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Purpose: To develop an efficient algorithm for multicomponent MR fingerprint-
ing (MC-MRF) reconstructions directly from highly undersampled data without
making prior assumptions about tissue relaxation times and expected number
of tissues.
Methods: The proposed method reconstructs MC-MRF maps from highly
undersampled data by iteratively applying a joint-sparsity constraint to the
estimated tissue components. Intermediate component maps are obtained
by a low-rank multicomponent alternating direction method of multipliers
(MC-ADMM) including the non-negativity of tissue weights as an extra regu-
larization term. Over iterations, the used dictionary compression is adjusted.
The proposed method (k-SPIJN) is compared with a two-step approach in
which image reconstruction and multicomponent estimations are performed
sequentially and tested in numerical simulations and in vivo by applying differ-
ent undersampling factors in eight healthy volunteers. In the latter case, fully
sampled data serves as the reference.
Results: The proposed method shows improved precision and accuracy in sim-
ulations compared with a state-of-art sequential approach. Obtained in vivo
magnetization fraction maps for different tissue types show reduced system-
atic errors and reduced noise-like effects. Root mean square errors in estimated
magnetization fraction maps significantly reduce from 13.0%± 5.8% with the
conventional, two-step approach to 9.6%± 3.9% and 9.6%± 3.2% with the pro-
posed MC-ADMM and k-SPIJN methods, respectively. Mean standard deviation
in homogeneous white matter regions reduced significantly from 8.6% to 2.9%
(two step vs. k-SPIJN).
Conclusion: The proposed MC-ADMM and k-SPIJN reconstruction methods
estimate MC-MRF maps from highly undersampled data resulting in improved
image quality compared with the existing method.
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1 INTRODUCTION

MR fingerprinting (MRF)1 enables the estimation of tis-
sue and system properties by sampling the MR signal in
transient states. Conventionally, undersampled images are
acquired from which single-component estimates of spe-
cific tissue and system parameters are obtained in each
voxel, for example, T1, T2, M0, B+1 . These parameters are
usually estimated by retrieving the best match of a mea-
sured time series with a pre-calculated set of reference
signals: the so-called dictionary. However, partial volume
effects at tissue boundaries and diffuse combinations of
tissue structures can lead to mixing of different under-
lying components. Myelin water imaging (MWI)2 is a
main research application in which estimating these dif-
ferent tissue components is relevant. MWI is used to detect
demyelination caused by multiple sclerosis3 or myelina-
tion in the developing human brain.4,5 MWI methods such
as T2-sensitive multi-echo spin echo, GRASE or T2-prep,6-8

T∗2 multi-echo gradient echo,9 and T1,T2 mcDESPOT10

result in scan times of more than 10 min when full brain
coverage is required.2 MWI based on highly undersampled
MRF data would make it possible to obtain this clinically
relevant information in feasible scan times.

To model such multicomponent effects, the measured
MRF signal in a voxel can be represented as a linear
combination of the dictionary signals.1 By definition, how-
ever, this multicomponent MRF (MC-MRF) problem is
under-determined due to the large number of possible
T1,T2 values, even with different forms of voxel-by-voxel
regularization,11,12 leading to large numbers of compo-
nents and nonunique solutions. Recently, we proposed a
spatial form of regularization to reduce the number of used
tissue components. This Sparsity Promoting Iterative Joint
NNLS (SPIJN) algorithm was shown to render improved
noise resilience in estimated magnetization fraction maps
and a small number of identified tissues.13

Whereas the conventional single-component dictio-
nary matching is relatively robust to the effects of severe
undersampling, MC-MRF generally is not. However,
advanced reconstruction schemes can be used to enhance
the image quality, exploiting either spatial or temporal
similarities of the signals or applying other model-based
knowledge. Most of the recently proposed MRF recon-
struction methods rely on low-rank properties in the tem-
poral dimension to regularize the inverse problem. For
instance, a low-rank space from a central, fully sampled
calibration region has been identified.14 Other methods
determined the low-rank singular value decomposition
(SVD) space from the simulated signals.15-19 To further reg-
ularize the problem, Zhao et al.20 proposed a maximum
likelihood framework to estimate parameter maps of inter-
est during the reconstruction. Likewise, Assländer et al.18

introduced an alternating direction method of multipliers
(ADMM) combining low-rank image reconstruction and
dictionary matching, which resulted in improved param-
eter estimations. However, these methods assumed a sin-
gle tissue component per voxel, ignoring multicomponent
effects.

