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Pull Request Decisions Explained:
An Empirical Overview

Xunhui Zhang , Yue Yu , Georgios Gousios , and Ayushi Rastogi

Abstract—Context: The pull-based development model is widely used in open source projects, leading to the emergence of trends

in distributed software development. One aspect that has garnered significant attention concerning pull request decisions is the

identification of explanatory factors.Objective: This study builds on a decade of research on pull request decisions and provides further

insights. We empirically investigate how factors influence pull request decisions and the scenarios that change the influence of such

factors.Method: We identify factors influencing pull request decisions on GitHub through a systematic literature review and infer them

by mining archival data. We collect a total of 3,347,937 pull requests with 95 features from 11,230 diverse projects on GitHub. Using

these data, we explore the relations among the factors and build mixed effects logistic regression models to empirically explain pull

request decisions. Results: Our study shows that a small number of factors explain pull request decisions, with that concerning whether

the integrator is the same as or different from the submitter being the most important factor. We also note that the influence of factors

on pull request decisions change with a change in context; e.g., the area hotness of pull request is important only in the early stage of

project development, however it becomes unimportant for pull request decisions as projects become mature.

Index Terms—Pull-based development, pull request decision, distributed software development, GitHub

Ç

1 INTRODUCTION

THE Pull-Based development model is an important para-
digm for global collaboration in open source projects. In

this model [1], contributors (also known as requesters and sub-
mitters) submit their proposed code changes to a base reposi-
tory by creating a pull request from their cloned repository
for the reviewers to inspect. The integrator (also known as the
closer and the merger) evaluates the proposed changes and
decideswhether to accept or reject the pull request. However,
this process ismade complex by additional actors andmecha-
nisms. For instance, during the review, anyone can discuss
the feature(s), correctness, etc., of the pull request. Moreover,
DevOps tools that automatically check code adaptability and
provide results to contributors and integrators exist.

Many studies on understanding pull-based development
have emerged in recent years to improve developer contribu-
tions, balance integrators’ workloads, optimize review pro-
cesses, etc. There are studies on pull request decisions [2],
their latency [3], reviewer recommendations [4], [5], the
duplication of pull requests [6], [7], the automatic generation
of pull request descriptions [8], and the prioritization of

pull request lists [9], among others. This study focuses
on explaining pull request decisions.

Many studies have made strides in explaining pull
request decisions by introducing new factors in the past
decade. Some examples of these factors are continuous inte-
gration (CI) [10], [11], geographical location [12], and bot
usage [13], [14]. Relatedly, a few studies have presented a
list of factors that can influence pull request decisions. One
outstanding work along this line of Gousios et al. [1] pro-
vided a list of developer, project, and pull request character-
istics. Tsay et al. [15] split factors into two categories, i.e.,
social- and technical-related factors. A more recent study by
Dey et al. [16] combined many such factors (50) to rank their
importance for prediction.

While several studies have contributed individual pieces
to understand pull request decisions, a systematic synthesis
of the body of knowledge to explain such decisions is miss-
ing. If new mechanisms emerge and a new set of factors
occurs. Researchers need to decide which factors are more
critical when selecting control variables for an empirical
study to find their impact on pull request decisions. How-
ever, there lack relevant studies to tell them how to make
choices. Also, understanding factors’ influence in different
contexts is essential for researchers to select projects and
factors. From developers’ perspectives, when creating pre-
dictive tools, it is also important to consider the impact of
different contexts. E.g., how to choose factors if reviewers
comment during the review process? What factors should
be considered if a pull request uses CI tools? Factors, if
properly selected, not only maintain accuracy but also sig-
nificantly improve the efficiency of decision prediction.
Therefore, our current work presents an empirical investi-
gation explaining pull request decisions from GitHub in
terms of the factors known to influence them. Particularly,
we explore the following two research questions:
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RQ1 Howdo these factors influence pull request decisions?
RQ2 How do the factors influencing pull request deci-

sions change with a change in context?
First, we conduct a systematic literature review (SLR) to

identify a comprehensive list of factors known to influence
pull request decisions. Then, we create a large and diverse
dataset of pull requests and factors (or their indicators) that
can be mined from archival software data. Finally, we build
models (mixed effects logistic regression models) that sug-
gest the relations between each factor and pull request deci-
sions in general, specific scenarios (e.g., when pull requests
use CI), and different contexts (e.g., the time when pull
requests are closed).

This paper makes the following contributions to software
engineering research and practice:

1) We present a curated dataset of 11,230 projects on
GitHub with 95 factors and 3,347,937 pull requests.
Our dataset is diverse in terms of the number of con-
tributors, programming language, and activities (see
Table 1). It also covers the entire project lifecycle as a
representation of diversity in time. Future research-
ers can use and extend our large and rich dataset1 to
conduct deeper investigations and use scripts to rep-
licate the results.2

2) We present a synthesis of the factors identified in the
literature, indicating their significance and direction.

3) We show the importance of these factors in explain-
ing pull request decisions and how these decisions
change with a change in context.

The rest of the paper is organized as follows. In Sec-
tion 2, we explain our research design. In Section 3, we
present the results. In Section 4, we conduct a case study
about affiliation-related factors. We discuss the implica-
tions in Section 5 and present the threats in Section 6. In
Section 7, we describe the related work of this study. In
Section 8, we present our conclusions and directions for
future work.

2 STUDY DESIGN

The framework of our study is shown in Fig. 1, which
mainly comprises four parts presenting the steps to empiri-
cally explain pull request decisions. First, we gather a com-
prehensive list of the factors known to influence pull
request decisions (see the SLR part in Fig. 1). Next, we col-
lect data from diverse collaboratively developed software
projects on GitHub to use as proxies for the factors identi-
fied above (see the Data Collection part in Fig. 1). Then, we
transform the data and transfer them into a form usable for
analysis (see the Data Preprocessing part in Fig. 1). Finally,
we model the data to answer our research questions, start-
ing with an exploratory data analysis (see the Statistical
Modeling part in Fig. 1).

2.1 Systematic Literature Review

To collect all factors known to influence pull request deci-
sions, we conducted a systematic literature review (see the
SLR part in Fig. 1a), which was based on the guidelines
from Kitchenham et al. [17].

Our search strategy was to identify all scientific articles
relating to pull request decisions. We selected two widely
used search terms, “pull request” and “pull based”, which
are often used interchangeably as pull request models, pull-
based development, and similar variants. We combined the
two search terms with a logical “OR” operator (i.e., “pull
request” OR “pull based”) defining our search space. We
searched for (“pull request” OR “pull based”) on Google
Scholar, ACM Digital Library, IEEExplore, Web of Science
and Ei Compendex, resulting in a total of 3,941 papers. We
ran the query on April 17th, 2020. We identified 1,000 papers
from Google Scholar, 1,433 from ACM Digital Library, 352
from IEEExplore, 487 from Web of Science, and 669 papers
from Ei Compendex. We performed an additional step of
searching Google Scholar for papers published only in 2020.
(Here, we only consider 2020 because we can get all relevant
papers through the backward snowballing process [17].
Therefore, we don’t have to perform searches for each year.)
This step was necessary since Google Scholar retrieves only
the top 1,000 results, which means that it is likely to miss
many articles [18], [19]. The additional search (also con-
ducted on April 17th, 2020) resulted in 610 more papers,
leading to a total of 4,551 papers for backward snowballing.

To identify the factors influencing pull request decisions,
the first author manually analyzed the title and abstract of
each paper and selected all studies presenting all the factors
influencing pull request decisions that can be inferred by
mining software archives. The search resulted in 19 papers
after excluding papers for the following reasons:

� they were written in languages other than English
(45 papers)

� they were duplicates (1,181 papers)
� they were initial versions of the papers when

extended versions were available (12 papers)
� they presented factors not applicable to GitHub (5

papers); e.g., a study on Firefox and Mozilla core
projects shows that “bug severity” and “bug prior-
ity” influence patch acceptance [20]. These attributes
do not exist on GitHub

TABLE 1
Description of Project Diversity

category type project count percentage

language

JavaScript 3,879 34.5%
Python 3,055 27.2%
Java 1,823 16.2%
Ruby 1,243 11.1%
Go 913 8.1%
Scala 317 2.8%

project size
small � 12 developers 3,711 33%
mid � 31 developers 3,634 32.4%
large > 31 developers 3,885 34.6%

project activity

min ¼ 33 pull requests - -
25% � 55 pull requests 2,843 25.3%
50% � 106 pull requests 2,796 24.9%
75% � 261 pull requests 2,791 24.9%
max ¼ 38; 953 pull requests - -

1. https://zenodo.org/record/4837134#.YLEWyY3isdW
2. https://github.com/zhangxunhui/TSE_pull-based-development
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� they were not related to pull request decisions (3,277
papers)

� they were related to pull request decisions but diffi-
cult to reproduce (4 papers), e.g., using medical
equipment to track the eyes of reviewers [21]

� they included factors not generalizable to a wider
range of software projects on GitHub (4 papers), e.g.,
labels [22] that vary across communities

� they presented different operationalizations of
related concepts (3 papers); e.g., emotions can be
measured directly as joy, love, sadness, and anger;
indirectly via valence, arousal, and dominance [23];
and abstractly based on polarity [24]. We choose one
of three representations of emotions, i.e., polarity. As
another example, Calefato et al. [25] measured trust
using agreeableness, one of the five personality traits
used by Iyer et al. [2]. Thus, we chose five personality
traits

� they presented factors not measurable quantitatively
(1 paper), i.e., the features relating to pull request
decisions found in a qualitative study [26]

Next, we identified other relevant articles by considering
the references of the 19 selected seed articles. We applied
the backward snowballing method [17] twice, meaning that
we selected (a) the references of the 19 articles and (b) the
references of the references. After two rounds, we did not
find any new related papers. This process resulted in 7 new
papers, bringing the total to 26 papers presenting the factors
related to pull request decisions.

