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Preface

THIS research began directly after my Masters of Science thesis. After a
short period aboard one of the Dutch frigates, I came in contact with my

thesis advisor from the Royal Netherlands Naval College, commander dr.ir. Fok
Bolderheij, who asked if I was interested in working at cams – Force Vision in
the new Planning and Decision Support (pads) department of which he was the
head. One of the main aspects of my work there would be to start with the
implementation of his PhD work and the schedulers I designed during my MSc
research. Furthermore, a project would start together with Thales Netherlands
and TNO on Management and Fusion of Sensors (mafuse) and I would be
required to play some part in that research project.

Together with prof.drs.dr. Léon Rothkrantz, my MSc-thesis advisor from
Delft, we began to outline a PhD project along the lines of mafuse focussing
on sensor management. During that period, Léon and Fok both provided me
with much support and help, for which I am very grateful. At Force Vision I
was given the opportunity to work on this research for which I would like to
thank the company for allowing me to use some time for research instead of
production work. It is my nature to just want to solve a problem and I thank
Léon for always scientifically questioning my proposed methods and pointing
out other relevant work in various related fields.
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After some time, the focus of the research shifted from sensor management
towards reasoning and determining information requirements. It was in this
stage that I came in contact with my supervisor prof.dr. Catholijn Jonker. Un-
der her supervision my methodologies found their current form. While working
on the concepts and running tests, Catholijn helped me to focus my reasoning.
She also helped me with writing a good elucidation that emphasises all aspects
of this research. Furthermore, I thank Catholijn for her trust in me and in my
work and for the always positive and cheerful atmosphere.

Without the help of Catholijn, I would not have been so productive with
publications. Despite the disappointment of some rejected papers, I do thank
the various anonymous reviewers who, besides rejecting my papers, pointed out
relevant literature that I had missed.

During my research I worked at cams – Force Vision with ltze2oc Krispijn
Scholte and ltze2oc ir. Tanja van Haarst. Thank you both for the relaxed
working atmosphere, the laughs and for your support. Furthermore, thank you
Krispijn for your work on the reduction of time complexity in the algorithms and
for your general computer help (e.g., with Matlab and LATEX). Tanja, thank you
for our many conversations and for the laughs that resulted from us annoying
our colleagues.

During my research Fok was recommissioned at the Netherlands Defence
Academy and was replaced by drs. Vincent van Leijen. Thank you Vincent for
putting up with me, for maintaining the atmosphere of the pads group, for your
help with mathematics and for our discussions on various subjects.

During the final stages of writing this thesis, the PhD examination commit-
tee members have provided me with valuable comments. This has helped me
tremendously in finalising and improving my work. I thank you all for your
agreement to be part of my PhD examination committee and for the time you
took to help me improve the thesis.

Last but not least, I would like to thank my family and friends and espe-
cially Miranda for putting up with my reaction to research related stress. It is
underestimated how much work can be done if one rests enough and is given
room to do nothing.

Wilbert van Norden

Den Helder, December 2009
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Abstract

Sensing what matters

DECISION support functionalities are needed to support the human operators
on board Royal Netherlands Navy (rnln) ships since the missions are

increasingly complex and they take place in increasingly complex environments.
Furthermore, growing complexity in sensor systems requires more knowledge
to utilise these sensor systems to their fullest potential. The available human
knowledge on board rnln ships however is decreasing due to a strive to reduce
ship’s complements and to reduce their training and education time. Where
previously each individual sensor was assigned to a specialised operator, now one
generic sensor operator is expected to control all sensors together. Automation
is therefore needed to support that operator with that task.

It is critical to mission success to identify threats as soon as possible and sen-
sors are needed to provide the necessary information. Based on timely observed
threats, the appropriate actions can be chosen to ensure mission success and
safety of the ship. Since not all objects in the environment can be observed at
the same time, the deployment of the sensing capabilities should be optimised
as best as possible. For mission success it is therefore essential to optimally
deploy sensors to obtain the relevant information about objects to be able to
identify threats.
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In order to determine which objects pose the most risk for mission success,
classification is essential. Based on the classification, objects can be ruled out as
a threat or identified as one. The focus of this research therefore, is to automate
the classification process. When different classification outcomes conflict with
each other, sensor tasks should be requested to resolve those conflicts. Sensor
management should try to reduce the uncertainty on the most dangerous objects
as best as possible.

Reducing uncertainty to improve the classification process requires knowing
what information to obtain and how this information may be obtained. To gain
the best possible uncertainty reduction, sensor settings need to be adapted to
the situation. Knowledge on how the sensors operate in different environments
is required to optimise performance to fulfil the information requirements.

Due to the number of objects in today’s complex missions, information re-
quirements are substantial. A prioritisation mechanism for sensor tasks is there-
fore needed. Determining which information is considered to be more important
than other information, is directly related to how much threat the object un-
der consideration poses to the mission. For prioritisation purposes, the worst
possible case is assumed which gives the upper boundary of the uncertainty in
the risk estimation. This maximum possible risk an object poses is used as the
priority for the information need that is determined for that object.

Sensor measurements always have a certain degree of uncertainty. Tradi-
tional classifiers are not designed to cope with this uncertain input. Further-
more, traditional classifiers require a training set containing different examples
of all classes and such a dataset is not available. A model-based approach is
therefore introduced in this thesis that uses models of possible objects. These
model-based classifiers are also designed to handle uncertainties in the input.
Due to this approach, the resulting classifiers can also determine which input
uncertainty needs to be reduced in order to improve the classification solution.

The model-based classification approach introduced in this thesis may be
used to construct a number of classifiers. The results of the individual classifiers
need to be combined to a single classification result. A suitable combination rule
for this is Dezert-Smarandache theory (DSmT). This combination rule is chosen
since it can handle highly conflicting sources that express belief on solution sets
with overlapping labels. Using DSmT to combine the different classifiers leads
to a single classification solution.

Human operators are traditionally used for classification tasks in complex
problem domains like the military domain. The classification system introduced
in this thesis utilises the expertise of the operator. In the system the operator
provides his knowledge of a specific situation by changing the labels used for
classification or by providing a classification result. The original DSmT focusses
on automating fusion problems without user interaction. Rules to enable the
required user interaction are therefore developed in this thesis as well.
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For any classification system, it is important to verify performance based
on suitable evaluation criteria. The suitability of the criteria depends on the
application domain in which the classification system needs to operate. In the
case of naval missions, the overall system needs to deal with a large, hierar-
chical and changing label-set, with uncertain input, and it needs to indicate
if there is confusion between labels. The latter characteristic is referred to as
soft classification for which evaluation criteria are available in literature. These
however, are not suitable for hierarchical label-sets. On the other hand, existing
criteria that are suitable for hierarchical label sets cannot handle soft classifier
output. This thesis therefore, introduces new criteria to appropriately evaluate
the performance of the classification system based on the characteristics of the
problem domain.

Tests with the new classification system show significant improvement of
classification results over traditional systems. Furthermore, this thesis shows
that the new system is capable of describing the information requirements that
may be used as an input for sensor management. In a simulated environment,
several classification systems have been tested and compared. This compar-
ison is done with respect to existing criteria as well as the newly developed
ones. We can conclude that the new classification system outperforms existing
methodologies.

In short, the contribution of this thesis is threefold. Firstly, combining dif-
ferent model-based classifiers with DSmT leads to improved classification of
objects as well as an improvement in sensor deployment and this system is
therefore essential to successfully execute the missions the rnln is faced with
today and in the future. Secondly, the new model-based classification approach
may be applied for any classification task that deals with uncertainty, multi-
ple non-exclusive labels, and for which knowledge about the possible labels is
available. Lastly, new criteria have been developed for the evaluation of soft
classifiers operating on hierarchical solution spaces.

Wilbert van Norden
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Propositions

Propositions belonging to the thesis “Sensing what matters” by Wilbert van
Norden.

1. In sensor management it is important to determine which information one
does not need.

2. Existing sensor management approaches are not implemented in current
systems because they fail to address two key factors: 1. what should the
sensors be doing and 2. which sensor is appropriate for which task.

3. Optimal sensor management does not garantee mission success.

4. Information-wise, disagreement is more valuable than agreement.

5. Certainty and specificity are mutually exclusive.

6. Sytem accuracy does not correspond with a micromort, so the value of life
must be incoorperated in the system in another way.

7. Sensors will not perform according to their specifications in unforeseen
circumstances. Unforeseen circumstances are normal.

8. Not being totally wrong for the right reasons is better than being exactly
right for the wrong reasons.

9. Executing modern maritime military operations, such as peacekeeping and
counter drugs, is an uncertain business.

10. When writing a PhD thesis you can easily run out of symbols.

These propositions are considered to be defensible and are approved as such by
the supervisor prof. dr. C.M. Jonker.
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Samenvatting

Waardevol waarnemen

TECHNOLOGIËN om de gebruiker aan boord van schepen van de Koninklijke
Marine (km) te helpen met de besluitvorming zijn benodigd door de steeds

complexere missies die plaats vinden in complexere omgevingen. Voorts is een
hoger kennisniveau bij de gebruiker vereist vanwege de groeiende complexiteit
van sensoren om deze op de juiste wijze te kunnen inzetten. De direct be-
schikbare menselijke kennis aan boord van de schepen van de km daarentegen
is dalende vanwege het streven om bemanningen van schepen en de voor hen
beschikbare trainings- en opleidingscapaciteit te verkleinen. Waar er vroeger
voor elke afzonderlijke sensor een specifieke operator was moeten nu alle sen-
soren door één gebruiker bediend worden. Er is dus automatisering nodig om
de gebruiker te ondersteunen bij het uitvoeren van die taak.

Het zo snel mogelijk identificeren van dreigingen is essentieel voor missie-
succes en sensoren zijn benodigd om de hiervoor benodigde informatie te ver-
garen. Door dreigingen tijdig waar te nemen, kunnen tegenacties uitgevoerd
worden om missiesucces en de veiligheid van het schip te waarborgen. Aangezien
het ondoenlijk is alle objecten te allen tijde te bemeten, moet de sensorinzet
geoptimaliseerd worden. Om missies veilig tot een goed einde te brengen is het
essentieel dat de sensoren optimaal benut worden om de relevante informatie
over objecten te vergaren om zo in staat te zijn dreigingen correct en tijdig te
identificeren.
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Classificatie van objecten is essentieel indien er bepaald moet worden welk
van de objecten het meest dreigend is ten opzichte van de missiedoelstellingen.
Gebaseerd op de classificatie kunnen doelen direct worden uitgesloten dan-
wel aangemerkt worden als bedreiging. Het hoofddoel van dit onderzoek
is daarom het automatiseren van het classificatieproces. Wanneer verschil-
lende classificatie-uitkomsten met elkaar in conflict zijn, moeten sensortaken
aangevraag worden om dit conflict op te lossen. De sensoraansturingsmethodiek
moet streven naar een zo goed mogelijke onzekerheidsreductie van de meest
gevaarlijke doelen.

Alleen weten welke informatie benodigd is om onzekerheid in classificatie te
reduceren is niet afdoende, het is ook noodzakelijk te weten hoe deze informa-
tie verkregen kan worden. Teneinde zoveel mogelijk onzekerheid te reduceren
moeten de sensorinstellingen aangepast worden aan de situatie. Het bepalen
van de instellingen om de benodigde informatie te verkrijgen vereist kennis over
de effecten van omgevingsfactoren op de prestaties van de diverse sensoren.

Gezien het aantal objecten binnen de huidige missies is de informatiebehoefte
dermate groot dat de diverse behoeftes geprioriseerd moeten worden. Bepalen
welke informatiebehoefte belangrijker is dan een andere is gerelateerd aan de
dreiging dat het object waarvoor de informatiebehoefte gesteld is met zich mee-
brengt. Voor het prioritiseren wordt de meest dreigende situatie aangenomen
welke (nog) niet uitgesloten kan worden op grond van de beschikbare informatie.
De prioriteit is dus de bovengrens van de onzekerheid bij de risico-inschatting.
Dit maximale risico van een object geeft de prioriteit aan van de informatie-
behoefte die is vastgesteld voor dat object.

Sensormetingen hebben altijd een bepaalde mate van onzekerheid. Tradi-
tionele classifiers zijn niet ontworpen om onzekere invoerwaardes te verwerken.
Voorts vereisen deze traditionele classifiers een set met voorbeelden van alle
mogelijke klasse voor training en een dergelijke set is niet beschikbaar. Dit
proefschrift introduceert daarom een model-gebaseerde classificatie aanpak die
gebruik maakt van modellen van mogelijke klassen. Deze model-gebaseerde
classifiers zijn ontworpen om onzekere invoerwaardes te verwerken. Door deze
aanpak kunnen de classifiers ook bepalen welke onzekerheid over een van de
invoerwaardes verkleind moet worden teneinde de classificatie oplossing te ver-
beteren.

De in dit proefschrift gëıntroduceerde model-gebaseerde classificatie-
methodiek kan gebruikt worden om verschillende classifiers te maken. De
uitkomsten van deze classifiers moeten gecombineerd worden. Een geschikte
regel voor deze combinatie is Dezert-Smarandache Theorie (DSmT). Er is voor
deze combinatieregel gekozen omdat deze om kan gaan met conflicterende in-
formatie van bronnen die een mate van geloof uitdrukken op overlappende la-
bels. Door gebruik te maken van DSmT kan er een enkele classificatie-oplossing
bepaald worden.
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De menselijke gebruiker voert traditioneel de classificatietaken uit in
complexe probleemgebieden zoals het militaire domein. Het classificatiesysteem
dat in dit proefschrift is ontwikkeld gebruikt de expertise van de gebruiker. In
het system kan de gebruiker zijn kennis over de situatie aangeven door, óf de
mogelijke labels aan te passen óf door zelf een classificatie aan te dragen. De
oorsponkelijke DSmT richt zich voornamelijk op het automatiseren van combi-
natieproblemen zonder interactie met de gebruiker. Regels om deze interactie
wel mogelijk te maken worden daarom ook ontwikkeld in dit proefschrift.

Voor elk willekeurig classificatiesysteem is het belangrijk om de werking te
verifiëren met behulp van geschikte evaluatiekriteria. De geschiktheid van de
kriteria wordt mede bepaald door het applicatiedomein van het classificatiesys-
teem. In het geval van militair maritieme missies, moet het systeem kunnen
omgaan met een grote, hierarchische en veranderende set van labels, onzekere
informatie, en het moet de eigen onzekerheid en/of verwarring tussen labels
aangeven. Laatstgenoemde karakteristiek wordt ook zachte classificatie ge-
noemd waarvoor kriteria beschikbaar zijn in de literatuur. Deze zijn echter niet
in staat om te gaan met hierarchische labels. Aan de andere kant, bestaande
kriteria die daar wel mee om kunnen gaan, kunnen niet omgaan met zachte
classificatie oplossingen. Daarom introduceert dit proefschrift nieuwe kriteria
om de classificatie resultaten te evalueren gebaseerd op de karakteristieken van
het applicatiedomein.

Testen met het nieuwe classificatiesysteem tonen een significante prestatie-
verbetering aan ten opzichte van traditionele classifiers. Tevens toont dit proef-
schrift aan dat het nieuwe systeem in staat is de informatiebehoefte te omschrij-
ven die gebruikt kan worden als invoer voor de sensoraansturingsautomatiser-
ing. In een gesimuleerde omgeving zijn diverse classificatiesystemen getest en
vergeleken. De vergelijking is uitgevoerd met de bestaande en de nieuw ont-
wikkelde evaluatiekriteria. We kunnen concluderen dat het nieuwe classificatie-
systeem beter presteert dan bestaande technieken.

Resumerend, de bijdrage van dit proefschrift is drieledig. Ten eerste, het
combineren van verschillende model-gebaseerde classifiers met DSmT leidt tot
een verbeterde classificatie van objecten alsmede tot een verbetering van de inzet
van sensoren waardoor dit systeem essentieel is voor het succesvol uitvoeren van
de missies die km vandaag en in de toekomst opgedragen krijgt. Ten tweede,
een nieuw model-gebaseerd classificatiesysteem is ontwikkeld dat gebruikt kan
worden voor elke classificatietaak waarbij omgegaan moet worden met onze-
kerheid, overlappende labels en waarbij kennis beschikbaar is om de mogelijke
klassen te modelleren. Ten slotte, nieuwe evaluatiekriteria zijn ontwikkeld om
zachte classifiers te evalueren die gebruikt worden om oplossingen te vinden in
een hierarchische oplossingsruimte.

Wilbert van Norden
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Stellingen

Stellingen behorende bij het proefschrift “Sensing what matters” van Wilbert
van Norden.

1. Binnen sensor management is het belangrijk te bepalen welke informatie
niet benodigd is.

2. Bestaande sensoraansturingsmethodieken zijn niet gëımplementeerd in
bestaande systemen omdat ze doorgaans twee belangrijke aspecten niet
in ogenschouw nemen: 1. wat moeten de sensoren doen en 2. welke sensor
is goed in welke taak.

3. Optimale sensoraansturing garandeert geen missiesucces.

4. Qua informatieve waarde is onenigheid meer waard dan consensus.

5. Zekerheid en specificiteit sluiten elkaar uit.

6. Systeemnauwkeurigheid komt niet overeen met een micromort, dus moet
de waarde van een leven op een andere wijze ingebracht worden in het
systeem.

7. Sensoren opereren niet volgens de specificatie in onvoorziene omstandighe-
den. Onvoorziene omstandigheden zijn normaal.

8. Het niet helemaal ongelijk hebben om de juiste redenen, is beter dan
helemaal gelijk hebben om de verkeerde redenen.

9. Het uitvoeren van moderne maritiem militaire operaties, zoals peacekeep-
ing en counter drugs, is een onzekere bezigheid.

10. Tijdens het schrijven van een proefschrift kunnen de symbolen snel op
raken.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor prof. dr. C.M. Jonker.
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1
Introduction

The only sovereign I can allow to rule me is reason. The first law of reason is this: what
exists, exists; what is, is. From this irreducible bedrock principle, all knowledge is built.

This is the foundation from which life is embraced. Reason is a choice. Wishes and whims
are not facts, nor are they a means to discovering them. Reason is our only way of grasping

reality - its our basic tool of survival. We are free to evade the effort of thinking, to reject
reason, but we are not free to avoid the penalty of the abyss we refuse to see.

Wizard’s sixth rule – Faith of the Fallen (Ch.2)

WHEN the first Radio Detection And Ranging (radar) systems became
available aboard naval vessels, the human operators were responsible for

all settings and management tasks for these radars. Today, technological devel-
opments and political choices have led to the necessity of making sensor systems
more intelligent for modern military missions. This, in short, is the reason for
the research that is done in the field of Command and Control (c2) and sensor
management in particular.

This chapter will elaborate on this reason in the first section. In the two
following sections previous work is discussed that has been the starting point for
this research. The last two sections of this chapter state the problem definition
and give an outline of this thesis.

1



Wilbert van Norden 1.1. Background

1.1 Background

In the last few decades, three factors have caused the Royal Netherlands Navy
(rnln) to do research on automation within the Combat Management System
(cms) aboard her frigates. The first of these reasons can be found in the chang-
ing nature of the missions of the rnln. During the Cold War, typical missions
protected sea lines of communication against e.g., submarine threats on the At-
lantic. Now, missions are more diverse in nature and location e.g., counter drug
operations in the Caribbean, embargo enforcement in the Middle East and pro-
viding humanitarian help wherever needed. These missions are mostly executed
in littoral waters, which are characterized by more rapidly changing meteoro-
logical conditions and more civil traffic in the vicinity of the ship compared
to missions executed at open sea. Rapidly changing weather conditions make
sensor performance hard to predict. As a result it is unknown to the operator
where objects can or cannot be detected. The presence of dense civil traffic
makes obtaining situation awareness more difficult since each object needs to
be classified. Furthermore, being close to land means that enemy forces can stay
undetected longer due to land clutter in the sensor systems1 and that they can
use landmasses to stay hidden from our sensor systems. This, combined with
the less predictable sensor performance, makes that objects are detected much
later than in open sea conditions. As a result the available time to reason on
classification and intentions is shortened. This leaves dangerously little reaction
time.

The second factor is financial in nature. Due to budget cuts the rnln is
striving to reduce ship complements and their available training and educa-
tion time is reduced. Furthermore, where previously all specific sensors were
operated by specialised operators, today one generic sensor operator is respon-
sible for the entire sensor suite. Less people aboard who receive less training
and specialised education means that the readily available human knowledge
aboard ships is decreasing.

The third factor is technical. Developments in radar and Electro-Optical
(eo) systems have given rise to complex sensor systems for which usually more
than ten (technical) parameters need to be set and/or adjusted by the operator
to optimise performance. This means that there are at least that many opportu-
nities to improve the performance of these systems. However, the operator needs
to have extensive knowledge of the sensor system to determine which settings
are required to compensate for the consequence of environmental conditions on
performance. Without adequate support for the operator, sensor performance
is degraded to such an extent that threats are no longer being detected in time.
Furthermore, the number of sensors and parameters makes it almost impossible
to tune all sensors in time leading to degraded sensor performance. Not de-

1Land clutter in sensor systems is the term used for the returned energy of land masses.
Since the detection threshold of sensors is typically set for the returned energy of the sea, this
land clutter causes many false detections. Since the presence of land is known to the system
and the operator a detection close to land may be mistaken for land clutter
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1. Introduction Sensing what matters

tecting threats in time shortens reaction time which in turn threatens mission
success.

In short, the rnln is executing increasingly complex missions in increasingly
complex environments with advanced sensor systems while less required human
knowledge is available on board. This growing discrepancy gives rise to the
need for automation to support the human operators. In order to make such
automated systems, a good understanding is needed of the different c2 processes
involved in military operations.

1.2 Command and Control

The need for automation is driven by the growing discrepancy between required
and available human knowledge. This is partly due to reduced manning as well
as reduced training and education time for personnel. Therefore, we decided to
look at c2 from the operator’s perspective. The starting point for this approach
is the cognitive model of how human operators cope with c2 tasks, as proposed
by Van Delft in [19]. That cognitive model divides c2 into four processes:

• Situation Assessment (sa);

• Threat Assessment (ta);

• Decision Making (dm);

• Direction and Control (dc).

These four different processes are similar to the well-known Observe-Orient-
Decide-Act (ooda) loop from Boyd, [11], and can be used for automation of c2
processes. In sa all objectively measurable attributes, e.g., speed and position,
of objects are determined (observe). Subjectively measurable attributes — such
as the identity of an object: friendly or hostile, or the threat the object poses —
are determined in the ta processes (orient). The combined sa and ta processes
are called the picture compilation process. In dm decisions are made about
appropriate (counter) actions which are allocated to available resources (decide).
Resources assigned to tasks are controlled by dc processes (act). Combined the
four, originally cognitive, c2 processes can be seen as a control cycle for arbitrary
resources.

