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Assessing the evolution of educational s

accessibility with self-avoiding random walk:
insights from Helsinki

Nazli Yonca Aydin'", Emre Yigitbasi?, Ylenia Casali® and Bert van Wee?

\YhyangTparin Abstract

TMulti Actor Systems, Rapid urbanization has posed challenges to accessibility to critical services that require
Faculty of Technology, Policy in-depth analysis. Complex networks theory has been used to evaluate the evolution
ar;?v“e"ri;j%i'?eimai'gy of network topologies or the overall accessibility of transportation systems. However,
Jaffalaan 5, 2628 BX Delft, The topological metrics to explain the temporal changes in accessibility levels do not fully
Netherlands capture the dynamics and implications of accessibility to specific critical services. In this
;EZC&';SZ;C::;"S%PO“CY study, we address this gap and investigate the opportunities of using a self-avoiding
Umversity%ﬁechﬁology, Delft, random walk (SARW) algorithm to evaluate and explain the evolution of spatial acces-
The Netherlands sibility to education facilities. We used hotspot analysis to understand the temporal
*Transport and Logistics changes and investigated changes in hot and cold spots over time. Furthermore, we
Group, Faculty of Technology, . . L

Policy and Management, Delft explored the relationship between the network indicators and the SARW-based acces-
University of Technology, Delft, sibility metric. We illustrated this method in a case study from Helsinki, where large-

The Netherlands scale open data spanning from 1991 to 2016 is available. Our findings indicate

that the SARW-based metric delivers more detailed node-level results than the tradi-
tional isochrone-based metric. The latter generates accessibility zones where acces-
sibility is assumed to be uniform, while the SARW metric captures the dynamic nature
of educational facility accessibility more accurately. The developed methodology
helps to identify the impacts on the historical development of accessibility and can be
applied to investigate accessibility to other critical services.

Keywords: Accessibility, Transportation, Complex networks, Geographic information
systems, Temporal analysis

Introduction

Ensuring access to critical services such as healthcare, employment, or education dur-
ing the rapid urbanization era has been a growing concern in cities (Vecchio et al. 2020).
Accessibility has frequently been used to measure equality, equity, and fairness in trans-
port research. It is defined as the degree to which transport and land use system enables
individuals to reach an activity or destination by providing at least one transport mode
(Geurs and van Wee 2004, p. 128). “Good accessibility” enables participation in services
and social interaction (Li et al. 2021).
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Accessibility to activities and services is an important indicator of development poli-
cies regarding transport and land use systems (Geurs and van Eck 2003). Among these
activities and services are economic opportunities (e.g., job locations), and critical ser-
vices (e.g., education, healthcare, and other fundamental facilities) (Curl 2018). The lack
of access to these opportunities can remarkably affect the quality of life. For example,
accessibility to educational opportunities is an important decision factor for continuing
higher education (Dickerson and McIntosh 2013). Thus, it impacts economic partici-
pation, as an individual’s education level influences their economic stature (Paolo et al.
2017). Despite its significance, there are fewer studies that evaluate the accessibility of
education in comparison to the accessibility of employment or other essential services
(Sharma and Patil 2021), a recent example being (An evaluation of primary schools and
its accessibility using GIS techniques 2023). Acknowledging the need for accurate meas-
urement of accessibility, extensive literature on measurement approaches exists (Geurs
and Wee 2004). However, each type of measure brings a different perspective on acces-
sibility, making them useful in certain use cases.

Complex network theory focuses on understanding how complex systems function by
using mathematical and computational methods to investigate their organization and
behavior (see “Complex networks approaches” section). This approach allows for the
mapping and spatial analysis of urban systems, providing various possibilities for under-
standing their functioning. Some researchers focus on topological growth to understand
how transportation networks evolve through observing the changes in connectivity indi-
ces, such as alpha, beta, gamma, and centrality metrics (Casali and Heinimann 2019;
Cats 2017; Strano et al. 2012), while others focus on the efficiency of transport networks
(Brussel et al. 2019). Specifically, transport systems benefit from the graph theory-driven
approach for quantitatively analyzing road network characteristics (Barthélemy 2011),
robustness (Casali and Heinimann 2020; He et al. 2021), and identifying communities
and groups (Viljoen and Joubert 2019).

Complex network theory is thoroughly examined for its application in urban land-use
and transportation research and practice by Ding (2019). Despite its potential, limited
studies apply it to identify and measure the evolution of accessibility in transport and
land use systems (Ding 2019). Barthélemy and Flammini (2009) investigated the rela-
tionship between population density and how transportation networks develop over
time. However, their research didn’t examine the spatial patterns of evolution such as the
accessibility to certain land uses. We argue that studying the evolution of accessibility to
a particular critical service using complex network theory can provide insight into future
changes and contribute greatly to the evidence-based planning of cities.

