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NOISE PSD INSENSITIVE RTF ESTIMATION IN A REVERBERANT AND NOISY
ENVIRONMENT

Changheng Li and Richard C. Hendriks

Signal Processing Systems (SPS) Group, Delft University of Technology, Delft, The Netherlands

ABSTRACT

Spatial filtering techniques typically rely on estimates of the
target relative transfer function (RTF). However, the target
speech signal is typically corrupted by late reverberation and
ambient noise, which complicates RTF estimation. Existing
methods subtract the noise covariance matrix to obtain the
target plus late reverberation covariance matrix, from where
the RTF is estimated. However, the noise covariance ma-
trix is typically unknown. More specifically, the noise power
spectral density (PSD) is typically unknown, while the spa-
tial coherence matrix can be assumed known as it might re-
main time-invariant for a longer time. Using the spatial co-
herence matrices we simplify the signal model such that the
off-diagonal elements are not affected by the PSDs of the late
reverberation and the ambient noise. Then we use these el-
ements to estimate the target covariance matrix, from where
the RTF can be obtained. Hence, the resulting estimate of the
RTF is insensitive to the noise PSD. Experiments demonstrate
the estimation performance of our proposed method.

Index Terms— RTF estimation, spatial filter, Eigenvalue
Decomposition

1. INTRODUCTION

Microphone arrays are widely used for hands-free speech
communication applications such as mobile phones and hear-
ing aids. Spatial filtering techniques like the minimum vari-
ance distortionless response (MVDR) beamformer [1, 2] and
the multichannel Wiener filter (MWF) [2, 3] are often used
to extract target signals from the noisy microphone record-
ings typically corrupted by reverberation and ambient noise.
However, these filters critically rely on knowing the relative
transfer functions (RTFs) from source to microphones. In this
work we therefore address the RTF estimation problem of a
single source in a reverberant and noisy environment.

Several RTF estimation methods have been proposed in
recent years [4–11], including the covariance subtraction (CS)
method [7–9] and the covariance whitening (CW) method
[8–10]. In reverberant and noisy environments, these meth-
ods require the noise and late reverberation covariance matri-
ces to be known. The CW method subtracts the noise covari-

Changheng Li is supported by the China Scholarship Council.

ance matrix from the noisy covariance matrix prior to whiten-
ing by the late reverberation covariance matrix. However, the
noise covariance matrix is usually unknown. In this paper,
we model the noise covariance matrix as a time-varying noise
PSD multiplied by a time-invariant spatial coherence matrix.
In that case, the noise PSD is assumed unknown, but the
spatial coherence matrix can be assumed known as it might
remain time-invariant for a longer time. Under this relaxed
assumption, we propose a method to estimate the RTF in a
reverberant and noisy environment, which avoids using the
noise PSD and is insensitive to noise PSD estimation errors.

2. PRELIMINARIES

2.1. Signal model
We consider the problem of estimating the RTFs of a sin-

gle acoustic source in a reverberant and noisy environment
using an array of M microphones with an arbitrary configu-
ration. In the short-time Fourier transform (STFT) domain,
the signal received at the m-th microphone is given by

ym (l, k) = xm (l, k) + rm (l, k) + vm (l, k) , (1)

with l the time-frame index, k the frequency bin index, and
m the microphone index. Let xm denote the speech including
the direct and early reflections of the source. Let rm denote
the late reverberation including all the late reflections of the
source, which can be considered diffuse. Further, vm denotes
the ambient noise component and microphone self-noise. The
early speech component can be modelled as

xm (l, k) = am (l, k) s (l, k) , (2)

with am (l, k) the RTF of the source from the reference mi-
crophone to the m-th microphone. Without loss of generality,
we select in this work the first microphone as the reference
microphone, which means a1 = 1. Stacking all M micro-
phone signals {ym}Mm=1 into a vector, we have

y (l, k) = a (l, k) s (l, k) + r (l, k) + v (l, k) ∈ CM×1. (3)