In this study, we propose a new reconstruction
method for obtaining multicomponent parameter esti-
mates directly from MRF k-space data continuing on
the previously proposed SPIJN algorithm to obtain
SPIJN-MRF estimates from highly undersampled data.
The underlying multicomponent inverse problem is solved
using a multicomponent alternating direction method of
multipliers (MC-ADMM). Since the inverse problem is
ill-conditioned, intermediate image reconstruction is per-
formed in a low-rank space. During iterations, the used
low-rank compression is updated based on the interme-
diate results. The proposed method is validated and com-
pared with a more standard approach in simulations and
in vivo brain data.

2 METHODS

2.1 Reconstruction methods

2.1.1 Frame-by-frame reconstruction

The MRF image reconstruction problem per time point
(excluding regularization or matching) can be mathemat-
ically modeled as

x̂ = arg min
x∈CNt×Nn

‖
‖GFNt SNt x − k‖‖

2
2, (1)

where x ∈ CNt×Nn denotes the MRF (time) series of Nt
images consisting of Nn voxels; k ∈ CNtNkNs is the acquired
k-space data consisting of Nk points per image, and Ns rep-
resents the number of (virtual) coils. The linear operators
G, F, and S correspond to the non-Cartesian undersam-
pling (interpolation and gridding), Fourier transform, and
coil sensitivity encodings, respectively. Essentially, FNt (Fr)
and SNt (Sr) represent the repetitively applied versions of F
and S along the (compressed) time dimension, respectively
(see below). However, this problem is highly underdeter-
mined and without further forms of regularization this will
result in strong artifacts in the reconstructed images.

2.1.2 Low-rank inversion (LRI)

The MRF time signal is often modeled based on a low-rank
approximation of the MRF-dictionary obtained through a
SVD. Let D ∈ CNt×Nd represent a dictionary consisting of
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Nd dictionary atoms, such that the SVD yields D = UΣV H .
Here, U and V contain the left and right singular vectors,Σ
is a diagonal matrix with singular values, while H denotes
Hermitian conjugation.16 Essentially, Ur ∈ CNt×r, harbor-
ing the first r column vectors from U, is applied in MRF as
a compression operator, such that Dr ∶= UH

r D and xr ∶=
UH

r x. As proposed by McGiveny16 and Assländer et al.18 (in
the Appendix), the compression matrix and Fourier and
coil sensitivity operators can be interchanged. After inter-
changing these operators, the low-rank inversion (LRI)
problem can be written as

x̂r = arg min
xr∈Cr×Nn

‖GUrFrSrxr − k‖2
2, (2)

which can be efficiently solved. Optionally, a wavelet reg-
ularization term can be included in this step

x̂r = arg min
xr∈Cr×Nn

‖GUrFrSrxr − k‖2
2 +

r
∑

i=1
|�̃�i| ‖‖W(xr,i)‖‖1 , (3)

where W is a wavelet operator and �̃�i the used regulariza-
tion parameter per time-compressed image xr,i. The inten-
sity of these time-compressed images decreases sharply
with i and the regularization parameter was adjusted
accordingly. As such, the image-wise regularization is
based on the intensity over time as �̃� = 𝜈 × UH

r k0,0, where
k0,0 ∈ CNt are the central positions in k-space of the first
virtual coil along time. Effectively, 𝜈 ∈ R≥0 is used as an
overall wavelet regularization parameter.