Information can follow different paths through the c2 model to come to
actions. In the first path observations immediately lead to control actions (from
sa directly to dc) which is called the primary level. The ta and dm processes
together are called the secondary level. Both the primary and the secondary
level of c2 are discussed in [19]. By training, more actions can be taken through
the primary level and only the complex situations go through the secondary
level. In that sense the primary level has parallels with Recognition Primed
Decision-Making (rpdm), [53].
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Figure 1.1: Processes involved in the Command & Control process that are vital
to the picture compilation process

Bolderheij et al. [10] and De Greef et al. [33] use the cognitive c2 model
as the basis for an object-oriented approach to c2 aboard rnln frigates, more
specifically they both describe object-oriented sensor management within the
c2 concept. From the cognitive c2 model it already becomes apparent that the
information about the world is vital for all processes within c2. In this research
the representation of the world is referred to as the Operational Picture (op)
see figure 1.1. The object-oriented approach to c2 is used as the basis for this
thesis.

The paradigm shift proposed by Bolderheij et al. in [10], results in a system
with decoupled processes, each process using information from and/or giving
information to the op. This means that the processes can be implemented as
concurrent or sequential processes or by a mix of both. This notion of concurrent
processes fits well with the revision of the Joint Director of Laboratories (jdl)
model for information (or data) fusion for which Llinas et al. propose a method
for communication between the different fusion levels in [60].

This model with decoupled processes has similar functionalities as the Net-
worked Adaptive Interactive Hybrid System (naihs) model proposed by Kester
in [52]. Furthermore, in [85] Rasmussen describes how humans process informa-
tion ton come to a decision. In this model, the information may be processed
following a number of different paths through different processes. Bolderheij’s
object-oriented model provides similar processes that may run in parallel both
models are thus similar. Since jdl, naihs, ooda, rpdm, and the cognitive
model of Rasmussen can be mapped to the model of Bolderheij, which is both
simple and flexible, this latter model is used throughout this work.
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Each process, whether executed concurrent or sequential, depends on the
information that is available about the world in which we operate. One of the
main sources for this information are the sensors. In order for those sensors
to deliver the right information at the right time a management methodology
is required. Managing the sensor suite correctly is of vital importance since it
determines the quality of information on which all command decisions are made.

1.3 Sensor Management

The purpose of having a sensor is quite straightforward: it provides information
about the world in which we operate. The previous section already stated
the importance of an accurate op and since sensors are vital in obtaining and
maintaining this picture, sensor management is an important process. This
section focusses on two aspects of sensor management: firstly, the management
considerations themselves, and secondly the prioritisation of different tasks that
need to be executed.

1.3.1 Managing a sensor suite

Sensor management is vital for c2 and has therefore been the focus of studies
in the past. In [97] Strömberg et al. conduct a survey of sensor management
techniques that focus on the required technical settings to improve performance
of individual sensors. The added value of sensors to achieve mission success
has been described by McIntyre and Hintz in three papers, [64], [65], and [66],
although they are not specific on how such a system should be developed. This
section describes an approach to sensor management based on the picture com-
pilation process which is vital for mission success. It provides the specifics that
are required to create the sensor manager proposed by McIntyre and Hintz.

Operationally speaking, sensors should provide the best information possible
on the most relevant objects given the mission objectives. In [10], Bolderheij
et al. state that sensor management should support the picture compilation
process — which is the combination of Situation Assessment (sa) and Threat
Assessment (ta) — as good as possible, along the lines of the notions on sensor
management of Hall in [35] and [36]. By representing objects in what is called
the Operational Picture (op), a data-store2 is created in which all c2 processes
may read and write information. In the model of Bolderheij et al., the op not
only consists of existing tracks (already detected objects) but it also contains the
expected objects as derived from intelligence reports and mission statements.

2Depending on the implementation such a store could be viewed as a blackboard or in the
case of an agent-system as a marketplace
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Figure 1.2: General model for sensor management

Each object in the op comes with its available attribute information and the
related uncertainty therein. The uncertainty on expected objects is used to de-
termine the required surveillance tasks, see [104]. Through the representation
of all detected and expected objects in the op sensor management can deter-
mine which information should be obtained given the current situation and the
mission statements.

Based on the op, sensor management has to determine how to deploy the
sensors to obtain the required information. The resulting sensor control cycle is
depicted in figure 1.2. In order to determine which sensor to use and to calculate
the required settings for that sensor, first the information need for each sensor
function, similar to the approach suggested by Johansson and Suzić, [46], needs
to be determined. In the naval warfare domain e.g., when searching for a sea
skimming missile a minimum detection range determines the scanning frequency.
Using such timing constraints for scanning areas is also discussed by Duron and
Proth in [27] although Duron and Proth discretise the environment where we
do not. The resulting control cycle is based on the uncertainty about detected
objects in the op that leads to information needs.

By adding expected objects and/or adjusting the information on available
objects, the operator can direct the surveillance capabilities of the available
sensor suite. This means that the operator no longer needs to think about
which sensor to use in which mode but he can tell the system the expected
threats and the system will take care of optimizing the sensor suite to search
for these threats. This is in full agreement with recent developments on the jdl
model like the Level 5 user refinements proposed by Blash and Plano in [6].
The operator is still able to interact with sensor systems on a more technical
level if desired since those interfaces are still maintained, thus enabling the
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implementation of different levels of automation, [29]. While full automation
might be achieved, the operator can still interact with the system at any desired
level.

In other domains similar management schemes have been proposed for sensor
management. In [12], Cai and Ferrari describe how a sensor’s route may be
determined to optimally classify a number of objects in an environment. Or in
more generic terms, it is optimised for a treasure hunt problem. The principle
of managing a sensor based on desired information is the same. The difference
however is that they consider a mobile sensor with limited settings, whereas in
this thesis the focus is on multiple sensors with a multitude of settings that are
more or less stationary with respect to the environment; the stationary platform
we consider cannot move through the surveillance area in a similarly short period
of time as is the case in the treasure hunt problem. Krysander and Frisk [55]
describe the problem of sensor placement for fault detection and isolation where
similar differences exist. The principle of using expected objects for planning
activities is discussed by Mohn in [70] for the Army domain. Although the
required knowledge to come to task generation and task allocation is different,
the principles are the same.

1.3.2 Prioritising sensor tasks

In order to schedule a sensor suite, the different sensor tasks that need to be
executed are prioritised. This prioritisation is usually either left to the oper-
ator or the prioritisation is solved by assigning priorities to different types of
sensor tasks like e.g., track or horizon search. An overview of sensor scheduling
methodologies that use this approach can be found in e.g., [72].

In contrast to the approach of prioritisation of different sensor functions,
Komorniczak et al. describe a process to prioritise detected targets in order to
make a distinction between those tasks in [54]. Romberg describes the prioritisa-
tion for search areas in [86], whereas Miranda et al., [69], describe a prioritising
methodology based on simulations.

Similar to these three approaches, Bolderheij proposes to use risk calculation
— as described by Yellman in [113] as probability of occurrence multiplied by
the cost of such occurrence — in [10], which is similar to Romberg, [86]. Other
work on threat assessment can be found in e.g., [15], and [47], but they focus
on a subset of air targets. The risk calculation of Bolderheij provides a more
flexible model which may be used for any type of target and is therefore used
in this thesis.

A similar approach for using risk as a prioritisation mechanism in sensor
management can be found in [81], where it is applied in missile defence systems.
In [79], Osadciw and Veeramachaneni discuss how risk calculation is used to
construct a fitness function for managing a sensor network where the focus does
not lie with the management problem itself, rather it tries to determine the
information need for optimal picture compilation for c2.
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Figure 1.3: The dbn used for risk calculation, where a weapon (e.g., a missile)
directed against the own platform or the unit that needs protection poses most
risk

Risk calculation in management problems has also been used in the space
exploration domain by Mehr and Tumer in [67]. It therefore seems reasonable
to also adopt risk calculation for sensor management within the c2 framework
described in this thesis for the maritime military domain.

The risk calculation approach of Bolderheij provides a uniform way to priori-
tise all types of sensor functions since the risk of expected objects and detected
objects is determined using the same methodology. Risk calculation is done
using a model like that shown in figure 1.3 which is described in [9]. In this Dy-
namic Bayesian Network (dbn) the relations between risk and the classification
solution on an object becomes apparent. Not only does a better classification
solution improve tracking performance, as shown in [2], it also enables a better
risk estimation. Since many classifiers exist, each with their own pros and cons,
here multiple classifiers are developed and combined.

1.4 Research questions

Sensors are used to provide a representation of the environment (also called the
op) as complete and as accurate as possible relevant to the goal of the system
that is utilising the sensors. Tasks are prioritised based on the risk the object
poses to the system’s goal(s) as was discussed in the previous section. For mar-
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1. Introduction Sensing what matters

itime military missions, the risk can be calculated using the dbn proposed by
Bolderheij in [9]. This method of risk calculation depends highly on the classifi-
cation solution. In order to make the op as accurate and complete as possible,
classification is essential to recognise potential threats in a timely manner.

Van Haarst et al. propose to generate sensor task requests based on the
uncertainty in risk, [104], where they use the methodology from Bolderheij to
calculate risk. A problem occurs when trying to find a quantification of the
uncertainty in the classification solution. Due to the nature of the application
domain, maritime military operations, uncertainty in classification in even more
important because of the potentially severe consequences.

The main goal of a sensor manager is to reduce uncertainty as best as pos-
sible. From the dbn for risk calculation it can be seen that classification is
essential in assessing risk that objects pose. In order to automate sensor man-
agement, classification process needs to be addressed. This process is tradition-
ally executed by the human operators in the military domain. Due to the shift
in military missions however, it has become difficult for the human operator to
execute that task parallel to the sensor management process.

The main research question this thesis addresses is:

How can operators be supported in their task of interpreting real-time data in
complex environments?

The problem domain used in this thesis is the maritime military domain
and the interpreting data in that domain starts with classification. Sensor are
used to provide data and the sensors need to be optimally deployed in order
to provide the relevant information for classification. More specific research
question therefore are:

1. How should the class labels be modelled when the operators use different
classification trees and require more specific or less specific answers?

2. How should classifiers cope with uncertain input from sensors and intelli-
gence reports?

3. What conditions need to be met to combine classifiers that operate on
uncertain input and that assign belief to labels on different hierarchical
levels?

4. How should classifiers be evaluated taking the hierarchical levels of the
class labels into account and that generic but correct answers are preferred
over specific answers that may be wrong?

5. How can classification uncertainty be described and how should the clas-
sification process determine which information is needed to reduce that
uncertainty?

6. How should sensor management get the required information in a complex
environment?

9
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A desirable classifiers should deal with uncertainty, multiple non-exclusive
labels and incoorperate knowledge on the possible labels if this is available. The
operator should be able to exert influence during the combination of the different
classifiers. Furthermore, the classification system should be able to request
specific information to come to a better classification. Sensor management in
turn needs to deploy the sensors in such a way that it finds the requested
information in a timely fashion.

Designing a system in general requires evaluating the performance of the
proposed methodology. Naturally, the criteria on which performance is evalu-
ated needs to match the application domain and it needs to be suitable for the
output of the system. Besides the development of the actual system, there is
a focus on evaluation criteria to estimate performance and make a comparison
with other systems. These criteria have to be able to deal with non-exclusive
hierarchical labels and soft classification results. They also need to provide a
detailed insight in the hierarchical nature of the labels.

1.5 Thesis outline

In this thesis, the required steps to come to classification support and sensor
management are discussed in the different chapters.

Chapter 2. Classification
This chapter describes the classification solution space and how such a space
may be constructed for any classification problem. Based on this solution space,
different classifiers are constructed that enable the system to determine which
uncertainty reduction is required to improve the solution given for each indi-
vidual classifier. These classifiers are based on knowledge about the possible
classification solution. For any classification task that deals with uncertainty,
multiple non-exclusive labels and for which knowledge on the possible labels
is available the described methodology may be applied. Methods and models
described in the chapter have been published at the International Conference
on Information Fusion in 2008 as well as a chapter contribution, the references
of those publications are:

[73] Wilbert L. van Norden, Fok Bolderheij, and Catholijn M. Jonker.
Classification support using confidence intervals. In Proceedings of
the 11th International Conference on Information Fusion, pages
295–301, Cologne, Germany, 30 June – 3 July 2008;

[74] Wilbert L. van Norden, Fok Bolderheij, and Catholijn M. Jonker.
Combining system and user belief on classification using the
DSmT. In Proceedings of the 11th International Conference on
Information Fusion, pages 768–775, Cologne, Germany, 30 June
– 3 July 2008;
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1. Introduction Sensing what matters

[76] Wilbert L. van Norden and Catholijn M. Jonker. Advances and
Applications of DSmT for Information Fusion (collected works),
volume 3, chapter 12. Utilizing classifier conflict for sensor man-
agement and user interaction, pages 371–386. American Research
Press, Rehoboth (MA), May 2009.

Chapter 3. Combining classifier belief
Classifiers express a degree of belief that the object under consideration belongs
to a certain labels. Since different classifiers may have conflicting results, a
combination rule is used to deal with this conflict. Furthermore, the different
labels need not be mutually exclusive and the combination rule needs to take
that into account as well. A theory of combining information that satisfies
both requirements is Dezert and Smarandache Theory (DSmT). This chapter
explains how this theory is applied for combining classifiers. In Appendix A
more information about DSmT is given for the interested reader.

This chapter shows how DSmT can be used to keep track of conflict between
the different classifiers. By using the information from the classifier that causes
most conflict, sensor function requests can be generated as an input for sensor
management. In order to enable the required user interaction this chapter also
introduces new rules that can be applied after the use of any combination rule.

The application of DSmT in this manner and the new rule for the addition
of exerting user preferences has appeared in various publications:

[74] Wilbert L. van Norden, Fok Bolderheij, and Catholijn M. Jonker.
Combining system and user belief on classification using the
DSmT. In Proceedings of the 11th International Conference on
Information Fusion, pages 768–775, Cologne, Germany, 30 June
– 3 July 2008;

[76] Wilbert L. van Norden and Catholijn M. Jonker. Advances and
Applications of DSmT for Information Fusion (collected works),
volume 3, chapter 12. Utilizing classifier conflict for sensor man-
agement and user interaction, pages 371–386. American Research
Press, Rehoboth (MA), May 2009;

[78] Wilbert L. van Norden and Catholijn M. Jonker. User insisted
redistribution of belief in hierarchical classification spaces. In Pro-
ceedings of the 2009 IEEE/WIC/ACM international joint confer-
ence on Web Intelligence and Intelligent Agent Technology, pages
115–122, Milan, Italy, 15–18 September 2009.
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Chapter 4. Sensor deployment
In order to execute the required sensor functions as well as possible, different
choices on sensor deployment are needed. Since this is considered a task of
the human operator, there is little work done in the field of automating this.
This chapter describes the required steps for an automated approach to sensor
deployment. Firstly, the most suitable sensor needs to be selected for the task
and secondly, that sensor needs to be scheduled and controlled during task
execution.

This chapter describes how these steps may be achieved using sensor perfor-
mance evaluation. Scheduling of sensors is achieved using a heuristic scheduling
approach like the one used in [7]. These considerations on sensor deployment
have lead to the publications below. This chapter may be seen as an extended
summary of these publications:

[75] Wilbert L. van Norden, Jeroen L. de Jong, Fok Bolderheij, and
Leon J.M. Rothkrantz. Intelligent task scheduling in sensor net-
works. In Proceedings of the 8th International Conference on In-
formation Fusion, pages 1351–1358, Philadelphia (PA), USA, 25–
29 July 2005;

[50] Jeroen L. de Jong and Wilbert L. van Norden. Application of
metaheuristics in sensor management. In Proceedings of the 1st in-
ternational conference on Cognitive Systems with Interactive Sen-
sors, Paris, France, 15–17 March 2006;

[49] Jeroen L. de Jong and Wilbert L. van Norden. Application of
hybrid metaheuristics in sensor management. In Proceedings of the
18th BeNeLux Artificial Intelligence Conference, Namur, Belgium,
5–6 October 2006. type B contribution;

[51] Jeroen L. de Jong and Wilbert L. van Norden. Application of
hybrid metaheuristics in sensor management. Aerospace Science
and Technology, 11(4):295–302, May 2007;

[104] Tanja Y.C. van Valkenburg-van Haarst, Wilbert L. van Norden,
and Fok Bolderheij. Automatic sensor management: challenges
and solutions. In Proceedings of the SPIE Defense and Secu-
rity Conference, Optonics and Photonics in Homeland Security
(6945), pages 694511–1 – 694511–11, Orlando (FL), USA, 16–20
March 2008;

[58] A. Vincent van Leijen, Fok Bolderheij, and Wilbert L. van Norden.
Unification of radar and sonar coverage modeling. In Proceedings
of the 12th International Conference on Information Fusion, pages
1673–1678, Seattle (WA), USA, 6–9 July 2009.
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Chapter 5. Performance issues
Evaluation of a system requires good criteria that are suitable for the problem
domain. Besides verifying the functionality of a system, it should also be verified
that the system set-up is feasible with respect to required computation time.
This chapter focusses on both these performance issues by introducing new
evaluation criteria. Firstly, by describing evaluation criteria that are suitable
for non-exclusive classification tasks where belief is expressed on various class-
labels. Secondly, time complexity of the combination rule is addressed and a
proposition is made to reduce this complexity with minimal effect on the output.
Work described in this chapter has appeared in:

[89] Krispijn A. Scholte and Wilbert L. van Norden. Applying the
PCR6 rule of combination in real time classification systems. In
Proceedings of the 12th International Conference on Information
Fusion, pages 1665–1672, Seattle (WA), USA, 6–9 July 2009;

[77] Wilbert L. van Norden and Catholijn M. Jonker. Confusion and
distance metrics as performance criteria for hierarchical classifi-
cation spaces. In Proceedings of the 2009 IEEE/WIC/ACM in-
ternational joint conference on Web Intelligence and Intelligent
Agent Technology, pages 131–136, Milan, Italy, 15–18 September
2009.

Chapter 6. Test results
In different tests the resulting system set-up for reducing uncertainty in the
op by sensor deployment is evaluated. The classifiers are tested in a simulated
environment that is representative of the maritime military domain. The per-
formance is compared with traditional classifiers that are evaluated in the same
environment. Furthermore, the performance of the new classifiers is compared
to that of the traditional classifiers for a known theoretical classification task
using traditional evaluation criteria. Results show that the new classifiers out-
perform the traditional ones. The generation of sensor functions is also shown.
Finally, the reduction of time complexity is evaluated and the effects on the out-
put are discussed and compared with simple but fast combination rules, showing
that real-time application of the combination rule is possible. Results discussed
in this chapter have appeared throughout the publications, [73], [74], [89], [78],
and [77].

Chapter 7. Conclusions
The closing chapter of this thesis provides the conclusions of this research. These
conclusions have appeared in the various publications that form the basis for
Chapters 2 –6.
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2
Classification

Mind what people do, not only what they say, for deeds will betray a lie.

Wizard’s fifth rule – Soul of the Fire (Ch.28)

CLASSIFICATION is the process in which a label from a given set of labels is
assigned to (a collection of) data. For the military domain it is described

as the process in which one or more class-labels are assigned to a detected object.
This assignment is done based on all relevant information that is available at the
time. This chapter describes how the classification process can be automated
and supported using Model-Based Classifiers (mbcs). Parts of this chapter
appeared in conference proceedings, [73] and [74] and as a chapter contribution,
[76].

A solution space containing all possible labels needs to be constructed since
classifiers need to know which labels may be assigned to data. This solution
space is discussed in the first section of this chapter. For each of the class-
labels a membership field is defined, which is discussed in Section 2.3. Finally,
Section 2.4 introduces the new mbcs. The resulting classifiers require knowledge
to create the membership fields, without this the model-based approach will not
work. Knowledge elicitation of the problem domain is therefore important when
building mbcs.
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Figure 2.1: Traditional classification tree

2.1 Classification solution space

Traditional classification processes, such as described in [68] and [88], construct
a classification tree as shown in e.g., figure 2.1. Constructing that classification
tree is essential and requires knowledge elicitation. To avoid problems with
knowledge elicitation from experts, Quinlan proposes a machine learning tech-
nique for the construction of classification trees, [84]. Other machine learning
techniques for learning a classification solution space are described by Taylor
et al. in [98]. The downside however is that it requires a lot of real data and
processing time to learn a classification tree.

Besides the problems of constructing a classification tree there is another
drawback. Each branching is done based on a characteristic of objects; the
order in which this is done is rather arbitrary. As a consequence, the resulting
classifier may provide only relatively high level labels when further branching
is impossible given the tree structure. This can occur even though information
might be available to facilitate more specific labels at a lower level in the tree.
Branching on independent attributes in a pre-specified order furthermore means
that certain branchings need to be done repeatedly. In figure 2.1 e.g., the first
branching distinguishes between air, surface and subsurface objects. The second
branching is based on whether the object is a weapon itself or if it is a weapon
carrier. Both these attributes are unrelated and the same branching needs to
be done in each separate branch.
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Figure 2.2: Example of a solution space shown in a Venn diagram

This section introduces a new way of modelling the classification space to
solve above mentioned problems. In this model no tree is constructed. Each
possible class is described based on possible attribute values. Together the at-
tributes span a search space in which all classes — both generic classes and
specific classes — are represented, see figure 2.2 where the example from fig-
ure 2.1 is shown in this new model. Classification of objects can be done by
excluding parts of this search space based on available information.

In this search space several class-labels at various levels of specificity exist. In
figure 2.2 the objects with highest specificity are patroller, tbm and such that
were the final nodes in figure 2.1. At a higher specificity level the difference
between weapon and weapon carrier is made. In the new model this distinction
is done once whereas it had to be repeated in the tree structure approach. Using
these different levels of specificity the entire classification space is modelled with
this set notation in the multi-attribute space.

In figure 2.2 it can be seen that some classes overlap whereas others do
not. For our model we say that all elements at the same level of specificity are
mutually exclusive, meaning that although the classes may look similar with
respect to attribute values, an object cannot belong to both classes. A sail boat
e.g., can move at the same speed as a frigate, a detected object however cannot
belong to the class frigate as well as the class sail boat.
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Wilbert van Norden 2.1. Classification solution space

The solution space can be represented as a collection of class labels at K different
specificity levels, each containing Nk labels with k ∈ {1, 2, . . . ,K},

{θ1,1 θ1,2 · · · θ1,N1
}

{θ2,1 θ2,2 · · · θ2,N2
}

...
{θK,1 θK,2 · · · θK,NK}

 .

In this notation a label θk,n refers to all classes that belong to that label, for
notational purposes we use only the label name in equations. The entire frame
of discernment, denoted Θ, is defined as all the elements from the solution space
joined:

Θ = {θ1,1, θ1,2, · · · , θ1,N1 , · · · , θK,1, θK,2, · · · , θK,NK} .

