
 
 

Delft University of Technology

Physics-informed machine learning: from methods to beam structures

Kapoor, T.

DOI
10.4233/uuid:b0dac776-9c30-4f97-a8da-acb9b40e9579
Publication date
2024
Document Version
Final published version
Citation (APA)
Kapoor, T. (2024). Physics-informed machine learning: from methods to beam structures. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:b0dac776-9c30-4f97-a8da-
acb9b40e9579

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:b0dac776-9c30-4f97-a8da-acb9b40e9579
https://doi.org/10.4233/uuid:b0dac776-9c30-4f97-a8da-acb9b40e9579
https://doi.org/10.4233/uuid:b0dac776-9c30-4f97-a8da-acb9b40e9579


Physics-informed Machine Learning: 

From Methods to Beam Structures

Taniya Kapoor



Physics-informed machine learning:
from methods to beam structures





Physics-informed machine learning:
from methods to beam structures

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Tuesday 29 October 2024 at 12.30 o’clock

by

Taniya KAPOOR

Master of Science in Applied Mathematics, South Asian University, India
born in New Delhi, India



Dit proefschrift is goedgekeurd door de
Promotor: Prof. dr. ir. R.P.B.J. Dollevoet
Copromotors: Dr. H. Wang, Dr. A.A. Nunez Vicencio

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. ir. R.P.B.J. Dollevoet, Technische Universiteit Delft, promotor
Dr. H. Wang, Technische Universiteit Delft, copromotor
Dr. A.A. Nunez Vicencio, Technische Universiteit Delft, copromotor

Onafhankelijke leden:

Prof. dr. ir. C. Vuik, Technische Universiteit Delft
Prof. dr. S. Mishra, ETH Zürich, Switzerland
Prof. dr. S. Roberts, University of Oxford, UK
Prof. dr. D.M. Tartakovsky, Stanford University, USA

Keywords: Physics-informed machine learning, Physics-informed neu-
ral networks, Beam dynamics, Causality, Generalization,
Neural ordinary differential equations.

Printed by: Gildeprint

Cover by: Anahat Kelkar

Copyright © 2024 by T. Kapoor

ISBN 978-94-6496-258-1

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/


Dedicated to my beloved family.





CONTENTS
Summary ix

Samenvatting xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges for beam simulations through physics-informed

machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Complex system simulations . . . . . . . . . . . . . . . . 5
1.2.2 Inversion of complex system with noisy data . . . . . . 6
1.2.3 Large domain simulations . . . . . . . . . . . . . . . . . . 6
1.2.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research objectives and questions . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 PINNs for complex beam systems 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 PINNs for dimensional PDEs . . . . . . . . . . . . . . . . . . . . . 21
2.3 PINNs for nondimensional PDEs . . . . . . . . . . . . . . . . . . . 24

2.3.1 PINN framework for forward problems . . . . . . . . . . 25
2.3.2 Nondimensional Euler-Bernoulli beam equation . . . . 26
2.3.3 PINN framework for inverse problems . . . . . . . . . . 27

2.4 Numerical experiments and discussion . . . . . . . . . . . . . . 28
2.4.1 Timoshenko beam forward problem . . . . . . . . . . . . 29
2.4.2 Timoshenko beam inverse problem . . . . . . . . . . . . 32
2.4.3 Euler-Bernoulli double-beam forward problem . . . . . 35
2.4.4 Timoshenko double-beam forward problem . . . . . . . 38
2.4.5 Timoshenko double-beam inverse problem . . . . . . . 42

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Causal PINNs for beam simulations 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Vanilla and causal PINN . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Vanilla PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Causal PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Transfer learning for causal PINN . . . . . . . . . . . . . . . . . . 62

vii



viii Contents

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.1 Euler-Bernoulli beam . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 Timoshenko beam . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.3 Large space-time horizon . . . . . . . . . . . . . . . . . . 74

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Neural oscillators for generalization of PIML 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Extrapolation of dynamic solvers for structures 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 First Stage - Numerical/PIML Simulator . . . . . . . . . . 116
5.4.2 Second stage - Neural ODE . . . . . . . . . . . . . . . . . 117

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.2 Baselines, hyperparameters and error metrics . . . . . 122
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusions and recommendations 135
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Chapter-wise research directions . . . . . . . . . . . . . . 139
6.2.2 Future PIML research directions . . . . . . . . . . . . . . 140

Acknowledgements 143

Curriculum Vitæ 145

List of Publications 147



SUMMARY
Beams are the fundamental structural engineering element, support-
ing and stabilizing various structures ranging from suspension bridges
to buildings and railways. Modeling and analyzing these structures ne-
cessitates a comprehensive understanding of the underlying beam dy-
namics constituting the structures. Simulating and predicting the beam
dynamics is pivotal in ensuring structural integrity, optimizing structure
design, and selecting appropriate materials. For instance, in railways,
tracks and catenary contact wires are conceptualized as beams, allow-
ing for the application of renowned beam theories like Euler-Bernoulli and
Timoshenko. These theories provide a foundation for formulating partial
differential equations (PDEs) that govern the dynamic behaviors of these
beam systems.

These PDEs could be leveraged to simulate the underlying scenarios.
The dissertation introduces physics-informed machine learning (PIML)
based approaches tailored to simulate the dynamics of beam structures.
The aim is to incorporate the physical laws in the neural networks train-
ing for more accurate and realistic simulations, handle noisy data effec-
tively, and improve prediction accuracy while mitigating challenges such
as multiscale problems and generalization. Chapter 1 outlines the pri-
mary challenges tackled in the dissertation. Chapters 2 through 5 detail
the methodologies developed to address each challenge.

Chapter 2 presents a physics-informed neural network (PINN) based
methodology to simulate complex beam systems with real-world mate-
rial properties. In addition, inverse problems are solved in the presence
of noisy data to predict unknown parameters, including force acting on
the beam systems. It is essential to consider the real-world material pa-
rameters to simulate the dynamics of the modeled system and ensure
the digital model represents the ground truth. However, incorporating
material characteristics leads to multiscale PDE coefficients in the physi-
cal model, posing difficulty in training for PINNs. Subsequently, a frame-
work is proposed to incorporate nondimensional PDEs into the PINN loss
function. This approach facilitates efficient forward and inverse simula-
tions while robust to noise and uncertainty in measurement data. The
efficacy of this approach is demonstrated through simulations of Euler-
Bernoulli and Timoshenko beam systems, contributing to the challenge
of simulating large-scale systems with multiple interconnected compo-
nents.

Chapter 3 investigates beam dynamic simulations on Winkler founda-
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x Summary

tions for large spatiotemporal domains using PIML. Predictions on expan-
sive spatiotemporal domains are vital for structural integrity, design op-
timization, and control mechanisms. A causality-respecting PINN frame-
work is introduced, enhancing prediction accuracy. Furthermore, inte-
grating transfer learning addresses the need to re-train the network for
different initial conditions and computational domains. Numerical exper-
iments based on Euler-Bernoulli and Timoshenko theories validate the
methodology for respecting the causality and generalizing the beam dy-
namics across similar problems. The approach efficiently predicts beam
dynamics under diverse engineering scenarios, reducing computational
costs and improving convergence.

Chapter 4 explores the generalization abilities of PIML, essential for
practical applications requiring accurate predictions in unexplored re-
gions. The proposed framework exploits the inherent causality in the PDE
solutions by merging PIML models with recurrent neural architectures,
namely neural oscillators. The neural ordinary differential equations in
the form of neural oscillators effectively handle long-time dependencies
and address gradient-related issues, fostering improved generalization
in PIML tasks. Benchmark equations like viscous Burgers, Allen-Cahn,
Schrödinger, and biharmonic Euler-Bernoulli beam equations are used to
demonstrate the effectiveness of the proposed approach. Through ex-
tensive experimentation with time-dependent nonlinear PDEs, the study
showcases superior performance compared to existing state-of-the-art
methods. The proposed method provides accurate solutions for extrapo-
lation and prediction beyond the training data by enhancing the general-
ization capabilities of PIML, promising advancements in complex system
simulations.

Chapter 5 follows up on generalization of beam dynamics beyond PIML-
based approaches. Computer-aided simulations are crucial for advancing
engineering industries, but existing simulators often struggle to gener-
alize beyond their training domain. The chapter proposes a two-stage
methodology to tackle this challenge. Firstly, it utilizes specialized sim-
ulators tailored to the application, such as causal PINNs and black-box
finite element simulations. Secondly, it integrates predictions from the
first stage into a recurrent neural architecture, incorporating ordinary
differential equations to capture intrinsic dynamics and enhance gen-
eralization. The approach efficiently captures causality and generalizes
dynamics across various data sources. Numerical experiments cover fun-
damental structural engineering scenarios, including real-world catenary
contact wire uplift predictions, and demonstrate superior performance
compared to conventional methods, and promise for diverse industrial
applications. This dissertation concludes with Chapter 6.

In particular, this dissertation introduces PIML methodologies for sim-
ulating complex beam structures, addressing key challenges such as in-
corporating real material properties, handling noisy data, and improving
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prediction accuracy. Chapter 2 introduces a PINN-based methodology
that efficiently simulates beam systems and predicts unknown param-
eters, mitigating the difficulties posed by multiscale PDE coefficients.
Chapter 3 tackles the challenge of large-domain beam dynamics predic-
tions on the Winkler foundations by using causality-respecting PINNs and
integrating transfer learning to reduce computational costs. Chapter 4
addresses the challenge of out-of-domain predictions in PIML by intro-
ducing neural oscillators. Chapter 5 proposes a two-stage methodology
to generalize beam dynamics simulations, integrating beam dynamics
solvers and recurrent neural-based architectures, showcasing its efficacy
in real-world applications such as catenary contact wire uplift predictions.





SAMENVATTING
Balken zijn fundamentele bouwkundige elementen die zorgen voor on-
dersteuning en stabilisatie van uiteenlopende constructies en kunstwer-
ken, variërend van bruggen tot gebouwen en de bovenbouw van spoor-
wegen. Het modelleren en analyseren hiervan vereist een alomvattend
begrip van de onderliggende dynamica die bepalend is voor deze con-
structies. Simulatie en prognosticeren van balkdynamica is van cruciaal
belang bij het waarborgen van: de constructieve betrouwbaarheid , opti-
malisatie van constructieontwerpen en de selectie van geschikte bouw-
materialen. Een voorbeeld hiervan is de railinfrastructuur waarin spoor-
banen en rijdraden van de bovenleiding kunnen worden weergegeven
als balken, waardoor toepassing van alom bekende balktheorieën, zoals
Euler-Bernoulli en Timosjenko, mogelijk wordt gemaakt. Deze theorieën
bieden een basis voor het formuleren van partiële differentiaalvergelij-
kingen (PDVn) waarmee het dynamische gedrag van deze balkconstruc-
ties kan worden gemodelleerd. De PDVn kunnen worden gebruikt om
onderliggende scenario’s te simuleren.

Dit proefschrift introduceert op fysica-gebaseerde machine learning
(Physics Informed Machine Learing of PIML) benaderingen die zijn toe-
gesneden op het simuleren van de dynamica van balkconstructies. Het
doel ervan is om de natuurkundige wetten op te nemen in de machine
learning ten behoeve van: het trainen van neurale netwerken voor nauw-
keurige en realistische simulaties, doelgericht gebruik van dataruis en
verhoging van de accuraatheid van voorspellingen, terwijl problemen
met multischaal-modellering en generalisatie worden beperkt.

Hoofdstuk 1 beschrijft de belangrijkste vraagstukken die in het proef-
schrift worden behandeld. De hoofdstukken 2 tot en met 5 gaan in op de
methodologieën die zijn ontwikkeld om deze vraagstukken aan te pak-
ken. Hoofdstuk 2 beschrijft de methodologie gebaseerd op fysica ge-
ënte neuraal netwerken (Physics-informed neural networks of PINNs) om
complexe balkconstructies te simuleren aan de hand van de echte ma-
teriaaleigenschappen uit de praktijk. Tevens wordt een oplossing aan-
gereikt voor inverse problemen door dataruis bij prognostiek van onbe-
kende parameters, zoals de krachten die op balkconstructies werken.
Het is van belang om rekening te houden met materiaalgebonden para-
meters uit de praktijk bij simulatie van de dynamica van een gemodel-
leerde constructie en ervoor te zorgen dat het digitale model de ware
toestand beschrijft. Het opnemen van materiaalkenmerken leidt echter
tot multischaal-PDV-coëfficiënten in het fysieke model, hetgeen proble-
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men oplevert bij de training van PINNs. Daarnaast wordt in hoofdstuk
2 een raamwerk voorgesteld om non-dimensionale PDVn op te nemen
in de PINN-verliesfunctie. Deze aanpak maakt efficiënte voorwaartse en
inverse simulaties mogelijk, terwijl deze robuust zijn voor ruis en mee-
tonzekerheden.

De doeltreffendheid van deze aanpak wordt gedemonstreerd door si-
mulaties van Euler-Bernoulli en Timoshenko-balkconstructies die bijdra-
gen aan de condities voor het simuleren van omvangrijke constructies
met diverse onderling verbonden componenten. Hoofdstuk 3 gaat in op
de simulaties van balkdynamica bij Winkler-funderingen voor grote tijd-
ruimtelijk domeinen met behulp van PIML. Prognostiek van uitgestrekte
tijdruimtelijke domeinen zijn van cruciaal belang voor constructieve be-
trouwbaarheid, ontwerpoptimalisatie en de bepaling van controlemecha-
nismen. In hoofdstuk 3 wordt ook een PINN-framework voorgesteld waarin
de causaliteit wordt beschouwd, hetgeen de nauwkeurigheid van de prog-
nostiek verbetert. Daarbij komt de integratie van transfer learning tege-
moet aan de noodzaak om het netwerk opnieuw te trainen voor verschil-
lende initiële omstandigheden en computationele domeinen. Numerieke
experimenten gebaseerd op de theorieën van Euler-Bernoulli en Timos-
henko valideren de methodologie voor het beschouwen van de causa-
liteit en het generaliseren van de balkdynamica in vergelijkbare vraag-
stukken. De aanpak prognosticeert op efficiënte wijze de balkdynamica
in diverse technische scenario’s, waardoor computationele kosten voor
het uitvoeren van berekeningen worden verlaagd en de convergentie
wordt verbeterd.

Hoofdstuk 4 gaat nader in op de generalisatiemogelijkheden van PIML
die noodzakelijk zijn voor praktische toepassingen en die nauwkeurige
voorspellingen in andere onontgonnen gebieden van toepassing verei-
sen. Het voorgestelde raamwerk voor generalisatie maakt gebruik van
de inherente causaliteit in de PDV-oplossingen door PIML-modellen sa-
men te voegen met een terugkerende neurale architectuur en dan met
name neurale oscillatoren. De neurale standaard differentiaalvergelij-
kingen in de vorm van neurale oscillatoren gaan effectief om met lang-
durige afhankelijkheden en zijn gericht op gradiëntgerelateerde proble-
men, waardoor verbeterde generalisatie in PIML-taken wordt bevorderd.
Aan de hand van een benchmark wordt de effectiviteit aangetoond van
de voorgestelde aanpak voor Burgersvergelijkingen, Allen-Cahn, Schrö-
dinger en biharmonische Euler-Bernoulli-balkvergelijkingen. Door uitge-
breide experimenten met tijdsafhankelijke niet-lineaire PDVn laat de stu-
die veelbelovende prestaties zien in vergelijking met bestaande, conven-
tionele methoden.

De voorgestelde methode biedt nauwkeurige oplossingen voor extra-
polatie en prognoses die verder gaan dan de trainingsgegevens als ge-
volg van verbetering van generalisatiemogelijkheden van PIML, hetgeen
een veelbelovende vooruitgang bij complexe systeemsimulaties. Hoofd-
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stuk 5 gaat in op de generalisatie van balkdynamica die verder raakt
dan de op PIML gebaseerde benaderingen. Computersimulaties zijn cru-
ciaal in de ontwikkeling van technische en industriële sectoren, maar
bestaande simulatie-methoden hebben vaak moeite om buiten hun trai-
ningsdomein te generaliseren. In hoofdstuk 5 wordt een tweestapsme-
thodologie voorgesteld om deze problematiek aan te pakken.

In de eerste stap wordt gebruik gemaakt van gespecialiseerde simu-
latoren die zijn afgestemd op de toepassing, zoals causale PINNs en
black-box-eindige-elementensimulaties. In de tweede stap, integreert
de methode prognoses uit de eerste fase in een terugkerende neurale
architectuur, waarbij gewone differentiaalvergelijkingen worden geïnte-
greerd om de intrinsieke dynamiek vast te leggen en de generalisatie
te verbeteren. De benadering in de methode legt op efficiënte wijze
de causaliteit vast en generaliseert daarbij de dynamiek tussen verschil-
lende gegevensbronnen. Numerieke experimenten beslaan fundamen-
tele bouwkundige scenario’s, inclusief prognoses over de bovenleiding
van de rijdraad van spoorwegen in de praktijk. De experimenten leiden
tot zeer goede resultaten in vergelijking met conventionele methoden
en zijn dan ook veelbelovend voor diverse industriële toepassingen. Dit
proefschrift wordt afgesloten met Hoofdstuk 6.

In het bijzonder introduceert dit proefschrift PIML-methodologieën voor
het simuleren van complexe balkconstructies, waarbij belangrijke vraag-
stukken worden aangepakt zoals het opnemen van echte reële materi-
aaleigenschappen in de beschouwingen, het omgaan met dataruis en
het verbeteren van de nauwkeurigheid van prognoses. Hoofdstuk 2 in-
troduceert een op PINN gebaseerde methodologie die op efficiënte wijze
balkconstructies simuleert en onbekende parameters prognosticeert ,
waardoor de problemen van multischaal PDV-coëfficiënten worden ge-
reduceerd. Hoofdstuk 3 behandelt het vraagstuk van prognostiek van
balkdynamica van omvangrijke constructies op de Winkler-funderingen
door gebruik te maken van causaliteit beschouwende PINNs en de inte-
gratie van transfer learning om zo de computationele kosten voor bere-
kening te verlagen. Hoofdstuk 4 gaat in op de vraagstukken bij progno-
ses buiten het domein in PIML door de introductie van neurale oscillato-
ren. Hoofdstuk 5 stelt een tweetrapsmethodologie voor om simulaties
van balkdynamica te generaliseren, waarbij oplossingen van de balkdy-
namica en terugkerende, op neurale gebaseerde architecturen worden
geïntegreerd. Hiermee wordt de doeltreffendheid ervan gedemonstreerd
in toepassingen in de praktijk, zoals prognoses van opwaartse krachten
in bovenleidingrijdraden.

Hoofdstuk 3 behandelt het vraagstuk van prognostiek van balkdyna-
mica van omvangrijke constructies op Winkler funderingen door gebruik
te maken van causaliteit beschouwende PINNs en de integratie van trans-
fer learning om zo de computationele kosten voor berekening te verla-
gen.
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2 1. Introduction

1.1. BACKGROUND
Structural engineering ensures safe and stable built environments
through precise design and analysis of load-bearing structures. One
such pivotal load-bearing structure is the beam, serving as foundational
elements that support and stabilize a wide range of structures. Progress
in structural engineering depends on advancement in beam-based
structures, and comprehending the underlying beam dynamics within
these structures is imperative for accurate modeling and analysis. The
development of methodologies simulating the dynamics of these beam
systems is crucial to optimizing the efficiency, safety, and resilience of
structural designs.

Contact wireRail

Force/Load Beam 
(Rail, contact

 wire, etc.)Beam 
deformations

Space

Time

0

L0

L

Figure 1.1: Examples of beams under varying transverse force. The
direction of force on the rail is from above, whereas for
the contact wire, it is from below. Different contour colors
represent distinct space-time deformations of the beam and
are not subject to scale.

For instance, the railway system incorporates diverse beam-based
subsystems spanning several engineering domains. These include
the interactions between catenaries and pantographs [1, 2] and the
dynamics of wheels and tracks [3, 4]. The passage of trains exerts
substantial loads on tracks [5, 6], and pantograph contact wire, causing
deformations as shown in Fig. 1.1. Predicting deformations in the
form of displacement assists in safety, infrastructure maintenance,
and operational efficiency. In general, predicting the deformations for
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3

beam-type structures under the action of varying forces contributes
beyond railway engineering and is crucial in structural engineering,
including designing buildings and bridges, among other applications [7].

These beam deformation could be studied in several ways, including
data-driven machine learning, laboratory prototypes, and commercial
software simulations. However, these approaches face their own
set of challenges. For instance, machine learning-based data-driven
methods for simulation necessitate substantial amounts of data, which
is particularly challenging given the extensive spread of rail tracks
covering thousands of kilometers, with each location equally significant.

Further, the cost of developing and maintaining prototypes for
lab-based experiments is high, and these prototypes may not fully
represent real-world conditions due to their limited exposure to
varied environmental factors and restricted speed ranges. Moreover,
understanding and accounting for material variations is important but
restricted for prototype-based testing. Commercial software simulations,
while potent, often need intricate meshing, increasing computational
cost and time [8]. These challenges underline the need for improved
methodologies that generalize across large domains and diverse
conditions.

Mathematically, beam structures are described through partial
differential equations (PDEs) [9]. Various theories have been developed
to model beams and interconnected beam systems, considering beam
characteristics like length, width, and rotatory effects. Euler-Bernoulli
and the Timoshenko beam theories are widely recognized and utilized
among these theories. These theories yield specific PDEs, namely
the Euler-Bernoulli beam PDE and the Timoshenko PDE. Hence, rather
than relying on prototype-based, experimental, data-driven methods
or complex finite-element commercial software, these PDEs could
be simulated to determine deflection profiles for different beam
configurations.

The traditional approach to solving PDEs involves analytical methods
to obtain closed-form solutions [10]. However, analytical solutions
can only be obtained for a handful of PDEs and are often unavailable
for complex PDEs, including those governing the beam dynamics [9].
Instead, numerical methods, such as finite difference, finite element,
finite volume, and spectral methods, are often utilized to approximate
the solutions of such PDEs. However, employing these methods requires
specific expertise. For instance, mesh creation, the foundation of
numerical-based methods, is computationally expensive and becomes
even more challenging for complex geometries [8].

Additionally, several method-dependent parameters, such as the
mesh size and the relation between time and space step sizes [10],
exacerbate the challenge of employing numerical methods. The iterative
process can be computationally costly, and the solutions are difficult
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to generalize outside the computational domain. Also, solving inverse
problems with numerical methods is particularly challenging. Given
some solution data, the ill-posed inverse problems require estimating the
unknown model parameters [11]. However, numerical-based methods
require multiple iterative runs, with each run requiring solving the PDE
and estimating the unknown parameters, increasing the computational
cost and challenge of the problem.

Alternatively, deep learning could be utilized as a surrogate to
approximate the solutions of PDEs. However, deep learning thrives
on data, necessitating a pre-existing dataset of PDE solutions to train
neural networks effectively [12] and develop the surrogate model. While
solutions obtained from numerical methods may assist in training the
neural network efficiently, data-driven machine learning approaches
might disregard the underlying physical principles governing the system
[13]. An alternative approach involves incorporating the governing
physical equations into the learning process and integrating them with
the expressive capabilities of deep neural networks, known as physics-
informed machine learning [8]. Physics-informed neural networks [14],
one of the cornerstones of physics-informed machine learning, have
emerged as a paradigm for simulating intricate physical phenomena
by training neural architectures solely on the boundary and initial
conditions of the problem along with the PDE in the loss function of the
neural network [15].

PINNs employ a unified framework to efficiently simulate forward and
inverse problems by directly embedding physical laws into the deep
learning architecture. This integration significantly reduces the reliance
on extensive datasets, as the surrogate models utilize embedded
physical principles to enhance predictions and infer parameters from
observed data, even for complex problems with noisy datasets.
Additionally, PINNs eliminate the need for mesh generation, a common
requirement in numerical methods like finite element analysis. This
meshless approach simplifies the simulation process and provides
flexibility in handling geometric complexities.

The advantages of PIML for physical simulations motivate its
applicability for developing the digital twin and simulating the beam
dynamics in railway systems. In particular, beam structure simulations
in railway engineering have largely been unexplored through the lens of
physics-informed machine learning [16], and this dissertation aims to lay
a foundation for physics-informed simulations for railway and structural
engineering in general. However, as presented in this dissertation,
applying PIML to predict beam dynamics is not straightforward. Several
advancements in the PIML framework are required to advance the beam
simulations. In particular, challenges like the multiscale coefficient of
the PDEs governed by the material properties, large space-time domain,
and generalization remain open problems in physics-informed machine
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learning, which are fundamental for simulating beam dynamics in the
context of railway engineering.

This dissertation presents PIML-based methodologies to simulate
beam dynamics in structural engineering including railways. The
developed methodologies, particularly on beam-based systems, aim to
contribute multidisciplinary insights bridging the domains of physical
simulations, machine learning, and structural engineering. The research
addresses challenges inherent in PIML, including multiscale and large
domain simulations. Furthermore, the research investigates temporal
and parametric generalizations for canonical problems, including the
deformation analysis of beams and real-world catenary contact wires
under varied loading conditions.

1.2. CHALLENGES FOR BEAM SIMULATIONS THROUGH
PHYSICS-INFORMED MACHINE LEARNING

This section discusses the major challenges in beam dynamics
simulations through physics-informed machine learning that will be
addressed in this dissertation.

1.2.1. COMPLEX SYSTEM SIMULATIONS
Beam dynamics in railway and structural engineering are complex
and challenging to predict. Beams undergo deflections under acting
dynamic loads. Further, many complex systems are based on multiple
interconnected beams [17]. Simulating complex beam systems involves
multiple PDEs describing intricate phenomena. PDEs governing the
complex beam dynamics are characterized by higher-order derivatives,
typically up to fourth order, and possess multiscale coefficient values
arising from the material properties of the beam.

PINNs offer a promising approach for solving such complex PDE
systems through developing a simulation-based surrogate model. By
embedding physical equations in the loss function and leveraging
neural networks universal function approximation property, PINNs can
approximate high-fidelity solutions, providing well-posed PDEs. However,
PINNs also suffer from challenges relevant to simulating complex PDEs.

In particular, one challenge for PINNs is learning relevant physical
phenomena with large coefficients in the physical equation [18]. For
instance, real-world beams in railway engineering, usually made of
aluminum, are examples of such complex physical systems. Accurate
simulations necessitate simulating PDEs with real-world coefficient
values. Such simulations are crucial for developing robust methodologies
to predict beam deformation across various material properties.