Assuming the three components in Eq. (3) to be mutually
uncorrelated, the noisy covariance matrix is given by

Φy (l, k)
∆
= Φx (l, k) +Φr (l, k) +Φv (l, k) , (4)IC
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where Φp
∆
= E

{
ppH

}
for p = y,x, r or v with E {·} the

expectation. From Eq. (2), we have

Φx (l, k) = ϕs (l, k)a (l, k)a
H (l, k) , (5)

with ϕs (l, k) the PSD of the source at the reference micro-
phone. For the late reverberation, we adopt the commonly
used model from [12]

Φr (l, k) = ϕγ (l, k)Γ (k) , (6)

where ϕγ (l, k) is the unknown PSD of the late reverberation
and Γ (k) is the non-singular and known spatial coherence
matrix which can be calculated using the microphone array
geometry [13]. For the residual noise, we assume its covari-
ance matrix has a similar form, i.e.,

Φv (l, k) = ϕv (l, k)Ψ (k) , (7)

where ϕv (l, k) is the unknown PSD and Ψ (k) is the known
spatial coherence matrix.

2.2. Problem formulation
Using Eqs. (5) to (7), we can formulate the noisy covari-

ance matrix as

Φy(l, k)=ϕs(l, k)a(l, k)a
H(l, k)+ϕγ(l, k)Γ(k)+ϕv(l, k)Ψ(k) .

(8)
We assume the microphone signals to be stationary over a

frame consisting of Ls sub-time frames, indexed by ls, and
estimate Φy (t, k) for one frame using the sample covariance

matrix Φ̂y (l, k) = 1/Ls

Ls∑
ls=1

y (ls, k)y
H (ls, k).

The aim of this work is to estimate the RTF vector a (l, k)
using the estimated covariance matrix Φ̂y (l, k) and the
known spatial coherence matrices Γ (k) and Ψ (k), while
the PSDs ϕs (l, k) , ϕγ (l, k), and ϕv (l, k) are all unknown.
Prior to presenting our proposed method in Section 4, we
summarize in Section 3 the CW method from [10] that is
meant to estimate a (l, k) assuming the complete Φv (l, k) is
known instead of only Ψ (k). For notational simplicity, we
omit the frequency and time indices as all processing will be
done per time-frequency bin independently.

3. STATE OF THE ART AND MOTIVATION

Existing methods for RTF estimation include the covari-
ance subtraction (CS) method and the covariance whitening
(CW) method. The CW method has been shown to outper-
form the CS method [8,9]. Therefore, we introduce here only
the CW method. To use the CW method, we need to assume
the covariance matrix of the noise Φv is given, and subtract it
from the noisy covariance matrix Φy, that is

Φx+r = Φy −Φv = ϕsaa
H + ϕγΓ. (9)

With the signal model from Eq. (9), the CW method can esti-
mate the RTF vector in three steps. First, it whitens the noisy

signal using Γ
1
2 , which is the principal square-root of the spa-

tial coherence matrix Γ satisfying Γ = Γ
1
2Γ

H
2 with Γ

H
2 the

Hermitian transpose of Γ
1
2 . Note that the square-root is not

unique and in this work, we use the Cholesky decomposition.
The covariance matrix after whitening has the form

Φw = Γ− 1
2Φx+rΓ

−H
2 = ϕsawaw

H + ϕγI, (10)

where aw = Γ− 1
2 a is a scaled version of the principal eigen-

vector of Φw. Hence the second step is to take the eigen-
value decomposition of Φ̂w and find its principal eigenvector
u. The last step is to estimate the RTF vector by

â =
Γ

1
2u

eTΓ
1
2u

, (11)

where e = [1, 0, · · · , 0]T .
A weakness of the CW method is that it needs to as-

sume the covariance matrix of the ambient noise is known and
subtracted. Subtracting an estimated noise covariance matrix
Φ̂v = ϕ̂vΨ, the covariance matrix after whitening becomes

Φw = ϕsawaw
H + ϕγI+∆ϕvΓ

− 1
2ΨΓ−H

2 , (12)

with ∆ϕv the noise PSD estimation error. Here, aw is no
longer a scaled principal eigenvector of Φw. Hence, inaccu-
racies in ϕ̂v will lead to significant estimation errors in â.

