertheless, other continuous methods do exist [17, 44], and even discretized
methods can be made pseudo-continuous through interpolation. Next, the use of Gaus-
sians as an intermediate representation makes our method more interpretable than most
other PINNs that are completely black-box. Namely, the Gaussians can be interpreted
as particle-like (especially in the case of fluid dynamics). Another advantage is that
our approach does not require a mesh (such as a grid), only knowledge about the do-
main and its boundary. However, other methods that work on arbitrary meshes also
exist [18]. Lastly, our method can potentially be integrated with Gaussian splatting
techniques to provide physically accurate simulations of 3D scenes (see Section 7.3 for
more details).

7.2 Limitations
Although Gaussians have many advantages, there are also clear limitations to our ap-
proach that should not be overlooked. Firstly, the quality of the results in part depend
on the number of Gaussians that are available. Too many Gaussians and it becomes
challenging to update all of them simultaneously, too few Gaussians and the solution
cannot be sufficiently expressed. Even though our refinement step densifies and prunes
Gaussians, the quality of the simulation is still highly dependent on the initial number
and arrangement of the Gaussians. Next, training the model is more complex than with
other methods, due to the complex interactions between the Gaussians that the model
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needs to be able to anticipate, alongside modeling the solution to the PDE. Another
limitation is the inability of the model to integrate multiple past time steps, as opposed
to other methods [17, 50]. Although the current solution should only depend on the
state of the previous time step, these additional states could provide valuable informa-
tion on the trajectory of the solution. Lastly, the initialization of our approach is time
consuming and does not take into account the optimality of the initialized Gaussians
with regards to the dynamic Gaussians, though a solution is proposed in Section 7.3.

Presumably, these limitations and a lack of more rigorous fine-tuning of the model
results in our method performing subpar when compared to the current state of the art.

7.3 Future Work
Since this work is the first to explore the use of Gaussians for solving PDEs, there are
many unexplored areas for future work. We hope this work can serve as a basis for fur-
ther exploration in this direction. Furthermore, the proposed aggregation/convolution
of Gaussians could potentially serve a similar purpose for Gaussians as DeltaConv [48]
does for point clouds, e.g. segmentation or classification.

Additional experiments with different PDEs, boundary conditions, dimensions (i.e.
3D) and domain shapes can further demonstrate the benefits and limits of the method.
Furthermore, careful fine-tuning is likely to expose many incremental improvements
to the architecture and training procedure. An analysis of individual Gaussians could
reveal to what extent they are particle-like.

A selection of more considerable improvements and/or additions are as follows:

Initializing Gaussians Firstly, initializing the Gaussians is currently a significant
bottleneck in terms of inference speed and likely also inference quality. A conceiv-
able method for improving the initialization involves a learned prior, similar to LGM
[38], which generates 3D Gaussians from an image or text directly through a machine
learning model instead of optimizing the Gaussians through gradient descent as with
3D-GS [14]. To generate the initial Gaussians based on the target initial condition,
the model can be trained through the same procedure as our current initialization (see
Section 3.2). This still requires an efficient method for encoding the initial condition
of the PDE to input into the model. However, simply discretizing the initial condi-
tion into an image (or a volume in 3D) should suffice, since the generated Gaussians
are still sampled at arbitrary positions when computing the loss during training, which
mean they learn to estimate the underlying initial condition from the discretized input.
This learned prior can then be trained jointly with the dynamics network. Not only
can such a learned prior based on LGM be used to generate the initial Gaussians for a
time-dependent PDE, but it could potentially also be used to provide a continuous so-
lution for time-independent PDEs. Where, instead of training the model on the initial
condition, it is trained to produce the solution u(x) given the right-hand side f(x) (see
Section 2.1).
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Boundary Gaussians The current boundary Gaussians, though effective, require
manual placement of the Gaussians. Ideally, these boundary Gaussians could be gener-
ated automatically just as with the initial Gaussians. For simple boundary conditions,
the Gaussians can be placed at regular intervals, as we do now. However, more complex
irregular boundaries require a different approach.

Densification Another improvement could be made in terms of the refinement, es-
pecially the densification. We have experimented with various densification meth-
ods, but our current approach only splits some of the Gaussians once per time step.
This severely limits the number of additional Gaussians introduced in underdefined re-
gions. A learning-based method might provide a better densification, but training such
a method to add (and possibly remove) Gaussians at the ’right’ position is challenging.
Our preliminary experiments on such a learning-based method have proved unfruitful.

Conservation Since the Gaussians provide a particle-like interpretation of the solu-
tion, we expect it should be possible to integrate conservation terms into the approach
– namely, conservation of mass, momentum and energy – to improve the results. How-
ever, when attempting to conserve energy by ensuring the total volume under the Gaus-
sians remains constant throughout the simulation, the quality of the results declined.

Gaussian splatting Lastly, we expect our method to integrate well into existing
Gaussian-based methods, specifically Gaussian splatting. For example, given a static
scene generated by 3D-GS [14], one could imagine interacting with the fluids in the
scene, similar to PhysGaussian [52] and Gaussian Splashing [8], but with more ac-
curate physics. Another idea is to perform inverse physics on a dynamic Gaussian
splatting scene, in which the PDE is known, but its parameters – such as the kinematic
viscocity ν – are not. These parameters can then be derived by modeling the scene
with a guess of the parameters and iteratively updating the parameters based on the
error between the predicted dynamics and the ground truth, similar to DreamPhysics
[12] and Physics3D [22].
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