In essence, developing PIML-based methodologies for solving multi-
scale issues in complex beam systems must be investigated. What
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changes should be made to improve the performance of the physics-
informed method for multiscale problems? Improving the performance
of PINNs for multiscale problems and higher-order derivatives remains
an open challenge and is not limited to beam dynamics.

1.2.2. INVERSION OF COMPLEX SYSTEM WITH NOISY DATA
In addition to solving the forward problem and predicting beam
dynamics, another challenge in beam dynamic computations is solving
the inverse problem. The inverse problem refers to inferring the
unknown parameters and loadings acting on the beam systems. Solving
such inverse problems requires collecting spatio-temporal data, possibly
through sensor measurements. However, data collection through
sensors is expensive and yields noisy observations, which must be
utilized to provide robust parameter approximations.

PIML algorithms have been proposed to solve inverse problems and
have shown success across the domain [19, 20]. Solving inverse
problems with PINNs requires data at certain locations to simulate
an ill-posed physical system. Ideally, PINNs simulate the ill-posed
physical equations and approximate unknown parameters, providing
some data at certain locations. However, the difficulty of the inverse
problem increases for complex systems using noisy data. The challenge
is whether PIML algorithms can cope with noise to simulate the
underlying complex beam systems and estimate unknown parameters
and functions.

1.2.3. LARGE DOMAIN SIMULATIONS
Simulating in a large domain refers to predicting and analyzing the
behavior and interactions of systems across extensive spatial and
temporal domains rather than focusing on smaller, localized segments.
This approach is particularly relevant in fields like structural engineering,
where the structures under investigation, such as bridges or railway
tracks, cover vast distances. For instance, an example of a vast spatial
domain includes railway tracks, which must be analyzed throughout the
thousands of kilometers of the spatial domain. Many PIML algorithms
are only tested in small domains, but extending PIML to larger spatial
domains is crucial in structural engineering.

Mathematically, applying PIML to large domains involves training over
an extensive space-time domain, which is complex and challenging [21,
22]. The difficulty arises from the inherent biases in conventional PIML
methods like PINNs, which prioritize resolving later time levels due to
implicit gradient biases. This bias violates temporal causality and results
in inaccurate predictions, especially in systems heavily dependent on
initial conditions. Overcoming these challenges is crucial for PIML to
effectively simulate large-domain structural behaviors, mitigating the
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challenge of multiple computations for smaller domains or domain
decomposition strategies.

1.2.4. GENERALIZATION
Generalization refers to the ability of a neural network model to predict
scenarios not included in the training dataset. This prediction is
critical for applying a trained model in real-world conditions where it
might encounter settings or situations different from those on which
it was originally trained. Out-of-domain prediction is essential for
models intended to be used in practical applications, such as structural
engineering, where the modeled systems must operate reliably under
a range of untested conditions. Achieving this capability requires the
model to learn from the data it was trained on and deeply understand
and apply the underlying physical principles governing the system. The
generalization ability ensures that the model predictions remain valid
even when extrapolating beyond the training domain, making it both a
challenging and a vital aspect of PIML development.

Generalization is not only a challenge for PIML but, in general, for
machine learning, at least for regression problems [23]. While PIML
integrates physical laws into its frameworks to enhance robustness, it
still struggles with accurately predicting outcomes outside the training
domain [24]. This limitation arises because minimizing the PDE residuals
during training does not effectively control the generalization error,
meaning the model can perform well on familiar data but may not provide
accurate predictions on new, unseen data. Additionally, embedding
physical constraints into the model does not guarantee genuine physical
comprehension or robustness beyond trained scenarios. Achieving
reliable predictions in new and varied situations remains an open
problem. This complexity underscores the need for developing
methodologies that improve the ability of PIML to generalize beyond
their training data, which is crucial for their practical application in
modeling complex physical systems.

1.3. RESEARCH OBJECTIVES AND QUESTIONS
This dissertation explores the potential of PIML methodologies for
simulating fundamental beam dynamics prevalent in railway and
structural engineering. The research objectives encompass simulating
the behavior of complex beams, solving inverse problems for estimating
the quantity of interest, including noisy data, developing an approach
for simulation in large domains, and reducing computational costs.
Additionally, out-of-domain prediction will be sought, and physics-
informed methodologies will be designed to generalize the existing PIML
and numerical solvers.
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The following research questions are explored to address the research
objectives:

1. How to predict beam deformations through PIML-based methodolo-
gies, mitigating the challenge of multiscale coefficients?

2. How effectively do physics-informed algorithms tackle inverse
beam dynamic problems and predict underlying dynamics and
unknown parameters from noisy data?

3. How to simulate beam deformations within large spatiotemporal
domains using PIML?

4. How to accelerate and generalize PIML-based methodologies for
simulating similar beam dynamic problems in large spatiotemporal
domains?

5. How to develop PIML-based frameworks capable of predicting
out-of-domain for canonical problems, including nonlinear and
high-order problems?

6. How to generalize beam dynamic solver to predict out-of-domain
scenarios, particularly for beam systems like catenaries with
varying train speeds?

1.4. CONTRIBUTIONS
This section outlines the main contributions of this dissertation.
The theoretical or methodological advancements presented in the
dissertation are as follows:

• This dissertation integrates structural engineering, computational
mechanics, and machine learning by proposing machine learning-
based solutions for mechanical problems encountered in the form
of beam dynamics in railway and structural engineering.

• This dissertation proposes simulating the railway or structural
dynamics modeled as beams through physics-informed machine
learning. Specifically, Chapter 2 presents that simulating multiscale
PDEs encapsulating the specific material behavior is non-trivial
using PINNs. Chapter 2 proposes a framework using nondimensional
equations in the loss function. The proposed framework is lossless
and has no loss of features, converting the dimensional equations
to nondimensional and vice versa. The proposed framework is also
employed to address multiple connected complex beam systems
and ill-posed inverse problems to identify the unknown model
parameters and the applied force on the beam components. In
addition, the presented methodology is robust to noise. It can
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accommodate potential uncertainty in the measurement data and
is suitable for real-world applications with incomplete or uncertain
data.

• This dissertation introduces a causality-respecting physics-informed
deep learning framework in Chapter 3 that simulates complex beam
systems in large domains. A causality-respecting PINN loss function
effectively addresses these limitations and enforces relevant
physics. However, implementing this modified loss function
requires a denser neural network with more parameters. This
problem is exacerbated when simulating similar beam dynamics
problems. A transfer learning-based framework is proposed
within the causal PINN architecture to address the complexity
and impracticality of simulating at every instant. By leveraging
transfer learning, previously trained model parameters are used to
initialize and train new models, reducing the computational cost
and enabling faster convergence for subsequent tasks, improving
the efficiency of simulating beam dynamics on elastic foundations
for large-space time domains.

• This dissertation proposes a framework in Chapter 4 to mitigate
the issue of out-of-domain predictions in deep learning for solving
PDEs. In particular, a physics-informed neural architecture is
utilized to learn the underlying dynamics in the training domain,
followed by a neural oscillator to exploit the causality and learn
temporal dependencies between the solutions at subsequent time
levels. The proposed framework based on neural oscillators carries
a hidden state that retains information from previous time steps,
enabling the model to capture and leverage temporal dependencies
in the data. This extension of a physics-informed architecture
increases prediction accuracy in out-of-domain scenarios and
efficiently extrapolates the dynamics in the time domain without
using any data from the untrained time domain. The performance
of the proposed approach is evaluated on four different canonical
problems, including beam dynamics, demonstrating superior
performance compared to other recurrent architectures.

• This dissertation introduces a two-stage approach for generalizing
the state-of-the-art (SOTA) traditional numerical-based methods or
the experimental data collection-based methods for engineering
dynamic simulations. First, dynamics are simulated using a
SOTA simulator preferred for the application, followed by classical
mathematical models (ODEs) infused in neural architecture to
extrapolate the dynamics. Chapter 5 proposes a resolution
invariant pipeline where both stages can process data at different
resolutions. The proposed workflow efficiently extrapolates the
dynamics in the time domain without using any data from the
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untrained time domain. Furthermore, the framework eliminates
tedious re-meshing and re-simulation in computer-aided simulation
software for novel parameters belonging to the parameter space.
The performance of the proposed approach is evaluated on four
different dynamic simulation problems in structural engineering,
including real-world catenary-pantograph systems, demonstrating
superior performance compared to other recurrent architectures.

• All codes and datasets used in the research are provided open-
source, facilitating the reproduction of the work and open science.

1.5. OUTLINE
This dissertation is organized into six chapters as shown in Fig. 1.2.
Chapters 2-5 contribute to advancing the understanding and application
of physics-informed machine learning for simulating fundamental
components of railway infrastructure, i.e., beam deformation. A
flowchart of the dissertation is shown in Figure 1.2, clarifying the
relationships between the chapters. Chapter 2 introduces a physics-
informed neural network-based methodology for simulating beam
dynamics. Chapter 3 presents a causality and transfer learning-based
approach for predicting beam deformation in large space and temporal
domains. Chapter 4 introduces a methodology for generalizing canonical
PDE problems through neural oscillators. Chapter 5 presents out-of-
domain prediction, including moving load and catenary contact wire
dynamics. Chapter 6 concludes the dissertation with the findings for the
research questions and recommendations for future research. A brief
description of the remaining chapters is as follows:

Chapter 2 considers the simulation of complex beam dynamics
with multiscale coefficient challenge. Depending on the nature of
the material, coefficients in the physical equation differ, leading to
multiscale coefficient values. Incorporating large coefficient variations
in the PDE-based loss function, like in PINN, is challenging to optimize.
The chapter introduces nondimensional equations in the PINN loss
function for simulating complex beam systems. In addition, the chapter
proposes to simulate multiple connected beam systems and solve
inverse problems in the presence of noisy data.

Chapter 3 focuses on predicting beam deformation in large space
and temporal domains. The chapter proposes using causality-respecting
PINN to achieve long rollouts in large spatial domains. In addition,
to solve several similar problems and reduce the computational cost,
a transfer learning-based methodology is proposed to generalize the
dynamics. The numerical experiments are carried out to showcase faster
convergence for similar problems, solving problems in larger space-time
domains.
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Chapter 4 deals with the problem of generalization in physics-informed
machine learning. The chapter introduces a neural oscillator-based
framework for predicting outside the training domain. The methodology
is validated on the canonical PDEs, including beam dynamics, to
showcase better generalization abilities than traditional recurrent neural
architectures.

Chapter 5 extends the problem of generalization beyond physics-
informed machine learning and tackles the prevalent problem for
dynamic simulators in general. A two-stage framework is proposed
to generalize the simulation dynamics through a neural ODE-based
architecture. The numerical experiments, including the catenary contact
wire deflection predictions, demonstrate the efficacy of the proposed
method in predicting the quantity of interest outside the training domain.

Finally, Chapter 6 concludes this dissertation and recommends future
research directions in physics-informed machine learning for engineering
structures.

Chapter 2
PINNs for complex beam systems

Chapter 5
Extrapolation of dynamic solver for 

structures

Chapter 6
Conclusions and recommendations

Chapter 3
Causal PINNs for beam simulations

Chapter 4
Neural oscillators for generalization of 

PIML

Figure 1.2: Structure of this dissertation.
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2
PINNS FOR COMPLEX BEAM

SYSTEMS

This chapter proposes a new framework using physics-informed neural
networks (PINNs) to simulate complex structural systems that consist
of single and double beams based on Euler-Bernoulli and Timoshenko
theory, where the double beams are connected with a Winkler
foundation. In particular, forward and inverse problems for the Euler-
Bernoulli and Timoshenko partial differential equations (PDEs) are solved
using nondimensional equations with the physics-informed loss function.
Higher-order complex beam PDEs are efficiently solved for forward
problems to compute the transverse displacements and cross-sectional
rotations with less than 1e-3 percent error. Furthermore, inverse
problems are robustly solved to determine the unknown dimensionless
model parameters and applied force in the entire space-time domain,
even in the case of noisy data. The results suggest that PINNs are a
promising strategy for solving problems in engineering structures and
machines involving beam systems.

Apart from minor updates, this chapter has been published as: Kapoor, T., Wang,
H., Núñez, A., & Dollevoet, R. (2023). Physics-informed neural networks for solving
forward and inverse problems in complex beam systems. IEEE Transactions on Neural
Networks and Learning Systems
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2.1. INTRODUCTION
Complex engineering issues in real-life scenarios are often characterized
by the connection between various subsystems and uncertainty in
behavior caused by internal and external variables and their interactions.
Furthermore, the design and maintenance of complex systems, such
as engineering structures and machines, is made challenging by the
unpredictable collective behaviors and properties of these concurrently
operating and interacting components. These issues are typically
difficult to analyze through conventional methods [1]. Most of these
complex engineering systems are continuous, and partial differential
equation (PDE) models are used to characterize and understand their
behavior. These PDE models are used to simulate a wide range
of engineering phenomena, ranging from multiple beam systems in
suspension bridge cables (Timoshenko beam equations)[2] to catenary-
pantograph interactions in railways (damped beam equations) [3] to
simulating air turbulence that disrupts flight (Navier-Stokes equations)
[4, 5], among many others [6–13]. Solutions to governing PDEs enable
real challenges such as structural health monitoring [14–16] and optimal
structural design [17, 18] to be addressed.

The development of algorithms for diagnostics and prognosis is an
issue in maintaining complex engineering systems [1]. Insights could be
obtained by solving the forward and inverse problems for the governing
PDEs of interest to forecast the behavior of system and minimize
unexpected downtimes of complex systems. These equations range in
complexity from being extremely nonlinear (Navier-Stokes equation [19])
to incorporating intricate higher-order boundary conditions (fourth-order
beam equations [20]). In practice, these equations are too complicated
to be solved analytically and must be solved numerically. Numerical
methods such as the finite-difference and finite-element methods have
been used to approximate the solutions of these PDEs. Despite their
success in practice, these methods encounter some difficulties, such as
mesh creation, which is more difficult for complex geometries in higher
dimensions [21, 22].

In recent years, scientific machine learning, which combines scientific
computing with machine learning methodologies to estimate PDEs
solutions, has made remarkable developments and has emerged as a
viable alternative to the aforementioned numerical methods. The review
papers [21, 23, 24] extensively discuss state-of-the-art breakthroughs
in scientific machine learning, including works on real-world engineering
problems. However, data-driven methods require a large amount of
data, which is possibly computationally expensive and susceptible to
noise in some engineering systems [25]. One possible way to mitigate
the effects of these problems is to utilize the known physical knowledge
of the underlying system in the learning procedure [26–28]. Prior
physical knowledge could be incorporated into the learning procedure
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by collocating the PDE residual at training points, similar to leveraging
the physical equation in the training process. The underlying neural
networks proposed in [25] are called physics-informed neural networks
(PINNs).

PINNs utilize neural networks universal function approximation prop-
erty [29] and embed the well-posed physical equations modeled by PDEs
in the loss function. Prior knowledge of physical principles works as a
regularization agent in neural network training, restricting the space of
admissible solutions and improving function approximation accuracy. As
a result, given some knowledge of the physical features of the problem
and some training data, PINN can be utilized to identify a high-fidelity
solution. PINNs have already proven to be a very effective paradigm
for approximating solutions of PDEs for real-world problems [30, 31], as
discussed in the review papers [21, 23].

However, several challenges for PINNs have also been found [32]. One
such challenge for PINNs is to learn relevant physical phenomena for
more complex problems with large coefficients in the physical equation
[33]. A sequence-to-sequence learning task was proposed in [33] as
a remedy to this problem. However, this can be computationally
expensive when the scale is large. In [34], the importance of using
nondimensional equations in the PINN framework was highlighted for
cardiovascular blood flow. We build on these works and address
the challenge of multiscale complex beam systems. Accordingly, this
chapter uses nondimensional PDEs instead of dimensional PDEs in the
loss function. This provides a way to simulate realistic physical equations
with computational tractability.

Accurate prediction of the dynamics of structures [35] and structural
elements, such as plates [36], and beams [37, 38], is crucial in the field
of structural engineering. However, measuring quantities of interest
in beam systems through lab experiments can prove to be difficult, as
it necessitates specialized prototypes, training, and safety during the
testing process, increasing the overall cost of the experiment. PINNs
offer a simulation-based solution as a mesh-free method that does not
require discretizing the domain into a finite number of elements, making
it computationally inexpensive compared to numerical methods. PINNs
can effectively integrate incomplete or noisy information with prior
physical knowledge. The proposed framework converts dimensionalized
PDEs to a nondimensionalized form, increasing the suitability for neural
networks and enabling the prediction of deflections and rotations for
any material, resulting in a more generalizable method.

This chapter provides a framework to simulate complex structural
systems consisting of two or more basic structural systems connected
by an elastic layer. In particular, the forced vibration of two elastically
connected beams is studied, which is commonly encountered in the
mechanical, construction, and aeronautical industries [6]. These double-
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beam systems in engineering structures have received significant
attention in the scientific community and are considered complex
systems. Studies have been conducted to predict the dynamics of
these systems under various loading and force conditions, such as those
found in papers [39–47], among others. These studies include the use
of analytical and closed-form solutions [43, 48–51]; however, analytical
methods have limitations in applicability, as they may be useful only for
specific types of problems and can become complex for systems with
many variables or nonlinear equations. Other approaches, such as the
state-space method presented in [45, 52], may also be computationally
expensive for systems with a large number of states. Additionally,
modal analysis methods as presented in [6, 53] have been used to study
the natural frequencies and modes of vibration, but they do not provide
information on the full response of the system and cannot be used to
predict the time-domain response at any instant.

The considered governing equations are modeled using Euler-Bernoulli
and Timoshenko theory. In addition to solving the forward problem
and computing the physical quantities of interest, we also solve the
inverse problem. For the inverse problem, one may not necessarily
have complete information about the inputs to the PDEs, such as initial
or boundary data, coefficients [54–56] or applied forces. This lack of
knowledge makes the forward problem ill-posed, and subsequently, the
forward problem cannot be solved uniquely. In this chapter, access
to data for quantities of interest is leveraged to determine the PDEs
unknown inputs, for instance, the model parameters and applied forces.

The main contributions of the current chapter are as follows,

• To the best of the authors knowledge, this is the first work to
use physics-informed machine learning to solve the forward and
inverse problems of Euler-Bernoulli and Timoshenko complex beam
models.

• We address a challenge for PINNs in solving multiscale complex
beam PDEs and propose a framework for using nondimensional
equations in the loss function.

• The proposed nondimensional PINN framework is employed to
address ill-posed inverse problems for complex systems and to
identify the unknown model parameters and the applied force
on the beam components. This is achieved by utilizing data
from indirect measurements such as the displacement and cross-
sectional rotations of the beams.

• The presented methodology is robust to noise and can accomodate
potential uncertainty in the measurement data, making it well
suited for real-world applications where data are incomplete or
uncertain.
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The rest of the chapter is organized as follows. In Section II, the
PINN method is presented to simulate the dimensional Euler-Bernoulli
beam equation. Due to the limitations of PINNs in simulating the
dimensional Euler-Bernoulli beam equation, an alternative approach of
using nondimensional equations in the PINN loss function is proposed
and successfully used to solve the dimensionless Euler-Bernoulli equation
in Section III. Section IV first applies the proposed framework to simulate
the Timoshenko beam model for solving forward and inverse problems.
The forward problem of the Euler-Bernoulli double-beam equation is then
solved. Additionally, Section IV covers forward and inverse Timoshenko
double-beam system problems. Section V concludes this chapter.

2.2. PINNS FOR DIMENSIONAL PDES
In this section, the method of PINNs to simulate PDEs is presented
in brief using an abstract dimensional PDE. The method is then used
to simulate the dimensional Euler-Bernoulli equation. The following
abstract dimensional PDE is considered with implicit initial and boundary
conditions:

K̄(̄, t̄) := D[ ̄](̄, t̄; λ̄) − ƒ̄ (̄, t̄) ∀(̄, t̄) ∈ Ω̄ × T̄ ⊂ Rd × R (2.1)

where D[ .] denotes the differential operator, ̄ is the quantity of interest,
̄ ∈ Ω̄ ⊂ Rd, t̄ ∈ T̄ ⊂ R for d ≥ 1, Ω̄ denotes the spatial boundary contained
in the d-dimensional Cartesian spatial space and T̄ denotes the temporal
domain, λ̄ ∈ R is the model parameter, ƒ̄ (̄, t̄) is the external force, and
K̄ is the notation for the abstract physical equation.

Deep neural networks are the core for PINNs in which inputs (̄, t̄) map
to output (̄) through an iterative composition of hidden layers. The
composition consists of weights (), biases (b), and linear or nonlinear
activation function(s) (σ). The inputs undergo a linear composition
within a neuron, where they are multiplied by respective weights and
summed along with a bias term. Subsequently, this combined input
is passed through a nonlinear activation function (σ) as presented in
Fig. 2.4. This allows the neural network to introduce nonlinearity,
enabling the network to capture intricate relationships between inputs
and outputs.

To train the neural network, one needs training set (Δ), consisting
of spatial boundary points (Δb), temporal boundary points (Δi) and
interior points (Δint). As a result, the training set can be written as
Δ = Δi ∪ Δb ∪ Δint. In this work, Δi, Δb, and Δint are considered to have
Ni, Nb and Nint training points respectively. The total number of training
points is denoted by Ntrin. To approximate the quantity of interest ̄,
one needs to minimize the loss function containing the physical model
in the form of a PDE with initial and boundary conditions of (2.1). No
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additional data are required in the loss function for forward problems.
The loss function L̄ is defined as follows:

L̄(θ) = Min
θ
(

1

Ntrin

Ntrin
∑

n=1

||K̄(̄n, t̄n)||2) (2.2)

where (̄n, t̄n) represents the training tuple for each n. Minimizing this
loss function using a suitable optimization algorithm provides optimal
parameters θ = {,b}.

Now, we employ the PINN algorithm for the dimensional Euler-
Bernoulli beam equation and evaluate the corresponding performance.
The dynamic Euler-Bernoulli beam equation is given by

ρĀt̄̄t + Ēx̄x̄x̄x̄ = ƒ̄ (̄, t̄) ̄ ∈ [0, ̄], t̄ ∈ [0, tend] (2.3)

̅𝑓(x̄, t̄ )

Figure 2.1: Simply supported beam with varying transverse force.

Here, ̄ and tend refer to the length of the beam and final time,
respectively. This equation models the transverse displacement of beam
̄ in the space-time domain subject to the external transverse force ƒ̄
as shown in Fig. 2.1. This work considers a uniform cross-sectioned
beam with constant material properties throughout the beam. The
parameters ρ and A denote the density and cross-sectional area of the
beam, respectively. The parameters E and  are Young’s modulus and
the moment of inertia of the beam, respectively. The external force ƒ̄
acts nonuniformly on the body, and ̄ is the transverse displacement of
the beam, which is the only unknown in the governing PDE. In addition,
tt represents the second order partial derivative of u with respect to t,
and xxxx represents the fourth order partial derivative of u with respect
to x. The goal of the forward problem is to compute the transverse
displacement of the beam supplemented with the initial and boundary
conditions. For this study, simply supported beams are considered,
which rest on two supports and are free to move horizontally. Real-world
applications of simply supported beams include railway tracks, and
bridges, to name a few. Mathematically, the simply supported boundary
condition for (2.3) is given by

̄(0, t̄) = ̄(̄, t̄) = ̄x̄x̄(0, t̄) = ̄x̄x̄(̄, t̄) = 0
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For the numerical experiment, the parameter values of aluminium-like
material are considered in the physical equation, which are widely used
for making beams. The parameter values taken for the problem are
ρ = 2 × 103kg/m3, A = 5 × 10−2 m2, E = 1010N/m2, and  = 4 × 10−4m4.
Additionally, the beam is taken to be π2 meters long, and the external
force ƒ̄ is taken to be E(1 − 16π2) sin (̄/π) cos(4ct̄/π)/ ̄3N, where

c =
r

E
ρA . Taking the final time to be π2/200, the PDE to be solved takes

the form

102̄t̄̄t + 4 × 106̄x̄x̄x̄x̄ =

4 × 106(1 − 16π2) sin (̄/π) cos(800t̄/π)/π3 (2.4)

in the domain ̄ ∈ [0, π2] and t̄ ∈ [0, π2/200]. For (2.4) to be well-posed
the initial condition of the beam is taken to be sin(̄/ ) with zero initial
velocity, where  =

p

̄.
For training the neural network, 16000 random training points are

generated with the distribution Ni = 2000, Nb = 4000, and Nint = 10000.
The neural network consists of 4 hidden layers with 20 neurons in each
hidden layer. The tnh activation function, which is one of the most
commonly used activation functions in the PINN literature, as described
in the review paper [23], is chosen. The loss function (2.2) consists of
the initial condition, boundary condition and PDE. The PDE is regularized
in the loss function with the residual parameter 0.1 [57]. The L-BFGS
optimizer, which is again one of the most commonly used optimizers in
the PINN literature [23] is used to minimize the loss function. As shown
in Fig. 2.2, 15000 epochs are performed. However, the figure clearly
illustrates that the optimizer does not converge to the solution, and a
vast training loss of 1014 is obtained. Additionally, the graph shows that
the optimizer is stuck in the local minima and hence will not converge
even if the number of epochs is increased for the same neural network
configuration.

In [16, 58], the problem of free vibrations in the Euler-Bernoulli single-
beam equation was successfully solved by PINNs, where the coefficients
of the PDE were taken to be unity. This shows that PINNs can simulate
the beam equations, and the challenge lies in the multiscale coefficient
values that arise when dealing with a real-life physical equation. The
nonconvergence in our case is due to the high value of coefficients,
which is due to the dimensional equation. Consequently, a pressing
need arises to transform the dimensional form of the equation into a
nondimensional form. It may be possible that for some configurations
containing hundreds of hidden layers and neurons, this problem may
be solved without the need to non-dimensionalizing the PDE. However,
nondimensionalization aims to provide computational tractability.
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Figure 2.2: L-BFGS training loss vs. the number of epochs for the
dimensional Euler-Bernoulli beam equation.

