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Abstract

Surgical navigation is a tool that surgeons rely on
everyday to perform accurate surgeries all over
the world. However, this technology requires
good hand-eye coordination and a high level of
concentration. HoloNav is a project that inquires
to see if using the HoloLens and augmented
reality can replace the current surgical navigation
methods. To do so, the HoloLens must be able to
identify the patient and the location of the surgery
instruments, which uses optical reflective spheres.
This study focuses on using the grayscale cameras
of the HoloLens and a deep learning algorithm
YOLOVS to test if it is possible to precisely detect
optical reflective spheres. 3 models were trained
with two different data sets, where the results show
that the model trained on a data set would perform
well on the validation set. However, they would
perform far worse when exposed to a data set it was
not trained on.

1 Introduction

During surgery, surgeons make use of tools and technology
that guide them throughout the procedure. Surgical
navigation helps the surgeon to locate the position of surgical
instruments with respect to the patient’s anatomy, thus
answering the following questions, for example; Where is
the targeted tumour? How do I reach it safely and where
is the surgical tool currently at? [9]. Generally, optical
surgical navigation uses a stereoscopic infrared camera, a
screen and the navigation software. There are many benefits
to surgical navigation in neurosurgery; a few examples
such as supporting minimally invasive surgeries, increased
confidence and preservation of the neurological functions
of a patient. Furthermore, surgical navigation is used in
orthopedic surgery to get a higher accuracy when positioning
the implants [9]. However, current navigation systems
visualize information on a 2D screen to which a surgeon
need to look and switch attention between the screen and the
surgical site. This requires additional coordination from the
surgeons.

A suggestion to tackle this problem is using augmented
reality (AR), which projects virtual objects over physical
objects. According to a study conducted by the Erasmus
MC, AR shows potential clinical feasibility of the Hololens
2 (HL2) for brain tumor surgery [4]. In order to do so, it
is necessary to find the position of the tools relative to the
patient. The research on HoloNav focuses on identifying the
feasibility and accuracy of using AR to replace traditional
surgical navigation tools. The eventual goal is to build the
functionality necessary to use the HL2 to perform surgeries.

This work will primarily focus on the following question:
”Can we use the object detection algorithm YOLOVS to
precisely detect the optical reflective spheres using the HL.2
gray scale cameras?”. YOLO is an acronym for the existing
object detection algorithm, >You Only Look Once’ [13].
YOLO detects objects using a convolutional neural network

and requires only a single propagation forward through the
network. The key advantages of YOLO are that it is able
to detect images extremely fast, with high accuracy and has
strong learning capabilities. YOLO has gone through many
iterations and improved in both speed and accuracy. In this
work, the algorithm that is used to detect optical spheres will
be YOLOvVS. YOLOVS has a series of different models that
consist of different number of layers in the network, where
there is a trade-off between speed and accuracy.

This paper is structured as follows; the related work can be
found in Section 2. The methodology of how this work was
conducted can be found in section 3 of this paper. Following,
in Section 4, the results are discussed and the different trained
models compared. In Section 5, the results, the contribution
towards HoloNav and the ethical aspects of this research are
discussed. Conclusions and the future work of the conducted
work can be found in Section 6.

2 Related work

Object detection allows for the localization of objects of
interest in an image. Object detection differs from algorithms
that use standard convolutional networks in the way that
the output can vary from image to image as the number of
objects is not constant. This means that the length of the
output layer varies. For this, other algorithms have been
explored such as Faster R-CNN [14] and Single Shot Multi
detector (SSD) [8]. According to this study on real-time
vehicle type recognition [7], where YOLOv4 was compared
to these state-of-the-art object detectors, it outperforms both
detectors in terms of speed and accuracy. YOLOvV4 runs as
high as 45 frame per seconds (FPS) [2]. Now, if YOLOvV4 is
compared to YOLOVS, the object detector YOLOVS can run
inference up to 140 FPS with similar performance in accuracy
to that of YOLOvV4, according to this Roboflow blog post
[10]. However, studies such as ”Autonomous Vision-Based
Primary Distribution Systems Porcelain Insulators Inspection
Using UAVs” [12], show results that YOLOv4 outperforms
YOLOVS in terms of accuracy. This means that the literature
is yet to reach a consensus on whether YOLOv4 or YOLOVS
is better. The varying results from the two models are related
to different factors such as the hyper-parameters and the
data set used [11]. However, since reflective spheres are
not heavily detailed, it is believed that a smaller model of
YOLOVS could be used to train and run inference at a high
speed. Therefore, YOLOVS was the chosen object detection
algorithm for this study. Although, for future, it would be
good to verify the actual performance between YOLOv4 and
YOLOVS.