To address these shortcomings, we examine the evolution of accessibility to educa-
tion facilities and explore the use of complex networks theory to understand: “to what
extent can complex network analysis be used to evaluate and explain the evolution of
spatial accessibility to education?” Our contributions are twofold: (1) we use the Self-
Avoiding Random Walk (SARW) as an accessibility metric to evaluate the accessibility to
education facilities. The results are compared to the most commonly used accessibility
measure of isochrone-based accessibility. (2) We evaluate the evolution of accessibility
education facilities and investigate the spatiotemporal changes using hotspot analy-
sis with Getis-Ord Gi* statistic. Furthermore, we discuss the relationships between the
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self-avoiding random walk-based school accessibility metric and network topology indi-
cators. Our approach is illustrated in a case study from Helsinki.

Background

School accessibility factors

Accessibility measurements are used as quantitative indicators of spatial availability
of socioeconomic opportunities, which are categorized by Geurs and van Wee (2004)
under four main perspectives: infrastructure, location, utilities, and people. Isoch-
rone-based accessibility is a location-based measure that assesses accessibility to ser-
vices by measuring the travel time or distance to a location, but it doesn’t take into
account the combined effect of land use and transport systems, which can limit its
ability to fully capture accessibility.

Studies focusing on spatial accessibility often evaluate the proximity to education
opportunities. Dickerson and McIntosh (2013) showed that distance plays a role in
determining whether young people who are on the fence about participating in post-
compulsory education will continue their education or not. A similar study by Sa
et al. (2006) conducted on Dutch high school students showed that proximity to pro-
fessional education increases the probability of continuing their education. Zooming
into the impact of proximity, Andersson et al. (2012) conducted a comparative analy-
sis of the effect of distance on schools from 2000 to 2006. Their findings indicate that
low-income groups are often constrained to schools closer to home due to not own-
ing personal vehicles. Therefore, affordability indirectly impacts the access range of
individuals, and an overall increase in the distances to schools impairs the accessibil-
ity for disadvantaged groups. Mei et al. (2019) studied the accessibility to schools in
the Shenyang area of China, and found that schools were clustered in the city center,
resulting in longer travel distances and times for those in peripheral areas.

Xu et al. (2018) conduct a historical analysis of the socio-spatial accessibility to
urban education in a case study in Nanjing. Their method involves three distinct
accessibility indices: geographic accessibility, opportunity availability, and economic
affordability. These indices reflect three main factors they identify concerning edu-
cation accessibility: the proximity to schools, the supply of schools compared to
housing, and the affordability of access to school districts. Similarly, Bertolini (2012)
explains how transportation and land use interact in a feedback cycle and how exog-
enous factors such as innovations, policy, and land availability can affect accessibil-
ity to job and education opportunities. The study identifies proximity, availability of
opportunities, and affordability as the key factors in accessibility. Also, it suggests that
urban form plays a role in the availability and spatial distribution of activities.

Accessibility to both education and employment is crucial for sustainable devel-
opment, but education accessibility has been given less attention (Sharma and Patil
2021). Although the two are interrelated and have similar enabling factors, educa-
tion has a direct impact on the likelihood of employment (Paolo et al. 2017). There
is a wide range of literature that defines accessibility factors (Geurs and Wee 2004;
Li et al. 2021; Wee and Mouter 2021), and these factors are essential for evaluat-
ing accessibility in the context of education. Some critical services (e.g., job centers
(Hu and Downs 2019), healthcare (Aydin et al. 2019; Cheng et al. 2020)) and their



Aydin et al. Applied Network Science (2023) 8:55 Page 4 of 22

accessibility had been studied more than others. Especially, novel methodologies
developed to measure the accessibility to educational services have fewer examples
than the other services. Here, we aim to fill this gap by developing a novel modeling
and analysis of the accessibility to educational opportunities.

Complex networks approaches

Network theory is an analytical approach to get a deeper understanding of complex
systems that are difficult to envision by solely evaluating the behaviors of its individual
components. It relies on a network system such as transportation networks where indi-
vidual elements are represented as nodes (e.g., road intersections, junctions), and their
connections or interactions are represented as edges (e.g., road segment of a transpor-
tation network) in a comprehensive graph (Mata 2020). In our case, a graph is a road
network and the connectivity of it is defined based on the existence of edges between
every pair of nodes. On the node level, centrality metrics (e.g., betweenness centrality,
closeness centrality) are used to identify the node’s role in connecting other node pairs
(Barthélemy 2011). Community indicators are used to identify clusters within the net-
work, and topological indicators investigate the structure of the network based on the
size and density of network components (Casali and Heinimann 2019; Cats 2017). Lastly,
accessibility indicators measure how network topology affects human movement and
the reachability of nodes (Lee and Kim 2021).

