
Mode-Decomposition
in DeepONets

Generalization and Coupling Analysis

Julius Johannes Taraz

Mode-Decomposition in DeepONets
Generalization and Coupling Analysis

Julius Johannes Taraz

to obtain the degree of Master of Science in Applied Mathematics
at the Delft University of Technology,

to be defended publicly on August 27, 2025 at 09:00.

Student Number: 6065279

Project Duration: November 13, 2024 – August 27, 2025

Thesis committee: Dr. A. Heinlein TU Delft, supervisor

Dr. ir. H. M. Schuttelaars TU Delft, co-supervisor

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

A B S T R A C T

Operator learning promises to revolutionize scientific computing by learning solu-
tion operators for differential equations directly from data, potentially accelerating
tasks like design optimization and uncertainty quantification by orders of magni-
tude. The deep operator network (DeepONet), the first practical architecture for
operator learning, consists of a trunk and branch network. Its output is given by
a linear combination of basis functions, where the functions are learned by the
trunk network and the coefficients are learned by the branch network. However,
despite their theoretical promise, DeepONets suffer from poor accuracy compared
to classical numerical solvers, limiting their practical adoption. Understanding and
addressing these accuracy limitations is crucial for advancing the field.
In this thesis, we first analyze the performance limitations of the classical Deep-
ONet. We demonstrate that for many classical examples, the trunk network’s error
is much smaller than the total approximation error. Thus, the space spanned by
the basis functions contains functions which approximate the true solutions well.
The total approximation error is dominated by the branch network’s error, i.e., the
error of the coefficients.
To investigate this further, we construct a modified DeepONet. In this modifica-
tion we replace the learnable trunk network with optimal basis vectors (modes)
derived from a singular value decomposition (SVD). This modification is called
SVD-based operator network (SVDONet). This simplification enables us to decom-
pose the total error into mode-specific contributions, revealing how the coefficients
of different spatial modes are approximated. Our mode decomposition analysis
yields several key insights.
First, we discover that for some modes a low training error does not necessarily
correspond to a low test error, i.e., the coefficients learned for these modes do not
generalize well.
Second, we show that architectural choices profoundly impact generalization: the
standard "unstacked" DeepONet architecture, where all modes share hidden neu-
rons, significantly improves generalization for modes corresponding to small sin-
gular values at the cost of the modes with large singular values.
Third, we study how improving the coefficients of one mode impacts the coeffi-
cients of other modes. Here, we show fundamental differences between different
optimization algorithms.
These findings establish mode decomposition as a powerful lens for analyzing neu-
ral operators, revealing that the success of operator learning hinges not on learning
all modes equally well, but on the delicate balance between mode prioritization,
architectural coupling, and optimization dynamics.

iii

A C K N O W L E D G M E N T S

I would like to thank Dr. Alexander Heinlein for his excellent supervision and
valuable ideas, as well as for giving me the freedom to pursue my research inter-
ests. Furthermore, I am thankful that he endured my many explanations of which
matrix I computed the SVD for this time and the (surely) spectacular insights it
would give us.
I would also like to thank Dr. Henk Schuttelaars for his insightful remarks and
suggestions regarding the research, and the last-minutes drafts he patiently read
and helped improve.
I am very thankful for everyone I met in Delft who made this a very enjoyable year
altogether. I am especially thankful for the people with whom I’ve spent so much
time in the COSSE office:
I want to thank Alessandro for the excellent infotainment he provided and his
shared love for the SVD. I want to thank Ezra and Guillaume for the gezelligheid.
I want to thank Hugo for his expert judgment on questions of all matters and his
initiative in suggesting we study together. I want to thank Javier for his brief, but
intense, guidance in infinite dimensions. I want to thank Sinan for his company,
making the summer much nicer.
Furthermore, I thank my friends and family for continuing to listen to my prob-
lems. I especially thank my parents for their ongoing support.
Special thanks go to my brother Martin and my girlfriend Katerina for the hours
they have invested in making this a readable (and hopefully even understandable)
thesis. Thank you!

Finally, I thank Eugenio Beltrami and Camille Jordan for discovering the SVD!
What would we do without it?

I acknowledge using the Claude large language model to assist with the proof-
reading and language revision of this thesis. However, all ideas, analyses, and
conclusions are my own work.

v

C O N T E N T S

1 introduction 1
1.1 Background 1
1.2 Research Objectives 2
1.3 Structure 2

2 background 5
2.1 Problem Statement 5
2.2 Universal Approximation Theorem for Functions 6
2.3 Foundations of Neural Networks and Machine Learning 7
2.4 DeepONet 13
2.5 Setup for Training and Testing 16
2.6 Deriving the Trunk-Branch Error Decomposition 17

3 example problems 21
3.1 Overview 21
3.2 Details 21
3.3 Spectral Properties of the Data 23

4 applying the trunk-branch error decomposition 29
4.1 Error of the Trunk Network 29
4.2 Error of the Branch Network 30

5 svdonet 33
5.1 Defining the SVDONet 33
5.2 Deriving the Mode-Based Error Decomposition 35
5.3 Choice of Trunk Matrix 37
5.4 Related Work 37

6 applying the mode-based error decomposition 43
6.1 SVDONet Mode Loss Distribution 43
6.2 Coupling Between Different Modes 49

7 discussion 63
7.1 Summary 63
7.2 Future Work 64
7.3 Conclusion 65

bibliography 67
a appendix 73

a.1 Hyperparameters 73
a.2 Characterizing the Spectrum of Multivariate Functions 75
a.3 Total Variation Norm 75
a.4 Laplacian Energy 75
a.5 Fourier Transform of Data Projected onto Low-Dimensional Sub-

spaces 76
a.6 Comparison of SVDONet and POD-DeepONet 78
a.7 SVDONet’s Trunk Error for Test Data 80
a.8 Comparison of Stacked and Unstacked SVDONets 81

vii

viii contents

Table 1: Notation frequently used in this thesis

Symbol Name Note

[k] Set of indices [k] = {1, 2, ..., k}

D Spatial domain of interest D ⊂ Rd

C(D) Set of continuous functions with domain D

p Input function (e.g. initial condition of time-dependent PDE) p ∈ C(D)

G∗ True solution operator

u∗
p True solution G∗(p) for input function p u∗

p ∈ C(D)

Gθ Model / approximation of G∗
up Approximate solution Gθ(p) for input function p up ∈ C(D)

r Coordinate at which up and u∗
p are evaluated r ∈ D

n Number of coordinates to evaluate up and u∗
p

m Number of input functions in a data set

M Number of sampling points of p

r̄j j-th sampling point of p with j ∈ [M] r̄j ∈ D

p̂ Discretized input function (sampled at r̄j) e.g., Eq. 7

N Inner dimension of DeepONet / number of output neurons
of branch and trunk net

A Target data matrix ∈ Rn×m

Ã Approximation of A by the DeepONet ∈ Rn×m

X Either training or test variant (of any variable X)

Xtr Training variant of X

Xte Test variant of X

L Loss / mean-squared error of DeepONet approximation

Li Loss of mode i

ε Absolute squared error of DeepONet approximation

δ Relative error of DeepONet approximation

Z+ Moore-Penrose inverse of matrix Z

||Z||2F Frobenius norm
P

ij Z
2
ij

1
I N T R O D U C T I O N

1.1 background

Many models in science and engineering can be formulated as differential equa-
tions. Hence, a large body of research exists on solving these equations efficiently
and accurately. For ordinary differential equations (ODEs) numerical integration
methods such as the (implicit) Euler method and Runge Kutta method are widely
used. For partial differential equations (PDEs) methods such as the finite volume
method, finite element method, finite difference method, and spectral methods
dominate the field.
In this work, we are concerned with the approximation of the solution operator;
more specifically, we focus on the time evolution operator of time dependent PDEs,
mapping from the initial condition to the solution at a later time. The aforemen-
tioned methods can be used to efficiently compute the time evolution for one initial
condition via numerical integration. This corresponds to evaluating the solution
operator for one initial condition. However, these methods alone offer no efficient
way of approximating the entire operator, as each initial condition requires an
independent numerical integration. For many tasks, such as PDE-constrained opti-
mization (e.g. design or optimal control) or uncertainty quantification, the approx-
imation of the entire solution operator is necessary. Thus methods that approxi-
mate the entire solution operator accurately promise very significant performance
improvements [1].
Next to methods like reduced order modeling (ROM), which project the dynamics
onto a lower dimensional system built from previous solutions, operator learning
(OL) has gained traction in recent years. The fundamental idea of OL is to learn
to approximate an operator mapping between two function spaces, given some
evaluations of this operator. In the case of time evolution, the operator maps the
initial condition onto the solution at a later time. Building on theoretical results
for operator approximation [5], Lu et al. introduced the deep operator network
(DeepONet) in 2020 [34], which has since become the standard architecture for
operator learning.
Despite the prospects of approximating non-linear operators with a theoretically
arbitrary accuracy, DeepONets still face severe practical limitations, such as poor
accuracy compared to classical numerical solvers, or conversely a high data de-
mand for good accuracy. Another issue is the resolution dependence of Deep-
ONets, specifically for training and testing on different meshes.
To address the poor accuracy and generalizability several modified training meth-
ods and architectural modifications to the DeepONet have been suggested in the
literature [1, 12, 32, 35, 51]. Additionally, entirely new architectures for OL have
been proposed, such as the Fourier neural operator, the convolutional neural op-
erator and the Laplace neural operator [4, 33, 42]. These architectures explicitly
address the resolution dependence. Moreover, the combination of OL and physics-
informed neural networks (PINNs), i.e., neural networks solving a PDE by mini-
mizing the residual of the PDE [27], has sparked significant interest [16, 52].

1

2 introduction

In recent years, addressing spectral bias – i.e., the tendency of neural networks
to learn low-frequency components faster than high-frequency ones – in operator
learning architectures has emerged as a prominent research direction [22, 24, 50,
56]. While these works have proposed valuable architectural modifications that
improve performance, the focus on empirical solutions over solutions based on
understanding is symptomatic of a broader phenomenon in the field. Theoretical
frameworks, such as [28], are emerging but applying them to dissect existing ar-
chitectures – understanding their inner workings and fundamental limitations –
remains underexplored.
For instance, fundamental questions about error sources in DeepONets are insuf-
ficiently studied. To our knowledge, the relative contributions of learned basis
functions (trunk network) versus their coefficients (branch network) to the total ap-
proximation error have not been systematically studied in practice. Such insights
could guide more principled architecture design.

1.2 research objectives

In this work, we focus on examples where DeepONets have poor accuracy even
when trained and tested on the same mesh and on test data drawn from the same
distribution as training data. To gain an understanding of the origin of the Deep-
ONets errors, we first investigate the following research question (RQ).

RQ (I) How is the total approximation error distributed between the error of learned basis
functions and the error of their coefficients?

To answer this we make use of analytical work by Lanthaler et al. [28]. We show
that in all of our examples, the coefficients’ errors dominate. We thus focus on the
coefficients’ errors and investigate the following question:

RQ (II) The coefficients of which basis functions are not accurately approximated, and
why?

This can be split into different subquestions.

1. How are the coefficient errors distributed over the different basis functions?

(a) How does the optimization scheme influence the error distribution?

(b) How well do the approximations of different coefficients generalize?

2. How do the coefficients of different basis functions interact with each other?

(a) Should the different coefficients be learned in separate neural networks,
or should they all share the same hidden neurons?

(b) How does reducing the error of coefficient i impact the error of a differ-
ent coefficient j ̸= i?

The second subquestion is one approach to answer the ’why’ in this research ques-
tion.

1.3 structure

In Chapter 2, we provide the background with frequently used notation, formalism,
a recap on neural networks, and introduce the DeepONet architecture.

1.3 structure 3

In Chapter 3, we describe how the training and test data used throughout this
thesis are generated. Furthermore, we highlight key properties of the data that
will be relevant in later discussions.
In Chapter 4, we investigate RQ (I) and outline the shortcomings of the DeepONet
architecture. We perform the Lanthaler error decomposition, which shows that the
error mainly originates in the branch network.
In Chapter 5, we then introduce the SVD-based operator network (SVDONet),
which replaces the trunk net with a trunk matrix and thereby reduces the Deep-
ONet to the branch network. The trunk matrix is determined through SVD of
the training data matrix. Note that the SVDONet can be considered as a POD-
DeepONet [35] with a rescaled trunk matrix. For the SVDONet we propose a novel
decomposition of the error; we partition the branch error into the errors of the co-
efficients of the different basis functions modes, yielding deep insights into the
shortcomings of the branch network.
In Chapter 6, we then use the error decomposition and investigate the error dis-
tribution, i.e., which coefficients are poorly approximated, for different optimizers
and training and test data. Thus, Section 6.1 addresses RQ (II).1 (a) and (b). In
Section 6.2, we furthermore investigate architectural coupling of the coefficients,
through the comparison to the stacked SVDONet, and update based coupling of
the coefficients, through the effect of improving one coefficient on other coefficients.
Thus, Sections 6.2.1 and 6.2.2 address RQ (II).2 (a) and (b) respectively.
In Chapter 7, we summarize our findings and conclude with their discussion.

2
B A C K G R O U N D

This chapter provides the necessary background for the thesis, starting with a short
but formal problem statement, an introduction to neural networks, the DeepONet,
the setup for testing and training used in this thesis, and lastly the derivation of
an error decomposition into trunk and branch error.

2.1 problem statement

In the general setting of OL, any operator mapping from function space to function
space can be approximated. In this work, we seek to approximate the solution
operator G∗ : C(D) → C(D) for time-dependent PDEs, where G∗ maps the initial
condition to the solution at a fixed time τ > 0. The PDE has spatial domain D.
For ease of exposition, we consider the Korteweg-de Vries (KdV) equation as an
example. The KdV equation can be used to model shallow water waves [25]. It is a
time-dependent PDE of the form

0 =
∂u

∂t
+ u

∂u

∂r
+ 0.01

∂3u

∂r3
for all r ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) for all t ⩾ 0,
∂u

∂r
(0, t) =

∂u

∂r
(2π, t) for all t ⩾ 0,

∂2u

∂r2
(0, t) =

∂2u

∂r2
(2π, t) for all t ⩾ 0,

u(r, t = 0) = p(r) for all r ∈ (0, 2π),

where p(r) is the initial condition. Since we are concerned with the time evolution
of the state u up to a fixed time τ, we define the solution operator (or time evolution
operator)

G∗ : p(·) 7→ u(·, t = τ),

mapping the initial condition to the solution at time τ. To make the problem com-
putationally accessible, we encode p in a finite dimensional vector space as p̂ ∈ RM.
This is done by sampling p at M different locations r̄1, ..., r̄M:

p̂ = (p(r̄1) . . . p(r̄M))T .

This involves a loss of information, which is addressed in Section 2.5. We then
build a parametric model Gθ : p̂ 7→ up, parametrized by θ, to approximate G∗.
This model thus maps the finite dimensional encoding to an infinite dimensional
vector space, Gθ : RM → C(D). The model’s output up(·) is hence a function
of r, meant to approximate the true solution function u(·, t = τ) for all r ∈ D.
Section 2.3 gives an overview over the types of models Gθ we consider, namely
neural networks, how good parameters θ are found, and what it means for Gθ to
approximate G∗. Section 2.4 explains how neural networks can be used for OL, by
introducing the DeepONet.

5

6 background

r r

O
u
tp
u
t

In
p
u
t

A) B)

Input Function p(r)

True solution u∗p(r)

Approximation up(r)

Residual up(r)− u∗p(r)

Figure 1: Input and Output of DeepONet for the KdV Equation with τ = 0.2. Left (A):
The left input function is part of the training data set. Right (B): The right input
function is not part of the training data set. The yellow line shows the input
function p(r). The purple line shows the true solution u∗

p(r). The orange (dash-
dotted) line shows the DeepONet approximation up(r). The green line shows the
residual up−u∗

p. Dashed gray lines indicate the zero reference level to aid visual
interpretation.

To denote the dependency on the initial condition, we henceforth write u∗
p(·) for

the true solution u(·, t = τ) corresponding to initial condition u(·, t = 0) = p(·). We
omit the dependency on τ since τ is fixed for every considered example problem;
see Section 3.1. As an example, Fig. 1 shows the true solution u∗

p, the DeepONet
approximation up and the residual up − u∗

p for one training and one test initial
condition, i.e., input function p(r), of the KdV equation with τ = 0.2.

2.2 universal approximation theorem for functions

In this section, we briefly introduce the universal approximation theorem (UAT)
for function approximations. This section serves as both a segue to the topic of
neural networks (see Section 2.3) and as a basis for the UAT for operators, which
is the theoretical foundation for DeepONets (see Section 2.4).
One of the foundational results for function approximation using neural networks
is the UAT, published in 1989 by Cybenko [7], which applies to sigmoid activation
functions. Here, we use a more general formulation by Pinkus [39], which extends
the result to any non-polynomial activation function.

Theorem 1 (UAT for Functions) For any non-polynomial σ ∈ C(R), any function f ∈
C(Rd) and any ε > 0, there exist N ∈ N, ak,dk ∈ R and ck ∈ Rd for k ∈ [N], such
that

�����f(r)−
NX

k=1

akσ(c
T
kr+ dk)

����� < ε,

for all r ∈ [0, 1]d.

2.3 foundations of neural networks and machine learning 7

This means that for any continuous function f there is a linear combination of N
terms which approximates f arbitrarily well. Each of the N terms first applies an
individual scaling and shifting to the same input and then applies the same non-
polynomial function σ. Note that the number of terms N is not bounded, meaning
this linear combination might be completely impractical to approximate some f.

2.3 foundations of neural networks and machine learning

This section provides a self-contained overview of foundational concepts in neural
networks and machine learning, covering (1) neural networks, based on the UAT
for functions, (2) different optimization algorithms to find parameters for neural
networks, (3) overfitting and generalization, and (4) spectral bias. Readers already
familiar with these topics may wish to skip this section.
We now discuss function approximation using neural networks, a common prob-
lem in machine learning. Consider some inputs {r1, ..., rm} and corresponding
target outputs {y1, ...,ym}. These inputs could be generated by a function f, i.e.,
yi = f(ri). We then use a parametric model Gθ parametrized by θ, i.e., we seek to
find parameters θ such that Gθ approximates f well. Or, more formally, training
the neural network is equivalent to finding some not necessarily unique optimal
parameters

θopt ∈ arg min
θ

mX

i=1

|yi −Gθ(ri)|
2.

In neural network literature, the mean-squared error

Ltr(θ) =
1

m

mX

i=1

|yi −Gθ(ri)|
2,

is often termed as training loss function. The subscript tr distinguishes the training
loss from the test loss introduced later. We now discuss neural networks, one type
of parametric model Gθ.

2.3.1 Neural Networks

Since the UAT shows that for any continuous function f there is a linear combina-
tion of N terms, where each term applies an individual scaling and shifting to the
same input and then the same non-polynomial function σ, which approximates f

arbitrarily well, we use this construction

Gθ(r) =

NX

k=1

θ
(out)
k σ

�
(ϑ

(W,1)
k)T r+ ϑ

(B,1)
k

�

as a model. The parameters of this model are called

outer weights θ(out) =
h
θ
(out)
1 θ

(out)
2 . . . θ

(out)
N

i
∈ R1×N,

inner weights ϑ(W,1) =
h
ϑ
(W,1)
1 ϑ

(W,1)
2 . . . ϑ

(W,1)
N

i
∈ Rd×N, and

biases ϑ(B,1) =
�
ϑ
(B,1)
1 ϑ

(B,1)
2 . . . ϑ

(B,1)
N

�T
∈ RN.

8 background

r(1)

r(2)

r(3)

o

o

o

o

o Gθ(r) =
PN

k=1 θ
(out)
k σ

�
(ϑ

(W,1)
k)Tr+ ϑ

(B,1)
k

�

Figure 2: One-Layer Perceptron. The input isr =
�
r(1) r(2) r(3)

�T
∈ R3 . It has N =

4 hidden neurons. The magenta arrows indicate the purely linear mapping in
contrast to the black arrows whose mapping also contains the use of the non-
polynomial activation function in the receiving neuron.

This can be rewritten, by introducing the hidden layer Hθ(1) with parameters θ(1) =
ϑ(W,1), ϑ(B,1)

�
, such that

Gθ(r) = θ(out)Hθ(1)(r). (1)

The model is called a perceptron with one hidden layer and a linear output layer [36,
43]. The outer weights θout together with the weights of the hidden layer θ(1) =
ϑ(W,1), ϑ(B,1)

�
make up the parameters of the one-layer perceptron

θ =
�
θ(1), θout

�
.

While θ consists of a 1×N matrix and a tuple of a d×N matrix and an N dimen-
sional vector, it is often practical to work with the vector Θ, such that Θ’s entries
are given by the entries of θ(1), ϑ(W,1) and ϑ(B,1). Thus, for a one-layer perceptron,
Θ ∈ RdN+2N. The number of parameters, or dimension of the vector, is denoted
by |θ|. This is described in more detail in Section A.8.1. The one-layer perceptron
is visualized in Fig. 2.
In practice, the hidden layers are often applied in succession, yielding a multi-
layer perceptron (MLP): The input r is processed in the first layer, yielding z1 =

Hθ(1)(r) with some parameters θ(1). The first layer’s output is processed in the
second hidden layer, as z2 = Hθ(2)(z1) with different parameters θ(2), etc. If the
network consists of D successively applied hidden layers, the output of the D-th
layer zD = Hθ(D)(zD−1) is then processed by a linear layer, such that Gθ(r) =

θ(out)zD. The parameters of each hidden layer and the linear layer together make
up the parameters of the MLP:

θ = (θ(1), θ(2), . . . , θ(D), θ(out)). (2)

It is visualized in Fig. 3. This composition is done because, in practice, it reduces
the number of necessary parameters for a given accuracy [30]. The number of
hidden layers D is called depth, hence the term deep learning. The number of neu-
rons in one layer is often called the width of this layer. If all layers have the same
width, this is referred to as the width of the neural network. Modern neural networks
are often not MLPs. They modify the classical MLP architecture by restricting the

2.3 foundations of neural networks and machine learning 9

r(1)

r(2)

r(3)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o Gθ(r) = θ(out)Hθ4(Hθ3(Hθ2(Hθ1(r))))

Figure 3: Multi-Layer Perceptron. It has input r =
�
r(1) r(2) r(3)

�T
∈ R3, D = 4 hidden

layers and w = 4 neurons per layer. The magenta arrows indicate the purely
linear mapping in contrast to the black arrows whose mapping also contains the
use of the non-polynomial activation function in the receiving neuron.

−3 −2 −1 0 1 2 3

x

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ
(x
)

GELU

ReLU

Figure 4: GELU (purple) and ReLU (green) Activation Functions. Reproduced and
adapted from [18].

parameter space to a structured subspace. For example, instead of optimizing gen-
eral weight vectors ϑ

(W,1)
k ∈ Rd, one may constrain ϑ

(W,1)
k ∈ V ⊂ Rd to enforce

architectural properties such as convolutions [9, 29].
One of the key components of neural networks is the non-polynomial function σ,
the so-called activation function. In this thesis we use the Gaussian error linear
unit (GELU) as an activation function [18]. GELU is defined as

GELU(x) =
x

2

�
1+ erf

�
x√
2

��
≈ x

2

1+ tanh

 r
2

π
(x+ 0.044715x3)

!!
,

where erf(x) is the Gauss error function. Fig. 4 shows GELU and the classical
rectified linear unit (ReLU(x) = max(0, x)) for comparison.
A remaining question is: how do we find network parameters θ (Equation 2) that
yield a low approximation error, and thus a low loss Ltr(θ)?