2.3. PINNS FOR NONDIMENSIONAL PDES
This section presents the proposed framework of using nondimensional
equations in the PINN loss function. The method for nondimensionalizing
the governing PDE is described first. Then, the algorithms for forward
and inverse problems using dimensionless equations in PINNs are
presented. To nondimensionalize the abstract PDE given by (2.1), the
following transformations are performed

̄ = ξ1(); t̄ = ξ2(t); ̄ = ξ3(); ƒ̄ = ξ4(ƒ ) (2.5)

where, ξ1, ξ2, ξ3, and ξ4 are suitable functions that map the dimensional
quantities ̄, t̄, ̄, and ƒ̄ to the corresponding nondimensional quantities.
After substituting the above transformations in (2.1) and introducing
the dimensionless parameter λ, one obtains

K(, t) := D[](, t;λ) − ƒ (, t) ∀(, t) ∈ Ω × T ⊂ Rd × R (2.6)

The proposed framework uses dimensionless equations to simplify
and stabilize the problem computationally. By nondimensionalizing the
variables and parameters, they are kept within a specific range, resulting
in improved performance and generalization of the neural network.
Furthermore, dimensionless equations generate more interpretable
solutions by eliminating the units of measure, making it easier to
understand the underlying physical phenomena and to compare results
across different physical systems in the form of ratios and parameters.
Hence, using dimensionless equations in PINNs can enhance the
computational stability, generalization, and interpretability of the neural
network.
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2.3.1. PINN FRAMEWORK FOR FORWARD PROBLEMS
K, the nondimensional PDE corresponding to the dimensional PDE K̄, is
now used in the loss function L defined as follows:

L(θ) = Min
θ
(

1

Ntrin

Ntrin
∑

n=1

||K(n, tn)||2) (2.7)

A schematic representation of the proposed PINN-based framework is
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Figure 2.3: Nondimensional Euler-Bernoulli beam equation Color bar
represents Left: Predicted solution (∗); Right: Absolute
error in prediction (| − ∗|)

illustrated in Fig 2.4.
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Figure 2.4: PINN framework for beam systems: For forward problems,
the loss function comprises the nondimensional PDEs and
the boundary and initial conditions. For inverse problems,
the nondimensional PDEs are supplemented with extra data
and potential initial/boundary conditions.
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2.3.2. NONDIMENSIONAL EULER-BERNOULLI BEAM EQUATION
We now test the nondimensional equation in the PINN framework and
evaluate the corresponding performance. To nondimensionalize (2.3),
following transformations are used:

 = ̄/ ;  = ̄/ ; t = ct̄/ 2; ƒ = ƒ̄ 3/(E) (2.8)

Upon substituting these values in (2.3), one obtains

tt + xxxx = ƒ (, t)  ∈ [0, π], t ∈ [0,1] (2.9)

where ƒ (, t) = (1 − 16π2) sin () cos(4πt), with initial and boundary
conditions

(,0) = sin(), t(,0) = 0

(0, t) = (π, t) = xx(0, t) = xx(π, t) = 0

For the error estimation, the relative percentage error (R) used in [57]
is chosen. Here, ∗ is the prediction and  is the analytical solution.

R =
||∗ − ||2
||||2

× 100

The same neural network architecture as the previous case is chosen to
solve this resulting nondimensional PDE. A low training loss is obtained,
indicating that the PINN is trained successfully. The analytical solution
for this case is (, t) = sin() cos(4πt), which is used to quantify the
error in the approximated solution. The nondimensional displacement
of the Euler-Bernoulli beam is computed within R = 5.3e − 4 percent.
The nondimensional displacement prediction using PINN is shown in
Fig. 2.3.(a). Fig. 2.3.(b) shows the absolute error between the exact and
predicted solutions.

The contour plot for the approximate solution shows the dynamics of
a simply supported beam under a force, where the x-axis represents
the time, the y-axis represents the position along the length of the
beam, and the colors represent the displacement of the beam. In
Fig. 2.3.(b) the red regions indicate high displacement, while the blue
regions indicate low displacement. There is a strong displacement at
the position of the beam when a substantial force is applied, which
is consistent with the known physics of this system. The network
accurately captures the displacement behavior of the beam, which is
evident by the smooth and continuous transition of colors across the
plot.

The contour plot for the error in Fig. 2.3.(b) shows the difference
between the approximate solution obtained from the network and the
true solution. The x-axis represents the time, the y-axis represents the
position along the length of the beam, and the colors represent the error.
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The red regions indicate high error, while the blue regions indicate low
error. The areas where the training point concentration is low account
for more error, and areas where the concentration of training points is
more have relatively low error. One approach to reduce the error is to
have more training points in the regions of high error. However, the
overall error is low, which indicates that the network accurately captures
the displacement behavior of the beam.

From Fig. 2.3.(b), the PINNs are found to solve the dimensionless
Euler-Bernoulli beam equation accurately and hence, for all further
experiments, nondimensional PDEs are simulated using PINNs. Addi-
tionally, the nondimensional displacement is henceforth referred to as
displacement for conciseness. The presented methodology predicts the
dimensionless quantities and hence all the plots of results and their
associated error plots are dimensionless. Consequently no units are
mentioned in the plots of the presented results. Next, we describe the
inverse problem-solving strategy using nondimensional equations.

2.3.3. PINN FRAMEWORK FOR INVERSE PROBLEMS

Algorithm 1 Inverse PINN algorithm

Goal: To predict the unknown parameter λ̄ or function ƒ̄ (̄, t̄).

Step 1: Nondimensionalize the governing PDE to approximate the
dimensionless parameter λ or function ƒ (, t).

Step 2: Choose the training set from the space-time domain Ω × T,
and augment with (dt, tdt) at which additional data (dt) are
provided.

Step 3: Construct a feedforward deep neural network with inputs (, t)
and outputs , λ or ƒ (, t).

Step 4: Minimize the loss function (2.11) with a suitable optimization
algorithm, and find the optimal parameters.

Step 5: Use the optimal parameters to approximate the parameter λ∗

or the function ƒ∗(, t).

The abstract dimensionless PDE described by (2.6) is well-posed, and
the forward problem can be solved uniquely. However, in the case of an
inverse problem, the problem is ill-posed and either the initial/boundary
conditions or the parameters/forces are unknown. Hence the generic
abstract PDE can be re-written as

K
′
(, t) := D[](, t;λ) − ƒ (, t) ∀(, t) ∈ Ω × T ⊂ Rd × R (2.10)
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The algorithm for the PINN framework is presented to solve inverse
problems.

The aim of the inverse problem is to predict the unknown parameter λ
or the force function ƒ (, t), when data are provided for the observable
 in some part of the training domain. In this chapter, dt denotes the
available data for the inverse problem at Ndt points. The prediction
of the unknown parameter requires additional information in the loss
function as shown in Fig 2.4. It is essential for the Jacobian matrix utilized
in the inverse operation study employing neural networks to exhibit a
nonzero determinant, to be invertible, and to possess a reasonable ratio
between its largest and smallest eigenvalues to guarantee a unique
solution and ensure computational stability. The algorithm for the
inverse problem is the same as for the forward problem with a minor
modification in the loss function. In addition to the output , the
PINNs now predict the unknown parameter, force, initial or boundary
conditions of the physical problems by leveraging the known data. The
loss function for the inverse problem can be defined as
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Figure 2.5: Timoshenko single beam; Color bar represents Left: Cross-
sectional rotation (θ∗); Right: Transverse displacement
(∗).

L
′
(θ) = Min

θ
(

1

Ntrin

Ntrin
∑

n=1

||K(n, tn)||2+

1

Ndt

Ndt
∑

n=1

||dt(n, tn) − pred(n, tn)||2) (2.11)

Here, pred denotes the prediction of u by the neural network section
implementing the PINN algorithm for forward and inverse problems of
dimensionless beam equations.

2.4. NUMERICAL EXPERIMENTS AND DISCUSSION
In the following subsections, five numerical experiments are presented.
The experiments are conducted in a progressive manner, beginning with
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simple models such as a single beam system and then progressing to
more complex ones such as a double beam connected to a Winkler
foundation. To verify the proposed method, we first investigate forward
and inverse problems for a single beam, which serves as the proof of
the concept. Then, we apply the method to more intricate cases of
double-beam systems to simulate forward and inverse problems.

2.4.1. TIMOSHENKO BEAM FORWARD PROBLEM
The Euler-Bernoulli theory of beams is widely used in the literature
and has been successfully applied in structures such as the Eiffel
Tower and Ferris wheels. However, it does not consider the effects of
transverse shear deformations, which are often significant in the vertical
displacements of short and thick beams [59]. Timoshenko beam theory
provides a mathematical framework for analyzing thick-beam bending
[59]. According to Timoshenko theory, upon the action of an external
force, the beam undergoes some cross-sectional rotation in addition to
transverse displacement. Mathematically, the dynamics are modeled by
a coupled system of PDEs with two variables: transverse displacement
and cross-sectional rotation. The model is given by

ρθ̄t̄̄t − Eθ̄x̄x̄ − kAG(̄̄ − θ̄) = 0

ρĀt̄̄t − kAG(̄x̄x̄ − θ̄x̄) = ḡ(̄, t̄)
(2.12)

where ρ, A, E and  have the usual meaning as in the case of the
Euler-Bernoulli beam; k is called the Timoshenko shear coefficient;
G is the shear modulus; and ḡ(̄, t̄) is the external force acting on
the beam. The transverse displacement is ̄(̄, t̄) and θ̄(̄, t̄) is the
cross-sectional rotation of the beam at position ̄ and time t̄. After
nondimensionalizing (2.12) and taking the resulting parameters [60] to
be unity, the nondimensional equation can be written as follows:

θtt − θxx + (θ − x) = 0
tt + (θ − x)x = g(, t)

(2.13)

We consider the external force [61] to be g(, t) = cos(t) −
π
2 sin() cos(t) and the computational domain to be  ∈ [0, π] and
t ∈ [0,1]. To make (2.13) well-posed, the initial and boundary conditions
are supplemented as:

θ(,0) =
π

2
cos() +
�

 −
π

2

�

, θt(,0) = 0

(,0) =
π

2
sin(), t(,0) = 0

θ(0, t) = θ(π, t) =(0, t) =(π, t) = 0
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Figure 2.6: Timoshenko single beam absolute error in predictions Left:
|θ − θ∗|; Right: Absolute error | − ∗|.

To estimate the error in the approximated solutions, the analytical
solution for the considered problem is used, which is

θ(, t) =
�π

2
cos() +
�

 −
π

2

��

cos(t)

(, t) =
π

2
sin() cos(t)

When analytical solutions are not available, there are various ways to
validate the PINN solution. One approach is to compare the solutions
with those obtained using numerical methods such as finite difference,
finite element, finite volume or spectral methods. This can be done
by comparing the predicted solutions from the PINNs with the solutions
from the numerical simulation for the same physical equation. Another
approach is to compare the solutions obtained through PINNs with
experimental data. One can compare the predicted solutions from
the PINNs with values experimentally measured over space and time.
Finally, one can validate the solutions obtained through PINNs by
checking if they satisfy the known physical constraints of the system. In
summary, one can use available experimental data, numerical methods
or physical constraints to evaluate the accuracy of the solution obtained
using PINNs.

The difficulty of solving a system of PDEs is greater than that
solving a single PDE, but the neural network structure used for the
Euler-Bernoulli equation is successful in approximating solutions for
Timoshenko beams. In particular, the transverse displacement of the
beam is computed within R = 3.3e − 4 percent, and the cross-sectional
rotation is approximated within R = 2.8e − 3 percent. Approximated
solutions and absolute errors in predicting the transverse displacement
and cross-sectional rotation are presented in Figs. 2.5 and 2.6. Fig. 2.5
demonstrates that when a sinusoidal force is applied to a Timoshenko
beam, the beam bends more than it rotates. As indicated by the scale in
the figures, the maximum deflection is 1.44 and the maximum rotation
is 0.32. Additionally, the low error in predictions demonstrates that even
with the increase in the PDE complexity, the PINN successfully solves the
Timoshenko PDE with comparable results to the Euler-Bernoulli equation.
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We compare the results obtained from our method with three other
methods. The first method we consider is the widely used numerical
technique called the finite difference method (FDM). The other two
methods are neural network-based approaches, namely physics-guided
neural networks (PGNN) [28, 62–65] and gradient-enhanced physics-
informed neural networks (gPINN) [66]. First, for FDM we employ
a central difference scheme to approximate space derivatives and a
leapfrog scheme to approximate time derivatives. This approach allows
us to solve problems with second-order accuracy in space and time. The
results for the Timoshenko beam show that PINNs can achieve a higher
level of accuracy than the FDM even with a smaller number of training
points. Specifically, 30,000 points are used in the FDM scheme while
only 16,000 points were used for training with PINNs and Table 2.1
indicates that PINNs perform better than FDM.

Second, the performance of PINN is compared to a neural network-
based approach PGNN, which leverages physical knowledge embedded
in the available data, for instance, the relationship between beam
acceleration and displacement for the Timoshenko beam problem.
Accelerometers can be employed at discrete locations along the beam
to obtain acceleration data. Acceleration data at five equidistant points
along the beam are used, with 2000 data points at each location.
This dataset is augmented with the boundary and initial conditions of
displacement to match the training data size of PINN. PGNN is a deep
neural network-based architecture with inputs: position (), time (t),
and acceleration. Displacement () is taken as the output of this
neural network. Training PGNN with identical hyperparameters to those
used in PINN, PGNN predicts the displacement () with an error of
approximately 0.002739%, as shown in Table 2.1.

Furthermore, utilizing the displacement values (), auto differentiation
and (2.13), we derived θx. Subsequently, a second neural network
was constructed to predict θ, where θx is used as the input. Boundary
and initial conditions for cross sectional rotation (θ) are also used to
guide the PGNN towards the optimal solution. After training the PGNN,
cross-sectional rotation is predicted with approximately 3.486727%
error. It can be inferred from Table 2.1 that both displacement and
rotation predictions exhibited higher errors than PINN. This discrepancy
can be attributed to the restricted availability of acceleration data at
only discrete spatial locations within the interior domain rather than a
random distribution across the entire domain. Furthermore, the second
neural network, employed for rotation prediction, demonstrated inferior
performance potentially due to error propagation.

Third, we perform another comparison with a neural network-based
method to simulate PDEs, gradient-enhanced PINN (gPINN) [66], which
differs from PINN in terms of the loss function. The acronym "gPINN"
proposed in [66] is used in this work instead of "GPINN" as it is
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used for another method [67]. In addition to the loss function of
PINN, gPINN leverages gradient information of the PDE residual and
embed the gradient into the loss function. For the Timoshenko beam
problem, derivatives of the system of PDE (2.13) with respect to space
() and time (t) are supplemented in the loss function. Table 2.1
shows that gPINN exhibits higher relative error percentages in learning
displacement and cross-sectional rotation than PINN. The high-order
derivatives of the physical equations in the loss function of gPINN make
it challenging for autodifferentiation [68] and backpropagation of the
loss function, resulting in poor predictions of deflection and rotation for
the Timoshenko beam. Table 2.1 demonstrates that PINN outperforms
FDM, PGNN, and gPINN in accurately predicting displacement and cross-
sectional rotation for the Timoshenko beam, emphasizing its superior
performance compared to the three alternative methods.

Table 2.1: Timoshenko beam: R at t = 1
, θ PINN FDM PGNN gPINN
 (%) 3.3e-4 0.005615 0.002739 0.249849
θ (%) 2.8e-3 0.004733 3.486727 5.498449

2.4.2. TIMOSHENKO BEAM INVERSE PROBLEM
This section addresses the inverse problem for the Timoshenko beam,
with the aim to determine the material properties of a beam leveraging
the PDE and displacement and rotation data of the beam. In
structural engineering, the inverse problem of a Timoshenko beam PDE
is significant for determining the structural behavior and for health
monitoring of beam systems. This helps engineers infer the internal
material properties and unknown forces from observed responses such
as displacement and rotation measurements. The PINN solves this
problem by combining the knowledge of physics and deep learning. The
PINN uses a neural network to learn the mapping between the unknown
parameters of the PDE and observed data while incorporating the
constraints of physics in the form of PDEs. This parameter identification
aids in providing crucial information for structural diagnosis and repair
and helps engineers ensure the safety and stability of structures. The
Timoshenko model for parameter estimation is presented as follows.

αθtt − θxx + (θ − x) = 0
tt + (θ − x)x = g(, t)

(2.14)

In the context of the inverse problem of the Timoshenko beam,
the PINN is trained on the observed deflections and rotations of the
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Figure 2.7: Data to learn the parameters for the Timoshenko single-
beam: Blue dots Collocation points. Red dots Additional
data points of rotations (θ) and displacement (u). Black
dots Initial and boundary points.

beam, and the material properties are treated as the unknowns to
be estimated. In this case, the force g(x, t) applied to the beam is
considered to be known, and the only unknown in the model is α. This
makes the problem ill-posed, requiring additional data at a priori to
predict the unknown parameter. For α = 1, the transverse displacement
and cross-sectional rotation data obtained from the forward problem is
supplied to approximate the parameter value. This data is not error-free
and comes with 10−3 percent error for transverse displacement and
with 10−4 percent error for cross-sectional rotation. As shown in Fig. 2.7,
the additional data is supplied on 5000 points (red dots) at five positions
on the beam ( = 0.2,0.8,1.8,2.6,3). In practice, this data can be
collected using sensors installed at the corresponding locations on the
beam as shown in Fig. 2.7.

To solve the inverse problem, the neural network consist of 1600
random training points with the distribution Ni = 200, Nb = 400, and
Nint = 1000. To regularize the PDE term in the loss function, a
regularization parameter of 1 was chosen [25]. Using the L-BFGS
optimizer 5000 iterations are performed and the other parameters are
kept the same as in the forward Timoshenko problem. At t = 0.5, the
unknown parameter α = 1.0136 is learned.

We perform a comparison between the PINN and DNNs, as using
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Figure 2.8: Euler-Bernoulli double-beam: color bar represents absolute
error in predictions Left: |1 − ∗

1 |; Right: |2 − ∗
2 |.
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Figure 2.9: Derived quantities for the Euler-Bernoulli double beam.
Scattered points represent the exact solution and the
continuous line refers to the derived solution. Top:
First beam Left Bending moment; Mid Velocity; Right
Acceleration. Bottom: Second beam Left Bending moment;
Mid Velocity; Right Acceleration.

a numerical iterative method for inverse problems is computationally
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#𝑓1(x̄, t̄ )

#𝑓2(x̄, t̄ )

Figure 2.10: Double beam system connected by a Winkler foundation.

expensive. From PINNs, at t = 0.5, the unknown parameter α = 1.0136
is learned. We utilize DNNs to identify the parameters of a Timoshenko
single beam. We use the same architecture for DNN as used by the
PINN. The predicted value of alpha is 0.6124 using DNN. PINN is more
accurate than DNNs for the inverse problem of beam systems.

However, there are several issues that one may need to take care
of while solving inverse problems through the presented framework.
First, to avoid overfitting, the minimum training data points required
to solve the problem should be determined empirically by gradually
increasing the number of training points until the model performance
is satisfactory. Second, for some physical problems, noisy data may
lead to nonconvergence of the optimization algorithm. Hence, suitable
filtering or preprocessing of data may be required before using the PINN
framework. Finally, for every run of the neural network, one may learn
a different parameter or function value; due to the convergence of
the optimizers at different local minima, it may be useful to find the
statistics of the inverse problem solution through multiple runs.

Experimental results for single beam equations illustrate that PINNs
can efficiently solve forward and inverse problems for single beams. In
this study, we investigate the ability of PINNs to handle more complex
systems, specifically double-beam systems connected by a Winkler
foundation, as depicted in Fig. 2.10.

2.4.3. EULER-BERNOULLI DOUBLE-BEAM FORWARD PROBLEM
In this section, and for all further experiments, forced transverse
vibrations of two parallel beams are studied. Structurally, two parallel
beams of equal lengths joined by a Winkler massless foundation are
considered. Both beams are considered slender and have homogeneous
material properties. The transverse displacement of both beams is
governed by the following system of PDEs [41]:

m1̄1t̄̄t + K1̄1x̄x̄x̄x̄ + k(̄1 − ̄2) = ƒ̄1(̄, t̄)

m2̄2t̄̄t + K2̄2x̄x̄x̄x̄ + k(̄2 − ̄1) = ƒ̄2(̄, t̄)
(2.15)
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Here, ̄1 and ̄2 are the beam displacements for the first and the
second beams respectively. The distributed continuous forces acting
transversely on the beams are ƒ̄1 and ƒ̄2 as shown in Fig. 2.10. The
product of the density and the cross-sectional area of the beams is given
by m1 = ρ1A1 for the first beam and m2 = ρ2A2 for the second beam.
The parameters K1 and K2 denote the flexural rigidity of the beams
and are given by K1 = E11 and K2 = E22. The stiffness modulus of the
Winkler elastic layer connecting both beams is given by k. For simplicity,
we consider m1 =m2, and K1 = K2, and nondimensionalize (2.15). After
taking all the resulting parameters to be unity, the nondimensional
equation has the same form as (2.15) with unit coefficients. The initial
conditions are
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Figure 2.11: Timoshenko double beam. Scattered points represent
the exact solution, and the continuous line refers to the
predicted solution. Top: First beam Left Displacement
(1); Right Rotation (θ1). Bottom: Second beam Left
Displacement (2); Right Rotation (θ2)

.

1(,0) = sin(), 1t(,0) = 0

2(,0) =
π

2
sin(), 2t(,0) = 0

All four ends of the beams are assumed to be simply supported,
expressed as
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1(0, t) =1(π, t) =1xx(0, t) =1xx(π, t) = 0
2(0, t) =2(π, t) =2xx(0, t) =2xx(π, t) = 0

The external acting force is

ƒ1(, t) =
�

1 −
π

2

�

sin() cos(t)

ƒ2(, t) =
�π

2
− 1
�

sin() cos(t)

For the considered problem, the analytical solution is given by

1(, t) = sin() cos(t), 2(, t) =
π

2
sin() cos(t)

In addition to computing the beam displacements, derived quantities
such as velocity, acceleration, and bending moment are also computed
for this problem. These derived quantities also help in the prognosis and
diagnostics of the system. For instance, the bending moment estimates
the bending effect when an external force is applied to a structural
element. Estimating the bending moment can be used to quantify
the bending upon the action of applied forces. The beam is the most
common structural member vulnerable to bending moments because it
can bend at any point along its length when subjected to an external
force.

Table 2.2: Euler-Bernoulli double-beam: R at t = 1
First beam Second beam

Displacement (%) 1.9348 × 10−5 4.3253 × 10−5
Bending Moment (%) 9.6112 × 10−4 6.5506 × 10−4

Velocity (%) 1.9043 × 10−3 2.0161 × 10−3

Acceleration (%) 1.9011 × 10−2 1.4442 × 10−2

For simulating Euler-Bernoulli double beams, the same neural network
architecture as for the single Euler-Bernoulli beam is considered. The
only change is in the residual parameter, which is 1 for this case. The
results are illustrated in Fig. 2.8, Fig. 2.9 and Table 2.2. The absolute
difference between the PINN predicted solution and the exact solution
for the first beam is approximately 10−4, and for the second beam, it
is approximately 10−3, as shown in Fig. 2.8. The bending moment,
velocity and acceleration are computed using the autodifferentiation and
backpropagation features of the neural network. Table 2.2 describes the
efficiency in the computation of these quantities at t = 1 for both beams.
The relative percent error in computing the transverse displacement
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of the beams on the order of 10−5, and for acceleration, this error is
on the order of 10−2, which is very low and shows the potential of
physics-informed learning. Fig. 2.9 illustrates the computed velocity,
bending moment, and acceleration of both beams.

2.4.4. TIMOSHENKO DOUBLE-BEAM FORWARD PROBLEM
The double-beam system modeled by Euler-Bernoulli theory can also
be modelled using Timoshenko theory under the same assumptions
as described for the single Timoshenko equations [40]. In addition to
providing the transverse displacement of the beams, Timoshenko theory
also provides the cross-sectional rotation of both beams through the
system of PDEs [40] given by

kA1G(θ̄1x̄ − ̄1x̄x̄) + ρA1̄1t̄̄t + K(̄1 − ̄2) = ƒ̄1(̄, t̄)

E2θ̄2x̄x̄ + GA2k(̄2x̄ − θ̄2) − ρ2θ̄2t̄̄t = 0

kA2G(θ̄2x̄ − ̄2x̄x̄) + ρA2̄2t̄̄t + K(̄2 − ̄1) = ƒ̄2(̄, t̄)

E1θ̄1x̄x̄ + GA1k(̄1x̄ − θ̄1) − ρ1θ̄1t̄̄t = 0 (2.16)

where ̄i(̄, t̄) and θ̄i(̄, t̄),  = 1,2 denote the transverse displacement
and cross-sectional rotation of the beams respectively. K is the stiffness
modulus of the Winkler elastic layer. G is the shear modulus and k
is the Timoshenko shear coefficient. The rest of the parameters have
the usual meanings as described earlier. For simplicity, we consider
A1 = A2, and 1 = 2 and nondimensionalize (2.16). With some additional
assumptions, the non-dimensional equation has the same form as (2.16)
with unit coefficients. For the numerical experiment the initial state of
the double beam system is taken to be

θ1(,0) =
�π

2
cos() +
�

 −
π

2

��

, θ1t (,0) = 0

1(,0) =
π

2
sin(), 1t (,0) = 0

θ2(,0) =
2

π

�π

2
cos() +
�

 −
π

2

��

, θ2t (,0) = 0

2(,0) = sin(), 2t(,0) = 0

Simply supported boundary conditions are provided to make the
problem wellposed

θ1(0, t) = θ1(π, t) =1(0, t) =1(π, t) = 0
θ2(0, t) = θ2(π, t) =2(0, t) =2(π, t) = 0
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Figure 2.12: Timoshenko double beam absolute errors in prediction; θ1
and 1 are the rotation and displacement of the first beam,
θ2 and 2 are the rotation and displacement of the second
beam First row 16000 training points (Left) |θ1 − θ∗1 |;
(Right) |1 − ∗

1 |; (Second row, Left) |θ2 − θ∗2 |; (Right)
|2 −∗

2 |. Third row 1600 training points (Left) |θ1 − θ∗1 |;
(Right) |1 − ∗

1 |; (Fourth row, Left) |θ2 − θ∗2 |; (Right)
|2 − ∗

2 |.