Transport networks are analyzed through complex network metrics to understand
road network characteristics, dynamic processes, communities within systems, and
resilience properties (Ding 2019). For example, Aydin et al. (2018) used topological
metrics to measure the resilience of transportation networks after the major Gorkha
earthquake in 2015 in Kathmandu, Nepal. Aydin et al. (2019) used a modified version
of betweenness centrality to identify the critical locations when traveling to a health-
care service using a modified betweenness centrality. Wang et al. (2020) examined the
relationship between road network structure and ride-sharing accessibility by analyzing
degree, closeness, and betweenness centrality. Their results showed that high degree and
low closeness centrality in the road network is correlated with improved ride-sharing
accessibility, while betweenness centrality has no significant impact. Wen et al. (2021)
used network size and commonly used complex network metrics of average path length,
and average clustering coefficient to identify the relationship between land value and
topological properties of urban rail transit. The authors reported that land price is posi-
tively correlated with the number of nodes and the average clustering coefficient and
negatively correlated with the average path length. Topological indicators are useful to
analyze existing network structures or the impacts of interventions to provide evidence
for future planning. However, most studies focus on the network structure and ignore
the accessibility to critical functions, such as education, when using network theory
approaches.

The random walk, a topological movement mechanism through networks, has been
used in complex network analysis and is gaining attention in road transport network
studies (Lee and Kim 2021). The dynamics of the random walk have been used in phys-
ics and the research of linear dynamics of diffusion (Travencgolo and Costa 2008). The
random walk can help to investigate the accessibility in transport networks, specifically
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when large-scale mobility (i.e., human movements) data is unavailable. Lee and Kim
(2021) use the random walk to model access diversity in a road network and propose
an accessibility metric based on the geometric distance calculated by the summation of
edge weights (lengths) in the network. Hanna (Hanna 2020) suggests that human move-
ments can be modeled using the random walk to predict the movement of agents and
network centrality measures. Their model assumes random movement without memory
or direction, based on the angle of intersections.

The random walk method is particularly useful for including the network topology
effects on accessibility. However, studies using random walks often lack the land use
component and focus on the network structure to measure the diversity of reachable
locations. Lee and Kim (2021) identify the shortcoming of their approach and propose
the inclusion of origin—destination pairs based on real activity data. Although useful to
assess accessibility based on network topology, this method could benefit from the inclu-
sion of land use and activity components and has the potential to identify accessibility to
educational opportunities.

Overall, network theory offers significant opportunities for measuring accessibility.
Yet, it is noted that most studies using complex network theory and applications neglect
the relationships between a land use function and transport systems but solely focus on
the network characteristics. In this study, we explore the possibility of using complex
network theory, specifically the random walk method, to evaluate the accessibility to
educational facilities.

Methodology

Case study and data

The City of Helsinki is located in the Greater Helsinki metropolitan area and is Finland’s
largest city and capital. Since the 1970s, the city has rapidly transformed by contracting
suburban areas (Nevanlinna 2016). As this rapid urbanization and transformation of the
built environment have implications for the accessibility to critical services in Helsinki,
we use Helsinki as a case study to investigate the evolution of accessibility to educational
facilities. The study area in Helsinki includes 142 subdistricts within a 10 km radius of
the city center. Helsinki Region Infoshare (HRI) platform provides large-scale and open
socio-spatial data, including the road network and built environment (City of Helsinki
2021). From this database, we collected spatial data (i.e., road infrastructure) in shape-
file format for 2016 and used ArcGIS to digitize guide maps for 1991, 1999, and 2007
to study changes in accessibility over time. To guarantee that the road data were con-
sistent with the historical geometry of roads, we followed the data preprocessing steps
described in Sect. 2.3 by. To process road data as networks, we first exported the attrib-
ute table of the road shapefiles as a txt file and we imported it on Python (see Casali
and Heinimann 2019). All the network modeling and analysis were performed by using
Igraph package in Python.

Helsinki school register, Koulurekisteri was used to collect historical school loca-
tion data (Koulurekisteri 2020). This database contains information about all levels of
schools and buildings since 1550. The data was obtained through a REST API in json
format. Based on the start and end year, the data was sorted and divided between the
years 1991, 1999, 2007, and 2016 (i.e., total of 4 timesteps) using Python pandas library.
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For example, if a school has a start year of 1985 and end date of 2005, it can be found on
both 1991 and 1999 datasets. Using the geopy library, we determined the geographical
coordinates of schools based on a given address (Geopy 2022) and stored them as point
data in a shapefile format in ArcGIS (2022).

The school locations represented in shapefile format were not consistently aligned
with the road network data. In other words, schools were not represented as intersec-
tions/junctions in the model but as standalone points. For these cases, we used “Near
tool” in ArcGIS to locate the closest edge (road segment) to each school node. The two
nodes (i.e., starting node and the end node) were identified from the selected edges, and
then the school location is assigned to these two nodes using the NetworkX library (Net-
workX 2022). Therefore, each school node was represented by two nodes of the road
network. This enables better integration of the school locations into the network nodes

for simulating random walks.