10 background

2.3.2 Optimization Schemes

One standard approach is gradient descent (GD). Consider some initial parame-
ters θ0 (Equation 2), which are chosen randomly according to a specified distribu-
tion [26, 31]. The parameters are then updated with a step in the direction opposite
to the gradient, θ1 = θ0 − α1∇Ltr(θ0), where α1 is the so-called learning rate for
the first parameter update. The gradient ∇Ltr points in the direction of steep-
est increase of the loss, thus moving in the opposite direction decreases the loss
most rapidly for small steps. This procedure is repeated until a satisfactory loss
is reached. Iterations of training algorithms are typically called epochs. However,
GD often converges slowly or the parameters get trapped in local minima of the
loss function, with poor performance.
One very popular variant of classical GD, which often leads to faster convergence,
is momentum based GD. Momentum means that the update in the t-th step δθt is
not just given by the the gradient of the loss function at that step ∇Ltr(θt), but it
includes the update of the last step

δθt = −αt∇Ltr(θt) +β δθt−1,

for some momentum factor β ∈ R. The idea behind this is to average out high-
frequency oscillations in the gradient [46].
Another popular variant is the method of adaptive gradients. In the adaptive gradi-
ent scheme AdaGrad [10], the parameter update is defined component-wise. As
described in detail in Appendix A.8.1, the parameters θ of a neural network can
be written as a vector Θ ∈ R|θ|, where |θ| denotes the number of parameters and
equivalently the dimension of the vector. The loss function’s gradient can then also
be written as a vector ∇Ltr(Θ) ∈ R|θ|. For every training epoch t, we define the
vector vt ∈ R|θ| through its entries (vt)

(i):

(vt)
(i) =

tX

j=1

�
∇Ltr(Θj))

(i)
�2

.

The parameter update vector δΘt ∈ R|θ| in AdaGrad is then defined as:

(δΘt)
(i) = −αt

(∇Ltr(Θt))
(i)

p
(vt)(i) + ϵ

.

This can also be written as

δΘt = −αt
∇Ltr(Θt)√

vt + ϵ
with vt =

tX

j=1

(∇Ltr(Θj))
2,

with the square and division applied component-wise. For brevity of notation we
hereafter do not distinguish between θ and Θ. The normalization with vt empha-
sizes parameter components with persistently small gradients, allowing AdaGrad
to capture rare but informative patterns in the data.
RMSprop, another adaptive gradient scheme, introduces a decay mechanism in the
normalization term to gradually discount earlier gradient contributions [19], i.e.,

vt = β2vt−1 + (1−β2)(∇Ltr(θi))
2.

2.3 foundations of neural networks and machine learning 11

0 20 40 60 80 100

Epoch

10−5

10−4

10−3

10−2

10−1

L
os
s

Training Loss Ltr

Test Loss Lte

Small Dataset

Large Dataset

Figure 5: Training and Test Loss of Stereotypical Neural Networks over the training
course. The two neural networks have the same architecture/size and different
data sets. Adapted from [15].

The adaptivity of RMSprop and the momentum are combined in a method called
Adam [23]. Here the update is computed as follows:

mt = βmt−1 + (1−β1)∇Ltr(θt),

vt = β2vt−1 + (1−β2)(∇Ltr(θt))
2,

m̂t =
mt

1−βt
1

, (3)

v̂t =
vt

1−βt
2

, (4)

δθt = −αt
m̂t√

v̂t + ϵ̄+ ϵ
.

The steps in Equations 3 and 4 are done to normalize the size of mt and vt in early
epochs. Note that for all optimizers αt is the learning rate following some trajec-
tory, e.g., a constant learning rate αt = α or exponential decay αt = 0.95t/500α1.
This trajectory is often called learning rate schedule. Unless noted otherwise, the
optimization scheme Adam is used in this work. A table containing all neural
network hyperparameters, such as width, depth, optimization scheme, and learn-
ing rate schedule, used in each numerical experiment in this thesis is given in
Appendix A.1.

2.3.3 Overfitting and Generalization

So far, we only considered a low loss approximation error of the training data as
desirable. However, in most applications, the trained model should be able to accu-
rately predict the approximated function f also for inputs not in the training data
set. Those new inputs, and their targets, are termed test data. A regression model
is overfitting, if it can approximate its training data significantly better than the test
data. Conversely, generalization refers to the ability of accurately approximating the
test data, after only having seen training data.

12 background

We denote the training inputs and targets as Rtr, Ytr and the test inputs and targets
as Rte, Yte, with Ytr ∈ Rmtr , Yte ∈ Rmte , and define the training and test loss

Ltr =
1

mtr
||Ytr −G(Rtr)||

2
2,

Lte =
1

mte
||Yte −G(Rte)||

2
2.

The test data can either be drawn from the same distribution as the training data,
or drawn from an entirely new one. In this thesis we only consider test data from
the same distribution as the training data. Fig. 5 shows the stereotypical training
and test loss for two neural networks, of the same architecture, but with training
data sets of different sizes. For the small data set, we see that the training error
is lowered significantly, and continuously over the epochs. The test error, on the
other hand, only decreases in the first 40 epochs. Hereafter, the test error increases
significantly. The growing gap, between training and test error, and especially the
increasing test error, show that the neural network trained on the small data set is
overfitting.
For the larger data set, the training error is not lowered as much. The test error
decreases in the first 70 epochs, and only starts increasing hereafter. Thus, this
shows a later onset of overfitting in the neural network trained on the large data
set. Additionally, the smaller gap between training and test error indicates that the
neural network trained on the large data set is overfitting to a lesser extent.
This can be attributed to two reasons; (a) the model relies on structures specific to
the training set which do not generalize to other data sets, and (b) the model fails
to capture structures that may appear in unseen data [3].
Besides using a larger dataset, methods to prevent overfitting are known as reg-
ularization. As seen in Fig. 5, for the small dataset, the test loss starts increasing
after some point. Thus, if only this small dataset is available and a low test loss is
desired, the parameters obtained after 100 epochs are not the best parameters. The
parameters at the minimal test loss would obviously be better. This is the motiva-
tion behind early stopping [40]. For early stopping, the original training data set is
split into a new training set and a validation set. For the training, the gradient of
the loss is computed using only the new training data set. The validation dataset
is only used to compute the validation loss. Then this validation loss is used as
a proxy for the test loss. If the validation loss is observed to increase over some
number of epochs, the training is stopped and the parameters achieving the lowest
validation loss are used.
Other very common regularization techniques are l1 and l2 regularization, where
the l1 or l2 norm of the weights is added to the loss function. This either encour-
ages sparse (l1) or small, evenly distributed (l2) weights [2].
Note that in the very first epochs, the training and test losses are very similar, yet
both remain high; see Fig. 5. This behavior is known as underfitting and highlights
an important point: a model that is not overfitting is not necessarily performing
well. Even though the losses match closely, the model has not yet captured the
underlying structure of the data, resulting in poor predictive performance.
In this thesis, the employment of regularization techniques is omitted in order to
study the properties of pure DeepONets. In practice, the employment of regulariza-
tion techniques, including early stopping and l2 regularization, is recommended.

2.4 deeponet 13

2.3.4 Spectral Bias

This section describes the spectral bias, or alternatively the frequency principle [41,
53], a commonly observed phenomenon in neural network training. During the
training, neural networks tend to capture the low frequency features of the solution
before capturing the features with higher frequencies - if the latter are captured at
all.
To illustrate this, consider a function f with a Fourier sum representation

f(r) =
√
2

FX

i=1

ai sin(2πir) for r ∈ [0, 1],

with arbitrary coefficients ai. Furthermore, consider a neural network Gθ to ap-
proximate the target function f. We define the projection of a function g onto the
i-th basis function sin(2πir) as

bi(g) =
√
2

Z1

0

g(r) sin(2πir)dr.

Note that for g = f, the projections and coefficients are identical, i.e., ai = bi(f).
Thus ai is the target value of the projection bi(Gθ) of the neural network’s output
Gθ. The normalization constant

√
2 ensures orthonormality of the basis functions

sin(2πir).
Empirically, it is observed that the projections of the neural network output bi(Gθ)

approach their target values ai much faster for small i than for large i. This is
observed regardless of the coefficients ai. Fig. 6 visualizes the spectral bias via ei,
the i-th spectral error, ei = |ai − bi(Gθ)|

2 and the neural network’s output Gθ for
different training epochs.
As noted, the term spectral bias is usually used to describe the difference in conver-
gence speed of features with different frequencies. However, the term could also be
used to describe the behavior of any approximation model for which the spectral
errors for low frequencies are smaller than the ones for high frequencies. We term
this output-wise spectral bias.
Furthermore, similar to the discussion here, the spectral bias is typically applied
to the general approximation error, i.e., both the test and training error. However,
the spectral bias can also be interpreted as a theory on generalization [58]. The key
argument is summarized as follows:
When trying to learn a high-frequency target function, the neural network learns
a low-frequency function if (a) it only receives a low-frequency signal (due to
insufficient training data), or if (b) it cannot represent the target function (because
the number of parameters is insufficient). In the case of (a) the neural network
is overfitting; in the case of (b) the neural network is underfitting. If there are
sufficient training samples and the neural network has sufficient parameters, it
will learn an approximation that achieves low training and test error (fitting).

2.4 deep o net

As the UAT for functions is the theoretical foundation for function approximation
with neural networks, the UAT for operators is the corresponding cornerstone
of OL. It was published by Chen and Chen in 1995 [5]. The DeepONet, which
introduced one of the first practical architectures for OL and has since become

14 background

1 10 20

Frequency i

10−3

10−2

10−1

100

R
el
at
iv
e
sp
ec
tr
al

er
ro
r
e i
/a

2 i

100st epoch

100000st epoch

0.0 0.5 1.0

r

−4

−3

−2

−1

0

1

2

3

4

Epoch 100

f(r)

Gθ(r)

0.0 0.5 1.0

r

−4

−3

−2

−1

0

1

2

3

4

Epoch 5000

0.0 0.5 1.0

r

−4

−3

−2

−1

0

1

2

3

4

Epoch 15000

0.0 0.5 1.0

r

−4

−3

−2

−1

0

1

2

3

4

Epoch 100000

Figure 6: Spectral Bias in Neural Networks for Function Approximation. Left panel: Rel-
ative spectral errors ei/a

2
i for multiple epochs. Color indicates training progress,

from black (early) to red (late epochs). Remaining panels (2-5): True solution
function f (purple) and neural network approximation Gθ (yellow) for epochs
100, 5000, 15000 and 100000. Reproduced and adapted from [41].

a widely used baseline, can be seen as a direct implementation of the UAT for
operators [34].

Theorem 2 (UAT for Operators) Consider a continuous non-polynomial function σ, a
Banach space V , a compact set K1 ⊂ V , a compact set X ⊂ C(K1), a compact set K2 ⊂ Rd

and a continuous operator G∗ : X → C(K2). Then, for any ε > 0, there exist constants
I,M,K ∈ N, dk,ak

i ,βk
ij,γ

k
i ∈ R, r̄j ∈ K1, and ck ∈ Rd such that

�����������

G∗(p)(r)−
NX

k=1

σ(cTkr+ dk)| {z }
=:tk(r)

IX

i=1

ak
i σ




MX

j=1

βk
ijp(r̄j) + γk

i




| {z }
=:bk([p(r̄1), ..., p(r̄M)])

�����������

< ε (5)

for all functions p ∈ X and coordinates r ∈ K2.

A crucial part of the DeepONet architecture - already visible in Equation 5 - is
the division of the model into two sub-networks. The trunk network with the
coordinates r as input has output neurons tk(r). As described in the UAT for
operators, the trunk network consists of one hidden layer, which applies the non-
polynomial activation function σ. The branch network with the sampled input
function p as input has output neurons bk([p(r̄1), . . . , p(r̄M)]). As described in
the UAT for operators, the branch network consists of two hidden layers. The first
hidden layer applies the non-polynomial activation function σ. The second hidden
layer is linear. This architecture can be seen in Fig. 7.
In the DeepONet both trunk and branch networks are generalized to MLPs. As in
the UAT for operators, both sub-networks of a DeepONet have the same number
of output neurons N and the final output is given as

Gθ(p̂)(r) =

NX

j=1

bj(p̂)tj(r) = (t1(r) ... tN(r))




b1(p̂)
...

bN(p̂)


 ,

2.4 deeponet 15

r(1)

r(2)

o

o

o

o

p(r̄1)

p(r̄2)

p(r̄3)

p(r̄4)

p(r̄5)

o

o

o

o

o

o

o

o

o

o

Trunk network

Branch network

b1t1 + . . .+ b4t4 = Gθ(p)(r)

Figure 7: DeepONet Architecture, as described in the Universal Approximation The-
orem for Operators [5]. In this example the evaluation is done at position
r = (r(1) r(2))T ∈ R2, the input function p is sampled at M = 5 points r̄j,
the branch network’s first hidden layer has I = 6 neurons, and both trunk and
branch network have N = 4 output neurons. The magenta arrows indicate the
purely linear mapping in contrast to the black arrows whose mapping also con-
tains the use of the non-polynomial activation function in the receiving neuron.

r(1)

r(2)

o

o

o

o

. . .

. . .

. . .

. . .

o

o

o

o

t4

t3

t2

t1

p(r̄1)

p(r̄2)

p(r̄3)

p(r̄4)

p(r̄5)

o

o

o

o

. . .

. . .

. . .

. . .

o

o

o

o

b1

b2

b3

b4

Trunk network

Branch network

b1t1 + . . .+ b4t4 = Gθ(p)(r)

Figure 8: General DeepONet Architecture. In this example the evaluation is done at posi-
tion r = (r(1) r(2))T ∈ R2 and the input function p is sampled at M = 5 points r̄j.
The magenta arrows indicate the purely linear mapping in contrast to the black
arrows whose mapping also contains the use of the non-polynomial activation
function in the receiving neuron.

where θ is the set of weights of the DeepONet and p̂ = (p(r̄1) . . . p(r̄M))T is the
input function sampled at r̄1, . . . , r̄M. The general DeepONet architecture can be
seen in Fig. 8.

16 background

When evaluating the DeepONet for one discretized input function p̂ and n differ-
ent evaluation coordinates R = {r1, ..., rn}, the output is

Gθ(p̂)(R) =

NX

j=1

bj(p̂)tj(R),

where tj is applied to R element-wise. Thus, the DeepONet’s outputs for all dis-
cretized input functions p̂ lie in a subspace spanned by the trunk neurons tj(R),
hence the tj’s are also called basis functions, or when evaluated on fixed coor-
dinates, basis vectors. Note that N is thus the maximum dimension of the trunk
space

T(N) := span{t1, . . . , tN} ⊂ C(D). (6)

For simplicity, we term N the dimension of the DeepONet. Furthermore, the output
neurons of the branch network bj(p̂) can be interpreted as the coefficients of the
j-th basis function for a given discretized input function p̂.
To summarize, the trunk network takes the evaluation coordinate r as input. The
j-th trunk output neuron, as a function of r is the j-th basis function spanning the
approximate solution.
The branch network takes the discretized input function p̂, e.g., the initial condition
of the time-dependent PDE, as input. The j-th branch output neuron, as a function
of p̂, is the coefficient for the j-th basis function for the given input function.
The two networks are then combined into the output of the DeepONet through
an inner product, i.e., the output is given as the sum over all basis functions, each
multiplied with the respective coefficient.

2.5 setup for training and testing

For ease of notation and faster training we consider the following setup for our
training and test data.

1. We consider PDEs with real-valued solutions, i.e., u∗
p(r) ∈ R. The example

problems are described in Section 3.2.

2. We choose L ∈ N and restrict the input functions p to an L-dimensional
subspace of C(D). We now discuss this for the example

p(r) =

LX

i=1

ai sin(iπr) ∈ span{sin(iπr)}Li=1 ⊂ C([0, 1]).

We then sample p on a uniform mesh with M interior points r̄j, such that
r̄j =

j
M+1 for j ∈ [M],

p̂ = (p(r̄1) . . . p(r̄M))T = Ψa ∈ RM. (7)

Here Ψ ∈ RM×L contains the sine functions sampled on the same mesh-
points r̄j as columns, i.e., Ψji = sin(iπr̄j), and a = (a1 . . . aL)

T ∈ RL is
the coefficient vector. Then Ψ has full column rank whenever M ⩾ L. Hence
the coefficients {ai}

L
i=1 can be recovered exactly from p̂, as a = Ψ+p̂ with +

denoting the Moore-Penrose inverse. This yields 0 encoding error [28]. For
simplicity, we thus stop distinguishing between p and p̂.

2.6 deriving the trunk-branch error decomposition 17

3. We use m different discretized input functions pj with j ∈ [m], and for each
input function we evaluate both the approximations and the true solutions
on the same n = ntr = nte equidistant coordinates ri. Thus, we have nm

data points.

We then arrange the targets in a matrix Aij = u∗
pj
(ri) such that A ∈ Rn×m. Then,

the DeepONet’s output for all coordinates and all input functions is

Gθ({p1, ...,pm})({r1, ..., rn}) =
NX

j=1

tj({r1, ..., rn})bj({p1, ...,pm})

=

NX

j=1



tj(r1)

...

tj(rn)


 (bj(p1) . . . bj(pm))

=



t1(r1) ... tN(r1)

...
...

t1(rn) ... tN(rn)






b1(p1) ... b1(pm)

...
...

bN(p1) ... bN(pm)




= TBT =: Ã, (8)

such that Ãij = Gθ(pj)(ri). Here, Tij = tj(ri) and Bij = bj(pi) are the output
matrices of the trunk and branch network, respectively. Note that because of the
DeepONet’s evaluation at n fixed coordinates, the trunk space T(N), originally
contained in C(D), can now be treated a subspace of Rn. This setup (a) enables
faster training, since the evaluation of trunk and branch network is independent –
all input functions use the same evaluation of the trunk network and vice versa –
and (b) the matrix notation significantly simplifies the analysis.

2.6 deriving the trunk-branch error decomposition

Since the DeepONet’s output is given as a linear combination of the trunk basis
functions with the branch coefficients, one might ask how the approximation error
is distributed between the basis functions and the coefficients. This question is
formalized and can be answered using the following error decomposition into
trunk and branch error. This decomposition is a simplification and adaption of the
work done by Lanthaler et al. [28] for the setup described in the previous section.
We consider the difference between the DeepONet’s output Ã and the target data
matrix A:

Ã−A = TBT −A = TBT − TT+A+ TT+A−A

= T(BT − T+A) + (TT+ − I)A

ε := ||Ã−A||2F = ||T(BT − T+A)||2F| {z }
=:εB

+ ||(TT+ − I)A||2F| {z }
=:εT

. (9)

Here T+ is the Moore-Penrose inverse of T , and thus I − TT+ is the projection
onto the subspace orthogonal to the trunk space. Equation 9 thus defines the trunk
error εT as the error of projecting the target data matrix onto the trunk space. The
branch error εB is defined for a given trunk matrix as the appropriately scaled
(see below) difference between the branch matrix and the, for this given trunk
matrix, optimal branch matrix. In Chapter 4 we will use this decomposition to

18 background

identify the bottleneck in current DeepONet performance. Hence we are interested
in bounds on the error parts. Furthermore, we compute the optimal trunk and
branch matrices based on this error decomposition.

2.6.1 Trunk Error

For a given N and a target matrix A, a trunk matrix T∗ ∈ Rn×N is said to be
optimal, if it minimizes the trunk error εT . To compute an optimal trunk matrix
T∗, we first introduce the singular value decomposition (SVD). Note that we state
the so-called thin SVD, which will be used throughout. The full SVD is obtained
by extending Φ and V to square matrices. For the thin SVD, we get semi-orthogonal
matrices, i.e., non-square matrices that have either orthogonal rows or columns.

Theorem 3 (Thin SVD) Consider any matrix A ∈ Rn×m. Let r = min(n,m). Then
there exist semi-orthogonal matrices Φ ∈ Rn×r,V ∈ Rm×r, and the diagonal matrix
Σ = diag(σ1, . . . , σr) ∈ Rr×r, with σ1 ⩾ ... ⩾ σr ⩾ 0, such that

A = ΦΣVT .

Note that the diagonal entries σi of Σ are called singular values of A. Furthermore, Φ and
V contain the so-called left- and right-singular vectors as columns, respectively.

Note that the SVD of a matrix is not unique. Thus we usually consider any SVD of
A, when writing A = ΦΣVT . An SVD of A can be used to compute a best rank N

approximation of A.

Theorem 4 (Rank N approximation) Let A = ΦΣVT be an SVD of A. Then for any
N < r, we can split Φ,Σ and V such that

A = [Φ1 Φ2]

"
Σ1 0

0 Σ2

#"
VT
1

VT
2

#
= Φ1Σ1V

T
1 +Φ2Σ2V

T
2 , (10)

with Φ1 ∈ Rn×N,Σ1 ∈ RN×N and V1 ∈ Rm×N. Then,

Φ1Φ
T
1A = Φ1Σ1V

T
1 ∈ arg min

X∈Rn×m,
rank(X)⩽N

||A−X||2F.

The minimum rank N approximation error is then

min
X∈Rn×m,

rank(X)⩽N

||A−X||2F = ||A−Φ1Σ1V
T
1 ||

2
F

= ||Φ1Σ1V
T
1 +Φ2Σ2V

T
2 −Φ1Σ1V

T
1 ||

2
F

= ||Φ2Σ2V
T
2 ||

2
F = ||Σ2||

2
F.

Note that Φ1Φ
T
1A is the unique minimizer of ||A−X||2F, if A’s singular values are pairwise

distinct.

Recall that the trunk error is defined as εT = ||(TT+ − I)A||2F. Thus, Φ1 is, for
any SVD of A, an optimal trunk matrix. Hence, T∗ = Φ1 yields a lower bound
on the trunk error, i.e., for a given N, the trunk error εT of any DeepONet with

2.6 deriving the trunk-branch error decomposition 19

inner dimension N is bounded from below by the SVD truncation error εSVD =

||(Φ1Φ
T
1 − I)A||2F:

εT ⩾ εSVD.

Note that the optimal trunk matrix is not uniquely determined by A and N. For
an SVD of A, we denote the space spanned by the first N left-singular vectors of A
as SVD space

S(N) = span{ϕ1, . . . , ϕN}.

If the singular values of A are all pairwise distinct, then for any N, all SVDs of a
matrix A yield the same SVD space S(N). This is always the case in our example
problems. Since the trunk matrix T only enters the trunk error via the matrix TT+,
which is projecting A onto T ’s column space, any matrix whose column space is
S(N) is an optimal trunk matrix, for this N. Thus, for any full-rank matrix C ∈
RN×N, the matrix Φ1C is an optimal trunk matrix.

2.6.1.1 Projection Error

As described, εT and εSVD measure the capability of approximating the data ma-
trix A through a projection onto the trunk space T(N) and the SVD space S(N),
respectively. Since the SVD space is the optimal space to approximate the data
matrix through projections, we can also discuss the trunk space as approximating
the SVD space, instead of comparing the (projection-based) approximation capa-
bilities of both spaces. To later investigate which parts of the SVD space are well
approximated by the trunk space, we define the projection error for a trunk matrix
T ∈ Rn×N as

∆(i,N) := ||ϕi − TT+ϕi||
2
2.

The projection error ∆(i,N) thus computes the error of approximating ϕi by pro-
jecting it onto the trunk space of a DeepONet with inner dimension N.

