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Layman’s summary

English version

In this research, we looked at a certain kind of network. This network is a
commonly used way to simulate many real life networks. In the network we
have a number of points. Then we determine how many connections we want
to make to each point. Subsequently, we connect the points in a special random
way that makes sure that every point has the desired number of connections. In
this research, we attempt to find a group of points in the network, where every
point has a minimum number of k connections to other points in the group. We
have shown how k-values for which such a group exists depend on the number
of points in the network. We hope to better understand the structure of the
network by doing this.

Nederlandse versie (Dutch version)

In dit onderzoek bekijken we een bepaald soort netwerk, dat wordt gebruikt
voor het nabootsen van veel netwerken die in de praktijk voorkomen. Het
netwerk bestaat uit een aantal punten. Voor elk punt bepalen we hoeveel
verbindingen we aan dit punt willen koppelen. Vervolgens maken we verbindin-
gen in dit netwerk op een speciale willekeurige manier, zodat elk punt het
gewenste aantal verbindingen heeft. In dit onderzoek, zoeken we een groep
punten, waarbij elk punt in de groep minimaal k verbindingen heeft naar an-
dere punten in de groep. Wij hebben laten zien hoe de waardes van k waarvoor
zo een groep bestaat, afhangt van het aantal punten in het netwerk. Hiermee
hopen we de structuur van het netwerk beter te begrijpen.
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Summary

During this research, we investigate if there exists a k(n)-core in the scale-free
configuration model, this is a commonly used null model to simulate networks.
The scale-free configuration model produces a random graph, where the de-
gree of every vertex is determined using a random variable. In this thesis, the
discrete Pareto variable is used with parameter τ ∈ (2, 3). The k-core of a graph
is the biggest induced subgraph where every vertex is connected to at least k
edges in the subgraph. In this thesis, we let k be dependent on the number of
vertices in a graph, this makes it a k(n)-core. By investigating whether k(n)-
cores exist in graphs produced by the scale-free configuration model, we hope
to to get a better understanding of the structure of these graphs.

In this thesis, the scale-free configuration model is modeled as a death process.
This death process will produce the graph and its k(n)-core jointly. First, we
removes all edges which cannot be part of the k(n)-core until the point where
no such edges exist anymore. This is the moment where we reach the k(n)-
core. Using this method, we prove that whenever the number of vertices is
sufficiently high a logα(n)-core exists with high probability for all constant α >
0. For α < 3−τ

8τ , also a nα-core exists with high probability when the number
of vertices is sufficiently high. We also find a lower bound for the number of
vertices and edges left in the cores.
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Chapter 1

Introduction

A network is scale-free when the number of links to each node can be approx-
imated by a power law distribution. This means that for D the distribution of
the number of links to a node, it holds that P [D = x] ≈ cx−τ for some con-
stants c > 0 and τ > 0 [17]. A lot of networks have this scale-free property.
A commonly used null model to simulate scale-free networks is the scale-free
configuration model. The configuration model forms a random graph such that
the degrees of the vertices satisfy a given degree sequence. When these degrees
are determined by a power law distribution, we call the configuration model
scale-free. For every vertex, a number of half-edges is created that matches
with the degree of the vertex. By creating a uniform random matching of the
half-edges, the edges for the graph are created. In this thesis, we will attempt
to better understand this commonly used null model.

First, we will discuss some networks that have been observed to be scale-free.
Firstly, the network of websites linking to each other via hyperlinks has been
observed to be scale-free [1]. Also the network of people connected via email is
scale-free [8]. In addition, a network of scientific articles is scale-free [39]. In
this networks, all articles are nodes and the links between articles are formed
when one article cites the other one. Another example is the autonomous sys-
tems graph [10]. In this graph every node is an autonomous system, that is a
group of routers which are under the same control [29]. When there is traf-
fic flow between different autonomous systems, links are created between the
nodes. Also in networks where the nodes are people, scale-free networks have
been observed. The network of Hollywood actors who worked together has the
scale-free property [3]. In Sweden it has even been observed that the network
of people sleeping with each other is scale-free [25]. Scale-free networks also
occur in biology. For 43 different organisms, a scale-free property was shown
in the metabolism. It was shown that the metabolic reactions a molecule takes
part in forms a scale-free network. In this network the molecules are the nodes
and the links are formed when two molecules are in a biochemical reaction
together [22]. Finally, the communication between different parts of the hu-
man brain has been observed to be scale-free [9]. Thus there are a lot of net-
works, for which the scale-free configuration model could form an interesting
null model.
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We would like to better understand the graphs that are formed by the scale-
free configuration model. An important graph property is the k-core, this is the
largest induced subgraph where every vertex is connected to at least k edges
that are part of the subgraph. To analyze the structure of a graph, k-cores are
really helpful. Core-decomposition is the main reason why k-cores are impor-
tant. With core decomposition, for every vertex in the graph the highest value
of k is determined such that the vertex is in the k-core [26]. This gives a way
to create a hierarchy in a graph, where the highest k-core a vertex is in deter-
mines the hierarchy. The algorithm determines the importance of each vertex in
a computation-efficient way. This makes it possible to quickly determine what
the most important part of a network is, even when that network is large and
complex. To visualize graphs, also an algorithm is used that is based on k-core
decomposition [2]. The visualization shows important graph properties like the
degrees of the vertices in the graph, the highest k-core a vertex is part of and
whether a vertex has many neighbors in high k-cores. This can quickly give an
overview of a graph, even for large graphs. An example of this visualization
can be seen in Figure 1.1. Another important property of nodes in a k-core is
that k − 1 links can be removed and then the node is still connected to some
node in the k-core. This gives information about the robustness of a network.

Figure 1.1: Visualization algorithm for graphs. The shell index is the highest
k-core a node is a part of [2].

We will now discuss applied research in which k-cores are used to analyze net-
works. First we will look at research on online networks. To investigate the
structure of the previously mentioned autonomous systems graph, k-cores have
been used [27]. In this study it was also determined how the network of au-
tonomous systems would react to power outages or a DDoS-attack. Also in
research on social networks, k-cores have been used. It has for instance been
investigated whether people remain engaged in a social network [38]. The re-
search assumed that people only remained engaged when at least k of their
friends were also active on the same platform, which meant this could be mod-
eled as a k-core (as can be seen in Figure 1.2). Also the graph of all active Face-
book users has been analyzed with the help of a k-core decomposition [34]. To
do research on information spreading in networks, also k-cores are used [23].
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Figure 1.2: Network of friends that interact with each other on a social net-
work. It is assumed that most people remain engaged when at least 3 friends
are active on the platform. The outer circle contains all people who are likely to
remain engaged, the inner circle contains the people who are likely to remain
engaged after person u11 quits [38].

In biology and ecology k-cores are also used in research. A study on the struc-
ture of a human brain has been done using k-core decomposition [16], this can
be seen in Figure 1.3a. In [30], the spread of an epidemic was investigated
with the help of k-cores. The researchers used core decomposition to identify
the towns in Hungary with most mutual commuting (see Figure 1.3b). Subse-
quently, they investigated the spread of the epidemic in two different situations.
In the first case, the epidemic started only in the core, while in the second case
the epidemic started uniformly across the country. This gave insight in the
spread of the epidemic with different starting conditions. Lastly, we discuss the
research done in mutualistic networks using k-core decomposition [14]. For 89
different mutualistic networks involving plant pollinators or seed dispersers it
was analyzed which species were crucial for keeping an ecosystem alive. An
overview of more studies which used k-cores can be found in [24].
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(a) (b)

Figure 1.3: (a) Graph on connections between regions of a brain. Every node
is a brain region. The thick blue lines are the edges in the core, while the thin
lines are the other edges [16].
(b) Depiction of all commuting flows of more than 25 people in Hungary be-
tween towns with more than 1000 inhabitants. The core with most mutual
commuting can be seen in red [30].

There has already been done research on k-cores in the configuration model.
Most importantly, Janson & Luczak [20] have discovered conditions to check
if a k-core exists with high probability when k is a constant. But first we will
discuss research done by Fernholz & Ramachandran [11]. They determined the
degree sequence for the scale-free configuration model with a special type of
power law distribution, which is called the discrete Pareto distribution. For cer-
tain parameter values of this distribution and large enough number of vertices,
they discovered that with high probability there would form a k-core for any
positive constant k. In this thesis, we also use the discrete Pareto distribution.
However, we shift focus to k(n)-cores. This means we let k be dependent on the
number of vertices in the graph. We thus investigate if a k-core still exists when
k scales with the number of vertices. By investigating k(n)-cores, we hope to
get a better understanding of the highest k such that a k-core exists when we
have n vertices. This is important for the previously explained core decompo-
sition, which uses all different k values for which a k-core exists. Additionally,
k(n)-cores could give a better understanding of how the highest k such that a
k-core exists changes, when the number of nodes in a network changes.

In this thesis we elaborate on the ideas of Janson and Luczak [20], who for-
mulated the configuration model as a death process. This death process builds
the random graph and the k-core at the same time. In every step of the death
process, two half-edges die to form an edge. First all edges outside the k-core
are formed, then all remaining edges which are part of the k-core. This death
process was used to obtain bounds on the number of edges left to make and
the number of edges left that might go in the k-core. However, these bounds
are not accurate enough to find a k(n)-core. Therefore, in thesis we will use
empirical measures to obtain stricter bounds. This will allow us to extend the
results to check whether a k(n)-core exists. This would also be an extension of
the research from Fernholz & Ramachandran [11], who only looked at k-cores
for constant k.
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We will now discuss the structure of the rest of the thesis. First, in Chapter 2
we give background knowledge on k(n)-cores and the scale-free configuration
model. In this chapter, we also state the main results of the thesis and explain
how the configuration model can be modelled as a death process. Thereafter,
in Chapter 3 we approximate the number of edges that could still be part of
the k(n)-core after a certain time. Subsequently, in Chapter 4 we estimate the
number of edges left in the death process after a certain time. Then in Chapter
5 we calculate the time when all remaining edges are part of the k(n)-core. In
Chapter 6, we combine all previous knowledge to prove the main results. Fi-
nally, in Chapter 7 we look back at the research and do suggestions for further
research.
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Chapter 2

Preliminaries

In this thesis, we will look if a k(n)-core exists in a scale-free configuration
model. But before we can look at this question, first some background knowl-
edge is needed. First, in Section 2.1 it is explained what a k(n)-core is. Then,
in Section 2.2 the discrete Pareto-distribution and the configuration model to
create a random graph will be explained. Subsequently, in Section 2.3 the main
results of this thesis will be stated. Furthermore, in Section 2.4 it is explained
how the process of finding a k(n)-core in a configuration model can be mod-
elled with the help of death processes. Finally, in Section 2.5 it will be explained
how we can use this death process to find a k(n)-core.

2.1 The k(n)-cores

We will start this chapter by defining what a k-core is [20].

Definition 2.1.1 (k-core). Let G be a graph. For k ∈ Z>0, the k-core of G is the
largest induced subgraph Hk of G where every vertex has a degree of at least k
within the subgraph Hk.

The k-core of a graph is unique and can be found by recursively removing
vertices of degree less than k. It is important to update the degrees after every
removal step since we also remove edges connected to the removed vertices.
This can mean other vertices also drop below k edges. If there are no vertices
left at all after every vertex with degree lower than k has been removed, the k-
core is empty. If there are still vertices left, than the induced subgraph between
these vertices forms the k-core. In the following example, the k-cores of a small
graph are drawn.
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Example 2.1.2. In the figure below, all k-cores of a graph are drawn. The 3-
core consists of the orange vertices. The 2-core is formed by the orange and green
vertices. Lastly, the 1-core is formed by all vertices. For k ≥ 4, the k-core is empty.

Figure 2.1: The k-cores of a graph [26].

We will now extend Definition 2.1.1 to be dependent on the number of vertices
in the graph.

Definition 2.1.3 (k(n)-core). Let G be a graph with n vertices. Let k(n) be a
function, then the k(n)-core of G is the largest induced subgraph of G where every
vertex has a degree of at least k(n).

Remark 2.1.4. During this thesis, k(n) is sometimes written as kn for shorter
notation.

In the next section, we will introduce the configuration model that forms the
random graphs we will investigate k(n)-cores in.

2.2 Configuration model

In this thesis we work with random graphs. Instead of the Erdős-Rényi models
G(n, p) and G(n,m), we will create a random graph with a given degree dis-
tribution. Before we explain why it is interesting to look at k(n)-cores in this
graph, a configuration model for this random graph will be defined .

Definition 2.2.1 (Configuration model [20]). Let n ∈ Z>0 and
(di)

n
1 = (d1, d2, . . . , dn) a sequence of non-negative integers such that

∑n
i=1 di is

even. To create a graph where there are n vertices that have degrees (di)n1 , di half
edges are created for every vertex vi. Then the edges of the graph are decided by
taking a uniform matching of the half-edges.

During this thesis we will need some conditions on the degree sequence (di)
n
1 .

We will now introduce these conditions, later this section we verify they are
true for the degree sequence we want to use.
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Condition 2.2.2 (Conditions on degree sequence [20]). Let (di)n1 be a sequence
of non-negative integers with

∑n
i=1 di even. Then there needs to be a probability

distribution such that (pr)∞r=0

(i) #{i:di=r}
n → pr for every r ≥ 0 as n→ ∞

(ii) For D with distribution (pr)
∞
r=0 , it holds M := E[D] =

∑∞
r=1 rpr ∈ (0,∞)

(iii) 1
n

∑n
i=1 di →M as n→ ∞

In this thesis, we will use the discrete Pareto distribution in the configuration
model, since it is useful for modeling scale-free networks. We will now define
the discrete Pareto distribution.

Definition 2.2.3 (Discrete Pareto distribution). A variable X is discrete Pareto
distributed with parameter τ if P[X = x] = 1

ζ(τ)x
−τ for x ∈ Z>0, where

ζ(τ) =
∑∞
i=1 i

−τ is the Riemann-Zeta function. We denote this asX ∼ dpareto(τ).