As mentioned earlier, all elements on the same specificity level are defined
to be mutually exclusive:

θk,n ∩ θk,q = ∅ for


q, n ∈ {1, 2, . . . , Nk};
n 6= q;

k ∈ {1, 2, . . . ,K}.

Though this distinction might seem odd, it is enforced to more accurately model
the way operators view the frame of discernment in e.g., classification. On the
same level of specificity an object may be classified as either a helicopter or an
air plane, it cannot be both. At a different level however it may be classified
as an air object which overlaps both of these. On yet another specificity level,
the solution might be fixed wing or rotary wing. In itself these are mutually
exclusive but they are used separately in operational systems. The model of the
solution space is therefore chosen to enable these various overlapping class-labels
simultaneously.

Classes at different levels of specificity are not mutually exclusive and can
therefore overlap in the Venn diagram, as can be seen in figure 2.2. We distin-
guish two types of overlaps. Firstly, a class may be fully enclosed by a class
at a higher specificity level. These fully overlapping elements in the branch are
called child and parent classes. Since they may occur at different specificity
levels, the a-th order ancestor label of label θk,n is defined as equation 2.1 and

denoted θ↑ak,n.

θ↑ak,n =1{θk−a,v ∈ Θ | θk,n ∩ θk−a,v 6= ∅} (2.1)

For all a > 0 parent elements are found, for a < 0 child elements are ob-
tained, and for a = 0 the element itself is found. These definitions assume that
the rows in the model are ordered based on specificity.

The obtained model is a hierarchical one and each object may be assigned
more than one of these labels. In literature, such types of classification tasks are
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Figure 2.3: Venn Diagram of the classification solution space

referred to as multi-label learning, see e.g., [87], [18], and [14]. The modelling of
the solution space is similar but differences exist. In multi-label learning each
label has exactly one parent at the next higher level whereas in our approach
each element may have multiple parents of the same order and furthermore,
they may have no parents at all. A more detailed description of the parent-
child relations follows in Section 3.3.

In figure 2.3 an example of a Venn Diagram is shown using classes at dif-
ferent specificity levels. At the lowest specificity level (k = 1), the domains
are represented, surface, air, and subsurface. At the next level (k = 2) only
two child elements are represented, namely the sub-domains sea and land. Two
more specificity levels are represented. One representing generic objects (k = 3)
like e.g., the helicopter, and one representing specific classes (k = 4) like e.g.,
the F-16 Fighting Falcon fighter.

Throughout this thesis, class labels are referred to as an element Xi from the
frame of discernment Θ, where i ∈ {1, 2, . . . I} and I =

∑K
k=1Nk. A mapping

Ω : N2 → N is defined by equation 2.2 to map each element θk,n on a label Xi.
The reverse is obtained by the inverse mapping, (k, n) = Ω−1(i).

i = Ω(k, n) =

(
n−1∑
u=1

Nu

)
+ n (2.2)
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Figure 2.4: A measurement (grey square) and its uncertainty (grey lines) in
any attribute space can be compared to regions in that space that are typical
of a class; in this space it can also be determined which attribute needs to be
measured more accurately

2.2 The MBC principle

The principle behind model-based classification builds on set notation of the
classification solution space. Measurements can be plotted in the Venn diagram
of the classes to determine which classes match this measurement best. The
uncertainty in the measurement is taken into account as well by drawing the
uncertainty lines, or confidence intervals, around the mean measurement. By
comparing which parts of those lines match with which classes, a value can
be assigned that quantifies how well the entire measurement fits the different
classes.

Consider a four class problem with exclusive classes A, B, C and D. Fig-
ure 2.4 shows the Venn diagram of those classes and a measurement in the
same attribute space. The lines around the mean of the measurement (the grey
square) are the uncertainty lines. By looking at which part of which line cor-
responds to the different classes, a relative comparison between the fitness on
the different classes can be determined. The overall solution is found by tak-
ing a weighed average of the outcomes for each line, the closest to the mean
measurement the higher the weight.

In figure 2.4 the information requirements for new measurements are also
visible. Most of the lines correspond to class A. The uncertainty lines however,
match some of the other classes as well. Reducing uncertainty on the vertical
axis could exclude those three possibilities, whereas reducing uncertainty on
the horizontal axis would most likely only exclude classes B and C. From the
Venn diagram can also be determined how much uncertainty would need to be
reduced to exclude classes.
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The principles behind model-based classification require a good model of pos-
sible attribute values of the different classes. The knowledge elicitation process
is therefore important. Not only is knowledge needed about possible attribute
values, also knowledge about dependencies between attribute values is needed.
E.g., in figure 2.4 it can be seen that the combination of values on the horizontal
axis and vertical axis is needed to distinguish between classes B, C, and D. This
knowledge is expressed in membership fields which need to be constructed for
all classes.

Knowledge elicitation is therefore just as important as was the case for a
classification tree approach. Major advantages over the tree approach are the
fact that the mbc approach cannot get stuck on a high level node, the model
can be adjusted quite easily, and it provides a way to determine which attribute
information improves the classification solution best.

2.3 Membership fields

The goal of classification is to assign one (or more) of the labels, X from the
frame of discernment, to a detected object. To assign a label to an object, each
class-label is described based on possible behaviour in some subset of observable
attributes. When L different membership fields can be made for class X and
each membership field is based on J` attributes with ` ∈ {1, 2, . . . , L}, the
membership field is given by Γ`,X(~y1, . . . , ~yJ`), where yj with j ∈ {1, 2, . . . , J`}
denotes the value of attribute Aj . Figure 2.5 e.g., presents the membership for
a generic object within the air domain for the subset of attributes speed and
altitude.

Each object has its specific characteristics in flight. An airliner e.g. cannot
fly with low airspeeds at a high altitude. Another example would be objects that
can maintain altitude without airspeed. The possible combination of altitude
and speed can therefore be used for classification purposes for air targets. In
figure 2.5 an example for a generic air-bound class is shown where the envelope is
given by the physical constraints. The area for which the membership equals 1,
gives the usual cruising speed and the cruising altitude. Where the membership
equals zero the object cannot operate because of the physical constraints e.g., a
flying object requires a minimum airspeed at a given altitude given its structure
and weight.

Knowledge about possible objects, like presented in figure 2.5, is required
for all elements X for a number of subsets of attributes. Only based on that
knowledge, classifiers can assign a certain belief to each of the elements within
the frame of discernment. How classifiers assign such belief is discussed in
Section 2.4. The required knowledge to create these membership functions is
expert user generated and formulated mostly during the planning phase of a
mission.
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Figure 2.5: Membership of a class for attributes speed and altitude

These memberships can describe physical manoeuvring capabilities — e.g., the
maximum speed of a ship given the water depth, [32]— or physical dimensions
of the different classes.

Other information that might be used in the planning phase of a mission
could be prior probabilities for certain classes in certain areas. In order to make
this information available to the system a mission planner is required along
the lines of [70]. This mission information, as well as the membership fields
of classes, may be inserted, deleted, and edited during mission execution when
new or additional information becomes available. The difference between this
model and the model from [80] is that here multiple memberships on subsets of
attributes are defined, thus obtaining multiple relations between classes that can
be changed during mission execution whereas in [80] the relations are predefined
and fixed. Some of this mission information is freely available like e.g., air lanes
or the density of commercial shipping in [37].

2.4 Model-based classification

The previous section discussed how the classification solution space and the
different classes are modelled. In order to complete the construction of a mbc,
measurements are combined to match the modelling of classes and a description
of the resulting classifier output is needed.
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2.4.1 Combining Measurements

On each subset of attributes for which a membership field is constructed, a
mbc can be run obtaining L different mbcs. Each mbc works on the same
principle: determine a Confidence Interval (denoted CI) — a CI constitutes
an uncertainty area as represented in figure 2.4 — based on known information
and see how well this interval fits the membership function, [73]. In figure 2.4,
this means seeing how well each grey uncertainty uncertainty line fits the mem-
bership fields of the various classes. The different orange areas represent the
different class membership fields.

A membership field is denoted Γ`,X(y1, y2, . . . , yJ`), and it is a function of
attribute values yj for attribute Aj with j ∈ {1, . . . , J`} for class X ∈ Θ.
Measurements on attributes Aj by sensors are given by a mean value µAj and
variance σAj

2. For notational ease, the subscript Aj is shortened to j. The
possible values for attribute Aj may then be described by µj plus a fraction
ξj of the square root of the variance σj , thus obtaining yj = µj + ξjσj for all
possible attribute values. Defining yj this way is done for notational purposes
later one since Probability Density Functions (pdfs) are mostly defined using
means and variances. The pdf of the measurement of attribute Aj is denoted
pj(.).

So far, the membership field — which is given to the system — is described
in terms of attribute values and those attribute values can be written based
on available information. The next step is to find the attribute values that lie
within the desired CI. In figure 2.4, this means finding all values that lie within
a chosen grey line which represented an uncertainty region.

To find all values with a closed region, the boundary of that closed space
needs to be determined. The first in doing that is to find a single point on that
boundary. Equation (2.3) describes such a boundary for CI. For each attribute
values we define that point as yj = µj + ασj , where α represents the boundary
value. Due to the properties of the pdfs used in this thesis, α is the same for
all attribute values.

Assuming all Gaussian distributed and independent measurements, equa-
tion (2.3) is re-written as equation (2.4) which in turn simplifies to equation (2.5)
using basic mathematical operations.

CI =

∫
· · ·
∫ µj+ασj

µj−ασj

 J∏̀
j=1

pj(yj)

 dy1 · · · dyJ` (2.3)

CI =

J∏̀
j=1

[∫ µj+ασj

µj−ασj

1

σj ·
√

2π
· e
−(yj−µj)2

2σj
2

dyj

]
(2.4)

CI =

J∏̀
j=1

erf

(
α√
2

)
(2.5)
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Figure 2.6: The boundary value α against the confidence interval CI for a
various number of attributes, J` ∈ {1, 2, . . . , 8}

The error function (denoted erf) is given by equation (2.6), see e.g., [108],
and is used in solving the integral of normal distributions. In order to calculate
α given CI with equation (2.5) the inverse error function, denoted erf−1, is
needed. For the inverse error function equation 2.7 holds for −1 ≤ z ≤ 1 and
equation (2.8) holds for z ∈ R. The relation between the boundary value α
and the confidence interval for the combination of J` attributes is shown in
figure 2.6.

erf(z) =
2√
π

∫ z

o

e−t
2

dt (2.6)

erf
(
erf−1(z)

)
= z (2.7)

erf−1 (erf(z)) = z (2.8)

A single point is now found that lies on the boundary of the uncertainty
area. The value of the combined pdfs should the same at each point on this
boundary. All other attribute values on the boundary can be found based on α
using equation (2.9). Replacing the equal sign by the ≥ operator finally finds
all attribute values in the CI.

J∏̀
j=1

pj (µj + ξjσj) =

J∏̀
j=1

pj (µj + ασj) (2.9)
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2.4.2 Classifier solution

In order to map the entire confidence interval on membership functions of targets
equation (2.9) — with the ≥ operator — is re-written as equation (2.10) for
Gaussian distributions. With this equation all combinations of values can be
found that fall within a certain CI. Calculating the combined membership
for various values of CI quantifies how well a measurement fits the membership
field of a certain class. Another application of calculating which attribute values
constitute a contour line for a CI is reasoning on troop movements in urban
environments over longer periods of time, [48].

J∑̀
j=1

ξj
2 ≤ J` · α2 (2.10)

For each value of the CI the boundary value α, which is the same for all
attributes as shown in [73], is determined. When all information sources pro-
vide Gaussian distributed measurements, α is given by equation (2.5). Which
combinations of attribute values constitute a contour line for a given CI (or α)
may then be determined with equation (2.10). Solving equation (2.10) can be
done using a spherical notation due to the assumption of Gaussian distributed
measurements. The contour line of the CI becomes a circle with angle ~γj and
radius α

√
J`. By integrating over all angles the summed membership for a given

CI is obtained, equation (2.11).

Φ`,X(α) =

∫
· · ·
∫�� ��

j = 1, . . . , J`
︸ ︷︷ ︸ Γ`,X(~yj) d~yj (2.11)

Function Φ`,X(α) is found, which is given in equation (2.11) and sums the
membership for a given α by integrating over all possible attribute values given
the different ~γj for label X ∈ Θ. Again, this function is obtained for Gaus-
sian measurements, when a different pdf for the measurements is assumed
equation (2.9) does not reduce to equation (2.10) which in turn changes equa-
tion (2.11). The methodology however stays the same as is shown in Section 2.6

The total fitness of a measurement to a membership field, denoted m`(X),
is defined as the integral over α of the summed membership values weighed
by factor W`(α). For the boundaries of this integral is known that α ∈ [0,∞〉
from equation (2.5) since CI ∈ [0, . . . , 1]. This weight factor is given in equa-
tion (2.12), it reduces to equation (2.13) for Gaussian distributions and it is
shown in figure 2.7.
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Figure 2.7: Weight factor for the various values of CI and J` ∈ {1, 2, . . . , 8}

W`(α) =

J∏̀
j=1

pj (µj + ασj)

∫ ∞
0

 J∏̀
j=1

pj (µj + ασj)

 dα

(2.12)

W`(α) =

√
2J`
π
· e− 1

2J`α
2

(2.13)

The purpose of the weight factor is to be able to use it for a weighed average.
It is therefore necessary to check whether

∫ ∞
0

W`(α) dα = 1,

since that should be the case. Again, the error function — as given in equa-
tions (2.6), (2.7) and (2.8) — is needed to calculate this. In the weight factor,
define t by

t2 =
J` · α2

2
→ dα =

2√
2J`

dt
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which leads to ∫ ∞
0

W`(α) dα =

∫ ∞
0

√
2J`
π
· e− 1

2J`α
2

dα =

=

√
2J`
π
· 2√

2J`
·
∫ ∞

0

e−t
2

dt =

=
2√
π

∫ ∞
0

e−t
2

dt = erf(∞) ≡ 1 qed.

The resulting fitness function, given in equation (2.14), is simply the weighed
average value of the summed membership over the different CI values.

m`(X) =

∫ ∞
0

W`(α)Φ`,X(α) dα (2.14)

2.5 Feedback possibilities

The added value of calculating how well a measurement fits the membership
function is twofold. Firstly, it can be used as classifier output. Secondly, equa-
tion (2.11) may be used to investigate if more accurate information on attribute
values will reduce classification uncertainty and if so, how much more accurate
the attribute value needs to be. Consider e.g., an object that is measured on two
attributes (J1 = 2 ), namely speed and altitude in table 2.1, and the membership
field from figure 2.5.

Figure 2.8(a) shows how the membership is distributed over the various val-
ues of CI for the example from table 2.1. The best fit occurs at the boundaries
of CI values between 0.5 and 0.85. For larger values of CI the summed mem-
bership decreases, meaning that the combined mean values on both attributes
do not fit the membership field.

It is therefore interesting to see how the membership is distributed over
possible attribute values on that contour line. This means that equation (2.10)
needs solving for J1 = 2 resulting in a description of a circle when ≤ is replaced
by =, ξ1

2 + ξ2
2 = 2α2. Thus, the altitude at the outer edge of the CI becomes:

y1(α) = µ1 + σ1α
√

2 · sin(β)

with β ∈ [0, 2π].

Table 2.1: Measurements on Speed and Altitude

Aj j µj 2σj
Altitude 1 1200 200

Speed 2 12 6
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Figure 2.8: Membership value against CI and against β

The speed at the outer edge of the CI becomes:

y2(α) = µ2 + σ2α
√

2 · cos(β)

with β ∈ [0, 2π]. Figure 2.8(b) shows the results using these descriptions where
it becomes apparent that in this example the membership peaks around β = 0.
Since |sin(0)| < |cos(0)|, a reduction in uncertainty on the speed is required
most. From the CI value with maximum summed membership, the required
uncertainty reduction can be calculated using equation (2.5) and the definition
of ξj .

Using both these steps, the impact of the different attributes to how well the
confidence interval fits the membership is determined. Similar work on attribute
impact on results is found in e.g. [103]. In this manner the system learns which
information is needed and the priority (through risk calculation) of that sensor
task. This information can be fed to a sensor scheduler designed according to
[104] or [51] to close the sensor control cycle. In this sense, the information
needs are mapped on the information gathering capabilities, [46].

2.6 Extensions

The formulas to determine the CI in this chapter mostly assume Gaussian dis-
tributions on measurements and change when a different pdf is assumed on
the measurement (or sensor) as was already stated in Section 2.4.2. Looking
back at equation (2.3), now assume a Laplace distribution — which is given
in equation (2.15) with mean value µj and variance 2bj

2 — on the indepen-
dent measurements. In this case, the relation between the boundary value and
CI from equation (2.3) turns to equation (2.16) for independent, Laplace dis-
tributed measurements.
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pj(yj) =
1

2bj
e
−
|yj−µj |
bj (2.15)

CI =

J∏̀
j=1

[∫ µj+αbj
√

2

µj−αbj
√

2

1

2bj
e
−
|yj−µj |
bj dyj

]
(2.16)

Using basic mathematical operations equation (2.16) is reduced to equa-
tion (2.17). Note, the absolute value in the definition of the Laplace distribu-
tion may be left out due to the fact that it is a symmetrical function around the
mean value. In order to do this the lower boundary in the interval is changed
from µj − αbj

√
2 to µj . Since this change reduces the results exactly in half,

the integral is multiplied by 2.

CI =

J∏̀
j=1

[∫ µj+αbj
√

2

µj

1

bj
e
−
yj−µj
bj dyj

]
=

=

J∏̀
j=1

[∫ α
√

2

0

e−t
2
j dtj

]
=
(

1− e−α
√

2
)J`

(2.17)

Any combination of distributions could be used, e.g., for five independent
sources of which two are Gaussian distributed and three are Laplace distributed,
the CI is given by:

CI =
(

1− e−α
√

2
)3
(

erf

(
α√
2

))2

.

When all sources give Laplace distributed measurements, equation (2.9)
changes to equation (2.18) which in turn simplifies to equation (2.19) based on
α ∈ [0,∞〉. Possible attribute values are still defined as the mean and a fraction
of the square root of the variance, for Laplace distributions yj = µj + ξjbj

√
2.

The weight factor W`(α), changes to equation (2.20) for Laplace pdfs , for
which the property

∫∞
0
W`(α) = 1 can be easily shown. In figure 2.9, both the

relation between Confidence Interval and the boundary value α and the weight
factor and α are shown.

J∏̀
j=1

1

2bj
e−|ξj

√
2| ≥

J∏̀
j=1

1

2bj
e−α
√

2 (2.18)

J∑̀
j=1

|ξj | ≤ α · J` (2.19)
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Figure 2.9: Different values for Laplace distributions for CI and the weight
factor

W`(α) = J`
√

2 · e−αJ`
√

2 (2.20)

From figure 2.9(b) it can be seen that more attributes combined, leads to less
influence of uncertainty in those attribute values. This effect was also visible in
Gaussian distributed measurements only not as strong. This can be explained
by the excess kurtosis of both distributions. Gaussian distributions have an
excess kurtosis equal to 0 whereas the excess kurtosis of a Laplace distribution
is 3, see [44]. This means the Laplace distributions have a stronger peak around
the mean and fatter tails. This fact explains these effects. In general, more
excess kurtosis in the underlying distribution of sensor measurements means
less influence of uncertainty when combining enough sources.

For the example of table 2.1 let us assume Laplace distributions instead of
Gaussian ones. The bj parameter is obtained by the variance, σj

2 = 2bj
2. The

results from figure 2.8 change to those shown in figure 2.10. These results are
obtained by reducing equation (2.19) for two sources to

|ξ1|+ |ξ2| = 2α

for the relation between the fraction on altitude and that of speed. In the
case of Laplace distributions, measurements are given by yj = µj + ξjbj

√
2.

This distribution leads to similar results. For both the Gaussian distributed
measurements as well as the Laplace distributed measurements, a reduction in
speed uncertainty reduces the most classification uncertainty. This becomes
apparent when comparing the relation between the fractions ξ1 and ξ2 as shown
in figure 2.11 for the example from table 2.1 and a confidence interval of 85 %
for both cases.
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From figure 2.11 can also be seen that two Gaussian distributed measure-
ments lead to a circle and two Laplace distributed measurements lead to a
rhombus (or diamond) for the fractions. Section 2.5 gave the equations for the
circle. For the rhombus in the case of two attributes can be said that both
polygon diagonals are perpendicular and that both are equal to 2α. Thus the
opening angle of the rhombus is π/4 rad.
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3
Combining classification belief

To believe in a contradiction is to abdicate your belief in the existence of the world around
you and the nature of the things in it, to instead embrace any random impulse that strikes

your fancy — to image something is real simply because you wish it were. A thing is what it
is, it is itself. There can be no contradictions.

In reality, contradictions cannot exist. To believe in them you must abandon the most
important thing you possess: your rational mind. The wager for such a bargain is your life.

In such an exchange, you always lose what you have at stake.

Wizard’s ninth rule – Chainfire (Ch.48)

DIFFERENT sources will disagree to some extent. Dealing with this disagree-
ment — or conflict — is needed to determine a combined system belief.

Besides reducing the conflict, it is also used as a feedback mechanism. In this
sense, conflict is a valuable contribution for assessing tasks that are currently
executed, anomaly detection and user interaction. The approach discussed in
this chapter has appeared in [74], [76], and [78].

3.1 Choosing a combination rule

The previous chapter showed that for any subset of attributes a weighted average
of membership can be calculated. Thus, L different classifiers express to what
extent they believe that the object under consideration belongs to a certain
classification label. Since there are now multiple classifiers expressing their
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belief, these beliefs need to be combined using a combination rule. Furthermore,
these classifiers may provide different results and the chosen combination rule
should therefore be able to cope with conflicting information.

Hunter and Liu describe a methodology to combine uncertain information
from conflicting sources using possibility theory, [41]. Their approach only com-
municates labels to the operator after combining the information, whereas the
approach using DSmT can communicate quantified solutions, or in this case:
the soft classification results. Sekkas et al. solve a similar problem of combining
context sensitive information using Fuzzy Logic, [90], with soft classification re-
sults. In their work fuzzy logic is used to assign confidence degrees to different
sources but the combination of information of those sources is done probabilis-
tically. Possibility theory requires additional information in the form of a-priori
probabilities or a training phase. Both are therefore not directly applicable in
the military domain.