2.6.2 Branch Error

For a given trunk matrix T , the matrix B∗ containing the target coefficients, i.e., the
branch matrix such that the data matrix A is approximated best in the Frobenius
norm by TBT

∗ , is

B∗ = arg min
B∈Rm×N

||A− TBT ||2F = arg min
B∈Rm×N

||(I− TT+)A+ TT+A− TBT ||2F (11)

= arg min
B∈Rm×N

||(I− TT+)A||2F + ||T(T+A−BT)||2F

�
(12)

= arg min
B∈Rm×N

||T(T+A−BT)||2F = (T+A)T . (13)

Thus, when investigating the branch network, one might intuitively define the
branch error as

εC := ||B− (T+A)T ||2F = ||BT − T+A||2F, (14)

20 background

i.e., the difference between the actual branch matrix B and the optimal branch
matrix B∗. Using εC, one can derive the inequality

ε ⩽ ||T ||22 ||B
T − T+A||2F| {z }

εC

+||(TT+ − I)A||2F (15)

as a bound on ε. While εC puts the same weight on the error of each branch
neuron, εB = ||T(BT − T+A)||2F directly includes the trunk matrix T , which weights
the approximation error of each branch neuron (column of B) with the norm of
the corresponding trunk neuron. In Equation 15 the trunk matrix’s spectral norm
||T ||22, which is an upper bound on the maximum trunk neuron norm, is used.
Thus Equation 15 yields an inequality. The weighting with the true corresponding
neuron norms in Equation 9 yields an equality. Hence we use εB. An obvious lower
bound on the branch error cannot be derived.
Note that we derived B∗ as the branch matrix minimizing the approximation error
ε = ||A− TBT ||2F for a given trunk matrix T . However, since ε = εT + εB, where εT
is independent of B, a branch matrix minimizing ε is equivalent to a branch matrix
minimizing εB. This is formally described in Equations 11 - 13.

2.6.3 General Remarks

Note the relation between the (absolute squared) error ε = ||A− Ã||2F used in deriva-
tions, the relative error δ =

√
ε

||A||F
=

||A−Ã||F
||A||F

used as an intuitively meaningful
performance indicator, and the loss L = 1

nmε = 1
nm ||A− Ã||2F used in the training

of neural networks. Additionally, we also use the relative SVD truncation error
δSVD =

√
εSVD

||A||F
and the relative partial errors δT =

√
εT

||A||F
and δB =

√
εB

||A||F
, such that

δ2 = δ2T + δ2B.
For readers interested in error decomposition of DeepONets in a more general
setting, we recommend the work by Lanthaler et al. [28]. They consider the more
general case in which p cannot necessarily be fully reconstructed from p̂, which
adds an encoding error. Moreover, the error in their work is defined with respect
to a probability measure over the sample space, rather than solely over the finite
set of sampled points.

3
E X A M P L E P R O B L E M S

In this chapter, we first describe the example problems considered in this thesis
and how test and training data are generated. We then investigate the spectral
properties of this data, as this will play a central role in the analysis presented in
later chapters.

3.1 overview

In this thesis, we train DeepONets (and SVDONets) to approximate the time evo-
lution operators of the advection-diffusion equation, the Korteweg-de Vries (KdV)
equation and Burgers’ equation, which are given below. The time evolution op-
erator’s input function p(r) is the PDE’s initial condition u(r, t = 0). The initial
condition is mapped to the PDE’s solution at the evolution time τ, i.e.,

G∗ : p(·) 7→ u(·, t = τ).

In the following, an example problem denotes a time-dependent PDE with certain
boundary and initial conditions together with a fixed evolution time τ. Thus,

the KdV equation (Equation 16) with the given boundary conditions (Equa-
tions 17–20), the given distribution of initial conditions (Equation 21) and
evolution time τ = 0.2

describes one example problem. This is, in fact, the standard problem considered
in this thesis. I.e., unless stated otherwise, all results shown in this thesis are com-
puted for this standard example problem. However, unless stated otherwise, the
observations reported apply qualitatively to all example problems described in this
chapter.
For each example problem, the training and test data set contain 900 and 100 input
functions, respectively. As discussed, both test and training input functions are
drawn from the same distribution.

3.2 details

3.2.1 Advection-Diffusion Equation

We consider the advection-diffusion equation

0 =
∂u

∂t
+ 4

∂u

∂r
− 0.01

∂2u

∂r2
for all r ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) for all t ⩾ 0,
∂u

∂r
(0, t) =

∂u

∂r
(2π, t) for all t ⩾ 0,

u(r, t = 0) = p(r) for all r ∈ (0, 2π),

21

22 example problems

with evolution times τ = 0.5 and τ = 1.0. Thus, we consider two example problems
based on the advection-diffusion equation. The input functions p(r) are generated
as

p(r) =

20X

i=1

ai sin(ir).

All coefficients ai are drawn from a uniform distribution ai ∼ U([−1, 1]). Test and
training data are obtained using the finite-difference method combined with a
Runge-Kutta solver [59]. Due to the linearity of the advection-diffusion equation,
the discretized solution operator can be written as a matrix Ĝ∗ ∈ Rn×M, such
that u∗

p̂ = Ĝ∗p̂. Since (a) the considered input space is 20-dimensional, and (b) the
20 discretized trigonometric functions [sin(ir̄1) . . . sin(ir̄M)]T ∈ RM are mapped
to 20 linearly independent vectors by Ĝ∗, the output space is 20-dimensional as
well. This furthermore implies that both the training and test data matrix Atr and
Ate have the same 20-dimensional column spaces. Thus, we use DeepONets of at
most inner dimension N = 20 to approximate the advection-diffusion equation’s
solution operator.
Note that, for the basis of the input functions described here, we have to sample
the input functions at M ⩾ 2L interior meshpoints, where L is the number of basis
functions (i.e., L = 20). We choose n = M = 200.

3.2.2 Korteweg–de Vries Equation

We consider the KdV equation

0 =
∂u

∂t
+ u

∂u

∂r
+ 0.01

∂3u

∂r3
for all r ∈ (0, 2π), t > 0, (16)

u(0, t) = u(2π, t) for all t ⩾ 0, (17)
∂u

∂r
(0, t) =

∂u

∂r
(2π, t) for all t ⩾ 0, (18)

∂2u

∂r2
(0, t) =

∂2u

∂r2
(2π, t) for all t ⩾ 0, (19)

u(r, t = 0) = p(r) for all r ∈ (0, 2π), (20)

with evolution times τ = 0.2, τ = 0.6 and τ = 1.0. Thus, we consider three example
problems based on the KdV equation. The input functions p(r) are generated as

p(r) =

5X

i=1

ai sin(ir). (21)

All coefficients ai are drawn from a uniform distribution ai ∼ U([−1, 1]). Test
and training data are obtained using the finite-difference method combined with
a Runge-Kutta solver [59]. We use a mesh with n = 400 points, and observe
rank(Atr) = 400, for all considered values of τ. In Chapter 4 we investigate the
approximation errors of DeepONets with inner dimensions up to N = 100 and
observe the diminishing effect of growing N. To reduce computational complexity,
we thereafter consider DeepONets of inner dimension N = 50 to approximate the
KdV equation. As this will become relevant in a later chapter, we highlight that
the standard basis vectors of R400 are a basis of Atr’s column space Col(Atr). This
implies Col(C) ⊂ Col(Atr), for any matrix C ∈ R400×l with any l ∈ N. Thus, in
particular Col(Ate) ⊂ Col(Atr) for the test data matrix Ate.

3.3 spectral properties of the data 23

Note that we use the same mesh for the solution and input functions, i.e., n = M =

400.

3.2.3 Burgers’ Equation

We consider Burgers’ equation

0 =
∂u

∂t
+ u

∂u

∂r
− 0.01

∂2u

∂r2
for all r ∈ (0, 1), t > 0,

u(0, t) = 0 for all t ⩾ 0,

u(1, t) = 0 for all t ⩾ 0,

u(r, t = 0) = p(r) for all r ∈ (0, 1),

with evolution times τ = 0.1 and τ = 1.0. Thus, we consider two example problems
based on Burgers’ equation. The input functions p(r) are generated as

p(r) =

5X

i=1

ai sin(πir).

All coefficients ai are drawn from a uniform distribution ai ∼ U([−1, 1]). Test and
training data are obtained using a spectral solver with 100 basis functions com-
bined with an explicit Euler scheme. Due to the spectral method with 100 basis
functions, the output matrix A for Burgers’ equation, for all considered values of τ,
has rank 100. In Chapter 4 we investigate the approximation errors of DeepONets
with inner dimensions up to N = 100 and observe the diminishing effect of grow-
ing N. To reduce computational complexity, we thereafter consider DeepONets of
inner dimension N = 50 to approximate Burgers’ equation. As this will become
relevant in a later chapter, we highlight that the span of the discretized basis func-
tions is equal to the column space of both the test and training data matrices. Note
that we choose n = 200 and M = 50.

3.3 spectral properties of the data

To later discuss the spectral bias in DeepONets we now examine the spectral prop-
erties of the SVD of the data.
Recall that the training data matrix A admits the SVD A = ΦΣVT . Furthermore,
recall that (a) the i-th rows of A and Φ correspond to the i-th evaluation coordinate
ri ∈ R and (b) the j-th columns of A and VT correspond to the j-th discretized
input function pj ∈ RM. The k-th columns of Φ and V correspond to the k-th
singular triplet (σk,ϕk, vk).
We can then define the left- and right-singular functions λk and ρk, which corre-
spond to the k-th left- and right-singular vectors, respectively. Or, more formally;
functions λk, ρk which satisfy

λk : ri ∈ R 7→ Φik ∈ R

ρk : pj ∈ RM 7→ Vjk ∈ R

are called left- and right-singular functions, respectively. We now investigate the
spectral properties of these functions. To define the frequency of a function, we
first introduce the Fourier transform Fc. The subscript c distinguishes the contin-
uous (standard) Fourier transform from the discrete Fourier transform used later.

24 example problems

Consider a function g ∈ L2(D) with D ⊂ Rd, we then define its Fourier transform
at a wave-vector ξ ∈ Rd as

Fc(g)(ξ) =

Z

D

f(x) exp(−2πiξTx)dx.

The (mean) frequency f ∈ R of a function g is then defined as

f(g) =

R
Rd |Fc(f)(ξ)|

2||ξ||2dξR
Rd |Fc(f)(ξ)|2dξ

.

For the left- and right-singular functions we are interested in comparisons such as

• λi has a higher mean frequency than λj, i.e., f(λi) > f(λj), or

• ρk has a lower mean frequency than ρl, i.e., f(ρk) < f(ρl).

We are neither interested in

• in the entire spectrum Fc(·)(ξ) of λk and ρk nor

• in absolute statements like λk’s mean frequency.

Of course, if they can be computed in practice, the mean frequencies of λi and λj
immediately provide the comparison f(λi) ≶ f(λj). Note that since λk takes the
evaluation coordinate as input, its oscillations are spatial oscillations. The oscil-
lations of ρk correspond to oscillations in RM, which is the discretized space of
input functions. These oscillations should not be confused with spatial oscillations
in the input function p(r).
Moreover, it is important to note that the spectral observations reported here are
specific to the example problems under study and may not generalize to other
settings. In particular, for linear PDEs with well-studied discretizations the rela-
tionship between the frequency of λk and the index k can be prescribed almost
arbitrarily through the choice of the distribution from which the initial conditions
pi are drawn; see Section 5.4.4.1. As a consequence, example problems arising from
different initial conditions or from different PDEs may exhibit markedly different
spectral structures. Nevertheless, to investigate the impact of the herein studied
dataset’s spectral characteristics on the approximation behavior of DeepONets, it
is relevant to analyze their spectral characteristics in detail.
Note that the k-th singular triplet is also referred to as the k-th mode.

3.3.1 Left-Singular Function

ϕj contains the evaluations of λj on equidistant coordinates, since we evaluate the
true solution functions and their approximations on equidistant coordinates. There-
fore, the discrete Fourier transform can be applied to ϕj to estimate the spectrum
of λj. Furthermore, we thus identify the left-singular value ϕj with the function λj,
similar to the identification between the input function pi and its discretization p̂i.
However, recall that pi can be reconstructed from p̂i, since the space from which
pi is drawn is known. This is not the case for λj and ϕj, since λj is only defined
via ϕj. We thus compute the mean frequency of λj

fj =

P
f |F(ϕj)(f)|

2fP
f |F(ϕj)(f)|2

.

3.3 spectral properties of the data 25

A) B) C)
1 25 50

Mode index i

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
fr
eq
u
en
cy

f i
/(
m
ax

j
f j
)

D)

φ10

φ1

Figure 9: Spectral properties of ϕi, and equivalently of the left-singular functions λi. A,
B, C): Left-singular vectors ϕi. D) Relative mean frequency fi/(maxj fj) of ϕi.
In all plots purple corresponds to the advection-diffusion equation with τ = 0.5,
orange corresponds to the KdV equation with τ = 0.2 and green corresponds to
Burgers’ equation with τ = 0.1.

Here F(ϕj)(f) is the discrete Fourier transform of the signal ϕj evaluated at fre-
quency f.
Figure 9 shows both the mean relative frequencies fj and the left-singular vec-
tors ϕj for three different example problems, based on three different PDEs. For
the advection-diffusion equation and Burgers’ equation the growth of the mean
frequency fj is almost monotonic as j increases. The mean frequency of the left-
singular vectors of the KdV equation fluctuates much more. However, the frequen-
cies for j ⩽ 30 are on average significantly lower than the ones for j > 30. Note that
the dominant frequency

fj,dom := arg max
f

|F(ϕj)(f)|
2

and the median frequency

fj,med := arg min
f∗

������
X

f<f∗

|F(ϕj)(f)|
2 −

1

2

X

f

|F(ϕj)(f)|
2

������

show the same trends as the mean frequency. We thus conclude that for our exam-
ple problems the frequency of ϕj tends to increase as j increases.

3.3.2 Right-Singular Function

We now discuss the spectral properties of ρk : pj ∈ RM 7→ Vjk ∈ R. Since (a) ρk has
multi-dimensional input and (b) is sampled at irregular locations, computing its
Fourier transform presents significant challenges [58]. Thus, we explore different
methods to characterize ρk’s spectrum. We employ the total variation (TV) norm,
a technique from image denoising [14, 45], the Laplacian energy (LE), a technique
from spectral graph theory [47], and the Fourier transform of the data projected
onto low-dimensional subspaces (Projection) [58]. All three methods are described
in detail in Appendix A.2. As discussed there, the computations of both the TV
norm and the LE rely on a k-nearest neighbors algorithm. k thus denotes the
number of considered neighbors in this section. For ease of notation, we denote

26 example problems

1 10 20

Mode index i

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
fr
eq
u
en
cy

f i
/(
m
ax

j
f j
)

A)

Projection

TV k = 3

TV k = 50

LE k = 3

LE k = 50

1 25 50

Mode index i

B)
1 25 50

Mode index i

C)

Figure 10: Spectral properties of ρi, and likewise the right-singular vectors vi. Left (A):
advection-diffusion equation with τ = 0.5. Center (B): KdV equation with
τ = 0.2. Right (C): Burgers’ equation with τ = 0.1. The solid line shows the
frequency estimated by projecting the data on the left-singular vectors of the in-
put matrix (Projection). The solid lines with circle and cross markers show the
frequency estimated via the total variation (TV) norm, with k = 3 and k = 50,
respectively. The dash-dotted and dashed lines show the frequency estimated
via the Laplacian energy (LE), with k = 3 and k = 50, respectively. The pink ar-
rows show some modes for which the TV norm and the LE methods all identify
frequency dips.

the outputs of all methods as frequencies, despite the fact that the TV norm and
the LE technically do not compute the frequency, but rather a related quantity. To
compare the estimations of these different methods, we use the relative frequency
fi/(maxj fj). I.e., for a given estimation method we compute the frequencies fj for
all ρj and then normalize them by the maximum frequency maxj fj.
Figure 10 shows the relative frequencies estimated via the three different meth-
ods for three different example problems, based on three different PDEs. For the
advection-diffusion equation, all methods agree that the frequencies of the differ-
ent ρi are all similar. Thus, the frequency of ρi does not strongly vary with i.
However, for the KdV and Burgers’ equation, the TV norm and LE both compute
a non-monotonic increase of fi, as i increases. For indices i between 30 and 50,
the growth of fi slows down, until a plateau with fluctuations is reached. This
holds for a wide range of considered neighbors k. The projection method how-
ever computes, similar to the advection-diffusion equation, approximately equal
frequencies for all ρi.
There are several reasons for this disagreement between the TV norm and the
LE on one side, and the projection method on the other. The TV norm and the
LE mainly measure local oscillations of a function, whereas the Fourier transform
used in the projection method attempts to measure the global oscillations. How-
ever, since the projection method relies on the division into different functions,
whose inputs are projections of the true input p onto specific vectors, significant
information is lost. This is described in more detail in Appendix A.2. Lastly, the
non-uniform discrete Fourier transform employed in the projection method relies
on polynomial interpolation to compute the discrete Fourier transform, which in-
troduces more errors.
Based on the agreement between the TV norm and LE, and the identified limita-
tions of the projection method, we consider the results obtained with the TV norm

3.3 spectral properties of the data 27

and LE to be the most reliable for the present analysis. Thus, we conclude that for
the KdV and Burgers’ equation the frequency of ρi tends to increase as i increases.
Lastly, as this will become relevant later, we define a frequency dip. Mode i exhibits
a frequency dip (according to a frequency computation method) if

fi < min(fi−1, fi+1),

where fj denotes the frequency of ρj. In other words, mode i has a frequency
dip when its right-singular function has a lower frequency than the modes with
indices i− 1 and i+ 1. Modes for which both the TV norm and the LE methods
consistently detect frequency dips are highlighted by pink arrows in Fig. 10.

4
A P P LY I N G T H E T R U N K - B R A N C H E R R O R D E C O M P O S I T I O N

In this chapter, we apply the decomposition of the error into (a) the error of the
basis functions, i.e., the trunk error, and (b) the error of the coefficients, i.e., the
branch error. We thus identify the bottleneck in the DeepONet performance for our
example problems. The results of this chapter are foundational for the construction
of the SVDONet in the next chapter.

4.1 error of the trunk network

We compare the approximation errors of DeepONets that all have the same depth
and width, but varying inner dimensions N.
In Fig. 11 (A and B) the total error δ, the trunk error δT , the branch error δB
and the SVD truncation error δSVD are shown for DeepONets of increasing inner
dimension N. We see that by increasing the inner dimension N, the trunk error
δT is continuously lowered. Note that for small N, the trunk error is near optimal
with δT ≈ δSVD. For larger N, there is an emerging gap between the trunk error
and the SVD truncation error. This is seen for both the training data (A) and the
test data (B).
We now dissect the training trunk error, using the projection error ∆(i,N), i.e., the
error of approximating the i-th left-singular vector ϕi by projecting it onto the
trunk space of a DeepONet with inner dimension N. Recall the fundamental idea
of the projection error: the trunk space approximates the SVD space.
Furthermore, recall two important properties of the SVD A = ΦΣVT .

1. The singular values are ordered to be non-increasing. In practice they are
descending, i.e., σi > σi+1.

2. The singular value σi indicates ϕi’s relevance in approximating A.

Thus, the first left-singular vector ϕ1 is the most relevant vector for the approx-
imation of A. In contrast, ϕN is the least relevant vector for the trunk space to
approximate, while still being in S(N).
Figure 11 (C) shows the projection error in three different curves.

1. The projection error is shown for the N first left-singular vectors and one
DeepONet with inner dimension N = 50 (purple).

2. The projection error of ϕ1, i.e., the most relevant direction, and DeepONets
with varying inner dimension N is shown (orange).

3. The projection error of ϕN, i.e., the least relevant direction, and DeepONets
with varying inner dimension N is shown (green).

All three curves together show the following. The first few left-singular vectors
tend to be approximated the best. In fact, the first left-singular vector’s projection
error ∆(i = 1,N) decreases, as N increases. However, as the index i increases, the
projection error ∆(i,N) increases. This shows that even as N increases, the trunk
spaces T(N) all approximate the SVD space S(N ′) for some small N ′. I.e., for the

29

30 applying the trunk-branch error decomposition

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el
at
iv
e
tr
ai
n
in
g
er
ro
r
δ

A)

δ

δT
δB
δSV D

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el
at
iv
e
te
st

er
ro
r
δ

B)

δ

δT
δB
δSV D

5 35 65 95

j

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

P
ro
je
ct
io
n
er
ro
r
Δ
(i
,N

)

C)

Δ(i = j,N = 50)

Δ(i = 1, N = j)

Δ(i = j,N = j)

5 35 65 95

j

10−1

100

101

102

S
in
gu

la
r
va
lu
es

σ
j

D) 0

20

40

60

80

100

120

M
ea
n
fr
eq
u
en
cy

f j

Figure 11: Training, Test and Projection Errors of DeepONets with varying N. A) Train-
ing errors and B) test errors: The total error δ (purple), the trunk error δT (or-
ange), the branch error δB (green) and the SVD truncation error δSVD (yellow)
are shown as functions of N, the inner dimension of the DeepONet. C) Pro-
jection errors ∆(i,N) for different modes ϕi and DeepONet inner dimensions
N are shown. Purple: Projection errors ∆(i = j,N = 50) of varying modes
ϕj and one DeepONet with N = 50 (error vs. i). Orange: Projection errors
∆(i = 1,N = j) of the first mode ϕ1 and DeepONets with increasing inner
dimension N = j (error vs. N). Green: Projection errors ∆(i = j,N = j) of each
DeepONet’s last mode ϕj (error vs. i = N). D) Singular values σj of the train-
ing data matrix (purple, left scale) and mean frequencies fj of the left-singular
functions λj (orange, right scale) are shown.

standard example (Kdv equation with τ = 0.2) and N = 50, shown in Fig. 11,
only the first N ′ = 20 left-singular vectors are approximated with a projection
error ∆(i,N) < 10−3. To summarize, the fact that the trunk error δT decreases, as
N increases, can be attributed to (a) the continuous lowering of the approximation
error of the most relevant, i.e., first few, left-singular vectors, and (b) the continuous
inclusion of new relevant directions in the trunk space, especially for small N.
However, since the projection error of the left-singular vectors grows with their
index, the gap between δT and δSVD emerges.
As discussed in Section 3.3, the spatial frequency of the left-singular vectors can be
computed. Figure 11 (D) shows both the singular value σi, indicating the relevance
of ϕi, and its spatial frequency fi. We observe that while the frequencies fi of the
first i ⩽ 30 vectors ϕi remain relatively consistent, the singular values σi drastically
decrease, and the projection errors ∆(i,N) increase significantly. Furthermore, even
for other example problems, which display a more consistent increase in spatial
frequencies fi, as i increases, there is no significantly stronger increase in ∆(i,N)

observed. Therefore, we argue that the primary reason for the increasing projection
errors is not the frequency, i.e. spectral bias, but the prioritization of the more
relevant vectors. Note that the decrease of δT for the test and the training case is
very similar. This shows that the DeepONet learns generalizing basis functions.