An overview of the 94 features (the factor same_user was
not considered in previous studies) found in the systematic
literature review is shown in Table 2, which lists the sym-
bolic representations of the features in columns 1 and 3, fol-
lowed by their descriptions in columns 2 and 4, respectively.

All the features are classified as developer, project, and pull
request characteristics. Furthermore, Table 10 shows the
relations between each of the factors and pull request deci-
sions, as identified in the 26 selected research articles.

For the accuracy and validity of the data extraction pro-
cess, the first and the last author did the whole process
together. First, in the paper screening phase, the first author
got the initial results. Then the first author and the last
author met to discuss the paper with uncertainty and finally
reached an agreement. E.g., the paper[26] was a relevant
study on pull request decisions, but as a qualitative study, it
lacked a measure of certainty about the relevant factors, so
we removed the paper. After that, in the factor extraction
stage, the first author extracted the initial factors, including
the name of the factor, the related description, the category
to which it belongs (pull request, project, or developer), and
the description of related findings, forming a list. The first
and the last author then met to discuss and agree on the
information in the list, which consisted of the following
steps.

1) For relevant factors with unclear descriptions, reach
an agreement, e.g., factor pushed_delta (see Table 2).

2) Remove factors that are not applicable for GitHub,
e.g., bug severity.

3) Remove factors that are difficult to reproduce, e.g.,
eye tracking of reviewers.

4) Confirm the category to which factors belong.
5) The last author maintained a list of relevant factors

in advance based on the research experience and
checked during themeeting to see if they all appeared
in the list provided by the first author.

After the above process, we finally identified the 94 rele-
vant factors.

Fig. 1. Framework of this paper.
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2.2 Data Collection

We collected data on a variety of software projects hosted
on GitHub as a proxy for the factors identified above. The
dataset used for this study came from our prior work [27],
featuring 96 factors collected from 11,230 projects. Further-
more, we enriched the dataset with missing factors and val-
ues (see the Data Collection part in Fig. 1).

Our initial dataset [27] was built on the publicly available
GHTorrent MySQL data dump dated June 1st, 2019.3 It fea-
tures 96 factors relating to pull requests, developers, or proj-
ects (derived from 76 research articles published between
2009 and 2019) for 11,230 software projects. The screening
steps of GitHub projects are summarized as follows:

1) Filter forked or deleted repositories based on
GHTorrent.3

2) Filter repositories that do not have any pull requests
in the last three months.

3) Select projects from six programming languages (as
against 4 programming languages in the case of Gou-
sios et al.’s [28] dataset). The extended JavaScript and
Go languages are the most popular programming
languages on Github4 and the fastest growing pro-
gramming languages in recent years, respectively.5

4) Select all projects with at least 33 submitted pull
requests. These projects constitute the top 3% of all

TABLE 2
Comprehensive List of the Factors Known to Influence Pull Request Decisions on GitHub

NOTE: Factors marked as ? are additions of our study to the latest MSR Data Showcase pull request dataset [27], while � are additions to previous studies.
All metrics are relative to a referenced pull request in a project.
Factors that change over time (e.g., core team) are measured using the previous three months of development activities in a project.
The related paper information and the nature of each factor can be seen in Table 10.

3. http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-
06-01.tar.gz

4. https://octoverse.github.com/#top-languages-over-the-years
5. https://hub.packtpub.com/why-golan-is-the-fastest-growing-

language-on-github/

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: TU Delft Library. Downloaded on March 06,2023 at 14:59:07 UTC from IEEE Xplore.  Restrictions apply. 



projects in terms of pull request count (as against the
top 1% in the case of Gousios et al.’s [28] dataset).
The top 3% here is chosen to make some extensions
based on Gousios et al.’ dataset [28]. With the devel-
opment of Github, a large number of open source
projects have emerged. In addition to the most active
open source projects, we also want to include a wide
range of projects, including small and relatively less
active projects. After discussion, we have chosen the
top 3% of projects.

5) Split projects according to the tertile thresholds of
the number of developers in the project, i.e., small-
sized teams (low tertile) with 12 or fewer developers,
medium-sized teams (middle tertile) with 13 and up
to 30 developers, large-sized teams (high tertile)
with more than 30 developers. Randomly select
4,000 projects in each class.

6) Remove the data holding project “everypolitician/
everypolitician-data”, which is extremely large, and
we lack the ability to collect related factors.

7) After discussion among authors, remove projects
with less than 20 closed pull requests related to their
default branch to ensure enough data for the subse-
quent steps required in research.

After the above steps, 11,230 projects remained, which
offers a total of 3,347,937 closed pull requests (meaning a deci-
sion has been made) submitted to the repository’s default
branch.

Our initial dataset is futuristic and emphasizes generaliz-
ability - a design choice for a wide range of explorations [27].
Moreover, our dataset has 12 times more projects and 10
times more pull requests than Gousios et al.’s [28] dataset
and is more diverse than any of the datasets of prior studies
focusing on pull request decisions, which have, until now,
largely focused on the most popular projects.

From Table 1, we can see that the diversity of selected
projects is mainly manifested in three aspects, i.e., covering
6 languages, containing different numbers of contributors,
and including projects with different activity levels (the
number of pull requests ranges from 33 to more than 30
thousand). Our dataset has features that are applicable to
projects outside GitHub and has additional features that are
likely to influence pull request development - an extrapola-
tion of existing features.

For our analysis, we selected data related to the factors
identified by our systematic literature review from the ini-
tial dataset. We noticed that 14 factors identified by our sys-
tematic literature review did not exist in the initial dataset,
so we added these missing features. Table 2 presents a com-
plete list of the factors known to influence pull request deci-
sions on GitHub. Factors marked as ? are additions to those
of the initial dataset [27].

Finally, we enriched our dataset by filling in missing val-
ues wherever possible based on GHTorrent,6 GitHub API
and source code of repository. For example, the initial data-
set used the tool by Vasilescu et al. [29] to infer country infor-
mation. The resulting dataset, however, had a large number
of missing values. We applied several steps, such as using

country_code information and pycountry package7 to extract
country names. In this way, we were able to derive the coun-
try information of an additional 546,682 contributors
(1,473,008 previously), 747,204 integrators (1,580,256 previ-
ously) and 796,083 same-country participants (1,081,668 pre-
viously). The expanded country information can be seen on
GitHub.8 To verify the validity of the data, we randomly
selected 100 developers with predicted country information.
Then, the first author manually checks the accuracy accord-
ing to the developer’s GitHub homepage and the given exter-
nal site. Only two developers made a mistake in their
predictions, and another two developers’ country informa-
tion could not be judged based on the existing knowledge.
Therefore, the precision of the extracted country information
� 96%.

We added a factor, same_user, that did not exist in prior
studies (marked as � in Table 2). While the information on
the same user is not useful itself, it adds meaning to factors
such as same_country, same_affiliation, and personality-differ-
ence-related factors (e.g., open_diff), which make sense only
when the contributor and integrator are not the same users.
In our dataset, we found that 43.6% of the pull requests
were integrated by submitters (85.7% of them were core
contributors, and 14.3% were external contributors). Com-
pared to directly committing to code repositories, pull-
based development is becoming a standard collaborative
model in which not only external contributors but also core
members are interested. Therefore, it is necessary to add
this factor and study its influence on pull request decisions.

For factor bug_fix, we followed Fan et al.’s [30] method in
finding the tag for determining whether the pull request is a
bug fix or not. In their method, they manually found the
most used tags for bug-prone and non-bug-prone issues.
(The tags are listed in Table 3.) Therefore, we first check
whether the pull request has a tag marking its type. If not,
we link the pull request to an issue [31]. If the pull request
fixes an issue, we check the related issue’s tag to see
whether the pull request fixes a bug or not. To ensure data
accuracy, we did not use a prediction model to predict the
type of pull request.

2.3 Data Preprocessing

Our exploration of the resulting dataset (manually and
using data distribution graphs) showed some unexpected
data values for factors such as first_response_time, ci_latency,
account_creation_days and project_age. It is important to fix
them for reliable inferences (see the Technical Report [32]
for examples).