Remark 2.2.4. The discrete Pareto distribution is also known as the Zipf distri-
bution or the (Riemann) Zeta distribution [32].

In this thesis, the discrete Pareto distribution will be used with τ ∈ (2, 3). The
discrete Pareto distribution is a power-law distribution. For a power-law dis-
tribution, we have a slowly varying function L(x), which means that for all
t > 0

lim
x→∞

L(tx)

L(x)
= 1. (2.1)

Then a variable X has a power-law distribution when [18, Definition 1.19]

P [X > x] = L(x)x−(τ−1). (2.2)

This also means that for a constant c > 0 the following holds [18]:

P [X = x] ≈ c ∗ x−τ . (2.3)

Clearly this holds for the discrete Pareto distribution and therefore it is a power
law distribution. A characteristic feature of a power law distribution is that a
log-log plot of the degrees against the proportion of vertices with that degree
gives an approximately straight line. Using a logarithm on (2.3), namely gives
the form:

log (P [X = x]) ≈ c− τ ∗ log (x) . (2.4)
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Example 2.2.5. To demonstrate the property from (2.4), we make a log-log plot
of a dpareto(2.2)-sample with 500 vertices.

Figure 2.2: A log-log-plot of the degrees and proportion of vertices that have a
degree of a dpareto(2.2)-sample with 500 vertices.

Let us check if we can satisfy Condition 2.2.2 with the discrete Pareto distri-
bution, first we check if Condition 2.2.2(ii) holds for X ∼ dpareto(τ) with
τ ∈ (2, 3).

E[X] =

∞∑
m=1

m

ζ(τ)
m−τ

=
1

ζ(τ)

∞∑
m=1

m−(τ−1).

(2.5)

Note that ζ(τ − 1) =
∑∞
m=1m

−(τ−1), therefore we obtain

E[X] =
ζ(τ − 1)

ζ(τ)
. (2.6)

For the Riemann-Zeta function it is known that ζ(x) < ∞ for x > 1. It can
also be seen that for all real x, ζ(x) is positive. Therefore for τ > 2, both
ζ(τ) ∈ (0,∞) and ζ(τ − 1) ∈ (0,∞). Therefore, also the following equation
holds.

E[X] =
ζ(τ − 1)

ζ(τ)
∈ (0,∞). (2.7)

And thus Condition 2.2.2(ii) holds for a dpareto(τ) distribution with τ ∈ (2, 3).
Let us now check if we can satisfy the remaining conditions with a discrete
Pareto sample. In case we sample the degrees di i.i.d. discrete Pareto, then it
could be that the sum of the degrees is odd. To fix this, we use the approach
from [17, Section 7.2]. If the sum of all di is odd, then we add 1 to dn. We will
now make a claim about this sampling.
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Claim 2.2.6. The explained sampling of the di satisfies conditions 2.2.2(i) and
2.2.2(iii).

A proof of this claim can be found in [17, Section 7.2]. Therefore we can use
this sampling of the discrete Pareto distribution to satisfy Condition 2.2.2.

Now we have shown that the scale free configuration model can be used with
the discrete Pareto distribution, we will see why this is interesting. A network
is called scale-free if the distribution of the vertex degrees can be well approx-
imated by power laws. The reason that we work with the discrete Pareto dis-
tribution in this thesis, is that it is a simple distribution that follows a power
law. We work with τ ∈ (2, 3), since this parameter is commonly seen in scale-
free networks [3]. The scale-free property is often seen in networks, as we
already already discussed in the introduction. There has recently been discus-
sion whether scale-free models are the best way to model many problems (see
e.g. [5]). However, they are still seen as a useful modeling method [18].

As explained in the introduction, k-cores are an in important way to investigate
the structure of a network. There has been previously done research on k-cores
in random graphs where the vertices-degrees are dpareto(τ)-distributed for
τ ∈ (2, 3). Before we state a theorem from this research, we need to introduce
a definition [20].

Definition 2.2.7 (whp). An event En holds with high probability (whp) if
P [En] → 1 as n→ ∞.

Now we state a results that holds with high probability.

Theorem 2.2.8 (Existence k-cores [11]). Take a random graph where the vertices-
degrees are dpareto(τ)-distributed for τ ∈ (2, 3). Then for arbitrary k ∈ Z≥0 and
large enough number of vertices, there exists a k-core with high probability.

To show that cores actually occur, we will now show an example of a graph
produced in the scale-free configuration model with 500 vertices. We will also
show this core does not form for a certain τ -value larger than 3.
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Example 2.2.9. We simulate the scale-free configuration model with 500 vertices,
where the vertex degrees obey a power law. It can clearly be seen that for τ = 2.5
a core exists, while for τ = 3.2 no cohesive core arises.

(a) τ = 2.5 (b) τ = 3.2

Figure 2.3: Simulation of the scale-free configuration model for 500 vertices,
when the degrees are determined by a power law. The parameter τ is set on 2.5
and 3.2 respectively [13].

By Theorem 2.2.8 we now know that for constant k ∈ Z≥0, there exists a k-
core for large enough graph size. Therefore in this thesis, we will shift focus to
k(n)-cores. So it will be investigated if there exists a k-core where k scales with
the number of vertices. Now, we have introduced the necessary background
information, in the next section we will introduce the main results that will be
derived in this thesis.

2.3 Main results

In this section, we state the results that will be proven during the rest of the
thesis. The goal of the thesis is to discover whether a k(n)-core exists in the
scale-free configuration model. To be able discuss the number of vertices and
edges in the k(n)-core, we need one more definition.

Definition 2.3.1 (Asymptotic bounds). y is Θ(x) if lim
n→∞

y
x = a ∈ R \ {0}.

Furthermore, y < Θ(x) means lim
n→∞

y
x = 0 and y > Θ(x) means lim

n→∞
y
x = ∞.

Now we look at k(n)-cores for the case where k(n) is polylogarithmic.
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Theorem 2.3.2 (Polylogarithmic k(n)-cores). Consider the configuration model
from Definition 2.2.1 for a degree sequence that satisfies the conditions in 2.2.2
with (pr)

∞
r=0 discrete Pareto distributed with parameter τ ∈ (2, 3). Then for any

constant α > 0 there is a logα(n)-core for all sufficiently large n whp. Further-
more, the number of vertices in the core is whp minimally

Θ

(
n

(log(n))
α(τ−1)/(3−τ)

)
, (2.8)

and the number of edges in the core is whp minimally

Θ

(
n

(log(n))
2α(τ−2)/(3−τ)

)
. (2.9)

Now, we will look at a second form for k(n). This time

Theorem 2.3.3 (Polynomial k(n)-cores). Consider the configuration model from
Definition 2.2.1 for a degree sequence that satisfies the conditions in 2.2.2 with
(pr)

∞
r=0 discrete Pareto distributed with parameter τ ∈ (2, 3). Then for all

α ∈
(
0, 3−τ8τ

)
there is a nα-core for all sufficiently large n with the number of

vertices in it being whp minimally

Θ
(
n1−α(τ−1)/(3−τ)

)
, (2.10)

and the number of edges in the core is whp minimally

Θ
(
n1−2α(τ−2)/(3−τ)

)
. (2.11)

It is unknown whether for the conditions in Theorem 2.3.3, a nα-core also exists
for α ≥ 3−τ

8τ . The currently given values of α in this theorem are a consequence
of a technical artifact in the proof. Now we have stated the main results, in the
next section we turn to proof techniques by modeling the configuration model
as a death process.

2.4 Death process

To analyze the configuration model, we would like to relate it to a different
process which can be expressed into formulas easier. Janson & Luczak [20],
have actually found a way to relate this configuration model to a death pro-
cess. A death process is a special type of Markov process (see e.g. [15, Section
11.5]). It will now be explained how the configuration model can be modeled
as a death process.

Remember that the configuration model from Definition 2.2.1 starts with a se-
quence of vertex degrees (di)n1 = (d1, d2, . . . , dn). We start formulating the con-
figuration model as a death process by creating n boxes, filled with d1, d2, . . . dn
balls respectively. Every box represents a vertex in the graph, while the number
of balls in a box is the number of edges that should be connected to the vertex.
We call the balls in the box half-edges, and two half-edges will be connected
every time to form the edges of the graph.
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We actually want to build the graph and the kn-core at the same time. This
will be done by first creating all edges which are not part of the kn-core. Once
we have created these edges, there are two options. Either there are no balls
left into all bins or there are still balls left in some bins. In case there are no
balls left, there are no half-edges available anymore to form new edges. This
would mean there are no edges left in the kn-core and therefore the kn-core is
empty. However, if there are still balls in some bins, these half-edges will form
the edges of the kn-core. This would mean the kn-core is non-empty.

For this algorithm it is important to know which edges cannot be part of the
kn-core. By Definition 2.1.1 a vertex can only be part of the kn-core if it has
degree at least kn, otherwise it definitely cannot have degree kn in an induced
subgraph. Therefore all balls that are in bins that have less than kn balls will
not become part of the kn-core anymore. We will call these balls light. Con-
trary, all balls that are in a bin that has at least kn balls, are called heavy balls.
During every step of the process, we remove one light ball. Then, a random ball
(which can be either heavy or light) is chosen uniformly to match to the light
ball. This chosen ball is also removed from the box it is in. The two chosen
half-edges then form an edge, which is not part of the kn-core. If the removal
of the balls causes a bin to have less than kn balls, the balls in this bin are now
changed from heavy to light.

The process is terminated once we need to remove a light ball, but there are no
light balls left. Since there are no light balls, there are no balls left in bins with
less than kn balls. The remaining bins with balls thus have at least kn balls.
By uniformly pairing the remaining half-edges, we thus create an induced sub-
graph where every vertex has degree at least kn. Therefore these edges form a
kn-core by Definition 2.1.1. Note that during this process we made a uniform
random pairing of the half-edges (as was asked by the configuration model),
this was just done in a smart order. Now it is time to explain how this balls-
into-bins method can be seen as a death process.

In the process that was just explained, we remove two balls every time. First, a
light ball and then a random one. To get a death process we would like to re-
verse this order. Therefore we remove a single light ball first. After this is done,
we will still remove two balls at a time. But now, we first remove a random ball
and then a light ball. In a death process, at every step the index of the removed
ball is also random [35]. Furthermore, in a death process with m individuals,
the time until the next jump is exponentially distributed with rate m. To make
the removal a death process, we therefore use the following trick. If there are
m balls left after a step, we wait an exp(m)-distributed time until we start the
next step. After every step, we jump size 2 downwards (since we also remove a
light ball).

We now have a death process, which is slightly different then the configuration
model. The only difference is that we removed one ball at the start to switch
the order of removing light and random balls. The impact of removing the first
ball is negligible, as the number of balls tends to infinity when the number of
boxes tends to infinity. However, switching the order causes one problem. We
terminate the process once there are no light balls left when we need to choose
one. During the last step, we do remove a random ball. We then also need to
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remove a light ball, because the death process jumps down by 2. But there are
no light balls left, to fix this we set the number of light balls after the last step
to −1. This has an interesting consequence. We know that the total number
of balls is the the sum of the number of light and heavy balls. But since the
number of light balls is negative, the number of heavy balls in the expression is
bigger than the number of total balls.

Let us summarize the algorithm we have described:

Step 0. Remove one light ball

Step 1a. Wait an exp (#balls)-time to remove a random ball

Step 1b. Immediately remove a random light ball too. If this ball exists,
go back to step 1a. If this ball does not exist, go to step 2.

Step 2. Set the number of light balls to −1.

Step 3. If balls still exist, pair two random balls. These balls form an edge
in the kn-core. Repeat this step until there are no balls left

Let us check whether the described algorithm actually follows the configuration
model. For this, we state a claim.

Claim 2.4.1. The described algorithm produces a uniform random matching.

This claim holds by [17, Section 7.2]. Since we have a uniform random match-
ing on the half-edges, we satisfy the definition of the configuration model (Def-
inition 2.2.1). In the next section we will explain how we will use the described
algorithm to prove the main results.

2.5 Arriving at k(n)-core

In the last section, we derived that the number of heavy balls is larger than the
total number of balls, at the moment when we reach the kn-core. Let L(t) be
the number of light balls at time t and H(t) be the number of heavy balls at
time t. Also let B(t) be the total number of balls a time t. We want to know the
first time t ≥ 0 such that:

L(t) = B(t)−H(t) < 0. (2.12)

Exact expression for B(t) and H(t) are hard to find. But let us rewrite the
statement to

L(t) = E [B(t)]− E [H(t)] +B(t)− E [B(t)] + E [H(t)]−H(t) < 0. (2.13)

Assume now that for large enough n, the following statement holds:

B(t)− E [B(t)] + E [H(t)]−H(t) < nδ. (2.14)

If we use this assumption (2.14) in (2.13), then we see that

L(t) < E [B(t)]− E [H(t)] + nδ. (2.15)
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Therefore if we manage to prove that,

E [B(t)]− E [H(t)] + nδ ≤ 0, (2.16)

then by using (2.15), also (2.12) holds. By rewriting (2.16), we obtain the
following goal:

E [B(t)]− E [H(t)] ≤ −nδ. (2.17)

If we can obtain a time t∗ such that this equation holds, H(t∗) gives an ex-
pression for the minimum number of edges in the k(n)-core. If this number of
edges is positive, than we are sure that the k(n)-core cannot be empty. This
would mean that the k(n)-exists. Obtaining this reaching time t∗ will be done
in Chapter 5. In Chapter 6, we find the minimum number of edges and vertices
at this reaching time. However, we have made an assumption in (2.14) that
needs to be satisfied. We split this assumption up into two statements that are
sufficient to satisfy (2.14) . This are the following statements, that need to be
satisfied for large enough n:

|B(t)− E [B(t)] | < nδ

2
, (2.18)

|H(t)− E [H(t)] | < nδ

2
. (2.19)

In Chapter 4, we will find out for which δ-values (2.18) is satisfied. But first in
Chapter 3 we will find a value for δ such that the equation in (2.19) holds.
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Chapter 3

Approximating heavy
half-edges

In this chapter, we obtain a bound on the number of heavy half-edges H(t) be-
ing close to its expectation. First, in Section 3.1 the expected number of heavy
half edges is calculated. In Section 3.2 we also determine the expected number
of vertices. Furthermore, in Section 3.3 we determine the desired bound on
the number of heavy half-edges H(t) being close to its expectation. Finally, in
Section 3.4 we bound the expected number of heavy boxes being close to its
expectation. This will allow us to say something about the number of vertices
and edges in the k(n)-core

3.1 Expected number of heavy half-edges

In this section, we would like to calculate the expected number of heavy half-
edges. Janson & Luczak [20], have already discovered that if a bin starts with
l ≥ kn balls and has j ≥ kn balls at time t, then the number of balls at time t
is Bin(l, e−t)-distributed. Note that the condition that there are at least j ≥ kn
balls at time t means that the bin is still heavy at time t. Since we remove
maximum one heavy ball in every step of the death process, we know that the
number of balls left is expected to be e−t times its starting value. Since we
choose the balls uniformly random, the chance that a ball in a heavy bin still
exists at time t is e−t, therefore the number of balls remaining in a heavy bin
that started with l ≥ kn balls and remained heavy is Bin(l, e−t).