2.1.3 Multicomponent ADMM
reconstruction

We assert that any mixing effects, for example, emanat-
ing from partial voluming, can be modeled as a linearly
weighted combination of dictionary items. Given certain
low-rank images xr, the weights of the dictionary items
can be obtained by solving a non-negative least squares
problem:

ĉ = arg min
c∈R

Nd×Nn
≥0

‖Pr(Drc) − xr‖
2
2, (4)

where c ∈ R
Nd×Nn
≥0 are estimated magnetization weights per

voxel and dictionary atom, and Pr is applied to represent
spatial phase variations. Observe that a single phase is
asserted per voxel, independent of the (real-valued) com-
ponent weights. In our approach, P ∈ CNn was directly
calculated based on the LR-solution of (2), using r = 1, as

P = x1

abs(x1)
, (5)

(in which the division is done element-wise). Subse-
quently, P is used to form a linear operator Pr ∶ RNr×Nn →
CNr×Nn . Essentially, Pr sustains a multiplication with P
along the temporal dimension.

The full, inverse multicomponent reconstruction
problem is defined by combining (2) and (4), leading to:

ĉ = arg min
c∈R

Nd×Nn
≥0

‖GUrFrSrPrDrc − k‖2
2. (6)

In order to efficiently solve this non-negative least squares
(NNLS) problem, we performed variable splitting simi-
lar to Reference 18, in which such splitting was applied
for single-component MRF. Accordingly, we rewrote the
MC-MRF reconstruction as an augmented Lagrangian
minimization problem, in which low-rank images xr are
reconstructed as an intermediate step to split the operators
(GUrFrSr)(PrDr), and included the wavelet regularization
term:

x̂r, ĉ,û = arg min
xr ,u∈Cr×Nn ,c∈R

Nd×Nn
≥0

(

1
2
‖GUrFrSrxr − k‖2

2

+ 1
2

r
∑

i=1
|�̃�i| ‖‖W(xr,i)‖‖1

+ 𝜇

2
‖PrDrc − xr + u‖2

2 −
𝜇

2
‖u‖2

2

)

, (7)

where u is the scaled Lagrange multiplier and 𝜇 is the cou-
pling parameter balancing the data and MC-MRF-model
consistency.

Subsequently, an alternating directions of multipli-
ers method (ADMM)21 was used to solve (7), alternating
between:

x̂r = arg min
xr∈Cr×Nn

1
2
‖GUrFrSrxr − k‖2

2

+ 𝜇

2
‖PrDrĉ − x̂r + û‖2

2 +
r
∑

i=1
|𝜈i| ‖‖W(xr,i)‖‖1 , (8a)

ĉ = arg min
c∈R

Nd×Nn
≥0

𝜇

2
‖
‖

Drc − PH
r (x̂r + û)‖

‖

2
2, (8b)

û = u + x̂r − PrDrĉ, (8c)

until convergence was reached. Specifically, we solved
Equation (8a) using a preconditioned primal-dual hybrid
gradient solver22,23 with a relative convergence tolerance
of 0.5%. Equation (8b) was solved using the NNLS
algorithm.24 Essentially, the proposed low-rank multicom-
ponent ADMM (MC-ADMM) estimates the MRF image
sequence as a non-negative linear combination of dic-
tionary atoms and corresponding weights (magnetization
maps). The steps followed in the algorithm are depicted in
Figure 1, top.
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F I G U R E 1 Schematic description of the proposed reconstruction schemes. The upper row visualizes the proposed multicomponent
ADMM, including the non-negativity constraint on the component weights, which is integrated into the performed MRF reconstruction.
MC-ADMM reconstruction (red box) is used as part of the second and third reconstruction schemes. The center row shows the combination
of the previously proposed SPIJN13 method applied to LR inversion images (LRI+SPIJN) and MC-ADMM reconstructed images
(MC-ADMM+SPIJN). The last flowchart (k-SPIJN) combines the joint-sparsity constraint from SPIJN with the MC-ADMM solver to obtain
multicomponent magnetization maps.

2.1.4 Joint-sparsity constraint
implementation (SPIJN)

To further restrict the solution space, we introduce the
joint-sparsity constraint that was already implemented in
the SPIJN algorithm.13 The SPIJN algorithm was orig-
inally developed for multicomponent estimation taking
reconstructed, presumed artifact-free MRF images as its
input.