School accessibility

Self-avoiding random walk (SARW)

This algorithm simulates the movement of a group of individuals starting from a com-
mon origin within a city and tracking their random movements within a specified
threshold (i.e., distance range). The visited locations are recorded and the individu-
als are constrained to not revisit the same locations. The diversity of reached locations
within a given threshold is analyzed using the collected data at the end of the simula-
tion. The algorithm of this complex network method is presented in pseudo-code form
in Algorithm 1.

Algorithm 1  Self-avoiding random walk.

Algorithm 1: Self-avoiding Random Walk
Input: weighted network G (N, E, w), distance threshold D
Output: list of visited nodes V

1 fors € N do

2 initialize V;

3 initialize total distance of walk W

4 while W < D do

s Addsto V;

6 Get list of neighbor nodes (L);

7 Remove visited nodes V from L;

8 Choose random neighbor node r from L;

9 Calculate distance w between r and s add to W
10 ris the new s;

Throughout a single walk, the path selection is completely randomized. This suggests
the probability assigned to any road segment is equal to all other available road seg-
ments when the random walker makes a decision. Self-avoidance property is imposed
on the random walker, meaning that in a single walk, an already visited node cannot be



Aydin et al. Applied Network Science (2023) 8:55 Page 7 of 22

revisited. This property eliminates the possibility of the random walker being stuck in a
certain area or even going back and forth between two same nodes. At the end of every
walk, the list of visited nodes is reset which enables visits to the same nodes in different
walks. Three conditions could potentially stop a SARW. (1) The random walk finalizes
when a predefined distance threshold (D) is reached. The total distance traveled is calcu-
lated by summing the weights of each edge traveled during the walk. (2) The walk ends
when the walker reaches a node with a degree of 1 (i.e., the dead-end node). (3) The walk
ends when all the neighbors of the last visited node have been previously visited, and no
available options exist.

This model provides a very simplistic movement simulation within the network. No
prior information is provided regarding the network. The model demonstrates loca-
tions that can be reached with this movement pattern. For a real-life case, it is unrealistic
that an individual would take random trips through the network. However, this model
depends on the topology around a specific location for measuring the effect of road con-

nectivity in determining paths.

SARW-based accessibility metric

For the case of accessibility to schools, we propose a metric using the SARW algorithm
that relies on the node-specific analysis of visited nodes and counts the number of times
a school node is visited. The number of school visits is summed across walks and divided
by the number of walks to obtain the metric vpw (Eq. 1). We refer to this metric as
“accessibility metric” which describes the number of schools within reach of a starting

node.

SN SN Vi)

N, (1)

vpw =
where S is the set of school nodes, V,, is the set of visited nodes in walk w, N,, is the
number of walks in the simulation. Parameter selection for the SARW-based accessibil-
ity metric is explained in “Parameter selection” section.

Comparison with isochrone-based accessibility

We examined the usefulness and limitations of using a SARW-based accessibility metric
by analyzing accessibility to educational facilities using the isochrone-based accessibility
using ArcGIS (“ARCGIS” Accessed 2022). This technique identifies a catchment area of
a critical function based on a predefined threshold and Dijkstra shortest path algorithm
(Ertugay et al. 2016). Dijkstra’s algorithm, a well-known approach, solves the problem
of finding the shortest path between two locations in a weighted graph. To do this, the
algorithm maintains a collection of junctions, denoted as S, for which the final shortest
path from the starting location, s, has been determined. In each iteration, the algorithm
selects the junction with the smallest estimated shortest path from the set of junctions
and adds it to S. It then updates the shortest-path estimates for the neighboring junc-
tions that have not yet been included in S. This process continues until the destination
junction is included in S, signifying that the shortest path from s to the destination loca-
tion, d, has been found (ArcGIS Desktop Help 2023).
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Isochrone method is one of the most commonly utilized and widely recognized
approaches for measuring accessibility and offers a straightforward approach for under-
standing variations in accessibility to facilities (Cascetta et al. 2013). In this study, we
examine accessibility to educational facilities by “walking” as a travel mode for both
accessibility metrics. Furthermore, it is assumed that pedestrian pathways exist along-
side the road network due to the lack of pedestrian network data.

Spatial and temporal evolution of accessibility: hotspot analysis

Our study utilized a SARW-based accessibility metric to evaluate accessibility levels in a
single year. To understand the changes in accessibility over time, we employed the hot-
spot analysis method. This method is commonly used to identify clusters of high and low
accessibility values, and its outputs allow for spatial comparisons across historical time
steps. It calculates p-values and z-scores using the Getis-Ord Gi* statistic, which com-
pares the attribute values of a location with its neighbors. A location with a high attrib-
ute value and surrounded by other high-value locations is considered a hotspot. This is
determined by comparing the local sum of attribute values with the overall sum of values
in the area of interest, and determining if the difference is statistically significant using a
z-score-based p-value (Kalinic and Krisp 2018).