Another possible combination rule is Dempster-Shafer theory, [20] and [91].
The Dempster-Shafer (ds) theory assume all elements in the solution space to be
mutually exclusive and in Section 2.1 was shown that the classification solution
space in this domain does not fulfil this assumption. Such a frame could be
achieved by refining the solution space but this will have to be done repeatedly
which is costly in terms of computation time. Furthermore, ds is created for
independent and non-conflicting sources. The latter property does not apply.
Different rules exist to overcome this problem but the question then becomes
which of these is more suited. For now, the question which rule is the best to
do this is which scenario is not answered.

Although any combination rule might be adapted to be applicable for com-
bining classifier belief, here the choice is to use DSmT, [92] and [24], based on
the conflict resolution possibilities within this theory and because it does not
assume a mutually exclusive frame of discernment. Furthermore, besides the
fusion model no additional rules are needed in DSmT when adding sources,
whereas e.g., fuzzy logic, would requires no rules to take a new source into
account.

3.2 Dezert-Smarandache Theory

The DSmT may be seen as an extension of ds theory, [20] and [91], since ds
theory assumes an exclusive and exhaustive frame of discernment and DSmT
assumes only exhaustiveness. The ds theory has been used in Artificial Intel-
ligence (ai) applications since the early eighties of the 20th century. Besides
assuming a non-exclusive frame of discernment, ds theory is not designed for
combining highly conflicting data as can be seen in Zadeh’s example, [114].
Since DSmT deals with non-exclusive classes and it can deal with conflicting
information this framework is used throughout this work.
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3.2.1 Free DSmT model

In the most general case, DSmT assumes that all possible combinations of
labels from Θ using the ∪ and ∩ operators are possible. In order to combine
the beliefs expressed by L different classifiers, a set is constructed that contains
all labels themselves, all combinations of labels with both operators, and the
classical empty set. This set is called the hyper-power set in DSmT and is
denoted as DΘ. This notation refers to Dedekind lattices, [17] and [16], since
the construction of the hyper-power set DΘ is closely related to Dedekind’s
problem, [21], [22], and [17].

From a certain frame of discernment Θ with I labels, the hyper-power set,
DΘ, can be constructed by three rules:

1. ∅, θ1, θ2, . . . , θI ∈ DΘ;

2. If A, B ∈ DΘ then A ∪B ∈ DΘ and A ∩B ∈ DΘ;

3. No other labels belong to DΘ except those obtained using rules 1 and 2.

Using DΘ the combination rule in equation (3.1) is defined to combine the
beliefs from the L different classifiers where the belief held by classifier ` on a
specific label is denoted m`(X`) with ` ∈ {1, 2, . . . , L}. This combined belief is
denoted mf

c (X) where the f refers to the free fusion model where all possible
combinations from DΘ are taken into account, [92]. Note that for the beliefs
expressed by the classifiers

∑
Xi∈DΘ mf

c (Xi) = 1 should hold, a normalisation
of each classifier output is therefore required.

mf
c (X) =

∑
X1,X2,...,XL∈DΘ

X1∩X2∩...∩XL=X

L∏
`=1

m` (X`) (3.1)

Operators however, usually do not think in terms of generalised belief as-
signments. Plausibility and the credibility as defined in ds theory may be used
instead. Both these quantities are also defined in the DSmT framework, [23].
Recently, Dezert and Smarandache proposed to expand the power set to a super-
power set that also contains all combinations with the operators ∩, ∪, and the
complement operator in [24]. This extension provides more possibilities for the
application of DSmT. Due to the added computational complexity however we
do not consider this new extension in this thesis.

Using the free fusion model implies that all possible combinations of labels
are valid. Section 2.1 however stated that labels at the same specificity level are
mutually exclusive, an object cannot belong to both the helicopter class and the
submarine class. Based on the ancestral relations, equation 2.1, and based on
this mutual exclusiveness within the same specificity level, a set of constraints,
denoted ∅M, is constructed containing all combinations represented in DΘ that
are constrained given the application domain. The resulting fusion model M
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is defined as a 2 -tuple containing the frame of discernment Θ and the model
constraints ∅M,M = {Θ,∅M}. The free fusion model assumes ∅M = ∅ which
is not the case in our application domain. Additional rules are required when
the free model does not hold, ∅M 6= ∅.

3.2.2 Proportional conflict redistribution

Smarandache and Dezert have introduced several Proportional Conflict Redis-
tribution (pcr) rules in [93] to deal with constraints placed on the free model.
In [62], Martin and Oswald describe the generic pcr6 rule of combination, given
in equation (3.2), for the DSmT framework. This rule enables us to impose the
model constraints ∅M from the fusion model M.

mpcr6
c (X) = mf

c (X) +

L∑
`=1

G`(X) ·m`(X)2 (3.2)

In equation (3.2) the term G`(X) denotes the factor that makes the redistri-
bution of the conflicting mass of source ` to a label X ∈ DΘ proportional to the
original contribution to the conflict. It is given by equation (3.3) and explained
in more detail with a small example in Appendix A.3.

G`(X) =
∑

⋃L−1
u=1 Xϕ`(u)∩X∈∅

Xϕ`(1),...,Xϕ`(L−1)∈(DΘ)
L−1

L−1∏
w=1

mϕ`(w)

(
Xϕ`(w)

)
m`(X) +

L−1∑
w=1

mϕ`(w)

(
Xϕ`(w)

) (3.3)

The term ϕ`(l) ensures that all labels from the hyper-power set are used ex-
cept label ` — the label under consideration — and it is given by equation (3.4).
In [62] this function is denoted σ`(l), whereas here ϕ`(l) is used to avoid confu-
sion with the notation of the standard deviation for Gaussian measurements.

ϕ`(l) =

{
ϕ`(l) = l if l < `

ϕ`(l) = l + 1 if l ≥ `
(3.4)

This combination rule can be implemented using Algorithm 3 from [62]
which is freely available on-line and given in algorithm 1. Note that in algo-
rithm 1 the operator × is used to denote the Cartesian product, [107]. Further-
more, the pcr6 rule only works when ∅M ∩Θ = ∅ holds.

36



3. Combining classification belief Sensing what matters

Algorithm 1: Pseudo code for the pcr6 rule of combination from [62]

Data : k sources S : S[i], . . . , S[n]
Result : Fusion of S by pcr6, ep

for i = 1 to k do
foreach c in S[i] do

append c to cl[i]
foreach ind in [1,size(cl[1])] × . . . × [size(cl[k])] do

c ← s ∩ ind
if s ≡ ∅ then

lconf ← 1; sum ← 0
for i=1 to k do

lconf ← lconf * S[i](cl[i][ind[i]])
sum ← sum + S[i](cl[i][ind[i]])

for i=1 to k do
ep(S[i][ind[i]]) ← ep(S[i][ind[i]]) + S[i](cl[i][ind[i]]) * lconf/sum

else
lconf ← 1
for i = 1 to k do

lconf ← lconf * S[i](cl[i][ind[i]])
ep(s) ← ep(s) + lconf

3.2.3 Belief metrics

The plausibility of X is the sum of all masses from labels that have partial or
full agreement with X and it is given by equation (3.5). The credibility of X
is the sum of masses from all the sub propositions (full agreement) of X and is
given in equation (3.6). From the definition of the credibility follows that for
all classes X with highest specificity mc(X) = Bel(X) holds, since they have no
sub propositions in the frame of discernment.

Pl(X) =
∑

Xi∩X 6=∅
Xi∈DΘ

mc(Xi) (3.5)

Bel(X) =
∑
Xi⊆X
Xi∈DΘ

mc(Xi) (3.6)

Plausibility sums all belief in partial agreement with X and 1−Pl(X) there-
fore gives all evidence in total disagreement with X. This value can be used
e.g., as an indication for how much uncertainty resides in a label. For classes
at a lower specificity level the difference between the credibility and plausibility
gives more information on the confusion that still exists.
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A single value for the possibility that the object under consideration belongs
to a certain class instead of a range of values like Bel(X)–Pl(X) is desired by
the operators. Note however, that during interviews operators indicate that a
visualisation of combined generalized belief assignments on labels is hard for
them to interpret. Another visualisation might therefore needed in practical
implementations.

BetP(X) =
∑

Xi∈DΘ

CM(X ∩Xi)

CM(Xi)
·mc(Xi) (3.7)

In [25], the probabilistic transform as defined in ds is re-written for the
DSmT framework. In DSmT the resulting quatity is called the pignistic1 prob-
ability, following the notation of Smets [96]. It is denoted BetP and given in
equation (3.7), where CM(X) denotes the DSm cardinality of label X given
the fusion model M under consideration. The notion of DSm cardinality is
discussed in [21].

In general

mc(X) ≤ Bel(X) ≤ BetP(X) ≤ Pl(X)

holds ∀X ∈ Θ. The pignistic probability might be a suitable quantity to visualise
as a means to communicate with the operator, although we note that more
testing is required to determine if this is the case.

DSmPε(X) =
∑

Xi∈DΘ



∑
Xl⊆X∩Xi
CM(Xl)=1

mc(Xl) + ε CM(X ∩Xi)

∑
Xl⊆Xi
CM(Xl)=1

mc(Xl) + ε CM(Xi)
·mc(Xi)

 (3.8)

Dezert and Smarandache introduce a different probabilistic transform in [23]
which they denote DSmPε, it is given in equation (3.8). This DSmPε value uses
the assigned masses on labels with a DSm cardinal of one and only slightly takes
the cardinal itself into account since they propose to use either ε = 0 or in case
that is not possible due to the fusion model ε = 1

1000 .

The conversion to probabilities facilitates communication with Bayesian ap-
proaches. Where the system itself operates on belief masses, which is referred to
as the credal level, the operator and/or other subsystems may view the calcu-
lated probabilities on the pignistic level (values derived of values on the credal
level such as credibility, plausibility and probabilities). Both the credal and pig-
nistic levels are described in the Transferable Belief Model (tbm) as described
in [95] by Smets and Kennes, where they use the pignistic level for decision
making.

1from the Latin pignus for bet
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Since the system works only on the credal level and the functions to switch
to the pignistic level are given the rest of this chapter only addresses belief at
the credal level.

3.2.4 Conditioning of belief

Additional information about the frame of discernment may lead to the desire
to redistribute belief. This may be achieved by Shafer’s conditioning rules or
the belief conditioning rules as defined for DSmT. Both methods are briefly
discussed.

Shafer’s conditioning rules

In [91], a conditioning scheme is proposed to deal with additional informa-
tion. When a new source indicates that the true solution lies in Xtrue ∈ Θ,
a new credibility and plausibility are determined ∀X ∈ Θ according to equa-
tions (3.9) and (3.10) respectively where Xtrue denotes not Xtrue. Although this
approach is simple to implement and to understand, it is not considered to be
objective enough as discussed in [94].

Belnew(X | Xtrue) =
Bel(X ∪Xtrue)− Bel(Xtrue)

1− Bel(Xtrue)
(3.9)

Plnew(X | Xtrue) =
Pl(X ∩Xtrue)

Pl(Xtrue)
(3.10)

In short, this condition rule uses a new source with mnew(X) = 1 and then
uses Dempster’s rule of combination to combine it with the previous held belief.
The advantage of this approach is that the new source may even indicate that
belief should not be held in a region of Θ.

Belief conditioning rules

In DSmT additional information on where the truth is, can be enforced using the
Belief Conditioning Rules (bcrs) as explained in [94]. The numerous variations
are all based on three subsets of DΘ that are constructed using three rules.
These three subsets are denoted D1, D2, and D3.

The subset D1 contains the combination of all labels that are used in the
description of where the truth lies. To denote this set of labels, [94] defines
the function s(Xtrue) when the truth lies in Xtrue. E.g., when the truth lies in
element Xtrue = X1 ∩X2 ∪X5, then s(Xtrue) = {X1, X2, X5}. The subset D1

contains all combinations of the involved labels that are returned by function
s(Xtrue)) using the ∩ and ∪ operators as well as the those labels themselves.
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A

B C

Figure 3.1: A generic free world fusion model common in DSmT

The second subset, D2, is the sub-hyper-power set generated with all labels
from Θ\s(Xtrue) and the ∩ and ∪ operators when the truth lies in Xtrue.

Finally, the third subset contains all elements from DΘ\∅ that are not rep-
resented in D1 and D2. This set is defined as D3 = (DΘ)\(D1 ∪D2). All three
subsets have no element in common two by two and their union is DΘ\∅.

Consider e.g., the free model of figure 3.1 and let the truth be in A∪B. The
different disjoint subsets then become:

• D1 = {A,B,A ∪ B,A ∩ B, } and all combinations contained in these ele-
ments like e.g., A ∩B ∩ C;

• D2 = {C} since s(A ∪B) = {A,B} and therefore Θ\s(A ∪B) = C;

• D3 = {A ∪ C,B ∪ C,A ∪B ∪ C,C ∪ (A ∩B)}.

All bcrs are based on redistribution of the masses in D2 and D3 to elements
in D1. For bcr1 this is done by proportionally redistributing the combined
mass from D2 and D2 to the elements in D1. For the other rules, bcr2–31,
redistribution is done directly to particular elements in D1 or it is done from
disjoint subsets of D2 or D3 to D1 and variations thereof, for details see [94].

3.3 User preferences

Classifier beliefs can be combined using pcr6 as shown in [63] for a fully auto-
mated classification problem. When the operator however plays a part in the
classification process additional rules are required. The operator (or user) may
exert his influence in two ways:

1. the operator is an information source and

2. the operator can place additional constraints.

The first type of interaction can be handled by pcr6. The constraints placed
by the user, denoted ∅U , however necessitate additional rules since ∅U ∩Θ 6= ∅
and pcr6 does not facilitate these types of constraints, see Section 3.2.2. The
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Figure 3.2: System architecture for automated classification and classification
support

main difference between ∅M and ∅U is that ∅M ∩Θ = ∅ whereas ∅U ∩Θ 6= ∅
when ∅U 6= ∅. Figure 3.2 depicts the resulting system architecture to achieve
the required user interaction.

Besides the user and the mbcs, any classification solution may be incoor-
perated in the system architecture from figure 3.2. Van der Broek et al. e.g.,
describe a classification system for sea based objects in [105] based on infor-
mation received from electro-optical sensors. Although their work focusses on
a three class problem with a jet-ski, a water-taxi, and a rhib2, it can be used
by adding those three labels in the model as described in Section 2.1 at the
appropriate specificity level(s).

3.3.1 Parents and bridges

In [94], several bcrs are proposed to deal with additional information, irre-
spective of the source of that information. However, these bcrs deal with the
situation where a source indicates where belief should be held. Here, a different
conditioning rule is introduced that deals with the situation where labels from
the frame of discernment are excluded. The excluded labels are contained in
∅U . The conflict K that an element X ∈ ∅U introduces, is the amount of belief

2Rubber Hull Inflatable Boat
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it was originally assigned to by the used combination rule, equation 3.11. The
total amount of conflict that is introduced by the operator is determined by
summing all mass originally assigned to X ∈ ∅U which has a value on [0, 1] and
this value can be used to inform the operator how much conflict is introduced
by ∅U , equation 3.12.

K(X) = mc(X) (3.11)

Ktotal =
∑

Xi∈∅U

K(Xi) (3.12)

Since the operator says that these labels should be excluded from the model,
the new User Preference Redistribution (upr) rule states that all these con-
strained labels, and of course their children, are assigned zero belief, i.e.,
mupr
c (X) = 0, ∀X ∈ ∅U . In order to maintain validity in the operator con-

straints, ∀X ∈ ∅U there is no Xi ∈ Θ\∅U for which Xi ∩ X = Xi holds.
Since ∑

∀Xl∈DΘ

mupr
c (Xl) = 1

should still hold, the masses that are discarded need to be redistributed. The
question becomes, where should it be redistributed to?

The first choice is to redistribute the conflicting mass to one of the parent
labels of the excluded one with smallest DSm cardinality that is not excluded
itself. In order to find the set of parent labels, X↑ is defined as the set containing
all full parent labels of X. This set joins all labels Xi ∈ Θ for which X∩Xi = X
holds, see equation (3.13) where the join operator is denoted 1. Note that the
difference with the definition of parent elements from Section 2.1 where all
elements with lower specificity with a non-empty intersection were considered
parent elements.

X↑ =1{Xi ∈ Θ | Xi ∩X = X} (3.13)

Xu =1{Xi ∈ Θ | Xi ∩X 6= ∅ ∧ Xi ∩X 6= X} (3.14)

Xui 1 X↑i =
K

1
a=1

θ↑aΩ−1(i) (3.15)

X→ =1{Xi ∈ Θ | Xi ∩Xu 6= ∅ ∧ Xi ∩X = ∅} (3.16)

The set of bridging labels of X, denoted Xu, is determined by joining the
labels that have a non-empty intersection but that are not fully enclosed by X,
equation (3.14). Now, all parent elements as defined in Section 2.1 are accounted
for since equation (3.15) holds ∀Xi ∈ Θ.

42



3. Combining classification belief Sensing what matters

It could be that all these bridges are constrained by ∅U as well, Xu\∅U = ∅.
In this case an unconstrained label, X→, is found by using constrained bridges,
equation (3.16). Should it occur that even this X→\∅U = ∅, K(X) is then
redistributed to Θ\∅U .

Four possible areas where the mass could be redistributed to are identified.
The area that will be used for the redistribution of the belief assigned to the
now constrained label X, denoted X∗, is determined by equation (3.17). In
essence, the first choice is to use the smallest full parent. If all full parents
receive negative confirmation from the user, bridges are chosen. Should these
also receive negative confirmation, the bridges are used to find generic labels
that have no intersection with the constrained label. Finally, should these labels
also receive negative confirmation, the mass is redistributed to all labels from
Θ that are not in ∅U .

Equation (3.17) determines where conflicting mass is to be redistributed.
Additionally, the most computationally intensive part — i.e., calculating X↑,
Xu, and X→ — can be done off-line ∀X ∈ Θ in contrast to bcr where the
disjoint sets need to be constructed based on ∅U and thus at run-time. When
upr is used in an on-line system and ∅U 6= ∅, equation (3.17) can be run with
low computational costs.

Having identified where conflict should be redistributed to, the next step is
to determine how to redistribute it.

X∗ =



min
Xi∈(X↑\∅U) CM(Xi) if X↑\∅U 6= ∅

⋃
{Xi | Xi ∈ (Xu\∅U )} if

{
X↑\∅U = ∅
Xu\∅U 6= ∅

max
Xi∈(X→\∅U ) CM(Xi) if


X↑\∅U = ∅
Xu\∅U = ∅
X→\∅U 6= ∅

Θ\∅U otherwise

(3.17)
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3.3.2 User preference redistribution

Only conflict needs to be redistributed so each element that is unconstrained
keeps the belief value that was assigned to it by pcr6. Belief mass is added
to the belief assignments on those labels obtained by equation (3.17). Con-
flicting mass is redistributed to all elements within that area proportional to
their assignment based on pcr6. This proportionality is applied to ensure that
initial differences between elements are kept after redistribution. If e.g., two
elements were assigned 0.01 and 0.02 belief mass and 0.1 is to be redistributed
to them. If this would be done by given both labels the same amount of the
conflict it would result in 0.06 and 0.07 belief mass. Since this is a distortion of
the original difference in belief assignment it is redistributed proportionally to
their initial proportions, obtaining 0.043 and 0.086. In this way, the fact that
one element was assigned twice as much belief as the other is maintained after
applying upr.

The redistribution is done ∀Y ∈ ∅U , obtaining equation (3.18) for the upr
rule which is defined ∀X ∈ DΘ\∅U .

mupr
c (X) = mc(X) +

∑
Y ∗∩X=X
∀Y ∈∅U

K(Y ) · mc(X)∑
Xi∩Y ∗=Xi
∀Xi∈DΘ

mc(Xi)

 (3.18)

3.4 Describing information need

Through pcr6, the user and the sensor manager can be notified of conflicts
between sources, [76]. If a conflict exists between automated classifiers, results
from Section 2.5 can be used to determine on which attribute the uncertainty
needs to be reduced and by how much this uncertainty needs to be reduced.
A sensor function request is made based on the desired measurement of an
attribute which is sent to the sensor manager. Additional sensor functions are
then started to reduce the uncertainty on the desired attribute, resulting in a
system as shown in figure 3.2.

New sensor measurements might not reduce uncertainty to the extent ex-
pected by the system based on the available sensor models. This is an indication
that the sensor performance is degraded and can be used to trigger the mainte-
nance crew and/or automated diagnostic functions.

Systems where sensor performance is monitored on-line are not uncommon.
Wei et al. describe a similar system in [106] where the sensor measurements
are used to reason on the sensor state using particle filters. To model different
sensor states they use a Markov model with discrete states. Our approach how-
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ever is able to deal with sensor performance degradation in a more continuous
quantified manner.

In [30], Erdnic et al. also reason on sensor performance by comparing the
information from multiple sensors that measure similar attributes to reason on
sensor degradation in terms of pass/fail. The main difference with the approach
described in this thesis is that Erdnic et al. describe a system with multiple
similar sensors whereas here a system with fewer, and more dissimilar sensors
is assumed.

When a conflict remains after initial on-line system diagnostic checks, other
possibilities need to be considered. Unlike [34] and [90] where a conflict is always
assumed to be caused by the unreliability of sources, here we consider that there
might be either:

1. Something wrong with the automated classifiers;

2. The operator is mistaken;

3. An object does belong to a certain class but it is behaving unaccordingly.

Which one of these possible causes is actually the case needs to be investi-
gated. In current systems there is no indication at all on this type of conflict. In
interviews operators indicate that the trigger that a conflict occurs is considered
a desirable new feature in the cms. Especially the third possible option is in-
teresting for anomaly detection. This is becoming important when considering
the new mission types with many a-symmetrical threats.

3.5 Anomaly detection

Anomaly detection can be achieved in two different ways. The first method
for anomaly detection is conflict between two — or more — classification in-
formation sources. E.g., an operator classifies an object as a fishing vessel but
the automated classifier based on course and speed classifies it as a fast patrol
boat. This can indicate that although the vessel is a regular fishing boat, its
behaviour is atypical as also explained in section 3.4. Using conflict between
sources for anomaly detection places constraints on the combination rules that
may be applied for fusion. Approaches like the one from Xin et al. in [111],
where ds rule is adapted for highly conflicting sources by throwing away the
most conflicting source data e.g., become less usable, whereas using pcr6 is still
an option.

Secondly, it can be done within a single classifier by taking temporal aspects
into consideration. E.g., an airliner will adhere to given air lanes and ferries have
dedicated routes they follow. If objects, classified as such, suddenly no longer
adhere to these expected areas the system is triggered. Of course, this principle
is not restricted to position but can be expanded to any subset of attributes.
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Figure 3.3: An object may be staying in, moving in, or moving out off the
expected area but sometimes you cannot be sure

In figure (3.3) the principle of adherence to expected areas in shown. At a
given time the position of an object is within the expected area with a given
course and speed. We describe three different situations in this scenario for the
estimated position at the next time step:

1. it completely falls within the expected area;

2. it partly falls within the expected area; or

3. it falls outside the expected area.