TABLE 3
Bug and Non-Bug Tags

Category Tags

Bug “bug”; “defect”; “type:bug”

Non-bug “enhancement”; “feature”; “question”; “feature request”;
“documentation”; “improvement”; “docs”

6. https://ghtorrent.org/

7. https://pypi.org/project/pycountry/
8. https://github.com/zhangxunhui/TSE_pull-based-develop-

ment/blob/master/country_info.csv
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� first_response_timehas negative values for some pull
requests. One possible reason is that our metric con-
siders the discussion under a pull request and the
comments under the related code. Since some com-
ments exist before pull request creation, our data
show negative values. We fix this issue by excluding
pull requests with negative values (0.4%).

� ci_latency has negative values for some pull requests.
CI latency measures the time from pull request crea-
tion to CI build finish time. In some cases, however,
commits exist prior to pull request creation, and the
time of first build recorded is earlier than the crea-
tion time of a pull request. We fix this problem by
removing such pull requests (1.5%).

� account_creation_days and project_age have negative
values, which happens in special cases where the
creation time of a user account on GHTorrent is dif-
ferent from that on Github API. Here too, we remove
such cases (0.1%).

� bug_fix has 99.3% empty values. We remove this fac-
tor, which otherwise can adversely affect the analysis.

For the time-related factors, we verified the accuracy of
the remaining data by randomly selecting 100 records. We
found that the inconsistency between the GHTorrent
MySQL version and GitHub API resulted in the accuracy of
first_response_time, account_creation_days, project_age, and
ci_latency at about 98%, 97%, 96%, and 94%, respectively.
We have added this part to the Threats to Validity section.

2.4 Statistical Modeling

Presenting a comprehensive analysis of the factors influenc-
ing pull request decisions, we build generic models compris-
ing all the factors andmodels representing specific cases.We
also build models within different contexts. However, first,
we explore relationships among the factors identified above.

Our preliminary exploration into the relationship among
factors started with calculating the correlations among all
the factors. We calculated the Spearman correlation coeffi-
cient (r) for continuous factors [1], Cram�er’s V (Fc) for cate-
gorical factors [33], and partial Eta-squared (h2) for the
correlation between continuous and categorical factors [34].
We consider r > 0:7 [1], Fc > 0:5

df [35] and h2 > 0:14 [35] as
strong correlations.

A list of strongly correlated factors is presented in
Table 4, in which the strongly correlated factors are sepa-
rated from the other factors by a dotted line. For a complete
list of correlations between each pair of factors, refer to our
technical report [32].

Next, we built mixed effects logistic regression models to
empirically explain the factors influencing pull request deci-
sions. The models used the project identifier as a random
effect, indicating similarity among the pull requests of a
project [36]. All other factors had fixed effects. The resulting
model indicated the significance of a factor and direction of
its association with a pull request decision (accept or reject).
We used the glmer function of the lme4 [37] package in R to
model pull request decisions.

To build an explanatory model, we included all factors
that could be meaningfully added together, did not present
the same or similar information as other factors, and were
easy to interpret.

1) Adding meaningful factors. While adding factors to a
model, we observed that 17 factors (postconditional
factors in Table 5) did not make sense outside a

TABLE 4
Choices and Corresponding Reasons for

Strongly Correlated Factors
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specific context. For example, if the contributor and
integrator were the same, then factors such as
“personality difference” did not exist and made no
sense. We refer to such factors as “preconditional
factors” and “postconditional factors”. “Preconditional
factors” are those that must exist for another factor to
exist and make sense (e.g., same_user in the previous
example). Conversely, “postconditional factors” are
the factors in which their existence is conditional on
preconditional factors (e.g., open_diff). All the other
factors are classified into the “others” category. A
complete list of pre- and postconditional factors is
presented in Table 5.

2) Factors presenting the same information. Our preliminary
investigation showed that several factors identified
from the literature were strongly correlated with each
other (see Table 4 for a list of strongly correlated fac-
tors). When two related factors were added to a model,
they changed not only pull request decisions but also
other factors, which could change the estimated effect
of these factors on pull request decisions and their sig-
nificance, also referred to as a multicollinearity prob-
lem [38]. To avoid multicollinearity, we selected one of
the many strongly correlated factors. Our choice of the
selection of a factor was influenced by its use in previ-
ous studies (e.g., [1] chose test_lines_per_kloc), fre-
quency of occurrence in the literature (e.g., core_member
appearedmost often), promising performance (indicat-
ing the likelihood of strong correlation with pull
request decisions) (e.g., sloc significantly influences
pull request decisions [12], while language does not
have such a conclusion according to previous studies),
expressiveness (e.g., has_comments is broader andmore
informative than contrib_comment), data availability
(e.g., open_issue_num has most nonempty values), and
otherwise in discussion with the last author (e.g., perc_-
pos_emotion ismore representative for thewhole review
process than inte_first_emo; same_country takes the
country relationship between the contributor and the
integrator into consideration; same_user is the precondi-
tion for eight factors (see Table 5)). We also excluded
factors with variance inflation factor (VIF) values � 5,

as such values could inflate variance, measured
using the vif function of the car package in R [39].
In this way, we removed num_code_comments that
were otherwise moderately correlated with num_-
comments (r ¼ 0:63).

3) Ease of interpretation. Models perform better when
features are approximately normal and in a compa-
rable scale.9 We stabilized the variance in features by
adding a value “1” and log-transforming the contin-
uous variables. Then, we transformed the features
into a comparable scale with a mean value of “0”
and a standard deviation of “1”.

2.4.1 Factors Influencing Pull Request Decisions

To explain pull request decisions, we intended to build a
model with all the known factors. However, in practice,
this is not possible. We noticed that the postconditional
factors (see Table 5) did not make sense unless a precon-
dition was met. For example, the factor ci_latency was
meaningful only when the factor ci_exists was true. Here,
ci_exists presents a precondition contingent on which
factors, such as ci_latency, are meaningful, which are also
referred to as postconditional factors. Table 5 presents
a complete list of the dependent factors in our dataset.
The remaining factors have no such dependency on
other factors.

To understand how the identified factors influence pull
request decisions, we built two types of models.

1) We built a basic model that comprised all the factors
with no dependencies on each other and precondi-
tional factors. This model offered an overview with-
out entering the details offered by the postconditional
factors.

2) Next, we built models for the special cases relating to
preconditions: developer, pull request, and tools as
identified in Table 5.
� developer:when the contributor and the integrator

are not the same users (same_user=0)
� pull request: when a pull request has comments

(has_comment=1)
� tool: when a pull request uses the CI tool (ci_ex-

ists=1). Each of these special case models are built
on a subset of the data used in the basic model
that meets the precondition.

2.4.2 Influence of Context

To explore the relevance of context in explaining pull request
decisions, we studied five scenarios relating to the devel-
oper, pull request, project, tools, and time. Fig. 2 presents a
pictorial depiction of the five scenarios in relation to the pull
request decision and metrics. To study the influence of con-
text, we trained the same model on different observations
representing specific contexts.

� developer characteristic: We chose the factor same_user
indicating whether a pull request is submitted and
integrated by the same user. It is the most important
developer characteristic influencing pull request

TABLE 5
Factors With Dependency

9. https://medium.com/@sjacks/feature-transformation-21282d1a3215
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decisions (see the basic model in Table 6) and a pre-
condition for a range of factors. We think that pull
requests integrated by oneself behave differently
than those integrated by others.

� pull request characteristic: We chose the factor has_-
comments as an indicator of a pull request charac-
teristic influencing the decision [15]. It is one of
the top five factors influencing decisions (see the
basic model in Table 6) and a precondition for
several factors, including perc_pos_emotion and
first_response_time (see Table 5). This factor
explores decisions for pull requests both with and
without comments.

� project characteristic: We selected the factor team_size
as an indicator of project characteristics such as
project popularity and maturity. We assumed that
teams of different sizes represented different con-
texts (as also seen in other studies [40], [41]).
We studied three team sizes: small (team size �
4), medium (4 < team size � 10), and large
(team size > 10). Here we split the pull request
according to the tertile of factor team_size.10

� supporting tools: We selected the factor ci_exists for its
reported influence on pull request decisions [10] and
relevance in our special case model (refer to Table 6).
In addition, a previous study has shown that the
usage of CI tools changes during the development of
projects [43]. Therefore, we assumed that factors
influence pull request decisions differently depend-
ing on whether they are pull requests using CI tools
or those not using CI tools.

� project evolution: We studied temporal evolution to
see if the process changed over time. We studied
decision-making in three time periods: before June
1st, 2016, between June 1st, 2016, and June 1st, 2018,
and between June 1st, 2018, and June 1st, 2019 (aka
after June 1st, 2018). A pull request belonged to a
time period when it was integrated. For this scenario,
we included only projects (and their pull requests)
active in all three time periods.11

2.4.3 Interpretation of Statistical Models

The resulting mixed effects logistic regression models
explain the influence of factors in models and their relative
relevance. Section 3 presents the findings from these mixed
effects logistic regression models. Each model has two parts:
an intercept and influence of a factor, expressed as follows:

odds ratiop�value½percentage variance�: (1)

The odds ratio expresses the association between a factor
and a pull request decision as “the increase or decrease in the
odds of acceptance for a ‘unit’ increase of a factor” [15]. In this
work, a “unit” of each factorwas one standard deviation from
the standardization of the log-transformed factors. The term p
value indicates the statistical significance of a factor, which
was indicated by asterisks: *** p<0.001; ** p<0.01; * p<0.05
[10], [12]. It represents the probability of the evidence against
the null hypothesis, i.e., ”there is no association between each
factor and pull request decisions.” Finally, the percentage of
explained variance was used as a proxy for the relative impor-
tance of a factor. The variance explained by each factor is
derived from ANOVA Type-II analysis [44]. When it is rela-
tive to the total amount of variance (the percentage of
explained variance), the result can serve as a proxy for effect
size, which means howmuch effect one factor has in explain-
ing pull request decisions. This metric is similar to the per-
centage of total variance explained by least squares regression
[39] and has been used in prior studies [45].