Remark 3.1.1. Once the number of balls in the bin drops below kn, all the balls
in the bin become light. Thus there are now two possible chances at every step of
the death process for the ball to be chosen. Therefore the number of balls is not
Bin(l, e−t)-distributed anymore after a bin becomes light. However, since we only
care about the number of heavy balls and boxes, this does not cause a problem.
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Using the property that the number of balls in heavy boxes is Bin(l, e−t)-
distributed, we will now slightly alter the results obtained by Janson & Luczak
[20], about the expected number of heavy half-edges. First, we define

pl(n) :=
#{i ∈ {1, . . . , n} : di = l}

n
, (3.1)

such that nl := npl is the number of bins that start with l balls. By Condition
2.2.2(i), it is known that pl(n) → pl as n → ∞. This also means that for
large n, we have c1pl ≤ pl(n) ≤ c2pl for constants c1 < 1 and c2 > 1. Let
Xl(t) ∼ Bin(l, e−t). We define

h
(
e−t
)
:= E [H(t)] =

∞∑
l=kn

pl(n)nE
[
Xl(t)1{Xl(t)≥kn}

]
. (3.2)

Let us write out the expectation in this sum to get

h
(
e−t
)
=

∞∑
l=kn

pl(n)n

l∑
r=kn

rP [Xl(t) = r] . (3.3)

We have now found an expression for the expected number of heavy balls left
at time t, since these heavy balls represent the number of heavy half-edges at
this time. If we take a the time in the death process where the k(n)-core is
reached, then we have the expected number of half-edges left to form the k(n)-
core. Therefore 1

2h (e
−t) is the expected number of edges in the k(n)-core. We

will now briefly look at the expected number of vertices.

3.2 Expected number of heavy boxes

In the previous section, the expected number of heavy half balls left at time t
was calculated. To get the expected number of vertices, we need to calculate
how many heavy boxes there are left at the time when we reach the k(n)-core.
Therefore let us find an expression of the number of heavy boxes expected a
time t. Note that in (3.3), we expressed the expected number of heavy balls by
calculating the expected number of heavy boxes with j balls left. And then this
was multiplied with a factor j to get the number of balls. However, if we remove
this factor, we get the number of boxes. Therefore we let Xl(t) ∼ Bin(l, e−t).
Then gives us the following expression if we denote the number of boxes by
V (t):

v(e−t) := E [V (t)] =

∞∑
l=kn

pl(n)n

l∑
r=kn

P [Xl(t) = r] . (3.4)

Let us also write out the function in a more compact form, this is

v(e−t) =

∞∑
l=kn

pl(n)nP [Xl(t) ≥ kn] . (3.5)

In the next section, we will obtain a bound on the number of heavy half-edges
being close to its expectation. From this, a bound on the number of heavy boxes
being close to its expectation will follow in Section 3.4.
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3.3 Heavy half-edges close to expectation

We want to get a bound on the number of half-edges being close to its expecta-
tion. We define the number of boxes with r balls at time t as Ur(t). In the article
by Janson & Luczak [20, Lemma 4.4], the following result is already shown:

P

[
sup
t≥0

∣∣∣∣h (e−t)− ∞∑
r=kn

rUr(t)

∣∣∣∣ > n

]
→ 0. (3.6)

We would like to obtain a better bound then n. To achieve this, we state a re-
sult on empirical measures. This result is a strengthened version of the Dvoret-
zky–Kiefer–Wolfowitz inequality [7].

Theorem 3.3.1 (Convergence empirical measure to distribution function [28]).
Let x1, x2, . . . , xn be an i.i.d. sample of a distribution with continuous distribution
function F (x). Define the empirical distribution function as following:

Fn(x) :=
1

n

n∑
i=1

1{xi≤x}. (3.7)

Then the following statement holds for λ > 0:

P
[
sup
x≥0

√
n
∣∣Fn(x)− F (x)

∣∣ > λ

]
≤ 2 exp

(
−2λ2

)
. (3.8)

We will now use this result to prove the main theorem of this section.

Theorem 3.3.2 (whp bound on heavy balls). For large enough graph size n and
β̂ = 3τ+2

4τ , the following equation holds for the function h from (3.2):

P

[
sup
t≥0

∣∣∣∣h (e−t)−H(t)

∣∣∣∣ ≥ nβ̂

2

]
→ 0. (3.9)

Proof. We begin this proof by writing out h (e−t) and H(t) to get that we need
to prove that

P

[
sup
t≥0

∣∣∣∣ ∞∑
l=kn

npl(n)

l∑
r=kn

rP [Xl(t) = r]−
∞∑

r=kn

rUr(t)

∣∣∣∣ ≥ nβ̂

2

]
→ 0. (3.10)

To make notation easier, binomial chances are denoted in the following way,

mlr(t) := P [Xl(t) = r] =

(
l

r

)(
e−t
)r (

1− e−t
)l−r

. (3.11)

We will also define Ulr(t) as the number of boxes that have l balls at the start
and l ≤ r balls left at time t. We use this to note that

∞∑
r=kn

rUr(t) =

∞∑
r=kn

∞∑
l=r

rUlr(t) =

∞∑
l=kn

l∑
r=kn

rUlr(t). (3.12)

We use this to rewrite (3.10) to

P

[
sup
t≥0

∣∣∣∣ ∞∑
l=kn

npl(n)

l∑
r=kn

rmlr(t)−
∞∑
l=kn

l∑
r=kn

rUlr(t)

∣∣∣∣ ≥ nβ̂

2

]
. (3.13)
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We would like to split the expression into multiple parts. After this, we show
that each of these parts is smaller than Θ

(
nβ̂
)

with probability tending to

1. This would mean that also the sum of these parts is smaller than nβ̂

2 with
probability tending to 1. To be able to split up the expression, we first define

HL(t) :=

Ln∑
l=kn

l∑
r=kn

rUlr(t),

hL
(
e−t
)
:=

Ln∑
l=kn

npl(n)

l∑
r=kn

rmlr(t).

(3.14)

The absolute value in (3.9) can now be written as∣∣∣∣h (e−t)−H(t) + hL
(
e−t
)
− hL

(
e−t
)
+HL(t)−HL(t)

∣∣∣∣ (3.15)

We would like to re-order this equation in a different way. After this is done,
the triangle inequality is applied to divide the expression into three different
parts.∣∣ (hL (e−t)−HL(t)

)
+ (HL(t)−H(t)) +

(
h
(
e−t
)
− hL

(
e−t
)) ∣∣

≤
∣∣hL (e−t)−HL(t)

∣∣+ ∣∣H(t)−HL(t)
∣∣+ ∣∣hL (e−t)− h

(
e−t
) ∣∣. (3.16)

The goal of the rest of this proof is to bound these three absolute values. We
want to discover if they are all smaller than Θ

(
nβ̂
)

with probability tending to

1 for smartly chosen β̂ and Ln. First the focus will lie on
∣∣H(t)−HL(t)

∣∣:
∣∣H(t)−HL(t)

∣∣ = ∞∑
Ln

l∑
r=kn

rUlr(t) ≤
∞∑
Ln

l

l∑
r=kn

Ulr(t)

≤
∞∑
Ln

lnpl(n).

(3.17)

Let us now work out a second term from (3.16),

∣∣hL (e−t)− h
(
e−t
) ∣∣ = ∞∑

l=Ln

npl(n)

l∑
r=kn

rmlr(t)

≤
∞∑

l=Ln

lnpl(n).

(3.18)

We see that the same upper bound can be used for the terms in (3.17) and
(3.18). Let us see if we can approximate this upper bound by using an integral.
Since pl(n) ≤ c2l

−τ for c2 > 1 and large enough n, it holds

∞∑
l=Ln

lnpl(n) ≤ c2n

∞∑
l=Ln

l1−τ ≤ c2n

∫ ∞

Ln−1

u1−τdu. (3.19)

We can calculate this integral, where it is important to notice that 2− τ < 0:

c2n

∫ ∞

Ln−1

u1−τdu = c2n

[
1

2− τ
u2−τ

]∞
Ln−1

=
c2n

τ − 2
(Ln − 1)

2−τ
. (3.20)
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We have now created upper bounds for two terms in (3.16). We will choose
Ln in a convenient way later this proof, to make sure that these terms are
below Θ

(
nβ̂
)

. Consequently, we get the following condition that needs to be
satisfied:

c2n

τ − 2
(Ln − 1)

2−τ
< Θ

(
nβ
)
. (3.21)

Before choosing β̂ and Ln, we will first investigate what is need to bounded the
remaining term in (3.16). This term is

∣∣hL (e−t)−HL(t)
∣∣ =sup

t≥0

∣∣∣∣ Ln∑
l=kn

npl(n)

l∑
r=kn

rmlr(t)−
Ln∑
l=kn

l∑
r=kn

rUlr(t)

∣∣∣∣
= sup

t≥0

∣∣∣∣ Ln∑
l=kn

l∑
r=kn

r (npl(n)mlr(t)− Ulr(t))

∣∣∣∣.
(3.22)

By taking the sum out, we obtain a larger value. This gives the following upper
bound,

Ln∑
l=kn

l∑
r=kn

rsup
t≥0

∣∣∣∣npl(n)mlr(t)− Ulr(t)

∣∣∣∣. (3.23)

We would like to bound all terms in the following way for a certain function
λ(n, l),

sup
t≥0

∣∣nlmlr(t)− Ulr(t)
∣∣ ≤ √

nlλ(n, l). (3.24)

This would give the following upper bound for (3.23),

Ln∑
l=kn

l∑
r=kn

rsup
t≥0

∣∣∣∣npl(n)mlr(t)− Ulr(t)

∣∣∣∣ ≤ Ln∑
l=kn

l∑
r=kn

r
√
nlλ(n, l). (3.25)

If it is true that we can use this upper bound, then we have the following
condition that is sufficient for convergence of the remaining term in (3.16):

Ln∑
l=kn

l∑
r=kn

r
√
nlλ(n, l) < Θ

(
nβ̂
)
. (3.26)

We will use Theorem 3.3.1 to see if this bound holds with probability tending
to 1. First, we note that

∣∣nlmlr(t)− Ulr(t)
∣∣ can be rewritten to∣∣∣∣

(
r∑
s=0

nlmls(t)−
r−1∑
s=0

nlmls(t)

)
+

(
r−1∑
s=0

Uls(t)−
r∑
s=0

Uls(t)

)∣∣∣∣
=

∣∣∣∣
(

r∑
s=0

nlmls(t)−
r∑
s=0

Uls(t)

)
+

(
r−1∑
s=0

Uls(t)−
r−1∑
s=0

nlmls(t)

)∣∣∣∣.
(3.27)

25



For convenient notation, we denote

ε1 :=

∣∣∣∣ r∑
s=0

(nlmls(t)− Uls(t))

∣∣∣∣, (3.28)

ε2 :=

∣∣∣∣ r−1∑
s=0

(Uls(t)− nlmls(t))

∣∣∣∣. (3.29)

Applying the triangle inequality then gives:∣∣nlmlr(t)− Ulr(t)
∣∣ ≤ ε1 + ε2. (3.30)

We will now see ε1 and ε2 can be estimated using Theorem 3.3.1. For this
theorem, we need an i.i.d. sample. It is known that all boxes that start with l
balls are Bin(l, et) distributed. Let us order all nl boxes that start with l balls, by
assigning an index i ∈ {1, 2, . . . , nl} to each box. We will look at the moment
when the j-th ball is removed from a box. Now let T (l)

ij be the time that the
j-th ball is removed from the box with index i. Let us compare the empirical
distribution function of T (l)

ij to the cumulative distribution function of Bin(l, et).
By Theorem 3.3.1, it holds that

P

[
sup
t≥0

√
nl

∣∣∣∣#{i : T (l)
ij ≤ t}
nl

−
l−j∑
r=0

mlr(t)

∣∣∣∣ > λ(n, l)

]
≤ 2e−2λ(n,l)2 . (3.31)

Note that in all boxes where T (l)
ij ≤ t, at least j balls have been removed. This

means that these are exactly the boxes with maximum l− j balls left, therefore
we get

#{i : T (l)
ij ≤ t} =

l−j∑
s=0

Uls(t). (3.32)

Let us plug this expression into (3.31) to get

P

[
sup
t≥0

√
nl
∣∣∑l−j

s=0 Uls(t)

nl
−

l−j∑
r=0

mlr(t)
∣∣ > λ(n, l)

]
≤ 2e−2λ(n,l)2 . (3.33)

By multiplying both sides in the equation in the probability with
√
nl, we can

rewrite this to

P

[
sup
t≥0

∣∣ l−j∑
s=0

(Uls(t)− nlmlr(t))
∣∣ > √

nlλ(n, l)

]
≤ 2e−2λ(n,l)2 . (3.34)

This means, we have obtained the form that was presented in (3.30) by choos-
ing j = l − r for ε1 and j = l − r + 1 for ε2. We would like this upper bound
to hold with probability tending to one. Let us look at the probability that the
upper bound from (3.24) does not hold for one of the terms. If for a term, it
holds that

sup
t≥0

∣∣nlmlr(t)− Ulr(t)
∣∣ > √

nlλ(n, l). (3.35)
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Then it must also happen that

sup
t≥0

∣∣ε1∣∣ > √
nl
2
λ(n, l) or sup

t≥0

∣∣ε2∣∣ > √
nl
2
λ(n, l). (3.36)

Therefore we bound

P
[
sup
t≥0

∣∣nlmlr(t)− Ulr(t)
∣∣ > √

nlλ(n, l)

]
≤ P

[
sup
t≥0

∣∣ε1∣∣ > √
nl
2
λ(n, l)

]
+ P

[
sup
t≥0

∣∣ε2∣∣ > √
nl
2
λ(n, l)

]
.

