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CG Variants for General-Form
Regularization with an Application
to Low-Field MRI

M. L. de Leeuw den Bouter, M. B. van Gijzen, and R. F. Remis

Abstract In an earlier paper, we generalized the CGME (Conjugate Gradient
Minimal Error) algorithm to the �2-regularized weighted least-squares problem.
Here, we use this Generalized CGME method to reconstruct images from actual
signals measured using a low-field MRI scanner. We analyze the convergence of
both GCGME and the classical Generalized Conjugate Gradient Least Squares
(GCGLS) method for the simple case when a Laplace operator is used as a
regularizer and indicate when GCGME is to be preferred in terms of convergence
speed. We also consider a more complicated �1-penalty in a compressed sensing
framework.

1 Introduction

In Magnetic Resonance Imaging (MRI), the measured signal b is related to x, the
object being imaged, by a Fourier Transform:

b = F x + v. (1)

Here, v denotes a noise vector. Based on measurements b, we will reconstruct x,
which makes this an inverse problem. In this work, we will assume the object of
interest to be 2D, which means that F is a 2D Fourier Transform operator. However,
all the results can be extended to 3D.

In conventional MRI, the signal-to-noise ratio (SNR) is so high that applying
an Inverse Fourier Transform usually results in an image of very good quality.
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This is because superconducting magnets are used to generate strong magnetic
field strengths of several tesla and the SNR is higher in the case of a stronger
magnetic field. In [8], O’Reilly et al. describe a low-field MRI scanner based on a
configuration of permanent magnets. The magnetic field strength inside this scanner
is 50 mT, whereas conventional scanners have background fields of several teslas.
For very noisy signals, it can be useful to minimize a regularized least-squares
problem of the form

argmin
x

1

2
||b − F x||2

C−1 + 1

2
τ ||x||2R, (2)

instead of disregarding the noise v and solving Eq. (1) for x. In Eq. (2), the
regularization parameter τ determines the tradeoff between the least-squares term
||b − F x||2

C−1 and the regularization term ||x||2R. In the least-squares term, C
denotes the covariance matrix of the noise, and in the regularization term, R is a
regularizing matrix, which we will assume to be Hermitian positive definite (HPD).
Regularization allows us to enforce prior information we have about the solution.
For a thorough exploration of the regularization of inverse problems, the reader is
referred to [5].

2 GCGLS and GCGME

In [2], we introduced the Generalized Conjugate Gradient Minimal Error (GCGME)
method for general form regularization. In this section we will review the main
ideas. We are interested in solving minimization problems of the form

argmin
x

1

2
||b − Ax||2

C−1 + 1

2
τ ||x||2R. (3)

Note that Eq. (3) is of the same form as Eq. (2), but we have replaced F by a general
forward model matrix A.

Usually, minimization problem (3) is solved using the Generalized Conjugate
Gradient Least-Squares (GCGLS) method. (We add the word “generalized” because
CGLS is often used to denote the CG variant that solves the normal equations
A∗Ax = A∗b of the minimized least-squares problem without regularization.) By
taking the gradient of Eq.,(3) and setting it equal to zero, we find

(
A∗C−1A + τR

)
x = A∗C−1b. (4)

Equation (4) can be solved using the conjugate gradient (CG) method. Some
adjustments can be made to improve stability, see for example [1], leading to the
GCGLS method. By rewriting Eq. (3) as a constrained minimization problem, we
can find another set of equations that can be used to find the solution x. We define



CG Variants for General-Form Regularization with an Application to Low-Field MRI 675

r = C−1(b − Ax) and rewrite minimization problem (3):

min
r,x

1

2
||r||2C + 1

2
τ ||x||2R (5)

s.t. r = C−1(b − Ax).

We will assume τ > 0. By applying the method of Lagrange multipliers and
eliminating x, we get

(
1

τ
AR−1A∗ + C

)
r = b. (6)

Additionally, the following relationship between r and x holds:

x = 1

τ
R−1A∗r. (7)

So by applying CG to Eq. (6) and subsequently solving Eq. (7) for x, we can
obtain our solution. The resulting algorithm, which we call Generalized Conjugate
Gradient Minimal Error (GCGME), is given below.