Here, we used the Hotspot Analysis tool developed by ESRI (2022). The Optimized
Hotspot Analysis tool selects the most suitable analysis parameters based on a set of
conditions. The parameter decisions made are related to how spatial relationships are
defined, which often involves a fixed distance threshold. This value establishes the search
radius around the location of interest and must contain at least one neighbor. To select
the parameters, the Incremental Spatial Autocorrelation strategy is used to identify spa-
tial clustering and underlying processes. This approach calculates the Global Moran’s I
statistic for increasing distances, evaluating clustering intensity using the z-score. Peaks
in the z-score signify distances where clustering is most prominent. The Optimized Hot
Spot Analysis tool utilizes Incremental Spatial Autocorrelation to determine the scale
of analysis based on peak distances. If no peak distance is found, the tool computes the
average distance yielding K neighbors for each feature, with K determined as 0.05 * N
which is the number of features. K is then adjusted to be minimum 3 and maximum 30.
In case there are features greater than 500, the incremental analysis is skipped and the
average distance is set to 30 neighbors. The resulting scale of analysis is used for the sub-
sequent Hot Spot Analysis (Getis-Ord Gi*) tool (ESRI 2023). Note that the methodologi-
cal improvements to this optimization method is beyond the scope of this study.

Network topology indicators

Two major factors are relevant to investigate school accessibility using hotspot analysis
which are network topology indicators and the school locations. By comparing these
indicators, the impact of the transport network and land use can also be distinguished.
We use a connectivity indicator called “gamma index,” which is used to assess the con-

nectivity level of networks and evaluated by ()/ = 3(Numzzj; s;lg:édes_z)) (Kansky 1963).

The gamma index represents the ratio between the observed number of edges and the
maximum number of edges. For a large number of nodes, it is proportional to the
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average node degree (Casali and Heinimann 2019). We evaluate the gamma indices for
each district and applied a hotspot analysis to node degrees for each year to identify if
there is a relationship between the SARW-based accessibility measure and the node

degree.

Results and discussion

Parameter selection

There are two significant parameters to determine before moving forward with acces-
sibility analysis. The first parameter is the threshold for the SARW and isochrone-based
accessibility metrics. To determine the travel threshold, we considered the average
pedestrian walking speed of 70 m per minute for Helsinki. This value includes imped-
ances of traffic lights and crosswalks, and assumed a constant average speed (Tenkanen
and Toivonen 2019). As for the travel times, we used Helsinki Travel Survey as a guide.
Based on the data, 20 min per trip is the average amount of time an individual takes
to travel to a school in Helsinki (Kaupunki 2016). This value and the walking speed are
used to determine the distance threshold by simply multiplying speed and time. Thus,
the distance threshold for assessing accessibility metric via walking is determined to be
1400 m. This threshold is used for measuring SARW-based accessibility and isochrone-
based accessibility metrics.

The second parameter is the total number of walks, which will be used in the case of a
SARW. Due to the random nature of the algorithm, having a low number of walks would
result in unrealistic outputs. Considering the number of nodes and the average node
degrees in the network, every starting node offers a variety of paths that can be taken
across iterations. However, increasing the number of walks could mean observing more
variety in distinct paths. It should be noted that a large number of walks would pro-
duce results with less precision and increase the computational time. Therefore, select-
ing the number of walks for an outcome that is more representative for the area is an
important part of this study. Lee & Kim (Lee and Kim 2021) used 1000 walk iterations
to model access diversity in a road network using random walk. Their approach relies
on the sequential draws of road segments (edges) on each intersection (node) such that
each edge is given the same probability of selection. At each step, the probability of the
walk passing through an edge becomes inversely proportional to the node degree.

In this research, we applied sensitivity analysis to identify the optimal number of walks
in a selected area from the sub-districts of the Helsinki urban area. The chosen sub-
district, Etela-Haaga, has an area of 2.3 square kilometers and 187 nodes. The district
included five school nodes in 2016. The sample run was formulated as follows:

(1) Starting nodes must be in the selected region

(2) Walks are not restricted to the selected region, free to continue on the edges out-
side

(3) The walk threshold is 1400 m based on pedestrian walk case

(4) The analysis is conducted using seven separate numbers of walks: 50, 100, 250, 500,
1000,1500, and 2000
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Fig. 1 Sensitivity analysis for selecting the number of walks. Mean and standard deviation in vpw are
displayed on three randomly selected nodes

Table 1 Number of nodes and edges in Helsinki over time

Year # of nodes # of edges/
road
segments

1991 9574 12,962

1999 10,856 14,279

2007 11,222 14,722

2016 11,330 14,831

Finally, by comparing the mean and standard deviation of average school visits across
walks (i.e., vpw), the sensitivity of the metric to the number of walks were analyzed. The
results are given in Fig. 1.

The mean value of the vpw showed a relatively steady trend irrespective of the
number of walks, especially for the total number of random walks, which is over 250.
However, the standard deviation displayed a volatile nature and started to level out
only after 500 walks. Therefore, 500 walks or more would be needed for the acces-
sibility metric to converge on its variance. Considering that the computational load
is directly proportional to the number of walks parameter, going beyond 500 walks

was not preferred.