4.2 error of the branch network

As N increases, the branch error δB increases and reaches a plateau. Since δT
decreases, as N increases, and since δ2 = δ2T + δ2B, the total error δ is dominated
by the branch error, δ ≈ δB, for large N. This is seen for both the training data
and the test data. The intuition behind this observation is that a branch network

4.2 error of the branch network 31

with fixed width and depth cannot approximate the targets for N = 100 neurons
as accurately as for, e.g., N = 20 neurons.
To conclude, both for test and training input functions, if the hidden dimension N

is chosen sufficiently large, the error is dominated by the branch error. Thus, for
our example problems and large N, the branch network is the bottleneck of the
DeepONet’s accuracy. Since the entire dissection of the trunk error relies on the
comparison to the optimal trunk matrix, the next chapter introduces an adaptation
of the DeepONet, the SVDONet, for which the optimal branch matrix is constant
over the training course. The SVDONet thus enables us to dissect the branch error
in a similar manner.

5
S V D O N E T

In the previous chapter, we observed that for a large enough N, the branch er-
ror dominates the total error. We now construct the SVD-based operator network
(SVDONet), an adaption of the DeepONet. In the SVDONet the trunk network
is removed and replaced with a fixed trunk matrix obtained through SVD of the
training data matrix. We introduce the SVDONet for two main reasons.
Firstly, removing the trunk network significantly simplifies the analysis since all
parameters are now branch parameters.
Secondly, the SVDONet enables us to decompose the branch error into different
errors, the mode losses.

5.1 defining the svdonet

To see the intuition behind the SVDONet, we restate the SVD of the training data
matrix Atr (Equation 10):

Atr = ΦΣVT = [Φ1 Φ2]

"
Σ1 0

0 Σ2

#"
VT
1

VT
2

#

= Φ1Σ1V
T
1 +Φ2Σ2V

T
2 =

min(n,m)X

j=1

σjϕjv
T
j .

Recall that Φ1 ∈ Rn×N and V1 ∈ Rm×N contain the first N left- and right-singular
vectors of Atr, respectively, and Σ1 ∈ RN×N contains the first N singular values.
Furthermore, we restate the matrix formulation of the DeepONet (see Equation 8):

Ã = TBT =

NX

j=1

tjb
T
j (22)

with T = [t1 . . . tN] ∈ Rn×N,

B = [b1 . . . bN] ∈ Rm×N.

As discussed in Section 2.6.1, for any matrix C ∈ RN×N with full rank N, the
matrix Φ1C is an optimal trunk matrix. We choose C = Σ1, i.e., each left-singular
vector is scaled with its corresponding singular value, and replace the trunk net-
work’s output T by the fixed trunk matrix Φ1Σ1. This specific scaling, C = Σ1, is
motivated in Section 5.3. Thus, we arrive at the SVDONet’s output by inserting
T = Φ1Σ1 in Equation 22:

ÃSVDONet = Φ1Σ1B
T =

NX

j=1

σjϕjb
T
j . (23)

For a clear overview over the true solution (top row), the SVDONet (center row)
and the DeepONet (bottom row), we denote their matrix formulations (left col-
umn), and the output for individual coordinates and individual input functions
(right column) in the following Equations.

33

34 svdonet

rX

j=1

True Solution

rX

j=1

SVDONet

rX

j=1

DeepONet

Matrix Formulation
rX

j=1

Φ1Σ1V
T
1 +Φ2Σ2V

T
2 (24)

rX

j=1

Φ1Σ1B
T (25)

rX

j=1

TBT

Individual Evaluation
rX

j=1

σj(ϕj)i(vj)k (26)

NX

j=1

σj(ϕj)ibj(pk) (27)

NX

j=1

tj(ri)bj(pk)

The comparison for individual coordinates and individual input functions (right
column) again shows that the SVDONet replaces the trunk network’s output neu-
rons ti with the scaled left-singular vectors ϕi. The left-singular vectors ϕi are
from now on called modes. A brief interpretation of the modes in the PDE context
is given in Section 5.4.4. The replacement of the trunk network by a fixed trunk
matrix implies that the SVDONet can only be evaluated at the training coordinates
rj. The architectures of the neural networks behind the standard DeepONet and
the SVDONet are both visualized in Fig. 12.
By comparing the matrix formulations for the true solution and the SVDONet (see
Equations 24 and 25) one sees that for a well-trained SVDONet, B ≈ V1 is necessary.
This can also be seen by using Equation 13 with T = Φ1Σ1:

B∗ = (T+Atr)
T = (Σ−1

1 ΦT
1Atr)

T =

Σ−1
1 ΦT

1 (Φ1Σ1V
T
1 +Φ2Σ2V

T
2)

�T

= (Σ−1
1 ΦT

1Φ1Σ1V
T
1)

T = V1

. (28)

By comparing the value of the true solution and the SVDONet for individual
evaluations (see Equations 26 and 27) we see that bj(pk) should approximate
(vj)k = Vjk. Hence, bj should approximate the right-singular function ρj, intro-
duced in Section 3.3.
Furthermore, note that the SVDONet always uses the trunk matrix T = Φ1Σ1

based on the SVD of the training data matrix, also when evaluating the SVDONet
on test data.

p(r̄1)

p(r̄2)
...

p(r̄M)

Branch net1

b1

b2
...

bN

t1
t2

...
tN

Trunk netr

PN
j=1 bj(p̂)tj(r)

(a) DeepONet

p(r̄1)

p(r̄2)
...

p(r̄M)

Branch net

b1

b2
...

bN

σ1ϕ1

σ2ϕ2
...

σNϕN

Trunk matrix

PN
j=1 σjbj(p̂)(ϕj)i

(b) SVDONet

Figure 12: Comparison of the Architectures behind the standard DeepONet and the SV-
DONet: In the SVDONet, the trunk network is replaced by the trunk matrix
Φ1Σ1. The DeepONet can be evaluated at any coordinate r, while the SVDONet
can only be evaluated at ri, one of the evaluation points in the training data.

5.2 deriving the mode-based error decomposition 35

As described, for the SVDONet we choose T = Φ1Σ1. However, we could also
construct an alternative SVDONet in which T = Φ1. This would imply B ≈ Σ1V1.
Numerical examples show that both approaches perform similarly. A study com-
paring the performance impact of Σ1 can be found in Appendix A.6. Note that the
SVDONet with T = Φ1 has been proposed in [35] and was termed POD-DeepONet.
However, the decomposition into, first, trunk and branch error, and second, mode
errors, was not investigated in [35]. Our reasons to use T = Φ1Σ1 are discussed in
Section 5.3.

5.2 deriving the mode-based error decomposition

We now drop the subscript SVDONet for the approximation matrix Ã, since, un-
less noted otherwise, the approximation matrix from this point on corresponds to
the SVDONet. We decompose the SVDONet’s training error, by applying Equa-
tion 9. To this end, we use the SVD of the training data matrix Atr.

Atr = Φ1Σ1V
T
1 +Φ2Σ2V

T
2

εtr = ||Ãtr −Atr||
2
F = ||Φ1Σ1B

T
tr −Φ1Σ1V

T
1 −Φ2Σ2V

T
2 ||

2
F

= ||Σ1B
T
tr −Σ1V

T
1 ||

2
F + ||Σ2||

2
F =

NX

i=1

σ2
i ||bi,tr − vi||

2
2| {z }

=:Li,tr

+||Σ2||
2
F (29)

By design, the trunk space is spanned by the first N left-singular vectors of Atr,
thus εT = εSVD = ||Σ2||

2
F, i.e., the SVDONet achieves the optimal trunk error for

the training data. Since ||Σ2||
2
F is the trunk error, ||Σ1B

T
tr − Σ1V

T
1 ||

2
F is the branch

error. Equation 29 then displays the SVDONet’s main advantage for analysis: the
branch error can be decomposed into the errors σ2

iLi corresponding to the different
modes. The unweighted mode loss Li is the difference between vi and bi, i.e., the
difference between the true coefficients of mode i and the approximate coefficients
bi predicted by the SVDONet, for all input functions. Since every mode is scaled
with the corresponding singular value σi, the weighted mode loss is σ2

iLi.
For test data, the error decomposition is similar, but slightly more involved. As
discussed in Section 3.2 the numerical methods used to generate the training and
test data imply that

Col(Ate) ⊂ Col(Atr),

where Col(A) is the column space of a matrix A. Thus, the matrix W = (Σ+ΦTAte)
T

satisfies

Ate = ΦΣWT .

The matrix W thus contains the coefficients to build Ate using the scaled left-
singular vectors of Atr. As we divided V into V1,V2, we can divide W = [W1 W2],
with W1 ∈ Rmtr×N, such that

Ate = Φ1Σ1W
T
1 +Φ2Σ2W

T
2 .

Thus, as V1 contains the optimal coefficients to approximate Atr using Φ1Σ1, the
matrix

W1 = (Σ−1
1 ΦT

1Ate)
T

36 svdonet

contains the optimal coefficients to approximate the test data matrix Ate using
Φ1Σ1. Using the definitions of W1 and W2, we can compute the test error

εte = ||Ãte −Ate||
2
F = ||Φ1Σ1B

T
te −Φ1Σ1W

T
1 −Φ2Σ2W

T
2 ||

2
F

= ||Φ1Σ1B
T
te −Φ1Σ1W

T
1 ||F

2 + ||Φ2Σ2W
T
2 ||

2
F

= ||Σ1B
T
te −Σ1W

T
1 ||

2
F + ||Σ2W

T
2 ||

2
F

=

NX

i=1

σ2
i ||bi,te −wi||

2
2| {z }

=:li

+||Σ2W
T
2 ||

2
F.

Here wi is the i-th column of W1. Note that since we use the left-singular vectors
of the training matrix, the true coefficient matrices V1,V2 for the training data
are semi-orthogonal, unlike the true coefficient matrices W1,W2 for the test data.
Thus the norm of W2 is not bounded in any sense, and hence the relative test trunk
error ||Σ2W

T
2 ||F/||Ate||F might be much larger than the relative training trunk error

||Σ2V
T
2 ||F/||Atr||F = ||Σ2||

2
F/||Atr||F. However, this is not the case for our example

problems; see Appendix A.7.
Furthermore, since the trunk error is determined by the choice of N, it can be
omitted from the loss used in the neural network training. Thus, we use

Ltr :=
1

ntrmtr
||Σ1B

T
tr −Σ1V

T
1 ||

2
F =

1

ntrmtr
εB,tr,

Lte :=
1

ntemte
||Σ1B

T
te −Σ1W

T
1 ||

2
F =

1

ntemte
εB,te

as training and test loss from now on. This corresponds to only measuring the
error in the coefficients of the first N modes, not the full approximation error of
the matrix A. This implies

Ltr =
1

nmtr

NX

i=1

σ2
iLi,tr,

Lte =
1

nmte

NX

i=1

σ2
i li.

To facilitate the comparison between the unweighted mode losses for test and
training data we define the unweighted test loss of mode i as Li,te = li

mtr

mte
. This

implies

Lte =
1

nmtr

NX

i=1

σ2
iLi,te. (30)

We introduce the term base loss for modes as a practical reference when interpreting
mode losses. The base loss of mode i is defined as the loss obtained when bi = 0,
i.e., when the SVDONet predicts a zero coefficient for mode i. The unweighted
base loss on the training data is thus ||vi||

2
2 = 1, as V1 is semi-orthogonal. Thus,

the weighted base loss on the training data is σ2
i . For the test data the unweighted

base loss is mtr

mte
||wi||

2
2 and thus, the weighted base loss is mtr

mte
σ2
i ||wi||

2
2. Observing a

mode loss Li which exceeds its base loss suggests that the optimizer is effectively
neglecting mode i, since the trivial prediction bi = 0 would yield a lower loss.

5.3 choice of trunk matrix 37

5.3 choice of trunk matrix

Our choice for T = Φ1Σ1 is motivated by three reasons.

1. As discussed, the first N left singular vectors of the training data matrix Atr

yield a basis for the best rank N approximation of the training data Atr as
seen from εT = εSVD. Thus, we choose T = Φ1C, for a full-rank matrix
C ∈ RN×N.

2. Through the use of C = Σ1, the branch network’s training target is V1, which
is a semi-orthogonal matrix. Hence the sum of squares of the targets are nor-
malized for each branch neuron, i.e., ||vi||22 = 1. This type of target normaliza-
tion is common in machine learning [2] and more specifically in multi-task
learning [17, 20, 21]. This is not given in the POD-DeepONet, which uses
T = Φ1.

3. Furthermore, the insertion of Σ1 somewhat simplifies the analysis leading to
a straight-forward definition of the unweighted mode loss Li.

As we have seen, for the standard DeepONet the gap between the trunk error
and the SVD truncation error is negligible compared to the branch error. Hence
we do not expect a large error reduction by replacing the trunk network with the
left-singular vectors. We mainly introduce the SVDONet to facilitate our analysis.

5.4 related work

To contextualize this thesis within the broader field of OL research, we will discuss
related work. Section 5.4.1 compares the SVDONet to OL architectures whose out-
puts also lie in the span of a predetermined basis. Section 5.4.2 includes OL archi-
tectures, such as the FNO, which utilize basis representations, but whose outputs
are not in the span of a predetermined basis. Section 5.4.3 discusses the applicabil-
ity of the derived mode-loss decomposition to other architectures and discusses the
spectral bias in OL. Section 5.4.4 relates the SVDONet’s modes to the discretized
operator it is approximating. Section 5.4.5 introduces multi-task learning, another
framework in which the SVDONet can be viewed.

5.4.1 Closely Related Architectures

The SVDONet’s closest relative is the POD-DeepONet, suggested in [35]. The only
difference between SVDONet and POD-DeepONet is the scaling of the fixed trunk
matrix. Their relation is described in more detail in Sections 5.1 and 5.3.
There are multiple OL architectures that share some elements with the SVDONet,
e.g., the spectral neural operator (SNO) [12] and the principal component analysis
neural operator (PCANO) [1]. We now examine the differences and similarities be-
tween the SVDONet on the one side, and the SNO and PCANO on the other side.
In line with the example problems considered in this work, we only discuss the ap-
proximation of time-evolution operators, for ease of exposure. I.e., the SVDONet’s
input function is the initial condition. To avoid any misunderstandings, we divide
each OL architecture into its learnable and its fixed part. For the SVDONet, the
branch network is the learnable part and the trunk matrix T = Φ1Σ1 is the fixed
part. The DeepONet’s trunk and branch network are both learnable, and hence it

38 svdonet

does not have any fixed parts. I.e., we do not consider the classical neural network
hyperparameters and the initial condition’s sample locations to belong to the fixed
part.
Thus, the SVDONet’s learnable part takes the initial condition as input. The SNO’s
and PCANO’s learnable parts however do not take the initial condition as input.
They both use a fixed input basis, such that their learnable parts take the initial
condition’s coefficients with respect to this fixed input basis as input. Hereafter,
SVDONet, SNO and PCANO behave similarly. The learnable part computes the
output coefficients for the fixed output basis. The final output is then given as the
linear combination of the computed coefficients and the fixed output basis vectors.
Thus, for both SNO and PCANO, the fixed part contains two sets of vectors, the
input and output basis vectors. The SNO uses either Chebyshev polynomials or
trigonometric functions for both the input and output bases. The PCANO uses the
left-singular vectors of the input and output matrices as input and output bases,
respectively. The SNO’s structure with trigonometric functions as basis functions
is given by:

p ∈ RM → F(·)(F) → Nθ(·) → F−1(·),

where F = (f1, ..., f⌊M/2⌋) are all accessible frequencies, F,F−1 denote the discrete
Fourier and discrete inverse Fourier transform, respectively, and Nθ is a neural
network. Thus, F(p)(F) are the initial condition’s coefficients with respect to the
trigonometric basis functions, and Nθ(F(p)(F)) are the final output’s coefficients
with respect to the trigonometric basis functions. For comparison, the SVDONet’s
structure is given by:

p ∈ RM → Nθ(·) → Φ1Σ1(·),

where Φ1Σ1(·) denotes multiplication of Φ1Σ1 with a vector.
Since the SVDONet and these related architectures map to finite dimensional vec-
tor spaces, they are technically not approximating the solution operator mapping
to an infinite dimensional vector space anymore. However, this is often the more
realistic situation. E.g., when using numerical simulations to generate training and
test data, these simulation results are often only available on a fixed mesh anyways.
We thus believe that this simpler setting still provides a realistic and insightful sce-
nario. Furthermore, by adding a simple interpolator these architectures can be
modified to map to function space.

5.4.2 Broader Context

Neural operators such as the Fourier neural operator (FNO) [33], the convolutional
neural operator (CNO) [42] and the wavelet neural operator (WNO) [49] can be
seen as relatives of the SNO and the PCANO. Thus, they can also be seen as more
distant relatives of the SVDONet. For ease of exposition, we only compare the FNO
to the SNO with trigonometric functions and we ignore the local linear transform
of each Fourier layer due to its purely local influence. The FNOs structure can be
written as

p ∈ RM → F(·)(F ′) → Nθ(·) → F−1(·) → N̄θ̄(·),

where F ′ = (f1, ..., fK<⌊M/2⌋) contains the first K frequencies and Nθ, N̄θ̄ are two
neural networks. Thus, the FNO and SNO both begin by transforming the initial

5.4 related work 39

condition into the input coefficients through a Fourier transform. However, then
the FNO only uses the first K frequencies, introducing aliasing errors. Next, both ar-
chitectures apply a neural network. Then, both architectures compute the discrete
inverse Fourier transform. For the SNO, this is the final output. Thus, the SNO’s
final output is a linear combination of the Fourier basis with the computed output
coefficients, as discussed. However, the FNO uses the inverse Fourier transform as
input to a second neural network N̄θ̄. This second neural network then produces
the FNO’s final output. Thus, the FNO’s final output is not in a specific subspace
spanned by a set of fixed basis functions. Thus, the FNO, and related architectures,
are generally more expressive [33], while their output is less structured.
Furthermore, note that in practice the neural network Nθ used in the FNO is a
convolutional neural network, while the SNO uses a multi-layer perceptron.

5.4.3 Error Decomposition and Spectral Bias

A detailed comparison of the SVDONet and the DeepONet is given in Section 5.1.
However, whether decompositions into losses corresponding to different spatial
basis functions/vectors - similar to the one derived for the SVDONet in Section 5.2
- can also be constructed for other OL architectures has not yet been discussed. To
demonstrate that this is indeed possible, we briefly discuss a similar error decom-
position, which could, for example, be applied to the DeepONet.
For simplicity, consider a training data matrix A ∈ Rn×m with n ⩽ m. This implies
that Φ, the left-singular matrix of A, has rank(Φ) = n. Furthermore, we use (a) the
left-singular vectors ϕi as modes, as done in previous sections, and (b) all N = n

modes ϕi, unlike in previous sections. We can then compute the following error
decomposition:

ε = ||Ã−A||2F = ||ΦT (Ã−A)||2F =

nX

i=1

||ϕT
i (Ã−A)||2F| {z }

=:ei

.

Thus, ei is the norm of the residual’s projection onto the i-th mode. The main dif-
ference in this decomposition for the DeepONet and the previous decomposition
for the SVDONet is the following.

1. For a DeepONet, ei is influenced both by the trunk space’s approximation of
ϕi, and by the coefficient the branch network learned for this mode.

2. For the SVDONet, the i-th mode is either perfectly represented (i ⩽ N), or
not given at all in the trunk matrix. Thus, for i ⩽ N the mode loss only
contains the error in the coefficient.

Furthermore, note that the decomposition described in this section can be seen as
an adaptation of the spectral error defined for the investigation of the spectral bias;
see Section 2.3.4. Consequently, research in this direction is typically classified un-
der the overarching theme of spectral bias in OL. Recently, spectral bias as a relevant
obstruction to DeepONets [50, 56] and other OL architectures [22, 24] has become
a prevalent research direction. However, to the best of our knowledge, an error de-
composition into the mode losses has not been reported in the literature yet. The
closest work we have identified to our mode loss decomposition is the decompo-
sition of the error into frequency bands for the FNO [22]. The decomposition into
frequency bands can be derived using the Plancherel theorem.

40 svdonet

5.4.3.1 Spectral Bias in Operator Learning

The SVDONet framework offers two different and insightful viewpoints in the
discussion surrounding spectral bias.
Firstly, we discuss the spectral bias regarding the left-singular vectors, i.e., the
spatial dependency and the trunk matrix. The SVDONet’s output is spanned by
{ϕi}

N
i=1 the first N left-singular vectors of Atr. As discussed in Section 3.3, we can

compute the frequency fi of the left-singular vectors ϕi, or equivalently the left-
singular functions λi. We then observe that fi generally increases with i, though
its growth is not monotone. This association of ϕi and growing frequencies fi, as
i increases, yields two different insights.

(a) Since (i) the SVDONet is designed to only use the first N modes to approxi-
mate the solution, and since (ii) these are the modes with the lowest frequen-
cies, the SVDONet necessarily omits the high frequency parts of the solution.
Hence the SVDONet has output-wise spectral bias. Note that the latter rea-
son is not necessarily true for other data sets.

(b) The loss of mode i can also be associated with the frequency fi. I.e., the de-
composition of the loss into the mode losses equivalently is a decomposition
into frequency losses. Hence the output-wise spectral bias of SVDONets can
naturally be studied using the mode loss decomposition. Thus, the investiga-
tion of mode losses, where modes are sorted by relevance, can also be viewed
through the lens of frequency dependent errors. The question of How large
is the error associated with the i-th most relevant direction? thus turns into How
large is the error associated with a given spatial frequency?.

Secondly, the input function dependence, i.e., the branch network, can be con-
sidered. Recall that to investigate the spectral bias, the Fourier transform of the
approximated function and the Fourier transform of the target function are com-
pared. Furthermore, a given trunk matrix T allows for the computation of target
coefficients (T+A)T . However, since the trunk network, and hence the trunk ma-
trix, of DeepONets are continually optimized over the training course, constant
targets are not given for normal DeepONets. For SVDONets however the fixed
trunk matrix T = Φ1Σ1 yields constant target coefficients V1. As discussed, the
i-th branch output neuron bi is trained to approximate the i-th right-singular func-
tion ρi, with ρi(pj) = Vji. Recall that we observed that for the KdV and the Burgers
equation, the frequency of ρi increases as i increases; see Section 3.3. Thus, if we
observe that the approximations of the right-singular functions ρi worsen as i in-
creases, this might be attributed to the spectral bias. A growing frequency of ρi as
i increases is not found for the advection-diffusion equation.
Both viewpoints can also be summarized in a comparison between the potential
spectral bias in DeepONet and SVDONet. In the DeepONet spectral bias could
manifest in two different ways.

(a) Due to spectral bias in the trunk network, the learned basis functions might
not contain the high frequency components necessary to accurately approxi-
mate the solution. However, recall that Chapter 4 shows that spectral bias is
not the dominating factor determining the approximation error of different
basis functions.

(b) Due to spectral bias in the branch network, coefficients bi whose target func-
tions pj 7→ (T+A)ji have high frequencies are not accurately approximated.

5.4 related work 41

Note that the target function is not constant over the course of training for
normal DeepONets, since the trunk matrix T changes.

In contrast, for the SVDONet reason (a) can be eliminated by choosing a large
enough N, and thus only reason (b) remains.