4. PROPOSED METHOD

For the case that not the complete covariance matrix of the
ambient noise is known, but only Ψ, we propose an alterna-
tive way to estimate the RTF vector by using the off-diagonal
elements of a simplified covariance matrix. The proposed
method will be less sensitive to estimation errors due to varia-
tions in the noise PSD ϕv . Note that, the technique using only
off-diagonal elements of a matrix was used before in [14] for
the PSDs estimation and in [15] for radio telescope arrays.

4.1. Parameter Identifiability

Before using any estimation methods, the identifiability
condition that the number of equations is equal or larger than
the number of unknowns should be satisfied [16]. Since Φy

is a Hermitian matrix, in Eq. (8) there are M2 knowns (tak-
ing Hermitian symmetry and complex values of the data into
account). Since a1 = 1, there are 2 (M − 1) unknowns due
to the complex-valued a and there are 3 unknown real-valued
PSDs. Therefore, we have altogether the necessary condition

M2 ≥ 2 (M − 1) + 3, (13)

which means M ≥
√
2 + 1. Noticing that M should be an

integer value, we have M ≥ 3.
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4.2. Simplification
In Eq. (8), since the spatial coherence matrices Γ and Ψ

are assumed to be known, we can simplify the signal model
by using the square-root decomposition (e.g. the Cholesky
decomposition) of Ψ = Ψ

1
2Ψ

H
2

Φ̃y = Ψ− 1
2ΦyΨ

−H
2 = ϕsãã

H + ϕγΨ
− 1

2ΓΨ−H
2 + ϕvI,

(14)
and the eigenvalue decomposition (EVD) of Ψ− 1

2ΓΨ−H
2 =

UΛγU
H , such that

Φ̄y = UHΦ̃U = ϕsāā
H︸ ︷︷ ︸

Φ̄x

+ ϕγΛγ + ϕvI, (15)

where ā = UH ã = UHΨ− 1
2 a.

4.3. covariance matrix reconstruction
The simplified covariance matrix in Eq. (15) is now a

summation of a rank-1 matrix Φ̄x and a diagonal matrix
ϕγΛγ + ϕvI. Hence, the elements of Φ̄y have the form

Φ̄y{i,j} =

{
ϕs|ām|2 + ϕγλm + ϕv i = j = m

ϕsāiā
∗
j i ̸= j

, (16)

where λm is the {m,m}-th element of Λγ . From Eq. (16),
we know that the off-diagonal elements of Φ̄x are equal to
the corresponding off-diagonal elements of Φ̄y, i.e.,

Φ̄x{i,j} = Φ̄y{i,j} for i ̸= j. (17)

Therefore, in order to estimate Φ̄x by ˆ̄Φx prior to calculating
a, we first have to estimate the diagonal elements of Φ̄x as the
off diagonal elements are already known from ˆ̄Φy. From now
on we will use the estimated covariance matrix ˆ̄Φy and show
that we can use the off-diagonal elements of ˆ̄Φy to estimate
the diagonal elements of Φ̄x.

For the mp-th diagonal element, we can select any 2 other
microphones mq,mr from the remaining M−1 microphones
and obtain the following estimatesŸ�
ϕs

∣∣āmp

∣∣2 ≈
ˆ̄Φy{mp,mq}

ˆ̄Φy{mr,mp}
ˆ̄Φy{mr,mq}

=
⁄�ϕsāmp ā

∗
mq
⁄�ϕsāmr ā

∗
mp⁄�ϕsāmr ā

∗
mq

,

(18)
orŸ�
ϕs

∣∣āmp

∣∣2 ≈
ˆ̄Φy{mp,mr}

ˆ̄Φy{mq,mp}
ˆ̄Φy{mq,mr}

=
⁄�ϕsāmp ā

∗
mr
⁄�ϕsāmq ā

∗
mp⁄�ϕsāmq ā

∗
mr

.