Network characteristics of Helsinki

Helsinki underwent several urban planning and transport system transformations
in the twentieth century. The city expanded beyond its historical center in the 1950s
(Nevanlinna 2016). The south harbor was closed in 1970, leading to a shift in the
freight port to the city’s east. These changes resulted in a polycentric urban form
(Soderstrom et al. 2015) and increased car dependency and travel distances in the
1960s (METREX 2020). The construction of suburbs and road network investments,
including highways, connected peripheral towns.

We observed this growth by inspecting changes in the network nodes and edges/
road segments over time (see Table 1). Car ownership also has steadily increased since
the 1980s in Finland. However, the Helsinki region is consistently below the national
average (Liljamo et al. 2021). City planning has played a role in limiting the number
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@ 2016 (173)

\:I Districts

Fig. 2 Spatial distribution of schools over time

Table 2 Descriptive statistics of accessibility based on school visits per walk in the whole network

School visits per walk statistics/year 1991 1999 2007 2016
Non-school visiting node percentage 12.7% 16.5% 18.6% 24.3%
Mean 045 032 0.29 0.24
Standard deviation 0.55 046 043 042
Median 0.23 0.13 0.1 0.06

of cars by creating pedestrian zones in and around the city center starting in 1989
(City of Helsinki 2020). Therefore, Helsinki provides a good case study to evaluate
the accessibility to schools as the empirical evidence shows that the road infrastruc-
ture changed over time. Figure 2 shows the school locations for 2016, 2007, 1999, and
1991. Interestingly, the number of schools has decreased over the years from 295 in
1991 to 173 in 2016.

School accessibility

Self-avoiding random walk

SARW-based accessibility analysis for schools is carried out for the selected years of
1991, 1999, 2007, and 2016. Table 2 shows that the percentage of nodes that have not
reached a school after 500 random walks increased over time. Clearly, as the number of
schools decreases, it is more likely that random walks reaching a school will decrease,
which shows the impact of the reduced number of schools over the years. It should
be noted that our analysis is limited to accessibility by walking. It is possible that the
decrease in the number of schools observed over time in the city is accompanied by an
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Fig. 3 Spatial distribution of the accessibility metric (vow) for each node based on SARW simulation in
Helsinki
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increase in the capacity of remaining schools. This could result in students needing to
travel greater distances to reach their schools, potentially making alternate modes of
transportation such as motorized vehicles or biking more favorable.

Figure 3 displays the spatial distributions of the accessibility metric (vpw) over time.
Figure 4 shows the spatial distribution of low-access nodes for each year, specifically the
nodes that never visit a school in any of the 500 walks. The nodes with low school visits
accumulated in the northern region in 1991, but they get more dispersed over time (see
Fig. 4). Throughout the years, the southwestern peninsula, corresponding to the center
of Helsinki, has displayed higher accessibility to schools than the peripheries (see red
points in Fig. 3, also see Fig. 4, where the zero school visits are less than the other dis-
tricts). However, the center had lower school accessibility in 2016 compared to 1991, as
evidenced by the increase in zero school visits over time, as shown in Fig. 4.

In this study, schools’ capacities (i.e., the number of students or classrooms) are not
included due to the lack of data. However, based on random walk approach, we can
infer which schools are more easily accessible to pedestrians, and therefore may be more
likely to attract higher demand (see Fig. 5). Figure 5 illustrates that most visits are accu-
mulated in the historical center of the city in the southwestern peninsula of Helsinki. A
higher frequency of school visits indicates greater attractiveness and the relative appeal
of schools in this area. There is also a relatively large number of schools located.

We compared the results with the distribution of the population of school-aged chil-
dren from ages 7-19 (see Fig. 6), representing the school-aged children from ages 7-19.
The results show that districts with the most students are consistently located outside
the historical center over the years. Yet, these areas have relatively lower accessibility
value than the center of the city. This might be because the peripheral regions of the city
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Fig. 5 Average number of visits per school per walk
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Table 3 Optimized hotspot parameters for every timestep

Year 1991 1999 2007 2016
K-nearest neighbors 30 30 30 30
Distance bands (m) 374 366 520 361

0 15 3km
—T

T 4 raciy1000
 Hot spot 99% confidence
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 Hot spot 99% confidence
Hot spot 95% confidence
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Not significant
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Fig. 8 Hotspot analysis of school accessibility for each year

rely more on alternative modes of transportation, while our analysis only considered a
threshold of 1400 m for walking distance.

Comparison with isochrone-based accessibility

We compared the random walk results with the isochrone-based accessibility metric.
The school locations are assigned as facilities in ArcGIS, and the service area is calcu-
lated as 1400 m away from the facilities.