We reported the goodness of fit of eachmodel using the area
under the receiver operating characteristic curve (AUC) value
(for training data), where an AUC value greater than 0.5 indi-
cated the effectiveness of the model [12]. We also reported the
predictive performance of related models using the weighted
precision, weighted recall, andweighted f-score [46].

In practice, we split the pull requests in close time and
used the first 90% of pull requests for training and the
remaining 10% for testing. We measured the predictive per-
formance of the basic model only to present the prediction
effect of pull request decisions by integrating as many fac-
tors as possible and to explain factor performance in other
situations, without reporting their prediction performance.
The above metrics collectively indicated the predictive per-
formance of both the baseline and logistic regression models
for our highly imbalanced dataset [46].

3 RESULTS

This section presents how factors influence pull request
decisions (answering RQ1) via a basic model, which com-
prises all the factors likely to influence pull request deci-
sions, excluding those that cannot make it to the basic
model. Next, we describe how the factors influencing pull
request decisions change with a change in context (answer-
ing RQ2). We present five scenarios representing developer,
pull request, project, tool, and time characteristics.

3.1 RQ1: How do Factors Influence Pull Request
Decisions?

3.1.1 Basic Model

Our basic model in Table 6 (column 3) shows 46 factors
known to influence pull request decisions arranged in
nonincreasing order of relative relevance. In comparison to a

Fig. 2. Contexts in pull request decisions.

10. A sensitivity analysis with threshold values (small size ranging
from 2-6, large size ranging from 8-12) yielded similar results. See the
technical report [42] for the detailed results.

11. A sensitivity analysis with threshold values (first period ranging
from December 1st, 2015 to December 1st, 2016, third period ranging
from December 1st, 2017 to December 1st, 2018) yielded similar results.
See the technical report [42] for the detailed results.
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TABLE 6
Results of Special Cases

- means the factor is not included in the model. Color: deep gray represents factors with explained variance rank in the Top 5 and light gray represents factors rank
in the Top 6-10.
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random classifier (with weighted precision: 0.81, weighted
recall: 0.79, weighted f-score: 0.80, and AUC_test: 0.50), our
basic model performed better (with weighted precision: 0.89,
weighted recall: 0.90, weighted f-score: 0.89, and AUC_test:
0.82), suggesting an improvement in our model in terms of
decisionmaking.

The five most important factors influencing pull request
decisions are same_user, lifetime_minutes, prior_review_num,
has_comments and core_member. Table 6 (column 3) shows
that these top five factors (shown in dark gray) explain
approximately 83% of the variance. This number reaches
approximately 95% when considering the influence of the
top 10 factors. The remaining 36 factors collectively explain
5% of the explained variance.

The most important factor influencing pull request deci-
sions was same_user (with 31% variance). Moreover,
same_user decreased the odds of acceptance of a pull request
by 48% per unit when a pull request was integrated by the
contributor. One possible explanation for this observation
relates to the process of pull-based development. Due to the
standardized process of such development, contributions
should be reviewed and merged by others during the pro-
cess. However, since all contributors could close their own
pull requests, it was possible for them to find problems in
their pull requests from others’ comments or CI build results
and close their own pull requests.

Through Table 8, we can see that many project related
factors, including open_pr_num, project_age, sloc, were found
to influence pull request decisions in related works signifi-
cantly. However, through integrating various factors, we
find that the project related factors did not contribute
greatly to pull request decisions, as these factors explained
only approximately 1% of the variance. However, the devel-
oper- and pull-request-related factors are more important,
explaining 52% and 46% of the variance, respectively. See
the dynamic treemap to compare the relative importance of
factors in different categories visually.12

3.1.2 Special Cases

Table 6 shows the results of the three special cases in the last
three columns. Factors ranking the top 5 in each model
(T1�5) are shown in deep gray, and factors ranking in the
top 6-10 in each model (T6�10) are shown in light gray.

When the contributor and integrator were different users
(same_user=0) (see column 4 in Table 6), we found that three
additional factors had a small effect on pull request deci-
sions. The only factor that made it into the top 10 factors
was personality difference, namely, differences in agree-
ableness (agree_diff). The two other factors were differences
in openness to experience (open_diff), also indicating differ-
ences in personality, and the same affiliation of the contribu-
tor and integrator (same_affiliation).

When there existed at least one comment (has_com-
ments=1) (see column 5 in Table 6), positive emotion became
relatively important, with a sizable effect (> 3% variance).
This change can be attributed to the phenomenon that posi-
tive reactions during the code review process can lead to

contributors’ active participation and increase the likelihood
of pull request acceptance. However, negative emotion is not
important in pull request decisions. A possible explanation
for this is that different developers tend to act differently
toward negative emotion. Therefore, negative emotion dur-
ing discussion faces difficulty in effectively making the final
decision. To verify our observation, we built models for pull
requests that had at least one comment from a contributor
(contrib_comment=1) or at least one comment from an integra-
tor (inte_comment=1) [42]. We found that both perc_contrib_-
pos_emo and perc_inte_pos_emo explained more than 3% of
the variance, which was much higher than that of negative
emotion.

When pull requests used CI tools (ci_exists=1) (see col-
umn 6 in Table 6), factor ci_failed_perc stood out, explaining
18% of the variance, which implies that the build status of
CI tools is important for review decisions, especially the
percentage of build failures.

Pull request decisions is mostly explained by a few fac-
tors (5 to 10 factors) such that developer and pull request
characteristics are more important than project charac-
teristics. The relation between contributor and integrator
(same_user) is the most important factor influencing pull
request decisions. In special cases, when a pull request
has comments, comment’s positive emotion is linked to
pull request acceptance. Likewise, when pull requests
use CI tools, the percentage of failed CI builds become
important for pull request decisions.

3.2 RQ2: How do the Factors Influencing Pull
Request Decisions Change With a Change in
Context?

3.2.1 Developer Characteristic

Table 7 shows that in comparison to the pull requests sub-
mitted and integrated by the same user, when the contribu-
tor and integrator are not the same person, the variance
explained by the experience of the integrator (prior_review_-
num) decreases from 31% (row 1, column 2 - same user: yes)
to 0% (row 1, column 3 - same user: no). This finding implies
that the integrator’s experience plays a limited role when
making decisions regarding others’ contributions. However,
this factor becomes very important for an integrator’s own
contributions. One way to explain this observation can be
that external contributors, without review experience, gen-
erally do not have the right to merge the code. Experienced
integrators, in contrast, are familiar with the management
process, know when to merge a pull request, and have the
ability to merge a pull request. In this way, differences in
permission linked to integrators’ experience can influence
pull request decisions.

For the lifetime of pull requests (lifetime_minutes), the
percentage of explained variance increased from 19% (row
2, column 2 - same user: yes) to 44% (row 2, column 3 -
same user: no). A possible explanation for this observation
is that when there is no response from a contributor for a
long time, a pull request is more likely to be closed by the
reviewer. However, when the pull request is reviewed by
the contributor himself/herself, he/she knows exactly what
is happening, and the related decision making is thus not

12. https://github.com/zhangxunhui/TSE_pull-based-develop-
ment/blob/main/treemap-basic-model.html
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influenced as much by the lifetime of a pull request. Like-
wise, for the number of commits (num_commits), the per-
centage of explained variance increased from 4% (row 4,
column 2 - same user: yes) to 10% (row 4, column 3 - same
user: no). It is likely that during the interaction, the integra-
tor will ask the contributor to modify the contribution,
increase the number of commits, and then make decisions
according to these changes.

When comments were present (has_comments), the
explained variance increased when a pull request was inte-
grated by another person in comparison to oneself from
10% (row 6, column 2 - same user: yes) to 27% (row 6, col-
umn 3 - same user: no). This result can be explained by the
fact that when integrating pull requests submitted by
others, it is common for the integrator to understand the
contribution by communicating with the contributor.

For whether the contributor is a core developer (core_-
member), we find a notable difference in the influence of this
factor on the pull request decisions in the set of self-inte-
grated pull requests (row 3, column 2 - same user: yes) and
the other-integrated pull requests (row 3, column 3 - same
user: no). Although this factor is positively correlated with
the pull request decisions in both cases (odds ratio>1), i.e.,
pull requests submitted by core developers are more likely
to be accepted than those submitted by external contribu-
tors; the explained variance reduces from 9% to 1%. This
indicates that whether the contributor is a core developer
becomes less important than other factors for pull requests
integrated by others.