The joint (component) sparsity constraint limits
the number of tissue components, that is, in a voxel
and spatially, resulting in a small number of non-zero
magnetization fraction maps. The sparsity term was
implemented by combining dictionary reweighting25 and
𝓁2

1-regularization26 in an iterative process to reduce the
number of used dictionary atoms. SPIJN repeatedly solves
a modified version of Equation (4):

ĉ = arg min
c∈R

Nc×Nn
≥0

‖
‖
̃Drc − PH

r x̃r‖‖
2
2, (9)

during which Nc =
∑N

i=1 ‖ci‖0 reduces over iterations
while the variables ̃Dr and x̃r are updated according to

wi = ||ci
||2 + 𝜖, ∀i ∈ {1, ...,Nc}, (10a)

W = diag
(

w1∕2)
, (10b)

̃Dr =

[

DrW
𝜆1T

]

, (10c)

x̃r =

[

PH
r (xr)
0T

]

, (10d)

where 𝜆 and 𝜖 = 10−4 are the SPIJN and reweighting
regularization parameters respectively. Note that in
Equations (10c), (10d), the tilde symbol is used to indicate
intermediate representations of concerned variables,
which are updated during iterations. While doing so, the
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𝓁2
1 regularization is imposed by adding a row of 𝜆’s to the

reweighted dictionary DrW and zeros to PH
r (xr). Not used

dictionary atoms will be assigned a zero weight. However,
computationally it is more efficient to remove these atoms
from the dictionary and further calculations, a processing
step we refer to as pruning.

We applied this algorithm to image series recon-
structed by LRI and the MC-ADMM, referred to as
LRI+SPIJN and MC-ADMM+SPIJN reconstructions,
which is graphically depicted in Figure 1, center flowchart.
In our previous work, we performed the multicomponent
estimation only after image reconstruction of fully sam-
pled data or undersampled data from longer acquisitions,
involving markedly longer scan times.

2.1.5 Simultaneous image reconstruction
and joint-sparsity multicomponent parameter
estimation

Isolating the dictionary reweighting and pruning steps
facilitates to integrate them in a new iterative algorithm in
which image reconstruction and joint-sparsity multicom-
ponent parameter estimation directly use the k-space data
as input. Specifically, the restricted dictionary D was used
to update the SVD-compression matrix Ur for improved
compression efficiency of the remaining dictionary sig-
nals. Effectively we are solving the following minimization
problem:

ĉ, ̂Ur = arg min
c∈R

Nd×Nn
≥0 ,Ur∈CNt×r

‖GUrFrSrPrDrc − k‖2
2 +

N
∑

i=1
‖ci‖0 ,

(11)

As such, the MC-ADMM was employed to obtain mul-
ticomponent estimates in an inner loop, while dictio-
nary reweighting and compression were performed in the
outer loop of our algorithm. This novel approach will be
referred to as k-SPIJN and is summarized in Figure 1, bot-
tom flowchart. A step-by-step description of the proposed
reconstruction method can be found in the Supporting
Information, Algorithm 1.

2.2 Experimental setup

All the methods were programmed in Python using the
main parts of the SigPy library.27 Computations were per-
formed on an Intel E5-2683 CPU based on a single core
implementation and using NVIDIA GTX 1080 Ti GPU.

All experiments were performed with a gradient
spoiled SSFP MRF acquisition28 using a flip angle train of
length 400 (see Supporting Information Figure S1)29 with

fixed TR=15 ms. Dictionary signals were simulated with
extended phase graphs30 using a T1 ranging from 100 ms to
5 s and T2 from 10 ms to 3 s, applying a logarithmic stepsize
of 5%.

Data were normalized with respect to the 𝓁2-norm of
the k-space data. All experiments were performed with an
initial rank of r = 10. Visible effects of wavelet regulariza-
tion were kept to a minimum while reducing noise-like
artifacts using an experimentally determined value of 𝜈 =
5 × 10−6.

2.2.1 Numerical experiments

Numerical experiments were performed with the Brain-
Web phantom as ground truth31 making use of the pro-
vided partial volume segmentations of white matter (WM),
gray matter (GM), and CSF. Time frame images were com-
puted after which simulated coil sensitivity maps were

applied and noise was added
(

SNR= image mean
standard deviation

= 70
)

.

Subsequently, k-space data were generated by performing
a Fourier transform, which was then undersampled with a
constant density spiral at an undersampling factor of 1/32.