3 Methodology

There are three sub-questions that need to be answered before
being able to use YOLOVS to detect the optical reflective
spheres of the HL2 grayscale cameras. These consist of:

* How can we create bounding boxes on the grayscale
images from the large data sets consisting of 1000+
images?

* How do we generate the text files to feed YOLOVS the
correct data?



* How accurate does YOLOVS perform against the data
sets? What are the limitations?

3.1 Bounding boxes

Generating bounding boxes for the data set images can be
done through two methods. The first is to manually annotate
the images in Roboflow [16], a computer vision developer
tool to help preprocessing and model training. Roboflow can
be used to draw bounding boxes manually and annotate the
object. This ensures accuracy, however, is not scalable with
large data sets.

Figure 1: Bounding boxes drawn on example image from data set

Alternatively, it is possible to automatically create
annotations for the bounding boxes by using the center of
the spheres and estimating the boxes using a linear regression
approach. This is based on the largest and smallest spheres in
the data set. The center of the spheres can be automatically
calculated using the infrared cameras, which can identify the
position of the reflective sphere. Using a QR code which
the HL2 can detect, and a pointer detected by the infrared
cameras, a calibration matrix can be computed between
spheres and the attached QR code (see Figure 2) [1].

Figure 2: QR code and optical reflective spheres
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In this way, the positions of the reflective spheres can be
found in the HL2 camera’s coordinate system and the 3d
coordinate points can be found. Now, by manually drawing
the bounding boxes of the furthest sphere and the closest
sphere, the bounding boxes can be drawn for all spheres
based on its relative position in the camera coordinate space.

The furthest sphere that is found corresponds to the smallest
possible bounding box, while the closest sphere will have
the largest bounding box. The bounding boxes of the other
spheres are automatically calculated based on the distance in
the coordinate space.

3.2 Obtaining the correct data for YOLOvVS

YOLOVS takes images and labels as inputs for its training.
The labels are recorded in a text file, which is formatted as
follows:

[Class number] [Bounding box center x location] [Bounding
box center y location] [Bounding box width length]
[Bounding box height length]

Figure 3: Example label file with 4 bounding boxes

| vl_front _right_cam_0885.txt - Notepad
File Edit Format View Help

0 0.4128439447072475 0.3866987941319556 0.021824526420577767 0.02698943475645113
0 0.4397209458922598 0.44030743721155097 0.02097516587925242 0.02597020210686072
0 0.4867996771040229 0.411885679080458 0.020135157220224555 0.024962191716027277

0 0.46475291119426504 ©.33334731558348213 0.021133430701549306 0.026160119893616978

Ln5, Col 1 130%  Windows (CRLF)

Since YOLOVS is a multi-object detector, the class number
refers to the type (class) of object that is annotated by a
bounding box. The bounding box center locations refer
to the respective X and Y coordinates of the center of the
bounding box. While, the width and height of the bounding
boxes are referred to as how big the dimensions should be,
these dimensions and the center of the bounding boxes are
normalized.

3.3 Measuring results of YOLOVS

To train and assess YOLOVS5’s performance, the model needs
to be trained, validated, then tested. It is important to split
the data so that it gives the model sufficient images to train
on, validate, and then finally test the model’s performance.
Following the training of YOLOVS, the weights can be used
to run inferences on the test set.