(3.37)

Using the bounds obtained in 3.34, it is therefore derived that

P
[
sup
t≥0

∣∣nlmlr(t)− Ulr(t)
∣∣ > √

nlλ(n, l)

]
≤ 4e−

1
2λ(n,l)

2

. (3.38)

Now, we can bound the chance that the upper bounds from (3.25) are invalid
by

Ln∑
l=kn

l∑
r=kn

P
[
sup
t≥0

∣∣nlmlr(t)− Ulr(t)
∣∣ > λ(n, l)

]
<

Ln∑
l=kn

l∑
r=kn

4e−
1
2λ(n,l)

2

. (3.39)

We can only use the upper bound if the probability it is invalid tends to 0.
This is the last condition that we need to satisfy, together with the conditions
mentioned previously in equations (3.21) and (3.26). We will now choose the
value for β̂ that was already stated in the theorem:

β̂ =
3τ + 2

4τ
. (3.40)

Now, we will also choose the following values for Ln and λ(n, l):

Ln = n1/(2τ),

λ(n, l) =
(
c2nl

−τ)(τ−2)/(2τ)
.

(3.41)

We will show that for these choices of β̂, Ln and λ(n, l) the three given condi-
tions are satisfied. First, we will see if (3.39) tends to zero. Note that the biggest
term in this equation is the one where l = Ln (for r arbitrary), therefore

Ln∑
l=kn

l∑
r=kn

4e−
1
2λ(n,l)

2

≤ 4L2
ne

− 1
2λ(n,Ln)

2

. (3.42)

Since exponents grow faster than polynomials, this equation converges to zero
if

1

2
λ(n, l)2 =

1

2

(
c2nL

−τ
n

)(τ−2)/τ → ∞. (3.43)

Since c2 and the power τ−2
τ are positive, this tends to ∞ as long as nLn−τ tends

to ∞. Therefore we have

nL−τ
n = nn−τ/(2τ) = n1/2 → ∞. (3.44)
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So (3.39) indeed goes to zero, which means the first condition is satisfied. Now,
let us check if the condition from (3.21) holds, we plug in the value for Ln to
get

n

τ − 2

(
n1/(2τ) − 1

)2−τ
< Θ(nβ̂). (3.45)

We can reduce this statement by using that Θ only looks at the highest order in
an equation, this yields the following statement:

n1+(2−τ)/(2τ) < Θ(nβ̂). (3.46)

This is the case if

1 +
2− τ

2τ
< β̂ =

3τ + 2

4τ
. (3.47)

And by rewriting the left-hand side, indeed we see that since τ > 2 it holds that

4τ

4τ
+

4− 2τ

4τ
=

2τ + 4

4τ
<

3τ + 2

4τ
. (3.48)

It is only left to check that condition (3.26) holds. We will first simplify the
double sum by using that r ≤ l to obtain

Ln∑
l=kn

l∑
r=kn

r
√
nlλ(n, l) ≤

Ln∑
l=kn

l2
√
nlλ(n, l). (3.49)

Now we bound nl and write out λ(n, l) to get

Ln∑
l=kn

l2
√
nlλ(n, l) ≤

Ln∑
l=kn

l2
√
c2nl−τλ(n, l)

=
√
c2

Ln∑
l=kn

l2n1/2l−τ/2
(
nl−τ

)(τ−2)/(2τ)
.

(3.50)

By simplifying the exponents, we can rewrite this to

√
c2n

(τ−1)/τ
Ln∑
l=kn

l3−τ . (3.51)

Let us estimate this expression using an integral, this gives

√
c2n

(τ−1)/τ
Ln∑
l=kn

l3−τ ≤
√
c2n

(τ−1)/τ

∫ Ln+1

l=0

u3−τdu. (3.52)

Calculating this integral gives

√
c2n

(τ−1)/τ

[
1

4− τ
u4−τ

]Ln+1

0

=
√
c2
n(τ−1)/τ

4− τ
(Ln + 1)

4−τ
. (3.53)

Plugging in the chosen value of Ln gives

√
c2
n(τ−1)/τ

4− τ

(
n1/(2τ) + 1

)4−τ
. (3.54)
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Remember, we want this expression to be smaller than Θ
(
nβ̂
)

. Therefore, we
can forget the +1 in the brackets, since it does not change the order of the
equation. We satisfy the asked upper bound of Θ

(
nβ̂
)

if

τ − 1

τ
+

4− τ

2τ
< β̂ =

3τ + 2

4τ
. (3.55)

Rewriting the right-hand side of the equation gives:

4τ − 4

4τ
+

8− 2τ

4τ
=

2τ + 4

4τ
<

3τ + 2

4τ
. (3.56)

Which means the third condition is also satisfied. Therefore we can conclude
that (3.10) holds, which finishes the proof.

Remark 3.3.3. It could be possible that the theorem still works for a smaller β,
by setting different Ln and λ(n, l) in (3.42) that still satisfy the three conditions
in the proof.

Now we have created a whp bound on the number of heavy balls, in the next
section we will use this result to get a whp bound on the number of heavy
boxes.

3.4 Heavy boxes close to expectation

With the proof of the previous theorem, we can also say something about the
number of heavy boxes. This is necessary, because we want to say something
about the number of vertices in the k(n)-core. Note that we can denote the
number of boxes that are still heavy at time t in the following way:

V (t) =

∞∑
r=kn

Ur(t). (3.57)

Now we can prove the following result on the number of vertices.

Corollary 3.4.1 (whp bound on heavy boxes). For large enough graph size n
and β̂ = 3τ+2

4τ , the following holds for the function v from (3.4) and kn the core
that needs to be found:

P

[
sup
t≥0

∣∣∣∣v (e−t)− V (t)

∣∣∣∣ ≥ nβ̂

kn

]
→ 0. (3.58)

We can prove this corollary by altering the proof of Theorem 3.3.1. A fully
worked-out proof can be found in Appendix A. Now we have derived whp
bounds on the number of heavy half-edges and heavy boxes alive in the death
process, in the next chapter we will shift focus to obtain bounds on the number
of total balls.
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Chapter 4

Approximating death process

The goal of this chapter is to get a good bound on the number of balls alive
in the death process. First, in Section 4.1 the death process will be related
to a hitting time. In Section 4.3 a bound on this hitting time is created using
martingales. Therefore in Section 4.2 some background knowledge about mar-
tingales is explained. Then in Section 4.4 the bound on the hitting time will be
used to obtain a bound on the number of balls alive. Finally, in Section 4.5 we
obtain a different bound by using the information on convergence to empirical
measures, that was obtained in the previous chapter.

4.1 Relating to hitting time

In the article by Janson & Luczak [20, Lemma 4.3], it was already revealed that

P
[∣∣∣X(n)(t)−Mne−γt

∣∣∣ ≥ εn
]
→ 0. (4.1)

Here Mne−γt is the expected number of individuals alive in a death process at
time t [37]. Therefore if we take γ = 2, this is equal to the following statement:

P [|B(t)− E [B(t)]| ≥ εn] → 0. (4.2)

It will now be investigated if a stricter bound than ϵn can be found. For this
inspiration is taken from [19, Claim 3.6]. Before stating this claim, first we
introduce a hitting time on a pure death process,

Tx = min{t : X(n)(t) ≤ x}. (4.3)

Now let us state the discussed transfer lemma.

Lemma 4.1.1 (Concentration of a death process and its hitting times [19]).
Let

(
X(n)(t)

)
t≥0

be a pure death process for each n ∈ N with initial condition
an = X(n)(0) → ∞ as n → ∞. Let f: [0,∞) → [0, 1] be a function that is strictly
decreasing, f(0) = 1, f is continuous and f (−1) is continuous. Then the following
statements are equivalent:
(i) for any t0 <∞, sup

t≤t0
|X

(n)(t)
an

− f(t)| P−→ 0

(ii) for any c0 ∈ (0, 1), sup
c≥c0

|Tc·an − f (−1)(c)| P−→ 0
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We would like to investigate for which ψ(n) = n−β the following statement
holds:

P
[
sup
y≥x

|Ty − E [Ty] | > ψ(n)

]
→ 0. (4.4)

In the rest of this chapter, we will shorten ψ(n) to ψ to lighten the notation.
Note that at a death process, all states that are reached are of the form Mn−γi.
For all other values of y, the hitting time is equal to the first Mn − γi below
y. Therefore we can discretize the supremum. Let us look at which value the
death process is when we reach the hitting time of y. For this we need

y ≥Mn− γ ∗ i, (4.5)

let us re-order this equation to obtain

i ≥ Mn− y

γ
. (4.6)

Therefore we obtain the hitting time of y at i = ⌈Mn−y
γ ⌉. The value in y ≥ x

that will last be reached is x, since the death process has a decreasing number
of half-edges. And therefore we can discretize the supremum to obtain

P

[
max

{Mn,Mn−γ,...,Mn−γ⌈Mn−x
γ ⌉}

|Ty − E [Ty] | > ψ(n)

]
→ 0. (4.7)

We can actually give an expression for Ty. In (4.6) it was already discovered
that there need to be done ⌈Mn−y

γ ⌉ steps before y is reached. At the first step
there are still Mn vertices, so the time until the first death is exponentially
distributed with rate Mn. After i steps, there are Mn− γ ∗ i vertices left so the
time until the next death is exponentially distributed with rate Mn − γi. Let
E(j) be an exponentially distributed variable with rate j. Then:

Ty =

⌈Mn−y
γ ⌉∑
i=1

E(Mn− γ(i− 1)). (4.8)

By using that exponential variables are closed under scaling by a positive factor
[12], we can rewrite this equation to the following statement where all Ei are
i.i.d exp(1)-variables,

Ty =

⌈Mn−y
γ ⌉∑
i=1

Ei
Mn− γ(i− 1)

. (4.9)

Let us calculate the expectation of Ty as well. Then by linearity of the expecta-
tion

E [Ty] = E

⌈Mn−y
γ ⌉∑
i=1

Ei
Mn− γ(i− 1)


=

⌈Mn−y
γ ⌉∑
i=1

E
[

Ei
Mn− γ(i− 1)

]
.

(4.10)
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By using that exp(1)-distributed variables have expectation 1, we can simplify
this to

E [Ty] =
⌈Mn−y

γ ⌉∑
i=1

1

Mn− γ(i− 1)
. (4.11)

It is hard to give a nice expression for this summation, therefore we will derive
an upper and lower bound. These bounds will be used in the proofs of the
transfer lemma later this chapter. First, we derive a lower bound. We can
bound the sum of the previous equation by an integral. Note that the terms of
the summation are positive and increasing (as long as y ≥ γ, which will always
be the case in this thesis for large n). Thus:

E [Ty] ≥
∫ −1+⌈Mn−y

γ ⌉

0

1

Mn− γ(u− 1)
du

≥
∫ −1+Mn−y

γ

0

1

Mn− γ(u− 1)
du.

(4.12)

We can calculate this integral:[
− 1

γ
log (Mn− γ(u− 1))

]−1+Mn−y
γ

0

=
1

γ
(log(Mn+ γ)− log(y + 2γ))

=
1

γ
log

(
Mn+ γ

y + 2γ

)
.

(4.13)

Let us also derive an upper bound for the expectation:

E [Ty] ≤
∫ 1+⌈Mn−y

γ ⌉

1

1

Mn− γ(u− 1)
du

≤
∫ 2+Mn−y

γ

1

1

Mn− γ(u− 1)
du.

(4.14)

We can calculate this integral:[
− 1

γ
log (Mn− γ(u− 1))

]2+Mn−y
γ

1

=
1

γ
(log(Mn− γ)− log(y))

=
1

γ
log

(
Mn− γ

y

)
.

(4.15)

In the next section, Doob’s maximal inequality will be introduced. This inequal-
ity will be useful in Section 4.3 to see for which values of ψ(n) (4.7) holds.
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4.2 Martingales

In this section, an inequality will be introduced that will give a bound on
|Tx − E [Tx] | in the next section. This inequality will make use of martingales,
therefore first we define what a martingale is.

Definition 4.2.1 (Martingale [31]). A stochastic process Xn for n ∈ {1, 2, . . . }
is a martingale if for all n, the following conditions are satisfied
(i) E [|Xn|] <∞
(ii) E [Xn+1|Xn, . . . , X1] = Xn

For the desired inequality, we actually need a submartingale. This concept will
now be introduced.

Definition 4.2.2 (Submartingale [31]). Let Xn and Yn for n ∈ {1, 2, . . . } be
stochastic processes. Then Xn is a submartingale with respect to Yn if for all Yn
(i) E [max{Xn, 0}] <∞
(ii) E [Xn+1|Yn, . . . , Y1] ≥ Xn

(iii) Xn is a function of Y0, . . . , Yn

Now let us prove there is an equivalent definition, which is nicer to work with
in the special case that Xn =

∑
Yn.