Figure 7 shows that the accessibility at the center of Helsinki city has increased while
it has reduced at the north side of the study area. This might be because, over the years,
new schools have been placed strategically to cover a wider geographical area at the
center of Helsinki. The disadvantage of isochrone-based measure is that it assumes that
the level of accessibility is identical within a zone. This means that every node within the
zone is considered to have the same degree of accessibility, which may not reflect the
real-world situation accurately. On the other hand, the advantage of the random walk-
based accessibility metric is its granularity. It allows evaluating accessibility and observ-
ing the changes in accessibility at the node level (i.e., road intersection). Nodes might
have different levels of accessibility even if they are located in proximity to each other.
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Spatial and temporal evolution of accessibility: hotspot analysis

Hotspot analysis was conducted to identify statistically significant hot- and cold- spots
(i.e., clusters) on the accessibility metric (vpw) for each timestep. Based on the opti-
mized parameters of this tool, the most appropriate distance band was selected for the
K-nearest neighbor’s approach. The parameters for each timestep are given in Table 3.
The results of the hotspot analysis are mapped in Fig. 8.

We found that in 1991 the prominent hotspots were located in the southwestern
peninsula (see Fig. 8). By 2007, hotspots become larger specifically those located in the
north. As new schools emerged in 2007 and the node degrees increased in the northeast
part of the city, hotpots became more prominent in this area. From 2007 to 2016, the
size of accessibility hotspots decreased in the northern region of the city. This can be
attributed to the decreased availability of schools in this area (see Fig. 2). We also found
that some schools are surrounded by cold spots indicating the existence of significantly
low accessibility values. Our analysis shows that when network topology has low con-
nectivity, the SARW-based accessibility metric may still indicate reduced accessibility to
schools, even if a nearby school exists in these areas. We marked some of these schools
with green circles in Fig. 8. This phenomenon shows that sparse networks with low con-
nectivity around school locations result in low accessibility scores. “Spatial and temporal
evolution of accessibility: hotspot analysis” section will discuss the relationship between
network topological metrics and SARW-based accessibility.

We examined the relationship between the identified clusters of low accessibility and
the distribution of the population of school-aged children from ages 7-19 (see Fig. 6), to
determine if the level of accessibility aligns with the distribution of students. Our analy-
sis showed that the identified clusters of low accessibility correspond to the population
of school-aged children from ages 7-19 (as seen in Fig. 6) over all time steps. Despite

 Hotspot 99% confidonce
Hot spot 95% confidence
Hot spot 90% confidence Hot spot 90% confidence
+ Notsigniicant v S Not significant

 Coldspot 90% confidence] * Cald spot 90% confidencel
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Fig. 9 Hotspot analysis of the average node degree for each year
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Fig. 11 A sample study area in the City of Helsinki. Accessibility hotspots are displayed on the left side, node
degree hotspots and gamma values are displayed on the right side

high student populations being located outside the historical center, these areas dis-

played relatively low accessibility values.

Network topology indicators

We explore the relationship between network topology indicators and SARW-based
accessibility metrics. Figures 9 and 10 illustrate the results of the hotspot analysis for
node degree and the gamma index values for each district, respectively.

The results indicate that northern, eastern, and northeastern areas have a low level
of connectivity. Between 1991 and 2016 the connectivity decreased in the northern
districts, while the southwestern peninsula maintained a high level of connectivity in
2016 (see Fig. 10). A comparison between Figs. 8 and 9 shows that schools surrounded
by cold spots (see Fig. 8) are mainly located in areas with low node degrees. Further-
more, these areas correspond to the districts with low gamma index values in Fig. 10.
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In contrast, we observed that the historical center of Helsinki has high node degrees
in Fig. 9, where the average number of visits per school per walk is also high (see
Fig. 5). These results indicate that the number of times a school node is visited during
the random walk depends on the network’s average node degree and connectivity.

Figure 11 shows a focus area for which we analyzed school accessibility using net-
work topology indicators for 1991. Here, Region A illustrates a high accessibility clus-
ter due to the spatial density of schools in the region. Region B displays an example
of lower accessibility due to the low node degree clusters. Region C shows a small
high-access cluster with high numbers of schools and the network node degree. This
finding validates that the measured level of accessibility is influenced by the transport
network and the school locations (Bertolini 2012). Overall, we found that the network
topology highly influences the accessibility metrics results indicating that dense net-
works with a high number of connections result in increased school visits.

Conclusions and implications

This study explores the application of complex network analysis to analyze the evolu-
tion of accessibility to education. We proposed an accessibility metric that combines the
SARW with the hotspot analysis using the Getis-Ord Gi* statistic. The results indicate
that overall accessibility to schools by walking has decreased over time in the center
of Helsinki, as measured by the SARW-based accessibility metric. This decline is likely
associated with the reduction in the number of schools in the city, from 295 in 1991 to
173 in 2016. However, the remaining schools may have increased their capacities, but
we cannot confirm this due to the lack of data. Moreover, the results of the isochrone-
based accessibility analysis have not changed significantly over time. We observed some
decrease in accessibility in the north and an increase in accessibility at the center of Hel-
sinki. This could be due to the strategic placement of remaining schools to serve a wider
geographic area. Overall, our analysis demonstrates that using the SARW accessibil-
ity metric and hotspot analysis provides a comprehensive understanding of accessibil-
ity evolution, which can aid decision-making and evidence-based spatial planning for
improved accessibility in the future.