Here, ƒ1(, t), ƒ2(, t) and the analytic solutions are as follows

ƒ1(, t) = cos(t)(1 − sin())

ƒ2(, t) =
2

π
cos(t) −

π

2
sin() cos(t)
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θ1(, t) =
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2
cos() +
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 −
π

2

��

cos(t)

1(, t) =
π

2
sin() cos(t), 2(, t) = sin() cos(t)

Table 2.3: Timoshenko double-beam: hyperparameters
No. of points Ni Nb Nint Layers Neurons Epochs

16000 2000 2000 10000 4 20 15K
1600 200 200 1000 4 20 15K

Table 2.4: Timoshenko double-beam: R at t = 1
16000 points 1600 points

θ1 (%) 1.6038 × 10−3 2.6211 × 10−3
1(%) 3.9302 × 10−5 2.503 × 10−4

θ2 (%) 1.0826 × 10−3 4.9405 × 10−3
2(%) 7.8614 × 10−5 3.4904 × 10−4

Two experiments are performed, varying the number of training points,
as shown in Table 2.3. Table 2.4 shows the relative percent error in
approximating the transverse displacement and cross-sectional rotations
for both beams. For cross-sectional rotations θ1 and θ2, the magnitude
of the percent error remains the same even for fewer training points.

Using a large number of training points can increase the training time
and may not be feasible for problems with many parameters. In these
cases, using fewer training points can lead to less accurate solutions, but
they can be obtained relatively faster. This approach allows engineers
to make informed decisions about the parameters, and once optimal
parameters have been identified, forward solutions can be recalculated
with higher accuracy by using more training points. This is referred to
as training with fewer points for the forward problem.

The absolute difference between the predicted and exact solutions of
θ1, 1, θ2 and 2, even for 1600 training points is very small as shown
in Fig. 2.11 and Fig. 2.12. Fig. 2.11 presents the PINNs prediction for
a double Timoshenko beam. The scattered points refer to the exact
solution, and the continuous line represents the predicted solution. The
force is applied uniformly in both beams; however, the deflection and
rotation of the first beam are greater than those of the second beam.
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The results in Fig. 2.12 indicate that, for the second beam, a larger
number of training points (16000) results in a more accurate prediction
of deflection and rotation than a smaller number of training points
(1600). Conversely, for the first beam, a smaller number of training
points (1600) results in a more accurate prediction of the quantity of
interest than a larger number of training points (16000). In any case, the
difference in absolute error is relatively small, demonstrating that even
with fewer training points, PINNs can still produce accurate predictions.
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Figure 2.13: Timoshenko double-beam inverse problem: absolute error
in the prediction of force when the additional data of
rotation and deflections provided at five locations has left:
no noise right: 20 percent Gaussian noise.
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Figure 2.14: Data to learn material properties for the Timoshenko double
beam: Blue dots Collocation points. Red dots Additional
data points of displacement and rotation for the double
beam at one location. Black dots Initial and boundary
points.
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Figure 2.15: Data to learn force for the Timoshenko double beam: Blue
dots Collocation points. Red dots Additional data points
of displacement and rotation for the double beam at six
different locations. Black dots Initial and boundary points.

2.4.5. TIMOSHENKO DOUBLE-BEAM INVERSE PROBLEM
The applied force on structural systems is critical for structural design
and condition assessment. In design, control, and diagnosis, accurate
estimation of dynamic forces acting on a structure is essential. These
details can be used to evaluate the structural condition. For example,
understanding the impact of heavy vehicles on bridge structures can
aid in detecting early damage to them. Indirect force determination is
of special interest when the applied forces cannot be measured directly,
while the responses can be measured easily.

For the inverse problem, three distinct experiments are performed
on (2.16). First, the unknown parameter is learned from the Timoshenko
double-beam system. We consider the unknown parameter to be
ρA1 from (2.16). For the value of ρA1 = 1, the data for transverse
displacement and cross-sectional rotation are provided at some points
in the computational domain. Second, the unknown applied function on
the first beam is learned by providing noise-free simulated displacement
and cross-sectional rotation data. For this case, all other parameters,
initial and boundary conditions are considered to be known, and only
the function ƒ1(, t) is unknown. Third, the same force function is
predicted by providing noisy displacement and cross-sectional rotation
data. The data generated for learning the function in the second case
are corrupted with noise to be used in the third case. The exact
solution for the function to be learned in the second and third cases is
cos(t)(1 − sin()).

The inverse problem in engineering refers to the process of estimating
unknown parameters or functions from a set of measured data. In
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PINNs, the inverse problem is usually solved by training a neural network
to fit the measured data and the known physical laws. However, the
measured data can be affected by various sources of noise, which can
make estimation of the quantity of interest more challenging. The
noise can make the measured data unreliable, and the neural network
may not be able to accurately estimate the unknown parameters or
functions. In such a scenario, the optimizer of the neural network does
not necessarily converge to local minima.

The same neural network architecture is used as in the forward double-
beam Timoshenko problem, with residual parameter 1 to regularize the
physical equation in the loss function. Here, 2500 epochs are performed
using the L-BFGS optimizer to train the neural network. For learning
the parameter, 5000 data points are provided at  = 1.8, as shown
in Fig. 2.14. The exact value of the unknown parameter is ρA1 = 1
in (2.16), and the predicted value of the parameter using the PINN
framework is 1.0208, which is close to the desired value. Even for a
system of four PDEs, by only providing data at one particular beam
location, the unknown parameter is learned successfully using PINNs.
This shows that PINNs can handle large complex systems of PDEs
efficiently.

Table 2.5: Timoshenko double-beam inverse problem: noise vs. R
Noise percent (%) Relative error percent (%)

0 4.3271 × 10−2

10 4.8688 × 10−2
20 1.1123 × 10−1

The function ƒ1(, t), the applied force on the first beam is predicted
in the second experiment. As illustrated in Fig. 2.15, the data for
transverse displacement and cross-sectional rotation are provided at 6
different locations with 5000 data points at each location.

For the third experiment, the data provided for learning the unknown
function ƒ1(, t) are provided with 10% and 20% Gaussian noise and the
corresponding performance in learning the function is shown in Table
2.5. Even with 10% and 20% noise, the relative error percent between
analytic and predicted force is lower, as seen in TABLE 2.5. Fig. 2.13
shows the force prediction along the beam when rotation and deflection
observations are available at five points. The results demonstrate that
the PINN is more precise in its predictions when the data are free from
noise compared to when they are noisy. Despite the presence of noise
in the data, the absolute error remains within the magnitude of 10−2,
which is comparable to the error observed when data are not noisy. To
be more precise, Fig. 2.13 shows the absolute difference error of the
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PINN predicted and exact force at t = 0.5 with 0 percent and 20 percent
noise. Even with 20 percent noise, the unknown force is learned with
less than 1% error over the entire space-time domain, demonstrating
that PINN is a very accurate and robust approach.

The minimum number of data points required to estimate the model
parameters depends on several factors, such as the complexity of the
physics, the number of physical parameters in the model, and the
quality of the data. More data points and more complex physics require
more neural network capacity, resulting in a larger neural network with
more hyperparameters. In practice, more data points lead to overfitting.
The minimum training data points required for a PINN framework are
determined empirically by gradually increasing the number of training
points until the performance of the model is satisfactory.

Finally, a sensitivity analysis is carried out to examine the influence
of input variables, specifically the displacement and rotation, on the
output variable, which is the force. The analysis involves adding 20%
Gaussian noise to the displacement data while no noise is added to the
rotation data. The resulting mean accuracy of the force is 0.14313413.
In contrast, when 20% noise is introduced to the rotation data with the
displacement data remaining unaltered, the mean accuracy of the force
is 0.204627. The results of this analysis show that the force is more
sensitive to rotations than the displacement data.

2.5. CONCLUSIONS
The design and maintenance of complex structural systems are
challenging due to the multiscale interaction of their components. It is
desirable to predict the behavior of these complex systems by solving
the governing model of interest. Recently, PINNs have emerged as a
viable method for simulating PDEs. In this work, we propose using
the PINN algorithm with the nondimensionalization step aiding in the
learning procedure for complex beam systems. The PINN framework
successfully solves the forward and inverse problems for nondimensional
single and double-beam systems. Based on the numerical experiments,
the following conclusions are drawn.

First, the relative percent error in computing the beam displacement
does not increase with increasing model complexity when solving the
forward problem. In fact, for both Euler-Bernoulli and Timoshenko
theory, the error decreases by an order of magnitude for double-beam
systems compared to single-beam systems. In addition, the error in
computing the bending rotation is comparable for single and double
Timoshenko beam systems. This nonincrease in error as the model
complexity increases suggests that the PINN framework is appropriate
for simulating large-scale systems with multiple connected components.

Second, it is demonstrated that PINNs precisely discover the unknown
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force function and model parameters through their inverse problem-
solving capability. The proposed algorithm successfully learns the model
parameter with less than 3% error for the single Timoshenko beam.
In addition, for the double beam Timoshenko system, the unknown
function is approximated on the whole space-time domain with less
than 0.05% error, demonstrating the effectiveness of the algorithm for
solving inverse problems.

Third, physical quantities such as velocity, acceleration, and bending
moment characterize the behavior of the system. Even though the
derived quantities are not directly trained in the neural network, they
are approximated with less than 2e − 2% error for the Euler-Bernoulli
double-beam system.

Fourth, the ability of the algorithm to use fewer training points in
forward problems and to accommodate noisy data in inverse problems
is exploited. The obtained results show that even with 1600 training
points, the double Timoshenko beam displacement is predicted on the
entire space-time domain with less than 5e− 3% error. In the case of the
inverse problem, the force function is discovered with less than 0.2%
error even when the data used in the learning procedure contains 20%
Gaussian noise. These findings imply that the algorithm is accurate and
robust under the tested noise levels.

To summarize, PINNs enable the simulation of complex structural
systems with multiple interacting components efficiently, accurately,
and robustly. In the future, this approach could be extended to estimate
displacements for various input forces and mechanical vibration
modes and incorporate robust methods to account for stochasticities.
Additionally, future works on PINNs could be focused on reducing the
computational cost and developing methodologies to augment their
generalizability, thereby expanding the applicability of PINNs beyond
the training domain.
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3
CAUSAL PINNS FOR BEAM

SIMULATIONS

This chapter proposes a novel framework for simulating the dynamics of
beams on elastic foundations. Specifically, PDEs modeling Euler-Bernoulli
and Timoshenko beams on the Winkler foundation are simulated using
a causal physics-informed neural network (PINN) coupled with transfer
learning. Conventional PINNs encounter challenges in handling large
space-time domains, even for problems with analytical solutions. A
causality-respecting PINN loss function is employed to overcome this
limitation, effectively capturing the underlying physics. However, the
causality-respecting PINN lacks generalizability. We propose using
solutions to similar problems instead of training from scratch by
employing transfer learning while adhering to causality to accelerate
convergence and ensure accurate results across diverse scenarios.
The primary contribution lies in introducing a causality-respecting PINN
loss function in structural engineering and coupling it with transfer
learning to enhance the generalizability of PINNs in simulating the
dynamics of beams on elastic foundations. Results on the Euler-
Bernoulli beam highlight the efficacy of the proposed approach for
various initial conditions, including those with noise in the initial data.
Furthermore, the potential of the proposed method is demonstrated for
the Timoshenko beam in an extended spatial and temporal domain.
Comparisons validate that the proposed method accurately captures
the inherent dynamics, outperforming state-of-the-art physics-informed
methods under the L2-norm metric and accelerating convergence.

Apart from minor updates, this chapter has been published as: Kapoor, T., Wang, H.,
Núñez, A., & Dollevoet, R. (2024). Transfer learning for improved generalizability
in causal physics-informed neural networks for beam simulations. Engineering
Applications of Artificial Intelligence, 133, 108085.
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3.1. INTRODUCTION
Beams on elastic foundations (shown in Fig. 3.1) are a fundamental
and indispensable structural component in civil engineering, providing
critical support and stability to different and diverse structures [1–5].
Due to their characteristic to distribute loads, mitigate deformations,
and enhance structural stability, these beams are extensively utilized
in various structures, such as railway tracks [1], pile foundations
embedded in soils [6], and longitudinal fibers in a composite elastomer
[3], among others. Understanding their dynamics is essential for
ensuring the structural integrity of these systems, developing effective
maintenance strategies, optimizing machine performance, refining
design methodologies, and enabling precise control mechanisms. These
issues highlight the need for advanced methodologies to simulate
and predict the underlying dynamics of beams on elastic foundations,
facilitating safer, more efficient, and reliable structures and systems.

However, accurately predicting the dynamics of beams on elastic
foundations through experiments and measurements could be infeasible
[7]. Conducting many experiments with varying materials, conditions,
and prototypes becomes impractical and prohibitively costly. In practice,
finite element-based software provides a viable alternative for simulating
such scenarios [8]. However, these software solutions are restricted
in generalization. For instance, even a slight change in the problem
domain requires performing the entire new simulation from scratch,
including mesh creation and adjustments [9]. This non-generalization
becomes particularly problematic when different aspects of the system
need to be investigated separately or when multiple design iterations
are required. The number of simulations necessary for tackling a design
problem can quickly escalate into thousands, making the task laborious
and time-consuming.

f (x, t )

Figure 3.1: Simply supported beam on an elastic foundation under
varying transverse force

Recently, deep learning and neural networks, in particular, have
been used extensively as surrogates to model the underlying physical
phenomenon [10, 11] including applications to shape optimization,
resulting in cost-efficient shapes [12–14]. However, even state-
of-the-art supervised machine-learning approaches encounter similar
challenges as traditional experimental methods, requiring substantial
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input-output data at various fidelities to learn the underlying dynamics
effectively. This large data requirement poses a significant hurdle, as
obtaining such vast data can be arduous and resource-intensive [9].

One potential approach to mitigate the need for an enormous amount
of data is to incorporate the underlying physics into the learning
procedure, thereby guiding the neural network based on physics
principles as presented by [15–19], among others. One popular class of
methods that adopts this approach is physics-informed neural networks
(PINNs) proposed by [15]. PINNs are a form of semi-supervised learning
where the boundary and initial conditions serve as input-output pairs
while the solution is regularized by the governing partial differential
equations (PDEs). However, several challenges for PINNs have emerged,
including spectral bias [20], shock learning [21], generalization with
even slight changes in physical parameters and computational domain
[22–24], and difficulties dealing with large coefficients [25–27].

Another such open problem for vanilla PINNs is handling extensive
space-time domains, as discussed in [28–31], among others. This
challenge can be attributed to the training process, as vanilla PINNs tend
to prioritize training at a higher time level due to implicit gradient bias
[20], leading to violation in temporal causality and inaccurate solutions,
particularly for problems highly dependent on initial conditions.

Physical systems are known to possess an inherent causal structure.
For instance, the deflection of the beam at any point in time is causally
linked to the previous state of the system (deflection), the physical
properties of the beam, and the external forces acting on it. This
causality is a fundamental aspect of how the beam equations accurately
model the behavior of beams in response to loads, making it a useful
tool in engineering and physics. The PINN model could learn complicated
solutions to PDEs when the causality is considered, enabling progressive
sequential-time learning of the solution.

Our work proposes to train PINN while respecting causality [20] in the
context of structural engineering, referred to as causal PINN hereafter.
In particular, our principal aim is to resolve the training challenge and
achieve precise predictions of beam dynamics in a large space-time
domain. This challenge is overcome by proposing a modification in
the training approach of PINNs, enforcing training at lower time levels
before progressing to subsequent ones. Consequently, a weighted loss
function is utilized, incorporating a causality parameter to preserve
the physical causality inherent in beam dynamics. The causal PINN
approach, validated through numerical experiments, demonstrates
enhanced accuracy in prediction.

However, as we present in this work, even after employing causal
PINN, the models lack generalizability to different initial conditions and
computational domains, requiring each new problem to be solved from
scratch. This limitation reverts the problem to the need for extensive
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simulations for each problem. To mitigate this issue, we propose
employing transfer learning (TL) [32] in conjunction with causal PINN.
The idea of transfer learning is to utilize the knowledge acquired from
solving one problem in the form of trained model parameters to be
utilized in a similar or related problem, accelerating the training process.

We examine the application of PINNs on well-known Euler-Bernoulli
and Timoshenko beam models on elastic foundations, specifically the
Winkler foundation [1, 33]. Through the numerical examples in this
chapter, we show that vanilla PINNs face challenges in approximating
solutions for PDEs, for which even analytical solutions are available. In
practice, only a handful of PDEs have analytical solutions that serve as
prototypes for proof of concept to validate a proposed method. The
inefficiency of vanilla PINNs in resolving solutions for such PDEs signifies
its limited applicability in the real world, which we tackle in this chapter
by enforcing a causal training framework.

This chapter proposes a novel approach to simulate beams on
elastic foundations using the Euler-Bernoulli and Timoshenko theories,
employing a transfer learning-based causal PINN framework to conduct
comprehensive experiments. Specifically, transferring knowledge from
one initial condition to another, handling noisy initial conditions,
transferring knowledge for beams of different lengths, and systems with
significant time dependencies are addressed. The primary contributions
of this chapter are as follows:

A causality-respecting PINN loss function addresses the aforemen-
tioned limitations and effectively enforces the relevant physics. How-
ever, implementing this modified causal loss function requires a denser
neural network with more parameters. Considering the importance of
various factors in engineering structure design and the impracticality of
simulating every instant, transfer learning is proposed within the causal
PINN architecture. By incorporating transfer learning, the parameters
of the previously trained model are leveraged to initialize and train
new models. Consequently, this reduces the computational burden
and enables faster convergence for subsequent tasks, improving the
efficiency of simulating the dynamics of beams on elastic foundations.

The rest of the chapter is structured as follows: Section 3.2
presents related works to this chapter. Section 3.3 provides a detailed
discussion of vanilla and causal PINN. Section 3.4 introduces the
proposed framework of fusing transfer learning with causal PINN to
train different models. Section 3.5 presents the numerical experiments
results, showcasing the effectiveness of our methodology in addressing
challenging beam problems where the vanilla and advanced PINN-based
methods fail. Finally, the main findings are summarized, and conclusions
drawn from this study are presented in Section 3.6.
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3.2. RELATED WORKS

This section outlines the pertinent studies conducted within the domain
of transfer learning-driven PINNs, causal PINNs, and physics-informed
methodologies for the simulation of beam models.

Applying transfer learning within PINNs has garnered significant
attention [34]. Notably, [35] predicted laser deposition temperature
fields accurately without labeled data, using physical losses and transfer
learning. In another work, [36] utilized transfer learning for accurate
temperature field inversion with limited observations, employing a PINN
and optimal position selection. [37] developed a multi-objective loss
function and transfer learning for accurate elastoplastic solid mechanics
solutions through PINN. In a different study, [38] proposed a transfer
learning-based PINN framework for efficient stress-strain constitutive
modeling. While our research aligns with the fundamental principle
of leveraging transfer learning, a distinguishing aspect lies in our
consideration of causality during the training of the models.

In the literature, research has been conducted to enforce causality
in the PINN framework without incorporating transfer learning [39]. In
another work, [40] proposed a causal framework incorporating transfer
learning to simulate time-dependent PDEs. Although our work shares
similar ideas of incorporating causality and utilizing transfer learning
within the PINN framework, we employ transfer learning to train distinct
models under diverse conditions. Conversely, [40] employs transfer
learning within a particular problem by segmenting the domain into
multiple subdomains and leveraging insights from one subdomain to
another, employing the concepts of domain decomposition and PINNs
[30].

Recently, beam simulations have concentrated on physics-informed
methodologies, largely omitting the considerations of causality and
transfer learning. Noteworthy works include [41], which utilized
PINNs for estimating nonlinear bending behavior within a confined
domain. Similarly, [42, 43] delved into applying PINNs for the
system of beam models and moving load problems, albeit within
the limited domain confines. [44] introduced a spatio-temporal PINN
tailored for analyzing the dynamics of cantilever beams. In [45], a
self-adaptive PINN framework capable of accommodating varying load
conditions is presented. Additionally, [46] sought to enhance predictions
by incorporating supplementary data, all still constrained within the
confined domain bounded by the capabilities of PINNs. This work aims to
enhance the potential of physics-informed methodologies for simulating
beam dynamics.
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3.3. VANILLA AND CAUSAL PINN
This section is structured into two subsections. First, we provide an
overview of the architecture of the vanilla PINN [15]. Second, a
modification in the PINN loss function leading to the incorporation of
causality in the PINN loss function, as proposed by [20], is presented.

3.3.1. VANILLA PINN
Recently, PINNs have been widely used for solving PDEs across diverse
domains, including but not limited to works by [47–49]. PINNs are based
on deep neural network (DNN) architecture, and the idea of PINN is to
incorporate physical knowledge in the loss function of DNN. The loss
function consists of two terms - a data term and a physics term. The
data term ensures that the neural network fits the provided data points,
while the physics term enforces the PDE constraints. Here, the data
term refers to the value of the quantity of interest at initial and boundary
points. Minimizing the data term amounts to measuring the discrepancy
between the predicted solution of the PINN and the measured data
points. The physics term incorporates the PDE constraints into the loss
function, evaluating the differential operator of the PDE using automatic
differentiation [50]. The resulting equation is then included as a penalty
term in the loss function. To elucidate these terms, we consider an
abstract PDE as,

D((, t, k)) = ƒ (, t), (, t) ∈ D × T (3.1)

where D is the differential operator, D is the spatial domain, and T is the
temporal domain. The unknown solution is  depending on independent
space () and time (t) variables. A constant parameter is k, and ƒ is
the source term. To ensure the uniqueness of the solution, appropriate
initial and boundary conditions are necessary for the considered PDE.

(,0) = g(), (,0) ∈ D × 
(b, t) = ḡ(b, t), (b, t) ∈ Ω × T

(3.2)

here, g() and ḡ(b, t) are the initial and boundary conditions,
respectively. The initial temporal region and spatial boundary are  and
Ω, respectively. The loss function of PINNs is defined as follows

L(μ) = λ1LPDE(μ) + λ2LC(μ) + λ3LBC(μ) (3.3)

here, μ represents the trainable network parameters. The individual loss
terms weighted by the hyperparameters λ,  = 1,2,3, are defined as,

LPDE(μ) =
1

Nint

Nint
∑

n=1

||D(∗((n), t(n), k)) − ƒ ((n), t(n))||p (3.4)
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The loss terms for initial and boundary conditions in (3.3) are defined
as follows,

LC(μ) =
1

Ni

Ni
∑

n=1

||∗((n),0) − g((n))||p

LBC(μ) =
1

Nb

Nb
∑

n=1

||∗((n)b , t(n)) − ḡ((n)b , t(n))||p
(3.5)

here, N is the total number of training points, which is the sum of
interior training points (Nint), initial training points (Ni), and boundary
training points Nb. The approximation of  by the neural network
is denoted by ∗. Training with L2-norm amounts to p = 2. The
primary objective is minimizing (3.3) and obtaining optimal parameters
(μ). These optimized parameters are then utilized for predicting the PDE
solution (, t),∀(, t) ∈ D × T .

3.3.2. CAUSAL PINN
This subsection presents causal PINN, modifying the PINN loss function
[20]. The notion of causal PINNs is inspired by traditional numerical
methods for solving differential equations that prioritize resolving the
solution at lower times before approximating the solution at higher
times. The modification in the loss function pertains to the PDE term
LPDE(μ), while the initial LC(μ) and boundary LBC(μ) loss terms remain
unchanged. The causal PDE loss term LPDE(μ) is defined as

LPDE(μ) =
Nt
∑

=1

LPDE(t, μ)

1 = 1,  = e−ε
∑−1
k=1 LPDE(tk ,μ),  = 2,3, . . . Nt

(3.6)

Here, Nt is the number of timesteps in which the computational
domain has been divided. The causality hyperparameter ε controls
the steepness of the weights. The modification introduces a weighting
factor, , for loss at each time level t. The weight  depends on the
accumulated PDE loss up to time t. The weights are adjusted to prioritize
the fully resolved solution at lower time levels by exponentiating the
negative of this accumulated loss. To summarize, the modified loss
function (LPDE(μ)) for causal PINN could be written as

1

Nt



1LPDE(t1, μ) +
Nt
∑

=2

e−ε
∑−1
k=1 LPDE(tk ,μ)LPDE(t, μ)



 (3.7)

From the above loss function, it is evident that for LPDE(μ) to be
minimized, the weights 1, . . . ,Nt should be large. However, the
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weights are defined in such a way that the minimization of LPDE(t, μ)
only starts if all residuals LPDE(tj, μ), for 1 ≤ j <  are minimized and vice
versa. This modification of the loss function forces the neural network
to train the model sequentially and first train the model at lower time
levels. In other words, loss at time step t should only be minimized
once losses at all previous time steps have been minimized. Hence,
the causal PINN loss function prioritizes fully resolved solutions at lower
time levels before approximating the solutions at higher time levels.

In the following section, the proposed transfer learning framework is
presented along with the underlying motivation.

3.4. TRANSFER LEARNING FOR CAUSAL PINN
Several factors are crucial for designing an engineering structure, and
solving the problem for each case is important. However, training the
neural network for every case is time-consuming and laborious. Here,
we propose to utilize transfer learning for beam problems on the Winkler
foundation. The idea is to train the parent beam model for one case, for
instance, to train an Euler-Bernoulli beam for a specific initial condition
and then utilize the parameters for different initial conditions. The aim
is to reduce the training time for the transfer learning case compared
to the case without transfer learning. This reduction in computational
time in terms of epochs is done by utilizing the previously trained model
parameters and using them as initialization for subsequent cases.

The proposed approach incorporates transfer learning for different
scenarios for the same physical beam equation. Fig. 3.2 visually
demonstrates the steps: initially, the parent model is trained using
causal PINN for a significant number of epochs (n1). Subsequently, the
trained parameters are utilized as an initialization for the training of
other problems of the physical equation with different initial conditions
or for an extended domain, which is trained for a reduced number
of epochs (n2), where n2 << n1, reducing the computational cost of
training the model again from the start. The step-by-step illustration is
provided in Fig. 3.2.