Lemma 4.2.3 (Submartingale for series). If Xn =
∑n
i=1 Yi is a stochastic pro-

cess for n ∈ {1, 2, . . . }. Then Xn is a submartingale if the following conditions are
satisfied:
(I) E [max{Xn, 0}] <∞
(II) E [Xn+1|Xn, . . . , X1] ≥ Xn

Proof. It will be shown that Xn satisfies the conditions from Definition 4.2.2.
Firstly, Xn is clearly a function from Y1, . . . , Yn, so condition (iii) in Defini-
tion 4.2.2 is satisfied. Furthermore, condition (I) guarantees condition (i) also
holds. Now it is left to prove condition (ii), this is done by showing that the
information in X1, . . . , Xn and Y1, . . . , Yn is equal. If Y1, . . . , Yn is known, then
we can calculateXj usingXj =

∑j
i=1 Yi. Contrary, ifXi, . . . , Xn is known, then

we can calculate Yj by using Yj = Xj − Xj−1 (unless j = 1, then Yj = Xj).
Therefore E [Xn+1|Xn, . . . , X1] = E [Xn+1|Yn, . . . , Y1]. This means condition
(II) implies condition (ii) in Definition 4.2.2. Therefore all three conditions in
this definition are satisfied and thus Xn is a Martingale.

Now the useful inequality, for which martingales were introduced will be stated.

Lemma 4.2.4 (Doob’s maximal inequality [31]). Let Xn be a nonnegative sub-

martingale, then for any ψ > 0, P
[
max
1≤j≤n

Xj > ψ

]
≤ E[Xn]

ψ
.

We will use this lemma in the next section, to bound the hitting time Tx.
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4.3 Bounding hitting time

Let us define the following sequence, which we saw in Section 4.1 is related to
Tx − E [Tx].

Nl =

l∑
i=1

(
Ei

Mn− γ(i− 1)
− E

[
Ei

Mn− γ(i− 1)

])

=

l∑
i=1

Ei − 1

Mn− γ(i− 1)
.

(4.16)

This summation is designed such that every term in the sum has expectation 0.
Note that for l = ⌈Mn−y

γ ⌉, we have Nl = Ty − E [Ty] by equations (4.9) and
(4.11). We would like to use Doob’s maximal inequality (Lemma 4.2.4) to get
a bound on Nl. Remember it was shown in Section 4.1, that we can discretize
the supremum ((4.4) is equal to (4.7)). If it can be shown that N2

l is a sub-
martingale, then for T = ⌈Mn−x

γ ⌉ we can use Doob’s maximal inequality to get:

P
[
sup
y≥x

|Ty − E [Ty] | > ψ

]
= P

[
max
0≤l≤T

|Nl| > ψ

]
= P

[
max
0≤l≤T

N2
l > ψ2

]
≤ E[N2

T ]

ψ2
.

(4.17)

Let us verify N2
l is indeed a submartingale.

Theorem 4.3.1. The sequence N2
l =

(∑l
i=1

Ei−1
Mn−γ(i−1)

)2
is a submartingale.

We can prove this theorem by checking the conditions from Lemma 4.2.3, a full
proof can be found in Appendix A. Now it is known that N2

l is a submartingale,
we can use Doob’s maximal inequality in the way of (4.17). This equality will
be used to prove a convergence theorem

Theorem 4.3.2 (Concentration hitting time). For 1
ψ2 < Θ(x), it holds that

P
[
sup
y≥x

|Ty − E [Ty] | > ψ

]
→ 0.

Proof. First, let us recall (4.17), which stated that

P
[
sup
y≥x

|Ty − E [Ty] | > ψ

]
= P

[
max
0≤l≤T

|Nl| > ψ

]
= P

[
max
0≤l≤T

N2
l > ψ2

]
≤ E[N2

T ]

ψ2
.

(4.18)

We can use Doob’s maximal inequality here, since in Theorem 4.3.1 it was
shown that N2

l is a submartingale. Let us derive a bound on E[N2
T ] by using the

integral bound for positive increasing functions it is achieved:

⌈Mn−x
γ ⌉∑
i=1

1

(Mn− γ(i− 1))2
≤
∫ 1+⌈Mn−x

γ ⌉

2

1

(Mn− γ(u− 1))2
du

≤
∫ 2+Mn−x

γ

1

1

(Mn− γ(u− 1))2
du.

(4.19)
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Now, let us use the substitution v = Mn − γ(u − 1). This gives the following
expression for the integral:

− 1

γ

∫ x−γ

Mn

1

v2
dv =

1

γ

[
1

v

]x−γ
Mn

=
1

γ(x− γ)
− 1

γMn
. (4.20)

Naturally, we can drop − 1
γMn to get a slightly worse inequality, doing this and

then using (4.17). We obtain that:

P
[
sup
y≥x

|Ty − E [Ty] | > ψ

]
≤ 1

γψ2(x− γ)
. (4.21)

By the assumptions: 1
ψ2 < Θ(x), this means that

lim
n→∞

1/ψ2

x
= lim
n→∞

1

xψ2
= 0. (4.22)

Now, since x scales with n and γ is just a constant, x−γ will scale with n in the
same order as x. Furthermore, multiplying the fraction with a positive constant
will not change the limit going to 0. Therefore

lim
n→∞

1

γψ2(x− γ)
= 0. (4.23)

And therefore, we obtain that

P
[
sup
y≥x

|Ty − E [Ty] > ψ|
]
≤ 1

γψ2(x− γ)
→ 0. (4.24)

Remark 4.3.3. If this theorem holds for a certain x-value, then for x′ = x−n1−β
this still works as long as n1−β < x. Because then

Θ(x′) = Θ
(
x− n1−β

)
= Θ(x) . (4.25)

Now, a special case will be considered where x is set useful for finding a logα(n)-
core.

Corollary 4.3.4 (Concentration hitting time for polylogarithmic k(n)). If
x = c̃ n

logω(n) for some constants ω > 0 and c̃ > 0, then for β < 1
2 and large n:

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β

]
→ 0. (4.26)

Proof. In this proof, Theorem 4.3.2 will be applied with x = c̃ n
logω(n) and

ψ = n−β . After this, it will be shown that the convergence still holds for
x′ = c̃ n

logω(n) − n1−β . By Theorem 4.3.2, it is known that the convergence
holds for

1

n−2β
= n2β < Θ

(
c̃

n

logω(n)

)
= Θ

(
n

logω(n)

)
. (4.27)
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Let us write this statement out using the definition of theta, it is necessary that

lim
n→∞

n2β

n/ logω(n)
= lim
n→∞

logω(n)

n1−2β
→ 0. (4.28)

Since positive powers of n converge faster than logarithms, this will indeed
converge if 1− 2β > 0. Therefore we obtain that convergence indeed holds for
β < 1

2 . Now it is clear that for 0 < β < 1
2 it holds that n1−β < n

logω(n) , so by
remark 4.3.3 the convergence still works for x′ = n

logω(n) − n1−β as well.

Now another special case will be considered where x is set useful for finding a
nα-core.

Corollary 4.3.5 (Concentration hitting time for polynomial k(n)). If x = c̃nω

for constants ω > 2
3 and c̃ > 0, then for β < ω

2 and large n it holds that:

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β

]
→ 0. (4.29)

Proof. We apply Theorem 4.3.2 with x′ = c̃nω −n1−β and ψ = n−β . We need x
to be positive, therefore it is needed that: ω > 1−β. Assume that this is indeed
the case, then to get convergence in Theorem 4.3.2, we also need that

1

n−2β
= n2β < Θ

(
c̃nω − n1−β

)
= Θ(nω) . (4.30)

This statement is true for ω > 2β. By combining the statements ω > 2β and
ω > 1− β, we see that

3ω > 2β + 2(1− β) = 2 (4.31)

Consequently the convergence holds for ω > 2
3 and β < ω

2 .

In the next section, we will transfer the derived bounds on the hitting time to
bounds on the number of balls alive.

4.4 Transfer theorem

In the previous section, the concentration of the hitting times in the death pro-
cess was observed. It is now time to create an adjusted version of the transfer
lemma 4.1.1, to show convergence of the number of half-edges as well.

Theorem 4.4.1 (Transfer theorem). For t∗ = 1
γ log

(
Mn
x

)
and ϵ > 0, if it holds

that

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β−ϵ

]
→ 0, (4.32)

then also

P
[
sup
t≤t∗

|X(n)(t)−Mne−γt| > n1−β
]
→ 0. (4.33)

Proof. To start this proof, the following events are defined:

E1(t) = sup
t≤t∗

|X(n)(t)−Mne−γt| > n1−β ,

E2(t) = sup
y≥x

|Ty − E [Ty] | > n−β−ϵ.
(4.34)
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During this proof, it will be shown that if E1(t) holds, then also E2(t) holds.
From this, it follows that the chance that E2(t) holds is bigger than the chance
that E1(t) holds. From the assumption P [E2(t)] → 0, it then also follows that
P [E1(t)] → 0. Let us start this proof by assuming that E1(t) holds, then for some
t ≤ t∗:

|X(n)(t)−Mne−γt| > n1−β . (4.35)

There are two possible cases for E1(t) to hold:

(i) : X(n)(t) > Mne−γt + n1−β ,

(ii) : X(n)(t) < Mne−γt − n1−β .
(4.36)

Case (i): Let us start by setting

y =Mne−γt + n1−β . (4.37)

It holds Ty > t. By rewriting (4.37), we obtain the following expression for t:

t = − 1

γ
log

(
y − n1−β

Mn

)
. (4.38)

Using this equation, let us derive a lower bound for Ty − E [Ty],

Ty − E [Ty] > t− E [Ty]

= − 1

γ
log

(
y − n1−β

Mn

)
− E [Ty] .

(4.39)

Now, let us use the lower bound on E [Ty] that was obtained in (4.15), to get

Ty − E [Ty] > − 1

γ
log

(
y − n1−β

Mn

)
− 1

γ
log

(
Mn− γ

y

)
. (4.40)

Rewriting the logarithms gives

1

γ

(
log (y)− log

(
y − n1−β

)
+ log (Mn)− log (Mn− γ)

)
>
1

γ

(
log (y)− log

(
y − n1−β

))
=

1

γ
log

(
y

y − n1−β

)
.

(4.41)

Reversing the fracture gives the following result:

− 1

γ
log

(
y − n1−β

y

)
= − 1

γ
log

(
1− −n1−β

y

)
. (4.42)

Now let us look at the Taylor series of this logarithm to see that, this logarithm
is equal to

− 1

γ

(
−n1−β

y
+O

((
−n1−β

y

)2
))

= Θ

(
n1−β

y

)
> Θ

(
n−β−ϵ

)
.

(4.43)
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Therefore, during equations (4.39) to (4.43) it was derived that for the chosen
y,

|Ty − E [Ty] | ≥ Ty − E [Ty] > n−β−ϵ. (4.44)

Case (ii): Start by setting

y =Mne−γt − n1−β . (4.45)

Now it holds that Ty ≤ t. Rewriting y, gives the following expression for t:

t = − 1

γ
log

(
y + n1−β

Mn

)
. (4.46)

Using this expression of t, it follows

E [Ty]− Ty ≥ E [Ty]− t

= E [Ty] +
1

γ
log

(
y + n1−β

Mn

)
.

(4.47)

By using the lower bound on the expectation from (4.13), we obtain that

E [Ty]− Ty ≥ 1

γ
log

(
y + n1−β

Mn

)
+

1

γ
log

(
Mn+ γ

y + 2γ

)
. (4.48)

Rewriting the logarithms gives

1

γ

(
log
(
y + n1−β

)
− log (y + 2γ) + log (Mn+ γ)− log (Mn)

)
>
1

γ

(
log
(
y + n1−β

)
− log (y + 2γ)

)
=

1

γ
log

(
y + n1−β

y + 2γ

)
.

(4.49)

We can rewrite this logarithm by using a Taylor series,

1

γ
log

(
y + n1−β

y + 2γ

)
=

1

γ
log

(
1 +

n1−β − 2γ

y + 2γ

)
=

1

γ

n1−β − 2γ

y + 2γ
+O

((
n1−β − 2γ

y + 2γ

)2
)
.

(4.50)

Let us approximate this expression, by determining the order of the equation

Θ

(
n1−β − 2γ

y + 2γ

)
= Θ

(
n1−β

y

)
> Θ

(
n−β−ϵ

)
. (4.51)

So also in the second case for the chosen y

|Ty − E [Ty] | ≥ E [Ty]− Ty > n−β−ϵ. (4.52)

Let us check if for the chosen y-values, y ≥ x − n1−β . If this is the case, the
chosen y-value is in the supremum of E2(t). Note that the y from case (ii) is
smaller than the one in case (i), so only checking the y from case (ii) suffices:

y =Mne−γt − n1−β

≥Mne−γt
∗
− n1−β .

(4.53)
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By filling in the expression, for t∗, we obtain that

y ≥Mne− log(Mn
x ) − n1−β

=
Mn

Mn/x
− n1−β .

(4.54)

So we derive that
y ≥ x− n1−β , (4.55)

so indeed we have found a value in the supremum of E2(t). Therefore in both
cases it is now known that

sup
y≥x−n1−β

|Ty − E [Ty] | > n−β−ϵ. (4.56)

should also hold. Therefore we can conclude that if E1(t) holds, also E2(t) holds.
Consequently, we conclude that:

P [E1(t)] ≤ P [E2(t)] → 0. (4.57)

Let us look at a specific choice for x which can be helpful to find a logα(n)-core.

Corollary 4.4.2 (Concentration of death process for polylogarithmic k(n)). For
ω > 0 and c > 0 constants, take

t∗ = log
(
ĉ logω/2(n)

)
. (4.58)

Then it holds for any υ > 0 that

P
[
sup
t≤t∗

|X(n)(t)−Mne−2t| > n1/2+υ

2

]
→ 0. (4.59)

This corollary follows from combining Theorem 4.4.1 and Corollary 4.3.4. A
full proof can be found in Appendix A. We will now also consider a special
value of x, which is convenient for discovering a nα-core.