Algorithm 1 GCGME

Require: A ∈ CM×N ,C ∈ CM×M,R ∈ CN×N , r0 ∈ CM,b ∈ CM, τ ∈ R>0;
Ensure: Approximate solution xk such that ‖b − Axk − Crk‖ � T OL.
1: x0 = 1

τ
R−1AH r0

2: s0 = b − Ax0 − Cr0, p0 = s0, q0 = AHp0, γ0 = sH0 s0, k = 0
3: while

√
γk > T OL and k < kmax do

4: ξk = 1
τ
qH

k R−1qk + pH
k Cpk

5: αk = γk

ξk

6: rk+1 = rk + αkpk

7: xk+1 = xk + αk

τ
R−1qk

8: sk+1 = sk − αk(
1
τ
AR−1qk + Cpk)

9: γk+1 = sHk+1sk+1

10: βk = γk+1
γk

11: pk+1 = sk+1 + βkpk

12: qk+1 = AHpk+1
13: k = k + 1
14: end while

2.1 Comparison of the Condition Numbers: A Simple Case

In this section we consider a very simple but illustrative case that allows us to
analyze the condition numbers, and hence the convergence speed, of GCGME and
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GCGLS.We demonstrate, depending on the regularization parameter, which method
is to be preferred. We set A = F and the noise is assumed to be white noise, so
C = I. We define the regularization matrix to be the discretized 2D Laplacian
L complemented with Dirichlet boundary conditions. Choosing the regularization
matrix in this way means that large jumps in the reconstructed image x are
discouraged. In that case, GCGLS solves

(I + τL) x = F ∗b, (8)

where F ∗ = F−1 is the inverse 2D Fourier Transform. GCGME solves

(
1

τ
FL−1F ∗ + I

)
r = b , (9)

x = 1

τ
L−1F ∗r.

The convergence speed of GCGLS and GCGME depends on the condition number
of the matrices I + τL and 1

τ
FL−1F ∗ + I, respectively. The eigenvalues of the

Laplacian L are well-known and hence we can find explicit expressions for the
condition numbers. For GCGLS, we have

κ2 (I + τL) =
1 + 8τ cos2

(
π
2

1
N+1

)

1 + 8τ sin2
(

π
2

1
N+1

) . (10)

Here, we assume that our image consists of N × N pixels. For GCGME, we make
use of the fact that FL−1F ∗ is a similarity transformation and therefore has the
same eigenvalues as L−1, yielding

κ2

(
1

τ
FL−1F ∗ + I

)
=

1 + 1

8τ sin2
(

π
2

1
N+1

)

1 + 1

8τ cos2
(

π
2

1
N+1

)
. (11)

These condition numbers can be shown to be equal when

τ ∗ = 1

8 cos
(

π
2(N+1)

)
sin

(
π

2(N+1)

) . (12)

Figure 1 shows a plot of the condition numbers as a function of the value of
the regularization parameter τ , in case N = 128. We observe that when τ < τ ∗,
GCGLS has a smaller condition number, whereas GCGME has a smaller condition
number when τ > τ ∗. Therefore, we expect GCGME to attain faster convergence
for large τ .
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Fig. 1 Condition numbers of
the GCGLS matrix I + τL
and the GCGME matrix
1
τ
FL−1F ∗ + I as a function

of the value of the
regularization parameter τ

10-4 10-2 100 102 104 106100

101

102

103

104
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CGME

2.2 GCGLS and GCGME for IRLS

The �2-penalty tends to lead to overly blurry images, due to the quadratic penalty
term. Therefore, we are more interested in the �p-regularized least squares problem
with p ∈ (0, 1]:

min
x

1

2
||Ax − b||22 + 1

p
τ ||Fx||pp, (13)

For the �p-penalty with p ∈ (0, 1], the blurring effect is less pronounced.
Additionally, the �p-penalty induces sparsity in Fx, see for example [4]. However,
solving minimization problem (13) is not as straightforward as Eq. (3). One way of
solving it is by using Iterative Reweighted Least Squares (IRLS). This means that
we replace minimization problem (13) by a sequence of �2-regularized problems of
the same form as Eq. (3). Given an estimate xk of the solution x, the matrix Rk in
the penalty term is recalculated based on xk:

Rk = F∗DkF, Dk = diag

(
1

|Fxk|2−p

)
. (14)

So in each IRLS step, one minimization problem of the form (3) is solved. We will
compare GCGLS and GCGME for this step. In case F is an invertible matrix, we
have R−1

k = F−1D−1
k (FH )−1, with

D−1
k = diag

(
|Fxk|2−p

)
. (15)
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When GCGME is used, we can take advantage of this structure, instead of
calculating Rk and working with its inverse. Moreover, when F is an orthogonal
matrix, no additional computations are necessary to compute inverses.

In [2], we showed that when

κ2(R) � κ2(C), (16)

GCGME is expected to exhibit faster converge than GCGLS. When the sparsifying
�p-penalty with p ∈ (0, 1] is used, some elements of Dk will tend to infinity.
Therefore, R is expected to become increasingly ill-conditioned, in which case
Eq. (16) holds. Therefore, we expect GCGLS to be outperformed by GCGME in
terms of convergence speed.