Following the inference, the model will detect objects with
bounding boxes; these boxes may differ from the annotated
boxes. A corrected detected sphere is a true positive (TP). A
detected sphere that is not actually a sphere is a false positive
(FP) and a sphere that is not detected at all is a false negative
(FN). These measures can be used to see how well the trained
model performs. Furthermore, a common metric that is used
to measure the performance of a model is the mean average
precision (mAP); this is a measure of the average precision
values calculated over recall values from 0 to 1. It takes the
area under the precision recall curve, giving a good idea of
the overall accuracy of the model. The mAP can be denoted
as:

1 N
AP ==Y AP,
m N;

An mAP is determined based on its intersection over union
(IoU) threshold, this is the area of overlap area of union. The
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area of overlap refers to the area where the predicted box and
the ground truth box overlap. While, area of union refers to
the area of predicted box, area of ground truth box and area
of both. A prediction that has a higher IoU than the threshold
is a TP. [3] The mAP uses the precision and recall, where
the precision refers to the number of positive predictions that
were predicted correctly and can be denoted as:

TP

Precision = —————

recision = TFP
The recall on the other hand refers to the number of positives
that were identified correctly which is written as:

TP

Recall = TP L FN
Another metric to check the models precision is to compare
the center of the annotated bounding boxes to the bounding
boxes of the predicted ones. This is measured in the number
of pixels. This value can give an idea of how accurately the
model is able to detect spheres. The average number of pixels
can be calculated by

N
. . 1
Average pixel distance = N ; a;

where for each sphere, i, the distance difference between the
centers is denoted by a. Given the average, it is important to
observes the variability of the data. The variance and standard
deviation can show the spread of the data. These can be
calculated as:

(@i — p)?

Standard Deviation =
andard Deviation N

> (ri — 1)

Vari =
ariance N1

4 Results

Two different image data sets were used to train the
YOLOvS5s model and measure its performance. The first set,
data set A is the initial set that was a collection of images from
the left and right gray scale cameras of the HL2. Data set A
consists of 1023 images. An example of an image from data
set A can be seen in Figure 4. These images have a consistent
background, with little noise.

The second data set, data set B, was predicted to challenge
the model more due to more elements and noise in the
background. An example image of this data set can be seen
in Figure 5. Data set B consists of 1392 images of which the
optical spheres are placed at various distances and locations.

Figure 4: Example image of data set A

Figure 5: Example image of data set B

4.1 Training on data set A

Data set A was split as follows; 715 images were used to
train, 204 images were used to validate, and the remaining
104 images were used to test. This was split following a 70%
for training, 20% validation, and 10% for testing given the
size of data set A [5]. Furthermore, the training data was
trained using 150 epochs with the YOLOv5s model, which
is the smallest and fastest model available according to the
Ultralytics Github repository, where YOLOVS is released
[6]. Here below the results of the training will be discussed.
The loss function of YOLO consists of 3 parts, training box
loss, training objectness loss and classification loss. The
box loss represents the error of the predicted bounding box
in comparison to the annotated box. The objectness loss
is the confidence of an object being in that bounding box.
Lastly, the classification loss refers to the misclassification
of the objects [13]. In Figures 6 and 7, the training box loss
and the training objectness loss can be found. Both of these
graphs show that the model is learning to detect the spheres
and is able to converge towards 0. As for the classification
loss, this is constantly 0 because optical spheres are the only
class that the model is predicting; therefore there is never a
misclassification.



Figure 6: Training box loss
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Figure 7: Training objectness loss
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Furthermore, the models precision, recall and mAP can be
found in the Figures 8, 9 and 10 respectively. These graphs
indicate that precision, recall and mAP@0.5 converge to 1
and that the model learns to do this quite quickly. This
result is a good indication that the model is able to learn to
detect optical spheres fast and accurately. However, a big
limitation here is that the data set may only be learning to
detect optical spheres in simple images with little noise. The
trained model was tested against two different sets, the first
being the validation set of data set A and secondly, the entire
set of data set B. The reason for this was to see first if it is
able to learn to detect optical spheres in data set A and next
to that see the performance of this model given a completely
new data set. The results of the percentage of FT, FP and FN
can be found in Table 1; the model performs well against the
validation set of data set A. Here, there were only 5 FP and
7 FN with 809 being correctly detected. The mAP@0.5 is
almost perfect with a score of 0.9945. Looking at the results,
it is evident that the model performs well when trained on set
A. However, when testing it against set B, the results are not
as strong, with the model only detecting 2551 TP out of a
total of 5568 annotated bounding boxes. Not only does it not
detect all the bounding boxes, but it detects 2837 FP and 3017
FN bounding boxes. This results in a low mAP@0.5 score of
0.3629.