5.4.4 Interpretation of Modes

In this section, we briefly discuss the connection between the modes ϕi and the dis-
cretized time-evolution operator. For simplicity, we only discuss linear PDEs, thus
the following derivation does not apply to the KdV and Burgers’ equation. How-
ever, we still believe that the interpretation yields a valuable intuition. Consider a
time-dependent PDE of the form

0 =
∂u

∂t
+Du,

where D is a linear spatial differential operator. Together with the boundary con-
ditions this forms an initial value problem.
Using appropriate spatial discretizations p̂ ∈ Rn and Ĝ∗ ∈ Rn×n of the initial
condition p(·) = u(·, t = 0) and the infinite-dimensional time-evolution operator
G∗ : p(·) 7→ u(·, t = τ), respectively, we can compute the discretized solution
u∗
p̂ = Ĝ∗p̂ ∈ Rn. The matrix Ĝ∗ admits an SVD Ĝ∗ = ΨSQT , with the left-singular

vectors Ψ = [ψ1 . . . ψn] ∈ Rn×n and the singular values S = diag(s1, . . . , sn).
We assume that Ĝ∗ has full rank n, i.e., si > 0,∀i ∈ [n]. Furthermore, consider the
input matrix

P = [p̂1 . . . p̂m] ∈ Rn×m,

with n ⩽ m and assume rank(P) = n. Then, the (output) data matrix is

A := [u∗
p̂1

. . . u∗
p̂m

] = Ĝ∗P = ΨSQTP.

Recall that the modes ϕi, which are used in the SVDONet, are the left-singular
vectors of A. We thus see that the set of all modes ϕi and the set of all left-singular
vectors ψi of Ĝ∗ span the same space. In linear algebra terms this is equivalent to
the following simple statement.
For any matrix G ∈ Rn×n and any matrix P ∈ Rn×m for which m ⩾ n and rank(P) = n,
the column spaces of G and GP are identical.

We furthermore consider the special case, in which P is given as

P = QCY ∈ Rn×n,

with C being a full-rank diagonal n×n matrix and Y ∈ Rn×n being an orthogonal
matrix. Then the data matrix is

A = ΨSQTQCY = Ψ(SC)Y.

This is, up to a potential reordering of Ψ’s columns, Y’s rows and SC’s diagonal
entries, and potential sign switches, an SVD of A. Thus, the modes ϕi and the
left-singular vectors ψj of Ĝ∗ are, up to the potential reordering and potential sign
switches, the same. Thus, for all i ∈ [n], there exists j ∈ [n], such that ϕi = ±ψj.

42 svdonet

5.4.4.1 Relationship to Spectral Properties

Section 3.3 discusses the spectral properties of the SVD of the data matrix. It states
that the relationship between the mode index i and fi, the spatial frequency of ϕi,
can be arbitrarily prescribed through the choice of the initial conditions. This is
demonstrated by the following example.
Consider a discretized time-evolution operator Ĝ∗, whose left-singular vectors ψj

have a spatial frequency fj, which increases with j. This spatial frequency is com-
puted by the discrete Fourier transform. Furthermore, by choosing C = Sa−1, i.e.,
Cii = sa−1

i , in the aforementioned special case P = QCY, the data matrix becomes

A = Ψ(SC)Y = ΨSaY.

Thus, for a > 0, neither reordering nor sign switches are necessary; ψi = ϕi. Thus,
the spatial frequency of ϕi also increases with i. However, for a < 0, the order of
the singular triplets has to be reversed, i.e., ϕi = ψn−i. Thus, the spatial frequency
of ϕi decreases with i.

5.4.5 Multi-Task Learning

Recall that the SVDONet’s branch network takes one input p̂ ∈ RM and produces
N outputs bi, which are referred to as coefficients of the modes ϕi.
Unrelated to the field of operator learning, there is a subfield of machine learning,
called multi-task learning (MTL). As the name suggests, in MTL there is one model
which is supposed to learn multiple tasks. An example for MTL in practice is
the software FaceID to unlock iPhones, which concurrently locates the face and
identifies the user [54]. We now provide a formal definition of a specific variant of
MTL [54]. Consider K ∈ N different tasks and the set of K models {G(k)

θ }Kk=1, which
are all parametrized by the same parameters θ. Note that the different models can
all be parametrized differently. A simple example of the different parametrizations
using the same parameter θ ∈ R is G

(k)
θ (x) = θkx with x ∈ R. Then the different

models G
(k)
θ are all based on the same parameter(s) θ, but their dependency on

θ differs. However, not all task-specific models have to use all of θ. For instance,
consider the parameters θ = (θ1 . . . θK θK+1)

T ∈ RK+1 and the task-specific
models G

(k)
θ (x) = θkx+ θK+1. Then only θK+1 is present in all models.

Consider furthermore the dataset {x(k)i ,y(k)
i }

mk

i=1 for the k-th task. For simplicity we
consider the inputs x

(k)
i , the targets y

(k)
i ∈ R, and the task-specific loss function

L̃k(θ) =
1

mk

mkX

i=1

���y(k)
i −G

(k)
θ

�
x
(k)
i

����
2

. (31)

Then the total loss function is L(θ) =
PK

k=1 L̃k(θ). As for other machine learn-
ing problems, good parameters θ can be found using gradient descent of the loss
function L.
The advantages of MTL, in comparison to training a separate model for each task,
are described later, together with a more in-depth comparison to SVDONets; see
Sections 6.2.1.3 and 6.2.2.4.
To give some motivation here, we note that the SVDONet can be seen as a spe-
cial case of MTL, for which the inputs for all tasks are the same, i.e., xi = x

(k)
i .

Approximating the coefficient of the i-th mode is thus the i-th task.

6
A P P LY I N G T H E M O D E - B A S E D E R R O R D E C O M P O S I T I O N

To showcase the usefulness of the SVDONet, we present three different insights
gained from the SVDONet and the mode decomposition.
In Section 6.1, we decompose the error into the mode losses, to understand which
modes contribute to the test and training errors. We investigate how well the
learned coefficients of the different modes generalize. In Section 6.2, we investi-
gate the interaction between different modes in two ways. In Section 6.2.1, we
examine the stacked SVDONet, an architecture in which the coefficients for the
different modes are learned separately. In Section 6.2.2, we analyze the influence
different modes have on each other in the standard SVDONet architecture.
Throughout this chapter, we use the following terms. Since mode i is associated
with the singular value σi, and since the singular values are ordered descendingly,
we refer to modes with low indices i ⪅ 10 as large modes and to modes with high
indices i ⪆ 30 we refer to as small modes. Additionally, the term intermediate modes
refers to modes in between. The terms large, intermediate and small are meant for
orientation, not for assigning specific numbers.

6.1 svdonet mode loss distribution

In this section, we investigate how training and test branch errors are distributed
over the individual modes. We first consider SVDONets trained using gradient de-
scent (GD). We then propose a modified training algorithm, through re-weighting
the different terms in the loss function. This leads to a lower loss in general, and
specifically to more evenly distribution of the mode losses. Something similar is
observed, when considering the Adam optimizer, instead of GD. Lastly, we discuss
the impact of spectral bias on the mode loss distribution.

6.1.1 Gradient Descent Training

We start by looking at SVDONets trained using GD. In Fig. 13 (center column)
the weighted mode losses for training (top) and test data (bottom), σ2

iLi/m are
shown over the course of the training. They are normalized with m, the number
of input functions in the respective data set. The figures also show the base losses
σ2
i /mtrain and s2i /mtest, which are achieved by bi = 0 (see Section 5.2). Note that

test and training mode losses are very similar here. We observe that only the loss
of the largest ≈ 10 modes is significantly lowered below the base loss, over the
course of the training process.
The distribution of the weighted mode losses can be summarized like this: On the
one hand, we have the well-approximated large modes, which contribute a low
loss. On the other hand, we have the small modes, whose contribution is very
small due to the small singular values. This leaves the intermediate modes, who
thus have the highest weighted mode losses. In the standard example problem,
12 ⩽ i ⩽ 17 are the intermediate modes. To understand why only the largest

43

44 applying the mode-based error decomposition

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

3× 10−1

100

R
el
at
iv
e
E
rr
or

δ Test

Train

e = −1.0

e = −0.5

e = 0.0

e = 0.5

e = 1.0

10−2

100

102

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s e = −1.0

1 25 50

10−1

101

W
ei
gh

te
d
T
es
t

M
o
d
e
L
os
se
s e = −1.0

e = −0.5

1 25 50

e = −0.5

e = 0.0

1 25 50

e = 0.0

e = 0.5

1 25 50

e = 0.5

e = 1.0

1 25 50

e = 1.0

Mode index i

Figure 13: Model Performance across different Exponents e and training epochs for SV-
DONets trained using GD. Top panel: Relative error δ = ||A− Ã||F/||A||F for
both training (dashed lines) and test (dot-solid lines) data across different ex-
ponents (e = −1.0,−0.5, 0.0, 0.5, 1.0) over 4000 epochs. Center and bottom row:
Weighted training (center row) and test (bottom row) mode losses at different
training steps, colored from gray (initial) to red/blue (final). Each column cor-
responds to a different exponent e. The third column shows the SVDONet
trained using the standard loss (e = 0). The center and bottom row plots also
contain the respective base losses in black, and a pink dashed horizontal line
marking the maximum mode loss in the last training epoch of e = 0, facilitating
comparison between different exponents e.

modes are approximated well, we recall that the training loss can be decomposed
into the mode losses

Ltr(θ) =
1

nmtr
εB =

1

nmtr

NX

i=1

σ2
iLi,tr(θ),

where θ are the parameters, such as weights and biases. Hence, the gradient with
respect to the parameters θ of the loss can also be decomposed

∇θLtr(θ) =
1

nmtr

NX

i=1

σ2
i∇θLi,tr(θ).

Since the singular values σi vary hugely in size, the different modes are very
differently represented in the gradient. Thus, the coefficients of the modes with
smaller singular values (smaller modes) only change negligibly - the gradient with
respect to them is multiplied with a very small number (compared to the large
modes, i.e., modes with large singular values). For more training epochs, the loss of
the first few modes continues to decrease, whereas the losses of smaller modes in
practice is not lowered significantly.

6.1 svdonet mode loss distribution 45

6.1.2 Gradient Descent Training with Modified Loss Weighting

What happens, if we increase the smaller modes’ contribution in the gradient?
To emphasize different modes, we introduce a modified loss, by re-weighting the
mode losses using an exponent e ∈ R.

Le,tr :=
1

nmtr

NX

i=1

σ2+2e
i Li,tr

Note that we use Le,tr only to compute the gradients, and hence the parameter
updates, not as a performance metric. Furthermore, for GD we divide the learning
rate by σ2e

1 . Thus, the contribution of ∇L1,tr in ∇Le,tr is invariant of e, and hence
the updates are neither exploding for e > 0, nor vanishing for e < 0.
To recall, the idea behind this re-weighting is that small modes are not acted on
by gradient descent, since the gradients with respect to the large modes dominate
the total gradient, and hence the parameter update direction. Re-weighting with
e < 0.0 emphasizes the small modes, while e > 0 emphasizes the large modes
even more and for e = 0, the standard loss is recovered. Specifically, for e =

−1 all modes, independent of their singular value, are equally weighted. This is
equivalent to using εC (Equation 14), instead of εB in the loss function. It should,
however, not be confused with the POD-DeepONet in which the trunk matrix is
chosen as T = Φ1; see Section 5.4. For the POD-DeepONet the singular values are
moved to the branch network, i.e., the optimal coefficient for mode i is σivi, in
contrast to vi for the SVDONet. Hence the POD-DeepONet and the SVDONet for
e = 0 use the same mode-weighting.
Obviously, the large modes are more relevant for the approximation, yet the smaller
modes retain some influence. As discussed, a branch network of fixed architecture
achieves higher approximation errors when learning coefficients for N = 100 basis
functions compared to N = 20 basis functions. Similarly, we expect the large modes’
coefficients to get worse, when forcing it to approximate the coefficients of more
modes through e < 0.0. However, it is not clear exactly how strong the impact on
the large modes’ coefficients will be. Moreover, will the large modes’ higher mode
loss be compensated by a significantly lower loss on the smaller modes?
We first discuss the re-weightings effect on the mode losses for the training data,
see Fig. 13 (center row). For e = −1.0, a loss significantly below the base loss is
reached for all modes. Compared to e = 0, a significantly lower loss for all but the
≈ 10 largest modes is reached. For e = −0.5, the largest ≈ 10 modes display a low
loss, while all others are reduced to the base loss. For e ⩾ 0, only the first 10, 8
and 5 modes, respectively, display low mode losses, with the first modes loss L1
being similar for e = 0.0, 0.5 and 1.0. Furthermore, for e ⩾ 0, the mode losses of
the small modes are larger than the base loss, i.e., they are entirely neglected by
the optimizer. Even though the loss of the first few modes is significantly larger
for e = −1.0 compared to the other values of e, the loss reduction through the
small modes compensates this and the total training loss is lowest for e = −1.0
(top panel).
We now discuss the re-weighting’s effect on the mode losses for the test data, see
Fig. 13 (bottom row). For e > −1.0, the mode losses for test and training data are
similar. For e = −1.0, however, only the test and training losses of large modes
are similar. For small modes and e = −1.0, the training loss is significantly smaller
than the test loss. In fact, the test loss is similar to the base loss for the small modes.
This overfitting of the small modes means that the low training loss for e = −1.0 is

46 applying the mode-based error decomposition

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

10−1

100

R
el
at
iv
e
E
rr
or

δ Test

Train

e = −1.0

e = −0.5

e = 0.0

e = 0.5

e = 1.0

10−3

10−1

101

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s

e = −1.0

1 25 50

10−2

100

102

W
ei
gh

te
d
T
es
t

M
o
d
e
L
os
se
s

e = −1.0

e = −0.5

1 25 50

e = −0.5

e = 0.0

1 25 50

e = 0.0

e = 0.5

1 25 50

e = 0.5

e = 1.0

1 25 50

e = 1.0

Mode index i

Figure 14: Model Performance across different Exponents e and training epochs for SV-
DONets trained using Adam. Layout and parameters identical to Fig. 13, with
Adam replacing GD. Top panel: Relative error δ = ||A − Ã||F/||A||F for both
training (dashed lines) and test (dot-solid lines) data across different exponents
(e = −1.0,−0.5, 0.0, 0.5, 1.0) over 4000 epochs. Center and bottom row: Weighted
training (center row) and test (bottom row) mode losses at different training
steps, colored from gray (initial) to red/blue (final). Each column corresponds
to a different exponent e. The third column shows the SVDONet trained us-
ing the standard loss (e = 0). The center and bottom row plots also contain the
respective base losses in black, and a pink dashed horizontal line marking the
maximum mode loss in the last training epoch of e = 0, facilitating comparison
between different exponents e.

not directly translated to a low test loss. In fact, e = −0.5 achieves the lowest test
loss, due to (a) a lower loss on the largest modes than e = −1.0 and (b) a lower
loss on the intermediate / smaller modes than e ⩾ 0.

6.1.3 Adam Training

We now examine the mode loss distribution for a re-weighted loss for SVDONets
trained using Adam, since Adam adapts learning rates per parameter and may
mitigate the poor performance on small modes; see Section 2.3.2.
We first discuss the standard loss (e = 0). When comparing the total loss for Adam,
Fig. 14, and GD, Fig. 13, one observes that Adam achieves significantly lower test
and training losses than GD. Furthermore, in contrast to GD which is underfitting,
the SVDONet trained with Adam and e = 0 is overfitting, i.e., a widening gap
between training and test loss can be seen. We observe that, while at very differ-
ent speeds, finally all training mode losses significantly decrease below the base
loss (not visible for all modes in the first 4000 epochs). Furthermore, we observe
a significant loss reduction on the first 30 modes, on both test and training data,
for Adam. Judging from these observations, Adam seems to be more similar to

6.1 svdonet mode loss distribution 47

GD with e = −1, than to GD with e = 0. Thus, we argue that the large differ-
ence in magnitude between the singular values of different modes, and hence their
contributions to the gradient, appears to be one of the reasons why adaptive gra-
dient optimization schemes perform much better than GD. Numerical examples
show that adaptive gradient schemes without momentum, such as AdaGrad also
perform significantly better than GD.
For Adam, the distribution of the weighted mode losses can be summarized like
this: On the one hand, the largest ≈ 20 modes are well-approximated. On the
other hand, we have the small modes, whose contribution is very small due to
the small singular values. This leaves the intermediate modes, whose loss is sig-
nificantly lower than the base loss, but due to the size of the singular values, they
nevertheless have the highest weighted mode losses.

6.1.4 Adam Training with Modified Loss Weighting

When considering e ̸= 0, see Fig. 14, we observe the re-weighting’s strong effect on
the mode level. We first discuss the training loss (center row). For e > 0.0, the loss
for the first few modes is slightly lower than for e = 0, while the loss for all other
modes is increased. Note that Adam, for all e, reduces every mode loss at least to
its base loss, unlike GD with e ⩾ 0. For e < 0.0, the loss for the first few modes is
larger than for e = 0, while the losses for all other modes are significantly lower. In
particular, e = −1.0 achieves an approximately homogeneous unweighted mode
loss, i.e., Li,tr ≈ constant. For the training loss, the optimal balance between (a)
prioritizing the large modes and (b) not completely ignoring the small modes is
achieved by e = −0.5.
We now discuss the test loss (bottom row). For an SVDONet trained with e > 0.0,
the test and training mode loss distributions are qualitatively similar. For e ⩽ 0,
however, the low training mode losses on small modes do not transfer to the test
losses. Recall that we observed the same overfitting on the small modes for GD
with e = −1.0. Thus, for e < 0 and the test data, the higher losses on the large
modes are no longer compensated by the loss reduction on the small modes. In
fact, the total test error is thus lowest for e = 0.0 (top panel).
However, it is important to note that Adam for all considered values of e overfits
on every mode, not exclusively on the small modes.
Interestingly, large modes generalize so much better that there are some example
problems (e.g., the KdV equation with τ = 1) for which e = 1.0 achieves a slightly
lower test error than e = 0.0.

6.1.5 Spectral Bias

We now investigate the impact of spectral bias in the branch network on the mode
loss distribution.
The (inverse) singular values, the unweighted mode losses, and the frequencies fi
of the right-singular functions ρi are shown in Fig. 15 for the example problems:
advection-diffusion equation with τ = 0.5, KdV equation with τ = 0.2, KdV equa-
tion with τ = 0.6 and Burgers equation with τ = 0.1. To show the trend of the
frequencies of ρi, we arbitrarily choose two estimation methods: TV norm with
k = 3 and the LE norm with k = 50. Note that each plot in Fig. 15 contains three
different y-axis scales, all of which are logarithmic. One for the inverse singular

48 applying the mode-based error decomposition

Mode index i

G
D

1 10 20

A
d
am

1 25 50 1 25 50 1 25 50

1/σi

Li,tr

Li,te

TV k = 3 : fi
LE k = 50 : fi

Figure 15: Spectral Bias in SVDONets for various Example Problems. Inverse singular
values 1/σi (black), unweighted training (red) and test (blue) mode losses, and
the ρi’s frequency estimated via the TV norm with k = 3 (green) and LE k = 50

(yellow) are shown. The inverse singular values, the mode losses and the fre-
quencies all have individual (logarithmic) scales. A mode is marked with a pink
dashed line, if it exhibits both a frequency and a loss dip. Top row: SVDONets
trained using GD. Bottom row: SVDONets trained using Adam. Example prob-
lems (by column): advection-diffusion equation with τ = 0.5, KdV equation
with τ = 0.2, KdV equation with τ = 0.6 and Burgers’ equation with τ = 0.1.

values (black), one for the mode losses (red and blue), and one for the frequencies
(green and yellow). This is done to facilitate the direct comparison between the dif-
ferent quantities. This specific scaling implies that if two quantities x and y from
different scales appear to be equal in the plot, then there exist α,β ∈ R, such that
αxβ = y. We then say x and y exhibit a power law dependence. Furthermore, 1/x
and y then also exhibit a power law dependence.
We first discuss the results for the KdV and the Burgers equation (second-fourth
column in Fig. 15). For SVDONets approximating the solution operator of the KdV
or Burgers’ equation, a clear correlation between fi, the frequency of ρi, and the
mode losses, for test and training data, is observed. For some example problems
mode loss and frequency exhibit an approximate power law dependency. Recall
that mode i has a frequency dip, if fi < min(fi−1, fi+1); see Section 3.3. The cor-
relation can be seen very clearly for some of the dips in the spectrum for exam-
ple problems based on the KdV equation; we observe, especially for Adam, that
modes with frequency dips commonly have significantly smaller mode losses than
their neighbors, i.e., they have loss dips. Note that, if the mode loss was purely
influenced by the singular value, i.e., the optimizer prioritizing the more relevant
modes, there should not be any loss dips. Modes which exhibit both frequency
dips and loss dips are highlighted in Fig. 15 with pink dashed lines. Since both
test and training mode losses show a correlation with the frequency, the branch

6.2 coupling between different modes 49

network is learning a generalizing approximation for low-frequencies, while it is
underfitting for high-frequencies.
We now discuss the results for the advection-diffusion equation (first column). As
discussed in Section 3.3, the right-singular functions ρi have constant frequencies.
Furthermore, we observe a power law dependency between the singular values
and the training mode losses. In this case this corresponds to very low training
mode losses for the large modes. However, we observe a constant test mode loss
Li,te. Thus, we observe significant overfitting. Due to the different input dimen-
sions M for the different example problems, a reliable method to compare the
frequencies of the ρi between different example problems is not available. Thus, a
spectral bias based explanation of why SVDONet overfit more for the advection-
diffusion equation than for other equations cannot be given.

6.1.6 Conclusion

This section has three main observations.

• For SVDONets trained with GD only the coefficients of the first few modes
are approximated well, since the gradients of the smaller mode losses are
underrepresented. Thus the modes that have the highest weighted loss are
the intermediate ones.

• By explicitly modifying the loss function or using adaptive gradient schemes,
more modes can be approximated well.

• For both Adam and GD, small modes don’t generalize well: even if their
training loss is lowered, their test loss is not.

Furthermore, we show that for example problems based on the KdV or Burgers’
equation there is a clear correlation between the mode losses and the frequencies of
the right-singular functions, indicating the existence of strong spectral bias. This is
highlighted by the coinciding frequency and loss dips. However, not all frequency
dips show loss dips, furthermore, since the frequency fi, for most examples, gen-
erally increases with i, we cannot conclude the true relevance of the frequency,
compared to the singular value, for the approximation error. To study the impact
of spectral bias in more depth, example problems with various spectral properties
and better frequency estimation methods are necessary.
Furthermore, it is important to note that it is not clear, to which extent the poor
generalizability of the small modes is a shortcoming of SVDONets, potentially
caused by spectral bias, and to which extent these modes contain noise introduced
by the numerical methods used to generate the training and test data.

6.2 coupling between different modes

In the previous section we analyzed the losses corresponding to different modes.
While decomposing the error into the different mode losses yields insights into
how well the individual modes are approximated, the coefficients of the different
modes are not computed independently in the standard SVDONet. In Section 6.2.1
this is investigated by comparing the standard SVDONet to a modified SVDONet,
which computes the coefficient of each mode separately. In Section 6.2.2 we return
to the standard SVDONet and examine how the coefficients of the different modes
are coupled in parameter space.

50 applying the mode-based error decomposition

p(r̄1)

p(r̄2)
...

p(r̄M)

Branch net1

Branch net2
. . .

Branch netN

b1

b2
...

bN

t1
t2

...
tN

Trunk netr

PN
j=1 bj(p̂)tj(r)

(a) Stacked DeepONet

p(r̄1)

p(r̄2)
...

p(r̄M)

Branch net1

Branch net2
. . .

Branch netN

b1

b2
...

bN

σ1ϕ1

σ2ϕ2
...

σNϕN

Trunk matrix

PN
j=1 σjbj(p̂)(ϕj)i

(b) Stacked SVDONet

Figure 16: Comparison of the Architectures behind the stacked DeepONet and the
stacked SVDONet. Fig. 12 shows the unstacked DeepONet and the unstacked
SVDONet for reference. Adapted and reproduced from [34].