(19)
Since ˆ̄Φy is Hermitian, Eq. (19) is the conjugate of Eq. (18).
By taking the average of Eq. (19) and Eq. (18), one can insure
a real valued estimate of ˆ̄Φx{mp,mp}.

The choice of mq and mr should satisfy that mq ̸=
mr ̸= mp and 1 ≤ mq,mr ≤ M . Therefore, there are

(M − 1) (M − 2) different estimates of ϕs

∣∣āmp

∣∣2, say the
set L. We find all the estimates and take their mean value as
the final estimate of ˆ̄Φx{mp,mp}, that is,

ˆ̄Φx{mp,mp} =
1

(M − 1) (M − 2)

∑
∀
¤�
ϕs|āmp |2∈L

Ÿ�
ϕs

∣∣āmp

∣∣2 (20)

4.4. RTF estimation

Since Φ̄x = ϕsāā
H , we can estimate a scaled version

of ā by the principal eigenvector of ˆ̄Φx denoted as u. From
ā = UHΨ− 1

2 a and a1 = 1, we can estimate the RTF by

â =
Ψ

1
2Uu

eTΨ
1
2Uu

. (21)

5. EXPERIMENTS

To verify the performance of our proposed method, we
simulate a room with dimension 7 × 5 × 4 m and place a
speech source as well as 10 microphones in the room form-
ing a line array, as depicted in Fig. 1. Note that for some
experiments, only the first a few microphones are used from
left to right. The signal received at each microphone is a

0 1 2 3 4 5 6 7
0

1

2

3

4

5

3.41 3.59

2.49

Fig. 1: Top view of the acoustic scene with a zoom-in of mi-
crophones. The source is denoted by the red circle.

convolution between the speech source and the correspond-
ing room impulse response. The room impulse responses
are simulated by the image source method [17]. Moreover,
we calculate the spatial coherence matrix of the late rever-
beration by assuming a spherically diffuse sound field, i.e.,
Γi,j (k) = sinc

(
2πfsk
K

di,j

c

)
, with sinc (x) = sinx/x, di,j

the inter-distance between microphones i and j, fs the sam-
pling frequency, c the speed of sound and K the number of
frequency bins. The spatial coherence matrix of the ambi-
ent noise is set to the identity matrix, i.e. Ψ = I simulat-
ing microphone self-noise by a zero-mean uncorrelated Gaus-
sian process with the same variance for each microphone.
The noisy microphone signals are sampled at a frequency of
fs = 16 kHz and processed by the STFT procedure includ-
ing windowing and FFT. We use a square-root Hann window
with a duration of 12.5 ms and an overlap of 75% between
two adjacent time frames. The FFT length is 256. The true
RTF is calculated by 256-length FFT of the first 200 samples
of the room impulse responses. The RTF estimation error is
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evaluated by the Hermitian angle measure (in rad) [6]

Ea =

L∑
l=1

K/2+1∑
k=1

acos

(
|aH (l,k)â(l,k)|

∥aH (l,k)∥
2
∥â(l,k)∥2

)
L (K/2 + 1)

(rad) . (22)

5 10 15 20
0.66

0.68

0.7

0.72

0.74

Prop

(a) Performance of the proposed
method as a function of the size
of L.

-20 -10 0 10 20
0.6

0.8

1

1.2

1.4

1.6

CW

Prop

(b) Performance in terms of Ea

as a function of the noise PSD
estimation errors.

Fig. 2: Evaluation of the proposed and CW method.