Table 1: Trained model on data set A: TP, FP, FN and mAP@0.5

Data set TP FP FN

A: validation set 809 5 7
B: entire data set 2551 2837

mAP@0.5

0.9945
3017 0.3629

Figure 8: Training precision
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The average pixel distance of the trained model can be
found in Table 2. Here, the average difference between an
annotated distance and the predicted box is 1 pixel with a
low variance and standard deviation of 0.4165 and 0.5589,
respectively. The trained model is able to perform very
well on validation set A. While, on data set B, it is evident
that the model performs significantly worse with an average
pixel distance of 9.0726 with a high variance and standard
deviation.

Table 2: Pixel distance of model trained on set A

Data set Avp Var Std

1.0699 0.4165  0.5589
9.0726 75.9549 7.5476

A validation set
B: entire data set




4.2 Training on data set B

The model that was trained on data set B split the images
into 70% training, 20%, validation and 10% testing. Again,
the trained model was tested against two data sets, the first
being the validation set of B and the second being the entire
data set of A. The validation set of B consists of 316 images.

In Table 3, the TP, FP, FN and mAP@0.5 of the trained
model on data set B can be found. Against validation set B,
the model performs strongly with 1118 TP out of the 1264
annotated boxes, 69 FP, 146 FN and a mAP@0.5 of 0.9380.
However, in contrast to the model that was trained on A,
when looking at the performance of this model against the
data set of A, it performs worse. Approximately half of the
annotated boxes are not identified. Additionally to this, the
model finds 1603 FP and has an mAP@0.5 of 0.4797.

Table 3: Trained model on data set B: TP, FP, FN and mAP@0.5

Data set TP FP FN mAP@0.5
B: validation set 1118 69 146 0.9380
A: entire dataset 1867 1603 2145 0.4797

The pixel distance in Table 4, reflects similar results as in
Table 3. Against B set, it performs quite well, however, it has
a variance of 6.7525. While, against set A, the average pixel
distance is affected by the large variance of 217.5345 pixels.

Table 4: Pixel distance of model trained on set B

Data set Avp Var Std
B: validation set 3.0180 6.7525 2.2504
A: entire data set 16.3147 217.5345 12.7731

4.3 Training on data set B and then A

Both previous models performed poorly when detecting the
optical spheres in the other data sets. To see if the model
could learn to identify spheres in both data sets. The model
was first trained on set B then using the resulting weight, was
trained again using set A. The results can be found in Figure
5 and 6.

With an mAP@0.5 of almost 1 and a low number of
FP, FN detections, it shows the model performs well against
set A, the last set that the model trained on. In contrast to the
initial model, where the model performed well on set B, the
model after training on set A performs worse on set B, with
just over 60% TP detections and a 0.4797 mAP@0.5.

Table 5: Trained model on data set B then A: TP, FP, FN and
mAP@0.5

TP FP FN mAP@0.5

807 4 9 0.9948
157 492 0.4797

Data set

A: validation set
B: validation set 772

Looking at the average pixel distance, this model trained on
set B and then on A is able to detect the validation set from A
with a small average pixel distance. On average, the distance
is less than 1 pixel and has a standard deviation of only
0.5327. While, on set B, the model performs better than the
model trained on set A, where the variance is lower at 46.2933
but the average pixel distance is at 8 pixels. However, this
model still performs poorly compared to the model trained
by just data set B.

Table 6: Pixel distance of model trained on set B then set A

Data set Avp Var Std
A: validation set 0.8938 0.3784 0.5327
B: validation set 7.9719 46.2933 5.8924

5 Discussion

In total, 3 different models were tested. The models can be
referred to as model A, which was trained on the training set
of data set A, model B, which was trained on the training set
of data set B and model C, which took model B and trained
on the training set of data set A.