The first case is the most simple: the object is staying within the expected
area and therefore the initial classification solution is supported. The third
case indicates that the initial solution could very well be wrong since the object
is certainly moving outside the expected area. The second case brings more
uncertainty: since it is uncertain if the object is staying within the area or not
thus increasing classification uncertainty. A practical example of this type of
reasoning is the adherence to air lanes in the classification of air targets. Objects
moving out of the air lane without an apparent cause are immediately indicated
as suspect and investigated further. The same principles can also be used on
e.g., known fishing grounds, sea lanes and tourist attractions.
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Figure 3.4: Mission area in which the waters with a water depth ≤ 25m has
been highlighted in red

Another example of normal behaviour is the relation between speed and
water depth for ships. The maximum speed of a ship in shallow waters is
discussed in [32]. Knowing where a ship is sailing given its speed therefore
excludes possible classification solutions. For mission planning, specific areas
can be highlighted based on the water depths where certain ships would typically
not occur. Figure 3.4 shows a region in which the waters with a water depth
≤ 25m are highlighted in red. Ships sailing at high speeds in those areas are
therefore most likely small. Furthermore, the course and speed of ships are
related to each other in certain areas with a lot of traffic, [57], helping the
classification process as well as enabling anomaly detection.

Lensen et al. describe a system for electro-optical sensors that might be used
for anomaly detection, [59]. A low resolution system with a wide field of view is
used for general picture compilation and a high resolution narrow field of view
camera is used for interesting objects to obtain more information. This high
resolution image is fused into the lower resolution picture. The principle used
in [59] is similar to the approach used in this thesis. Lensen et al. propose to
use the most accurate sensor for objects that seem most interesting where we
propose to use sensors to obtain the most relevant information first.
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Sensor deployment

The past can teach us, through experience, how to accomplish things in the future, comfort
us with cherished memories, and provide the foundation of what has already been

accomplished. But only the future holds life. To live in the past is to embrace what is dead.
To live life to it’s fullest, each day must be created anew. As rational, thinking beings we

must use our intellect, not a blind devotion to what has come before, to make rational
choices.

Wizard’s seventh rule – Pillars of Creation (Ch.60)

BASED on the expected threat, surveillance tasks are executed by appropri-
ate sensors from the sensor suite. Executing surveillance tasks may lead

to detections, that in turn require execution of more sensor tasks like tracking,
classification and such. The more dangerous an object might be, the less un-
certainty about the information about that object is acceptable in order to take
counter measures. More sensor tasks are then needed to reduce that uncertainty.
The process of generating sensor task requests (or task generation for short) is
therefore vital to sensor management.

Once the system knows which tasks to perform and what their priorities are,
the most suitable of the available sensors is chosen. Sensor performance needs
to be predicted based on the task and the mission in order to schedule the
tasks for the available sensors. This chapter discusses the principles of sensor
management and proposes a new sensor manager. The work presented in this
chapter has appeared in the following publications: [75], [50], [51], [104], and
[58].
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4.1 Sensor management

Many methodologies have been proposed for sensor management, see e.g., [97],
[79] and [4]. In general they can be divided in three categories:

1. Multi Function radar (mfr), see e.g., [39], [27], [99], and [110];

2. Strategies to optimally use multiple sensors, see e.g., [3] and [42];

3. Selection of resources, see e.g., [115], [45], and [26].

Besides the management of sensor systems, research is also done in general
planning and scheduling techniques, see e.g., [101] and [5]. The introduction of
the mfr has led to specific management strategies, see e.g., [97], [39], [27]. In
[72] a comparison is made between these methodologies and proposes a sensor
scheduler based on fuzzy Lyapunov synthesis as proposed by Margialot and
Langholz for a different problem domain in [61]. This scheduler can be used
for all three categories that can be distinguished in sensor management. It
does however still depend on a system to define which tasks to perform and to
describe the constraints under which to perform those tasks.

In [8] and [10] Bolderheij et al. describe a sensor management concept that is
based on mission information. Based on this mission and the sensor observation
new considerations about the sensor deployment can be made. Especially the
notion that the expected threats determine how surveillance capabilities need
to be deployed is interesting for closing the sensor control cycle. Bolderheij et
al. also describe a mechanism to prioritise different sensor tasks in [9] using
risk assessment based on risk (R) as defined by Yellman in [113]. Here, this
approach is used as a basis to close the sensor control cycle.

The previous chapters already indicated how the available sensor information
can be used to determine how much uncertainty needs to be reduced. Sensor
task requests can be composed based on the information need. This maximises
situation awareness since the most relevant information is being requested from
the sensor suite. Figure 4.1 shows the sensor manager that is based on this
principle.

As soon as the sensor manager knows:

• which information is needed;

• which sensor tasks can be used to obtain that information;

• which sensor settings are required to execute the sensor tasks; and

• which sensor settings are constrained by the mission;

the sensor manager can start to allocate tasks to sensors and create a schedule
for each sensor. In the final stage the settings of the sensor suite will have to be
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Figure 4.1: Mission planning defines constraints and surveillance, whereas other
c2 processes determine the information requirements and risk estimation assigns
priorities for the sensor management

adjusted to execute the assigned tasks as well as possible given the information
requirements and constraints.

Sensor management requires various kinds of knowledge to appropriately
allocate tasks and sensor settings to each sensor: knowledge about the sensor
systems, about the mission, and about the environment, both meteorological
and geographical. Combined with knowledge about the task at hand, sensor
performance can be predicted. This sensor performance prediction is used as
a measure of suitability of the sensor for the task at hand. With measures for
sensor suitability, each task can be allocated to a sensor after which the sensor
scheduling can start. Sensor controls are determined in the final step.

In general, the sensor management approach used in this thesis consists of
three steps: allocating, scheduling, and controlling. This in accordance with [8]
and [36] that both propose this three-stage sensor manager.

In the allocation process it is important to map the specific characteristics
of the sensor task to the capabilities of the available sensors. We therefore first
look at process where sensor task requests are generated after which we will
look at the suitability of sensors for specific sensor tasks.
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Figure 4.2: In task generation a distinction is made between task requests based
on expected objects and those based on already detected objects; for the latter,
results from the classification process are taken into account

4.2 Task request generation

Sensor tasks need to be executed to reduce the uncertainty on attribute in-
formation of objects in the operational picture as presented to the operators.
Generation of sensor task requests can be split into two processes. The first
being the generation of tasks for expected objects: being the surveillance capa-
bilities. Second is the generation of tasks for already detected objects: track,
classify and identify capabilities. Figure 4.2 shows this principle.

4.2.1 Expected objects

How surveillance capabilities are to be deployed depends on the expected threat
in the mission area. The risk an expected threat poses to the mission naturally
depends on the mission success criteria. Currently, the primary warfare officers
make a sensor plan to detect manifestions of the expected threat. This is done
by setting search sectors and choosing the modes of operation for the various
sensors. Mission-driven sensor management as proposed in [7] can be used to
support this process. As a part of this management system, a mission planning
tool is required. Using that planning tool, the command team on-board only
inserts the threat they expect. A sensor deployment plan is then determined
using the determination of information needs as described in this thesis and
[104].
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Figure 4.3: Mission planner with an expected fast patrol boat (object 4 ) and
an indicated air lane (object 5 )

Such a mission planner needs not to be very complex. A graphical inter-
face showing geographical information and interface to insert objects and areas
combined with the own navigation plans should suffice for the purpose of sen-
sor management. Functionality may be added later to play what-if scenarios
to offer more support in planning the deployment of assets. It is however the
authors view, that such functionality should be developed based on the (simu-
lated) operational picture and that it should not be integrated in the mission
planner itself to ensure portability of the various software components.

Figure 4.3 shows a screenshot of the mission planner that was built during
this research. In the scenario shown the the screenshot, a fast patrol boat
(object number 4 ) is expected in a certain area, which is indicated with the
white lines. The weapon range (the red line) of the fast patrol boat can be
visualised since this classification is known to the system. The weapon range is
used as a trigger to start searching for a fast patrol boat in that region when the
area where it is expected comes within sensor range. Furthermore, surveillance
directed against the type of weapon that is used by the fast patrol boat is
started when the own ship comes within possible weapon range. Added value
of this visualisation is that during the planning phase the navigation plan could
be changed based on such weapon ranges. Altering navigation plans based on
weapon range information is shown for Unmanned Aerial Vehicles (uavs) in
e.g., [100].
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The surveillance task to detect a fast patrol boat is based on the size of the
area where it is expected to determine the search area. Furthermore, the size of
the object and its manoeuverability indicate the refresh rate for the surveillance
task. The surveillance area for the fast patrol boat has an increased elevation
in order to detect possible weapon launches.

An air lane is also indicated in the area where airliners are expected. This
expected object does not directly trigger a surveillance task due to the usual neu-
trality of airliners, rather it supports the classification process, see Section 2.3.
Adding other, more threatening, expected air objects in the vicinity of the own
ship will lead to sensor function requests for search areas.

Instead of indicating areas where certain types of objects are expected, the
operator can also define e.g., a missile threat that occurs all around the ship
thus triggering a horizon search task directed against sea-skimming missiles.
The update rate for such a surveillance task is based on the minimum required
detection range for such missiles.

4.2.2 Detected objects

For detected objects, sensor task requests are generated following the principles
as explained in [104]. Tasks are generated based on the risk calculation men-
tioned before. More specifically, tasks are generated when the uncertainty that
still exists on the risk an object poses exceeds an operator defined threshold.

Consider an object on which information about J attributes is available.
The available information on the j-th attribute is given by several sensor mea-
surements over time and is given by a mean value µj and a uncertainty given by
σj with j ∈ {1, 2, . . . , J`}. The risk can be calculated using the dbn of Bolder-
heij, [9], and the risk object t poses to the mission given the current information
is denoted R(t). This risk calculation is done using the mean values of the
attributes only. When sequentially varying each attribute with its uncertainty
the system can determine which attribute uncertainty causes most variation in
the risk, [104].

It is likely that the uncertainty about classification caused most uncertainty
in the risk as was shown in Section 1.3.2 and the dbn shown in figure 1.3. When
this is the case, the approach introduced in Section 2.5 is used to determine
the information need on which the sensor task request is based. The priority
assigned to the resulting sensor task request is determined by the maximum
value of the risk given the uncertainties in the information about the attributes.

54



4. Sensor deployment Sensing what matters

4.3 Sensor allocation

Sensor allocation is the process of assigning tasks to different sensor systems.
This needs to be done in such a manner that the most important tasks are
executed in time and preferably by the most suitable sensor. The choice that
needs to be made is which sensor to use when. This depends on the sensor
suitability and whether or not the sensor system is made available to the sensor
manager by the operator.

4.3.1 Sensor suitability

The suitability of a sensor for a given task depends on a number of things.
Firstly, it depends on the type of object at which the sensor task is directed.
Important factors are its position, speed and relative — or visible — size. Sec-
ondly, it depends on the sensor itself. For instance, a radar has different char-
acteristics than a Sound Navigation and Ranging (sonar) and will perform
differently when directed at the same object. Finally, the suitability depends
on the environmental conditions, both meteorological and geographical.

The environmental conditions play a different role for different types of sen-
sors. For radar systems a program like Computer Aided radar Performance
and Evaluation Tool (carpet), see [40], might be used and for the propagation
Advanced Refractive Effects Prediction System (areps), [83], could be used.
For electro-optical systems a program like Electro-Optical Signal Transmission
And Ranging (eostar), [56], predicts the performance against different objects.
For sonar finally, an overview of propagation and performance prediction mod-
els can be found in [31]. Besides using the environmental conditions only for
sensor performance prediction it can also be used in the more general purpose
of mission planning, see e.g., [1].

Such performance prediction tools are combined with altimetry (land height)
and bathymetry (water depth) information and are used to determine detection
probabilities (PD) which can be visualised in an overlay on the mission area as
shown in figure 4.4. Figure 4.4(a) e.g., shows the detection probability of an
s-band radar against an object at 350 m altitude with a radar-cross-section
of 10 m2 in the area of figure 4.3. In figure 4.4(b) the coverage of passive sonar
is shown based on the bathymetry of the environment. In figure 4.4 the colour
red is used for PD = 1 and blue for PD = 0. Using these measures, the system
can determine whether or not a sensor system fulfils the accuracy demands of
the task at hand. Since the operator usually does not know the exact altitude
of the expected threat, the vertical coverage is shown in a secondary screen
for an input direction. Figure 4.5 shows this coverage for the example from
figure 4.4(a) looking due south, in heading 180. The altimetry information is
added, while all bathymetry information is set to zero since the water depth
does not directly influence radar performance.
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(b) Coverage of passive sonar against a surface target

Figure 4.4: Embedding performance prediction tools into the cms enables dis-
playing the coverage diagrams directly on the tactical area
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Figure 4.5: Vertical coverage of an s-band radar

In [58] these principles are explained in more detail for radar and sonar
for both the horizontal and vertical coverages.

Bathymetry and altimetry in figure 4.4 are taken from the public National
Oceanic and Atmospheric Administration (noaa) databases, [71]. This data
has a resolution of 1 nautical mile. Interpolation is used to obtain data for
the required range intervals in the mission areas. The radar performance is
calculated using carpet and sonar performance is predicted using a range
dependent loss model called Range dependent Acoustic Model (ram)geo, [31].

Based on these prediction tools, the optimal settings — stage three of the
sensor manager — for a sensor can also be determined for certain tasks given
the environment. Since this operation can be done e.g., once every 15 minutes
the computational complexity of the optimisation algorithm is not a problem.

4.3.2 Scheduling

The scheduling algorithm that is used for scheduling tasks has been discussed
in previous studies, see [72], [75], [7], and [51]. The focus of this thesis is to
show the validity of describing the information needs and determining sensor
suitability. Since scheduling is necessary to complete the sensor control cycle,
this section briefly discusses a scheduling algorithm which can be used in the
system described in this thesis.
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Margialot and Langholz introduced a scheduler based on fuzzy Lyapunov
synthesis in [61]. It was designed for generic Job Shop Scheduling Problems,
but has been adapted for sensor management, [72] and [75]. This fuzzy heuristic
sorts all tasks in different buffers, one buffer (or queue, denoted Qf ) for each
type of sensor task. Whenever a sensor becomes available, the weight for each
buffer is calculated for sensor Ψ using equation (4.1) and is denoted wΨ(Qf ).
The sensor then takes the heaviest buffer and picks the task that adds most to
the calculated weight.

wΨ(Qf ) = OΨ,f

√
|Qf | ·

∑
∀t∈Qf

S(Ψ, t) ·R(b) (4.1)

In equation (4.1), OΨ,f denotes the operator preference to use a certain
sensor Ψ for task type f , |Qf | denotes the number of tasks in buffer Qf , t
denotes a task in a buffer and R(t) denotes the risk object t, at which this task
is directed, poses to our current mission. Finally, S(Ψ, t) denotes the suitability
of sensor Ψ for task t and can be determined using the mechanisms explained
in section 4.3.1.
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The greatest harm can result from the best intentions.

[. . .]

It sounds a paradox, but kindness and good intentions can be an insidious path to
destruction. Sometimes doing what seems right is wrong, and can cause harm. The only
counter to it is knowledge, wisdom, forethought, and understanding the First Rule. Even

then, that is not always enough. [. . .] Violation can cause anything from discomfort, to
disaster, to death.

Wizard’s second rule – Stone of Tears (Ch. 63)

MOST classifiers assume exclusive classes from a classification tree. Based on
exclusiveness of classes, combination rules have no need for knowledge of

the classification model. In chapter 2 of this thesis, a new approach to model the
classification space is introduced together with classifiers that use available prior
knowledge about the different classes. Chapter 3 discussed how the results from
these classifiers can be fused while taking into account that class labels are not
necessarily exclusive. This new classification approach needs to be compared to
existing ones. Comparing two approaches requires evaluation criteria suitable
for classification problems with non-exclusive classes.

Evaluation criteria for classifiers exist that either deal with soft classification
results in problems with exclusive classes, see e.g., [38]; or that deal with hard
classification results with non-exclusive classes, see e.g., [13], [18], and [112].
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Evaluation criteria for non-exclusive labels assume a tree structure where
each label has only one parent label. The new classification approach from
Chapter 2 however provides soft classification results for non-exclusive labels
where labels may have multiple parent labels. New evaluation criteria are pre-
sented in this chapter which can be applied in domains where soft classifiers are
used for multi-label classification with non-exclusive, hierarchical labels. Chap-
ter 6 discusses results obtained with both the existing criteria as well as the new
criteria.

Required computational power for new approaches is important in imple-
mentations. This chapter therefore also discusses the computational complexity
of the pcr6 rule for combining the information from the different classifiers.
Steps are introduced to reduce the required computation time in order to make
an implementation feasible.

The work presented in this chapter has appeared in [89] and [77].

5.1 Traditional evaluation

The goal of a classifier is simple: assign a label to data. To determine how well
a classifier performs, a number of performance criteria have been introduced in
the literature. In this section we discuss the existing criteria and show their
shortcomings.

5.1.1 Error estimation

The error-estimation criterion, denoted E, counts how many times a hard clas-
sifier wrongly classifies an example from the test data. The error estimation
therefore states a percentage of how often a classifier is wrong based on test
data. The criterion E is suitable for problems with exclusive classes but it is
not suitable for problems with non-exclusive classes since it is unclear which
labels should be counted as wrong. Furthermore, E requires hard classifier out-
put whereas the proposed classifiers from Chapter 2 express belief on all labels
(soft classification). Using E therefore, means that the classifier output is the
label that was assigned most belief.

In figure 5.1 a possible classification solution from two different soft classifiers
is shown for an example where the true classification is Air Defence and Com-
mand Frigate (adcf). Although classifier 2, figure 5.1(b), assigned much belief,
namely 0.233, to the correct solution (an adcf), it also assigned relatively much
belief (0.193 ) to a wrong label from a different branch. In contrast, classifier 1
in figure 5.1(a) has spread its belief evenly over more generic labels, but all of
them ships. In that sense, classifier 1 indicates that it does not have enough
information for a more specific description, whereas classifier 2 suggests to have
a more definitive answer since it assigns belief to more specific classes.
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Figure 5.1: Possible classification solutions of different classifiers for an object
with true classification Air Defence and Command Frigate

To compare the soft classifiers using E, the output of classifier 1 becomes
Frigate and that of classifier 2 becomes adcf based on the label that received
most belief. This leads to the conclusion that classifier 2 has best performance
since it finds the right solution. In contrast, in interviews the operators in-
dicated that the output of classifier 1 is more desirable since it admits having
uncertainty on various types of ships. This keeps a worst-case scenario open that
would be (wrongfully) neglected using the output of classifier 2. Test criteria for
classifiers operating on non-exclusive classes should therefore take into account
how classifiers spread their belief over classes in the entire solution space.

5.1.2 Recall and precision

In multi-label learning applications the F1 measure as proposed by Yang, [112],
is used. This criterion is based on recall and precision. Recall on object o,
denoted ro and given in equation (5.1), in multi-label applications is defined
as the number of found labels that were correct divided by the total number of
correct labels. The precision on object o, denoted pr o and given in equation (5.2),
is defined as the number of found labels that were correct divided by the total
number of labels that were found. The F1 measure is based on the mean recall
and precision, denoted r̂ and p̂r respectively, over all objects and is given in
equation (5.3).

ro =

∣∣∣X ∈ So ∧X ∈ Ŝo

∣∣∣∣∣∣X ∈ Ŝo

∣∣∣ (5.1)
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pr o =

∣∣∣X ∈ So ∧X ∈ Ŝo

∣∣∣
|X ∈ So |

(5.2)

F1 =
2r̂ p̂r

r̂ + p̂r
(5.3)

In equations (5.1)–(5.3) X denotes a label, So denotes the set of labels that
are correct for the o-th object, and Ŝo denotes the set of assigned labels to
the o-th object. These criteria are based on hard classifier output where the
mbcs produce a normalised soft classification result. Re-writing these quantities
for soft normalised classifier output means that for both recall and precision
the denominator equals 1 due to the normalisation of the classifiers. In this
case, |r | = |pr | and thus the F1 metric equals the precision (or the recall),
F1 = p̂r = r̂ . Furthermore, the numerator of precision and recall, which for hard
classifiers is defined as the number of correctly found labels, shows similarities
with credibility and plausibility i.e., summing all masses assigned to (partly)
correct labels.

Elkan proposes to use a cost function for recall and precision to weigh dif-
ferent classification solutions on importance during the training on labels in
[28]. The dbn for risk calculation from Section 1.3.2 may be used as this weight
function since it can couple the classification performance to mission success.
Although this mission dependence is important, it is also a drawback of using
the dbn as a weighing function in classifier learning. Since the risk calculation
is mission dependent, each classifier would need training for all different specific
missions in order for this to work. Another possible implementation would be
to train the classifiers using the dbn during mission execution. Operationally
speaking this is unacceptable since classification should also be conducted di-
rectly at the start of a mission.

5.1.3 The loss function

For multi-label learning the loss function is also used as an evaluation criterion.
This function counts the number of labels that are found by a classifier that
are in the right branch of the classification tree. This metric may be used in
various ways. For the use of the loss function in uni-category classification tasks
see e.g., [13] and [18]. Other ways of using the loss function are also possible.
Dekel et al. use the length of the correct path in the branch in the loss function,
[18], whereas Cai and Hofmann use a weighed version of this path to distinguish
between the different levels in the tree, [13].

Cesa-Bianchi et al. [14] use the parent, child relation in the loss function so
that a wrongly classified child label is not penalised if the parent was already
misclassified. In [87], Rousu et al. build upon this by using a sibling and subtree
scaling to re-weigh individual prediction errors on individual nodes.
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For similar problems the loss function may be applied differently depending
on which literature one follows. Which specific application of the loss function
is better than another for different domains is unknown. Since no unified ap-
plication is known of this criterion it is not used in this thesis. Furthermore,
although the loss function can deal with multiple parent labels in the classifica-
tion tree it still assumes hard classification results leading to similar problems
as encountered with the error estimation criterion in Section 5.1.1.

5.1.4 Confusion matrix

All criteria discussed so far operate on hard classification results. The traditional
criterion for soft classifiers is the confusion matrix (see e.g., [38]), which is
denoted M . The element Mi,j in this matrix denotes the mean value of belief
assigned to label j when the ground truth was label i. The focus when using
this criterion is on the diagonal of M , the mean values of belief assigned to the
correct label. In the case of non-exclusive labels however, more areas in M need
to be taken into account. Section 5.2.1 will therefore introduce new evaluation
criteria which are based on those areas in M .

Criteria that take the distribution of belief into account are not only relevant
for military applications. All processes where a relatively small difference in
classification leads to a completely different action, such as crisis response and
financial markets, would benefit from a good insight in classifier uncertainty for
non-exclusive, multi-class problems.