In Fig. 3.2, the top horizontal block illustrates the training of causal
PINN for the parent model, specifically the primary beam model, either
the Euler-Bernoulli or the Timoshenko beam model. Xavier initialization
[51] is utilized to train the parent beam model to address the vanishing
or exploding gradient problem in neural networks. Proper weight
initialization is crucial for stability and convergence. The parent model
captures common features applicable to different subcases. The model
parameters, generated using Xavier initialization for the initial neural
network, undergo a training process adhering to the causal loss function.
This training involves the resolution of solutions at lower times prior
to approximating at higher times, as shown by the snapshots of the
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Figure 3.2: Proposed Transfer Learning Framework in Causal PINN:
The top horizontal block outlines the training process of the
causal PINN for the parent model, which is the primary
beam model under consideration. The model parameters,
initialized using Xavier initialization within the first neural
network, undergo training while adhering to causality. The
resulting parameters of the trained model serve as the
initialization for J subsequent tasks shown by the bottom
vertical blocks (1 ≤ j ≤ J). These tasks pertain to different
initial conditions and extensions of both spatial and temporal
domains. The training of these subtasks is also performed to
adhere to causality.

resolved solution. As the number of epochs increases, the model
prediction at higher time levels improves only when the solution at lower
time levels has been resolved up to a certain accuracy.

The resulting parameters from this training serve as the initialization
for subsequent j tasks presented by the bottom vertical blocks in
Fig. 3.2. Training subcases involve initializing parameters from the
parent model, speeding up convergence and avoiding training from
scratch. Reusing parameters reduces computational costs, making the
process more efficient. Knowledge transfer from the parent model
improves generalization, enabling submodels to adapt effectively to
variations in conditions or domains. These subcases involve diverse
initial conditions and extensions of both spatial and temporal domains.
Notably, the training of these subtasks is also performed by minimizing
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the loss terms (3.7) and (3.5) in the loss function (3.3), ensuring a
coherent and principled transfer learning framework.

Transferring good knowledge from the parent beam model would
accelerate the convergence of subcases. However, dealing with
highly complex subcases presents a challenge where improving or
optimizing the network may not significantly enhance model accuracy.
This situation is akin to the “Kolmogorov complexity" concept, which
measures the length of the shortest computer program required to
produce a specific output. While not considered in the current work,
it is important to consider the Kolmogorov complexity of the parent
task and subcases as discussed in [52, 53]. In transfer learning,
Kolmogorov complexity becomes pivotal as it captures the intricacy
within a dataset or the solution of the PDE in our case. A highly
complex solution containing intricate patterns and possible noise can
pose challenges for even well-optimized neural networks in extracting
meaningful features. This complexity is particularly pertinent in transfer
learning, where pre-trained parent models may face challenges in
transferring knowledge effectively to a target domain characterized by
high intricacy. The diminished transferability of knowledge hampers
anticipated improvements in model accuracy. To address this, reducing
dataset complexity might be essential. The trained model can better
focus on crucial patterns by processing the solution through feature
reduction and noise elimination, fostering improved generalization and
accuracy in the target task [54, 55].
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Figure 3.3: Euler-Bernoulli beam displacement on the Winkler foundation
(Top Left.) Predicted solution using PINN (Top Right.)
Predicted solution using SA-PINN (Bottom Left.) Predicted
solution using causal PINN (Bottom Right.) Reference
solution

The proposed framework addresses key structural engineering issues,
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contributing to design, optimization, and control methodologies. Causal
PINNs prioritize lower time levels during training, enhancing the
understanding of temporal structural behaviours, especially critical for
dynamic load responses and environmental changes. Incorporating
transfer learning reduces the computational cost, aiding the application
of the approach in real-world scenarios. Fusing temporal causality
and transfer learning contributes to a larger design space exploration
essential for a structural design problem. The proposed framework
can be utilized to adapt the control strategies of structures based on
knowledge gained from lower time levels [56, 57]. This adaptability is
valuable in developing control systems that can respond dynamically to
changes in the structural environment, ensuring optimal performance
and safety. The proposed method could also help structural health
monitoring by updating the model as new data becomes available,
enabling real-time monitoring and early detection of potential issues
[58, 59].

In the next section, we perform a series of experiments to demonstrate
the efficacy of the proposed framework.

3.5. NUMERICAL EXPERIMENTS
This section presents the numerical experiments for simulating the
dynamics of the Euler-Bernoulli and Timoshenko beam models using
the proposed framework. The proposed framework is compared with
five PINN-based methodologies, namely vanilla PINNs [15], Self-adaptive
PINNs (SA-PINN) [60], gradient-enhanced PINN (gPINN) [61], PINNs with
adaptive activation function (Adap. PINN) [62], and Wavelet PINN (Wav.
PINN) [63]. In addition, leveraging transfer learning, several other
experiments are performed for noisy data, different initial conditions,
and extrapolation in both spatial and temporal domains for the beam
models.

The experimental setup involves first simulating the parent case and
utilizing the trained parameters for various subcases. Specifically,
transfer learning is employed for these subcases. The main model
utilizes a neural network architecture comprising four hidden layers with
200 neurons each. These hyperparameters are the same for baseline
PINNs and all other advanced PINN methods compared in this study,
to have a fair comparison. The activation function employed is the
hyperbolic tangent (tanh), and the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) optimizer is utilized with a learning rate of
0.1. The parent model is trained for a total of 10,000 epochs. Within
the causal-respecting PINN function, the causality hyperparameter (ε)
is set to 5 and the number of timesteps Nt is taken to be 100.
During the training process, Ni = 500 initial points, Nb = 1000 boundary
points, and Nint = 10,000 interior points are considered. The weight
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hyperparameters λ1, λ2 and λ3 are taken to be 1 each. The selected
evaluation metric is the L2 relative error percentage (R) defined as

R =
||∗ − ||2
||||2

× 100 (3.8)

where ∗ is the approximated PDE solution by the neural network,
and  refers to the ground truth. We utilize the trained parameters
(μ) of the main model as initialization for training the subcase neural
networks for only 1500 epochs, achieving the same level of accuracy
as the main model. The configurations were selected using ensemble
training through a grid-based search, and for conciseness, only the
best-obtained hyperparameters are presented.
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Figure 3.4: Euler-Bernoulli beam equation on the Winkler foundation
with noise in the initial condition of displacement of the
beam Left: Predicted solution at final time (t = 1) with 10%
Gaussian noise; Right: Predicted solution at final time (t = 1)
with 20% Gaussian noise. Blue dots are ground truth and red
curve is prediction.

3.5.1. EULER-BERNOULLI BEAM
The Euler-Bernoulli beam model is a mathematical framework used to
analyze the behavior of beams when subjected to loads. It is derived
from the three-dimensional elasticity theory or through principles such as
Newton’s second law or the generalized Hamiltonian Principle [64]. The
model assumes certain simplifications: it neglects the effects of rotary
inertia and transverse shear deformations. The Euler-Bernoulli beam
equation describes the behavior of a beam subjected to bending Fig. 3.1.
When the beam is supported on a Winkler foundation, representing
an elastic foundation, the Euler-Bernoulli beam equation is modified
to account for the interaction between the beam and the foundation.
This modified equation considers the stiffness of the foundation and
its influence on the behavior of the beam. The mathematical model
of a simply supported Euler-Bernoulli beam on a Winkler foundation is
described by [33]

tt + xxxx + p(, t) = ƒ (, t),  ∈ [0,8π], t ∈ [0,1] (3.9)



3.5. Numerical experiments

3

67

where  represents the vertical displacement of the beam. tt, and
xxxx represent the two times partial derivative of  with respect to t,
and four times partial derivative with respect to , respectively. The
loading on the beam is defined by ƒ (, t) = (2 − π2) sin () cos(πt). The
initial and boundary conditions are given as

(,0) = sin(), t(,0) = 0
(0, t) = (8π, t) = xx(0, t) = xx(8π, t) = 0

(3.10)

The foundation reaction, p(, t), assumes that the reaction at every
location is proportional to the displacement at a particular location, and
the springs are linear and independent, as described in (3.9). The
reaction force of the foundation is given by p(, t) = k(, t), where
(, t) is vertical displacement and k is the stiffness of linear springs.
The exact solution for this problem is given by (, t) = sin() cos(πt).

Solving (3.9), one can determine the vertical displacement of the beam
at any point along its length and other important quantities of interest,
such as bending moments and beam acceleration. These quantities help
engineers understand how the beam will perform structurally and ensure
it meets the desired design criteria. By calculating the displacement,
engineers can check whether the beam deflects within acceptable limits
under the applied loads.

Table 3.1: Euler-Bernoulli beam: R at t = 1 for k = 1
PINN SA-PINN gPINN Adap. PINN Wav. PINN Causal PINN

R 5.33 5.15 3.54 5.32 4.38 0.03

We simulate (3.9) with five different methods to establish that
incorporating causality provides more accuracy in the predicted solution
than vanilla PINN, SA-PINN, adaptive activation PINN, wavelet PINN and
gPINN for beam dynamics. The results presented in Table 3.1 indicate
that vanilla PINN, SA-PINN, adaptive activation PINN, wavelet PINN and
gPINN provide less accurate displacement predictions at t = 1 for the
Euler-Bernoulli equation for stiffness k = 1. In contrast, causal PINN
yields more accurate displacement predictions as the relative percent
error is 0.03. This observation is further supported by the findings
depicted in Fig. 3.3, which demonstrates that PINN and SA-PINN models
are not accurate, particularly during the initial time, highlighted by the
white rectangular box in Fig. 3.3. However, this challenge is effectively
overcome by incorporating a causality-respecting loss function, which
facilitates training the solution at lower time levels before training at
higher times. Additional experiments concerning comparison of the
proposed framework with a combination of PINNs and recurrent neural
architectures for the Euler-Bernoulli beam equation on the Winkler
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foundation are presented in Appendix A. Furthermore, Additional plots
for adaptive activation PINN, gPINN and wavelet PINN are presented in
Appendix B.

Moreover, we empirically analyze the correlation between weights
() and the corresponding loss at that time step (LPDE(t, μ)) for causal
PINNs. We visualize the evolution of the magnitude of weights and errors
over epochs for six random weights to understand how their magnitudes
impact model training at that time level. The goal is to observe how the
error decreases as the magnitudes of the weights increase over epochs,
as shown in Fig. 3.5. Six random weights (1, . . . ,6) are considered
at time steps 0.06,0.29,0.30,0.41,0.45, and 0.53. From the first row
of Fig. 3.5, it is evident that, as training progresses, the magnitude of
weights increases and approaches a value of 1. The second and third
figures in the first row of Fig. 3.5 provide zoomed-in segments of the
first figure of the first row, revealing a sequential convergence pattern
at each time level: initially, 1 converges, followed by 2, and so forth.
After 6000 epochs, all weights nearly converge to 1.

The second row of Fig. 3.5 illustrates the relationship between error
and epochs, demonstrating a consistent decrease in error with increasing
epochs. The second and third figures in the second row of Fig. 3.5
are zoomed-in segments of first figure of the second row in Fig. 3.5,
showing a sequential reduction in error corresponding to an increase in
the magnitude of weight. It is evident that as the weights sequentially
increase at each time level, the error also decreases sequentially. The
observed pattern suggests that weights first converge at lower time
levels before progressing to subsequent levels, gradually improving
accuracy.

The parameters from compared PINN-based methods are not used
subsequently to avoid incomplete or bad knowledge transfer. Only the
trained parameters from the causal PINN formulation are transferred
to the subsequent experiments presented in the next two subsections,
fostering convergence by effectively reducing the training epochs.

NOISY INITIAL CONDITIONS
This subsection presents the performance of the proposed method
with noisy initial conditions. Initial conditions may not be perfectly
known in real-world scenarios or contain uncertainties or noise. By
learning displacements for noisy initial conditions, we can develop
models that accurately represent the behavior of the system under such
realistic conditions, allowing us to account for uncertainties and better
understand the actual response of the system. To observe the dynamics
of beam models under these conditions, we introduce Gaussian noise
in the initial condition ranging from 5% to 20%. The hyperparameter
selection is the same as the main model, except for the number of
epochs. With transfer learning, we perform 1500 epochs instead of
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Figure 3.5: Variation of weights () and the corresponding loss at
that time step (LPDE(t, μ)) over training epochs. (Top
Left.) Magnitude of six random weights (1, . . . ,6) varying
with epochs, where 1 < 2 . . . < 6. (Top Middle and
Right.) Zoomed-in segments of (Top Left.). (Bottom
Left.) Relative percent error at six distinct time levels
(LPDE(t, μ)) corresponding to weights (1, . . . ,6) varying
with epochs. (Bottom Middle and Right.) Zoomed-in
segments of (Bottom Right.).

10000.
Table 3.2 presents the results from 5% to 20% Gaussian noise levels in

the initial conditions for the displacement of the beam with and without
(w/o) using transfer learning. The proposed method predicts  with
less relative error percent. This prediction is significantly more accurate
compared to the case without transfer learning. Also, Fig. 3.4 shows the
results for 10% and 20% noise levels in the initial conditions for the
displacement of the beam using transfer learning, demonstrating the
computational efficiency of the proposed method.

Fig. 3.6 illustrates the comparison of relative error percentages
concerning the noise percentage for both methods, one with transfer
learning and the other without it. In the transfer learning scenario,
it becomes apparent that an increase in the noise percentage results
in a corresponding increase in the relative error percentage. When
the subcases use the trained parameters for initialization, noise and
error percentages exhibit a direct proportional relationship. However, in
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cases where trained parameters are not utilized, no discernible pattern
emerges due to the non-convergence in minimizing the loss function.
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Figure 3.6: R vs noise percentage in the initial condition for the Euler
Bernoulli beam for both approaches - with and without
transfer learning.

Table 3.2: Euler Bernoulli Beam: R at t = 1 for different percentages
of noise in the initial condition. "TL" refers to transfer
learning, and "w/o" refers to without. Abbreviations are used
consistently for the following tables.

5% 10% 12.5% 15% 17.5% 20%

with TL 0.03063 0.03198 0.04180 0.06937 0.222182 0.23296
w/o TL 117.7389 45.65849 59.42882 19.7473 48.75515 29.50691

DIFFERENT INITIAL DISPLACEMENTS AND VELOCITIES

In this section, we present the results of the Euler-Bernoulli beam
for different initial conditions characterized by the change in initial
displacements and velocities of the beam. Learning deflections for
different initial conditions and force functions allows for generalization.
Beams or structures can have varying initial conditions, such as different
magnitudes, positions, or load distributions. By learning the deflections
for a diverse set of initial conditions, we can develop models that
capture the underlying patterns and behavior of the system, enabling
accurate predictions for unseen or novel initial conditions.

Here, we consider different initial conditions compared to the parent
model. The initial conditions for this case are (,0) =  sin() and
t(, t = 0) =  sin(). The analytical solution for the corresponding
problem is (, t) =  sin()et. We utilize the trained parameters of the
Euler-Bernoulli beam model as an initialization for training this problem
with different initial conditions considering  = 1,2 (representing case 1
and case 2 in Table 3.3). The hyperparameters remain unchanged; the



3.5. Numerical experiments

3

71

0 5 10 15 20 25
x

-2

0

2

4

u

Ground Truth
Pred with TL
Pred w/o TL

Figure 3.7: Euler-Bernoulli beam on the Winkler foundation for initial
velocity for case 1: Causal PINN prediction at final time t = 1
with and without transfer learning

only change is the number of epochs, which is only 3000. Relative error
percentages of displacement are presented in Table 3.3, which shows a
large difference in relative percent errors. From Fig. 3.7, it is evident
for the first case that the transfer learning approach achieves accurate
predictions in fewer epochs.

Table 3.3: Euler Bernoulli Beam: R at t = 1 for different velocities

∗ R (case 1) R (case 2)

with TL 0.00105 0.02188
w/o TL 70.72229 193.85024

3.5.2. TIMOSHENKO BEAM
The Timoshenko beam theory considers the shear deformation and
rotational effects neglected in the Euler-Bernoulli beam equation [64].
Hence, in addition to the quantity vertical displacement (), Timoshenko
theory considers the cross-sectional rotation (θ) as another unknown
variable. The mathematical model for a beam resting on a Winkler
foundation and subjected to an external load based on the Timoshenko
beam theory is given as follows [33]

θtt − θxx + (θ − x) = 0;
tt + (θ − x)x + k = h(, t)

(3.11)

where the symbols have their usual meaning, as in the case of the
Euler-Bernoulli beam model. We consider h(, t) = cos(t) and the
computational domain to be  ∈ [0,3π] and t ∈ [0,1]. The supporting
initial and boundary conditions are given as



3

72 3. Causal PINNs for beam simulations

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

-8.00
-6.32
-4.63
-2.95
-1.26
0.42
2.11
3.79
5.47
7.16

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

2 4 6 8
x

0.2

0.4

0.6

0.8

t

-6.00
-4.74
-3.47
-2.21
-0.95
0.32
1.58
2.84
4.11
5.37

Figure 3.8: Timoshenko beam on the Winkler foundation First row:
Predicted Displacement (∗) (Left.) Using PINN (Right.)
Using SA-PINN (Second row, Left.) Using causal PINN
(Right.) Reference solution Third row: Predicted Rotation
(θ∗) (Left.) Using PINN (Right.) Using SA-PINN (Fourth
row, Left.) Using causal PINN (Right.) Reference solution

θ(,0) =
3π

2
cos() +
�

 −
3π

2

�

, θt(,0) = 0

(,0) =
3π

2
sin(), t(,0) = 0

θ(0, t) = θ(3π, t) = (0, t) = (3π, t) = 0

(3.12)

The analytic solution for the rotation and vertical displacement is
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Figure 3.9: Timoshenko beam on the Winkler foundation at final time
t = 1. Left: Absolute error in predicting displacement
(| − ∗|); Right: Absolute error in predicting rotation
(|θ − θ∗|)

given as follows

θ(, t) =
�

3π

2
cos() +
�

 −
3π

2

��

cos(t)

(, t) =
3π

2
sin() cos(t)

(3.13)

Solving the Timoshenko beam model (3.11) - (3.12) would help
engineers obtain more accurate predictions of beam deflections and
rotations, especially for beams with high aspect ratios or subjected
to high shear forces. This accuracy is crucial for assessing structural
integrity, ensuring compliance with design criteria, and preventing
potential failures.

Fig. 3.8 illustrates the predicted displacement and rotation throughout
the entire space-time domain. Fig. 3.8(c) and Fig. 3.8(g) depict
the displacement and rotation prediction using the causal PINN loss
function. Fig. 3.8(a-b) and Fig. 3.8(e-f) depict the displacement
and rotation prediction using vanilla PINN and SA-PINNs, respectively,
illustrating its failure in prediction. Additional plots for adaptive
activation PINN, gPINN and wavelet PINN are presented in Appendix B.
Furthermore, Fig. 3.9 presents the absolute error in displacement and
rotation resulting from the causal PINN loss function. The maximum
error magnitude falls below 10−2, clearly indicating the accuracy of
causal PINN.

Table 3.4: Timoshenko Beam: R at t = 1 for k = 1
PINN SA-PINN gPINN Adap. PINN Wav. PINN Causal PINN

∗ 119.17 137.15 119.17 240.78 238.46 1.2 × 10−6
θ∗ 9.18 6.56 38.63 9.16 9.10 7.7 × 10−6

Table 3.4 presents the relative percentage errors in predicting
displacement and rotation for vanilla PINN, SA-PINN, gPINN, adaptive
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PINN, Wavelet PINN and causal PINN. In the case of causal PINN, both
quantities of interest, , and θ exhibit errors in the magnitude of 10−6,
demonstrating its accuracy. Conversely, the other five state-of-the-art
PINN-based methods fail to adequately approximate the quantities of
interest, as evidenced by a relative error percent of over 100% for
displacement and an error of approximately 9% for rotation. The results
show that Causal PINN accurately predicts displacement and rotation for
the Timoshenko beam model.

3.5.3. LARGE SPACE-TIME HORIZON
In the following two experiments, we show the potential of transfer
learning and predict the displacement and cross-sectional rotation in a
larger domain. We utilize transfer learning for extrapolating. There are
several benefits to knowing deflections on larger domains. Firstly, it
provides a better understanding of the structural behavior of the beam
under different loading conditions. By analyzing the deflection over
larger lengths, engineers can assess the overall stability and structural
integrity of the beam, which is crucial for designing safe and reliable
structures.

Secondly, calculating the deflection for extended domains allows
for more accurate predictions of the behaviour of the beam in real-
world scenarios. This information is valuable in various engineering
applications such as building design, bridge construction, and aerospace
engineering, where accurate deflection predictions are essential for
ensuring the structural performance and safety of the final product.

Also, studying the deflection of the beam over a larger domain can
help identify potential areas of weakness or excessive deformation.
This knowledge enables engineers to make informed decisions about
reinforcing certain sections or implementing design modifications to
improve the overall performance and durability of the structure.

Furthermore, studying larger domains can optimize material usage
and cost-effectiveness in construction projects. By accurately predicting
deflection, engineers can optimize the size, shape, and materials used
to construct beams, leading to more efficient designs and reduced
material waste.

EXTENDED SPATIAL DOMAIN

In this section, we consider the Timoshenko beam model in an
extended domain in space. The spatial domain for the parent model is
 ∈ [0,3π]. Here, we utilize the parameters of the parent model and
train the subsequent models for different spatial domains, in particular
 ∈ [0,5π],  ∈ [0,6π], and  ∈ [0,7π]. The aim is to observe the
potential of the method in a larger domain, indicating that the method
generalizes well. The results obtained with and without transfer learning



3.5. Numerical experiments

3

75

0 5 10 15 20
x

−5

0

5

10
u

Ground Truth
Prediction

0 5 10 15 20
x

−4

−2

0

2

4

u

Ground Truth
Prediction

0 2 4 6 8
x

−8

−4

0

4

u

Ground Truth
Prediction

0 2 4 6 8
x

−6

−2

2

6

u

Ground Truth
Prediction

Figure 3.10: Timoshenko beam on the Winkler foundation: Top Prediction
for extended domain in space,  ∈ [0,7π] Left: Displace-
ment (∗); Right: Rotation (θ∗). Bottom Prediction for
extended domain in time for t = 7 Left: Displacement (∗);
Right: Rotation (θ∗).

are presented in Table 3.5, highlighting the superior accuracy achieved
by the proposed method when utilizing parameters from the main model
compared to training the model with Xavier initialization. Fig. 3.10
top row presents the predictions of displacement and rotation by the
proposed method, indicating that the model generalizes well across the
spatial domain, inheriting the underlying structure and symmetry of the
solution.

Table 3.5: Timoshenko Beam: R for extension in the spatial domain with
3000 epochs

With TL w/o TL

 ∗ θ∗ ∗ θ∗

[0,5π] 6.6 × 10−5 0.00011 2.34306 3.51362
[0,6π] 0.00653 0.00097 21.81964 30.67853
[0,7π] 1.52043 0.61573 11.00256 8.90537

EXTENDED TEMPORAL DOMAIN
We now extend our investigation to the temporal domain based on
successfully generalizing the proposed method in the spatial domain.
By employing the trained parameters obtained from the parent model,
we train the same model with an extension in time, considering different
temporal domains, t ∈ [0,4], t ∈ [0,6], and t ∈ [0,7]. The relative error
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percentage for all cases of the extended temporal domains is presented
in Table 3.6. We observe that the proposed method accurately predicts
displacement and rotation, while the approach without transfer learning
fails to provide the same level of accuracy. Fig. 3.10 bottom row shows
the predictions obtained by the proposed method for displacement and
rotation in an extended temporal domain. The results show that utilizing
transfer learning for extended domains in space and time provides
accurate results, conserving the structure and symmetry of the solution.

3.6. CONCLUSIONS
This chapter introduced a methodology for simulating the dynamics
of beam models based on Euler-Bernoulli and Timoshenko theories
on the Winkler foundation. By incorporating transfer learning within
a causality-respecting PINN framework, we addressed the need for
re-training the network when there are modifications to the initial
conditions or computational domain.

Numerical experiments demonstrated the effectiveness of the pro-
posed approach. For the Euler-Bernoulli beam, we utilized the trained
parameters from the parent model to simulate sub-cases with different
initial conditions, including noisy ones. For the Timoshenko beam,
we investigated its behavior in an extended spatial and temporal
domain. These experiments showcased the generalization potential of
the proposed method.

Table 3.6: Timoshenko Beam: R for extension in the temporal domain
with 3000 epochs

With TL w/o TL

t ∗ θ∗ ∗ θ∗

[0,4] 9.7e-6 2.4e-5 7.9e-5 0.00026
[0,6] 0.00111 0.00085 0.01627 0.12266
[0,7] 0.89122 0.05554 4.92954 2.50340

We also performed comparisons of the proposed method with five
vanilla and advanced PINN-based methods. Results show that the
causality-respecting PINN with transfer learning reduces computational
costs and improves convergence. The results indicate that the method
struggled to approximate the solutions accurately without transfer
learning.

Overall, our findings highlight the efficacy of the proposed methodol-
ogy in simulating beam dynamics under diverse engineering scenarios.
By leveraging transfer learning and a causality-respecting PINN frame-
work, we can reduce training requirements while achieving accurate
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results for various cases. This research opens up new possibilities
for efficiently predicting the dynamics of structural elements, leading
to advancements in structural engineering design, optimization, and
control.

Future researchers should consider specific nuances to successfully
apply the proposed framework in engineering domains. The performance
of the proposed framework can be sensitive to hyperparameters,
including the choice of causal parameter. Finding the optimal values
may require empirical hyperparameter optimization, which is generally
required for deep learning methods. Transferring knowledge from
one engineering system to another requires understanding the domain
characteristics and aligning them appropriately. Applicability of the
proposed methodology in real-world engineering problems necessitates
validation in complex environments, emphasizing interdisciplinary
knowledge. Additionally, the choice of transfer learning method would
depend on the real-world engineering challenge being solved.

Future research directions involve extending the methodology to other
structural elements like systems of beams, strings and plates. An
alternative research trajectory may involve training a family of PDE
models and applying meta-learning techniques to derive a universal set
of parameters applicable across diverse models. This unified parameter
set could potentially be employed to test novel models, contributing to
a generalized and efficient approach in the field.
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4
NEURAL OSCILLATORS FOR
GENERALIZATION OF PIML

A primary challenge of physics-informed machine learning (PIML) is
its generalization beyond the training domain, especially when dealing
with complex physical problems represented by partial differential
equations (PDEs). This chapter aims to enhance the generalization
capabilities of PIML, facilitating practical, real-world applications where
accurate predictions in unexplored regions are crucial. We leverage
the inherent causality and temporal sequential characteristics of PDE
solutions to fuse PIML models with recurrent neural architectures
based on systems of ordinary differential equations, referred to as
neural oscillators. Through effectively capturing long-time dependencies
and mitigating the exploding and vanishing gradient problem, neural
oscillators foster improved generalization in PIML tasks. Extensive ex-
perimentation involving time-dependent nonlinear PDEs and biharmonic
beam equations demonstrates the efficacy of the proposed approach.
Incorporating neural oscillators outperforms existing state-of-the-art
methods on benchmark problems across various metrics. Consequently,
the proposed method improves the generalization capabilities of PIML,
providing accurate solutions for extrapolation and prediction beyond the
training data.