Corollary 4.4.3 (Concentration of death process for polynomial k(n)). For con-
stants c̃ > 0 and ω > 2

3 , set

t∗ = log
(
c̃n(1−ω)/2

)
. (4.60)

Then for β < ω
2 it holds that:

P
[
sup
t≤t∗

|X(n)(t)−Mne−2t| > n1−β

2

]
→ 0. (4.61)

This corollary follows from combining Theorem 4.4.1 and Corollary 4.3.5. A
full proof can be found in Appendix A. In the next section, we will use empirical
measures to derive another bound on the number of balls alive.
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4.5 Empirical measure approach

In the previous sections in this chapter, we have used a transfer theorem to
bound the number of balls being close to its expectation. However, it is also
possible to use the previously stated Theorem 3.3.1. We will now investigate
whether this gives a better bound. First, we will look how a death process with
death rate 1 converges to its distribution function. Thereafter, we will couple
this result to a death process with death rate 2.

Lemma 4.5.1 (Convergence rate 1 death process to distribution function). Let
(X(t))t≥0 be a pure death process with death rate 1 with initial condition
X(0) = an. Then for ϵ > 0, the following result holds:

P
[
sup
t≥0

∣∣X(t)− ane
−t∣∣ > √

ann
ϵ

]
→ 0. (4.62)

Proof. X(t) starts with an balls alive, let us give every ball an index i ∈ {1, 2, . . . an}.
We know ball i will die after Ti time, where Ti ∼ exp(1). Let Fan(t) be the em-
pirical distribution function of all Ti. The amount of balls alive at time t can be
expressed as

X(t) =

an∑
i=1

1{Ti>t} = an −
an∑
i=1

1{Ti≤t}

= an − anFan(t).

(4.63)

Now let F (t) be the distribution function of an exp(1)-distributed variable.
Then anF (t) represents the expected number of balls that have already died.
Therefore we can use the expected number of balls still alive [20] to deduce
that

anF (t) = an − E [X(t)] = an − ane
−t. (4.64)

We will now apply Theorem 3.3.1 to obtain (4.62). By Theorem 3.3.1, it is
known that

P
[
sup
t≥0

√
an
∣∣Fan(t)− F (t)

∣∣ > λ

]
≤ 2 exp

(
−2λ2

)
. (4.65)

By multiplying both sides of the equation in the probability with
√
an, we obtain

the equivalent expression

P
[
sup
t≥0

∣∣anFan(t)− anF (t)
∣∣ > √

anλ

]
≤ 2 exp

(
−2λ2

)
. (4.66)

Now let us slightly rewrite this statement, so we can use (4.63) and (4.64).

P
[
sup
t≥0

∣∣ (anFan(t)− an) + (an − anF (t))
∣∣ > √

anλ

]
≤ 2 exp

(
−2λ2

)
. (4.67)

By applying (4.63) and (4.64), we now get:

P
[
sup
t≥0

∣∣−X(t) + ane
−t∣∣ > √

anλ

]
≤ 2 exp

(
−2λ2

)
. (4.68)
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By setting λ = nϵ, we obtain that it indeed holds that

P
[
sup
t≥0

∣∣X(t)− ane
−t∣∣ > √

ann
ϵ

]
≤ 2 exp

(
−2n2ϵ

)
→ 0. (4.69)

This lemma will now help to give a bound on B(t) being close to its expectation
in the next theorem.

Theorem 4.5.2 (Concentration bound of total balls). Let (B(t))t≥0 be a death
process with rate 2 with initial condition B(0) =Mn. Then for υ > 0, we get

P
[
sup
t≥0

∣∣B(t)−Mne−2t
∣∣ > n1/2+υ

2

]
→ 0. (4.70)

Proof. B(t) is a death process with rate 2, we would like a rate 1 death process.
This would mean we can apply Lemma 4.5.1. We will scale B(t) to a different
Markov process. We will divide both t and B(t) by 2. This gives a Markov
process X(a)(t) that jumps down size 1 with the waiting time until the next

event being exp
(

1
X(a)(t)

)
[20]. The variable a stands for the starting value,

which is

a =
B(0)

2
=
Mn

2
. (4.71)

This is almost a rate 1 death process, the only difference is that X(a)(t) is not
integer if B(0) is odd. To relate X(a)(t) to a rate 1 death process, we turn to
the coupling principle applied in the proof of [20, Lemma 4.3]. Here X⌈a⌉(t) is
defined with

X⌈a⌉(0) = ⌈a⌉. (4.72)

Now we couple X(a)(t) and X⌈a⌉(t) such that both jump whenever the smaller
does. Since X⌈a⌉(t) starts at an integer value, it is a rate 1 death process. For
all t, it holds that: ∣∣∣∣X(a)(t)−X⌈a⌉(t)

∣∣∣∣ < 1. (4.73)

Now we let a = Mn
2 , we can apply Lemma 4.5.1 on X⌈a⌉(t) to get for ϵ > 0

P

[
sup
t≥0

∣∣X⌈a⌉(t)−
⌈
Mn

2

⌉
e−t
∣∣ >√⌈Mn

2

⌉
nϵ

]
→ 0. (4.74)

We instead would like to bound∣∣∣∣X(a)(t)− Mn

2
e−t
∣∣∣∣ = ∣∣∣∣X(a)(t)− ae−t

∣∣∣∣. (4.75)

Note that we can rewrite this absolute value in the following way:∣∣∣∣ (X⌈a⌉(t)− ⌈a⌉e−t
)
+
(
X(a)(t)−X⌈a⌉(t)

)
+ (⌈a⌉ − a) e−t

∣∣∣∣. (4.76)

By the triangle inequality, we can bound this with the absolute value of the
three terms. We can bound the second term by (4.73). It is also clear that the
third term is smaller than 1, since both e−t < 1 and ⌈a⌉ − a < 1. Therefore:∣∣∣∣X(a)(t)− Mn

2
e−t
∣∣∣∣ < 2 +

∣∣X⌈a⌉(t)−
⌈
Mn

2

⌉
e−t
∣∣. (4.77)
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But then we can use (4.74) to get

P

[
sup
t≥0

∣∣X(a)(t)− Mn

2
e−t
∣∣ > 2 +

√⌈
Mn

2

⌉
nϵ

]
→ 0. (4.78)

This means that it is also true that

P

[
sup
t≥0

∣∣X(a)(t)− Mn

2
e−t
∣∣ > 2 +

√⌈
M

2

⌉
n1/2+ϵ

]
→ 0. (4.79)

We now scale back the process by multiplying Xa(t) and t by 2, this gives

P

[
sup
2t≥0

∣∣B(t)−Mne−2t
∣∣ > 4 + 2

√⌈
M

2

⌉
n1/2+ϵ

]
→ 0. (4.80)

We can drop the multiplication with 2 in the supremum, since it makes no
difference. Now this means that

P
[
sup
t≥0

∣∣B(t)−Mne−2t
∣∣ > n1/2+2ϵ

2

]
→ 0. (4.81)

By setting ϵ = υ
2 > 0, we obtain that

P
[
sup
t≥0

∣∣B(t)−Mne−2t
∣∣ > n1/2+υ

2

]
→ 0 (4.82)

We will now compare the results from Theorem 4.5.2 to the results obtained
in Section 4.4. In Theorem 4.5.2, we obtained a bound for t ≥ 0. Where the
results in Corollaries 4.3.4 and 4.4.3 only worked for t ≤ t∗. If these corollaries
give a stricter bound, they could still be preferred. However, Corollary 4.3.4
bounds by nβ̂ for β̂ > 1

2 . This is the same result as obtained in Theorem 4.5.2.
If we look at Corollary 4.4.3 instead we need β̂ > 1 − ω

2 ≥ 1
2 , so we will never

get a better result than from Theorem 4.5.2. Therefore Theorem 4.5.2 is an
improvement of previous obtained results, since it gives a bound at least as
good, but for all t ≥ 0. Thus this theorem will be used for results later this
thesis. In the next chapter, we will work on finding a time t∗ such that the
k(n)-core has been reached.
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Chapter 5

Finding reaching time

In this chapter, we will find the time when the balls-into-boxes algorithm reaches
the k(n)-core. This will be done by proving one main theorem in Section 5.1.

5.1 Reaching k(n)-core

The goal of this chapter is to find a time t∗ as small as possible that satisfies
(2.17), which means that we have reached the k(n)-core. Using the expecta-
tions of B(t) and H(t), that were obtained in (3.2) and (4.1), we can rewrite
(2.17) to

Mne−2t − h
(
e−t
)
≤ −nδ. (5.1)

By substituting p = e−t, we obtain that

Mnp2 − h (p) ≤ −nδ. (5.2)

Note that e−t is a decreasing function with e0 = 1. Since we tried t ≥ 0 as
small as possible such that (5.1) holds, this will now change to p ≤ 1 as large
as possible in (5.5). We will now state a theorem about a p that satisfies this
equation.

Theorem 5.1.1 (Reaching time k(n)-core). Assume that for some δ < 1 and kn
it holds that

n(δ−1)/2 < Θ
(
k(2−τ)/(3−τ)n

)
. (5.3)

Then for large enough n there also exists

p = Θ
(
k(2−τ)/(3−τ)n

)
, (5.4)

that for the function h(p) from (3.2) satisfies the equation

Mnp2 − h (p) ≤ −nδ. (5.5)

Proof. We start this proof by rewriting the equation that needs to be satisfied.
First, let us write out h(p) using (3.2). For Xl(p) ∼ Bin(l, p), we get

Mnp2 −
∞∑
l=kn

pl(n)nE
[
Xl(p)1{Xl(p)≥kn}

]
≤ −nδ. (5.6)
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Let us divide both sides by n and re-order the equation to get:

Mp2 + nδ−1 ≤
∞∑
l=kn

pl(n)E
[
Xl(p)1{Xl(p)≥kn}

]
. (5.7)

From now on, we will make the statement slightly stricter by using a lower
bound on the right-hand side a few times to make the calculations easier. This
will mean that the p from this theorem is not certainly the largest solution to
(5.5), but the difference with the largest solution will be small. The maximum
degree in the scale-free configuration model is nϵ for ϵ = 1

τ−1 whp [18, Theo-
rem 7.13]. Therefore we will give a slightly stricter bound by letting the sum
not go to ∞ anymore. The upper bound will be set to nε instead, this gives

Mp2 + nδ−1 ≤
nε∑
l=kn

pl(n)E
[
Xl(p)1{Xl(p)≥kn}

]
. (5.8)

Now, it is time to use the distribution of the discrete Pareto variable. We know
that pl = 1

ζ(τ) l
−τ and by Condition 2.2.2(i) also pl(n) → pl for l ≤ nε. There-

fore, we know that for large n, pl(n) ≥ ĉpl for all constants ĉ ∈ (0, 1). By using
this information, again the bound in the inequality becomes slightly stricter, we
now get

Mp2 + nδ−1 ≤
nε∑
l=kn

ĉ

ζ(τ)
l−τE

[
Xl(p)1{Xl(p)≥kn}

]
. (5.9)

The next questions is how to bound the expectation. Naturally, we can note
that

E
[
Xl(p)1{Xl(p)≥kn}

]
≥ E [Xl(p)]− E

[
Xl(p)1{Xl(p)≤kn}

]
= lp−

kn∑
i=0

iP [Xl(p) = i] .
(5.10)

Let us rewrite the second part of the equation:

kn∑
i=0

iP [Xl(p) = i] ≤
kn∑
i=0

knP [Xl(p) = i]

= knP [Xl(p) ≤ kn] .

(5.11)

Assume that we have lp ≥ 2kn. Then

P [Xl(p) ≤ kn] ≤ P
[
Xl(p) ≤

1

2
lp

]
. (5.12)

Now we can use a Chernoff bound on the probability [33] to get

P
[
Xl(p) ≤

1

2
lp

]
≤ exp

(
−1

2

(
1

2

)2

lp

)

≤ exp

(
−1

2

(
1

2

)2

2kn

)
= exp

(
−kn

4

)
.

(5.13)
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Using this in (5.10), we obtain that for lp ≥ 2kn, it holds that

E
[
Xl(p)1{Xl(p)≥kn}

]
≥ lp− kne

−kn/4. (5.14)

To use the Chernoff bound, we made the assumption that lp ≥ 2kn. Since p ≤ 1,
this also means that l ≥ 2kn > kn, therefore it is true that

nε∑
l=kn

ĉ

ζ(τ)
l−τE

[
Xl(p)1{Xl(p)≥kn}

]
≥

nε∑
l=⌈ 2

pkn⌉

ĉ

ζ(τ)
l−τ

(
lp− kne

−kn/4
)
.

(5.15)

Thus (5.9) can be made stricter to obtain:

Mp2 + nδ−1 ≤
nε∑

l=⌈ 2
pkn⌉

ĉ

ζ(τ)
l−τ

(
lp− kne

−kn/4
)

=
ĉ

ζ(τ)
p

nε∑
l=⌈ 2

pkn⌉

l1−τ −
nε∑

l=⌈ 2
pkn⌉

ĉ

ζ(τ)
l−τkne

−kn/4.

(5.16)

It can be seen that the second term in this equation is a lot smaller, since it has
a lower power of l. Therefore this term will eventually go below (1 − ĉ) times
the leading term. Therefore, we can again create a stricter inequality by setting

Mp2 + nδ−1 ≤ ĉ2p

ζ(τ)

nε∑
l=⌈ 2

pkn⌉

l1−τ . (5.17)

We are working with τ ∈ (2, 3). Therefore, l1−τ is a decreasing function in terms
of l. Therefore, let us bound the sum using an integral bound for decreasing
positive terms to get

nε∑
l=⌈ 2

pkn⌉

l1−τ ≥
∫ nε

⌈ 2
pkn⌉

u1−τdu

≥
∫ nε

2
pkn+1

u1−τdu.