5.2 New metrics

The previous section shows that the existing criteria in literature for multi-label
learning are not suitable as evaluation criteria for the type of domain discussed
in this thesis. Two new criteria are therefore introduced. Both criteria, the
confusion metrics and the distance metrics, are based on the confusion matrix
while taking the model of the classification space into account. These new
criteria are inspired by the loss function from e.g., [18] and [14], but do not have
the same drawbacks as the loss function itself.

5.2.1 Confusion metrics

All criteria for multi-label learning described in Section 5.1 use knowledge about
parent, child relations and count the number of the correct labels found and dis-
tinguish based on the level in the tree. For soft classification results it therefore
seems logical to look at the values in the confusion matrix and sum values based
on the model knowledge. These confusion metrics sum the confusion between
non-exclusive classes with a different level of specificity.
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For example, when the ground truth solution is Seahawk the confusion with
all types of Helicopter with exception of the Seahawk itself is summed. This
may be repeated for each level of specificity obtaining multiple values. In con-
trast to the loss function approaches, these confusion values are not summed
over all the different orders of parents. Instead, the a-th order ancestor confu-
sion (or confusion in the branch denoted Ba(Xi)) on label Xi is calculated by
equation (5.4).

Ba(Xi) =
∑
∀Xj

{Mi,j | Xj ∈ Ha(Xi)} (5.4)

In these confusion metrics, the ancestral labels are determined by equa-
tion (2.1) from Section 2.1 where θk,n is replaced by Xi using the mapping
function Ω, equation (2.2). Furthermore, the set Ha(X) denotes the set that is
constructed by joining all a-th order ancestor labels of label X that are not in-
cluded in the other ancestral label sets, equation (5.5). The labels in set Ha(X)
are referred to as the unique a-th order ancestral labels of X.

Ha(X) = X↑a \

(
a−1

1
p=−K

X↑p

)
(5.5)

In equation (5.4) the confusion matrix is denoted M and single values Mi,j

represent the mean value of belief a classifier assigns to label Xj when the
correct label is Xi. For overall classifier evaluation the mean value of the a-th
order branch confusion over all labels is examined, B̂a. For hard classifiers with
exclusive classes the mean value of the diagonal of the confusion matrix is often
used, [38], this value is produced by B̂0.

5.2.2 Distance metrics

Equation (5.4) indicates the total amount of confusion with the a-th order par-
ents and all its children. Figure 5.1 however shows, that the total amount
in those areas does not give enough information. When a classifier is wrong,
it would be preferable that its confusion is evenly (or uniformly) spread over
the child elements in the right branch. Our second criteria type, the distance
metric, therefore determines the Root-Mean-Square (rms) distance of confusion
values in the branch to the mean value in that area. This is also done for each
specificity level.

δa(Xi) =

√√√√ 1

|Ha(Xi)|
·

∑
Xj∈Ha(Xi)

(
Mi,j −

Ba(Xi)

|Ha(Xi)|

)2

(5.6)
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The rms distances for the a-th order ancestor confusion is denoted δa and
it is given by equation (5.6) for each label Xi. The number of unique a-th
order ancestor labels of label Xi are needed to calculate the mean value and it
is denoted by |Ha(Xi)|. To determine overall classifier performance the mean

value over the class labels is determined, δ̂a.

5.3 Computational complexity

The size of the hyper-power set used in DSmT follows the Dedekind numbers
given the size of the frame of discernment, [92] and [102]. In [102] a proof is
given that the n-th Dedekind number may be calculated by equation (5.7).

22n∏
k=1

2n−1∑
j=1

j−1∑
i=0

1− bki bkj
log2(i)∏
m=0

1− bim + bimb
j
m

 (5.7)

In equation (5.7),the term bki is determined by equation (5.8). Sufficient
to say, the number of required computations increases dramatically when the
frame of discernment grows. For practical implementations of DSmT and pcr6
this is a problem that needs to be addressed.

bki =
k

2i
− 2k

2i+1
(5.8)

Recent developments in DSmT show a shift from using the hyper-power
set to using the so-called super-power set, [24]. The difference between the
two is that the hyper-power set is constructed using the ∩ and ∪ operators,
the super-power set is constructed using the ∩, ∪, complement, and exclusion
operators. The size of the super-power set that needs consideration will therefore
increase much faster than the Dedekind numbers given the size of the frame of
discernment. Although this new super-power set is not used in this thesis, it
does becomes apparent that reducing the required computation time becomes
even more important should this work be expanded with the super-power set.
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5.3.1 Filtering

Although the required number of computations in the case of classification is
reduced as a result of the model constraints, this reduction is not enough for
practical implementation purposes. In this section, another approach is intro-
duced to reduce the computational complexity for practical implementations.

The mbcs assign belief to all classes from the frame of discernment, Sec-
tion 2.4. This implies that a lot of elements from this frame receive a non-zero
value. By filtering the output of all classifiers before combining them, the num-
ber of non-zero values is increased, which in turn reduces the number of possible
combinations of elements that need to be evaluated. For a threshold value λ,
the filtered output of source ` can be determined by equation (5.9). In order to
maintain validity, the resulting masses are normalised.

mfilt
` (X) =


m`(X) if m`(X) ≥ λ · (max

Xi m`(Xi))

0 if m`(X) < λ · (max
Xi m`(Xi))

(5.9)

5.3.2 Zadeh’s example

To get an idea of the impact of the proposed filtering on the output, it’s effect
on Zadeh’s example, [114], is studied. Zadeh’s example addresses the case where
all sources disagree on what is the correct label. All L sources however, do not
fully reject an additional label XL+1 in Zadeh’s example. This additional label
is therefore assigned a small belief, ε, of non-rejection. Zadeh’s example usually
assumes small values for this non-rejection belief, ε ≤ 0.1. Since our goal is to
study the effects of filtering, we consider 0 ≤ ε ≤ 1. Table 5.1 shows Zadeh’s
example for L-sources where belief expressed by a classifier (or source) on label
X is denoted by m`(X) with ` ∈ {1, 2, . . . , L}.

Table 5.1: Zadeh’s example for L-sources
X1 X2 . . . XL XL+1

m1(.) 1− ε1 0 . . . 0 ε1
m2(.) 0 1− ε2 . . . 0 ε2

...
...

...
. . .

...
...

mL(.) 0 0 . . . 1− εL εL
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(a) Conflicting mass in Zadeh’s example
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Figure 5.2: The influence of filtering on the conflict for Zadeh’s example when
using DSmT

Effect on conflict

The amount of conflict, denoted C, in Zadeh’s example is given by equa-
tion (5.10) since all labels are mutually exclusive. For the effect of filtering
we look at a simplified case where all ε` are equal in which case we use ε for
notational ease. In this simplified example, the product in equation (5.10) is
reduced to εL.

Figure 5.2(a) shows C for different values of ε and L using equation (5.10).
The proposed filtering from equation (5.9) entails that the conflict becomes 1
when ε ≤ 0.5 becomes 0 otherwise, see table 5.1. This means that the filtering
either increases conflict (when ε ≤ 0.5) or it decreases conflict (when ε > 0.5).
Applying a filtering threshold λ satisfying equation (5.11) produces figure 5.2(b).

C = 1−
L∏
`=1

ε` (5.10)

λ ≥


ε

1−ε for ε ≤ 0.5

1−ε
ε for ε > 0.5

(5.11)
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(b) Belief mass for L = 9

Figure 5.3: From the belief masses for L = 3 and L = 9 can be seen that with
more sources combined belief assigned label XL+1 exceeds that of other labels
for smaller values of ε

Effect on belief mass

Figure 5.2(b) shows that the impact of the input filtering on the conflict de-
creases as the size of the frame of discernment and the number of sources
increases for ε ≤ 0.5. The impact on the belief masses themselves (and on
subsequent decisions based on those beliefs) is something different. The com-
bined belief on label X1 and on XL+1 for the unfiltered and the filtered case are
shown for L = 3 and L = 9 in figures 5.3(a) and 5.3(b) respectively.

Figures 5.3(a) and 5.3(b) show that filtering changes the combined belief to
such an extent that it alters the decision significantly. This effect is stronger
when more sources are combined. More sources influence the decision so strong
due to Zadeh’s problem definition. In figure 5.4(a) the absolute difference be-
tween mc(X1) and mfilt

c (X1) is shown. Figure 5.4(b) shows the absolute differ-
ence for mc(XL+1). Note that for i ∈ {2, 3, . . . , L}, mc(X1) = mc(Xi) holds
and that all combined belief sums to one.

Figures 5.3(a), 5.3(b), and 5.4(b) show that the unfiltered combined belief
for label XL+1 hardly changes when a different amount of sources are combined.
The values for the other labels however do vary, figures 5.3(a), 5.3(b), and 5.4(a).
For all Xi with i ∈ {1, 2, . . . , L} the belief masses are the same and depend on
L. The label XL+1 accumulates all parts of the conflict it was involved in
according to pcr6. When more sources assign a small ε to label XL+1, this
label therefore receives more combined belief whereas the other labels need to
divide the conflict amongst each other.

1

L+ 1
=

L−1∑
i=0

[(
L− 1

i

)
· (1− ε)L+1−i · εi

(L− 1)(1− ε) + iε

]
(5.12)
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Figure 5.4: Belief mass in Zadeh’s example for L = {2, 3, . . . , 9} where can be
seen that combined belief assigned to label XL+1 is less sensitive to the number
of sources compared to the other labels

Filtering negates this accumulation effect. The decision to choose for XL+1

therefore is only made when ε > 0.5. The point where all combined belief masses
are equal for the labels occurs at ε = 0.5 in the filtered case. When no filtering
is applied, this value of ε where all combined belief masses are equal depends
on the value of L.

This dependency of ε on L in the unfiltered case is given by equation (5.12)
for L ≥ 2 and 0 ≤ ε ≤ 1 when pcr6 is applied. When voting is used as a combi-
nation mechanism, all combined belief masses are equal for ε = 1

L+1 . Figure 5.5
shows a numerical estimation (using Newton-Raphson, [109]) of equation (5.12)
for L ∈ {2, 3, . . . , 30}. For comparison reasons, figure 5.5 also shows when all
combined belief masses are equal for voting and the filtered case.
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Figure 5.5: Value of ε against L where mc(X1) = mc(XL+1) in Zadeh’s example
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In figure 5.5 the lines indicate the value of ε where all combined belief masses
are equal for three different cases. The area above a line indicates that label
XL+1 receives more combined belief mass than the individual labels Xi with
i ∈ {1, 2, . . . , L} for that particular case. The effect of filtering on combined
belief masses is less when pcr6 is used to combine the sources.

5.3.3 Applicability of filtering

Decisions based on combined belief after filtering can differ from the unfiltered
case in Zadeh’s example when ε ≤ 0.5. Before using the proposed filter, it is
therefore vital to check if beliefs that are set to 0 in the various sources are not
all assigned to the same labels. Should this be the case, the accumulation effect
is negated by the filter which causes a different decision.

Negation of the accumulation effect is not unexpected for Zadeh’s example
since it is usually described for ε ≤ 0.1 and in those regions the effects of filtering
are negligible. When applying the filter to other examples it is important to
first check if the negation effect does not influence the decision.

The change in decision caused by filtering occurs strongly in Zadeh’s exam-
ple. It is expected that this effect is less for situations with non-exclusive labels.
Belief masses may be unfiltered that have a partial overlap with labels of which
belief has been filtered out. This way, a combined belief is still assigned to that
label when applying combination rules that take the non-exclusiveness of labels
into account like pcr6 thus overcoming the negation effect.
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6
Evaluation

People can be made to believe any lie, either because they want to believe it’s true, or
because they are afraid it’s true.

Wizard’s first rule – Wizards first rule (Ch.36)

HAVING an idea is one thing, coming to a fully operational system is quite
another. The last important phase to come to such a system is evaluation.

Various tests have been done based on the same classification solution space in
different areas using traditional as well as the new evaluation criteria. For these
tests, training and test data are used for traditional classification approaches.
The test data has also been used to evaluate the new mbcs for which no training
is required.

The first section of this chapter discusses the training- and test data as well
as different scenarios that have been tested. Section 6.2 discusses the evaluation
of various classifiers as well as their computational complexity. The user inter-
action required for the military domain is discussed in Section 6.3. Section 6.4
shows how sensor task requests are constructed in a simulated environment.
Section 6.5 closes with the application of the new mbcs in a theoretical problem
to show the general applicability of the classifiers proposed in this thesis.
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6.1 Scenario

In order to validate the concepts introduced in the previous chapters of this
thesis, different scenarios have been implemented for testing. Each of these sce-
narios has been constructed using the same database of classes to generate data.
This data has also been used as a knowledge source for the mbc. The scenar-
ios are either placed at a geographical location or in a simulated environment
depending on the type of test.

6.1.1 Classes

Using the set notation from Section 2.1, a database consisting of 14 specific
classes and 13 more generic classes as presented in table 6.1 is used. Addition-
ally, at the lowest level of specificity (k = 1) the three domains are represented:
air, surface, and subsurface. The surface domain has two child elements at a
next specificity level, namely sea and land. Generic objects may be a child ele-
ment to one of these five low specificity objects or it may be a bridge between
two or more of them.

The objects implemented have a variation in military and civilian platforms
as well as in weapons. Platforms may be related to each other to bring weapons
and weapon carriers together. A generic speedboat may be a recreational vehicle
but it could also be used to fire a Rocket Propelled Grenade (rpg). A generic
speedboat has no weapon range, but if the speedboat is related to an rpg based
on the expected threat in a region it does have a weapon range.

Using these relations many more sub-classes can be created. Different
frigates can be based on the same platform but carry different weaponry. A
Fast Patrol Boat (fpb) may be fitted with only a gun but it might also carry
short range missiles. Relating more generic classes in this manner can expand
the dataset more. These extensions are relevant to threat- and risk evaluation
and not directly for classification. The extensions are therefore not explored in
more detail in this thesis.

Section 3.2.1 introduced the model M as a 2 -tuple containing the frame of
discernment Θ and the set ∅M containing all model constraints. For the frame
presented in table 6.1 the model constraints need to be described. Section 2.1
stated that all frames using the set notation contain mutually exclusive labels
at the same specificity level. All combinations of labels in the hyper-power set
(DΘ) that include such intersections are therefore included in ∅M.

More labels are mutually exclusive than only those on the same level of speci-
ficity: an object cannot belong to both the Air class and the Submarine class.
The ancestral relations between the labels in table 6.1 are used to determine
which combinations of labels in DΘ are valid and which should be included in
∅M. Table 6.2 shows the parent labels at the different ancestral levels for the
elements at the most specific level, k = 4, for the classes shown in table 6.1.
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Table 6.1: Classes at Various Levels

Specific Generic Sub- Domain
Domain

n (k = 4) (k = 3) (k = 2) (k = 1)

1 Boeing 747 Helicopter Land Air
2 Air Defence and Com-

mand Frigate (adcf)
Airliner Sea Surface

3 F-16 Fighting Falcon Fighter jet Subsurface
4 Hellespont Fairfax Missile site
5 Seahawk Fast patrol boat

(fpb)
6 Walrus class submarine Fisher
7 Jumbojet Submarine
8 Exocet Frigate
9 Harpoon Merchant
10 Leopard II tank Missile
11 Apache Tank
12 F-14 Tomcat Speedboat
13 Multi-purpose Frigate

(mff)
Rocket propelled
grenade (rpg)

14 Kilo class

Table 6.2: Ancestral relations for the specific classes, k = 4

θ4,n θ↑14,n θ↑24,n θ↑34,n

Boeing 747 Airliner Air
Jumbojet Airliner Air
F-16 Fighter Air
F-14 Fighter Air
Exocet Missile Air
Harpoon Missile Air
Seahawk Helicopter Air, Surface
Apache Helicopter Air, Surface
Leopard II Tank Land Surface
adcf Frigate Sea Surface
mff Frigate Sea Surface
Hellespont Fairfax Merchant Sea Surface
Walrus class Submarine Sea Surface, Subsurface
Kilo class Submarine Sea Surface, Subsurface

Table 6.3: Ancestral relations for generic classes, k = 3

θ3,n θ↑13,n θ↑23,n

rpg Surface
Missile site Land Surface
fpb Sea Surface
Fisher Sea Surface
Speedboat Sea Surface
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Figure 6.1: Train data plotted on the chart of the environment based on Carte-
sian coordinates

Based on these relations, other valid combinations can be deduced and those
that cannot be deduced are given in table 6.3.

A frame of discernment is obtained with I = 32 and it is therefore a
multi-class problem. Membership functions that describe possible behaviour
for generic objects and normal behaviour for specific objects have been imple-
mented for all classes in the frame of discernment. Each class membership is
described on the following attributes:

• Position;

• Speed and altitude combination, where depth is seen as a negative altitude
value; and

• Size.

Based on these functions, train- and test data has been generated. Since
the membership functions were chosen to realistically model the specific classes,
the resulting dataset is considered to be realistic enough for the purpose of this
evaluation. Each object in the train- and test data contains 9 attributes: X-
position, X-position uncertainty, Y-position, Y-position uncertainty, altitude,
altitude uncertainty, speed, speed uncertainty, and size.
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Figure 6.2: Area for the sensor management simulation

6.1.2 Data

Train- and test data for classification have been generated based on the mem-
bership functions that describe possible and normal behaviour. For each specific
and generic class in the database 60 objects are randomly generated, leading to
a total of 1620 objects. From this data 33 % is used for training and the rest
for testing. Figure 6.1 shows the train data with their Cartesian position in the
area. In this figure, the dark grey is sea and the lighter grey is land and each
coloured shape represents a different class.

6.1.3 Area

Charts of the geographical areas are used for constructing various scenarios. For
sensor management and classification purposes, the bathymetry (water depth)
and altimetry (land height) information about the region are important. One
of the areas is shown in figure 6.2. The satellite image of the region is shown
in figure 6.2(a) and the bathymetry and altimetry information is visualised in
figure 6.2(b). For the creation of the scenarios at geographical locations, coor-
dinates are set in latitude and longitude, for simulated environments Cartesian
X-Y coordinates are used.

Bathymetry and altimetry information is taken from the public noaa
databases, [71]. This data has a resolution of 1 nautical mile. Linear inter-
polation is used to obtain data for the required range intervals in the mission
areas. The focus of the evaluation in this thesis is to validate the principle of
how such information may be used in a system. The resolution is therefore
considered to be sufficient. Higher resolution information can be obtained from
e.g., nasa’s Shuttle radar Topography Missions at a 90 meter resolution, [43].
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6.2 Classification results

Using the train- and test data explained in the previous section, all classification
set-ups have been evaluated with respect to both traditional criteria and the
new criteria from Chapter 5. The different classification set-ups that have been
tested, are discussed after which the results are given and discussed.

6.2.1 Classification set-ups

To compare the different classifier evaluation criteria, three types of classifiers
are compared based on the data explained in Section 6.1.2. The three types of
classifiers are:

1. trained classifiers,

2. Model-Based (mb) trained classifiers, and

3. Model-Based Classifiers (mbcs).

Multiple classifiers are trained for each classifier type — except for the mbc
since they do not require training — and combined using either pcr6 or a
voting algorithm, leading to six classification system set-ups that are evaluated.
Implementations of the trained classifiers are taken from the Pattern Recognition
(pr) Toolbox 1. More information on these different classifiers can be found in
e.g., [38]. The pr Toolbox also provides the implementations of the training
routines and the traditional evaluation functions.

The pcr6 combination rule from DSmT is explained in Section 3.2.2 and in
more detail in Appendix A. The voting algorithm takes the mean of all beliefs
that were expressed to a label by the different classifiers.

Trained classifiers

Classifiers that are trained on (a subset of) attributes are referred to as trained
classifiers. Here, three different kind of trained classifiers — explained in e.g.,
[38] — are used:

• a 3-Nearest Neighbour (nn) classifier – when plotted in the attribute space,
the class that has three training examples closest to the object under
consideration is the classification solution;

• a Linear Distance Classifier (ldc) – the class with lowest linear distance to
the central point of the training examples of that class is the classification
solution; and

1This toolbox is developed by the Pattern Recognition Group of Delft University of Tech-
nology and available via www.prtools.org
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Figure 6.3: Error estimates of different classifiers trained on different amounts
of attributes of the train data

• a Dissimilarity Classifier (DisC) – defines a kernel to maximise dissimi-
larities and then trains a linear classifier on this new attribute space.

The classifiers were chosen based on initial test results which are shown in
figure 6.3. These three classifiers were preferred to a Support Vector Machine
(svm) and a 5 -nn classifier since they outperform them. When classifiers are
trained on a selected number of attributes, a feature evaluation is executed to
determine which attributes are used. Based on these initial results, the 3-nn
and the DisC, are trained on two features and the ldcs are trained on three
features.

All of the chosen classifiers can be used to directly give a single label (hard
classification) but can also be used as soft classifier. The latter option is chosen
in this thesis because the mbcs are soft classifiers as well. Furthermore, the
combination rules are designed to combine soft information.

MB-trained classifiers

Based on three specificity levels, namely domain (k = [1, 2]), generic classes
(k = 3), and specific classes (k = 4), classifiers have been trained. These
classifiers are referred to as mb-trained classifiers since the training data is split
over different classifiers based on the model. For these classifiers we use ldcs
based on their performance during initial tests. By themselves, these classifiers
are not expected to perform well since they are only trained on subsets of the
class labels. When combined however, they complement each other. This should
lead to a classification set-up that outperforms the trained classifiers since each
individual classifier has its own speciality whereas the trained classifiers are all
trained on all labels.
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Figure 6.4: Error estimations of different combination rules and different
classifiers

Model-Based classification

Using the membership functions belonging to each class, mbcs have been imple-
mented. The mbc approach can be used since the test data contains uncertainty
information on various attributes. Based on the similarity between the different
classes it is expected that the mbc approach is especially suited to spread be-
lief over different classes rather than choose a single classification solution with
certainty.

6.2.2 Error estimation

The error estimate, E, is determined by counting how many test objects are
not classified correctly based on the hard classification output. Note, only an
exactly correct classification solution counts as a successful classification. The
error estimations are shown in figure 6.4 for the different classifier set-ups. All
different set-ups show a high value for E. This is not unexpected since the
class labels are very specific and the error estimation criterion does not take less
specific answers into account. Based on E, the conclusion is that the mb-trained
classifiers combined with the simple voting algorithm give the best result.