Apart from minor updates, this chapter has been published as: Kapoor, T., Chandra,
A., Tartakovsky, D. M., Wang, H., Nunez, A., & Dollevoet, R. (2024, March). Neural
oscillators for generalization of physics-informed machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol. 38, No. 12, pp. 13059-13067).
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4.1. INTRODUCTION
In machine learning and artificial intelligence, generalization refers to
the ability of a model to perform on previously unseen data beyond its
training domain. This entails prediction of outcomes for a sample x
that lies outside the convex hull of the training set X = {x1, . . . ,xN},
where N is the number of training samples [1]. Current deep-learning
models exhibit robust generalization on tasks like image [2], and speech
recognition [3], among others [4]. In physical sciences, state-of-
the-art deep-learning models, also known as data-driven approaches,
learn patterns and correlations from training data but lack intrinsic
comprehension of the underlying governing laws of the problem [5,
6]. Despite their effective approximation of complex functions and
relationships, these data-driven methods face challenges in generalizing
to scenarios significantly different from the training distribution, resulting
in a physical-agnostic methodology [7].

Limitations of data-driven methods, characterized by their inability
to adhere to physical laws and their agnosticism towards underlying
physics, underscore the need for deep learning models capable of
effectively capturing fundamental physical phenomena, such as their
structure and symmetry [8]. Adopting such learning approaches
promises to enhance the generalization capabilities of the model
significantly. Consequently, a growing interest has been in embedding
physics principles into machine learning to develop physics-aware
models such as physics-informed neural networks (PINNs) [9]. PINNs
consider mathematical models of the underlying physical process,
represented as partial differential equations (PDEs), and integrate them
into the loss function during training.

Despite their popularity, experimental evidence suggests that PINNs
might fail to generalize. Minimizing the PDE residual in PINN does not
straightforwardly control the generalization error [10, 11]. Although
PINNs and their subsequent enhancement aim to incorporate soft or
hard physical constraints for robustness, they often struggle to achieve
strong generalization [12–14]. Hence, simply embedding physical
equations into the loss function need not necessarily guarantee genuine
physics awareness or robustness beyond the training domain. Ideally, a
physics-informed model must reproduce known physics in the training
domain and exhibit predictive capabilities for new scenarios while
respecting conservation laws and effectively handling variations and
uncertainties in real-world applications. Attaining this level of physics
awareness remains a crucial challenge in developing dependable and
powerful physics-informed machine learning methods [15, 16].

One way to enhance the extrapolation power of PINNs is to
dynamically manipulate the gradients of the loss terms, building upon
a gradient-based optimizer [12]. This method shares similarities with
gradient-based techniques employed in domain generalization tasks
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[17]. However, one drawback of such methods is the need for
training until a specific user-defined tolerance in the loss is achieved,
resulting in convergence issues and increased computational costs.
We adopt a different strategy to tackle the generalization challenge
by leveraging the inherent causality present in PDE solutions [18].
Leveraging causality enables us to enhance generalizability by learning
the underlying dynamics that preserve the structure and symmetry of
the underlying problem.

A recurrent neural network (RNN) might be capable of learning
the dynamics owing to its remarkable success in various sequential
tasks. Gated architectures, like long short-term memory (LSTM) [19]
and gated recurrent unit (GRU) [20], have been mooted to address
the exploding and vanishing gradient problem (EVGP) in vanilla RNNs
[21]. However, EVGP can remain a concern as presented by Li et al.
RNNs with orthogonality constraints on recurrent weight matrices are
used to tackle EVGP [23–26]. While this strategy alleviates EVGP,
it may reduce expressivity and hinder performance in practical tasks
[26]. We posit that neural oscillators [27] offers a practical means to
achieve high expressibility and mitigate EVGP. Neural oscillators use
ordinary differential equations (ODEs) to update the hidden states of the
recurrent unit, enabling efficient dynamic learning.

This chapter introduces a new approach to address the generalization
challenge. It employs a physics-informed neural architecture that learns
the underlying dynamics in the training domain, followed by a neural
oscillator to exploit the causality and learn temporal dependencies
between the solutions at subsequent time levels. This extension
of a physics-informed architecture helps increase the accuracy of a
generalization task since neural oscillators carry a hidden state that
retains information from previous time steps, enabling the model to
capture and leverage temporal dependencies in the data.

We consider two different neural oscillators: coupled oscillatory
recurrent neural network (CoRNN) [28] and long expressive memory
(LEM) [29]. Both methods use a coupled system of ODEs to update
the hidden states. We ascertain the relative performance of these two
oscillators on three benchmark nonlinear problems: viscous Burgers
equation, Allen–Cahn equation, and Schrödinger equation. Additionally,
we evaluate the performance of our method in generalizing a solution
for the Euler–Bernoulli beam equation. To showcase the performance
of the proposed framework for higher-dimensional PDEs, we performed
an experiment on 2D Kovasznay flow as presented in supplementary
material SM§C provided at [30]

The remainder of this chapter is structured as follows. The “Related
Work" section provides an overview of pertinent literature and recent
studies related to the current work. In the “Method" section, our
approach for enhancing the generalization of physics-informed machine
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learning through integration with a neural oscillator is explained in detail.
Our method is validated through a series of numerical experiments
in the “Numerical Experiments" section. Finally, key findings and
implications of this study are collated in the “Conclusions" section.

4.2. RELATED WORK
PIML

Our research aims to advance physics-informed models, a subset of
machine learning techniques that address physical problems formulated
as PDEs. PIML encompasses a range of methodologies, including
physics-informed [31], physics-based [32], physics-guided [33], and
theory-guided [32] approaches. The review papers [31, 32] provide a
comprehensive overview of progress in PIML. Recently, PIML has demon-
strated considerable utility in scientific and engineering disciplines,
encompassing fluid dynamics [34] and materials science [35], among
others. Our primary focus is to improve PIML variants that integrate
governing equations into the loss function during training to foster
generalization, which involves advancing PINNs and their variations,
such as causal PINNs [18], and self-adaptive PINNs [36].

DOMAIN GENERALIZATION

Domain generalization focuses on training models to effectively handle
unseen domains with diverse data distributions, even when trained on
data from related but distinct domains [4, 17]. In contrast, domain
adaptation involves transferring knowledge from a labeled source
domain to an unlabeled or partially labeled target domain, assuming
access to some labeled data in the target domain [37]. Our research
shares the core principles with these fields but differs in that we learn
exclusively from a single training set without using multiple domains, as
in domain generalization, or having access to any target domain data,
as in domain adaptation. Moreover, we do not employ any transfer
learning techniques. Our task is to train solely on the training set and
directly deploy the trained model on the test region.

GENERALIZATION IN PIML

Despite limited research on the generalization of physics-informed
models, some studies have specifically focused on generalizing PINNs.
One noteworthy approach is the dynamic pulling method (DPM) [12],
which utilizes a gradient-based technique to extend the solution of
nonlinear benchmark problems beyond the trained convex hull X,
focusing on generalizing solutions in the temporal domain. Other
investigations have centered on generalizing the parameter space
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Figure 4.1: The proposed framework in which a physics-informed ar-
chitecture (e.g., PINN or its variants) learns a solution in
the convex hull X1. After reshaping, these solutions are
represented sequentially and processed by one of the neural
oscillators. The neural oscillator is finally tested in the convex
testing hull X2, where the output of the last prediction step is
the input for the next prediction step. Here, 1 ≤  ≤ kt,  ∈ Z,
and h = [y, z]. The dotted lines separate different stages of
training and testing the framework.

for parametric PDEs, employing techniques like curriculum learning,
sequence-to-sequence learning [38] and incremental learning [39].
However, these approaches involve training and testing within the
convex hull of the parameter space, which differs from the focus and
approach to our work.

NEURAL OSCILLATORS

Oscillator networks are ubiquitous in natural and engineering systems,
exemplified by pendulums (classical mechanics) and heartbeats (biol-
ogy). A growing trend involves building RNN architectures based on
ODEs and dynamical systems [40–43]. Recent research has abstracted
the fundamental nature of functional brain circuits as networks of oscilla-
tors, constructing RNNs using simpler mechanistic systems represented
by ODEs while disregarding complex biological neural function details.
Driven by the long-term memory of these oscillators and inspired by
the universal approximation property [27], our goal is to integrate them
with physics-informed models to enhance generalization.

4.3. METHOD
The proposed framework comprises a feedforward neural network
informed by physics (such as PINN, causal PINN, self-adaptive PINN, or
any other physics-guided architecture), followed by a neural oscillator.
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For example, we combine PINN with the coupled oscillatory recurrent
neural network (CoRNN) or the long expressive memory (LEM) model.
The output of the PINN serves as input to the oscillator. The PINN learns
a solution within a convex training hull X1 = D × T, where D ∈ Rd is the
d-dimensional spatial domain and T ∈ R is the temporal domain of the
PDE. In our experiments, d = 1.

The neural oscillator processes the output of PINN as sequential data
and predicts solutions within a different convex testing hull X2. The hulls
are distinct, X1 and X2, and X2 X1. For example, X2 = D× T

′
, where D is

the same spatial domain but T
′ ∈ R is the extrapolated temporal domain

with inf(T
′
) ≥ sp(T), which implies that testing is performed on time

t
′ ∈ T ′ ≥ t ∈ T.
The PINN maps the input space X1 onto the solution space U , such

that a solution of the PDE  ∈ U . This mapping enables learning the
evolution of  from a given initial condition. The abstract formulation of
an operator N incorporating the PDE and initial and boundary conditions
is

N () = ƒ , (4.1)

where ƒ is the source term. The loss function of an abstract PINN is
formed by minimising the residuals of (4.1) along with the available data
on boundaries and at the initial time.

Following the PINN training on X1, its testing is conducted on kt
uniform time steps in T and k uniform locations in D making a total of
kt · k testing points within X1. The solution obtained from the PINN is
reshaped to be further fed into the neural oscillator (shown in Fig. 4.1).

Conventional feed-forward neural networks lack explicit mechanisms
to learn dependencies among outputs, presenting a fundamental
challenge in handling temporal relationships. To mitigate this challenge,
recurrent neural architectures preserve a hidden state to retain
information from previous time steps, thereby improving sequence
learning. We employ neural oscillators to treat the PINN outputs as a
sequence. The motivation arises from feed-forward neural networks,
where all outputs are independent, whereas sequence learning requires
capturing temporal dependencies. Neural oscillators capture these
dependencies through feedback loops and hidden states, enabling
information propagation and temporal dependency capture.

While training an oscillator, its hidden states are updated using the
current input and the previous hidden states, akin to vanilla RNNs.
The fundamental distinction between vanilla or gated RNNs and neural
oscillators lies in the hidden state update methodology. In neural
oscillators, these updates are based on systems of ODEs, in contrast to
algebraic equations used in typical RNNs. When employing CoRNN, the
hidden states are updated through the second-order ODE

y′′ = σ
�

Wy +Wy′ + V + b
�

− γy − εy′. (4.2)
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Here, y = y(t) ∈ Rm is the hidden state of the RNN with weight matrices
W,W ∈ Rm×m and V ∈ Rm×k ; t corresponds to the time levels at which
the testing of PINNs has been performed;  = (t) ∈ Rk is the PINN
solution; b ∈ Rm is the bias vector; and γ, ε > 0 are the oscillatory
parameters. We set the activation function σ : R 7→ R to σ() = tnh().
Introducing z = y′(t) ∈ Rm, we rewrite (4.2) as the first-order system

y′ = z, z′ = σ (Wy +Wz + V + b) − γy − εz. (4.3)

We use an explicit scheme with a time step 0 < Δt < 1 to discretize
these ODEs,

yn = yn−1 + Δtzn,
zn = zn−1 + Δtσ (Wyn−1 +Wzn−1 + Vn + b)
− Δtγyn−1 − Δtεzn̄.

(4.4)

Similarly, LEM updates the hidden states by solving the ODEs

y′ = σ̂(W2y + V2 + b2) ⊙ [σ(Wyz + Vy + by) − y]
z′ = σ̂(W1y + V1 + b1) ⊙ [σ(Wzy + Vz + bz) − z]

(4.5)

In addition to previously defined quantities, W1,2,Wy,z ∈ Rm×m and
V1,2,Vy,z ∈ Rm×k are the weight matrices; b1,2 and by,z ∈ Rm are the
bias vectors; σ̂ is the sigmoid activation function; and ⊙ refers to the
componentwise product of vectors. A discretization of (4.5) similar to
CoRNN yields

Δtn = Δtσ̂(W1yn−1 + V1n + b1)

Δtn = Δtσ̂(W2yn−1 + V2n + b2)
zn = (1 − Δtn) ⊙ zn−1

+ Δtn ⊙ σ(Wzyn−1 + Vzn + bz)

yn = (1 − Δtn) ⊙ yn−1
+ Δtn ⊙ σ(Wyzn + Vyn + by).

(4.6)

Both CoRNN and LEM are augmented with a linear output state ωn ∈ Rk
with ωn = Qyn and Q ∈ Rk×m.

We train the PINN and the neural oscillator separately to leverage
the resolution-invariance property of physics-informed learning during
training. While neural oscillators require evenly spaced data, a PINN
can be trained discretization-invariantly, allowing flexibility in handling
multi-resolution data, such as using different sampling techniques [13].
The PINN is trained until a predefined epoch or until its validation error
stabilizes in consecutive epochs and is then employed in inference to
generate training data for the oscillator. Subsequently, the oscillator
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Table 4.1: Generalization Accuracy of Nonlinear Benchmark PDEs
L2-norm Variance score Max Error Mean Error

DPM CoRNN LEM DPM CoRNN LEM DPM CoRNN LEM DPM CoRNN LEM
Vis. Burgers 0.083 0.004 1e-3 0.621 0.995 0.9991.534 0.103 0.0240.277 0.022 0.003
Allen–Cahn 0.182 0.005 0.004 0.967 0.995 0.9950.836 0.320 0.1370.094 0.035 0.034
Schrödinger 0.141 0.042 0.003 -3.257 0.925 0.9943.829 0.659 0.0940.868 0.925 0.028
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Figure 4.2: Top two rows: the complete reference solution and predictions
for viscous Burgers equation. The black vertical line
delineates the region before which the PINN has been
trained. The region after the black vertical line represents
the generalization domain. The meaning of the vertical
line remains the same in the following figures. Bottom:
the solution snapshots at t = {0.83,0.98} obtained in the
generalization region, where blue represents the reference
solution, and red refers to the recurrent method. The colors
are used consistently for the following figures.

learns a mapping between the PINN outputs from one-time level to the
next, forming a sequential relationship.

We validate the proposed framework on three time-dependent
nonlinear PDEs and a fourth-order biharmonic beam equation. The
software and hardware environments used to perform the experiments
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Figure 4.3: Top two rows: the complete reference solution and predictions
for the Allen-Cahn equation. Bottom: the solution snapshots
at t = {0.81,0.99} obtained in the generalization region.

are as follows: Ubuntu 20.04.6 LTS, Python 3.9.7, Numpy 1.20.3, Scipy
1.7.1, Matplotlib 3.4.3, TensorFlow-gpu 2.9.1, PyTorch 1.12.1, CUDA 11.7,
and NVIDIA Driver 515.105.01, i7 CPU, and NVIDIA GeForce RTX 3080.

PDES

The four equations—viscous Burgers equation, Allen-Cahn (AC) equa-
tion, nonlinear Schrödinger equation (NLS) and Euler-Bernoulli beam
equation—along with their boundary and initial conditions are pro-
vided in the supplementary material SM§B. For training/testing, we
divide the entire time domain into two segments: T := [0, Ttrin] and
T
′
:= (Ttrin, Ttest], where Ttest > Ttrin > 0. Our task is to predict the

PDE solution in the convex testing hull X2 = D × T ′ after the model has
been trained on the convex training hull X1 = D× T. For all the problems,
Ttrin = 0.8Ttest, dividing the training and test sets in the ratio 4 : 1,
following the work of DPM [12] to maintain uniformity. The domain for
each PDE, i.e., D,T and T′, is defined in SM§B.
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Figure 4.4: Top two rows: the complete reference solution and predictions
for the Schrödinger equation. Bottom: the solution snapshots
at t = {1.28,1.5} obtained in the generalization region.

BASELINES
Our objective is to make predictions beyond X1, i.e., on X2, and to assess
how well the trained models generalize. We compare the performance
of PINNs with CoRNN or LEM on this task. We also compare our approach
to the state-of-the-art DPM [12]. A comparative analysis is also carried
out when traditional recurrent networks, RNN, LSTM, and GRU, are
augmented with the physics-informed model instead of the oscillatory
networks. This analysis provides insight into how well the oscillatory
methods perform relative to traditional recurrent networks and gradient
techniques when confronted with generalization tasks.

HYPERPARAMETERS
To predict a solution to Burgers equation in X1 using PINNs, 1600
training points are used, comprising 1000 residual points and 600
points for boundary and initial time. The feedforward neural network
has two inputs, space  ∈ D and time t ∈ T. Four hidden layers, each
containing 20 neurons, and hyperbolic tangent (tnh) activation function
are used to predict the approximation of the solution  ∈ U . Optimization
is performed using the LBFGS algorithm for 3500 epochs. For the



4.3. Method

4

97

(a) Reference Solution (b) GRU

(c) CoRNN (d) LEM

0.0 1.5 3.0
x

0.75

0.00

0.75

u
(x

,t
)

t = 0.83

(e) GRU

0.0 1.5 3.0
x

0.75

0.00

0.75

u
(x

,t
)

t = 0.83

(f) CoRNN

0.0 1.5 3.0
x

0.75

0.00

0.75

u
(x

,t
)

t = 0.83

(g) LEM

0.0 1.5 3.0
x

0.75

0.00

0.75
u
(x

,t
)

t = 0.98

(h) GRU

0.0 1.5 3.0
x

0.75

0.00

0.75

u
(x

,t
)

t = 0.98

(i) CoRNN

0.0 1.5 3.0
x

0.75

0.00

0.75

u
(x

,t
)

t = 0.98

(j) LEM

Figure 4.5: Top two rows: the complete reference solution and predictions
for the Euler–Bernoulli beam equation. Bottom: the solution
snapshots at t = {0.83,0.98} obtained in the generalization
region.

Euler-Bernoulli beam equation, 16000 training points are distributed as
10000 residual points and 6000 points designated for both initial and
boundaries. The hyperparameters are kept the same as in the viscous
Burgers equation. Allen-Cahn and Schrödinger equations are simulated
using the software DeepXDE [44] with the default hyperparameters
described therein.

The input and output size of the recurrent networks is taken to be k,
with a single hidden layer of size 32. The sequence length is chosen
to be kt. The exact values of k and kt are defined in the “Train and
test criteria" subsection for each equation. Adam optimizer is used to
train the recurrent networks. The learning rates for LEM, CoRNN, GRU,
LSTM, and RNN are 0.001, 0.001, 0.01, 0.01, and 0.01, respectively,
across all equations. For Schrödinger equation, a learning rate of
0.01 is used to train the LEM. In the case of CoRNN, two additional
hyperparameters, γ and ε, are set to 1.0 and 0.01, respectively. The
number of epochs executed for Burgers and Allen–Cahn equations is
20,000, while for Schrödinger equation, it is 30,000. Lastly, 200,000
epochs are performed for the Euler-Bernoulli beam equation.
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EVALUATION METRICS

For the first three experiments, the errors are reported relative to the
numerical solutions of the corresponding PDEs. The reference for the
Euler-Bernoulli beam equation is an analytical solution described in
SM§B. As the criteria for assessment, we employ standard evaluation
metrics: the relative errors in the L2-norm, the explained variance score,
the maximum error, and the mean absolute error, defined in SM§D.
Each of these metrics provides distinct insights into the performance.
Furthermore, we present visual snapshots of both the reference and
approximate solutions at specific time instances. Additional snapshots
and contour results are provided in SM§C.

TRAIN AND TEST CRITERIA

The trained PINN is tested on kt · k points in X1. For the Burgers
equation and the Euler-Bernoulli beam equations, we set k = 256 and
kt = 80. For the Allen-Cahn equation, k = 201 and kt = 80. For the
Schrödinger equation, k = 256 and kt = 160.

The PINN output provides input to train the neural oscillators, adhering
to the specified hyperparameter configuration. After training the neural
oscillator on X1, testing is extended to X2. This testing sequence
commences at inf(T′) as the initial input. The ensuing output is then
utilized as the input for the subsequent sequence (shown in Fig. 4.1).
Such testing is crucial since, in practical scenarios, knowledge about
the solution  in X2 is absent. Thus, the solely available information
for generalization is derived from the predicted solution within X2. This
testing process is iterated until reaching sp(T′). The domains X1, X2
and T

′
for all the equations are provided in SM§B.

4.4. EXPERIMENTAL RESULTS
Tables 4.1 and 4.2 collate the overall performance metrics for the
oscillator-based methods (LEM, CoRNN) in comparison with DPM, RNN,
LSTM and GRU. The results show that LEM exhibits significantly superior
performance across all the benchmark problems.

VISCOUS BURGERS EQUATION

Figure 4.2 provides a visual comparison between the reference solution
(Fig. 4.2(a)) and its counterparts generated with GRU, CoRNN and LEM
(Figs. 4.2(b)–4.2(d), respectively). GRU struggles to accurately capture
the solution of Burgers equation, leading to the loss in prediction
accuracy as time t increases. Our methods based on CoRNN and LEM
exhibit notably improved predictive accuracy, even when t approaches
the end of the time domain. Figures 4.2(e)–4.2(j) provide further insights
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into the solution at time instances t = 0.83,0.98. They reveal that
LEM outperforms the alternative methods across the entire space-time
domain. The performance of CoRNN is comparable to that of LEM,
producing reasonably accurate predictions. These findings underscore
the significance of neural oscillators in precise generalization. Additional
experiments on sensitivity analysis of oscillator parameter (Δt) along
with an ablation study on CoRNN parameters ε and γ is presented in
SM§C. Additionally, the generalization in parametric space [45] is also
presented in SM§C.

ALLEN-CAHN EQUATION

In Figure 4.3, the reference solution of the Allen-Cahn equation is
compared to its counterparts generated with GRU, CoRNN and LEM.
Our oscillator-based methods (CoRNN and LEM) yield the most precise
approximations in the generalization domain (Figs. 4.3(a)–4.3(d)). The
LEM-based solution exhibits a nearly symmetric behavior with respect to
 = 0, demonstrating its ability to preserve the symmetry and structure
of the solution. At t = 0.81, all three methods display a similar level
of accuracy (Figs. 4.3(e)–4.3(g)). However, as time advances, e.g., at
t = 0.99, the performance of LEM surpasses that of the other techniques
throughout the extrapolation domain (Figs. 4.3(h)–4.3(j)).

SCHRÖDINGER EQUATION

Figure 4.4 illustrates a comparison between the reference solution of
Schrödinger equation and its counterparts generated with GRU, CoRNN
and LEM. Rather than plotting the real and imaginary parts of this
solution, Figs. 4.4(a)–4.4(d) exhibit its magnitude, |(, t)|; the solutions
are visually indistinguishable. The three approximations are accurate
at time t = 1.28 (Figs. 4.4(e)–4.4(g)), but the GRU- and CoRNN-based
solutions at t = 1.5 have errors around  = 0 whereas the LEM-based
solution retains its accuracy within that region (Figs. 4.4(f)–4.4(j)).

EULER-BERNOULLI BEAM EQUATION

In Figure 4.5, we compare the analytical solution of the Euler-Bernoulli
beam equation to approximate solutions obtained with GRU, CoRNN and
LEM. The intricacy of this linear equation stems from the presence of
fourth-order derivatives [46, 47], rendering it a compelling challenge
for the proposed methodology . The visual comparison afforded
by Figs. 4.5(a)–4.5(d) demonstrates the superiority of the LEM-based
solution and the inferiority of the GRU-based one. At t = 0.83, all
three approximations are qualitatively correct, with various degrees of
accuracy (Figs. 4.5(e)–4.5(h)). At t = 0.98, the GRU-based solution
is not only inaccurate but is also qualitatively incorrect, while the
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oscillator-based approximators correctly predict the behavior of the
system (Figs. 4.5(h)–4.5(i)).

4.5. CONCLUSIONS
We introduced a method that combines neural oscillators with physics-
informed neural networks to enhance performance in unexplored
regions. This novel approach enables the model to learn the long-time
dynamics of solutions to the governing partial differential equations.
We demonstrated the effectiveness of our method on three benchmark
nonlinear PDEs: viscous Burgers, Allen-Cahn, and Schrödinger equations,
as well as the biharmonic Euler-Bernoulli beam equation. Our
results showcase the improved generalization performance of the PIML
augmented with neural oscillators, which outperforms state-of-the-art
methods in various metrics. The codes to reproduce the presented results
are provided at https://github.com/taniyakapoor/AAAI24_Generalization
_PIML.
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5
EXTRAPOLATION OF DYNAMIC

SOLVERS FOR STRUCTURES

Computer-aided simulations are routinely used to predict the perfor-
mance of a prototype. High-fidelity physics-based simulators might be
computationally expensive for design and optimization, spurring the
development of cheap deep-learning surrogates. The resulting surro-
gates often struggle to generalize and predict novel scenarios beyond
their training domain. We propose a two-stage methodology addressing
the challenge of generalization. It employs physics-based simulators,
supplemented with ordinary differential equations integrated into the
recurrent architecture, to learn the intrinsic dynamics. The proposed
approach captures the inherent causality and generalizes the dynamics
irrespective of a data source. The presented numerical experiments
encompass four fundamental structural engineering scenarios, including
beams on Winkler foundations based on Euler-Bernoulli and Timoshenko
theories, beams under moving loads, and catenary-pantograph interac-
tions in railways. The proposed methodology outperforms conventional
recurrent methods and remains invariant to data sources, showcasing
its efficacy. Numerical experiments highlight its prospects for design
optimization, predictive maintenance, and enhancing safety measures.