Experiments were performed with different
ADMM-coupling parameter values 𝜇, while the root mean
square error (RMSE) in estimated mean T1, T2, and M0 (as
defined below) and signal residual were evaluated during
iterations.

2.2.2 In vivo experiments

After obtaining informed consent and with approval of
the local Ethics board, eight volunteers were scanned on
a 3.0 T Philips Ingenia (Philips, Best, The Netherlands)
scanner with a 32-channel head coil, SVD-compressed
to five virtual coils32 after ESPIRiT coil estimation.33

A constant density spiral sampling pattern, FOV of
240 mm × 240 mm, in plane resolution of 1 mm× 1 mm
and 5 mm slice thickness were used. A single brain slice
was imaged. Data were acquired using spiral sampling of
1/32 of the fully sampled k-space per spiral arm, having
a readout duration of 6.5 ms; incremental rotations of
360◦∕32 were applied with each flip angle. Furthermore,
acquisitions were performed with 1, 5, and 32 flip angle
train repetitions, resulting in acquisition times of 6 s, 42 s,
and 4:48 min. Undersampled data were reconstructed
with LRI+SPIJN, MC-ADMM+SPIJN, and k-SPIJN with
SPIJN-regularization 𝜆 = 0.05. Additionally, fully sam-
pled time frame images were reconstructed with a SENSE
reconstruction34 and a SPIJN segmentation was obtained
serving as a reference. For all estimations, tissue types
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were identified based on the following relaxation times:
myelin water (MW): T1 < 800 ms, T2 < 40 ms; white
matter (WM): 800 ms < T1 < 1200 ms, 40 ms <
T2 < 100 ms; gray matter (GM): 1200 ms < T1 <

1700 ms, 45 ms < T2 < 100 ms; and CSF: T1 > 1750 ms.
When multiple components were estimated for one tissue
type, magnetization fractions were summed and a
weighted average of relaxation times was computed.

To assess structural differences, fully sampled (partial
volume) segmentations (A) and segmentations from
undersampled data (B) were compared using the Fuzzy
Tanimoto coefficient:35

TCF =
∑Nv

i=1 MIN(Ai,Bi)
∑Nv

i=1 MAX(Ai,Bi)
, (12)

where Nv is the number of non-zero voxels. Additionally,
the RMSE measure was calculated:

RMSE =

√
∑Nv

i=1 (Ai − Bi)2

Nv
, (13)

across the brain per tissue type. To quantify the image
quality of segmentations, the standard deviation (SD) in
a homogeneous frontal white matter region (size 10 × 20
voxels) was also calculated for MW, GM, and WM. A
Wilcoxon signed rank test was performed to statistically
assess the differences between error measures, while a
p-value < 0.05 was considered significant.

3 RESULTS

3.1 Numerical experiments

Results of numerical simulations showing the effect of the
ADMM-coupling parameter 𝜇 are depicted in Supporting
Information Figure S2. A high 𝜇 reduces the convergence
speed. Simultaneously, the individual RMSE in mean T1
and T2 increases for too small or large coupling param-
eters and do not exhibit a monotonic relation. Based on
these findings, we chose to use 𝜇 = 2 ⋅ 10−3 in further
experiments.

In Figure 2 relative error maps are shown com-
paring the segmentations obtained from LRI+SPIJN,
MC-ADMM+SPIJN, and k-SPIJN reconstructions. Only
small effects are observable in CSF segmentations (RMSE
ranging from 1.7% to 2.7%), but larger differences are
noticeable for WM and GM (RMSE up to 29.9%). Addition-
ally, LRI+SPIJN yields highly deviating relaxation times,
while the proposed methods result in smaller errors of the
relaxation times.

3.2 In vivo experiments

The computation time for the LRI+SPIJN was 4:34 min
(maximum memory usage: 5 GB), for MC-ADMM+SPIJN
45:49 min (11 GB), and for k-SPIJN 1:42:51 h (16 GB).

Figure 3 shows estimated multicomponent estimations
for one subject. Figure 4 shows similar difference maps
for a second subject. From these maps, it can be observed
that differences between fully sampled and undersam-
pled scans are reduced with k-SPIJN and MC-ADMM+
SPIJN. However, small structural biases can still be
observed.