6.2.3 Confusion

Traditionally, the confusion matrix is examined when comparing classifiers in
more detail. The values Mi,j in a confusion matrix M , are obtained by calcu-
lating the mean belief a classifier assigns to label Xj when the correct label is
Xi. Figure 6.5 shows the confusion matrices for the three types of classifiers
when combined with pcr6. In figures 6.5(a) and 6.5(b) the downside of only
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Figure 6.5: Confusion matrices for various classifiers combined with pcr6

considering the mean value of the diagonal of M becomes apparent. This metric
might be high, because some classes are classified with a high precision whereas
others are never classified correctly. In figure 6.5(c) the overall mean on the
diagonal is low, but roughly the same for all classes, which might be desirable
when robustness is desired in multi-class problems.

For the mb-trained classifiers an additional downside is visible in the confu-
sion matrix. Distinct vertical lines show up in the visualisation of the confusion
matrix. This means that despite the information, the classifiers have a certain
bias for a small amount of classes.

79



Wilbert van Norden 6.2. Classification results

Tr−PCR6 Tr−Vot MBtr−PCR6 MBtr−Vot MBC−PCR6 MBC−Vot
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
fu

s
io

n

 

 

a=0 a=1 a=2 & a=3 Wrong

Figure 6.6: Confusion distribution for different combinations of classifiers

New confusion metrics

In contrast to looking at the entire confusion matrix or the diagonal of M ,
Section 5.2.1 introduced new evaluation metrics based on confusion denoted
B̂a. These metrics sum the confusion values at the different ancestral orders a.
The mean value of the diagonal of M is obtained for a = 0, since each class label
is its own zero-th order parent. Summing all ancestral confusion for all values
of a a value smaller than or equal to 1 is found,

∑
∀a B̂a ≤ 1. The difference

between the summed ancestral confusion and 1 is the mean amount of belief
that has been assigned to completely wrong labels. This could be seen as the
soft classification evaluation criterion version of the error estimation criterion
which is more suitable for hard classification.

The results of the mean ancestral confusion, B̂a, are shown in figure 6.6,
where the exact results are obtained for a = 0 , the branch results are for a = 1,
and the domain indicates B̂2 + B̂3. The amount of wrongly assigned belief
is obtained by 1 −

∑3
a=0 B̂a. This figure shows some interesting results when

looking at the mean amount of wrongly labelled data from this confusion-matrix
approach. Where in figure 6.4 the highest error-rate was for the mbc combined
with pcr6, the highest mean value in the confusion matrix on wrong labels
is assigned by trained classifiers combined with the voting algorithm. Second
worst on this criterion are the mb-trained classifiers. Remarkable, since these
performed best based on the error-estimation criterion. This already shows that
conclusions on classifier performance change when different criteria are used.

In figure 6.6 the advantage of pcr6 over the simple voting strategy from
Section 6.2.1 is also visible. That this effect occurs most in the trained classifiers
is expected. The trained classifiers do not take the interrelations between classes
into account whereas the mbc and the mb-trained classifiers do. The knowledge
of the solution space that pcr6 uses therefore has most effect on the trained
classifiers. In general, the more knowledge of the fusion model is used by the
classifier, the less difference between the voting algorithm and pcr6 occurs.
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Figure 6.7: The rms deviations for different combinations of classifiers

New distance metrics

Section 5.2.2 introduces new distance metrics that express a degree of robustness
a classifier has in assigning belief at the various ancestral labels, which are
denoted δ̂a. This metric describes how robust the classifier classifies all the
exactly correct labels for a = 0. When this value is equal to zero it means that
all classes are assigned the same amount of belief namely B̂0. Similar reasoning
follows for different values of a. For high values of δ̂a it means that some classes
are found and some are not.

In figure 6.7, the results are shown for the rms deviations for the classifiers,
where solution indicates a = 0, branch indicates a = 1, and domain indicates
the sum for a = 2 and a = 3. These results support the conclusion that
the mb-trained classifiers do not give the best results. It also supports the
conclusion that the mbcs yield the best results looking at how belief is spread
over less specific classes. Furthermore, they show a smaller rms deviation on
the diagonal of the confusion matrix. This means that the classification set-up
has a stable performance on all classes. In contrast, the trained classifiers are
good at classifying a certain number of classes, while being bad at classifying
others.

Combining the results from figure 6.6 and 6.7 leads to the conclusion that
the mbc combined with pcr6 has best performance for this domain where mul-
tiple non-exclusive labels have similar attribute values. This fits well with the
expectations since trained classifiers are trained on dissimilarities, which would
be there if the labels had been mutually exclusiveness. This is not the case
in the train data for this type of domain. The mb approaches however do not
search for similarities but use pre-knowledge about classes: an approach that
utilises the non-exclusiveness of classes.
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6.2.4 Reducing computation time

Applying filtering techniques on the classifier output prior to applying the com-
bination rules influences the required computation time. When using the filter
given by equation (5.9), the reduction is shown in figure 6.8(a). In this figure
the reduction in computation time is given for the trained classifiers as well as
the mbcs when combining them using pcr6.

Due to filtering, the results change. The question is, how much filtering may
be applied without influencing the results too much. Figure 6.8(a) shows that
most gain computation-wise, is achieved for a threshold 0 < λ < 0.1. Another
point where computation time is reduced appears at λ=0.5. It is interesting
to see how classifier performance is changed for the trained classifiers and the
mbcs. Their performance is compared at various thresholds on the confusion
and the distance metrics as described in Section 5.2.1. These performances are
shown in the lower four graphs in figure 6.8.

Figures 6.8(c) and 6.8(e) show that the performance of the trained classifiers
does not change much due to filtering while a significant reduction in compu-
tation time is achieved. For the mbcs this is also the case for λ ≤ 0.5. When
λ is increased further, the performance of the combined mbcs changes for the
better.

The change in the mean conflict on the objects is visualised for various λ
in figure 6.8(b) to investigate the influence of filtering further. For the conflict
there is no significant change at λ=0.5 for either of the classification set-ups.
It is visible that the mbc seems unaffected by filtering, whereas the trained
classifiers show a decrease in conflict. Since Section 3.4 discussed the added
value of conflict, this might not be as desirable as one should think, agreement
on the wrong solution might cause problems.

Based on these results the conclusion is that overall the performance is not
changed too much when applying filtering before applying pcr6 to combine
classifier output. Especially for low threshold values, λ ≤0.2 the changes are
small while the processing time is reduced by a factor 100 making it more
feasible for implementation in (near) real-time systems.

The filter threshold λ=0.5 seems important looking at figure 6.8(a). The
sudden decrease in required computation time at this point however is due to
the models of the classes and not due to the combination rule. The used classes
have similar membership fields, causing the classifiers to assign the same amount
of belief to multiple classes. For λ ≥ 0.5, multiple beliefs are set to 0 leading to
the sudden reduction in computation time since less combinations of labels are
considered in pcr6. For problems where classes have less similar membership
fields, this sudden reduction around λ=0.5 will not occur.
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Figure 6.8: Changes in performance when filtering is applied
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6.2.5 Discussion

Different criteria lead to different conclusions on which classifiers perform best.
It is important to consider all evaluation criteria and consider the different
aspects of performance in relation to the problem domain. Table 6.4 presents the
results for the six classification set-ups on all evaluation criteria. The confusion
matrix is omitted from this table due to spacing and the fact that the mean
diagonal of this matrix is given by B̂0. The entire confusion matrices in the
case of pcr6 are shown in figure 6.5.

Based on the results from Section 6.2.4 the computational considerations are
also omitted from table 6.4. All classification set-ups are feasible in (near) real-
time and this factor is therefore no longer used to distinguish between system
set-ups at this stage.

The error estimation criterion (E) shows that the mb trained classifiers are
the best choice if the goal is only to find the correct label. These classifiers
however still have a high error-rate, E ≥ 35%, which means that at least 35
objects out of a hundred will most likely be misclassified. Furthermore, the
confusion metrics for these classifiers show that much belief is assigned to com-
pletely wrong labels. This indicates that these types of classifiers are either
completely right or completely wrong.

Although the mb trained classifiers show good results for being exactly right,
they are not very robust. A high value for δ̂0 indicates that these classifiers are
very good in classifying some classes but cannot correctly classify other classes.
This conclusion is supported by the entire confusion matrix in figure 6.5(b)
where vertical lines are visible indicating a bias for certain class labels. This is
also supported by the high confusion metric on wrong labels. Results for the mb
trained classifiers show that all different criteria need to be investigated before
coming to a conclusion on system performance.

The results in table 6.4 also show the added value of using the knowledge of
the solution space in the combination rule. For all three types of classifiers, the
pcr6 rule of combination outperforms the voting algorithm based on the new

Table 6.4: Different results for all classifier set-ups

Criteria
Trained mb-trained mbc

pcr6 Voting pcr6 Voting pcr6 Voting

E 42.4% 42.4% 37.5% 36.1% 56.7% 48.9%

B̂0 0.4289 0.2658 0.2372 0.1956 0.1660 0.1276

B̂1 0.1499 0.1100 0.0625 0.0651 0.1664 0.1388

B̂2 + B̂3 0.1578 0.1800 0.2870 0.3260 0.3853 0.4203
wrong 0.2634 0.4442 0.4133 0.4133 0.2824 0.3133

δ̂0 0.2775 0.1685 0.2101 0.1493 0.1202 0.0871

δ̂1 0.0737 0.0391 0.0397 0.0472 0.0411 0.0223

δ̂2 + δ̂3 0.0375 0.0375 0.0884 0.0936 0.0352 0.0299
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confusion metrics with a loss of stability in the distance metrics. This effect
occurs most strongly for the trained classifiers, logical since these do not use
model knowledge themselves.

Combining the different evaluation criteria leads to the conclusion that the
mbcs combined with pcr6 are suitable for large classification spaces with non-
exclusive classes. These classifiers show a robust performance. The fact that the
voting combination rule is more stable than pcr6 is compensated by the better
performance in confusion metrics. In terms of the confusion metrics, the mbcs
with pcr6 perform second best when looking at assigning belief to wrong labels
— best performance is achieved by trained classifiers with pcr6. This result is
caused by the highest values for δ̂2 + δ̂3 of all tested classifier set-ups. In this
case, the preference is to rather be somewhat right than to be completely wrong
thus overall best performance is achieved by mbcs combined with the pcr6 rule
of combination. In future work it might be interesting to see how a mix of the
different types of classifiers would perform.

6.3 User interaction

Different interfaces are needed to enable the required interaction with the oper-
ator. Firstly, an interface where the operator can plan the mission and secondly,
an interface to enable the operator to work together with the system to minimise
the uncertainty on the classification solution. This section discusses both these
interfaces.

6.3.1 Mission planning

Figure 6.9 shows a screenshot of the mission planner that has been implemented
for testing. In this mission planner, the tactical area is shown based on a sea
chart which can be overlaid with varying information. The operator e.g., can
select to see both the altimetry (land height) and bathymetry (water depth)
information in the tactical information. On the right side of the interface,
numeric information of a selected object is displayed. For expected objects, the
operator is enabled to use this numeric display for editing.

Objects can be inserted using mouse clicks which fits user expectations. For
each object, the operator can select what information needs to be displayed in
the screen, i.e., position uncertainty information and/or (worst-case scenario)
weapon range. Furthermore, the expected objects can also be assigned to areas
that can be drawn freely or they can be assigned to relative bearings and ranges.
For each of the objects the operator can view radar and/or sonar performance
using carpet and ram-geo (Section 4.3.1, [40], and [31]) respectively that are
integrated in the mission planner.
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Figure 6.9: Screenshot of the implemented mission planner

Initial interviews with operators indicate that this is the type of information
used in mission planning. Furthermore, the operators indicated that the overlay
structure of expected sensor performance is desirable. Especially the combina-
tion of vertical and horizontal sensor coverage while taking the altimetry and
bathymetry into account is seen as a major improvement over the current sys-
tems. Although this mission planner does not fulfil all desires yet in terms of
visualisation, the operators state that the conceptual design is a good one.

86



6. Evaluation Sensing what matters

Conflict is: 0.16416

 

 

A La

Patrol boat

ADCF M−FF

Frigate Merchant

S

Patrol boat

ADCF M−FF

Frigate Merchant

Se Su

m(.) Bel(.) PL(.)PR(.)

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6.10: Example of the Graphical User Interface for classification, labels
that received negative confirmation are not coloured and labels with positive
confirmation are have a yellow highlight

6.3.2 Classification interaction

An interface is made that works within the simulation environment to commu-
nicate the combined belief to an operator and that can be used for interaction.
This interface supports two functions, firstly to communicate current system
belief and secondly, to enable the operator to classify manually by assigning
a classification solution or by making the solution space smaller (positive and
negative confirmation). In case of positive confirmation, the operators opinion
is combined with the other classifiers using the combination rule. For negative
confirmation upr is used. The sum of belief that is redistributed due to negative
confirmation is displayed, both numerical and in colour (zero to one is mapped
on green to red). The operator is visually triggered when the negative confir-
mation introduces a significant amount of conflict with current system belief. A
screenshot of the classification interface is shown in figure 6.10.

Chapter 3 discussed various metrics to assign belief, credibility, probability,
or plausibility to class labels. All of these metrics can be visualised in the
classification interface from figure 6.10 using the buttons m(.), Bel(.), PR(.),
and PL(.) respectively. The question is, how can they be used in an actual
system. For the example shown in figure 5.1(a) — where the ground truth was
the adcf — the various belief metrics are shown in figure 6.11 for the mbc
combined with pcr6.
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The credibility that the system holds in a certain hypothesis is calculated by
summing up all the evidence that fully supports it, whereas the plausibility sums
up all belief that does not fully disagree with it. The difference between these
two values gives a measure of uncertainty residing in a particular hypothesis.
In figure 6.11 this means that there is not much uncertainty about the object
belonging to the surface class.

For the surface domain Pl(Surface) = 1 holds in figure 6.11. This means
that none of the classifiers assign zero belief to that domain. There are however
classifiers that still assigns belief to a label that is mutually exclusive to the
object being sea-based, Pl(Sea) ≤ 1.

From the different metrics shown in figure 6.11 can be concluded that the
object under consideration is almost certainly a surface object. Furthermore,
it is credible that the object is sea-based but not all information sources fully
agree on that conclusion.

Using the different belief metrics to calculate the uncertainty of the clas-
sification solution therefore means that there is not a single value to quantify
this uncertainty. Rather, it is a number of uncertainties on different hypotheses
combined with a quantity that sums the total amount of conflicting evidence,
1− Pl(Xi).

Interviews with operators do not provide enough information yet to draw
conclusions on which metric is suitable for visualisation in an actual imple-
mentation. All options require a certain amount of explanation about what it
shows. Although most indications lean towards using credibility or probability,
the amount of conflicting evidence produced by 1−Pl(Xi) might be required for
ruling out worst-case scenarios. More extensive tests with operators in different
scenarios are required to make more definitive conclusions.

6.4 Generating sensor task requests

The process of task request generation can be split into two processes as men-
tioned in Section 4.2. The first type of task generation is the construction of
surveillance tasks and the second type is the construction of tasks that request
additional information for already detected objects.

Table 6.5: Information based on feedback on different time steps

Alt +/- Speed +/- X +/- Y +/- Size Feedback
t0 8 10 8 6 1500 2000 2000 2000 Medium Altitude
t1 3 5 8 6 1500 2000 2000 2000 Medium Altitude
t2 0 2 8 6 1500 2000 2000 2000 Medium X
t3 0 20 8 6 1500 1000 2000 2000 Medium Y
t4 0 20 8 6 1500 1000 2000 1000 Medium Y
t5 0 2 8 6 1500 1000 2000 300 Medium X
t6 0 2 8 6 1500 500 2000 300 Medium else
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Constructing the surveillance capabilities is based on the expected threats,
Section 4.2. The general region of the object is determined based on mission
information inserted by the operator and a safety bracket is added to it to deter-
mine the search volume. The size of such a safety bracket is also mission based,
namely based on the possible speed of the expected object and its weaponry.
The required update rate is determined by the risk calculation process as men-
tioned in [104]. This principle of requesting surveillance capabilities has been
shown to work in [7]. Here, the same approach is adopted. This thesis therefore
focusses on generating the task requests for additional information on already
detected objects.

We consider an object — ground truth adcf — with very uncertain infor-
mation in the environment of figure 6.1. This object is given by the following
available information on attributes at time t0:

• X-coordinate: 1500 +/- 2000 ;
• Y-coordinate: 2000 +/- 2000 ;
• Altitude: 8 m +/- 10 m;
• Speed: 8 m/s +/- 6 m/s;
• Size: Medium.

The amount of uncertainty is rather large and the classification solution
provided by the mbcs is therefore distributed over all classes with a preference
for helicopters based on the altitude and the low speed. The exact solution at
t0 for the three types of classifiers combined with pcr6 is shown in Appendix B.
Based on the conflict the requirement is set to reduce uncertainty in the altitude
in order to try and exclude all the helicopters. From the knowledge available on
classes we know that measuring altitude is indeed the only way of doing this.
For different time-steps the information and the resulting feedback is given in
table 6.5, the resulting classification results at t1, t3 and at t6 are also provided
in Appendix B.

When conflict on the helicopters is sufficiently reduced, the feedback mecha-
nism focusses on the difference between sea- and land-based classes. Figure 6.12
shows the object’s position and the uncertainty about the position in the sim-
ulated environment. At t4 the decision is made to first reduce uncertainty in
the Y-coordinate since land masses occur most in this direction, figure 6.12(a).
After this reduction, the uncertainty in the X-coordinate needs to be reduced
according to the feedback mechanism, a decision supported by figure 6.12(b).

After t5, most differences are resolved resulting in only sea-based classes
as a classification result. The mechanism now checks the differences between
the remaining classes and decides that the current information is insufficient
to decide on a more specific solution. It therefore decides else, indicating that
another — currently unavailable — attribute is needed to decide on more specific
classification solutions.

This last decision is important. Where other classifiers imply to have a
good answer, the mbcs admit to still have a lot of confusion and ask for ad-
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Figure 6.12: Position of the object at times t4 and t5

ditional information. After t3, both the trained classifiers as well as the mb-
trained classifiers do not change their classification solution significantly, see
Appendix B. Both types have a specific label amongst their top 4 solutions,
namely adcf and Hellespont Fairfax respectively. Although the first is the
correct solution, the information itself does not justify ignoring other possible
labels. From an operational viewpoint, the results from the mbcs are preferred
since they cannot exclude other labels based on the available information.

6.5 Other applications

It is interesting to see how the mbcs will perform on the more commonly de-
scribed problems with mutually exclusive labels. A 2d 8 class problem is con-
sidered that is constructed using the prtools from the Delft University of Tech-
nology. This classification problem is constructed using:

• two classes from Highleyman’s dataset,

• two classes from the spherical dataset,

• two classes from the banana dataset, and

• two classes from the Lithuanian dataset.

More details about these datasets with mutually exclusive labels can be
found in the manual of prtools, [82]. From this combined set, a dataset con-
taining 3200 objects is generated for testing of which a subset is shown in fig-
ure 6.13. This figure shows that most confusion will most likely occur between
classes 1 and 2, 3 and 4, 5 and 6, and between classes 7 and 8.
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Figure 6.13: Subset of the test data for an 8 class problem

Although the classes are mutually exclusive that does not mean they cannot
look similar in the attribute space: a whiskey glass is different from a wine glass
but on the attribute material, they have the exact same value.

The soft classification versions of

• a 5 -nn classifier,

• a ldc, and

• a svm

are trained to compare performance with the mbcs. The training of these three
types of trained classifiers is done on a dataset with 20 objects of each class
that are generated separately from the dataset used for testing.

The results are compared based on an examination of the confusion matrix
shown in figure 6.14. The new metrics as introduced in this thesis are not used
in this case since the dataset only contains mutually exclusive labels. The new
metrics are specifically developed for a close examination for problems with
non-exclusive labels and are therefore not relevant in this specific case.

Figure 6.14(c) shows that the ldc has trouble distinguishing between the
classes as expected based on figure 6.13. As a matter of fact, all classifiers
show similar confusion although the svm, figure 6.14(d), and the 5 -nn classifier,
figure 6.14(b), perform worse than the other two classifiers.
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Figure 6.14: Confusion matrices for different classifiers for the 8 class problem
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The mbc, figure 6.14(a), has a better performance when looking at the di-
agonal of M compared to the ldc. The latter however has less trouble with
confusion between classes 1 and 2 and class 7. It is difficult to exactly say
which classifier is the better. What can be concluded however, is that the mbcs
are suitable for application in a broader set of classification problems than for
those for which they have been developed given that they have a proper class
model whereas traditional classifiers require a proper training set.
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7
Conclusions

The rule of all rules. The rule unwritten. The rule unspoken since the dawn of history. . .
But Barracus wanted you to know that it’s the secret to using a war wizard’s power. The

only way to express it, to make sure that you would grasp what he was intending to tell you,
was to give you a book unwritten to signify the rule unwritten.

The Rule Unwritten – Confessor (Ch. 58)

DUE to technological and political developments the need for more automa-
tion and decision support in Combat Management Systems (cms) is in-

creasing, especially in the fields of sensor management and classification. Previ-
ous work has shown that sensor management and classification depend on each
other. The prioritisation mechanism for sensor tasks is highly dependent on
the classification solution and the uncertainty therein while classification needs
sensor information. How to support the classification process and how to reduce
uncertainty efficiently through sensor management is therefore of great interest.

The main research question addressed in this thesis therefore is:

How can operators be supported in their task of interpreting real-time data in
complex environments?
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Due to maritime military application domain considered in this thesis, more
specific research questions are addressed in this thesis. Combined, the answers
to those specific questions provide a solution to the main research question for
the application domain of this thesis.

How should the class labels be modelled when the operators use different classi-
fication trees and require more specific or less specific answers?

A generic set notation for classification is introduced in this thesis to deal with
non-exclusive and hierarchical labels. Labels may describe very generic classes
like the class of all air object, or more specific classes like the Dutch Air Defence
and Command Frigate.

Between the different hierarchical levels in the model ancestral relations
indicate is a class at a higher level overlaps with a class on a lower level. This
provides a flexible model that may be expended by inserting new hierarchical
levels and indicating how they relate to the labels one level higher and one level
lower.

How should classifiers cope with uncertain input from sensors and intelligence
reports?

This thesis proposes to fit sensor measurements to membership fields that are de-
fined in a multi-attribute space for each class. These membership field are based
on available prior information on possible and normal behaviour. Model-Based
Classifiers (mbc) are introduced that map confidence intervals of measurements
on the membership fields to fit the available information and the expected or
possible manifestations. Multiple classifiers are constructed since classes may
be described by various membership fields.

An added value of using confidence intervals is the possibility to do the
reverse as well: one can determine which uncertainty reduction will lead to a
better classification solution. Sensor task requests can then be sent to the sensor
manager based on the desired information.

What conditions need to be met to combine classifiers that operate on uncertain
input and that assign belief to labels on different hierarchical levels?

Based on the membership fields for the various labels and the available infor-
mation, different classifiers assign belief to the labels. These classifiers may
provide conflicting information. The combination scheme used to fuse the dif-
ferent classifiers should therefore be able to deal with conflicting beliefs and it
should to deal with the non-exclusiveness of the labels used in classification.