Apart from minor updates, this chapter has been submitted for publication as: Kapoor,
T., Wang, H., Stamou, A., Sayed. K., Nunez, A., Tartakovsky, D. M., & Dollevoet, R.
Generalizing beam dynamics from simulator data with neural differential equations.
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5.1. INTRODUCTION
Computer-aided dynamic simulations are pivotal across engineering
industries [1], including structural, railway, automotive, manufacturing,
and aerospace, among others. These simulations offer a cost-effective
and efficient alternative to physical prototyping, saving time and
resources. Simulating complex engineering systems and subsystems
aids in comprehensive testing and validation and assists in analyzing
and optimizing their performance and designs [2].

Several methods, including numerical solvers and deep learning,
are utilized to simulate the dynamics of engineering structures. For
instance, the finite element method (FEM) serves as a backbone for
commercial engineering software and is widely used for modeling,
designing, and optimizing structural dynamics [3]. Furthermore, deep
learning-based methods are employed as surrogates to simulate the
underlying dynamics [4]. One such deep learning-based approach is
physics-informed machine learning, integrating physical principles into
neural network architecture [5]. These simulators collectively provide
robust tools for realistic and efficient simulations of engineering systems.

Industrial scenarios such as design optimization necessitate numerous
simulations with varying materials and conditions influencing the
dynamics. Numerical solvers require repetitive iterations for each
parameter change, increasing computational cost [6]. Each iteration is
particularly challenging for long-time integration problems, where the
long-term behavior of the engineering systems needs to be analyzed.
Additionally, as the number of degrees of freedom increases, the
number of simulations escalates exponentially, rendering the process
laborious and time-consuming. Similarly, in deep learning, predictions
outside the training domain are challenging for engineering simulations
[7], requiring multiple model training for varying parameter values.
Thus, long-time predictions and incorporating parameter variations
exacerbate the simulation challenge across numerical and deep learning
methodologies.

Current engineering dynamic simulators are matured, yet predictions
outside the training domain, termed extrapolation or generalization,
remain challenging [8]. An ideal simulator should provide accurate
predictions inside the training domain and reasonable accuracy for
generalization scenarios. Mitigating the problem of generalization
necessitates a method that can predict out-of-domain and complement
the current dynamic solvers. A potential approach addressing this
challenge involves leveraging the current simulation strategies and
coupling them with a method to provide reliable generalization
predictions, reducing the problem to a two-stage strategy.

The first stage involves the traditional solver simulating the problem
precisely in the training domain. The second stage utilizes the
predictions from the first stage to generalize beyond the training
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domain. For example, for a moving load problem like a train on the
railway track, the quantity of interest is track deflection under different
loadings. For certain loadings, deflections could be simulated using
a traditional solver, such as FEM, and deflections for unseen loadings
could be predicted in a second stage utilizing the FEM deflections.

For the second stage, prior knowledge available is the simulated data
in the training domain, and utilizing it to predict in the generalized
domain is non-trivial. A potential way is to leverage the causality
of the underlying dynamics from the trained domain and use them
in an auto-regressive approach to predict the quantities of interest
in the untrained domain. Learning the inherent causality would
allow reasonable generalization by capturing the underlying dynamics,
structure, and symmetry of the problem.

Attention-based and recurrent neural architectures are viable for
sequence modeling and prediction tasks. However, attention-based
models require substantial data and disregard the underlying sequential
causality inherent in the physical simulations. Recurrent neural
networks (RNNs) are well-known to model time-series data. However,
long sequences pose exploding and vanishing gradients problem (EVGP),
which can even be observed with advanced gated architectures [9] like
the long short-term memory (LSTM) [10] and gated recurrent unit (GRU)
[11]. The challenge of EVGP could be mitigated by employing ordinary
differential equations (ODEs) to update the hidden states of the recurrent
architecture, facilitating efficient dynamic learning. For instance, recent
methods like coupled-oscillatory recurrent neural network (CoRNN) [12]
and long expressive memory (LEM) [13] do not exhibit the EVGP and
perform well for several sequential artificial intelligence (AI) tasks.
This work proposes to merge dynamic simulations with recurrent
architectures employing ODEs to update the hidden states, namely,
CoRNN and LEM. The proposed two-stage methodology exploits the
causality and learns temporal and parametric dependencies, potentially
enhancing the accuracy of generalization predictions of engineering
dynamic simulations.

Five fundamental problems within structural engineering are examined
to validate the proposed methodology. Simulation of beam dynamics
under dynamic loading conditions is crucial for precise structural
analysis and design [14]. Beams on Winkler foundations are crucial in
civil engineering, providing stability and support by distributing loads,
minimizing buckling [15] and resisting against vibrations [16]. Concrete
beams are used extensively in the construction industry [17]. They are
commonly used in applications like railway tracks, pile foundations, and
composite elastomers, where understanding their behavior is essential
for maintaining structural integrity and optimizing designs.

The first two cases are based on well-known Euler-Bernoulli and
Timoshenko beam theories on the Winkler foundation. Both beam
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theories are fundamental in structural mechanics. Euler-Bernoulli beam
theory models the behavior of slender, linear beams under various
loading conditions, assuming the plane sections of the beam to remain
plane and perpendicular to the cross-section where no longitudinal
stresses or strains occur. The Euler-Bernoulli theory also assumes
the shear deformations and rotational effects to be negligible [18].
This simplification allows the calculation of stresses and deflections
in beams under static and dynamic loads by reducing the three-
dimensional problem of beam bending to a one-dimensional model [19].
The governing equation is derived from equilibrium conditions (using
Newton’s laws or Lagrangian mechanics), material constitutive laws,
and geometric properties, leading to a fourth-order differential equation.

The Timoshenko beam theory builds on the Euler-Bernoulli theory by
including the effects of shear force. Unlike the Euler-Bernoulli theory,
which assumes that beam cross-sections remain flat and perpendicular
to the neutral axis after deformation, Timoshenko theory accounts
for additional angular rotation due to shear strain [20], affecting
the displacement by shear and bending deformations. The theory
introduces an extra degree of freedom, represented by the angular
rotation. Therefore, the key quantities of interest are the displacement
and the angular rotation. These quantities of interest are computed by
solving the governing equations, consisting of two coupled second-order
partial differential equations.

The third case is the moving load problem, studying the deflection
of the beam under different loadings. Understanding beam behavior
under moving loads is essential for structural health monitoring and
maintaining infrastructure integrity. For the final experiment, real-
world catenary-pantograph interactions in railway systems are studied.
Comprehending the vertical displacement of the catenary contact wire
under various train speeds is critical for railway infrastructure safety
and design. Varying speeds induce dynamic loads affecting the stability
of the catenary. Accurate contact wire uplift predictions aid engineers in
estimating the bad state of the catenary, which directly influences the
power supply safety of the traction power system, averting potential
disruptions and accidents. The final experiment deals with estimating
the unknown force applied on a system of Timoshenko beams by solving
an inverse problem.

The main contributions of this work can be summarized as follows,

• This work introduces a two-stage approach for generalizing
engineering dynamic simulations. First, dynamics are simulated
using a state-of-the-art simulator preferred for the application,
followed by classical mathematical models (ODEs) infused in neural
architecture to generalize the dynamics.

• Generalizing simulations is a longstanding challenge in AI for
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engineering and industry. The proposed work tackles this issue
through a resolution invariant pipeline where both stages can
process data at different resolutions.

• The proposed workflow efficiently generalizes the dynamics in the
time domain for spatio-temporal engineering systems without using
any data from the untrained time domain.

• Furthermore, for spatio-temporal parametric systems, the workflow
eliminates tedious re-meshing and re-simulation in computer-
aided simulation software for novel parameters belonging to the
parameter space.

• The performance of the proposed approach is evaluated on four
different dynamic simulation problems in structural engineering,
including real-world catenary-pantograph systems, demonstrating
superior performance compared to traditional recurrent architec-
tures.

The rest of the chapter is structured as follows. Section II details
the related works to this chapter. Section III provides an overview of
the problem statement. Section IV presents the proposed two-stage
methodology in detail to enhance the generalization. Section V
presents the performed numerical experiments to validate the proposed
methodology. The main conclusions drawn from this study are collated
in section VI.

5.2. RELATED WORK
This work focuses on generalizing spatio-temporal parametric engineer-
ing dynamics in temporal and parametric space. Industrial applications
often necessitate simulating spatio-temporal parametric systems as
discussed in the works of [21–24], among others. In particular, [22, 24]
discuss the challenges and importance of spatio-temporal simulations
in industrial settings. In addition to sharing the core idea of simulating
spatio-temporal parametric dynamics, this work proposes a method
to generalize the dynamics in untrained domains, making it more
applicable to real-world situations where systems may need to be
deployed in unseen situations for which data collection may not even be
possible at priori [25].

In other works, generalization of deep learning-based methods for
industrial tasks has been explored in [25–27], among others, aligning
with the motivation of this work. However, this work proposes a generic
two-step approach enabling the investigation through the state-of-the-
art simulator and coupling it with ODE-based recurrent architecture
to capture the intrinsic dynamics. This approach democratizes the
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Figure 5.1: Schematic of the proposed methodology: two-stage method-
ology starts with a definition of the problem and training and
testing domain in which generalization is sought. A dynamic
simulator is then utilized in the first stage to simulate the
problem in the training domain, whose solutions are reshaped
to fed into the second stage comprising of neural recurrent
ODEs. Neural ODEs are trained on the simulator predictions.
The trained neural ODEs are used to predict for novel time
and parameters in the testing domain.

challenge of generalization and hence could be used by a larger
industrial and engineering community.

The second stage in the proposed methodology encompasses
employing ODEs in the recurrent neural architecture to enhance
generalization. Pioneered by the seminal works of [28], neural ODEs
have been explored for different applications, for instance, cooling-
system prediction [29], process quality evaluation [30], and remaining
useful life estimation [31]. However, this work posits that neural
differential equations-based architectures capture the causality better
than the gated architectures, improving the generalization ability of the
learned model and making it distinct from the aforementioned works.

5.3. PROBLEM STATEMENT
This section presents an abstract formulation of the generalization
problem. In general, spatio-temporal parametric systems are governed
by an operator D[(, t;μ)] = 0, where, (, t) ∈ D × T. Here, D ⊂ R



5.4. Methodology

5

115

and T ⊂ R represent the spatial and temporal domain, respectively.
Additionally, μ ∈ M ⊂ R represents the parameters, and  ∈ U ⊂ Rd is the
quantity of interest in a d-dimensional space. The operator D could be
explicitly known, for instance, the Euler-Bernoulli and Timoshenko partial
differential equations (PDEs) governing the beam dynamics, or could be
black-box as in the case of real-world catenary-pantograph system.

The proposed approach transcends traditional limitations and seam-
lessly applies across temporal and parametric domains. Hence, to
formalize the generalization problem, the domain Ω hereafter invariantly
represents the domain T or M. The entire spatio-temporal parametric
space is divided into two disjoint sets X1 and X2, where X1 := D × Ω
and X2 := D × Ω′. Here Ω

′
is the generalized temporal or parametric

domain with inf(Ω
′
) ≥ sp(Ω), which implies that testing is performed for

ω
′ ∈ Ω′ ≥ ω ∈ Ω. Concretely, the temporal or parametric space is divided

into two segments: Ω := [0,Ωtrin] and Ω
′
:= (Ωtrin,Ωtest], where

Ωtest > Ωtrin > 0. The numerical or deep learning-based simulator is
used in the first stage to simulate the dynamics in X1, and the problem
reduces to predicting the dynamics in the testing domain X2 in the
second stage. Concretely, the objective is to make predictions beyond
X1, i.e., on X2, and to assess how well the trained models could be
generalized through the two-stage training strategy.

The next section presents the proposed two-stage methodology for
generalizing the dynamic simulators.

5.4. METHODOLOGY
The proposed two-stage methodology merges dynamic simulators and
neural ODE-based methods to generalize the dynamics. The key steps
of the proposed two-stage methodology are presented in Algorithm 2
and Fig. 5.1. The first stage entails simulating the engineering dynamics
through a preferable simulator tailored for the application, providing
flexibility to the workflow. Simulators are computational tools in form of
software or modules that act as surrogates for the real-world systems
through mathematical models and algorithms, allowing engineers and
scientists to analyze and predict the performance of complex systems
under various conditions without the need for physical prototypes.

However, numerical methods like FEM or a deep learning approach
like physics-informed neural networks (PINNs) [32] simulate the problem
in a confined domain. To mitigate the challenge of predictions in a
larger domain, the second stage in the proposed methodology employs
neural ODEs to capture the intrinsic dynamics from the data generated
in the first stage and generalize the dynamics to larger domains, making
them further applicable and advantageous for real-world systems.
The following subsections describe both the stages of the proposed
methodology in detail.
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5.4.1. FIRST STAGE - NUMERICAL/PIML SIMULATOR
This chapter employs two dynamic simulators to exemplify that the
proposed methodology remains invariant to the simulator employed in
the first stage. The first simulator employed is an advanced version of a
physics-informed neural network that enforces causality in the learning
algorithm termed causal PINN [33]. Causal PINN predictions of beam
dynamics are utilized to test temporal generalizations. The simulator
causal PINN could be described by considering an abstract PDE with
implicit initial and boundary conditions defined by

K(, t) := D[](, t) − ƒ (, t) ∀(, t) ∈ D × T ⊂ Rd × R, (5.1)

where K is the abstract physical equation and D[ .] denotes the
differential operator,  as the quantity of interest,  ∈ D ⊂ Rd, t ∈ T ⊂ R
for d ≥ 1. The spatial domain D is contained in the d-dimensional
Cartesian space and, T denotes the temporal domain, ƒ (, t) refers to
the external force.

Causal PINN is based on a feedforward neural network, where the
inputs (, t) map to output () through an iterative composition of
hidden layers. To train causal PINN, the loss function containing the
physical model of a PDE is minimized along with initial and boundary
conditions. The loss function is formulated such that the network first
minimizes the loss corresponding to lower times before resolving the
solutions at higher times. Mathematically, the loss function is defined as

J = Min
θ

1

N



L(t1) +
N
∑

=2

e−η
∑−1
k=1 L(tk)L(t)



 , (5.2)

where the loss components are defined as

L(tn) =
1

N

N
∑

n=1

||K(, tn)||2, (5.3)

where (, tn) represents the training tuple for each time step n. The
total number of training points inside the computational domain is
denoted by N, and η is the causality hyperparameter, which depends
on the complexity of the problem. Minimizing the loss function (5.2)
using a suitable optimization algorithm provides optimal parameters θ.
Following the causal PINN training, its testing is conducted on kt uniform
time steps in T and k uniform locations in D, making a total of kt · k
testing points within the training domain. Following the causal PINN
training, its testing is conducted on kt uniform time steps in T and k
uniform locations in D, making a total of kt · k testing points within the
training domain.
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Algorithm 2 Proposed two-stage methodology for generalizing dynamic
simulators
Input: Problem and domain, (, t;μ) ∈ D × T × M.
Output: Generalized dynamic predictions, (, t;μ) ∈ X2.

Stage 1: simulation with causal PINN or black-box FEM:
1: if Causal PINN then
2: Train causal PINN.
3: Test causal PINN for (, t;μ) ∈ X1 at kt time steps.
4: else
5: Collect spatio-temporal data for black-box FEM in X1.
6: end if

Stage 2: Training neural differential equations:
7: Integrate ODEs into the recurrent architecture for updating hidden

states.
8: Utilize predictions from Stage 1 to train LEM or CoRNN in X1.

Loop for Generalization:
9: for  = (kt + 1) to (kt +m) do

10: Input condition at time step  − 1.
11: Use trained model from Stage 2 to predict dynamics at parametric

or time step  in X2.
12: end for
13: return (, t;μ) ∈ X2

The second simulator employed is a black-box FEM. The physical
models, which are the PDEs governing the beam dynamics, are available
for causal PINN. Several systems in engineering and industry do not
possess a white-box operator and are rather black-box. The efficacy of
the proposed methodology is demonstrated for such scenarios by taking
the solutions from FEM as the output of the first stage, considering the
governing model and solution strategy as a black box. FEM predictions
are utilized to test parametric generalizations. Specifically, in one of
the numerical experiments, deflection profiles of beams with different
loading are taken as the output of the first stage. Here, the parameter
is the load, and the quantity of interest is the deflection profile. Another
numerical experiment studies the real-world uplift of catenary contact
wire in railway systems, depending on the different speeds of the train.
The solutions obtained from the causal PINN and FEM are reshaped for
further use in the second stage.

5.4.2. SECOND STAGE - NEURAL ODE
Generalization is an open challenge for both methods, causal PINN and
FEM. The second stage aims to mitigate this challenge by employing
neural ODE-based architecture to capture temporal and parametric
dependency. Neural ODEs model the evolution of hidden states over
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time using differential equations, leveraging the longstanding potential
of ODEs in handling complex temporal dynamics. In particular, this
work employs two neural ODE methods, CoRNN and LEM, processing
the outputs from the first stage as sequential data and predicting the
dynamics outside the training domain. CoRNN employs second-order
ODE to model the dynamics of hidden states preserving long-term
dependencies and effectively mitigating the vanishing and exploding
gradient problem. By incorporating damping factors and oscillatory
components in the ODE, CoRNN enforces the computed hidden states
to remain within bounds, enhancing the training stability. LEM employs
a system of first-order coupled differential equations to update the
hidden states. The coupled equations allow LEM to maintain a
robust representation of sequential data, addressing the exploding and
vanishing gradient issue typical with recurrent neural network-based
methods. n the following, the ODEs used for CoRNN and LEM are
presented in detail.

CORNN

CoRNN updates the hidden states, y = y(ω) ∈ Rm by solving the following
second-order ODE,

y′′ = σ
�

Wy +Wy′ + V + b
�

− γy − εy′. (5.4)

Here y represents the hidden state, y′ and y′′ denote the first and
second derivative of the hidden state respectively. The activation
function is σ() = tnh(). The weight tensors for the hidden state and
its first derivative are represented by W,W ∈ Rm×m and the bias term is
b ∈ Rm. The weight tensor for the input ( ∈ Rk) is given by V ∈ Rm×k .
The terms γ, ε > 0 are the hyperparameters representing oscillation
frequency and damping.

The motivation to employ ODE (5.4) to update the hidden states
is attributed to its underlying capabilities in modeling complicated
nonlinear oscillations [12]. The dynamics of the ODE could be
analyzed for a simplified case by setting k = m = 1 in (5.4) with
an identity activation function σ() = . Considering the terms
W = W = V = b = ε = 0, the ODE reduces to, y′′ + γy = 0, modeling
the well-known spring-mass simple harmonic motion with frequency
γ. Including further terms in this simplified ODE, like ε > 0, induces
damping in the system. For a non-zero vector V, the system experiences
a driving force proportional to the input signal , where V and b
modulate the influence of this force. The tensor W affects the
oscillation frequency, while W influences the damping effect within the
system. Additionally, introducing the tnh activation function introduces
a nonlinear dynamic response in the oscillator.
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Substituting z = y′(ω) ∈ Rm, (5.4) could be transformed to the
first-order system

y′ = z, z′ = σ (Wy +Wz + V + b) − γy − εz. (5.5)

Discretizing (5.5) using an explicit scheme with a time step 0 < Δt < 1,

yn = yn−1 + Δtzn,
zn = zn−1 + Δtσ (Wyn−1 +Wzn−1 + Vn + b)
− Δtγyn−1 − Δtεzn.

(5.6)

In the coupled-ODE system with m > 1, each neuron updates its
hidden state by incorporating external input signals and other neurons.
The diagonal components of W, along with the scalar hyperparameter
γ, regulate the intrinsic oscillatory frequency of individual neurons,
whereas the diagonal elements of W, together with the hyperparameter
ε, govern the damping effects. The off-diagonal entries of these
matrices serve to modulate the interaction dynamics between neurons.
Further deep networks yield rich global dynamics, suggesting that such
oscillator networks can achieve high expressivity, making them capable
of approximating complex outputs from sequential inputs [12]. Finally,
the output is computed through a learnable linear transformation,
νn ∈ Rk with νn = Qyn and Q ∈ Rk×m.

LEM
Akin to CoRNN, LEM uses a system of differential equations to update
the hidden states. However, the system of equations to be solved in
LEM is,

y′ = σ̂(W2y + V2 + b2) ⊙ [σ(Wyz + Vy + by) − y]
z′ = σ̂(W1y + V1 + b1) ⊙ [σ(Wzy + Vz + bz) − z].

(5.7)

In addition to the previously stated learnable quantities, LEM
additionally learns weight tensors W1,2,Wy,z ∈ Rm×m, weight tensors for
input V1,2, Vy,z ∈ Rm×k , bias vectors b1,2, and by,z ∈ Rm. The function
σ̂ and ⊙ represent the sigmoid activation function and componentwise
product of vectors, respectively. y and z are hidden state vectors. The
output of LEM is linearly transformed in the same way as in the case of
CoRNN. A discretization of (5.7) using explicit Euler scheme results in,

Δtn = Δtσ̂(W1yn−1 + V1n + b1)

Δtn = Δtσ̂(W2yn−1 + V2n + b2)
zn = (1 − Δtn) ⊙ zn−1

+ Δtn ⊙ σ(Wzyn−1 + Vzn + bz)

yn = (1 − Δtn) ⊙ yn−1

+ Δtn ⊙ σ(Wyzn + Vyn + by).

(5.8)
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The proposed methodology utilizes the simulator solutions to extrap-
olate through the neural ODE methods, CoRNN, and LEM. However, a
key challenge for recurrent neural architectures is the exploding and
vanishing gradient problem. The theoretical analysis of CoRNN and LEM
presented in [12, 13], and collated in the form of propositions below,
motivate employing them for extrapolating the beam dynamics. The
detailed proofs of bounds can be found in [12, 13]. The proposed
methodology utilizes the simulator solutions to extrapolate through the
neural ODE methods, CoRNN, and LEM. However, a key challenge for
recurrent neural architectures is the exploding and vanishing gradient
problem. The theoretical analysis of CoRNN and LEM presented in [12,
13], motivate employing them for extrapolating the beam dynamics.
The detailed proofs of bounds can be found in [12, 13].

The next section presents the numerical experiments to validate the
proposed methodology.

5.5. NUMERICAL EXPERIMENTS
Four distinct numerical experiments concerning generalizing dynamic
simulations are presented. The complexity of the experiments ranges
from fundamental beam theories for beams to real-world catenary-
pantograph interactions in railway systems. The first two experiments
involve simulating PDEs modeled by the Euler-Bernoulli and Timoshenko
theories on the Winkler foundation, where generalization is sought in
the temporal domain. The final two experiments aim to generalize in
the parametric space. The third experiment is the moving load problem,
which aims to predict the mid-point beam deflection under various
loading conditions. The final experiment involves predicting catenary
contact wire uplift for novel train speeds, considering it as a parameter.
The following subsections present the test cases, hyperparameters, and
error metrics, along with discussions of the performance of the proposed
methodology. The final experiment aims to solve an inverse problem by
estimating the applied force on a system of Timoshenko beams.

5.5.1. TEST CASES
EULER-BERNOULLI AND TIMOSHENKO BEAM ON THE WINKLER FOUNDATION

The first two experiments are the PDEs governing the Euler-Bernoulli and
Timoshenko beams on the Winkler foundation, described in detail in [6].
For the dynamic simulator in the first stage, causal PINN is employed.
Four hidden layers, 200 neurons, and the tanh activation function are
utilized for training causal PINN. L-BFGS optimizer is utilized with a
learning rate 0.1, with 10000 epochs. The causality hyperparameter is
5, and X1 is divided into 100-time steps. The training utilized 500 initial
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points, 1000 boundary points, and 10000 interior points. For both cases,
the training and testing dataset is divided as Ttrin = 0.8Ttest.

The objective is to make predictions beyond X1, i.e., on X2,
and to evaluate the potential of the proposed method for temporal
generalization. The training dataset for the second stage, LEM or
CoRNN, is generated by testing causal PINN at 256 spatial locations
across 160-time steps, implying k = 256 and kt = 160. Finally, LEM and
CoRNN testing is performed on the untrained temporal domain for 40
time steps.

MOVING LOAD

This experiment aims to validate the potential of the proposed
methodology in generalizing in the parametric domain. Despite
being a fundamental problem across structural engineering, simulating
moving load problems within commercial finite element packages is
computationally expensive [34], and generalizing it would aid the
engineers in downstream predictions of deflection profiles at a reduced
computational cost. The studied moving load problem represents a
train-track or catenary-pantograph interaction in railway systems. In
particular, a point force moving across a simply supported beam is
considered.

A black-box finite element-based method is used to compute 100
mid-point deflection profiles of beams for varying loading ranging from
1 N to 6 N. Training and testing dataset is divided as Mtrin = 0.8Mtest,
i.e., the first 80 equispaced deflection profiles between the loads 1 N
to 5 N are used to train the LEM and CoRNN. Specifically, the training
dataset size for the proposed method represents mid-point deflection
at 344 temporal locations across 80 different loadings. The beam
deformations are predicted for 19 unseen equispaced loadings between
5 N to 6 N through LEM and CoRNN.

CATENARY CONTACT WIRE UPLIFT

The final experiment aims to validate the method of generalizing a
real-world catenary-pantograph interaction in the parametric domain.
In the first stage, the interaction between the pantograph head and
contact wire is modeled, and the calculation of dynamic contact wire
uplift due to the contact forces is performed in a black-box sense.
The method employed a validated finite element model using the
absolute nodal coordinate formulation (ANCF) characterizing catenary
nonlinearity. Additionally, a simplified lumped mass model simulated
the three critical modes of the pantograph [35] as shown in Fig. 5.2.
However, for this work, only the data of catenary contact wire uplift
deflections for different speeds of train [36] serves as the output from
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the first stage, and the model and method details are treated as
black-box.

The train speed spans from 50 km h−1 to 90 km h−1, incrementing in
intervals of 10 km h−1. The dataset contains the catenary contact wire
deflection at 353 spatial locations across five speeds. The recurrent
networks in the second stage are trained on two specific speeds,
50 km h−1 and 60 km h−1. The trained recurrent models are used for
predicting the contact wire deflection for three novel train speeds, which
are 70 km h−1, 80 km h−1 and 90 km h−1.

INVERSE PROBLEM FOR TIMOSHENKO DOUBLE BEAM SYSTEM

In addition, an experiment regarding inverse problem is carried out to
showcase the potential of the proposed method in handling ill-posed
problems. Inverse problems involve determining unknown parameters or
functions based on known observables within a system. Such problems
are typically ill-posed, requiring additional data at specific locations for
the observables. These unknowns, often referred to as quantities of
interest, include force functions, initial conditions, boundary conditions,
or parameters. The proposed two-stage method predicts quantities
of interest in unseen domains. An inverse problem is solved for a
Timoshenko double beam system connected by a Winkler foundation
[14] to estimate the unknown force function acting on the system, given
displacement profiles of the beam system.