Whether the contributor and integrator is the same per-
son or not influences pull request decisions the most. If
the contributor and integrator is the same, pull request
decisions depend on the contributor’s relationship to the
target project (prior_review_num and core_member). When
the contributor and integrator are different, pull request
decisions depend on the interaction between contributor
and integrator (has_comments, lifetime_minutes) and the
intermediate results during the process (num_commits).

3.2.2 Pull Request Characteristic

When a pull request did not have comments, the percentage
of explained variance of same_user increased from 29% (row
7, column 4 - has comments: yes) to 42% (row 7, column 5 -
has comments: no). This situation illustrates that the factor
same_user is more associated with pull request decisions for
those without comments. To investigate the reason, we cal-
culated the merging rate of pull requests in four situations
(see Table 8).

From the table, we can find that for pull requests without
comment, the merge rate increases for both cases of factor
same_user. However, we find that the merge rate even
reaches 93% when same_user=false. Such high probability
may be why this factor plays a decisive role in explaining
pull request decisions when there is no comment.

Regarding integrator experience (prior_review_num), the
explained variance increased from 14% (row 1, column 4 -
has comments: yes) to 22% (row 1, column 5 - has com-
ments: no). It is likely that when there are no comments,
there are cases in which developers close or merge their
own pull requests. In comparison to core members, external
developers do not have the right to merge. This restricted
permission linked to the integrator’s review experience can
potentially influence the pull request decision.

For the lifetime of a pull request (lifetime_minutes) and the
number of commits included in a pull request (num_com-
mits), when there exist comments, the integrator tends to

TABLE 7
Partial Results in Different Contexts

Whole results are shown in Appendix A, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2022.3165056. Gray color marks the factors that have more than 5% difference of explained variance in different contexts. Value before bracket means the
odds ratio, value in bracket means the percentage of explained variance, - means the factor is not included in the model.

TABLE 8
Pull Request Merge Rate for has_comments and

same_user Cross Situations

has_comments = true has_comments = false

same_user=true 74.5% 88.3%
same_user=false 82.1% 93.3%
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make the decision based on the contributor’s response
speed and how he/she modifies the contribution according
to the integrator’s suggestions. This can be a reason why
there exists a higher percentage of variance in situations
where comments exist.

When there is no communication between the contribu-
tor and reviewers, factors indicating the affiliation of a
contributor to the project - whether the contributor and
the integrator are the same (same_user) and review
experience (prior_review_num), are important in influ-
encing pull request decisions. When there is communi-
cation between the contributor and reviewers, factors
representing the activeness of the interaction (lifetime_-
minutes, num_commits) have a bigger influence on pull
request decisions.

3.2.3 Project Characteristic

As team size increased, the variance explained by the experi-
ence of the integrator (prior_review_num) initially decreased
from 11% (row 1, column 8 - team size: small) to 9% (row 1,
column 9 - team size: mid) and then increased from 9% (row
1, column 9 - team size: mid) to 19% (row 1, column 10 - team
size: large).

When considering whether pull requests were submit-
ted and integrated by the same user (same_user), the
change trend was the opposite, increasing from 24% (row
7, column 8 - team size: small) to 36% (row 7, column 9 -
team size: mid) and then decreasing from 36% (row 7, col-
umn 9 - team size: mid) to 33% (row 7, column 10 - team
size: large).

These two types of change indicate that for pull requests
targeting teams of different sizes, the importance of prior_re-
view_num and same_user changed nonlinearly. However, we
have no explanation for this observation.

As team size increases, integrator’s experience (prior_re-
view_num) and whether submitter and integrator are the
same (same_user) have a V-shaped and inverted V-shaped
relations to pull request decisions respectively.

3.2.4 Supporting Tools

When not using CI tools, the percentage of variance
explained by comments (has_comments) was 25% (row 6, col-
umn 7 - ci exists: no), which was higher than that of pull
requests using CI tools (10%) (row 6, column 6 - ci exists:
yes). This result can be explained by the fact that when there
are no CI tools, contributors can obtain feedback only from
reviewers. Therefore, whether comments exist matters
greatly in pull request decisions. When using CI tools, con-
tributors can first obtain responses from CI outcomes, which
can help with making decisions.

For factor same_user, its explained variance decreases
from 33% (row 7, column 6 - ci exists: yes) to 23% (row 7,
column 7 - ci exists: no). According to the previous
study [11], teams using CI tools are more effective at merg-
ing pull requests submitted by core members. Therefore, we
think that the existence of CI tools leads contributors to be

more able to make judgments about their own contributions
through the build outcome.1314

The use of CI tools leads to significant changes in the
influence of two factors on pull request decisions, i.e.,
whether the pull request contains comments andwhether
the contributor and the reviewer are the same people.
When using CI tools, the availability of CI build results
makes the comments less important in explaining pull
request decisions, while the influence of contributor and
integrator’s relationship becomes stronger.

3.2.5 Project Evolution

Before June 2016, the experience of the integrator (prior_re-
view_num) explained just 6% (row 1, column 11 - period:
before 2016.6) of the variance, which increased to 17% after
June 2018 (row 1, column 13 - period: after 2018.6). We cal-
culated the experience of integrators corresponding to pull
requests at different periods of project development, as
shown in Fig. 3. We find that the gap between integrators’
experience for merged and unmerged pull requests gradu-
ally increases as projects become mature. This is why the
variance explained by factor prior_review_num gradually
increases. This indicates that the integrator’s experience
gradually becomes an important indicator of pull request
decisions as the project evolves.

For the area hotness of contributions (commits_on_files_-
touched), before June 2016, it had amoderate effect on the deci-
sion-making of pull requests, which explained 7% of the
variance (row 5, column 11 - period: before 2016.6), and
increased the odds of acceptance by 30% per unit. However,
as projects became mature, the variance explained decreased
to 0% (row 5, column 13 - period: after 2018.6). For the three
periods, we also calculated the mean value of commits_on_fi-
les_touched (before 2016.6: 40, 2016.6-2018.6: 33, and after
2018.6: 28), which shows that the contributions in the early
stage of the project were more concentrated. In other words,
as projects become larger and more mature, contributions are
morewidely distributed, and the area hotness of pull requests
can hardly contribute to the merging of pull requests for
mature projects.

Fig. 3. The comparison between integrators’ experience.

13. https://github.com/react-boilerplate/react-boilerplate/pull/2256
14. https://github.com/mggg/GerryChain/pull/290
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For the lifetime of pull requests (lifetime_minutes), the
explained variance decreased from 20% (row 2, column 11 -
period: before 2016.6) to 13% (row 2, column 13 - period: after
2018.6). Although this factor negatively influenced the pull
request merging in all three time periods, the effect size
decreased.We calculated the changes in the pull request life-
time median value as projects evolve. It is found that the
overall processing time of pull requests increases signifi-
cantly (before 2016.6: 802min, 2016.6-2018.6: 1,188min, and
after 2018.6: 1,316min). There are many possible reasons for
this situation. E.g., at the beginning of a project, the develop-
ment team is small, and the pull requests that have been left
unprocessed for a long time are likely to be rejected. As the
project develops, more pull requests are left unprocessed
(before 2016.6: 58, 2016.6-2018.6: 112, and after 2018.6: 174).
The reviewers have their processing order, so the overall
processing time of pull requests grows, but the impact on the
decision becomes smaller. Also, we think as projects become
mature, the use of various supporting mechanisms in the
review process becomes stabilized, e.g., the use of CI
tools [10], the request of reviews [47], etc. These mechanisms
lead to the increase of pull request lifetime. However, the
standardized processes reduce the impact of processing time
on the final result. There may not be a single reason for the
change in results. Still, the result reveals that pull request
processing time on decision-making decreases as the project
develops.

As a project evolves, the integrator’s experience (prior_re-
view_num) becomes more and more important for pull
request decisions, while the area hotness of contribution
(commits_on_files_touched) no longer influences the deci-
sion making. Compared to the early stages of project
evolution, the influence of pull request lifetime (lifetime_-
minutes) on pull request decisions decreases.

4 CASE STUDY

Since companies’ contribution is relatively high in the open
source world [48], the strategy, decision making, and partic-
ipation patterns of different companies in open source vary
greatly [49]. The participation of companies in open source
projects also impacts the inflow and retention of external
contributors [50]. Therefore, we also consider it interesting

to analyze the impact of affiliation-related factors on pull
request decisions. Therefore, we added the analysis of affili-
ation-related factors.

We first merge developer accounts and ignore those with
more than one affiliation (this may be due to developers’
affiliation). When considering the merge rate (Figs. 4, 5, and
6), we only consider the pull requests submitted and inte-
grated by different users, as factor same_user significantly
influences pull request decisions and acts as the precondi-
tion of factor same_affiliation.

Different affiliations have different contribution intensi-
ties regarding the number of submitted and integrated pull
requests [49]. Fig. 4 shows that the merge rate for different
affiliations varies a lot. For Facebook, its related pull reques-
ts’ merge rate is much lower than other affiliations. This
may be related to differences in policies or the way contri-
butions are handled by different companies.