For the results shown in Fig. 2, we use 6 microphones
with reverberation time T60 = 0.3 s and signal-to-noise ratio
(SNR) of 30 dB. Hence, we will have (M−1) (M−2) = 20
different estimates of each of the diagonal elements of Φ̄x. As
shown in Fig. 2a, the more estimates we average, the smaller
the RTF estimation error becomes. Therefore, in the follow-
ing experiments, we will average all different estimates in our
proposed method. In Fig. 2b, the estimation performance
of the CW method and our proposed method (referred to as
‘Prop’) are compared as a function of the noise PSD estima-
tion error in dB, i.e., Eϕv

= 10log10

(
ϕv/ϕ̂v

)
. Note that ϕv

is the mean of the trace of the noise covariance matrix. Eϕv

ranges from an overestimation error of -20 dB to an underes-
timation error of ∞ dB (i.e. not subtracting anything before
whitening) in Fig. 2b. Since the proposed method is indepen-
dent of the noise PSD, the proposed method is not affected by
Eϕv and is presented as a horizontal line in Fig. 2b. Note that
even at 0 dB, the proposed method outperforms ‘CW’, be-
cause the true noise spatial coherence matrix is not identical
to, although close to, the identity matrix in the experiments.

In Fig. 3, the simultaneous confirmatory factor analysis
method (SCFA) [5] is also included for comparison, which
minimizes the maximum likelihood cost function using the
’fmincon’ MATLAB procedure after calculating the gradient
and Hessian matrix at each updating step. Note that ‘CWn’
refers to CW without subtracting the noise covariance ma-
trix, i.e., Eϕv

=∞ dB, while ‘CW’ refers to Eϕv
=0 dB. In

Fig. 3a, we use 6 microphones and fix the reverberation time
to 0.3 s, and only change the SNR from 10 dB to 50 dB. In
Fig. 3b, we use 6 microphones, fix the SNR to 30 dB, and
only change T60 from 0.2 s to 1 s. From these results, it fol-
lows that our proposed method and the SCFA method have a
similar performance and both outperform the CW method in
most scenarios. As the SNR increases or the T60 decreases, all
methods improve. However, the proposed method has better
performance compared to ‘CW’ for low SNR or small T60, as

10 20 30 40 50

0.6

0.8

1

1.2 CW
n

CW

SCFA

Prop

(a) RTF estimation error vs SNR.

0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

CW
n

CW

SCFA

Prop

(b) RTF estimation error vs T60.

3 4 5 6 7 8 9 10
0.4

0.6

0.8

1
CW

n

CW

SCFA

Prop

(c) RTF estimation error vs M .

Fig. 3: Performance comparison of the proposed method, the
CW method and the SCFA method.

the reverberation-to-noise ratio is small in both cases resulting
in relatively large impact from the noise component.

In Fig. 3c, we fix the reverberation time to 0.3 s, the SNR
to 30 dB, and only change the number of microphones from 3
to 10. The estimation performance of the proposed method is
shown to be less good for a small number of microphones,
but improves very fast when using more microphones and
reaches almost the same performance as the SCFA method for
large M . The reason is that we use only the off-diagonal ele-
ments of the simplified covariance matrix ˆ̄Φy in the proposed
method. The percentage of the number of elements in ˆ̄Φy we
omit is M/M2 = 1/M , which decreases as the number of
microphones increases. In Table 1, we average and normalize
the computation time over all scenarios per method. The run-
time for Prop is close to CW, but much lower than for SCFA.

Table 1: Computation time comparison.

methods SCFA Prop CW
run time 286.97 1 0.67

6. CONCLUSIONS

We considered the problem of estimating the RTF for a
single source in a reverberant and noisy environment. We
proposed a method that uses only off-diagonal elements of
the simplified covariance matrix which are not affected by the
late reverberation and the noise PSDs. Experiments show that
the RTF estimation performance of the proposed method is in-
sensitive to the noise PSD errors and reaches the performance
of the SCFA method while using much less computation time.
Both the proposed method and the SCFA method outperform
the CW method, in most scenarios, especially for low SNR,
low reverberation time and a large number of microphones.
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