5.5.2. BASELINES, HYPERPARAMETERS AND ERROR METRICS
The second stage in the proposed methodology is based on recurrent
neural architectures. Hence, the comparisons for all the experiments are
carried out with traditional sequential architectures, RNN, LSTM, and GRU
replacing LEM and CoRNN in the second stage. In addition, comparisons
with further advanced methods for modeling sequential data, such as
neural ordinary differential equation (NODE) [28] and transformers have
been carried out. All methods employed the Adam optimizer to train the
recurrent architecture. Consistent hyperparameters are chosen across
different methods, and different hyperparameters are mentioned as
follows. All methods employed the Adam optimizer to train the recurrent
architecture.

For Euler-Bernoulli and Timoshenko beam experiments, the learning
rate and hidden size are 0.0001 and 32, respectively. CoRNN and
LEM-specific parameters, Δt, γ, and ε, are taken to be 0.05, 1, and 0.01,
respectively. Specific to the transformer, the number of attention heads
is 8. The model consists of 6 encoder-decoder layers. The dimension
of the feedforward network within the transformer is 512. A total of
400000 epochs are carried out for the Euler-Bernoulli case and 200000
for the Timoshenko case.
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Pantograph

Catenary

Contact wire

(a) Real-world catenary-pantograph setup
in railways

Messenger wire

Contact wire

Droppers

Steady arm
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Pantograph

Catenary

ANCF beam
Z

Y

X

O

Contact wire uplift

(b) Catenary-pantograph interaction simu-
lation model. The Catenary is modeled
by ANCF beam elements (contact and
messenger wires) and cable elements
(droppers). The pantograph is a lumped
mass model with three degrees of free-
dom.

Figure 5.2: Catenary-pantograph experiment: Real and model perspec-
tives.

For the moving load problem, the chosen hyperparameters, including
the learning rate, hidden size, number of epochs, and Δt, maintain
consistent values across all models: 0.00001, 160, 20000, and 0.05,
respectively. For training the transformer, the number of attention
heads is 8, with three encoder-decoder layers. The dimension of the
feedforward network within the transformer is 128. Similarly, for CoRNN,
the hyperparameters γ and ε remain fixed at 1 and 0.01, respectively.

Subsequently, for the catenary-pantograph experiment, the hyper-
parameters for all sequential models, comprising the learning rate,
hidden size, number of epochs, and Δt, are configured to 0.001, 128,
20000, and 0.1, respectively. Analogously, in line with prior instances,
the hyperparameters γ and ε for CoRNN are set at 1.0 and 0.01,
respectively. For the transformer, the number of attention heads is 8
with six transformer layers and 512 as the dimension of the feedforward
network.

Four different error metrics are used to evaluate the results. First,
relative L2-norm of the quantity of interest ̂ which is defined with
respect to the ground truth  as ∥̂−∥2∥∥2 . The second error metric is
the maximum absolute error (max error) computed as mxn

=1 | − ̂|.
Here, |.| represents the absolute value function. Here,  represents the
ground truth at the th data point and ̂ represents the predicted value
at the th data point.
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(a) Deflection causal PINN-LEM (b) Absolute error for deflection in general-
ized temporal domain
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Figure 5.3: Euler-Bernoulli beam on the Winkler foundation: Various
analyses and temporal snapshots.

The third error metric is the explained variance score given by

1 −

∑n
=1( − ̂)

2

∑n
=1( − ̄)

2

where n is the number of data points, and ̄ represents the mean
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of the ground truth. Finally, the last metric is the mean absolute
error calculated by 1

n

∑n
=1 | − ̂|, where the symbols have their same

meaning.

5.5.3. RESULTS
EULER-BERNOULLI AND TIMOSHENKO BEAM ON THE WINKLER FOUNDATION

Fig. 5.3 and 5.4 represent the predictions obtained by LEM for the Euler-
Bernoulli and Timoshenko experiments, respectively. Fig. 5.3 top row left
depicts the deflection of the beam over unseen time, and the right of the
top row shows the absolute error obtained in the deflection prediction.
The second row presents the snapshots of deflection predictions at
four instances of unseen time. The red dots indicate predictions,
and the solid blue line represents the deflection. Table 5.1 compares
the neural differential equation-based methods with the traditional
sequential methods for generalization. While RNN and other sequential
methods exhibit some generalization ability, LEM outperforms them
across all metrics, as evidenced by Table 5.1. Additionally, the other
sequential methods demonstrate less accuracy in predicting unseen
domains. Thus, both Fig. 5.3. Table 5.1 collectively demonstrates that
LEM achieves higher accuracy predicting beam deflection on the Winkler
foundation than alternative methods.

Fig. 5.4 top two rows depict the Timoshenko beam deflection and
rotation on the Winkler foundation over time. The second row in Fig. 5.4
displays the absolute errors of deflection and rotation observed in the
generalized time, showing a minor increase in error as time progresses.
The last row presents the snapshots of deflection and rotation predictions
at two different instants of time. The red dots indicate predictions, and
a solid blue line represents the actual deflection simulated using causal
PINN. Table 5.1 compares the proposed and other sequential methods
for Timoshenko beam deflection and rotation for the unseen temporal
domain. LEM outperforms them across all metrics, as seen by the results
provided in Table 5.1.

MOVING LOAD

Fig. 5.5 illustrates the beam deflections for a moving load across a
simply supported beam. The top two rows in Fig. 5.5 show the predicted
deflections and the obtained absolute errors for different loading for
LEM. The absolute error increases minorly with an increase in the
loading. The last two rows of Fig. 5.5 present the snapshots of the
predicted deflections. The red dots depict predictions, while the blue
solid line represents actual deflection simulated using the finite element
method. Table 5.1 compares LEM and CoRNN with other sequential
methods, showcasing the better generalization abilities of the proposed
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(a) Deflection causal PINN-LEM (b) Rotation causal PINN-LEM

(c) Absolute error for deflection in gener-
alized temporal domain

(d) Absolute error for rotation in general-
ized temporal domain
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Figure 5.4: Timoshenko beam on the Winkler foundation: Detailed
analysis and temporal snapshots.

method.

CATENARY CONTACT WIRE UPLIFT

Fig. 5.6. illustrates catenary contact wire uplift deflections at varying
speeds (70 km h−1, 80 km h−1, and 90 km h−1). The red dots depict
predictions, while the blue solid line represents actual deflection
simulated using the finite element method. Fig. 5.6. (a), (c) and (e)
represent the contact wire uplift predictions at 70 km h−1, 80 km h−1,
and 90 km h−1, respectively. Fig. 5.6. (b), (d) and (f) show absolute
errors in those uplift predictions. The errors for different speeds fall
within a similar range, yet it is evident that the error increases minorly
with the increase in train speed. Table 5.1 compares LEM and CoRNN
with other sequential methods, showcasing that LEM performs better in
all metrics. Hence, Fig. 5.6. and Table 5.1 demonstrate that LEM predicts
catenary contact wire uplift more accurately than other methods.
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Table 5.1: Beam deflection, rotation, moving load, and catenary uplift.
Higher (or lower) values are preferred by ↑ (or ↓).

RNN LSTM GRU CoRNN LEM Transformer NODE
Euler-Bernoulli Beam Deflection

L2-norm(↓) 0.012 0.4925 1.9471 0.0194 0.0080 0.0084 0.0081
Max error(↓) 0.2527 0.7814 1.8173 0.1842 0.1276 0.1345 0.2305
Explained Variance score(↑) 0.9874 0.5074 -0.9470 0.9805 0.9919 0.9915 0.9918
Mean absolute error(↓) 0.0585 0.4163 0.8015 0.0749 0.0466 0.0470 0.0410

Timoshenko Beam Deflection
L2-norm(↓) 0.3813 0.3167 0.3798 0.2060 0.0058 0.0228 0.0095
Max error(↓) 2.9385 2.7387 2.9378 2.2792 0.6126 1.0249 0.6649
Explained Variance score(↑) 0.6186 0.6832 0.62017 0.7939 0.9941 0.9771 0.9904
Mean absolute error(↓) 1.2769 1.1622 1.2734 0.9330 0.1270 0.2758 0.1789

Timoshenko Beam Rotation
L2-norm(↓) 0.3813 0.3146 0.3797 0.2059 0.0055 0.0228 0.0095
Max error(↓) 2.1680 2.0224 2.1683 1.6808 0.4496 0.7523 0.4907
Explained Variance score(↑) 0.6183 0.6847 0.6198 0.7935 0.9942 0.9766 0.9902
Mean absolute error(↓) 1.1368 1.0310 1.1334 0.8306 0.1105 0.2452 0.1593

Moving Load Mid-Point Beam Deflection
L2-norm(↓) 0.5579 0.3803 0.6026 0.0039 0.0002 0.1307 0.0084
Max error(↓) 0.0190 0.0194 0.0188 0.0024 0.0006 0.0156 0.0042
Explained Variance score(↑) 0.2974 0.2714 0.3444 0.9927 0.9995 0.7056 0.9802
Mean absolute error(↓) 0.0084 0.0068 0.0088 0.0006 0.0001 0.0039 0.0009

Catenary Uplift with Different Train Speeds
L2-norm(↓) 1.49e-6 1.54e-7 3.0e-7 6.38e-8 6.43e-8 1.01e-6 1.32e-6
Max error(↓) 0.0845 0.0085 0.0135 0.0063 0.0063 0.0194 0.0259
Explained Variance score(↑) 0.7728 0.9722 0.9562 0.9934 0.9932 0.8451 0.7961
Mean absolute error(↓) 0.0022 0.0015 0.0019 0.0009 0.0009 0.0043 0.0041

(a) Mid-point deflection FEM-LEM (b) Absolute error in mid-point deflection
for unseen loadings
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Figure 5.5: Mid-point deflection for Moving load: Analysis and load
snapshots.

INVERSE PROBLEM FOR TIMOSHENKO DOUBLE BEAM SYSTEM

To demonstrate the capability of the two-stage approach for out-of-
domain prediction in inverse problems, a Timoshenko double-beam
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system is considered [14]. The goal is to predict the unknown force
acting on the beam system outside the training domain. PINN simulates
the force function in the first stage. In the second stage, this data
is utilized to train LEM, with testing performed in the out-of-domain
region. Fig. 5.7 presents the force function acting on the beam and the
absolute error in predicting the force in an extrapolation scenario. The
error metric results for this experiment include the L2 error, maximum
absolute error, mean absolute error, and explained variance score,
obtained as 0.0224, 0.1349, 0.0309, and 0.9720, respectively. The
results illustrate the proposed method’s efficacy in extrapolating an
inverse problem.

5.6. CONCLUSIONS
This work addressed the longstanding challenge of generalizing simu-
lations for engineering and industry. A resolution-invariant pipeline is
proposed, processing data at various resolutions by introducing a novel
two-stage approach combining state-of-the-art simulators with classical
mathematical models infused in neural recurrent architectures. The
presented approach efficiently generalizes dynamics in the time and
parameter space without relying on data from the untrained domain,
thus eliminating the need for tedious re-meshing and re-simulation in
computer-aided simulation software. Moreover, the proposed workflow
demonstrated superior performance over traditional recurrent architec-
tures, as evidenced by its successful application to various dynamic
simulation problems in structural engineering, including real-world sce-
narios like catenary-pantograph interactions in railway systems. This
research holds promise in various industrial applications for enhancing
simulation efficiency and accuracy in out-of-domain predictions.

Potential future works include extending the proposed methodology to
high-dimensional problems and complex geometries such as shells and
bridges. Another direction could focus on accelerating the simulations
through optimization techniques and parallel computing, enabling real-
time predictions. Additionally, industrial applications often contend
with uncertainties and stochastic variations. Enhancing the method
to account for uncertainties in factors such as material properties,
loading conditions, and external influences would allow for probabilistic
predictions, thereby increasing the robustness and applicability of the
method in diverse industrial scenarios.
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Figure 5.6: Contact wire uplift with different train speeds: Left column:
Contact wire uplift prediction for unseen speeds. Right
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6
CONCLUSIONS AND

RECOMMENDATIONS
This dissertation develops and implements physics-informed machine
learning-based methodologies for simulating fundamental structural and
railway dynamics expressed in the form of beam systems. The research
objectives are outlined in Chapter 1, and six research questions are
posed to achieve the research objectives. Answers to the questions are
elaborated throughout Chapters 2-5 and are summarized in this chapter.
Future research directions are recommended based on the main findings
and their implications.

6.1. CONCLUSIONS
This section presents the main findings answering the six research ques-
tions as follows:

1. How to predict beam deformations through PIML-based methodolo-
gies, mitigating the challenge of multiscale coefficients?

The research tackles the challenge of PINNs in simulating and devel-
oping neural surrogate models for multiscale complex beam PDEs
to predict beam deformations. A framework is introduced in Chap-
ter 2, integrating nondimensional fourth-order physical equations
into the vanilla PINN loss function. Through nondimensionalization,
the coefficients of the PDE terms are scaled, which assists in effi-
ciently training the neural networks. Moreover, employing dimen-
sionless equations eliminates the influence of measurement units,
generalizing the methodology to multiple scenarios and facilitating
comparative analysis across diverse physical systems, expressed in
ratios and parameters. Consequently, the integration of dimension-
less equations into PINNs not only enhances the convergence of the
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optimizer but also generalizes the approach to adhere to distinct
scenarios, contributing to the field of structural engineering.

The efficacy of this proposed approach is also validated in Chapter
3 to simulate beam dynamics on a Winkler foundation in a large
domain. Notably, the nondimensional form of the beam PDE is uti-
lized, further underlining the significance and applicability of this
framework. In addition, Chapters 4 and 5 demonstrate the util-
ity of the nondimensionalization approach by employing it in the
simulation for beam deformation out-of-domain prediction. By con-
sistently utilizing the nondimensional form of the physical model,
these chapters underscore the robustness and versatility of the pro-
posed methodology across a range of simulation scenarios.

2. How effectively do physics-informed algorithms tackle inverse beam
dynamic problems and predict underlying dynamics and unknown
parameters from noisy data?

The inverse problem in engineering involves estimating unknown
parameters or functions from a set of measured data. In PINNs, this
problem is typically addressed by fitting the measured data and
known physical laws to train the neural network. However, mea-
sured data can be affected by various noise sources, posing chal-
lenges in accurately estimating the quantity of interest. The noise
can render the measured data unreliable, leading to inaccuracies
in estimating unknown parameters or functions by the neural net-
work. Consequently, in such scenarios, the optimizer of the neural
network may not converge.

In many real-world scenarios, data is often noisy. Chapter 2 em-
ploys noisy data to predict the parameters of beam dynamics. The
proposed nondimensional PINN framework in Chapter 2 is utilized
to tackle ill-posed inverse problems in complex systems, aiming to
identify unknown model parameters and the applied force on beam
components. This approach utilizes data from indirect measure-
ments such as beam displacement and cross-sectional rotations,
exhibiting robustness to noise and the ability to accommodate un-
certainty in measurement data. Hence, PINN-based methodology is
well-suited for real-world applications with incomplete or uncertain
data. PINNs are effective in integrating incomplete or noisy infor-
mation with prior physical knowledge.

3. How to simulate beam deformations within large spatiotemporal do-
mains using PIML?

Another open problem encountered by vanilla PINNs pertains to sim-
ulating beam deformation in large space-time domains. This chal-
lenge arises from the training process, as vanilla PINNs prioritize
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training at higher time levels due to implicit gradient bias. This re-
sults in violations of temporal causality and inaccurate solutions,
particularly for problems highly dependent on initial conditions.

An inherent causal structure characterizes physical systems. For
example, the deflection of a beam at any given time is causally
linked to its previous state (deflection), the physical properties of
the beam, and the external forces acting upon it. This causality is
fundamental to accurately modeling beam behavior in response to
loads, rendering it a valuable tool in engineering and physics. PINN
models can effectively learn complex solutions to PDEs when causal
relationships are considered, enabling progressive sequential-time
learning of the solution.

Chapter 3 proposes training PINNs while respecting causality within
the context of structural engineering, referred to as causal PINN.
Our goal is to address the training challenge and achieve precise
predictions of beam dynamics in large space-time domains. This
challenge is tackled by modifying the training approach of PINNs
and enforcing training at lower time levels before progressing to
subsequent ones. Consequently, a weighted loss function is em-
ployed, incorporating a causality parameter to preserve the inher-
ent physical causality governing beam dynamics. The causal PINN
approach, validated through numerical experiments, demonstrates
enhanced accuracy in prediction.

4. How to accelerate and generalize PIML-based methodologies for
simulating similar beam dynamic problems in large spatiotemporal
domains?

Chapter 3 proposes the integration of transfer learning with causal
PINN. Transfer learning involves taking a pre-trained model (devel-
oped for one task) and reusing it as the starting point for a model on
a second task. Employing transfer learning entails leveraging the
knowledge (i.e., model parameters) from previously solved prob-
lems. This approach allows the model to accelerate the initial learn-
ing phase, significantly reducing training time and computational
cost.

Incorporating transfer learning enables the PINN models to quickly
adapt to new problems without starting from scratch, enhancing
their generalizability and efficiency. The proposed approach de-
creases the computational cost and speeds up convergence in sub-
sequent simulations. Consequently, the proposed approach im-
proves simulation performance and efficiency for dynamic beam
simulations on elastic foundations, indicating the broad application
of PIML in practical engineering problems and digital twin models.

5. How to develop PIML-based frameworks capable of predicting out-
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of-domain for canonical problems, including nonlinear and high-order
problems?

Chapter 4 investigates this question, focusing on the limitations of
PIML methodologies in generalizing the PDE solutions beyond the
training domain. The research therein aims to enhance the gener-
alization capabilities of PIML, thereby facilitating its practical appli-
cation in real-world scenarios where accurate predictions in unex-
plored scenarios are essential.

Chapter 3 discusses the importance of incorporating causality for
simulating PDEs. Leveraging the inherent causality and temporal
sequential characteristics of PDE solutions, Chapter 4 introduces in-
tegrating PIML models with recurrent neural architectures. These ar-
chitectures are based on systems of ordinary differential equations
called neural oscillators. By effectively capturing long-time depen-
dencies and addressing issues such as the exploding and vanishing
gradient problem, neural oscillators improve generalization in PIML
predictions.

The research introduces combining neural oscillators with physics-
informed machine learning to enhance performance in unseen re-
gions. This hybrid approach enables the model to learn the long-
time dynamics of solutions to the governing partial differential equa-
tions. The effectiveness of the proposed approach is demonstrated
through experimentation on three benchmark nonlinear PDEs: vis-
cous Burgers, Allen-Cahn, and Schrödinger equations, as well as the
biharmonic Euler-Bernoulli beam equation. Results highlight the im-
proved generalization performance of PIML augmented with neural
oscillators, outperforming state-of-the-art methods across various
metrics.

Hence, incorporating neural oscillators surpasses existing state-of-
the-art methods on benchmark problems across various metrics,
thereby enhancing the generalization capabilities of PIML and pro-
viding accurate solutions for extrapolation and prediction beyond
the training data.

6. How to generalize beam dynamic solvers to predict out-of-domain
scenarios, particularly for beam systems like catenaries with vary-
ing train speeds?

This question is investigated in Chapter 5, addressing the long-
standing challenge of generalizing simulations for engineering and
industry. A resolution-invariant pipeline is proposed, processing data
at various resolutions. A two-stage approach is proposed, combin-
ing state-of-the-art simulators with classical mathematical models
infused in neural recurrent architectures.

Firstly, the method employs state-of-the-art simulators tailored to
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the specific application. Secondly, the predictions from the first
stage are utilized to train a recurrent neural architecture for general-
izing the dynamics. In particular, Chapter 5 utilizes causal physics-
informed neural networks and black-box finite element simulations
in the first stage, followed by ODEs integrated into the recurrent ar-
chitecture in the second stage to capture the intrinsic dynamics and
overcome generalization limitations.

By integrating ODEs with recurrent networks, the model efficiently
captures the inherent causality and generalizes the dynamics irre-
spective of the data source. The presented numerical experiments
encompass fundamental structural engineering scenarios. In par-
ticular, four different beam dynamics are studied, including beams
on Winkler foundations, beams under moving loads, and real-world
catenary-pantograph interactions in the railway systems, to exhibit
the potential of the proposed methodology.

Numerical experiments show that the proposed method efficiently
generalizes dynamics in the time and parameter space without re-
lying on data from the untrained domain, thus eliminating the need
for tedious re-meshing and re-simulation in computer-aided simula-
tion software.

Numerical experiments highlight its prospects for design optimiza-
tion, predictive maintenance, and enhancing safety measures. This
research holds promise in various industrial applications for enhanc-
ing simulation efficiency and accuracy in out-of-domain predictions.

6.2. FUTURE RESEARCH DIRECTIONS
Motivated by the research and conclusions of this dissertation, this sec-
tion presents future recommendations in the form of chapter-wise future
research directions and general recommendations.

6.2.1. CHAPTER-WISE RESEARCH DIRECTIONS
• Chapter 2 studied beam deformations within double-beam systems.

This investigation lays the foundation for potential extensions to
more complex systems involving multiple interconnected beams re-
sembling bridge structures. Understanding and simulating the dy-
namics of bridges holds promise for enhancing structural designs,
leading to safer and more efficient infrastructure.

• Moreover, chapter 2 tackles inverse problems related to predicting
beam parameters by utilizing simulation data of beam deformation
and rotation. While this approach provides valuable insights, fu-
ture advancements could leverage real sensor measurements to re-
fine predictions and estimate unknown parameters within inverse
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problems. Incorporating sensor data into the modeling process can
enhance accuracy and reliability, contributing to robust engineer-
ing solutions and informed decision-making in structural design and
analysis.

• Chapter 3 presents the causality-respecting framework for beam
simulation in large domains. This work focuses on the single beam
on a Winkler foundation that can be extended to simulate beam de-
formation for multiple connected systems for large domains. Also,
transfer learning is studied in this chapter to utilize the trained
weights as initialization for similar models. Different transfer learn-
ing strategies can be utilized to advance the simulation of beam
deformation.

• Chapter 4 introduces an innovative framework that facilitates out-
of-domain prediction for canonical problems through PIML. This frame-
work represents an advancement in scenarios where traditional ap-
proaches struggle to extrapolate beyond the training data. The
proposed methodology offers a versatile solution that can be ex-
tended to tackle higher-dimensional problems, providing a scalable
approach to simulate complex systems across diverse domains, from
engineering and physics to finance and healthcare.

• Chapter 5 introduces a framework tailored for out-of-domain predic-
tion within the context of beam dynamic simulations. The chapter
employs a combination of numerical methods and machine learn-
ing techniques to develop simulators capable of accurately predict-
ing the behavior of beams in scenarios beyond those covered by
the training data. The framework incorporates data from physi-
cal experiments or prototypes, providing accurate beam dynamic
simulations in real-world scenarios and enhancing their applicability
to practical engineering problems. Moreover, the versatility of this
framework enables its potential utilization across various domains
for extrapolation tasks. Beyond beam dynamics, similar methodolo-
gies could be applied to a wide range of engineering and scientific
problems where accurate prediction of system behavior is crucial.
By leveraging this framework, researchers and practitioners can ex-
plore new avenues for predictive modeling and gain deeper insights
into complex systems.

6.2.2. FUTURE PIML RESEARCH DIRECTIONS
• Developing faster and more accurate PIML algorithms is an impor-

tant research direction for advancing PIML-based simulations in vari-
ous fields. Speed is crucial for real-time applications, enabling rapid
decision-making and analysis of dynamic systems. Accuracy en-
sures reliable predictions, enhancing the utility of PIML models in
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critical scenarios such as structural design or medical diagnosis.
By enhancing algorithmic efficiency and precision, researchers can
improve the scalability and applicability of PIML methods across
diverse domains. Real-world applications entail optimizing com-
putational workflows, reducing training and inference times, and
minimizing computational resource requirements. Additionally, ad-
vancements in accuracy involve refining model architectures, en-
hancing regularization techniques, and integrating domain-specific
knowledge to improve predictive performance. Overall, the devel-
opment of faster and more accurate PIML algorithms drives innova-
tion, accelerates research progress, and paves new possibilities for
solving complex real-world problems efficiently.

• Benchmark physical model datasets are crucial for validating and
benchmarking new algorithms. These datasets provide standard-
ized references for evaluating algorithm performance, ensuring re-
liability and applicability across diverse scenarios. Researchers can
assess the effectiveness, efficiency, and scalability of the algorithm
by utilizing benchmark datasets, facilitating comparisons with ex-
isting methods. Moreover, benchmark datasets foster collaboration
and knowledge sharing among research communities, driving ad-
vancements in the field. Additionally, they serve as valuable educa-
tional resources, enabling students and practitioners to gain prac-
tical experience with real-world problems. Overall, the availability
of benchmark physical model datasets accelerates innovation, pro-
motes reproducibility, and enables researchers to address complex
challenges.

• Engineering applications often contend with uncertainties and stochas-
tic variations. A prospective direction for future research involves
enhancing the developed models to account for these uncertainties
and enable probabilistic predictions. A crucial step in this process
would be developing models capable of quantifying uncertainty, in-
creasing their applicability to real-world problems. By incorporating
probabilistic predictions, the models could gain greater trustwor-
thiness, and their accuracy and confidence levels could be better
established. Moreover, this approach would mitigate uncertainties
arising from the specific computer system and seeds under investi-
gation, leading to more applicable and generalizable models.

• Developing foundational models for a specific class of systems, where
variations in initial conditions, boundary conditions, or force func-
tions lead to predictable deformations, is crucial. Such a model
would enable efficient prediction of deformations across various sce-
narios. This foundational model would be a valuable tool for engi-
neers, scientists, inframanagers and practitioners, facilitating rapid
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analysis, design optimization, and decision-making processes. Foun-
dation models by predicting for novel scenarios in real-time, might
identify the gaps between theory and practice and increase trust
and reliance on AI. Moreover, it would pave the way for advance-
ments in predictive modeling, enabling more effective exploration
and utilization of these systems in various applications. Ultimately,
the development of such foundational models contributes to the ad-
vancement of scientific knowledge and the innovation of practical
solutions in engineering and related fields.
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