6.2.1 Architectural Mode Coupling

In this section, the performance of the standard SVDONets and stacked SVDONets
is compared. This is done to study how the approximation of the different coeffi-
cients is impacted by isolating them from each other in the neural network.

6.2.1.1 Stacked DeepONet

Together with the standard (or unstacked) DeepONet, Lu et al. proposed the so-
called stacked DeepONet [34]. While the branch network in the unstacked Deep-
ONet consists of one multi-layer perceptron with N output neurons, the branch
network in the stacked DeepONet consists of N multi-layer perceptrons with one
output neuron each. The stacked DeepONet can be seen in Fig. 16a, the corre-
sponding unstacked DeepONet is shown in Fig. 12a.
The different basis functions’ coefficients bj are thus separated from each other
in the stacked DeepONet. In [34] it was reported that stacked DeepONets tend
to reach lower training losses and higher test losses, compared to unstacked Deep-
ONets. It is intuitively not clear, why this neuron-sharing of the coefficients of differ-
ent basis functions would be beneficial for generalization. Note that [34] compared
DeepONets in which the width of the hidden layers of the unstacked branch net-
work was equal to the width of the hidden layers in each of the stacked branch
sub-networks. Thus, the stacked DeepONet in their comparison has significantly
more parameters.
The concept of stacked DeepONets can readily be transferred to the SVDONet. The
SVDONet’s one branch network is replaced with N multi-layer perceptrons, each
approximating the coefficient corresponding to one mode; see Fig. 16b.

6.2.1.2 Comparison of Stacked and Unstacked SVDONets

How does the performance of stacked and unstacked SVDONets differ? To answer
this, we compare a stacked to an unstacked SVDONet. Since increasing the num-
ber of parameters in a neural network can lead to overfitting [15], we compare
networks that have the same number of parameters. In our case the unstacked SV-
DONet’s branch network has depth D and width wunst. The individual branch
networks of the stacked SVDONet have the same depth D and different widths

6.2 coupling between different modes 51

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

10−1

100

R
el
at
iv
e
E
rr
or

δ Test

Train

GD, Sta.

GD, Unst.

Adam, Sta.

Adam, Unst.

10−3

10−1

101

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s

GD, Sta.

1 25 50

10−1

101

W
ei
gh

te
d
T
es
t

M
o
d
e
L
os
se
s GD, Sta.

GD, Unst.

1 25 50

GD, Unst.

Adam, Sta.

1 25 50

Adam, Sta.

Adam, Unst.

1 25 50

Adam, Unst.

Mode index i

Figure 17: Model Performance of stacked and unstacked SVDONets trained using GD
and Adam. Top panel: Relative error δ = ||A − Ã||F/||A||F for both training
(dashed lines) and test (dot-solid lines) data over 4000 epochs. Center and bot-
tom row: Weighted training (center row) and test (bottom row) mode losses at
different training steps, colored from gray (initial) to red/blue (final). Columns
correspond to optimizer (GD or Adam) and architecture (stacked (Sta.) or un-
stacked (Unst.)) as indicated by the labels. The center and bottom row plots also
contain the respective base losses in black, and a pink dashed horizontal line
marking the maximum mode loss of the unstacked SVDONet with the respec-
tive optimizer.

wsta < wunst; see Appendix A.8. However, as described in more detail in Ap-
pendix A.8, we also conduct experiments comparing stacked and unstacked SV-
DONets with wsta ≈ wunst. These experiments demonstrate that, as was found
for DeepONets [34], stacked SVDONets tend to overfit more than unstacked SV-
DONets with same individual widths,
We now discuss the results for wsta < wunsta. In Fig. 17, the training and test loss
curves of the stacked and unstacked SVDONet and the training and test mode
losses of both are shown.
For SVDONets trained using GD, the unstacked SVDONet achieves lower test
and training errors than the stacked SVDONet trained with GD. The mode loss
distributions are qualitatively very similar for stacked and unstacked SVDONets.
In the following, we discuss stacked and unstacked SVDONets trained with Adam.
We observe that the unstacked SVDONet always achieves a lower test error. For the
training error, it depends on the example problem. This shows that, for our exam-
ple problems and the Adam optimizer, even for the same number of parameters
with fixed depth, the neuron-sharing helps generalization.
When investigating the mode errors of the stacked and unstacked SVDONets, we
observe that the stacked SVDONet achieves much lower training losses on most
modes. However, for some intermediate modes (e.g., 10 ⩽ i ⩽ 15 in Fig. 17) the
unstacked SVDONet achieves lower training losses.

52 applying the mode-based error decomposition

It is important to note that even for modes where comparable training losses are
achieved, the test losses of the stacked and the unstacked SVDONet might still
differ. This means that the generalization abilities of the two architectures cannot
be solely explained by (a) which modes to approximate how well and (b) how well
do these modes generalize, since there is no universal generalizability of modes.
For all considered examples, there are some large modes whose training loss is
lower for the unstacked SVDONet, whereas their test loss is lower for the stacked
SVDONet (in Fig. 17 these are modes 2 − 7). The opposite can be observed for
intermediate and small modes. There the stacked SVDONet significantly outper-
forms the unstacked SVDONet on the training data, but the unstacked SVDONet
achieves a lower test loss. This holds for all considered example problems; in
Fig. 17 these are modes 17 − 21 and 35 − 49. Thus, the neuron-sharing, in form
of the unstacked SVDONet, seems to lead to more generalizable coefficients for
intermediate and small modes, and worse generalization on large modes.

6.2.1.3 Conclusion

The first key observation from the previous section was that small modes don’t
seem to generalize well. The experiments with the stacked SVDONet strongly cor-
roborate this hypothesis. Furthermore, we observe that the unstacking, or neuron-
sharing, helps the total generalizability, but not for all modes. It seems to hurt the
training loss and generalizability of the large modes, while improving the general-
izability of smaller modes.
Note that the unstacked SVDONet with the mode loss decomposition can be seen
as a specific multi-task learning (MTL) problem; see Section 5.4.5. I.e., the SV-
DONet is one model which has to solve N separate tasks; it has to approximate
N right-singular functions ρi, for i ∈ [N]. In contrast, the j-th branch sub-network
of the stacked SVDONet just has one task; approximate ρj. In MTL, the question
of (how) should the parameters associated with the different tasks be shared? is very com-
mon [44]. There are many different arguments for so-called hard parameter sharing,
i.e., all tasks should share most of (or all) of the parameters, which corresponds
to the unstacked SVDONet. One of them is the following: Sharing the parameters
can lead the model to learn features which work well for all tasks. If the tasks to
learn are similar enough, the features who work well for all tasks are usually the
ones that generalize well [44].
Importantly, our results suggest that even when practitioners are only interested in
specific modes of system dynamics, such as particular resonance frequencies, the
unstacked SVDONet architecture may still be preferable. The parameter sharing
across modes appears to facilitate learning of generalizable features that improve
approximation quality for the target mode, even if other output neurons are not
directly used in the application.

6.2.2 Update Based Mode Coupling

For the comparison between the stacked and the unstacked SVDONet, we asked
the following question: If the branch network is rearranged such that the modes have
separated parameters, while keeping the number of parameters constant, how does this affect
generalization abilities? In this section, we consider unstacked SVDONets and ask:
Which contribution to the loss comes from the coupling of the modes? We are concerned
with the coupling of the modes in the parameter space. Changing the value of

6.2 coupling between different modes 53

the i-th branch output neuron does not affect the SVDONet output in any other
mode due to the modes’ orthogonality (ϕT

i ϕj = 0 for i ̸= j). However, updating the
parameters to achieve a lower loss in mode i can significantly change the values
of all branch output neurons due to the neuron-sharing discussed in the previous
section.
In Section 6.2.2.1, we will give a definition for mode coupling in parameter space. This
definition relies on computing the parameter updates, and we thus also refer to it
as update based mode coupling. Sections 6.2.2.2 and 6.2.2.3 will examine the strength
of the mode coupling for SVDONets trained with GD and Adam, respectively.
In the entire Section 6.2.2, mode coupling always refers to update based mode
coupling, not architectural mode coupling.

6.2.2.1 Defining Update Based Mode Coupling

Unless stated otherwise, any loss function in this section is evaluated at the current
parameters θ, and the gradients are computed with respect to θ. Thus we write ∇Li
instead of ∇θLi(θ) and ∇L instead of ∇θL(θ). Consider a GD parameter update

δθ = −α∇Ltr = −
α

nmtr

NX

j=1

σ2
j∇Lj,tr.

Choosing a sufficiently small learning rate α allows us to approximate the change
in the training and test loss function using a first order Taylor expansion. As we
will see, the Taylor expansion allows us to partition the loss change into coupling
and non-coupling parts.
Recall that we use the symbols Li and L when an equation applies to both the test
and training losses. If necessary, the test and training losses are specified using the
subscripts te and tr, respectively.
For the i-th mode loss the first order Taylor expansion of the loss change ∆Li is

∆Li = Li(θ+ δθ)− Li(θ)

≈ (∇Li)
Tδθ = −

α

nmtr

NX

j=1

σ2
j (∇Li)

T∇Lj,tr.

Then, the first order Taylor expansion of the total loss change ∆L is

∆L = L(θ+ δθ)−L(θ) =
1

nmtr

NX

i=1

σ2
i∆Li

≈ −
α

n2m2
tr

NX

i=1

σ2
i

NX

j=1

σ2
j (∇Li)

T∇Lj,tr.

We denote η = α
n2m2

tr
to simplify the notation. By introducing the matrices D and

S this can be rewritten as

D :=
�
σ2
1∇L1 . . . σ2

N∇LN
�
∈ R|θ|×N

S := −ηDTDtr, and (32)

⇒ ∆L ≈
NX

i=1

NX

j=1

Sij.

54 applying the mode-based error decomposition

Here |θ| is the number of parameters; see Appendix A.8.1 for a precise definition
of |θ|. The sum of the matrix entries can be split into the diagonal term

d :=

NX

i=1

Sii = −η

NX

i=1

σ4
i (∇Li)

T∇Li,tr,

and the off-diagonal term

Ω :=

NX

i=1

X

j̸=i

Sij = −η

NX

i=1

σ2
i

X

j̸=i

σ2
j (∇Li)

T∇Lj,tr,

such that ∆L ≈ PN
i=1

PN
j=1 Sij = d +Ω. Thus, d +Ω is the first order Taylor

expansion of the loss change. For the training loss, the diagonal term is given as

dtr = −η

NX

i=1

σ4
i (∇Li,tr)

T∇Li,tr = −η

NX

i=1

σ4
i ||∇Li,tr||

2
2 ⩽ 0.

This is not given for the test loss.
Furthermore note that Sij = −ησ2

iσ
2
j (∇Li)

T∇Lj,tr is the first order Taylor expan-
sion of the weighted loss change of mode i given the parameter update −ησ2

j∇Lj,tr.
This parameter update is the GD update to minimize the j-th mode loss, scaled
with σ2

j . Thus, Sij contains the information how the i-th mode loss changes through
a parameter update improving the j-th mode loss. Note that Sij,tr = Sji,tr. Thus,
for the training loss, coupling is symmetric, and Str = STtr. Thus, Ω contains the
coupling between the different modes in parameter space.
In the following we consider the case d+Ω < 0. This is given, if the first order
Taylor expansion is a good approximation, i.e., d +Ω ≈ ∆L, and the training
is successful (e.g., no overfitting), i.e., ∆L < 0. Then, since (a) Ω contains the
coupling and (b) d+Ω approximates the loss change, the overarching question of
Section 6.2.2 (Which contribution to the loss comes from the coupling of the modes?) is
reduced to the ratio of Ω and d+Ω. We thus define

γ :=
Ω

d+Ω

as the (update based) relative mode coupling strength among all modes, or in short
relative coupling strength. Note that for γ < 0,Ω > 0, the coupling is detrimental to
the training, while for γ > 0,Ω < 0 the coupling is beneficial for training.

6.2.2.2 Gradient Descent Training

We now examine d and Ω for SVDONets trained with GD. In Fig. 18 the test
and training loss over the epochs (left), the different contributions d,Ω, the first
order Taylor expansion d+Ω and the total loss change L (center), and the relative
coupling strength γ (right) are shown over the training course. As established in
the previous sections, GD is underfitting. Thus the behavior of d and Ω is very
similar for test and training data. We thus discuss the results for the training data.
We start by noting that ∆L ≈ d+Ω is in fact observed, i.e., the learning rate α

is chosen to be sufficiently small. In this example we observe Ω > 0. Similar to
the loss change, the diagonal term d and the off-diagonal term Ω decay over the
epochs. The relative coupling strength decreases from −1 to −7 over the first 4000
epochs. Thus, the relative contribution of the coupling grows over the course of

6.2 coupling between different modes 55

0 1000 2000 3000 4000

100

4× 10−1

6× 10−1

R
el
at
iv
e
E
rr
or

δ

Test

Training

0 1000 2000 3000 4000

−0.010

−0.005

0.000

0.005

0.010

L
os
s
C
h
an

ge
C
on

tr
ib
u
ti
on

s

Loss Change ΔL
Taylor Ex. d+ Ω

Diag d

Off-Diag Ω

0 1000 2000 3000 4000

−7

−6

−5

−4

−3

−2

−1

R
el
at
iv
e
C
ou

p
li
n
g
S
tr
en
gt
h
γ
=

Ω
/(
d
+
Ω
)

Epochs

Figure 18: Loss, Loss Change per epoch and Relative Coupling Strength over the train-
ing epochs for an SVDONet trained with GD. Left: Training (dashed) and test
(dot-solid) loss over 4000 epochs. Center: Loss change L (purple), first order
Taylor expansion of loss change d +Ω (dashed, lightgreen), diagonal term d

(orange) and off-diagonal term Ω (darkgreen) on the training data over 4000

epochs. Right: Relative coupling strength γ over 4000 epochs.

the training. Note that there are other example problems, for which Ω is initially
negative. However, even for these examples, Ω then increases significantly over the
epochs, becoming positive and showing detrimental coupling with γ ≈ −1 after
4000 epochs.
Furthermore, we can inspect the contributions to the diagonal and off-diagonal
parts through the entries of S = −ηDTDtr; see Fig. 19. Since we focus our discus-
sion on the training loss, we consider Str. Recall that Str is always symmetric and
has non-positive diagonal entries. Note however that since we observe no over-
fitting for SVDONets trained using GD, we also observe Str ≈ Ste. Hence our
observations also hold for Ste.
For later epochs, we observe that there are certain regions in the matrix, in which
most matrix entries are positive. More specifically, most entries in the first 10 rows
and columns are positive (red). This means that the coupling between any two
modes i, j is likely to be detrimental, if i ⩽ 10. We furthermore note that only
the first 10 modes’ loss is significantly lower than their base loss; we thus refer
to them (a bit euphemistically) as well-approximated. Thus, the coupling between a
well-approximated mode and any other mode is likely to be detrimental. However,
the coupling between two poorly approximated modes (i, j > 10) is likely to be
beneficial; Sij < 0 (blue).
It is important to point out that this pattern is not a strict observation; there are
some negative, off-diagonal matrix entries Sij with i, j ⩽ 10.
However, what happens if we consider larger networks? We increase the width of
the hidden layers, while keeping the depth of the networks and the inner dimen-
sion N constant.
Fig. 20 shows the negative relative coupling strength −γ over the loss reduction
−∆L for SVDONets of multiple widths w. We find strong decoupling with in-
creased width. For the examples in which Ω is initially negative, decoupling is
clearly observed for later epochs, when Ω > 0. Note that the wider, decoupled SV-

56 applying the mode-based error decomposition

10−2

10−1

100

101

102

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s

Epoch 0 Epoch 100 Epoch 400 Epoch 1200

1 20 40

1

25

50

E
n
tr
ie
s
of

S
tr
M
at
ri
x

1 20 40 1 20 40 1 20 40

Mode index i

Figure 19: Mode Losses and Entries of Str for an SVDONet trained with GD at 4 differ-
ent epochs. Top row: Weighted mode losses (red) and singular values (black)
for each epoch. Bottom row: Entries of Str matrix. Red entries indicates a pos-
itive entry and blue indicates a negative entry (same colorscale for all epochs).
The SVDONet shown here is the same as in Fig. 18.

10−4 10−3

Loss reduction −ΔL

10−1

100

N
eg
at
iv
e
R
el
at
iv
e
C
ou

p
li
n
g
S
tr
en
gt
h
−
γ

w = 50

w = 100

w = 220

w = 335

w = 495

Figure 20: Negative Relative Coupling Strength −γ plotted over Loss Reduction −∆L

for SVDONets of different Hidden-Layer Widths w. The figure shows models
with hidden layer widths 50 (purple), 100 (orange), 220 (darkgreen), 335 (yellow)
and 495 (lightgreen).

DONets achieve lower test and training losses. Furthermore, we note that the pat-
tern described for Str for the SVDONet with w = 50 weakens, as w increases, but
the tendency for large positive matrix entries to come from the rows and columns
associated with well-approximated modes stays.
We can now compare the unstacked SVDONet to the stacked net. For the stacked
SVDONet we have that Ω = 0, per definition, since we can divide the stacked net-
work’s parameters θ into N mode-specific parameters θi and then ∇θLi = ∇θi

Li.

6.2 coupling between different modes 57

Thus, the question whether mode coupling causes the difference in performance
between stacked and unstacked SVDONets arises. In Section 6.2.1 it was found that
for SVDONets trained using GD, an unstacked SVDONet consistently performs
better than a stacked SVDONet on both test and training data. Since a detrimental
coupling, Ω > 0, is observed for many examples, for both training and test data,
the mode coupling cannot be the main cause of performance difference between
stacked and unstacked SVDONets.
An expanded discussion on reasons for these observations (strong detrimental cou-
pling and decoupling for wider networks) and comparisons to similar phenomena
are given in Section 6.2.2.4.

6.2.2.3 Adam Training

We can also apply this mode coupling analysis to SVDONets trained using Adam.
We first investigate the difference between the actual loss change ∆L, the first or-
der Taylor expansion of the loss change with the Adam update (∇L)Tδθ and the
first order Taylor expansion of the loss change with the gradient descent update
(∇L)T (−η∇Ltr) = d+Ω, since the Taylor expansion is the foundation of our cou-
pling definition. We compare two SVDONets. While both have the same depth and
inner dimension N, the width of their hidden layers differ. The results are shown in
Fig. 21. For the narrower branch network (width = 50), the first order Taylor expan-
sion is a good approximation of the loss change, i.e., ∆L ≈ (∇L)Tδθ. Furthermore,
the first order Taylor expansion of the loss change with gradient descent shows
qualitative agreement with ∆L. For the wider branch network (width = 335) this
is only true for early epochs. The actual loss reduction decays smoothly to 0 over
all 4000 epochs. However, there are some epochs for which both Taylor expansions
show spikes with strong loss reduction. For visual clarity, the figure only shows
the loss change for every 100-th epoch, thus we expect there to be many more
spikes, when considering all epochs. The loss reduction through the Taylor expan-
sions of the GD update is larger than the reduction through the Adam update, and
is usually a consequence of the diagonal term d ≈ (∇L)T (−α∇Ltr), while Ω ≈ 0

in these epochs. This shows (a) the difference between the Adam and GD update
direction and (b) the relevance of higher derivatives for wider nets. We continue to
consider the entries of S (see Equation 32) who sum up to the loss change accord-
ing to the first order Taylor expansion of the loss with a gradient descent update,
not an Adam update. However, the following should not be seen as an analysis
of the optimization procedure, but as an analysis of the state (produced by the
optimization procedure).

Training Data

Figure 22 shows the entries of Str. Recall that for GD, we observed most positive
entries in the first few rows and columns of Str.
In later epochs, we observe a notably different but related pattern in wide SV-
DONets trained with Adam. This pattern consists of three parts.

(a) We observe negative off-diagonal entries in the top-left 10 × 10 block, i.e.,
Sij < 0 with i, j ⩽ 10 (blue). This means that the well-approximated modes
are coupled beneficially among each other.

(b) However, the coupling between a well-approximated mode and a poorly-
approximated mode is detrimental (red).

58 applying the mode-based error decomposition

−0.06

−0.04

−0.02

0.00

0.02

0.04

w
=

50

Training Test

Loss Change ΔL
Taylor Ex. d+ Ω

Diag d

Off-Diag Ω

Taylor Ex. Adam

0 1000 2000 3000

−0.0100

−0.0075

−0.0050

−0.0025

0.0000
w

=
33
5

0 1000 2000 3000

Epochs

L
os
s
C
h
an

ge
C
on

tr
ib
u
ti
on

s

Figure 21: Different Loss Contributions and Loss Change Approximations for SV-
DONets trained using Adam. Loss change L (purple), first order Taylor ex-
pansion of the loss change with the gradient descent update (∇L)T (−α∇Ltr) =

d+Ω (dashed, lightgreen), diagonal term d (orange), off-diagonal term Ω (dark-
green) and first order Taylor expansion with the Adam update (∇L)Tδθ over
4000 epochs. Left column: Training losses. Right column: Test losses. Top row:
SVDONet with hidden layer width w = 50. Bottom row: SVDONet with hidden
layer width w = 335.

(c) The coupling among poorly approximated modes is beneficial.

Thus, observation (a) is the key difference between the pattern for GD, and the
pattern for Adam, while observations (b) and (c) are present for both optimization
algorithms. This pattern, beneficial coupling between well-approximated modes,
strengthens over the epochs, leading to clearly visible region boundaries as the
training progresses. The beneficial coupling between the well-approximated modes
might be another key reason why Adam achieves lower losses than GD, next to
the consideration of more modes.
Note that the visibility of this pattern varies strongly from example to example.
For examples where the weighted loss for the first few modes is less uniform, the
visibility strongly decreases.
An expanded discussion on possible reasons for this coupling pattern are given in
Section 6.2.2.4.

Test Data

In the test case, Ste, such a pattern cannot be identified.
However, the inspection of Ste’s entries gives insight into another phenomenon
that we call mode-internal overfitting (MIO). Here MIO means: Ignoring all parame-
ter updates, besides the one specifically for mode i, does mode i still overfit?
We quantify MIO using two mathematical definitions. The intuitive definition for
mode i is the following. If a parameter update δθi decreases the training loss of
mode i, i.e., Li,tr(θ + δθi) < Li,tr(θ), but increases the test loss of mode i, i.e.,
Li,te(θ+ δθi) > Li,te(θ), mode i is internally overfitting.
However, this definition is permissive to noise. We thus give a second stricter, noise
robust criterion. Mode i is internally overfitting, if (a) the training loss is reduced,
∆Li,tr < 0, and (b) the test loss reductions is less than half the size of the training

6.2 coupling between different modes 59

10−2

10−1

100

101

102

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s

Epoch 0 Epoch 500 Epoch 1000 Epoch 1500

1

20

40E
n
tr
ie
s
of

S
tr
M
at
ri
x

1 20 40

1

20

40E
n
tr
ie
s
of

S
te
M
at
ri
x

1 20 40 1 20 40 1 20 40

Mode index i

Figure 22: Weighted Mode Losses and Entries of S Matrix. Top row: Singular values
(black), training mode losses (red), test mode losses (blue) and MIO indicator
µi (pink) at epochs 0, 400, 800, 1200, and 1600. Note that the MIO indicator
uses a different scale than the mode losses. This second scale is indicated by
horizontal lines at 0 (light gray), 0.5 (dark gray) and 1 (black). Center and bottom
rows: Training (center) and test (bottom) results. Heatmaps of matrix S entries at
corresponding epochs, with red/blue indicating positive/negative values. Note
that there are two separate colorscales, one for the training matrices Str for dif-
ferent epochs and one for the test matrices Ste for different epochs.

loss reduction, −∆Li,te < −1
2∆Li,tr. Thus the strict definition applies to a subset

of the modes captured by the permissive definition.
We consider δθi = −α∇θLi,tr(θ) as the update to minimize the training loss of
mode i, and the first order Taylor expansion of Li. Thus, the question whether
MIO takes place is reduced to the comparison of the diagonals of Str and Ste. We
thus define the MIO indicator µi = Sii,te/Sii,tr. Since Sii,tr < 0 is given, a positive
µi implies MIO according to the permissive criterion, and µi > 1

2 is equivalent
to the stricter criterion. Figure 22 shows clear MIO for some modes. This is seen
particularly in wider networks, which tend to overfit more. Of the 50 modes, 10-20
display MIO (depending on the criterion and epoch), demonstrating that while
MIO is common, not all overfitting modes exhibit it.
Note that neither MIO nor the structured coupling are necessarily unique to Adam.
However, the SVDONets trained with GD underfit. This might change for more
training epochs, or a different learning rate, in which case MIO might be observed
in, e.g., GD too.