(5.18)

Calculating this integral gives:[
1

2− τ
u2−τ

]nε

2
pkn+1

=
1

2− τ
(nε)

2−τ − 1

2− τ

(
2kn
p

+ 1

)2−τ

. (5.19)

We are using a discrete Pareto distribution with τ ∈ (2, 3), therefore 1
2−τ < 0,

so the second term is actually the positive one. Also the power of u is negative
because of this, so u = 2

pkn + 1 gives a larger value than u = nε. And this
difference becomes bigger to eventually go below (1− ĉ) times the leading term
for large n. Therefore we conclude that

nε∑
l=⌈ 2

pkn⌉

l1−τ ≥ ĉ
1

τ − 2

(
2kn
p

+ 1

)2−τ

. (5.20)
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We thus again get a stricter inequality, namely:

Mp2 + nδ−1 ≤ ĉ3p

ζ(τ)

1

τ − 2

(
2kn
p

+ 1

)2−τ

= p
ĉ3

ζ(τ) (τ − 2)

(
2kn + 2p

p

)2−τ

.

(5.21)

Now let us re-order the p-powers in the equation to get:

Mp3−τ + nδ−1p1−τ ≤ ĉ3

ζ(τ) (τ − 2)
(2kn + 2p)

2−τ
. (5.22)

We would like to have Mp3−τ as leading term on the left-hand side of the
equation, this is the case if:

nδ−1p1−τ < Θ
(
Mp3−τ

)
= Θ

(
p3−τ

)
. (5.23)

By rewriting this equation, we see that we need:

n(δ−1)/2 < Θ(p) . (5.24)

If this is indeed the case, then we again use that this term goes below (1 − ĉ)
times the leading term eventually. Then (5.22) is definitely true for

Mp3−τ ≤ ĉ4

ζ(τ) (τ − 2)
(2kn + 2p)

2−τ
. (5.25)

Since 2kn is far bigger than 2p we can get a slightly stricter statement, by mul-
tiplying kn with a constant bigger than 1. We choose 2− ĉ as this constant. This
gives the following statement.

Mp3−τ ≤ ĉ4

ζ(τ) (τ − 2)
(2 (2− ĉ))

2−τ
k2−τn . (5.26)

We can rewrite this to

p ≤
(

ĉ4

Mζ(τ) (τ − 2)
(2 (2− ĉ))

2−τ
)1/(3−τ)

k(2−τ)/(3−τ)n . (5.27)

So if n(δ−1)/2 < Θ(p), then we know that (5.5) holds for a certain p, such that

p = Θ
(
k(2−τ)/(3−τ)n

)
. (5.28)

For this value of p, the assumption that n(δ−1)/2 < Θ(p) becomes

n(δ−1)/2 < Θ
(
k(2−τ)/(3−τ)n

)
. (5.29)

And this is exactly why this was stated as a condition in the theorem. Thus
we can conclude that if this condition holds, the given value for p satisfies the
equation in (5.5).

In the next chapter, we will use the theorem from this section to prove the main
results of this thesis.
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Chapter 6

Finding the cores

With the information gathered in the previous chapters, we prove the main
results that were stated in Section 2.3. First, in Section 6.1 we will prove The-
orem 2.3.2 about the existence of logα(n)-cores. Then, in Section 6.2 we will
prove Theorem 2.3.3 about the existence nα-cores.

6.1 Logarithmic core

We will now prove Theorem 2.3.2, to show a logα(n)-core exists for all fixed
α > 0.

Proof of Theorem 2.3.2. In Section 2.4, we created an algorithm that follows
the configuration model from Definition 2.2.1. This algorithm reaches the k(n)-
core if the number of heavy balls is larger than the number of total balls, since
the number of total balls is set to −1 at the moment we reach the k(n)-core. In
Section 2.5 it was derived that this is the case if (2.17), (2.18) and (2.19) hold
for some δ > 0. We will now derive a δ > 0 such that these equations hold,
with help of theorems from the previous chapters.

First, we will see when (2.17) holds, this will be determined by Theorem 5.1.1.
This theorem has a condition that n(δ−1)/2 < Θ

(
k
(2−τ)/(3−τ)
n

)
, which we will

now check. We fix α > 0. By filling in k(n) = logα(n), we get:

n(δ−1)/2 < Θ
(
(log(n))

α(2−τ)/(3−τ)
)
. (6.1)

This means that by writing out the definition of Θ (2.3.1), we get that it needs
to be shown that

n(δ−1)/2

(log(n))
α(2−τ)/(3−τ) → 0. (6.2)

By using that 2− τ < 0 for τ ∈ (2, 3), we rewrite this to:

(log(n))
α(τ−2)/(3−τ)

n(1−δ)/2
→ 0. (6.3)
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Since positive powers of n increase faster than positive powers of logarithms,
this statement is true for all δ < 1. Therefore Theorem 5.1.1 tells us that (5.2)
is satisfied for certain constant c > 0 and

p = c (log(n))
α(2−τ)/(3−τ)

. (6.4)

Therefore, also for δ < 1 (2.17) is satisfied at the time t∗ with p = e−t
∗
. Now

let us check what is the smallest δ for which we know that (2.18) and (2.19)
hold whp. By Theorem 4.5.2 we know for δ > 1

2 (2.18) is satisfied whp. Also
by Theorem 3.3.2, (2.19) holds for δ ≥ 3τ+2

4τ whp. Note that

3τ + 2

4τ
>

3τ

4τ
>

1

2
. (6.5)

Therefore we set δ = 3τ+2
4τ , for which it indeed holds that δ < 1. Therefore we

know that the logα(n)-core has been reached at t∗ whp. If there are still edges
left at t∗, then a logα(n)-core exists. Otherwise the core is empty.

We will now derive lower bounds for the number of vertices and edges in the
logα(n)-core, this are the number of edges and vertices left at t∗. With the help
of (2.17) and (2.19), that we have satisfied whp, we see that

H(t∗) > E [H(t∗)]− nδ

2
≥ E [B(t∗)] + nδ − nδ

2
> E [B(t∗)] . (6.6)

The expected number of balls left at t∗ is:

E [B(t∗)] =Mnp2 = c2Mn (log(n))
2α(2−τ)/(3−τ)

= Θ

(
n

(log(n))
2α(τ−2)/(3−τ)

)
.

(6.7)

So then by (6.6) we know that at time t∗ there are at least this many half-edges
left. The number of half-edges is twice the number of edges. Therefore the
Θ-expression in (6.7) is whp a lower bound for the number of edges in the
logα(n)-core. Therefore we know an logα(n)-core exists whp.

Let us now look at the minimum number of vertices in the logα(n)-core, then
we know by Theorem 3.4.1 that for the function v(e−t) with k(n) = logα(n)
from (3.4) it holds whp that for the value of p from (6.4)

V (t∗) > v(e−t
∗
)− n(3τ+2)/(4τ)

logα(n)
= v(p)− n(3τ+2)/(4τ)

logα(n)
.

(6.8)

We can create a lower bound for this equation with the help of Chernoff bounds,
like we did in the proof of Theorem 5.1.1. Because of large overlap with calcu-
lations in this proof, we work out this lower bound on V (t∗) in Appendix B. In
Corollary B.0.2 we derive that whp

V (t∗) ≥ Θ

(
n

(log(n))
α(τ−1)/(3−τ)

)
. (6.9)

Now we know a logα(n)-core exists for all constant α > 0, we will examine
whether a nα-core exists in the next section.
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6.2 Polynomial core

We will now prove Theorem 2.3.3, to show a nα-core exists for all α < 3−τ
8τ .

Proof of Theorem 2.3.3. We use the algorithm that was created in Section 2.4,
that follows the configuration model from Definition 2.2.1. When the number
of heavy balls is larger than the number of total balls, this algorithm reaches
the k(n)-core. In Section 2.5 it was derived that this is the case if (2.17), (2.18)
and (2.19) hold for some δ > 0. We will now derive a δ > 0 such that these
equations hold, with help of theorems from the previous chapters.

To satisfy (2.17), Theorem 5.1.1 will be used. This theorem has the condition
that n(δ−1)/2 < Θ

(
k
(2−τ)/(3−τ)
n

)
. We fix a constant α > 0, then this becomes

the following for kn = nα:

n(δ−1)/2 < Θ
(
(nα)

(2−τ)/(3−τ)
)
. (6.10)

By using definition of Θ (2.3.1) we get, that we need to have:

n(δ−1)/2

(nα)
(2−τ)/(3−τ) → 0. (6.11)

This is the case if

δ − 1

2
− α

(2− τ)

(3− τ)
< 0. (6.12)

We rewrite this to conclude that for satisfying Theorem 5.1.1, we need

α <
(δ − 1)(3− τ)

2(2− τ)
=

(1− δ)(3− τ)

2(τ − 2)
. (6.13)

Theorem 5.1.1 then tells us that (5.2) is satisfied for certain constant c > 0 and

p = cnα(2−τ)/(3−τ). (6.14)

Therefore, also for α and δ that satisfy (6.13), (2.17) is satisfied at the time t∗

with p = e−t
∗
. Next, we will investigate which δ we need to choose to satisfy

(2.18) and (2.19) whp. By Theorem 3.3.2, (2.19) holds whp for δ ≥ 3τ+2
4τ . Also

by Theorem 4.5.2, (2.18) holds whp for δ > 1
2 . By (6.5), we conclude that the

best possible choice is δ = 3τ+2
4τ . Therefore we conclude that we have reached

the nα-core at t∗ if

α <
(1− 3τ+2

4τ )(3− τ)

2(τ − 2)
=

( τ−2
4τ )(3− τ)

2(τ − 2)

=
3− τ

8τ
.

(6.15)

This is the reason, why the theorem only holds for α < 3−τ
8τ , for the rest of the

proof we use this constraint on α. If there are still heavy balls left at t∗, then a
nα-core exists whp. Otherwise it is possible that the core is empty. We estimate
the minimum number of heavy balls left using (6.6). The expected number of
balls left at t∗ is

E [B(t∗)] =Mnp2 = c2Mn
(
n2α(2−τ)/(3−τ)

)
. (6.16)
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Therefore, whp the minimum number of edges in the nα-core is

Θ
(
n1−2α(τ−2)/(3−τ)

)
. (6.17)

Thus a nα-core exists whp. Let us now determine a lower bound on the number
of vertices in the nα-core, then we know by Theorem 3.4.1 that for the function
v(e−t) from (3.4) with k(n) = nα it holds whp that for the value of p from
(6.14)

V (t∗) ≥ v(p)− n−α+(3τ+2)/(4τ). (6.18)

We work out a lower bound for this equation in Appendix B. In Corollary B.0.3,
we obtain the result that whp the number of vertices in the nα-core is minimally

Θ
(
n1−α(τ−1)/(3−τ)

)
. (6.19)

We have now proved the main results of this thesis. In the next chapter, we will
look back at the research and look at possible future research opportunities.
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Chapter 7

Conclusion & Discussion

During this research, we investigated if there exists a k(n)-core in the scale-free
configuration model. The scale-free configuration model is a useful null-model
for scale-free networks. Scale-free networks occur in many branches of science.
To analyze the structure of a network, k-cores have already been an important
tool. In this research, we shifted focus to k(n)-cores where k is dependent on
the number of vertices. By investigating k(n)-cores, we hope to get a better
understanding of the highest k such that a k-core exists when we have n ver-
tices. Additionally, we hope k(n)-cores can give a better understanding of how
the highest k such that a k-core exists changes, when the number of nodes in a
network changes.

In this research we chose to work with degrees that are dpareto(τ)-distributed
with τ ∈ (2, 3). First in Chapter 2 we stated the main results on existence
of logα(n)-cores and nα-cores in graphs formed by the scale-free configuration
model. In this chapter, we also explained how we can express the configura-
tion model as a death process. We found an expression for the total number of
edges left to make (all balls) and the number of edges left which could be part
of the k(n)-core (heavy balls). Approximation of the number of heavy edges
left at a time was done in Chapter 3, after this the number of edges was ap-
proximated in Chapter 4. Then, in Chapter 5 we determined the time when all
remaining edges in the process will be part of the k(n)-core. Finally, in Chapter
6 we proved the main results on existence of logα(n)-cores and nα-cores. We
found that for all α > 0 a logα(n)-core exists whp, while for nα we only know
a core exists whp for: α < 3−τ

8τ . We also gave a lower bound for the number of
vertices and edges left in the cores. In conclusion, we managed to prove that
there exist k(n)-cores in the scale-free configuration model whp.

There are chances to extend the research done in this thesis. In this thesis only
lower bounds were given for the number of vertices and edges in the k(n)-
cores. For k-cores, Janson & Luczak have managed to create a central limit
theorem for the number of vertices and edges [21]. It would be interesting to
see whether this central limit theorem could be extended to k(n)-cores.
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Other future research could be to investigate if a k(n)-core exists on a differ-
ent graph type. Research on the existence of k-cores has already been done on
random r-uniform n-vertex hypergraphs [6]. In this graph type, there are n
vertices and every edge consists of r vertices (an example can be seen in Figure
7.1). The amount of edges that a vertex is part of, is still called the degree. In
[6], a construct algorithm is discussed to generate uniform a hypergraph that
satisfies a degree sequence. They also form the edges in an order such that first
everything outside the k-core is formed. It would be interesting to see if it is
possible to formulate this construct algorithm as a death process and attempt
to find a k(n)-core this way. Additionally, it could be investigated whether k(n)-
cores exist in random r-partite hypergraphs. This type of hypergraph consists
of r groups with n vertices each, while every edge consists of one vertex out
of each group (which means this is a special type of r-uniform hypergraph).
In [4] the existence of a k-core in a random r-partite hypergraph was already
linked to the existence of a k-core in a r-uniform hypergraph. So it would be
interesting to see if this is still the case for k(n)-cores.

Figure 7.1: An example of a 3-regular hypergraph with 8 vertices and 4 edges
[36].

It would also be interesting to see how the obtained theoretical results hold
up in simulations. In this thesis, we worked with the situation that n tends to
infinity. This means that it is not sure whether the k(n)-cores exist for a finite
number of vertices. Simulating random graphs of different sizes with the help
of the configuration model, could help shed light on the applicability of the
results.
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Appendix A

Proofs

In this appendix, we will give proofs for four theorems and corollaries from
Chapters 3 and 4. This are Corollary 3.4.1, Theorem 4.3.1, Corollary 4.4.2 and
Corollary 4.4.3.