A further quantitative comparison between recon-
struction methods is collated in Figure 5, showing the
TCF and RMSE across the component images, the SD
in a homogeneous, frontal WM region with different
undersampling factors, and estimated T1 and T2 relax-
ation times for the different methods and undersampling
factors.

The proposed MC-ADMM+SPIJN and k-SPIJN
method accurately estimated fraction maps from 1/32
undersampled data: mean RMSE of 9.6%±3.9% and
9.6%±3.2%. This is a significant improvement com-
pared with the conventional LRI+SPIJN approach: mean
RMSE 13.0%±5.8%. For an undersampling of 5/32, the
respective mean RMSEs were 9.9%±5.4%, 7.3%±2.5%,
and 7.8%±2.4% for LRI+SPIJN, MC-ADMM+SPIJN, and
k-SPIJN, again showing a significant difference between
LRI+SPIJN and the two proposed methods. An overview
of performed tests and results is given in Table S2 in the
Supporting Information.

Differences between k-SPIJN and MC-ADMM were
mostly not significant with respect to the FTC and RMSE,
but significant differences were observed with respect to
the SD in WM regions, both for 1/32 and 5/32 undersam-
pling.

Estimated relaxation times for MC-ADMM+SPIJN
and k-SPIJN were highly similar irrespective of the
used undersampling factor and in line with reference
values.36 For LRI+SPIJN, extra components between
WM-GM and GM-CSF relaxation times were identi-
fied, resulting in 12 components on average, in which
cases MC-ADMM and k-SPIJN estimated nine and eight
components on average. The largest spread in esti-
mated relaxation times was observed for CSF, which did
not seem to effect the estimated magnetization fraction
maps.

4 DISCUSSION

We proposed two new reconstruction methods for MRF
data, tailored to the estimation of multicomponent
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F I G U R E 2 Error maps
for obtained multicomponent
tissue segmentations using
different reconstruction
methods (bottom three rows). A
numerical BrainWeb phantom
was used as ground truth
(upper row) for which an MRF
sequence of length 200 was
generated. RMSE is reported
over the whole brain. Ground
truth (top row) and estimated
relaxation times are reported
above each map.

magnetization maps. The proposed MC-ADMM and
k-SPIJN methods were assessed in simulations and in
vivo data. As reference we used numerical ground truth
data in the simulations and conventional multicomponent
estimations after traditional image reconstruction with the
fully sampled in vivo data.

We found in the numerical simulations that the
MC-ADMM-SPIJN and k-SPIJN facilitated accurate mag-
netization fraction estimation for a short (200 readouts)
MRF sequence, while the state-of-art LRI+SPIJN yielded
markedly poorer outcomes (see Figure 2). In in vivo
experiments, this shorter sequence of length 200 was not
used (sequence length 400 was used), as the improved

image quality in all reconstruction was preferred over the
reduced scan time.

The proposed methods yielded MW, WM, GM, and
CSF maps from in vivo data for single spiral read-
outs (1/32) that closely resembled the reference. The
LRI+SPIJN method showed larger deviations in this
respect. Furthermore, we observed that the main improve-
ment from MC-ADMM+SPIJN to k-SPIJN is a reduc-
tion in noise-like patterns (see Figures 3 and 5; std. esti-
mates). This came at the cost of increased computation
times for both the MC-ADMM+SPIJN and k-SPIJN meth-
ods compared with the LRI+SPIJN reconstruction. These
increased computation times are mainly caused by the
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F I G U R E 3 Estimated magnetization fraction maps from single slice data of one volunteer acquired with different undersampling
factors applying different reconstruction methods. Estimated SPIJN-MRF maps with undersampling factors 1/32 and 5/32 are shown for the
LRI+SPIJN, the proposed MC-ADMM+SPIJN and k-SPIJN reconstructions. Fully sampled MRF data with SENSE reconstruction and
SPIJN-MRF estimation shown on the right serve as a reference. On the lower right side of each image, the RMSE compared with the fully
sampled data is given.