Second, we consider the effect of whether the pull
request submitter and the integrator are from the same affil-
iation on pull request decisions. In the overall case, the
merging probability is higher for pull requests submitted by
their colleagues than those by developers from other affilia-
tions (see Fig. 5), which is in line with our perception. How-
ever, from the result of RQ2 (Table 5 same_user=0), we
found that when considering together with other factors,
the factor same_affiliation, although significantly associated
with pull request decisions, is less effective (explaining only
0.3% variance).

Our statistical analysis of each company reveals differen-
ces in the way companies treat their own contributions and
external contributions (see Fig. 6). For Facebook, the proba-
bility of merging external contributions is even higher than
that of merging internal contributions. We think that the
policy and openness of different companies lead to the dif-
ferent treatment of external contributions.

5 DISCUSSION

5.1 Pull Request Decisions Explained

Our study shows that there is no one answer to our research
questions. Instead, there are generic answers and specific
answers for the context represented, given the dependencies
among factors. Generally, whether a pull request is submitted

Fig. 4. Merge rate of top 10 affiliation when acting as contributor and
integrator respectively.

Fig. 5. Overall merge rate for affiliations integrating their own contribu-
tions (self) or contributions from other affiliations (other).
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and integrated by the same person, its lifetime, experience of
the integrator, presence of comments, and coreness of the con-
tributor play decisive roles in pull request decisions. When
comments in pull requests exist, the positive emotion for com-
munication influences pull request decisions. When pull
requests use CI tools, the percentage of build failure influen-
ces the decision.

Interestingly, the influence of the factors changes with a
change in context:

Developer characteristic (same user or not): Compared to
pull requests integrated by different persons, when pull
requests are submitted and integrated by the same person,
the importance of the integrator’s experience and the con-
tributor’s coreness increase for pull request decisions, while
the importance of the pull request lifetime and the included
number of commits decreases (Section 3.2.1).

Pull request characteristic (has comments or not): When pull
requests have comments, the lifetime and the number of
commits included are more important compared to pull
requests without any comment. In contrast, the importance
of the integrator’s experience and whether the contributor
and integrator are the same person are less important when
comments exist (Section 3.2.2).

Project characteristic (different team sizes): The importance
of the integrator’s experience and whether the contributor
and the integrator are the same person for pull request
decisions changes nonlinearly for teams of different sizes
(Section 3.2.3).

Tool (CI exists or not): The use of CI tools decreases the
importance of comment existence, but the importance of
whether the contributor and the integrator are the same per-
son increases for pull request decisions (Section 3.2.4).

Project evolution (different periods): The importance of the
integrator’s experience in pull request decisions increases as
projects evolve, while the importance of area hotness and
the lifetime of the contribution decreases (Section 3.2.5).

5.2 Relations to the Literature

5.2.1 Discussion of Previous Conclusions

Referring to the literature (summarized in Table 10), rela-
tively speaking, project-related factors are less discussed
than pull-request- and developer-related factors. To this
end, our study contributes in that not only have few project

characteristics been explored in the literature, but they have
been considered relatively less important (explains 2% of
the variance) than developers (explains 52% variance) and
pull request characteristics (explains 46% variance). Our
study further provides evidence that human factors are as
important or more important than technical factors [51].

When comparing the findings of previous studies with
each other and those of our study, we found that in most of
the cases, the results were consistent. Only four factors had
opposite findings regarding the direction of influence, i.e., file-
s_changed, project_age, team_size and num_commits. One poten-
tial explanation that has emerged from our study is that all
these factors are relatively less important for pull request deci-
sions, which can potentially explain the differences in the
findings. Alternatively, this can simply be due to the differen-
ces in the dataset used. Interestingly, many factors that are
widely studied across related works, e.g., core_member and
src_churn, indicating that these factors are likely to influence
the decision, are not as important for pull request decisions.

For the factor num_commits, which is relatively important,
ranking in the top 10 across models (Table 6), we focus on
this factor to uncover the reasons for conflict findings
between previous studies. Yu et al. [10] found a positive
effect (the likelihood of pull requests being accepted
increases as the number of commits increases), while other
studies [52], [53], [54] found a negative effect. Our results are
consistent with Yu et al. and argue that the number of com-
mits cannot simply indicate the contribution size. At the time
of submission, the number of commits indicates the contri-
bution’s size to some extent. However, as the pull request
review process continues, contributorswill modify their con-
tributions based on the review feedback and thus complete
more commits to facilitate the merging of contributions.
Accordingly, we collect the number of commits contained in
a pull request at both open time and close time, investigate
their effects on pull request merging separately, and find
that the number of commits at commit time is negatively cor-
related with pull request merging. At the same time, it shifts
to a positive correlation at close time.15 Therefore, when a
pull request is submitted, the number of commits represents
the size of the contribution [52], [53], [54]. However, commits
during the review process represent the changes made by
the contributor according to the reviewers’ comments, thus
increasing the likelihood of pull request acceptance [10].

5.2.2 Findings in General Context

Considering all pull requests without distinguishing
between contexts, the top 5 factors for explaining pull
request decisions are: whether the contributor and integrator
are the same people (same_user), the lifetime of pull requests
(lifetime_minutes), the experience of the integrator (prior_re-
view_num), whether there exists comment (has_comments),
whether the contributor is the coremember (core_member).

1) same_user. The association of this factor reflects the
decision propensity of self-integration in the pull-
based development model, i.e., a preference for self-
rejected rather than self-approved. As you can see

Fig. 6. Merge rate of different affiliations when integrating their own con-
tributions (self) or contributions from other affiliations (other).

15. https://github.com/zhangxunhui/TSE_pull-based-develop-
ment/blob/main/technical_report.pdf
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from the related work [55], the self-approved patch
is defect-prone. To address this situation, future
researchers need to consider whether to change the
pull-based developmentmodel, e.g., for self-approved
contributions, generate a warning to other developers
in the community.

2) lifetime_minutes. In related works [52], [56], they only
discussed the direction of the association of this fac-
tor with pull request decisions. We found that, com-
pared to other factors, the correlation between
lifetime and pull request decisions is relatively high.
In the future, when exploring the influence of factors
on pull request decisions, the lifetime should be con-
sidered as an essential control variable.

3) prior_review_num. This factor is not considered to
have a significant association with pull request deci-
sions in related work [57]. However, our result
shows that it is significantly important, which ranks
the third when considering other factors in an over-
all perspective. The conflict of conclusion here is not
to negate the past research but offers a view applica-
ble at a large scale, as Baysal et al. only did a case
study on two projects.

4) has_comments. Many previous studies focused on the
association between the number of comments and
pull request decisions [2], [10], [12], [15], [24].
Although there were studies focused on comment
existence [53], [58], there is no discussion on its
importance and comparing these two factors. Our
result finds that the existence of comments is rela-
tively important and can replace the number of com-
ments in explaining pull request decisions.

5) core_member. For this factor, compared to previous
studies [2], [10], [15], [24], [59], [60], we not only con-
clude a positive correlation of consistency but also
find that the factor has a sizable effect when com-
pared with all the other factors. Unlike the top 4 fac-
tors, this factor is present at the time of pull request
submission. Therefore, this factor has an irreplace-
able effect on predicting pull request decisions at the
open time of pull requests.

5.2.3 Findings in Different Contexts

Under different contexts, we find the relative importance of
the influence of postconditional factors. In previous studies,
while Iyer et al. [24] found that both positive emotion and neg-
ative emotion significantly affect pull request decisions, our
results, on the other hand, found that only positive emotion
had a sizable effect when considering all factors. It also illus-
trates that when there exist comments, effectively tapping the
hidden positive emotion in comments is important for pre-
dicting the final states of pull requests. Also, for pull requests
using CI tools [10], the pass of CI builds positively and signifi-
cantly influences the merging of pull requests. However, our
model verifies its relative importance compared to other fac-
tors, i.e., the decisions of pull requests are heavily influenced
by the outcome ofCI builds, which is the thirdmost important
factor in explaining pull request decisions.

While having comments leads to a lower probability of
merging pull requests, it is needed to differentiate according

to the characteristics of the commenter. We found that if
there exist comments from others (other_comment), e.g., end-
users or external developers, the pull request is more likely
to be merged (Section 3.1.1). Different from Golzadeh et al.
[61], we validated on a much larger dataset and consider
different kinds of projects instead of just Cargo ecosystem.

The importance of factors changes and varies signifi-
cantly as the context changes. And these findings have not
been explicitly discussed in previous studies. We find that
the number of commits has a sizable effect on the decision-
making of pull requests containing comments. For those
without comments, the effect is relatively small. This leads
to the fact that when studying factors’ association with
pull request decisions, the impact of the number of com-
mits on pull request decisions should be fully considered
when there is no comment. Similarly, for pull requests that
do not use CI tools, more significant consideration needs
to be given to the weight of the comment. As the project
develops, the importance of the factors changes. Among
them, the influence of contribution’s area hotness (commit-
s_on_files_touched) on pull request decisions should be con-
sidered for the early stage of the project. And as projects
become mature, the experience of integrators becomes
important.