Proof of Corollary 3.4.1. To prove this statement, we slightly alter the proof of
Theorem 3.3.1. Similarly to (3.14), we define

VL(t) :=

Ln∑
l=kn

l∑
r=kn

Ulr(t)

vL(e
−t) :=

Ln∑
l=kn

npl(n)

l∑
r=kn

mlr(t).

(A.1)

In Theorem 3.3.1 it was proven (starting from (3.25)) that whp

Ln∑
l=kn

l∑
r=kn

rsup
t≥0

∣∣∣∣ (npl(n)mlr(t)− Ulr(t))

∣∣∣∣ < Θ
(
nβ̂
)
. (A.2)

Since r ≥ kn, also

kn

Ln∑
l=kn

l∑
r=kn

sup
t≥0

∣∣∣∣ (npl(n)mlr(t)− Ulr(t))

∣∣∣∣ < Θ
(
nβ̂
)
. (A.3)

And therefore we know whp that

Ln∑
l=kn

l∑
r=kn

sup
t≥0

∣∣∣∣ (npl(n)mlr(t)− Ulr(t))

∣∣∣∣ < Θ

(
nβ̂

kn

)
. (A.4)

And this gives a bound on |VL(t) − vL(e
−t)|. It was also shown in the proof of

Theorem 3.3.1 (starting from (3.17)) that

∞∑
Ln

l∑
r=kn

rUlr(t) < Θ
(
nβ̂
)
. (A.5)

By using that r ≥ kn again, we obtain

∞∑
Ln

l∑
r=kn

Ulr(t) < Θ

(
nβ̂

kn

)
. (A.6)
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This gives a bound on |V (t)−VL(t)|. Lastly, it was shown (starting from (3.18))
that

∞∑
l=Ln

npl(n)

l∑
r=kn

rmlr(t) < Θ
(
nβ
)
. (A.7)

So by using r ≥ kn for a third time, also

∞∑
l=Ln

npl(n)

l∑
r=kn

mlr(t) < Θ

(
nβ

kn

)
. (A.8)

Which also gives us a bound on |vL(e−t) − v(e−t)|. From the three obtained
bounds, (3.58) follows analogously to the proof of Theorem 3.3.1.

Proof of Theorem 4.3.1. During this proof, the conditions in Lemma 4.2.3 will
be verified. First, let us verify that E[N2

l |N2
l−1, . . . , N

2
1 ] ≥ N2

l−1. For this, first
N2
l is written out:

E[N2
l |N2

l−1, . . . , N
2
1 ] = E

( l∑
i=1

Ei − 1

Mn− γ(i− 1)

)2 ∣∣∣∣N2
l−1, . . . , N

2
1

 . (A.9)

To lighten the notation, let us write c =Mn− γ(l− 1). Using this notation, we
can rewrite the sum as(

l∑
i=1

Ei − 1

Mn− γ(i− 1)

)2

=

(
Nl−1 +

El − 1

c

)2

= N2
l−1 + 2Nl−1

(
El − 1

c

)
+

(
El − 1

c

)2

.

(A.10)

By filling in (A.10) into (A.9), we obtain that

E

[
N2
l−1 + 2Nl−1

(
El − 1

c

)
+

(
El − 1

c

)2 ∣∣∣∣N2
l−1, . . . , N

2
1

]
. (A.11)

By linearity of the expectation, we can split this expectation into three separate
parts. Let us now simplify these three parts. It is known that El−1

c is indepen-
dent of other exponential variables and therefore also independent of previous
N2
i -values. Therefore

E

[(
El − 1

c

)2 ∣∣∣∣N2
l−1, . . . , N

2
1

]
= E

[(
El − 1

c

)2
]
≥ 0. (A.12)

By using that N2
l−1 is already known in the conditional expectation, it is also

known that

E
[
N2
l−1

∣∣∣∣N2
l−1, . . . , N

2
1

]
= N2

l−1. (A.13)

By again using that El−1
c is independent of other exponential variables, and by

using multiplying rules for independent variables in the expectation we obtain
that

E
[
2Nl−1

(
El − 1

c

) ∣∣∣∣N2
l−1, . . . , N

2
1

]
= 2E

[
El − 1

c

]
Nl−1 = 0. (A.14)
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By filling in equations (A.12), (A.13) and (A.14) into (A.11), we obtain that:

E[N2
l |N2

l−1, . . . , N
2
1 ] = N2

l−1 + 0 + E

[(
El − 1

c

)2
]
≥ N2

l−1. (A.15)

This means that condition (II) of Lemma 4.2.3 is satisfied. Now let us verify
that also E

[
max{N2

l , 0}
]
<∞. Since N2

l is always nonnegative, this statement
reduces to E

[
N2
l

]
< ∞. Notice that E[Nl] = 0, as it was designed this way in

(4.16). Therefore we can use that

E
[
N2
l

]
= E

[
N2
l

]
− E [Nl]

2
= Var[Nl]

= Var

(
l∑
i=1

Ei − 1

Mn− γ(i− 1)

)
.

(A.16)

Using the summation rules for variance of independent random variables and
recalling that all Ei are exp(1) distributed, we can rewrite this to:

l∑
i=1

Var

(
Ei

Mn− γ(i− 1)

)
=

l∑
i=1

1

(Mn− γ(i− 1))2
Var (Ei)

=

l∑
i=1

1

(Mn− γ(i− 1))2
.

(A.17)

And this sum is finite for every chosen value of l. Therefore also condition (I)
in Lemma 4.2.3 is satisfied and thus N2

l is a submartingale.

Proof of Corollary 4.4.2. Firstly, we rewrite t∗ to a form that can be used in
Theorem 4.4.1. We first take a factor 1

2 out of the exponent in the logarithm:

t∗ = log
(
ĉ logω/2(n)

)
=

1

2
log
(
ĉ2 logω(n)

)
. (A.18)

Now we rewrite the term in the outer logarithm to

t∗ =
1

2
log

(
ĉ2

n
n

logω(n)

)
=

1

2
log

(
Mn
Mn

ĉ2 logω(n)

)
. (A.19)

We now have the desired form for Theorem 4.4.1 by setting γ = 2 and

x =
M

ĉ2
n

logω(n)
. (A.20)

We can use this form of x in Corollary 4.3.4. In this corollary, it was shown that
for β ∈ (0, 12 ). We set β = 1

2 − υ, we have to assume that υ < 1
2 for this. We

will explain the situation when υ ≥ 1
2 at the end of the proof. Now by Corollary

4.3.4,

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β

]
→ 0. (A.21)

To be able to use Theorem 4.4.1, we want β + ϵ ∈ (0, 12 ) to hold as well for a
certain ϵ > 0. To achieve this we set

ϵ =
1/2− β

2
> 0. (A.22)
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But then by Corollary 4.3.4 it holds that

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β−ϵ

]
→ 0. (A.23)

This gives us the possibility to use Theorem 4.4.1, which yields,

P
[
sup
t≤t∗

|X(n)(t)−Mne−2t| > n1−β
]
→ 0. (A.24)

By filling in β, we derive

P
[
sup
t≤t∗

|X(n)(t)−Mne−2t| > n1/2+υ
]
→ 0. (A.25)

The result also holds if we take υ̂ = υ
2 , since this is also bigger than 0. But this

means that the convergence still holds for a slightly lower order of n. Therefore
the result definitely stays valid if n1/2+υ is replaced by 1

2n
1/2+υ. Lastly, we have

only shown convergence using Theorem 4.4.1 for υ < 1
2 . But this result still

holds for all υ > 0 since this is a weaker result.

Proof of Corollary 4.4.3. First we rewrite t∗ to a form which can be used in
Theorem 4.4.1

t∗ = log
(
c̃n(1−ω)/2

)
=

1

2
log
(
c̃n1−ω) = 1

2
log

(
Mn
M
c̃ n

ω

)
. (A.26)

This is the desired form, when setting γ = 2 and

x =
M

c̃
nω. (A.27)

We can use this form of x in Corollary 4.3.5, in this corollary it was shown that
for ω > 2

3 and β < ω
2 ,

P

[
sup

y≥x−n1−β

|Ty − E [Ty] | > n−β

]
→ 0. (A.28)

By setting ϵ = 1
2

(
ω
2 − β

)
, also β + ϵ < ω

2 and thus the statement still applies
for n−β−ϵ instead of n−β . But then by taking γ = 2, Theorem 4.4.1 almost
shows that (4.61) holds. The only difference is the factor 1

2 . But since we can
take a larger β < ω

2 , for which the equation holds this factor does not cause a
problem.
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Appendix B

Lower bounds number of
vertices

In this appendix, we will prove a lower bound on the number of vertices that
is used in Chapter 6. We want to determine a lower bound on v(p) from (3.4),
since this terms occurs in both (6.8) and (6.18) for certain k(n). Later this
chapter, we choose k(n) suitable for (6.8) and (6.18), but first we will use
general k(n).

Theorem B.0.1 (Lower bound v(p)). For v(p) from (3.4), it holds that

v(p) ≥ Θ

(
n

(
kn
p

)1−τ
)
. (B.1)

Proof. By using the expression from (3.5) and the knowledge that by Condition
2.2.2 pl(n) > ĉpl for ĉ < 1, we see that

v (p) ≥ n

nϵ∑
l=⌈kn⌉

ĉ

ζ(τ)lτ
P [Xl(p) ≥ kn] . (B.2)

To bound the probabilities in the sum, we first note that

P [Xl(p) ≥ kn] = 1− P [Xl(p) < kn]

≥ 1− P [Xl(p) ≤ kn] .
(B.3)

By using the Chernoff bound from (5.13), we obtain that for lp ≥ 2kn, it holds
that

P [Xl(p) ≥ kn] ≥ 1− e−kn/4. (B.4)

Since p ≤ 1, this also means that l ≥ 2kn > kn. But then by using the Chernoff
bound, we get:

n

nϵ∑
l=⌈kn⌉

ĉ

ζ(τ)lτ
P [Xl(p) ≥ kn] ≥ n

nε∑
l=⌈ 2

pkn⌉

ĉ

ζ(τ)
l−τ

(
1− e−kn/4

)
. (B.5)
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Since e−kn/4 goes to zero as n→ ∞, eventually
(
1− e−kn/4

)
> ĉ, but then

n
ĉ2

ζ(τ)

nε∑
l=⌈ 2

pkn⌉

l−τ . (B.6)

We are working with τ ∈ (2, 3). Therefore, l−τ is a decreasing function in terms
of l. Therefore, let us bound the sum using an integral bound for decreasing
positive terms to get

nε∑
l=⌈ 2

pkn⌉

l−τ ≥
∫ nε

⌈ 2
pkn⌉

u−τdu

≥
∫ nε

2
pkn+1

u−τdu.

(B.7)

Calculating this integral gives:[
1

1− τ
u1−τ

]nε

2
pkn+1

=
1

1− τ
(nε)

1−τ − 1

1− τ

(
2

p
kn + 1

)1−τ

. (B.8)

We are using a discrete Pareto distribution with τ ∈ (2, 3), therefore 1
1−τ < 0,

so the second term is actually the positive one. Also the power of u is negative
because of this, so u = 2k

p + 1 gives a larger value than u = nε. And this
difference becomes bigger to eventually go below (1− ĉ) times the leading term
for large n. Therefore we conclude that

v(p) ≥ n
ĉ3

ζ(τ)(τ − 1)

(
2

p
kn + 1

)1−τ

= Θ

(
n

(
kn
p

)1−τ
)
. (B.9)

We will now use this theorem for kn = logα(n), to obtain a lower bound for
(6.8).

Corollary B.0.2 (Lower bound number of vertices in logα(n)-core). For v(p)
from (3.4) and p = c (log(n))

α(2−τ)/(3−τ) for α > 0 and c > 0 constant, it holds
for sufficiently large n that

v(p)− n(3τ+2)/(4τ)

logα(n)
≥ Θ

(
n

(log(n))
α(τ−1)/(3−τ)

)
. (B.10)

Proof. Fix α > 0 constant, using Theorem B.0.1 for kn = logα(n) yields

v(p) ≥ Θ

(
n
(
(log(n))

α(1−(2−τ)/(3−τ))
)1−τ)

= Θ

(
n

(log(n))
α(τ−1)/(3−τ)

)
.

(B.11)

It holds that v(p) has a larger power of n than

n(3τ+2)/(4τ)

logα(n)
. (B.12)

Therefore for sufficiently large n, v(p) is the leading term in the left-hand side
of (B.10). Thus it follows that (B.10) holds.
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We will now look at the case k(n) = nα, to also derive a lower bound for (6.18).

Corollary B.0.3 (Lower bound number of vertices in nα-core). For v(p) from
(3.4) and p = cnα(2−τ)/(3−τ) with constant α ∈ (0, 3−τ8τ ) and c > 0, it holds for
sufficiently large n that

v(p)− n−α+(3τ+2)/(4τ) ≥ Θ
(
n1−α(τ−1)/(3−τ)

)
. (B.13)

Proof. Fix α > 0 constant, using Theorem B.0.1 for kn = nα yields

v(e−t) ≥ Θ

(
n
(
nα(1−(2−τ)/(3−τ))

)1−τ)
= Θ

(
n1−α(τ−1)/(3−τ)

)
.

(B.14)

For v(p) to be the leading term on the left-hand side of (B.13), we need

1− α(τ − 1)

(3− τ)
> −α+

3τ + 2

4τ
(B.15)

Re-ordering this equation gives

α

(
2(2− τ)

3− τ

)
>

2− τ

4τ
. (B.16)

And then we conclude that we need

α <
3− τ

8τ
, (B.17)

which is true for the values we have discovered a nα-core exists. So v(p) is the
leading term on the left-hand side of (B.13). Thus (B.13) holds.

Remark B.0.4. This corollary does actually give a result that grows as the number
of vertices grows, since

1− α
τ − 1

3− τ
> 1− τ − 1

8τ
=

7τ + 1

8τ
> 0. (B.18)
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