The models results use the confidence threshold with the
optimal precision and recall values. YOLOVS5’s validation
does this automatically by taking the confidence threshold
with the highest F1 score, which takes the harmonic mean
between the precision and recall [15]. With the model already
be optimised on confidence threshold, it suggests clearly that
both model A and B only perform well when validated against
their respected validation sets, while when put against the
other set the models detect only approximately 50 percent of
the annotated spheres, next to detecting a large number of
false positives. This can also be reflected in the pixel distance
results. Due to the spread in the boxes, the average pixel
distance is significantly higher.

Looking at model C, it performed the best out of the 3
models. The model was able to detect spheres from data set
A with a high mAP@0.5. However, against data set B, which
was trained first, the model had a lot of false and missed
detections. The limitation to this model was that it trained
consecutively on different data sets. Looking at the results,
this suggests that the model was learning to detect the spheres
in A and adjusting the weights accordingly and caused the
spheres in set B to be forgotten. It would be interesting to
verify if the model was trained first on A and then B would
give similar results where the model adjusts weights so that
the model would perform worse on data set A than B. In all
3 models, the model may be over training, so that the model
lacks flexibility when trying to detect spheres that are present
in images with a change in background noise. To solve this
problem, the model needs to be given a larger variety of data
images or a combination of the two existing data sets.

Furthermore, a limitation in data set B was that the 3D
positions obtained automatically were not accurate enough.
This was because the QR codes were too far away for a stable
detection and therefore the spheres were manually annotated,
which affected the precision when trying to obtain the 3d



positions. Thus, the bounding boxes in data set B have a
fixed bounding box for all spheres. The largest sphere was
manually annotated and used as the fixed size for all other
spheres. This resulted in bounding boxes that covered more
than just the sphere, adding more noise for the model to learn.
This limitation suggests the larger pixel distance in model B
to model A when tested against their respected validation sets.

Contribution towards HoloNav

The HoloNav project consists of many sub-problems that
need to be studied before the use of AR can be seen in surgical
navigation. This study has focused on the possible detection
of optical reflective spheres with the gray scale cameras of
the HL2. Given the results above and the discussion, future
works on HoloNav can use this as a starting point to learn
more about the possibilities of using YOLOvV5, an object
detection, deep learning approach to detecting the optical
reflective spheres.

Responsible research

To reflect on the ethical aspects of this study. All the results
in this study were directly gathered from running the model
on the given data set. This data set was randomly split in to a
distribution of 70% training, 20% validation and 10% testing.
The steps to reproduce these results have been mentioned as
thoroughly as possible in this study. However, the results may
not be exactly the same as the nature of training; the model
contains some randomness. Given the steps in this paper and
the data set, similar results should have been gathered if this
were to be reproduced.

Next to this, the topic of object detection and Al has gained
more and more concern surrounding the topic of ethics. With
this being said, the original author of YOLO, Joseph Redmon
stopped working on YOLO after YOLOV3 because of “’the
military application and ethical privacy concerns” [17]. This
is crucial when thinking about the future of object detection
algorithm for surgical navigation. It is important to reflect on
the privacy concerns of potential patients.

6 Conclusion and Future Work

In this study, the possibility of using an object detection
algorithm YOLOVS, to precisely detect optical reflective
spheres using images from the HL2 gray scale cameras was
explored. The results gathered show that YOLOVS, a state-
of-the-art object detection algorithm, can be used to precisely
detect spheres. However, the results show many limitations
that need to be explored further. The trained models
showed promising results when tested against validation sets.
However, are limited when exposed to the other data set.
Additionally, the best performing model was one that was
trained on both data sets; however, only performed strongly
on the last trained data set. Therefore, it would be interesting
to test a data set which was constructed as a combination of
both data sets and see if the model is able to adjust the weights
to be able to accurately detect spheres in both data sets. Next
to that, the second data set could also improve by finding
a way to automatically generate accurate bounding boxes
around the spheres. Furthermore, it would be interesting

to test the performance of YOLOvV4 vs that of YOLOVS on
this data set and compare which algorithm performs more
accurately.
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