The advantage of this SARW method is using a road network to determine the range
of movements in complex network analysis by introducing the concept of randomness
for reaching various nodes. It includes activity locations and movements, which makes it
more consistent with the transport and land use cycle proposed by Bertolini (2012). Fur-
thermore, individual movements can be modelled without considering prior informa-
tion, such as travelling behavior or school capacities. Compared to the commonly used
methods, such as isochrone-based accessibility metrics, which assume the same level of
accessibility within a zone, the key benefit of this metric is its granularity (i.e., node-
level) providing a more detailed spatial accessibility analysis.

Furthermore, the stochastic nature of the SARW method allows for modelling acces-
sibility that captures the inherent randomness of human activity patterns. In contrast,
isochrone-based methods, which employ deterministic shortest path algorithms, pri-
marily emphasize network distances when determining accessibility outcomes. Nev-
ertheless, each method could be useful in different context and brings a different
perspective on accessibility. Recognizing these distinctions is crucial for leveraging the
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strengths of each method and tailoring their application to different analytical scenarios.
The network’s connectivity heavily influences the accessibility results obtained by the
SARW method, which returns low accessibility values in sparse networks (see green cir-
cles in Fig. 8). Therefore, it provides a better reflection of the accessibility and connectiv-
ity level of networks.

The random walk model’s computational performance depends on the parameter
selection (see “Comparison with Isochrone-based accessibility” section). Increasing
the number of walks and the distance threshold proportionately increases the model’s
computation time. We restricted the number of walks to 500 as no significant change
was observed in the consistency of the output with a higher number of walks. In addi-
tion, the distance threshold was selected considering the real-world situation where
schools are often accessed by walking. These parameters led to a short computational
time. However, for implementations of a larger scope, high-performance comput-
ing approaches could be needed. The reason stems from the way the random walk
approach is designed, that is, compensating the randomness factor by a high number
of repetitions to obtain a well-rounded probability distribution.

In terms of analysis of the evolution of accessibility, we found that the hotspot
analysis when applied through historical timesteps in a repeatable fashion allows
identifying significant clusters (i.e., hot- and cold- spots) is useful to generalize the
SARW-based accessibility metric results. Note that the selection of input parameters
in the optimized hot spot analysis tool has the potential to affect the resulting cluster
structure. Nevertheless, spatial comparison of these clusters over time enables urban
planners and decision-makers to identify contextual problems with infrastructure and
land use decisions.

This study has some limitations. First, the capacity of schools which influences the
number of school visits is not considered. When such data is available, capacities
can be included by limiting the random walk visits to schools based on the capacity
value. However, this would require a simultaneous simulation of random walks from
all nodes and increase the computational load on the model. We took a sequential
approach, simulating random walks one starting node at a time. Second, this study
included primary, secondary, and high school data. However, a more detailed analysis
should be done for each type of school and compared with the population character-
istics of target age groups. The third limitation is related to the theoretical basis of
the random walk method. The SARW algorithm does not represent real-life mobil-
ity patterns but rather random behavior. Therefore, it cannot be used to simulate
human behavior, but only as a proxy for accessibility. Another limitation of this study
pertains to the transportation network data. Although we focused solely on walking
accessibility, we utilized the transportation network data assuming pedestrians can
freely traverse the road network. However, factors such as fences and other barriers
may impact the actual reachability to educational facilities.

In addition, the parameters selected were based on the walking speed and dis-
tance range. There are three main points of concern regarding the SARW model.
First, due to the self-avoidance property, increasing the threshold beyond a certain
point does not proportionately increase the reach. This is due to the increased likeli-
hood of encountering the stopping conditions of the random walk. Further analysis is
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necessary to determine the sensitivity of the distance threshold and its impact on the
output results. Secondly, as long travel distances are considered, the effect of com-
petition in the transport modes becomes more pronounced. Therefore, the model
choice of not including public transport or cycling becomes more questionable when
considering larger thresholds. For the inclusion of public transport, a multi-layer
approach can be used, which has applications in the literature (Ding et al. 2021), but
is not included in this study. Lastly, in our study, we specifically chose to compare
the SARW-based accessibility metric with the isochrone-based accessibility approach.
However, it is worth noting that further exploration of SARW’s capabilities would
involve comparing it with other accessibility methods. By doing so, we can gain a
comprehensive understanding of SARW'’s effectiveness in assessing accessibility. Fur-
ther research is necessary to fully explore the advantages of SARW-based accessibil-
ity, specifically over isochrone-based accessibility, using different sets of parameters
and various network topologies.
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