60 applying the mode-based error decomposition

6.2.2.4 Conclusion

In this section, we defined the update-based coupling strength γ. For SVDONets
trained using GD, γ represents the ratio of Ω—the part of the loss change due
to interactions between modes i and j ̸= i in parameter space—to the total loss
change d+Ω. For SVDONets with small hidden layer widths, we observe strongly
detrimental coupling, i.e., Ω > 0. Specifically, we find strong detrimental cou-
pling between well-approximated modes, while poorly-approximated modes ex-
hibit beneficial coupling among themselves. As the hidden layer width increases,
γ decreases substantially, indicating that the modes progressively decouple with
increasing network capacity.
When analyzing SVDONets trained using Adam, we observe distinct coupling pat-
terns for certain example problems. Here, well-approximated modes exhibit bene-
ficial coupling in the training loss, contrasting sharply with the GD case. However,
examination of the test loss reveals that a substantial number of modes exhibit
mode-internal overfitting: their individual gradient updates increase the test mode
loss even without influence from other modes.

Similar to the discussion of the stacked and unstacked SVDONets (Section 6.2.1.3),
we again relate our results to MTL. What we term detrimental coupling corre-
sponds to gradient conflicts in the MTL literature [55]. Previous work has estab-
lished that gradient conflicts intensify as training progresses [57], which aligns
with our observation of γ evolving from −1 to −7 during training.
The specific coupling pattern – strong detrimental coupling between well-approx-
imated modes – can be understood through task heterogeneity. While these modes
possess the highest singular values and therefore dominate gradient updates, they
attempt to approximate different right-singular functions. Consequently, their ap-
proximations require different parameter configurations, which generates gradient
conflicts. In contrast, poorly-approximated modes do not receive sufficient gradi-
ent signals to develop strong internal representations. This limitation paradoxi-
cally gives them flexibility: they can adapt to parameter changes induced by other
modes without generating significant conflicts. However, this flexibility is never
used, since the singular values corresponding to these modes vanish in the gradi-
ent compared to the larger singular values.
The decoupling phenomenon observed in wider networks admits several comple-
mentary explanations.

• From a geometric perspective, the expected squared inner product between
random vectors in Rk decreases as the dimension k increases [48]. Since the
coupling contribution Ω scales with these inner products, wider networks
naturally exhibit reduced coupling even under random parameter updates.

• From a mechanistic interpretability perspective, wider networks have been
shown to develop more modular, disentangled representations [11, 38], with
distinct features emerging in separate parameter subspaces. These features
are thus decoupled in parameter space.

• Third, the so-called lottery ticket hypothesis [13] offers another perspective:
wider networks contain more sparse subnetworks that can achieve compara-
ble performance to the full network. In our context, this suggests that wider
SVDONets may contain multiple winning tickets, i.e., independent subnet-
works capable of handling different modes with minimal interference. As

6.2 coupling between different modes 61

width increases, the probability of finding non-overlapping winning tickets
for different modes grows, naturally leading to the observed decoupling.

The coupling patterns under Adam optimization reveal additional subtleties. The
beneficial coupling between well-approximated modes manifests only in the train-
ing loss, suggesting that this apparent cooperation may be a form of collective
overfitting. The presence of mode-internal overfitting (MIO) is, to some extent,
expected: as in most machine learning tasks, finite training samples eventually be-
come exhausted, leading to overfitting after sufficient epochs. In our framework,
this manifests as MIO. Our analysis thus suggests that some modes in the SV-
DONets are already close to their generalizability limits. However, note, that these
limits can be surpassed using, e.g., explicit regularization techniques.

7
D I S C U S S I O N

7.1 summary

In this thesis, we investigated the sources of the approximation error in Deep-
ONets by systematically decomposing the total error and analyzing the learning
dynamics of different solution components.

RQ I: Error Distribution Between Basis Functions and Coefficients

We first applied the error decomposition framework of Lanthaler et al. to parti-
tion the total approximation error into trunk error (from learned basis functions)
and branch error (from their coefficients). Our analysis across multiple PDE exam-
ples revealed that while DeepONets successfully learn linearly independent basis
functions that reduce the trunk error as the inner dimension grows, the total ap-
proximation error for large inner dimensions is dominated by the branch error.
This finding established that the primary bottleneck in DeepONet performance
lies in learning accurate coefficients rather than basis functions.

RQ II: Coefficient Approximation and Mode Analysis

To investigate which coefficients are poorly approximated and why, we constructed
the SVDONet, which replaces the learnable trunk network with optimal basis func-
tions (modes) obtained through SVD of the training data. This architectural modifi-
cation enabled us to decompose the branch error into mode-specific contributions,
providing direct insight into how the coefficients of different spatial modes are
approximated.

RQ II.1: Coefficient Error Distribution

Our mode-decomposition analysis revealed fundamental limitations in how opti-
mization algorithms handle coefficients of different modes:

(a) Optimization scheme: For our examples, gradient descent only accurately
approximates coefficients of the leading ≈ 10 modes due to the dominance of
large singular values in gradient updates. The contributions of smaller modes
are effectively drowned out during training. Adaptive gradient schemes like
Adam and explicit loss re-weighting can improve approximation of more
modes by addressing this gradient imbalance.

(b) Generalization patterns: While coefficients of leading modes generalize well
from training to test data, smaller modes exhibit poor generalization even
when their training losses are reduced. This suggests a fundamental differ-
ence in how different modes can be learned from finite data.

Furthermore, we compare the i-th mode error to the frequency corresponding to
the i-th right singular function. For some example problems, we observe a clear

63

64 discussion

positive correlation. This suggests spectral bias in the branch network as one of the
reasons for poor accuracy on the intermediate and small modes.

RQ II.2: Mode Interactions

We investigated coupling between different modes through two complementary
approaches:

(a) Architectural coupling: Comparing stacked (separate networks per mode)
versus unstacked (shared hidden layers) SVDONets revealed that parame-
ter sharing improves overall generalization, particularly for intermediate and
small modes, despite sometimes hurting individual mode performance. This
finding connects SVDONets to multi-task learning, where parameter sharing
enables the learning of generalizable parameter configurations that benefit
multiple modes.

(b) Update-based coupling: Through our coupling strength analysis, we discov-
ered that parameter updates create complex interactions between modes. For
gradient descent, we observed detrimental coupling between well-approx-
imated modes, while Adam exhibited beneficial coupling among well-approx-
imated modes during training. Wider networks showed reduced coupling,
suggesting that mode interactions diminish with increased network capacity.

7.2 future work

While we observed the trunk error to be very small compared to the total ap-
proximation error for our example problems, a key question is under what cir-
cumstances this observation holds. We expect the trunk error to increase for e.g.,
Burgers’ equation with smaller viscosities, or problems with discontinuous initial
conditions. Similarly, for these problems, investigating the resolution dependence
might also reveal larger trunk errors than in our simplified setup.
Especially through the lens of spectral bias, the SVDONet is a very useful tool.
One the one hand, if a high-frequency residual is observed in the prediction of a
standard DeepONet it is not clear whether this residual comes from (a) the fact that
the trunk network does not contain high-frequent basis functions or (b) that the
coefficients, learned by the branch network, are poorly approximated for the high-
frequent basis functions. For the SVDONet this is clear. On the other hand, the
SVDONet’s fixed trunk matrix allows us to study the prevalence of spectral bias in
the branch network. To get a more robust understanding of the impact of spectral
bias in future work, more example problems with various spectral properties and
better frequency estimation methods have to be employed.
Furthermore, to better understand the limits of generalizability of different modes,
it is important to investigate how much of the small modes represents genuine
solution structure versus numerical noise introduced during data generation.
The SVDONet framework establishes a valuable connection between operator learn-
ing (OL) and multi-task learning (MTL), enabling knowledge transfer in both direc-
tions. From the MTL perspective, each mode coefficient in the SVDONet represents
a distinct learning task, making concepts like hard/soft parameter sharing directly
applicable, as demonstrated by our comparison of unstacked/stacked SVDONet
architectures. Similarly, established methods for mitigating gradient conflicts in

7.3 conclusion 65

MTL can be readily adapted to address mode coupling issues in OL. Our investi-
gation also contributes insights back to the MTL research. While gradient conflicts
have been extensively documented, the quantitative relationship between network
width and conflict intensity remains largely unexplored. Our systematic measure-
ments show that increasing network width consistently reduces mode coupling
and gradient conflicts across all example problems. This width-dependent decou-
pling likely extends beyond SVDONets to other neural network architectures, high-
lighting that network width may be a fundamental factor in MTL performance. Fu-
ture work should investigate whether this decoupling behavior represents a gen-
eral principle for wide neural networks, potentially informing architectural design
across both OLg and MTL domains.
Additionally, the observation that unstacked SVDONets demonstrate better gener-
alization for small and intermediate modes, through parameter sharing, suggests
that even when the focus is on specific modes (e.g., for resonance phenomena), un-
stacked SVDONets may still be preferable. However, for applications where only
large modes are relevant, stacked SVDONets tend to generalize better.
A natural next step, building on this work, would be to quantify the extent to
which mode-internal overfitting contributes to overfitting.

In a broader sense, the present thesis demonstrates that computing the SVD of
the training data matrix prior to training can inform the hyperparameter choice
for a standard DeepONet. For instance, the number of singular values larger than
some threshold, i.e., the matrix’s rank, informs the choice of N, and inspecting the
left-singular vectors of the data matrix shows the optimal trunk space, informing
the choice of the trunk network’s width and depth.

7.3 conclusion

This thesis investigates sources of the approximation error in DeepONets by de-
composing the total error into trunk and branch components. Building on the
theoretical framework of Lanthaler et al. [28], our analysis across several PDE ex-
amples suggests that for the problems studied, the branch network – responsible
for learning coefficients – often dominates the approximation error, while the trunk
network learns adequate basis functions.
The SVDONet framework facilitates mode-specific error analysis by replacing the
learnable trunk with optimal SVD-derived modes. This reveals that for our datasets,
small modes exhibit poor generalization even when training losses are reduced,
and different modes interact through complex coupling patterns during optimiza-
tion. Our update-based coupling analysis shows that network width can reduce
detrimental mode interactions.
These findings have immediate practical implications for practitioners. Network
width appears crucial for reducing mode coupling, adaptive optimizers like Adam
help learn beyond the first ≈ 10 modes, and parameter sharing through unstacked
architectures can improve generalization.
Computing the SVD of training data may also inform hyperparameter choices
including inner dimension and network architecture.
Our work establishes connections between operator learning and MTL, where each
mode coefficient represents a distinct learning task.
Important limitations include our focus on relatively smooth PDE solutions – the
trunk error may become more significant for problems with discontinuous initial

66 discussion

conditions or shock formations. Future work should investigate these scenarios, ap-
ply MTL techniques to address mode coupling, and explore the impact of spectral
bias for other example problems.
The SVDONet framework and mode-decomposition analysis provide useful tools
for understanding DeepONet behavior on similar problems, potentially enabling
more targeted architectural improvements in operator learning applications.

B I B L I O G R A P H Y

[1] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. “Model Re-
duction And Neural Networks For Parametric PDEs.” en. In: The SMAI Jour-
nal of computational mathematics 7 (2021), pp. 121–157. doi: 10.5802/smai-jcm.
74. url: https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-
jcm.74/.

[2] C. Bishop. “Neural Networks for Pattern Recognition.” Oxford University
Press, 1995.

[3] K. P. Burnham and D. R. Anderson. “Model Selection and Multimodel Infer-
ence.” Springer, 2002. doi: 10.1007/b97636.

[4] Q. Cao, S. Goswami, and G. E. Karniadakis. “Laplace neural operator for
solving differential equations.” en. In: Nature Machine Intelligence 6.6 (June
2024). Publisher: Nature Publishing Group, pp. 631–640. issn: 2522-5839. doi:
10.1038/s42256-024-00844-4. url: https://www.nature.com/articles/
s42256-024-00844-4 (visited on 06/29/2024).

[5] T. Chen and H. Chen. “Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to dy-
namical systems.” In: IEEE Transactions on Neural Networks 6.4 (1995), pp. 911–
917. doi: 10.1109/72.392253.

[6] T. Cover and P. Hart. “Nearest neighbor pattern classification.” In: IEEE
Transactions on Information Theory 13.1 (1967), pp. 21–27. doi: 10.1109/TIT.
1967.1053964.

[7] G. Cybenko. “Approximation by superpositions of a sigmoidal function.” In:
Mathematics of Control, Signals and Systems (1989). url: https://doi.org/10.
1007/BF02551274.

[8] DeepMind et al. “The DeepMind JAX Ecosystem.” 2020. url: http://github.
com/google-deepmind.

[9] J. Denker, W. Gardner, H. Graf, D. Henderson, R. Howard, W. Hubbard,
L. D. Jackel, H. Baird, and I. Guyon. “Neural Network Recognizer for Hand-
Written Zip Code Digits.” In: Advances in Neural Information Processing Sys-
tems. Vol. 1. Morgan-Kaufmann, 1988. url: https://proceedings.neurips.
cc/paper_files/paper/1988/file/a97da629b098b75c294dffdc3e463904-

Paper.pdf.

[10] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization.” In: Journal of Machine Learning
Research 12.61 (2011), pp. 2121–2159. url: http://jmlr.org/papers/v12/
duchi11a.html.

[11] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hat-
field Dodds, R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J.
Kaplan, D. Amodei, M. Wattenberg, and C. Olah. “Toy Models of Superpo-
sition.” In: Transformer Circuits Thread (2022). url: https://transformer-
circuits.pub/2022/toy_model/index.html.

67

68 Bibliography

[12] V. Fanaskov and I. Oseledets. “Spectral Neural Operators.” 2024. arXiv: 2205.
10573 [math.NA]. url: https://arxiv.org/abs/2205.10573.

[13] J. Frankle and M. Carbin. “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks.” 2019. arXiv: 1803.03635. url: https://arxiv.
org/abs/1803.03635.

[14] P. Getreuer. “Rudin-Osher-Fatemi Total Variation Denoising using Split Breg-
man.” In: Image Processing On Line 2 (2012). https://doi.org/10.5201/ipol.
2012.g-tvd, pp. 74–95.

[15] I. Goodfellow, Y. Bengio, and A. Courville. “Deep Learning.” http://www.

deeplearningbook.org. MIT Press, 2016.

[16] S. Goswami, A. Bora, Y. Yu, and G. E. Karniadakis. “Physics-Informed Deep
Neural Operator Networks.” 2022. arXiv: 2207.05748. url: https://arxiv.
org/abs/2207.05748.

[17] T. Hastie, R. Tibshirani, and J. Friedman. “The Elements of Statistical Learn-
ing.” Springer, 2009.

[18] D. Hendrycks and K. Gimpel. “Gaussian Error Linear Units (GELUs).” 2023.
arXiv: 1606.08415. url: https://arxiv.org/abs/1606.08415.

[19] G. Hinton. “Lecture 6e rmsprop: Divide the gradient by a running average of
its recent magnitude.” Accessed 21.07.2025. url: https://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[20] Y. Hu, R. Xian, Q. Wu, Q. Fan, L. Yin, and H. Zhao. “Revisiting Scalarization
in Multi-Task Learning: A Theoretical Perspective.” 2023. arXiv: 2308.13985.
url: https://arxiv.org/abs/2308.13985.

[21] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao. “Normalization Tech-
niques in Training DNNs: Methodology, Analysis and Application.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45.8 (2023), pp. 10173–
10196. doi: 10.1109/TPAMI.2023.3250241.

[22] S. Khodakarami, V. Oommen, A. Bora, and G. E. Karniadakis. “Mitigating
Spectral Bias in Neural Operators via High-Frequency Scaling for Physical
Systems.” 2025. arXiv: 2503.13695. url: https://arxiv.org/abs/2503.
13695.

[23] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.”
2017. arXiv: 1412.6980. url: https://arxiv.org/abs/1412.6980.

[24] Q. Kong, C. Zou, Y. Choi, E. M. Matzel, K. Azizzadenesheli, Z. E. Ross, A. J.
Rodgers, and R. W. Clayton. “Reducing Frequency Bias of Fourier Neural
Operators in 3D Seismic Wavefield Simulations Through Multi-Stage Train-
ing.” 2025. arXiv: 2503.02023. url: https://arxiv.org/abs/2503.02023.

[25] D. J. Korteweg and G. de Vries. “On the change of form of long waves ad-
vancing in a rectangular canal, and on a new type of long stationary waves.”
In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 39.240 (1895), pp. 422–443. doi: 10.1080/14786449508620739. url:
https://doi.org/10.1080/14786449508620739.

[26] S. K. Kumar. “On weight initialization in deep neural networks.” 2017. arXiv:
1704.08863. url: https://arxiv.org/abs/1704.08863.

Bibliography 69

[27] I. Lagaris, A. Likas, and D. Fotiadis. “Artificial neural networks for solving
ordinary and partial differential equations.” In: IEEE Transactions on Neural
Networks 9.5 (1998), pp. 987–1000. doi: 10.1109/72.712178.

[28] S. Lanthaler, S. Mishra, and G. E. Karniadakis. “Error estimates for Deep-
ONets: a deep learning framework in infinite dimensions.” In: Transactions
of Mathematics and Its Applications 6.1 (Mar. 2022), tnac001. issn: 2398-4945.
doi: 10.1093/imatrm/tnac001. eprint: https://academic.oup.com/imatrm/
article-pdf/6/1/tnac001/42785544/tnac001.pdf. url: https://doi.org/
10.1093/imatrm/tnac001.

[29] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recog-
nition.” In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.
1989.1.4.541.

[30] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” In: Nature (2015). doi:
10.1038/nature14539.

[31] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. In: Neural Networks: Tricks of
the Trade. Springer, Berlin Heidelberg, 1998. url: https://doi.org/10.1007/
3-540-49430-8_2.

[32] S. Lee and Y. Shin. “On the training and generalization of deep operator
networks.” 2023. arXiv: 2023.01020. url: https://arxiv.org/abs/2309.
01020.

[33] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
and A. Anandkumar. “Fourier Neural Operator for Parametric Partial Dif-
ferential Equations.” arXiv:2010.08895 [cs, math]. May 2021. doi: 10.48550/
arXiv.2010.08895. url: http://arxiv.org/abs/2010.08895 (visited on
12/23/2022).

[34] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. “Learning nonlinear
operators via DeepONet based on the universal approximation theorem of
operators.” In: Nature Machine Intelligence 3.3 (Mar. 2021), 218–229. issn: 2522-
5839. doi: 10.1038/s42256-021-00302-5. url: http://dx.doi.org/10.1038/
s42256-021-00302-5.

[35] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karni-
adakis. “A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data.” In: Computer Methods in Applied
Mechanics and Engineering 393 (Apr. 2022), p. 114778. issn: 0045-7825. doi:
10.1016/j.cma.2022.114778.

[36] M. Minsky and S. A. Papert. “Perceptrons: An Introduction to Computa-
tional Geometry.” MIT Press, 1969.

[37] K. Nakamura, B. Derbel, K.-J. Won, and B.-W. Hong. “Learning-Rate Anneal-
ing Methods for Deep Neural Networks.” In: Electronics 10.16 (2021). issn:
2079-9292. doi: 10.3390/electronics10162029. url: https://www.mdpi.
com/2079-9292/10/16/2029.

[38] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter.
“Zoom In: An Introduction to Circuits.” In: Distill (2020). doi: 10.23915/
distill.00024.001. url: https://distill.pub/2020/circuits/zoom-in.

[39] A. Pinkus. “Approximation theory of the MLP model in neural networks.”
In: Acta Numerica 8 (1999), 143–195. doi: 10.1017/S0962492900002919.

70 Bibliography

[40] L. Prechelt. “Automatic early stopping using cross validation: quantifying
the criteria.” In: Neural Networks 11.4 (1998), pp. 761–767. issn: 0893-6080.
doi: https://doi.org/10.1016/S0893- 6080(98)00010- 0. url: https:
//www.sciencedirect.com/science/article/pii/S0893608098000100.

[41] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio,
and A. Courville. “On the Spectral Bias of Neural Networks.” In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by K. Chaudhuri
and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 5301–5310. url: https://proceedings.mlr.press/v97/
rahaman19a.html.

[42] B. Raonić, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S.
Mishra, and E. de Bézenac. “Convolutional Neural Operators for robust and
accurate learning of PDEs.” May 2023. doi: 10.48550/arXiv.2302.01178.
(Visited on 12/01/2023).

[43] F. Rosenblatt. “The perceptron: A probabilistic model for information storage
and organization in the brain.” In: Psychological Review (1958). doi: 10.1037/
h0042519.

[44] S. Ruder. “An Overview of Multi-Task Learning in Deep Neural Networks.”
2017. arXiv: 1706.05098. url: https://arxiv.org/abs/1706.05098.

[45] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise
removal algorithms.” In: Physica D: Nonlinear Phenomena 60.1 (1992), pp. 259–
268. issn: 0167-2789. doi: https : / / doi . org / 10 . 1016 / 0167 - 2789(92)

90242-F. url: https://www.sciencedirect.com/science/article/pii/
016727899290242F.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning internal repre-
sentations by error propagation.” 1986. url: https://api.semanticscholar.
org/CorpusID:62245742.

[47] D. Spielman. “Spectral and Algebraic Graph Theory.” Yale Lecture Notes,
2025. url: http://cs-www.cs.yale.edu/homes/spielman/sagt/.

[48] T. Tao. “Topics in random matrix theory.” American Mathematical Society,
2012.

[49] T. Tripura and S. Chakraborty. “Wavelet neural operator: a neural operator
for parametric partial differential equations.” 2022. arXiv: 2205.02191. url:
https://arxiv.org/abs/2205.02191.

[50] B. Wang, L. Liu, and W. Cai. “Multi-scale DeepOnet (Mscale-DeepOnet) for
Mitigating Spectral Bias in Learning High Frequency Operators of Oscilla-
tory Functions.” 2025. arXiv: 2504.10932. url: https://arxiv.org/abs/
2504.10932.

[51] S. Wang, H. Wang, and P. Perdikaris. “Improved Architectures and Training
Algorithms for Deep Operator Networks.” In: Journal of Scientific Computing
(2022). doi: 10.1007/s10915-022-01881-0.