5.3 Implications

Our findings have implications for research and practice.
Unlike relatedwork, we construct a model from amore com-
prehensive perspective by collecting measurable factors
from all pull request decision-related papers to explain the
association and relative importance of factors with pull
request decisions. The discussion of different contexts
reveals the influence of context on the relevance of factors,
which guides future related studies to select appropriate
control variables when empirically analyzing pull request
decisions in global or different contexts. Some findings from
the study also provide theoretical support for future research
and the optimization of pull-based development models.
Next, wewill discuss the implications in detail.

5.3.1 For Research

For future research, this paper can give some guidance. For
example:

When conducting research on pull request decisions, research-
ers can find usable findings from our paper for both a gen-
eral overview and specific contexts (see Section 3.1). E.g.,
when studying the association of new factors with pull
request decisions, different factors should be considered as
control factors for different situations, and here we give the
recommended list (see Table 9) (the set of factors with more
than 1% of explained variance in various situations).

For other contexts, our dataset and scripts can be used to
find the factors that rank high on the explanation of pull
request decisions in the corresponding contexts as control
variables.

Since the impact of a factor on the decision may vary at
different periods of the pull request (e.g., num_commits -
Section 5.2), we think that future research and the construc-
tion of evaluation tools need to consider the impact of
changing factor dynamics.
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When conducting research related to pull-based development,
researchers can find useful data and conclusions. E.g.,
when studying how CI tools influence the code review
process, researchers can easily find that in an overall per-
spective, the usage of CI tools increases the likelihood of
pull request acceptance (Section 3.1.1), and the outcome of
CI builds significantly influence the decision making with
large effect (Section 3.1.2). However, there still exist excep-
tional cases, e.g., merge without passing CI builds. Thus,
subsequent studies can be conducted based on our data
and findings.

5.3.2 For Practice

The results of our study can provide open source contribu-
tors and maintainers with many recommendations for prac-
tices to follow. For example:

For pull request contributors, if they want to increase the
chances of having their contributions being accepted, they
should respond to criticism from stakeholders on time, as
the lifetime significantly influences pull request decisions
with a large effect size.

Suppose there are other non-reviewers involved in the
discussion (other_comment exists). In that case, the pull
request is more likely to be merged, and contributors are
advised not to give up and modify it according to the proj-
ect requirements. As “developers need be more aware of
the human-centric issues of their end-users,” [62] one possi-
ble explanation for the influence of other_comment is that
end-user feedback can help a lot in improving the quality of
the software.16 The discussion may be closely related to the
project requirements and development direction, which
directly influences whether the contribution can be merged
or not [63].

For pull request maintainers, as the build outcome of CI
tools significantly influences pull request decisions, we rec-
ommend maintainers install related CI tools to help
improve the merge rate of contributions.

Contributions that remain unprocessed for a long time
are likely not to be merged. On the one hand, maintainers
purposely do not pick pull requests that are either not to
their interest or do not need immediate attention. On the
other hand, reviewers do not respond at the right time [64].
The delay of response may lead to the loss of peripheral
contributors [65] and produce many abandoned contribu-
tions in the long run [66]. We think project managers can
use the mention-bots to reduce the response time [67]. Or
predict and alert on pull request remaining processing time
to speed up the code review [3].

For both contributors and integrators, we suggest they par-
ticipate in the review process with a positive attitude and
promote the merging of contributions encouragingly. Our
study further solidifies the importance of positive emotion
for pull request decisions by integrating multiple factors. A
positive atmosphere is of great importance for intra-project
communication and efficient collaboration [68].

For the improvement of the pull-based model, as we find that
self-integrated pull requests are likely to be rejected, and a
previous study [55] found that self-approved contributions
are bug-prone. Therefore, some adjustments can be made to
self-integration. For self-integrated pull requests, the inte-
grator’s experience is a determinant factor for the decision
of pull requests. We wonder if a warning flag could be
added to pull requests integrated by inexperienced integra-
tors to attract others for verification.

6 THREATS TO VALIDITY

Our work builds on a decade of research on pull-based
development, extracting the features relevant for pull request

TABLE 9
The Recommended Control Factors for Different Contexts

overall other-integrated self-integrated has comment no comment use CI no CI early stage of projects

same_user ✓ ✓ ✓ ✓ ✓ ✓

lifetime_minutes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

prior_review_num ✓ ✓ ✓ ✓ ✓ ✓ ✓

has_comments ✓ ✓ ✓ ✓ ✓ ✓

core_member ✓ ✓ ✓ ✓ ✓ ✓ ✓

num_commits ✓ ✓ ✓ ✓ ✓ ✓ ✓

other_comment ✓ ✓ ✓ ✓ ✓ ✓

ci_exists ✓ ✓ ✓

hash_tag ✓ ✓ ✓ ✓ ✓

account_creation_days ✓ ✓

commits_on_files_touched ✓ ✓ ✓ ✓

reopen_or_not ✓ ✓

open_pr_num ✓ ✓ ✓

prev_pullreqs ✓

first_pr ✓

files_added ✓

contrib_open ✓

perc_pos_emotion ✓

description_length ✓

ci_failed_perc ✓

num_comments ✓

files_changed ✓

followers ✓

Note: ✓marks the recommended control factors when building logistic regression models for pull request decisions

16. https://github.com/rails/rails/pull/20851
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TABLE 10
Factors Related to Pull Request Decisions in Related Articles
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decision-making. In this way, we stand on the shoulders of
giants and hence benefit from it and inherit the limitations of
the features they present. In addition, we face the following
limitations and classify them into four categories, i.e., con-
struct validity, internal validity, external validity, and conclu-
sion validity [69].

6.1 Construct Validity

� The measure of relative importance may change if we
choose a different method, which may lead to a differ-
ent conclusion. There are different ways to calculate
the importance of factors in a logistic regressionmodel,
e.g., the percentage of variance explained by each fac-
tor [45], which is similar to the percentage of total vari-
ance explained by least squares regression [39], the
standardized coefficient [70], and the change in logistic
pseudo partial correlation [71]. This is a research field
in itself and relates to the choice of the algorithm [72],
[73]. To compare the importance of factors in different
models, in this paper, we choose the percentage of
explained variance to represent factor importance. The
choice of the metric may affect the consistency of the
conclusion to a certain extent. However, as this metric
is widely used in many related works [10], [12], [74],
our result can reflect the influence of factors on pull
request decisions to a certain extent.

� The inconsistency between the GHTorrent dataset and
the results returned by the GitHub API brought about

errors in the time-related factors, whichmay influence
the results. We checked 100 randomly selected records
for each of the four factors first_response_time, account_-
creation_days, project_age, and ci_latency, and the preci-
sion was 98%, 97%, 96%, and 94%, respectively. Our
dataset has inherited the problems, but from our
investigation, the number of errors in our dataset
is small compared to the size we have used for
analysis.

� A developer may have multiple accounts in GitHub.
We did not combine the accounts in our model.
However, we analyzed this situation with a relevant
tool [75] and found that 94% of the accounts in our
dataset corresponds to only one developer. Due to
the importance of the factor same_user in our model,
we examined the reliability of the factor and found
that the case of a user having multiple accounts does
not affect its accuracy.

� For RQ2, we divided the data according to team size
and the closing time of pull requests. This paper does
not discuss the robustness of threshold selection,
whichmay lead to less reliable conclusions. However,
according to previous studies [52], [53], they split the
data into three subsets for the trend analysis. Also,
there are infinite ways to select the data division
threshold, which can lead to differences in data size
for different subsets. While optimizing the differen-
ces of data subsets, our result effectively reflects dif-
ferent contexts’ influence on pull request decisions.

First column lists factors in alphabet ascending order in each class, the rest columns list related articles and the result of each factor. Horizontal Line in the middle
of shape ( ) means the factor is removed when building models because of multicollinearity. Filling: Filled ( ) means significance is reported and unfilled ( )
means significance is not reported because of not using statistical model or inconsistent conclusions. Size of filled shape: Big shape ( ) shows statistically signifi-
cant relation and small shape ( ) statistically insignificant with 95% confidence threshold. Color: Blue means a positive relation (meaning increase in the chan-
ces of pull request acceptance), red means a negative relation, gray means uncertain relation because of not using statistical model or nonlinear conclusion.
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6.2 Internal Validity

� The absence of factors may have an impact on the rel-
ative importance of factors in the conclusion.We con-
sider factors that can be mined from archival data
and exclude those factors, e.g., eye track-related fac-
tors [21], that are difficult to quantify in a scalable
manner. These factors also include factors that focus
only on specific scenarios, e.g., factors related to
Microsoft [3] and npm ecosystems only [16]. Because
these factors also influence pull request decisions, as
mentioned in previous studies, removing them can
impact factors’ relative importance on affecting pull
request decisions. We are not sure how these factors
perform together with our collected factors. At least,
we have collected asmany relevant factors as possible,
quantified them, and added them to our dataset. Also,
during data preprocessing, we remove the factor bug_-
fix due to 99.3% missing values, and thus, we are not
sure how this factor affects pull request decision-mak-
ing. Although many tools can predict whether a pull
request fixes a bug, we only use the manually added
label to classify pull requests to ensure data’s accuracy.
Future studies that want to delve deeper into the
impact of these deleted factors can use other tools to
complement this data for further analysis.