3 Experiments

Experiments were carried out using the low-field MRI scanner described in [8],
a picture of which is shown in Fig. 2a. Inside the scanner, the magnetic field
generated by the configuration of magnets is approximately homogeneous. Linear
gradient fields are applied before and during readout for phase and frequency
encoding. These steps ensure that the resulting signal is essentially equal to the
Fourier Transform of the object inside the scanner. For an introduction to the
principles of MRI, the reader is referred to [6]. The object being imaged, see
Fig. 2b, is a real-life version of the Shepp-Logan phantom, which was introduced
in [9]. It is approximately 10 cm in diameter. This phantom is often used to test
reconstruction algorithms for tomographic imaging. The sampling rate was set to

Fig. 2 Experimental setup. (a) Low-field MRI scanner. (b) Object being imaged
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20 µs, corresponding to a bandwidth of 50 kHz. A spin echo pulsing sequence was
used with an echo time TE of 10 ms and a repetition time TR of 500 ms. The length
of the RF pulse was 100 µs. The Field of View (FoV) was 12 × 12 cm2, with the
target image having 128 × 128 pixels. No slice selection was carried out.

4 Numerical Results

First, we solve minimization problem (3) with A = F, C = I and R = L, which
is the scenario we reviewed earlier. GCGLS and GCGME solve different normal
equations, so a comparison using a stopping criterion based on residuals would
not be fair. Instead, we use a fixed number of CG iterations for both methods. For
the �2 case, we use 100 iterations. Figure 3 shows plots of the value of objective
function (2) with R = L as a function of the iteration number for 5 different
values of the regularization parameter τ . We observe that in all cases, both methods
lead to the same objective function value, as expected. For τ = 10, which is
approximately equal to τ ∗, we note that both methods converge equally fast. For
smaller values of τ , GCGLS converges faster while for larger values, GCGME
shows faster convergence. The corresponding images are shown in Fig. 4. Both
methods need the same amount of time per iteration.
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Fig. 3 Objective function value as a function of the iteration number for different values of the
regularization parameter τ . (a) τ = 0.1. (b) τ = 1. (c) τ = 10. (d) τ = 100. (e) τ = 1000
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Fig. 4 Reconstructed images for different values of the regularization parameter τ . (a) τ = 0.1.
(b) τ = 1. (c) τ = 10. (d) τ = 100. (e) τ = 1000
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In MRI, scan times tend to be long. They can be reduced by using compressed
sensing. In compressed sensing, the number of data points acquired is reduced,
compared to traditional scans. This can be done by measuring a subset of the lines in
k-space, or the frequency domain. For more information about compressed sensing
in MRI, [7] can be consulted. We will use the notation Fu to denote the Fourier
Transform of the undersampled measurements. One of the assumptions made in
compressed sensing is that the image is sparse in some known transform domain,
for example a wavelet transform. We also investigate the two CG variants in a
compressed sensing framework with an undersampling factor of 3.

We solve minimization problem (13) withA = Fu,C = I, F = W, τ = 6×10−3

and p = 1. The regularization parameter is chosen heuristically. Here, W is the 2D
Daubechies wavelet transform [3]. We choose Fub, which is shown in Fig. 5a, as
our initial guess. We use 10 IRLS iterations and in each of these, 10 CG iterations
are carried out. Figure 5 shows the reconstructed images and the value of the
objective function as a function of the iteration number. GCGME shows rapid
convergence, whereas the convergence of GCGLS is so slow that it seems that
GCGLS has converged to a higher objective function value than GCGME. However,
both methods converge to the same value if the number of GCGLS iterations is
increased significantly, see [2]. GCGLS and GCGME need the same amount of
time per iteration.
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Fig. 5 Reconstructed images using (a) only the inverse Fourier Transform, (b) and (c) the two
different CG variants. (d) shows a plot of the objective function value as a function of the iteration
number for both methods. The vertical black lines indicate the start of a new IRLS iteration. (e)
shows the lines in k-space that were used for reconstruction
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5 Conclusion

We analyzed the condition numbers of the matrices used in GCGME and GCGLS
in the simple but illustrative case where the discretized Laplacian is used as the
regularization matrix. The value of the regularization parameter τ ∗ determines
which method is to be preferred in terms of convergence speed. We can easily
calculate τ ∗, the value for which both methods have the same condition number.
For τ < τ ∗, GCGLS is expected to converge faster and for τ > τ ∗, GCGME is
to be preferred. We applied both methods to data measured using a low-field MRI
scanner and our numerical results show that the two methods behave as expected.

We also considered the more relevant case of an �1-regularization penalty in
a compressed sensing framework and used IRLS to solve this problem. Inside
each IRLS iteration, GCGLS or GCGME can be used as a building block. Due
to the sparsifying properties of the �p-penalty with p ∈ (0, 1], the reweighting
of the regularization matrix leads to an increasingly ill-conditioned matrix, which
corresponds to the regime in which GCGME is expected to show rapid convergence.
Our numerical results show that indeed, GCGME converges much faster than
GCGLS for this problem.
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