The various mbcs are combined using Dezert-Smarandache Theory since
that theory can deal with conflicting, uncertain and paradoxical information.
Using DSmT has the advantage that plausibility, credibility and probability are
defined, providing several quantities that can be visualised to interact with the
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operator. In particular, the pcr6 from DSmT is used because it can deal with
multiple, highly conflicting information sources.

An additional rule, the User Preference Redistribution rule (upr), is intro-
duced in this thesis to enable the operator to exclude parts of the solution space.
Using upr the system redistributes the belief accordingly while keeping track
of the amount of conflict the exclusion introduces. When this conflict exceeds
a threshold, the operator can be informed regarding this anomaly.

Combining the mbcs also enables anomaly detection by using these classifiers
on membership fields based on mission information and normal behaviour for
certain classes in the area. This means that anomaly detection can be accom-
plished without extensive machine learning techniques.

How should classifiers be evaluated taking the hierarchical levels of the class labels
into account and that generic but correct answers are preferred over specific
answers that may be wrong?

Existing classifier evaluation criteria are based on either classifiers that operate
on exclusive classes or on hard classifiers that operate on non-exclusive classes.
In this thesis however, soft classifiers operate on non-exclusive hierarchical la-
bels. Furthermore, wrong decisions can have severe consequences in our appli-
cation domain. New criteria are proposed to evaluate classifier performance in
domains with these characteristics.

Two new types of evaluation criteria are proposed, both based on the con-
fusion matrix. The first type is based on summing the confusion values that
belong to the different levels of specificity. The second type of criteria examines
the Root-Mean-Square (rms) distances from the mean at the different speci-
ficity levels. Based on these criteria, this thesis shows that the mbcs are well
suited for classification problems with a large frame of discernment.

Extensions may be made to further increase performance by examining
combinations of different classifiers, e.g., mbcs for specific classes and trained
classifiers for more generic classes.

How can classification uncertainty be described and how should the classification
process determine which information is needed to reduce that uncertainty?

Classification uncertainty is a difficult term to describe in a single quantity. This
thesis therefore proposes to look at the plausibility and the different between
the plausibility and the credibility. Both of these quantities are defined in the
DSmT framework that is used in this thesis. Another quantity that might be
used is the pignistic probability. This value calculates the probability based
on the belief values. More research and tests with operators are required to
determine which of these options is most suited to express the uncertainty in a
single class label and the classification process.
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Reducing the uncertainty in classification can however be achieved using a
different approach. When combining the results from the classifiers the conflict
between them is also an indication of uncertainty. Looking at the most generic
classes on which classifiers express a different belief and trying to resolve that
conflict first will result in a better classification result. Based on the membership
field and the model-based classification approach sensor function requests can
be generated to reduce the conflict.

How should sensor management get the required information in a complex en-
vironment?

This thesis adopts the three-stage sensor management concept from literature
in which sensor management is divided in three separate steps: generate the
required sensor tasks, allocate the most appropriate sensor for each task, and
control the sensor to execute the task as best as possible.

The first stage is achieved based on the mission and the classification un-
certainty that lead to sensor task requests for surveillance and additional in-
formation respectively. By integrating various propagation and sensor models
into a Combat Management System the suitability of a sensor for a specific task
can be determined which is needed for sensor allocation. At the last stage of
sensor management, all requested tasks are scheduled with a fuzzy Lyapunov
scheduling algorithm.

This thesis shows that the information needs for accurate and complete
picture compilation (all situation and threat assessment processes combined)
can be determined in an automated fashion while allowing operator influence
throughout the process. Based on the required information, different sensor
functions can be requested from the sensor manager. The emerging management
scheme consists of the following steps:

1. insert expected objects and the available prior information (membership
fields) about those objects into the system;

2. construct Confidence Intervals based on measurements for each object;

3. map these Confidence Intervals on membership fields that are based on
the prior information;

4. combine the results using pcr6;

5. enforce additional operator preferences using upr;

6. use the conflict from pcr6 to calculate which information is required and
generate sensor function requests;

7. allocate the most appropriate sensor for each task using the performance
prediction tools available for the different sensors;

8. schedule the sensor systems using the fuzzy Lyapunov scheduler;
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9. use the conflict from upr to communicate with the operator about unex-
pected occurrences.

In short, incoming data is used in different reasoning processes that are
supported by prior information such as e.g., expected behaviour. This thesis
provides a methodology with which those reasoning processes can identify which
additional information they need to come to less uncertain conclusions. These
requests for information can be used to obtain additional data to reduce this
uncertainty.

The operator is vital as an information source during the planning and execu-
tion phases of missions and several suggestions have been made for the required
interfacing functionalities. Integrating available tools for sensor performance
prediction into the overall system will enable the system to automate the sensor
allocation. It can also be used to communicate operational consequences of com-
mand decision in an understandable fashion during the planning and execution
phases of missions.
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Technology Symposium, Quèbec, Canada, 16–20 September 2002.

[4] E. Bertucat and H. Pasquereau. Sensor management in an air defence
centre. In Proceedings of the 1st conference on cognitive systems with
interactive sensors, Paris, France, 15–17 March 2006.

[5] Susanne Biundo, Ruth Aylett, Michael Beetz, Daniel Borrajo, Amedeo
Cesta, Tim Grant, Lee McCluskey, Alfredo Milani, and Gèrard Verfaillie.
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for counting Dedekind numbers. Lecture notes on Computer Science,
2138:424–427, 2001.

[103] Lionel Valet and Gilles Mauris. Attribute impact for a seismic image
fusion system based on fuzzy rules. In Proceedings of the 7th International
Conference on Information Fusion, pages 680–685, Stockholm. Sweden, 28
June – 1 July 2004.

[104] Tanja Y.C. van Valkenburg-van Haarst, Wilbert L. van Norden, and Fok
Bolderheij. Automatic sensor management: challenges and solutions. In
Proceedings of the SPIE Defense and Security Conference, Optonics and
Photonics in Homeland Security (6945), pages 694511–1 – 694511–11, Or-
lando (FL), USA, 16–20 March 2008.

[105] Sebastiaan P. van den Broek, Henri Bouma, Marianne A. C. Degache, and
Gertjan Brughouts. Discrimination of classes of ships for aided recognition
in a coastal environment. In Proceedings of SPIE Defense and Security
Symposium — Automatic Target Recognition XIX (Conference 7335), Or-
lando (FL), USA, 13–17 April 2009.

[106] T. Wei, Y. Huang, and C.L.P. Chen. Adaptive Sensor Fault Detection
and Identification Using Particle Filter Algorithms. IEEE Transactions

110



References Sensing what matters

on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
39(2):201–213, March 2009.

[107] Eric W. Weisstein. Cartesian product. From MathWorld – A Wolfram
Web Resource. http://mathworld.wolfram.com/CartesianProduct.html.
Internet, cited: 16 June 2009.

[108] Eric W. Weisstein. Erf. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/Erf.html. Internet, cited: May 2008.

[109] Eric W. Weisstein. Newton’s method. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/NewtonsMethod.html. Inter-
net, cited: July 2009.

[110] E. Winter and P. Baptiste. On scheduling a multifunction radar. Aerospace
Science and Technology, 11(4):289–294, 2007.

[111] Guan Xin, Yi Xiao, and He You. An improved Dempster-Shafer algorithm
for resolving the conflicting evidences. International Journal of Informa-
tion Technology, 11(12):68–75, 2005.

[112] Yiming Yang. An evaluation of statistical approaches to text categoriza-
tion. Information Retrieval, 1(1-2):69–90, 1999.

[113] Ted W. Yellman. The three facets of risk. In Proceedings of the World
Aviation Conference, number 2000-01-5594, pages 10–12, San Diego (CA),
USA, 10–12 October 2000.

[114] Lotfi A. Zadeh. On the validity of dempster’s rule of combination of
evidence. ERL Memo M79/24, University of California, Berkeley (CA),
USA, 1979.

[115] Yongmian Zhang and Qiang Ji. Sensor selection for active information
fusion. In Proceedings of the 20th national conference on artificial intelli-
gence, pages 1229–1234, Pittsburg (PE), USA, 913 July 2005.

111



Wilbert van Norden

112



List of Acronyms and Abbreviations

Aadcf Air Defence and Command Frigate
ai Artificial Intelligence
areps Advanced Refractive Effects Prediction System

Bbcr Belief Conditioning Rule

Cc2 Command and Control
carpet Computer Aided radar Performance and Eval-

uation Tool
cms Combat Management System

Ddbn Dynamic Bayesian Network
dc Direction and Control
DisC Dissimilarity Classifier
dm Decision Making
ds Dempster-Shafer
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DSmT Dezert and Smarandache Theory

Eeo Electro-Optical
eostar Electro-Optical Signal Transmission And Rang-

ing

Ffpb Fast Patrol Boat

Jjdl Joint Director of Laboratories

Lldc Linear Distance Classifier

Mmb Model-Based
mbc Model-Based Classifier
mfr Multi Function radar

Nnaihs Networked Adaptive Interactive Hybrid System
nn Nearest Neighbour
noaa National Oceanic and Atmospheric Administra-

tion

Oooda Observe-Orient-Decide-Act
op Operational Picture
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Ppcr Proportional Conflict Redistribution
pdf Probability Density Function
pr Pattern Recognition

Rradar Radio Detection And Ranging
ram Range dependent Acoustic Model
rms Root-Mean-Square
rnln Royal Netherlands Navy
rpdm Recognition Primed Decision-Making
rpg Rocket Propelled Grenade

Ssa Situation Assessment
sonar Sound Navigation and Ranging
svm Support Vector Machine

Tta Threat Assessment
tbm Transferable Belief Model

Uuav Unmanned Aerial Vehicle
upr User Preference Redistribution
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List of Symbols

Symbol Description

∅ Classical empty-set

∅M Set containing all labels from DΘ that are con-
strained, a part of M

∅U Set containing all labels that are constrained by the
user

a The ancestral order

Aj The j-th attribute with j ∈ {1, 2, . . . , J`}

bj Parameter of uncertainty for Laplace distributed
measurement on attribute Aj

Ba(X) The a-th order ancestor confusion on label X

B̂a Mean value of the a-th order ancestor confusion

Bel(X) Credibility of label X

BetP(X) Pignistic probability of label X

C Total amount of conflict between sources taking only
∅M into account

CI Confidence Interval
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Symbol Description

DΘ The hyper-power set constructed using the elements
from Θ and the operators ∩ and ∪

D1 Subset of the hyper-power set DΘ used in Belief Con-
ditioning Rules

D2 Subset of the hyper-power set DΘ used in Belief Con-
ditioning Rules

D3 Subset of the hyper-power set DΘ used in Belief Con-
ditioning Rules

DSmPε(X) Generalised probability transform of label X from
DSmT

E Error estimation

f Type (or family) of sensor tasks

F1 Performance measure for multi-label learning based
on recall and precision

G`(X) Used in pcr6 as factor that ensures a proportional
redistribution of conflicting belief from for source `
to label X

Ha(X) Set that contains the unique a-th order ancestral la-
bels of label X

i Index for labels in Θ with i ∈ {1, 2, . . . , I}

I The number of labels in Θ

j Index for attributes with j ∈ {1, 2, . . . , J`
J` Number of attributes that the `-th mbc uses

k Index for specificity levels with k ∈ {1, 2, . . . ,K}

K Number of specificity levels in model M

K(Xi) Conflict that resides in label Xi due to ∅U
Ktotal Total amount of conflict introduced by ∅U

` Index for classifiers with ` ∈ {1, 2, . . . , L}

l Index for labels
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Symbol Description

L Number of mbcs

m`(X) Generalised basic belief assignment of the `-th mbc
to label X

mc(X) Combined generalised basic belief assignment on la-
bel X

M Fusion model containing Θ and the model contraints
∅M

M Confusion matrix

Mi,l Mean belief assigned to Xl when the ground truth is
in Xi

n Index for an element at specificity level k with n ∈
{1, 2, . . . , Nk}

Nk Number of elements at the k-th specificity level in
model M

o Index for objects

OΨ,f Operator preference to use sensor Ψ for tasks of fam-
ily f

℘ Index for labels

pj Probability density function belonging to the mea-
surement on Aj

pr o Precision of a classifier on object o

PD Probability of detection

Pl(X) Plausibility of label X

q Index for an element at specificity level k with q ∈
{1, 2, . . . , Nk}

Qf Buffer (or queue) containing requested tasks of task
type f

ro Recall of a classifier on object o

R(t) Risk that is posed to the mission by the object at
which task t is directed against
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Symbol Description

s(X) Function that finds all elements from Θ involved in
X

So Set of labels for the o-th object

S(Ψ, t) Suitability of sensor Ψ to execute sensor task t

t Sensor task

u Index for specificity levels in M with u ∈
{1, 2, . . . ,K}

v Index for an element in Θ at specificity level k with
v ∈ {1, 2, . . . , Nk}

wΨ,f Calculated weight of buffer Qf for sensor Ψ

W`(α) Weight function for the `-th mbc, a function of
boundary value α

X A label from Θ

X Not X

X↑ Set of parent labels of X

Xu Set of bridge labels of X

X→ Set of labels that intersect with Xu but not with X
itself

X∗ Set containing labels to which belief assigned to X
may be redistributed to by upr

yj All possible values for Aj defined using the mean and
a fraction of the square root of the variance

Y A label from ∅U

α Boundary value

β Angle with β ∈ [0, 2π]

δa(X) The rms distance between the a-th order ancestor
labels and the mean value of these elements of label
X
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Symbol Description

δ̂a Mean value of the rms distance between a-th order
ancestor labels and the mean value at that specificity
level

∆C The amount of added value to the total conflict C

ϕ`(l) Function to skip ` in a loop that uses l as a counter

Φ`,X(α) Summed value of the membership field Γ` of label X
for the `-th mbc as a function of the boundary value

γj Angles obtained when yj is re-written in polar coor-
dinates

Γ`,X(~yj) Membership field of label X for the `-th mbc with
` ∈ {1, 2, . . . , L}

λ Filter threshold

µj Mean value of the measurement on Aj

θk,n The n-th element at the k-th specificity level in Θ
with n ∈ {1, 2, . . . , Nk} and k ∈ {1, 2, . . . ,K}

θ↑ak,n The a-th order ancestor element of θk,n

Θ Frame of discernment

σj Standard deviation of Gaussian distributed measure-
ment on attribute Aj

Ω(k, n) = i Mapping function to map element θk,n on label Xi

Ω−1(i) = (k, n) The inverse mapping function

ξj Fraction used to describe yj

Ψ Sensor
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A
Dezert-Smarandache Theory

THE Dezert-Smarandache Theory (DSmT) is a theory for combining evidence
that may be paradoxical, incomplete, uncertain and conflicting. Further-

more, this theory deals with frames of discernment that need not be exclusive,
i.e., hypotheses may overlap. E.g., consider a police investigation with two sus-
pects: person A and person B. There is evidence to prove the guilt for each of
them. Using DSmT we can reason on the evidence that supports the theory
that these two persons did it together. Dempster-Shafer theory cannot reason
on this possibility since this theory assumes mutually exclusive classes. Both
Dempster-Shafer and DSmT however cannot reason on the hypothesis that nei-
ther did it. In the theory of evidence, this is referred to as the closed world
model. The transferable belief model from Smets, [96] assumes the open-world
model. This model may assign to belief to a non-defined solution which in tbm
is assigned to the ∅. The drawback of this approach is the ambiguity between
the classical emptyset and the undefined solution, which for this example should
be someone rather than nobody.

A.1 The fusion model

Let the frame of discernment be Θ = {θ1, θ2, . . . , θn}, where each θi with
i ∈ {1, 2, . . . , n} is a hypothesis, also called a label. In the general DSmT
combination rule, no assumptions are made on the hypotheses other than that
all possible labels are represented in Θ, which is referred to as exhaustive labels.
A frame with exhaustive labels is used in all theories with the closed world as-
sumption. When no other assumptions are made on the frame of discernment
the fusion model is called free in DSmT and this model is denoted Mf .
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A well known theory for combining evidence is Dempster-Shafer theory. In
this theory the frame of discernment is assumed to be exhaustive (closed-world)
and it is exclusive (hypotheses cannot occur simultaneously). This fusion model
is called Shafer’s model and is denotedM0 in DSmT. Within the DSmT frame-
work, the fusion model can take any form between Shafer’s model and the free
model. All these other models are referred to as hybrid models.

In order to reason on different combinations of hypotheses, the hyper-power
set, DΘ is constructed based on the frame of discernment Θ. This set is con-
structed using the following three rules:

1. ∅, θ1, θ2, . . . , θn ∈ DΘ;

2. if X1, X2 ∈ DΘ then X1 ∩X2 ∈ DΘ and X1 ∪X2 ∈ DΘ;

3. no other elements belong to DΘ except those obtained using rules 1 and
2.

Assume e.g., a frame of discernment with two elements, Θ = {θ1, θ2}. The
hyper-power set then becomes, DΘ = {∅, θ1, θ2, θ1∩θ2, θ1∪θ2}. These different
combinations of the elements from the frame of discernment increase to the
extreme when the frame of discernment grows, more specifically, they follow the
Dedekind numbers, [102].

Each source that needs to be combined provides its evidence using a belief
mapping. I.e., they assign a belief mass, denoted m, to a certain hypothesis
from the frame of discernment. For each mapping m(∅) = 0 and∑

A∈DΘ

m(A) = 1

holds. This quantity is called the generalised basic belief assignment or the
mass.

A.2 Classic DSmT combination rule

Combining information from L sources when assuming the free model can be
done with the classic DSmT rule of combination:

mf
c (X) =

∑
X1,X2,...,XL}∈DΘ

X1∩X2∩...∩XL=X

L∏
`=1

m` (X`)

where we say that each X` denotes the element in the hyper-power set on which
source ` assigns mass to. Since there are L sources we know that ` ∈ {1, 2, . . . , L}
holds.

Consider two sources e.g., that assign belief to a frame of discernment
containing two hypotheses, Θ = {A,B}.
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A B A ∪B
m1(.) 0.4 0.1 0.5
m2(.) 0.3 0.7 0

The classic rule of combination then finds the following values after
combining this information.

mf
c (A) = 0.4 · 0.3 + 0.4 · 0 + 0.5 · 0.3 = 0.27

mf
c (B) = 0.1 · 0.7 + 0.1 · 0 + 0.5 · 0.7 = 0.42

mf
c (A ∪B) = 0.5 · 0 = 0

mf
c (A ∩B) = 0.4 · 0.7 + 0.1 · 0.3 = 0.31 +

1.00

A.3 Conflict redistribution

The classic combination rule may assign masses to all elements in the hyper-
power set. In some applications however, some of the combinations might not
be physically possible. In the previous example e.g., when A is the hypothesis
it rains and B is it does not rain, these two hypotheses cannot be true at the
same time for the same location. Based on the classic combination rule, there
now is a conflict between source one and two of K12 =0.31. The question is:
how should this be dealt with in such a way that all masses are assigned to valid
elements in the hyper-power set and that all these valid masses sum up to one
while maintaining the closed-world assumption.

The first solution to this problem could be to redistribute conflicting masses
to relevant ignorance, which is done in the hybrid DSmT combination rules.
E.g., say that A∩B is physically impossible. The mass assigned to this element
by the classic combination rule, is then assigned to A ∪ B, since the mass
belongs to either A or B when they cannot occur simultaneously and there is
not enough evidence to assign it to one or the other. This approach leads to:

mhyb
c (A) = = 0.27

mhyb
c (B) = = 0.42

mhyb
c (A ∪B) = 0 + 0.31 = 0.31 +

1.00

Another approach is to redistribute the conflicting mass to the elements
involved in the conflict proportionally to their contribution to the conflict. For
two sources this rule is called the Proportional Conflict Redistribution rule 5,
pcr5. For multiple sources this rule is generalised in pcr6 and given by
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mpcr6
c (X) = mf

c (X) +

L∑
`=1

G`(X) ·m`(X)2

with

G`(X) =
∑

⋃L−1
u=1 Xϕ`(u)∩X∈∅

Xϕ`(1),...,Xϕ`(L−1)∈(DΘ)
L−1

L−1∏
w=1

mϕ`(w)

(
Xϕ`(w)

)
m`(X) +

L−1∑
w=1

mϕ`(w)

(
Xϕ`(w)

) .

The term ϕ`(w) ensures that all elements from the hyper-power set are used
except element ` — the element under consideration — and it is given by

ϕ` →
{
ϕ`(w) = w w < `
ϕ`(w) = w + 1 w ≥ ` .

Although the equation of pcr6 looks complex, the principle behind it is
quite simple. Consider again the example with two information sources in
which case the pcr6 rule is the same as the pcr5 rule:

A B A ∪B
m1(.) 0.4 0.1 0.5
m2(.) 0.3 0.7 0

The conflict that needs to be distributed when assuming Shafer’s model
(M0) is 0.28 + 0.03 = 0.31. The elements involved in the conflict are A and
B, thus the conflict should be proportionally redistributed to them:

mpcr5
c (A) = 0.27 + 0.4

0.4+0.7 · 0.28 + 0.3
0.1+0.3 · 0.03 = 0.3943

mpcr5
c (B) = 0.42 + 0.7

0.4+0.7 · 0.28 + 0.1
0.1+0.3 · 0.03 = 0.6057

mpcr5
c (A ∪B) = 0 = 0 +

1

We can say that the pcr6 rule is more specific than the hybrid rule of
combination since it redistributes conflicting mass to elements that are more
specific.
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B
Classification results

THIS appendix contains the classification results in fig-
ures B.1, B.2, B.3 and B.4 for t0, t1, t3,and t6 respectively obtained

by the

• trained;

• Model-Based-trained; and

• Model-Based Classifiers.

Different classifiers of each type are combined with pcr6 for the example
from Section 6.4. The example object in this section is represented in table B.1
for the various time steps.

Table B.1: Information based on feedback at different time steps

Alt +/- Speed +/- X +/- Y +/- Size Feedback
t0 8 10 8 6 1500 2000 2000 2000 Medium Altitude
t1 3 5 8 6 1500 2000 2000 2000 Medium Altitude
t2 0 2 8 60 1500 2000 2000 2000 Medium X
t3 0 20 8 6 1500 1000 2000 2000 Medium Y
t4 0 20 8 6 1500 1000 2000 1000 Medium Y
t5 0 2 8 6 1500 1000 2000 300 Medium X
t6 0 2 8 6 1500 500 2000 300 Medium else
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Figure B.1: Classification result for t0, Section 6.4
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Figure B.2: Classification result for t1, Section 6.4
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Figure B.3: Classification result for t3, Section 6.4
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Figure B.4: Classification result for t6, Section 6.4
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