[52] E. Williams, A. Howard, B. Meuris, and P. Stinis. “What do physics-informed
DeepONets learn? Understanding and improving training for scientific com-
puting applications.” 2024. arXiv: 2411.18459. url: https://arxiv.org/
abs/2411.18459.

Bibliography 71

[53] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao. “Training behavior of deep neural network
in frequency domain.” 2019. arXiv: 1807.01251. url: https://arxiv.org/
abs/1807.01251.

[54] J. Yu, Y. Dai, X. Liu, J. Huang, Y. Shen, K. Zhang, R. Zhou, E. Adhikarla, W. Ye,
Y. Liu, Z. Kong, K. Zhang, Y. Yin, V. Namboodiri, B. D. Davison, J. H. Moore,
and Y. Chen. “Unleashing the Power of Multi-Task Learning: A Comprehen-
sive Survey Spanning Traditional, Deep, and Pretrained Foundation Model
Eras.” 2024. arXiv: 2404.18961. url: https://arxiv.org/abs/2404.18961.

[55] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. “Gradient
Surgery for Multi-Task Learning.” In: Advances in Neural Information Process-
ing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 5824–5836. url: https:
//proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fd

a99de95303940a2420c-Paper.pdf.

[56] E. Zhang, A. Kahana, A. Kopaničáková, E. Turkel, R. Ranade, J. Pathak, and
G. E. Karniadakis. “Blending Neural Operators and Relaxation Methods in
PDE Numerical Solvers.” 2024. arXiv: 2208.13273. url: https://arxiv.org/
abs/2208.13273.

[57] Z. Zhang, J. Shen, C. Cao, G. Dai, S. Zhou, Q. Zhang, S. Zhang, and E.
Shutova. “Proactive Gradient Conflict Mitigation in Multi-Task Learning: A
Sparse Training Perspective.” 2024. arXiv: 2411.18615. url: https://arxiv.
org/abs/2411.18615.

[58] Z.-Q. J. X. Zhi-Qin John Xu, Y. Z. Yaoyu Zhang, T. L. Tao Luo, Y. X. Yanyang
Xiao, and Z. M. Zheng Ma. “Frequency Principle: Fourier Analysis Sheds
Light on Deep Neural Networks.” In: Communications in Computational Physics
28.5 (Jan. 2020), 1746–1767. issn: 1815-2406. doi: 10.4208/cicp.oa-2020-
0085. url: http://dx.doi.org/10.4208/cicp.OA-2020-0085.

[59] D. Zwicker. “py-pde: A Python package for solving partial differential equa-
tions.” In: Journal of Open Source Software 5.48 (2020), p. 2158. doi: 10.21105/
joss.02158. url: https://doi.org/10.21105/joss.02158.

A
A P P E N D I X

a.1 hyperparameters

The hyperparameters used in this thesis are similar to those commonly employed
in related works on DeepONets [34, 35, 52]. They were selected to balance accu-
racy with computational cost. To maintain generality and avoid overfitting to the
specific benchmark problems, we restricted the hyperparameter search to a coarse
set of candidate values rather than performing an extensive fine-tuning. Moreover,
since the objective of this work is not to demonstrate that one method outperforms
another, but rather to analyze the behavior of DeepONets themselves, identifying
the precise optimal hyperparameters is of secondary importance. Furthermore, the
initial learning rate α1 = 10−4, used throughout Chapter 6, is chosen such that the
first order Taylor expansion of the loss change is a good approximation of the true
loss change ∆L; see Section 6.2.2.1.

a.1.1 Specific Hyperparameter Configurations for Reported Results

For every optimizer and every initial learning rate α1, the learning rate after t

epochs, αt, is given as

αt = 0.95⌊t/500⌋ ·α1.

I.e., every 500 epochs the learning rate is reduced by 5%. This is a very common
learning rate schedule in machine learning [37].
Furthermore, for Adam we always use the following parameters [8]:

β1 = 0.9,

β2 = 0.999,

ϵ = 10−8,

ϵ̄ = 0.

Table 2 contains the hyperparameters and the example problems used for all Deep-
ONets and SVDONets whose results are shown in figures in this thesis. Note that
Fig. 1 and 11 show DeepONets, the other figures show SVDONets. For DeepONets
the trunk and branch network are chosen to both be MLPs of width w and depth
D.
In Table 2, var1 refers to the fact that the initial learning rate is scaled with the
exponent e, as described in Section 6.1.2. In this case α1 = 10−4σ−2e

1 , where σ1

denotes the first singular value of the training data matrix.
The terms var2, var3 are both caused by the fact that Fig. 15 shows multiple ex-
ample problems. For the advection-diffusion (AD) equation with τ = 0.5, we use
N = 20 and w = 332. For the KdV equation with τ = 0.2 and τ = 0.6, we use
N = 50 and w = 335. For Burgers’ equation with τ = 0.1, we use N = 20 and
w = 337.
The term var4 refers to the fact that Fig. 17 shows a stacked SVDONet with wsta =

24 and an unstacked SVDONet with wunst = 335.

73

74 appendix

Table 2: Hyperparameters of DeepONets and SVDONets used in each figure. A cell is
left empty, if there are multiple DeepONets or SVDONets shown in the figure and
it is apparent which hyperparameter values correspond to which DeepONet or
SVDONet. The term varx denotes a varying value for the different DeepONets or
SVDONets which is not apparent from the figure. Each varx is explained in the
text of this section.

Figure Example
Prob.

Optimizer α1 Depth Width N Number
of

Epochs

1 KdV,
τ = 0.2

Adam 2×
10−3

5 200 50 10000

11 KdV,
τ = 0.2

Adam 2×
10−3

5 200 10000

13 KdV,
τ = 0.2

GD var1 5 335 50 4000

14 KdV,
τ = 0.2

Adam 10−4 5 335 50 4000

15 10−4 5 var2 var3 4000

17 KdV,
τ = 0.2

10−4 5 var4 50 4000

18 KdV,
τ = 0.2

GD 10−4 5 50 50 4000

19 KdV,
τ = 0.2

GD 10−4 5 50 50 4000

20 KdV,
τ = 0.2

GD 10−4 5 50 4000

21 KdV,
τ = 0.2

Adam 10−4 5 50 4000

22 KdV,
τ = 0.2

Adam 10−4 5 335 50 4000

23 KdV,
τ = 0.2

Adam 2×
10−3

50 10000

24a AD,
τ = 0.5

Adam 5 200 20 10000

24b KdV,
τ = 0.2

Adam 5 200 50 10000

24c Burgers,
τ = 0.1

Adam 5 200 50 10000

25 Burgers,
τ = 0.1

10−4 5 50

A.2 characterizing the spectrum of multivariate functions 75

a.2 characterizing the spectrum of multivariate functions

a.3 total variation norm

The total variation (TV) norm of a function g : D ⊂ Rd → R is defined as

||g||TV =

Z

D

||∇g||2dx.

The TV norm is commonly used in image denoising to penalize oscillations in
the denoised image [14, 45]. In practice, the function g is only available through
samples {xi,yi}

m
i=1 with xi ∈ Rd,yi ∈ R and yi = g(xi). We thus use a k-nearest

neighbors algorithm to estimate the TV norm [6].

||g||TV ≈ 1

mk

mX

i=1

X

j∈Nk(i)

|yi − yj|

||xi − xj||2

Nk(i) denotes the set of the k nearest neighbors of xi. We use the TV norm as a
proxy for the frequency f:

f(g) = ||g||TV .

a.4 laplacian energy

To define the Laplacian energy, we first introduce some concepts from spectral
graph theory [47]. Consider a weighted graph G = (V ,E,w) where V are the ver-
tices, E are the edges and w : E → R>0 are the weights. Let v be the number of
vertices, then we define the Laplacian matrix L ∈ Rv×v, as

Lij =





−w((i, j)) if (i, j) ∈ E,
P

j∈N(i)w((i, j)) if i = j,

0 else.

Here N(i) is the set of vertices adjacent to vertex i. It can then be shown that for
undirected graphs

yTLy =
X

(i,j)∈E

w((i, j))(yi − yj)
2 ⩾ 0.

Furthermore, since L1 = 0, with 1 = (1 . . . 1)T ∈ Rv, the smallest eigenvalue of
L is µ1 = 0. The Laplacian matrix’s eigenpairs (µi,ui) with small indices i are
generally associated with low frequencies, while the eigenpairs with large indices
i are associated with high frequencies. This correspondence can be understood
intuitively in the context of graph clustering.
Recall that we seek to characterize the spectrum of a function g : D ⊂ Rd → R

which is only available through samples {xi,yi}
m
i=1 with xi ∈ Rd,yi ∈ R and

yi = g(xi). To apply the Laplacian matrix, we construct a graph, where every
sample xi corresponds to a vertex; thus v = m. The edges are defined via a k-
nearest neighbors algorithm. The weights w((i, j)) are computed via a Gaussian
kernel based on the Euclidean distance between the inputs xi and xj

w((i, j)) = exp

−
k

2

||xi − xj||
2
2P

l∈N(i) ||xi − xl||
2
2

!
.

76 appendix

This defines a Laplacian matrix L0. Since the hereby constructed graph is directed,
we symmetrize the matrix L = 1

2(L0 + LT0). This then corresponds to the Laplacian
of an undirected graph.
Furthermore, consider the eigenvectors ui of the Laplacian matrix L, which can be
chosen to be orthonormal. Any vector w ∈ Rm can be decomposed as

w =

mX

i=1

aiui,

with ai ∈ R. Then the Rayleigh quotient for L and a non-zero vector w is given as

wTLw

wTw
=

Pm
i=1 a

2
iµiPm

i=1 a
2
i

.

Since the eigenvalues µi correspond to frequencies on the graph, the Rayleigh
quotient thus computes the mean frequency of w, as a signal on the graph. Thus,
the Rayleigh quotient of the vector y = (y1 . . . ym)T ∈ RM containing the values
of the function g can be seen as the mean frequency of g:

f(g) =
yTLy

yTy
.

a.5 fourier transform of data projected onto low-dimensional
subspaces

In [58] the spectral bias for neural networks whose input are images is studied.
One of the methods used to characterize the spectrum of the target function g :

D ⊂ Rd → R is the following.
We cannot directly compute the Fourier transform of g due to its multi-dimensional
input x. Thus, we seek to move to a one-dimensional setting. In the method used
in [58] this is done by considering the projection of the input x onto multiple
vectors uj ∈ Rd, i.e., aji = uT

j x ∈ R. Then, for each j, we consider the pseudo
function hj : R → R such that hj(aij) = yi. We call this a pseudo function, since
there might not be a well-defined mapping such that hj(aij) = yi, e.g., if aij = akj

and yi ̸= yk. However, we can still consider the signal {aij,yi}
M
i=1 and compute its

discrete Fourier transformation. Note that we use a non-uniform discrete Fourier
transform, since the aij are irregularly distributed.
Given a set of Z vectors {vj}

Z
j=1, the samples {xi,yi}

m
i=1, containing the function g,

are thus transformed into a set of Fourier transforms {F(hj)(F)}
Z
j=1 at the frequen-

cies F = (f1, . . . , f⌊m/2⌋). We then take the average of the Z Fourier transforms

q(f) =
1

Z

ZX

j=1

F(hj)(f)

and compute the mean frequency of the averaged Fourier transform:

f(g) =

P
f |q(f)|

2fP
f |q(f)|

2
.

We consider the first Z left-singular vectors of the input data matrix

X = [x1 . . . xm] ∈ Rd×m.

A.5 fourier transform of data projected onto low-dimensional subspaces 77

Note that since the input xj for the DeepONet is the input function pj, which is
given as a sum of L trigonometric functions (see Section 3.2), we choose L = Z.
Thus the input data X can be fully reconstructed using L = Z vectors, i.e., X =

[v1 . . . vZ][v1 . . . vZ]
TX. However, this method nonetheless computes the spec-

trum of g via the spectra of pseudo functions hj. Consequently, their spectra gen-
erally do not determine the full multivariate spectrum of g, and some information
is inevitably lost. This can also be seen through the following fact. Consider two
different sets of vectors {vj}

Z
j=1 and {wj}

Z
j=1. Let both of them fully reconstruct X,

i.e., X = [v1 . . . vZ][v1 . . . vZ]
TX = [w1 . . . wZ][w1 . . . wZ]

TX. Then the spectrum
of g estimated through the projection onto the different sets of vectors is in general
not the same.

78 appendix

a.6 comparison of svdonet and pod-deeponet

As discussed, for any full-rank matrix C ∈ RN×N, the matrix T∗ = Φ1C is an
optimal trunk matrix. The SVDONet, as defined in this work, uses C = Σ1. The
POD-DeepONet [35] uses C = I ∈ RN×N. For further comparison we also consider
C = Σ1/σ1, i.e., the first mode is multiplied with 1, but the singular values retain
their different influence on the different modes. Additionally, we consider C =

σ1I ∈ RN×N. Lastly, we also consider standard DeepONets, i.e., a learned trunk
matrix.
Figures 23 - 24c show the relative errors for these five architectures when applied
to various example problems with different learning rates, widths, and depths. As
can be seen, architectures with a fixed trunk matrix typically converge much faster.
Additionally, the architectures with C = I and C = Σ1/σ1 perform best for the
advection-diffusion equation and Burgers’ equation, while the architectures with
C = Σ1 and C = σ1I perform best for the KdV equation. These results suggest
that the main difference in performance between SVDONet and POD-DeepONet
stems from how the largest mode is scaled. Additionally, it indicates that none of
the four candidates considered for C is optimal for all cases.

0 2000 4000

Epochs

10−1

100

101

R
el
at
iv
e
er
ro
r
δ

w = 50, D = 3

Test

Training

DeepONet

C = σ1I

C = I

C = Σ1

C = Σ1/σ1

0 2000 4000

Epochs

w = 50, D = 8

0 2000 4000

Epochs

w = 100, D = 3

0 2000 4000

Epochs

w = 100, D = 8

Figure 23: Comparison of various OL architectures and sizes. KdV Equation with τ = 0.2.
Every column corresponds to a network size ((w = 50,D = 3), (w = 50,D =

8), (w = 100,D = 3), (w = 100,D = 8)). The DeepONet (purple), ’rescaled’
POD-DeepONet (C = σ1I, yellow), POD-DeepONet (C = I, orange), SVDONet
(C = Σ1, darkgreen), ’rescaled’ SVDONet (C = Σ1/σ1, lightgreen) are shown.

A.6 comparison of svdonet and pod-deeponet 79

0 5000 10000

Epochs

10−5

10−4

10−3

10−2

10−1

100

101

R
el
at
iv
e
er
ro
r
δ

α1 = 10−4

Test

Training

DeepONet

C = σ1I

C = I

C = Σ1

C = Σ1/σ1

0 5000 10000

Epochs

α1 = 2× 10−3

0 5000 10000

Epochs

α1 = 8× 10−3

(a) Advection-Diffusion Equation with τ = 0.5

0 5000 10000

Epochs

10−2

10−1

100

101

R
el
at
iv
e
er
ro
r
δ

α1 = 10−4

Test

Training

DeepONet

C = σ1I

C = I

C = Σ1

C = Σ1/σ1

0 5000 10000

Epochs

α1 = 2× 10−3

0 5000 10000

Epochs

α1 = 8× 10−3

(b) KdV Equation with τ = 0.2.

0 5000 10000

Epochs

10−2

10−1

100

101

R
el
at
iv
e
er
ro
r
δ

α1 = 10−4

Test

Training

DeepONet

C = σ1I

C = I

C = Σ1

C = Σ1/σ1

0 5000 10000

Epochs

α1 = 2× 10−3

0 5000 10000

Epochs

α1 = 8× 10−3

(c) Burgers’ Equation with τ = 0.1.

Figure 24: Comparison of various OL architectures. Every column corresponds to a differ-
ent initial learning rate (α0 = 10−4, 2× 10−3, 8× 10−3). The DeepONet (purple),
’rescaled’ POD-DeepONet (C = σ1I, yellow), POD-DeepONet (C = I, orange),
SVDONet (C = Σ1, darkgreen), ’rescaled’ SVDONet (C = Σ1/σ1, lightgreen)
are shown.

80 appendix

a.7 svdonet’s trunk error for test data

Table 3: Relative training and test trunk errors δT for all example problems and various N.

log10 δT ,tr log10 δT ,te log10 δT ,tr log10 δT ,te log10 δT ,tr log10 δT ,te

N = 10 N = 10 N = 15 N = 15 N = 20 N = 20

AD, τ = 0.5 -0.41 -0.41 -0.78 -0.78 -12.6 -12.6

AD, τ = 1.0 -0.69 -0.69 -1.32 -1.32 -13.1 -13.1

N = 30 N = 30 N = 50 N = 50 N = 70 N = 70

KdV, τ = 0.2 -1.48 -1.46 -2.19 -2.10 -2.94 -2.84

KdV, τ = 0.6 -1.04 -1.03 -1.90 -1.88 -2.71 -2.59

KdV, τ = 1.0 -1.00 -0.99 -1.91 -1.93 -2.70 -2.70

Burgers, τ = 0.1 -1.36 -1.29 -1.90 -1.75 -2.42 -2.20

Burgers, τ = 1.0 -3.56 -3.35 -5.53 -5.10 -7.54 -6.75

A.8 comparison of stacked and unstacked svdonets 81

a.8 comparison of stacked and unstacked svdonets

a.8.1 Number of Parameters in an MLP

As described in Section 2.3, θ denotes the parameters of a neural network. Consider
a one-layer perceptron with w neurons in the hidden layer, M-dimensional input
and one output neuron. As discussed in Section 2.3.1, this has parameters

θ =
�
θ(1), θout

�
,

where θout ∈ R1×w are the outer weights and θ(1) =

ϑ(W,1), ϑ(B,1)

�
are the

hidden layer’s weights. Note that ϑ(W,1) ∈ Rw×M and ϑ(B,1) ∈ Rw. Thus, vector-
izing the matrix ϑ(W,1), and concatenating the resulting vector with ϑ(B,1) and the
vectorization of θout, yields a vector Θ of length Mw+ 2w:

Θ =


ϑ

(W,1)
1,1 . . . ϑ

(W,1)
1,M ϑ

(W,1)
2,1 . . . ϑ

(W,1)
w,M| {z }

w×M

ϑ
(B,1)
1 . . . ϑ

(B,1)
w| {z }

w

θout
1,1 . . . θout

1,w| {z }
w




T

.

Thus, a one-layer perceptron with width w, M-dimensional input and one output
neuron has = Mw+2w parameters. The number of parameters of a neural network
is denoted as |θ|.
Similarly, we now consider an MLP with M input neurons, D hidden layers with
w neurons each and K output neurons. The number of parameters of such an MLP
is denoted as Q(M,D,w,K) = |θ|. Then,

Q(M,D,w,K) = Mw+w| {z }
input→first hidden layer

+(D− 1) (w+w2)| {z }
between hidden layers

+ wK.|{z}
last hidden layer→output

Note that Q(M, 1,w, 1) = Mw+w+ 0+w = Mw+ 2w, since an MLP with D = 1

is a one-layer perceptron.

a.8.2 Number of Parameters in Stacked and Unstacked SVDONets

Since the branch network of the unstacked SVDONet is just an MLP with K = N

output neurons, the number of parameters for the unstacked SVDONet is |θ|unst =

Q(M,D,wunst,N). Since the branch network of the stacked SVDONet consists of
N separate MLPs with K = 1 output neurons each, the number of parameters for
the stacked SVDONet is |θ|sta = NQ(M,D,wsta, 1).
Thus, for the KdV equation (M = 400), the stacked SVDONet with wsta = 24 and
the unstacked SVDONet with wunst = 335 both have ≈ 6× 105 parameters. These
SVDONets are compared in Fig. 17.

a.8.3 Comparing Stacked and Unstacked SVDONets with Equal Widths

In this section, we compare three SVDONets. First, we consider a stacked SV-
DONet whose branch subnetworks all have width wsta = 43. Thus, the considered
stacked SVDONet has |θ| ≈ 5× 105 parameters. Second, we consider an unstacked
SVDONet whose branch network has width wunst = 43. Thus, this unstacked SV-
DONet has |θ| ≈ 104 parameters. Third, for further comparison, we consider an

82 appendix

unstacked SVDONet which has |θ| ≈ 5× 105 parameters, matching the stacked
case; this implies a branch width of wunst = 337.
The relative errors and the weighted mode losses for the three SVDONets trained
using both GD and Adam are shown in Fig. 25. For GD, the unstacked SVDONet
(w = 43) performs slightly better than the stacked SVDONet. However, their be-
havior is very similar. The wider unstacked SVDONet (w = 337) achieves a signif-
icantly lower (test and training) error than both. For Adam, the stacked and un-
stacked SVDONets of same width behave significantly different from each other.
While the stacked SVDONet starts overfitting significantly after ≈ 1000 epochs, the
unstacked SVDONet (w = 43) slowly, but steadily, lowers both test and training er-
ror over the 10000 epochs. The unstacked SVDONet (w = 43) takes ≈ 7000 epochs
to reach a test loss comparable to the minimum test loss reached by the stacked
SVDONet. The wider unstacked SVDONet (w = 337) starts overfitting after ≈ 7000

epochs and reaches a lower test error than the other two SVDONets. The stacked
SVDONet achieves the lowest training error of the three.

A.8 comparison of stacked and unstacked svdonets 83

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

100

4× 10−1

6× 10−1

2× 100

3× 100

R
el
at
iv
e
E
rr
or

δ Test

Train

Sta., wsta = 43

Unst., wunsta = 337

Unst., wunsta = 50

0 20 40

10−1

101

103

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s

Sta., wsta = 43

0 20 40

10−1

101

W
ei
gh

te
d
T
es
t

M
o
d
e
L
os
se
s Sta., wsta = 43 0 20 40

Unst., wunsta = 337

0 20 40

Unst., wunsta = 337 0 20 40

Unst., wunsta = 50

0 20 40

Unst., wunsta = 50

Mode index i

(a) SVDONets trained with GD

0 2000 4000 6000 8000 10000

Epochs

10−1

100

R
el
at
iv
e
E
rr
or

δ Test

Train

Sta., wsta = 43

Unst., wunsta = 43

Unst., wunsta = 337

0 20 40

10−3

10−1

101

103

W
ei
gh

te
d
T
ra
in
in
g

M
o
d
e
L
os
se
s Sta., wsta = 43

0 20 40

10−1

101

103

W
ei
gh

te
d
T
es
t

M
o
d
e
L
os
se
s Sta., wsta = 43

0 20 40

Unst., wunsta = 43

0 20 40

Unst., wunsta = 43 0 20 40

Unst., wunsta = 337

0 20 40

Unst., wunsta = 337

Mode index i

(b) SVDONets trained with Adam

Figure 25: Relative Errors and Weighted Mode Loss for stacked and unstacked SV-
DONets. Top panel: Relative error δ = ||A− Ã||F/||A||F for both training (dashed
lines) and test (dot-solid lines) data over 4000 (a) and 10000 (b) epochs. Center
and bottom row: Weighted training (center row) and test (bottom row) mode
losses at different training steps, colored from gray (initial) to red/blue (fi-
nal). Columns correspond to different architectures and widths. From left to
right: Stacked with wsta = 43, unstacked with wuns = 43 and unstacked with
wuns = 337, as indicated by the labels. The center and bottom row plots also
contain the respective base losses in black, and a pink dashed horizontal line
marking the maximum mode loss of the wieder unstacked SVDONet. The SV-
DONets shown here approximate the solution operator of Burgers’ equation
with τ = 0.1.