many NNLS optimizations that are performed. Notably,
these optimizations were not performed in parallel in
the current implementation. Obviously, doing so could
drastically reduce the calculation times.37,38

The main novelty in the MC-ADMM reconstruc-
tion essentially lies in imposing a voxel-wise temporal
constraint, while reconstructing LR-images from the
k-space data in an iterative process. This constrains
the reconstructed LR-images to a non-negative combi-
nation of dictionary atoms, which is more restrictive
than standard LR-reconstruction,19,39 in which only
the dimension of the solution space is reduced. At the
same time, such a constraint still allows for multicom-
ponent estimations, with or without a joint-sparsity
constraint,11,12,40 which is not possible with meth-
ods that benefit from a dictionary matching based
constraint,18,20,41,42 assuming a single tissue per voxel.

By regularizing the total number of T1,T2-components
used, the proposed k-SPIJN reconstruction adds a spatial
constraint leading to a further improvement in image
quality.

A wavelet regularization term with a relatively small
regularization value was used in all the reconstructions
to suppress small spiral artifacts in the low-rank images.
The low-rank image reconstruction (Equation 3) can be
easily expanded to 3D-acquisitions or to include other
regularization terms19,43 and spiral blurring correction
methods.44-46

Some limitations of the performed work can be identi-
fied. A limitation of the SPIJN and k-SPIJN algorithms is
that potentially important components could be discarded
in early iterations. This risk is limited by not rejecting too
many components and only refute those that have very
small weight. Incidentally, we have not observed in any
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F I G U R E 4 Differences in estimated magnetization fraction maps from single slice data of a second volunteer acquired with different
undersampling factors applying different reconstruction methods. Difference maps for estimated SPIJN-MRF maps with undersampling
factors 1/32 and 5/32 are shown for the LRI+SPIJN, the proposed MC-ADMM+SPIJN, and k-SPIJN reconstructions. On the lower right of
each image, the RMSE compared with the fully sampled data is indicated.

of our experiments that key components (e.g., reflecting
WM/GM or myelin water) were discarded at an early
stage.

In the performed experiments, no corrections for
B+1 inhomogeneities were included because B+1 was
rather homogeneous. However, in the multicomponent
estimation, a (separately acquired) B+1 -map could be
included to fixate B+1 per voxel. Modeling B+1 in the
dictionary may require applying a higher rank in the
compression.

Although relaxation times and visual appearance of
identified myelin water like components are in agree-
ment with the literature,2 comprehensive validation with
conventional MWI methods is a subject of further study
and is required to study potential biases, caused by, for

example, the proposed algorithm, magnetization trans-
fer effects or MRF sequence choice. Observe that such a
study is increasingly feasible due to the achieved reduc-
tion in scan time and reconstruction quality. Further
research should therefore also look into the sensitivity
of different flip angle patterns to multicomponent effects
and how this can improve MWI, for example, by using
multiple inversion pulses47 or model-based sequence
optimization.48,49

5 CONCLUSION

New MC-ADMM+SPIJN and k-SPIJN algorithms facili-
tate accurate estimation of magnetization fraction maps
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F I G U R E 5 Comparison of different reconstructions based on undersampled data of eight in vivo scans. The Fuzzy Tanimoto coefficient
and RMSE were calculated over the complete components with respect to the fully sampled (32/32) SENSE+SPIJN reconstruction. The SD of
the magnetization fraction was calculated in a frontal white matter region for all acquisitions, including the fully sampled data. As no CSF
was identified in the frontal WM region, the graph showing the SD of this component is left out. The distribution of estimated T1 and T2

relaxation times per tissue is shown in the lower two rows. Mean values and SDs can be found in Table S1 of the Supporting Information.
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from highly undersampled MRF k-space data. The
generated in vivo maps show close resemblance to fully
sampled reference data, while scan times of less than 10 s
per slice can be achieved.50
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ADMM coupling parameter 𝜇. The numerical BrainWeb
phantom was used as ground truth. Errors were evaluated
over the complete image. Geometric mean T1 and T2 were
derived from the obtained component maps. ||GFNt SNt x −
k||2 denotes the difference between reconstructed image
series and k-space signal.
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