� There lacks a careful consideration of different types of
projects. It is undeniable that when building models,
it’s better to consider different kinds of projects sepa-
rately. However, the heterogeneity of projects has
many dimensions, not only limited to the code contri-
bution and review process. Therefore it isn’t easy to
achieve accurate classification of projects. This paper
has considered the issue of project heterogeneity to
some extent, which includes many project related fac-
tors and treats team size as a project context.

6.3 External Validity

� Project selection introduces data bias when building
models, resulting in our conclusions that may not
apply to the complete set of GitHub data or some
specific types of projects. E.g., projects written in
programming languages other than Java, Python,
Ruby, JavaScript, Scala, and Go. Since it is impracti-
cal to model using data from the complete GitHub
collection, the diversity of our data can help avoid
this problem to a certain extent. Similarly, when
selecting the projects, we selected the top 3% of proj-
ects in terms of the number of submitted pull
requests and filtered out the projects in which the
number of closed pull requests was less than 20. In
Section 2.2, we mentioned that we specified these
thresholds through discussion for the scalability and
validity of the dataset. We cannot guarantee that our
conclusions are available for other projects. We have
at least tried to select the proper set of projects.

� The generalizability of our study is not verified in
other social coding platforms (other than GitHub) or
other modern code review tools, e.g., Gerrit. One
major reason for differences can be the factors

influencing pull request decisions on different plat-
forms. The comparison of factors’ influence on con-
tribution decisions under different platforms or tools
belongs to another research in the future.

6.4 Conclusion Validity

� For logistic regression models, comparing the vari-
ance explained by the same factor in different models
is not accurate. This may affect the correctness of the
conclusions, as the variance explained by the factors
in different regression models fluctuates when differ-
ent models use different training sets. But there is not
a good solution to the problem. However, in our
study, we consider only the factors that change dra-
matically in different contexts. When building mod-
els with the same set of predictors, large changes in
explained variance can be used to describe the change
in factor importance.

7 RELATED WORK

The related work of this paper is mainly divided into four
parts. The first subsection introduces modern code review.
The second subsection introduces factors influencing pull
request decisions. Third, we introduce papers that tried to
integrate related factors and explain the relative importance
of the factors influencing pull request decisions. Fourth, we
discuss other studies that have introduced scientific research
methods based on Big Data.

7.1 Modern Code Review

Although Fagan et al. developed a structure of code inspec-
tion in 1976 [76], it is very time-consuming and not applica-
ble in practice [77]. Therefore, modern code review comes
into being, which is informal, tool-based, and occurs regu-
larly in practice [78].

Many tools or platforms support modern code review.
Different companies and organizations use various tools and
have their policy during the code review process [79]. CRIT-
ICS [80], ReviewClipse [81], and Mylyn Reviews [82] are
code review tools integrated into IDE, combining the code
review and development process. Another popular tool
called Gerrit [83], which supported many projects including
Android, OpenStack is a Git-based tool. CodeFlow, which is
similar to Gerrit, is widely used byMicrosoft [78].

In recent years, the pull-based development model has
become a new paradigm for distributed software develop-
ment. Many code-hosting sites, notably GitHub, support
the model by integrating it with code review systems [1].
Unlike Gerrit, pull requests on GitHub focus not only on a
single commit but also on a whole branch [84]. In contrast,
pull request is easy to participate in the contribution process
without having to master many git operations [85]. Its well-
designed user interface and support for social collaboration
help improve the usability and code review process of
GitHub [86]. These characteristics help GitHub get more
than 79 million users and 238 million repositories. There-
fore, we would like to start with GitHub’s pull-based model
to explain the factors associated with pull request decisions.
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7.2 Factors Influencing Pull Request Decisions

The factors influencing pull request decisions can be
divided into three categories, namely, developer character-
istics, project characteristics and pull request characteristics.

7.2.1 Developer Characteristics

Developer characteristics are related to the contributor
and the integrator. This category contains factors related to
human beings and interactions between two contributors or
a contributor and a project. This category includes basic

information on developers, including their gender [87],
country information [12], and affiliation [88], [89]. Some stud-
ies focus on personal features, including the personality
and emotion of developers [2], [24], while others studied the
relationship between the developer and the target proj-
ect, including the experience of developers, which is concep-
tualized as the count of previous pull requests, accepted
commit count [90], days since account creation [91], whether
it is the first pull request of the contributor [52], [53], the
prior reviews of the integrator [89], the coreness of the con-
tributor [10], [15], [52], [59], [92], [93], the social distance [15]
and social strength [10] of contributor to the integrator, and
the response time of the integrator to the pull request [10].

7.2.2 Project Characteristics

Studies on project characteristics mainly talk about the
basic information of target projects when submitting
pull requests, which can be summarized into the following
aspects: programming language [52], [58], [91], project popular-
ity, measured as watcher count [28], star count [28], fork
count [54], [91], age of the project [10], [15], workload mea-
sured as the number of open pull requests [10], [89], active-
ness measured as the time interval in seconds between the
opening time of the two latest pull requests [54], and open-
nessmeasured as the count of open issues [54].

7.2.3 Pull Request Characteristics

Related works focus on the basic information of pull
requests, which includes the size of the change measured at
the file level, commit level, and code level [10]; the complexity
of a pull requestmeasured as the length of description [10]; the
nature of pull requestsmeasured as bug fixes [58], [90], the test
inclusion of pull requests [10], [15], [92], and the hotness or rel-
evance of a PR [1], [10], [15], [53], [88], [90]. Additionally,
some studies focus on the process information of pull
requests generated during the code review process, includ-
ing the reference of a contributor, issue or pull request [10],
[25]; the conflict of a pull request [1]; the complexity of discus-
sion [28]; the emotion in discussion [24]; and CI tool usage dur-
ing the review process [10], [11], [26], [94], [95].

7.3 Attempts at Explaining Pull Request Decisions

Few studies have tried to integrate the factors related to pull
request decisions and have explored their relative impor-
tance in predicting outcomes. Gousios et al. [1] first collected
a set of factors and performed a preliminary exploration of
relative importance based on the random forest method.
However, it was in the early stage of this study area. Tsay
et al. [15] used an explanatory method to explore the

importance of social and technical factors. However, similar
to Gousios et al.’s work [1], their work also acted as ground-
breaking research, leading to the emergence of many other
studies. Since then, a few follow-ups have come into being,
e.g., personality-related factors [2], geographical location [12],
and CI-related factors [10]. In 2020, Dey et al. [16] collected 50
factors of 483,988 pull requests based on 4,218 projects. They
also used random the forest method to determine the impor-
tant factors in predicting the decision. However, they focused
only on the npm community and gathered factors without
conducting a systematic literature review. As a result, factors
related to CI, personality, emotion, geographical, etc., were
missing. Furthermore, to the best of our knowledge, no study
has synthesized the existing body of knowledge to empiri-
cally explain pull request decisions.

7.4 Big-Data-Based Scientific Research Methods

Big Data has provided many research opportunities, for
which there are mainly two research methods, i.e., data-
driven and theory-driven methods. Maass et al. [96] dis-
cussed the difference between these two methods and
found that the data-driven method first focuses on the data
and then extracts patterns and forms into theory. However,
the theory-driven method first comes up with a theory and
uses data to prove it. Therefore, our study is data driven,
finding patterns in different subsets of data and forming
them into theory.

For the process of a data-driven study, Kar et al. [97] sug-
gested that there are 6 main steps for building up a theory,
i.e., data acquisition, data conversion, data analysis, factor
identification, theory development and model validation.

There are many studies in different research areas that
have used data-driven research methods. For example,
Greenwood et al. [98] studied the influence of race, gender,
and socioeconomic status on the incidence rate of human
immunodeficiency virus (HIV) infection using data from 12
million patients. Likewise, other previous studies [1], [10],
[12], [15] on pull request decisions all used data-driven
methods.

However, for the data acquisition part, previous studies
focused only on one specific type of factor or several self-
defined factors. Without including all the related factors,
one can hardly gain an overall grasp of the influence of all
factors. Therefore, we conducted a systematic literature
review in this study. According to Kitchenham et al. [99],
a systematic literature review is an important part of
evidence-based software engineering (EBSE), as it can
aggregate all existing evidence and provide guidelines for
researchers.

8 CONCLUSION

This study synthesizes the existing body of knowledge to
empirically explain pull request decisions. Our mixed effects
logistic regression models built on large and diverse GitHub
project data show that a handful of factors (5 to 10) explain
pull request decisions the most. The most important factor
influencing pull request decisions is whether the contributor
and the integrator are the same user, explaining more than
30% of the variance. Surprisingly, this factor did not surface
in any of the prior works and is thus a contribution of this
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study. In addition, positive emotions during discussion and
CI build results become relatively more important when a
pull request has comments and uses CI tools, respectively.
Furthermore, we noticed that the use of CI tools replaced the
function of comments, indicating changes in the influence of
these factors. We think that this study has empirically synthe-
sized an explanation for pull request decisions that is useful
for research and practice.
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