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Abstract

The work in this thesis presents a case of Haptic Shared Control to provide continuous guidance
to the driver during the steering task, in which the optimal torque control law is calculated in the
Model Predictive Control Framework. The key milestones and results of the proposed MPC-
controller are presented in the form of an IEEE journal paper, in Chapter 2.

For this purpose, this research focuses on the state-of-the-art trends to develop AdvancedDriver
Assistance Systems (ADAS) that can collaborate with the driver. Therefore, the three main
elements of this work are Driver Modelling, Model Predictive Control (MPC), and Haptic Shared
Control (HSC), of which an extensive literature review is presented in depth in Appendices A,
B, and C. After a thorough investigation, a gap in the understanding of the closed-loop driver-
vehicle interaction was identified.

An interesting finding is that, although ADAS can lead to increased safety and reduce driver
effort, most systems do not take into account the driver in the loop, leading to driver-AI conflicts
and unsatisfactory user-acceptance. In particular for this investigation, the selected case study
is a Lane Keeping Assist (LKA) steering system, thus, the interaction takes place through the
exchange of forces at the steering wheel. For this case, Haptic Shared Control is highlighted to
be the most appropriate control approach.

The ultimate goal of this research was to design a novel MPC-based haptic shared controller
and validate its applicability and user-acceptance in a driving simulator experiment. The pro-
posed system integrates an advanced driver model within the prediction model. This driver
model is composed of a preview-anticipatory LQR cognitive controller, sensory organs, and the
neuromuscular dynamics of the arms, including the activation dynamics and the reflex loop.
The results demonstrate a superior performance of the proposed MPC controller with respect
to the state-of-the-art commercial benchmark, both subjectively and objectively. In Appendix D,
the extended results of this study are presented.

Chapter 1 starts with an introduction and motivation for this research topic, followed by the
journal paper in Chapter 2. Lastly, the submitted FISITA 2020 conference paper is presented in
Appendix E, which contains the initial computer simulation results of this study.

Keywords: Haptic Shared Control, Model Predictive Control, Driving Simulator, Driver Mod-
elling, Collaborative Driving.
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We must design for the way people behave,
not for how we would wish them to behave.

Donald A. Norman
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Nomenclature

Greek Symbols
Symbol Description Units

𝛼 Motoneurone signal coming from the brain, as the expected torque
command

𝑁𝑚

𝛼፟ Front slip angle 𝑟𝑎𝑑

𝛼፫፞፟፥፞፱ Motoneurone signal coming from the muscle spindles reflex action 𝑁𝑚

𝛼፫ Rear slip angle 𝑟𝑎𝑑

𝛿 Road wheel angle 𝑟𝑎𝑑

�̇�፜ Steering column velocity 𝑟𝑎𝑑/𝑠

�̇�፬፰ Steering wheel velocity 𝑟𝑎𝑑/𝑠

𝛾 Motoneurone signal coming from the brain, as the expected muscle
angle

𝑟𝑎𝑑

𝜓 Heading angle or yaw angle 𝑟𝑎𝑑

𝜏ኻ Neural excitation lag time constant 𝑠

𝜏ኼ Neuro-Muscular (de-)activation transduction delay constant 𝑠

𝜏᎕ᑒ Somatosensory time delay on the muscle angle 𝑠

𝜏፜፨፠ Cognitive time delay 𝑠

𝜏፠፭፨ Golgi tendon organs time delay 𝑠

𝜏፫ Reflex dynamics time delay 𝑠

𝜏፯።,Ꭵ Visual time delay on vehicle heading orientation 𝑠

𝜏፯።,፲ Visual time delay on vehicle lateral position 𝑠

𝜃ፚ Muscle angle 𝑟𝑎𝑑
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Nomenclature

𝜃፜ Steering column angle 𝑟𝑎𝑑

𝜃፬፰ Steering wheel angle 𝑟𝑎𝑑

Roman Symbols
Symbol Description Units

�̂�ፊፅ Estimated states of the Kalman Filter

A።፧፭ State matrix of the internal mental model

B።፧፭ Input matrix of the internal mental model

C።፧፭ Output matrix of the internal mental model

Kፋፐፑ LQR gain

Lፊፅ Gain matrix of the Kalman Filter

P Solution matrix of the Riccati equation

Qፊፅ Process noise covariance matrix

Rፊፅ Measurement noise covariance matrix

v Measurement noise

W፱ᑅ MPC weight for the terminal cost function of the states

W፱ MPC weight for the stage cost function of the states

x(𝑘) MPC states

x፝፞፥ፚ፲ Perceived states by the sensory organs, subject to time delay

z Measurement signals of the Kalman Filter

𝑎፱ Longitudinal vehicle acceleration 𝑚/𝑠ኼ

𝑎፲ Lateral vehicle acceleration 𝑚/𝑠ኼ

𝐶ᎎᑗ ,፟ Front cornering stiffness per axle 𝑁/𝑟𝑎𝑑

𝐶ᎎᑣ ,፫ Rear cornering stiffness per axle 𝑁/𝑟𝑎𝑑

𝑐ፚ Muscle active damping 𝑁𝑚𝑠/𝑟𝑎𝑑

𝑐፩ Intrinsic dynamics damping 𝑁𝑚𝑠/𝑟𝑎𝑑

𝑐፬፰ Damping coefficient of the steering system and the steering system
friction

𝑁𝑚𝑠/𝑟𝑎𝑑
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𝑐፭ Torsion bar damping coefficient 𝑁𝑚𝑠/𝑟𝑎𝑑

𝑑 Trail distance, based on the pneumatic plus caster distance 𝑚

𝑒Ꭵ Heading error 𝑟𝑎𝑑

𝑒፲ Lateral deviation 𝑚

𝐹፲,፟ Front lateral axle force 𝑁

𝐹፲,፫ Rear lateral axle force 𝑁

𝐺 Steering gear ratio [−]

𝐻ፚ፜፭ Activation dynamics transfer function

𝐻፠፭፨ Golgi tendon organs representation

𝐻፫ Reflex dynamics transfer function

𝐼ፚ፫፦፬ Inertia of the arms 𝑘𝑔𝑚ኼ

𝐼፜ Inertia of the rack and the front wheels, with respect to the pinion 𝑘𝑔𝑚ኼ

𝐼፬፰ Inertia of the steering handwheel 𝑘𝑔𝑚ኼ

𝐼፳፳ Inertia of the vehicle with respect to the center of mass 𝑘𝑔𝑚ኼ

𝑘ፚ Tendon stiffness 𝑁𝑚/𝑟𝑎𝑑

𝑘፠፭፨ Golgi tendon organs stiffness gain 𝑁𝑚/𝑟𝑎𝑑

𝑘፩ Intrinsic dynamics stiffness 𝑁𝑚/𝑟𝑎𝑑

𝑘፫ Reflex dynamics position gain 𝑁𝑚/𝑟𝑎𝑑

𝑘፬፰ Stiffness of the steering system, due to the kingpin axes 𝑁𝑚/𝑟𝑎𝑑

𝑘፭ Steering column stiffness 𝑁𝑚/𝑟𝑎𝑑

𝑙፟ Distance from the center of mass to the front vehicle axle 𝑚

𝑙፫ Distance from the center of mass to the rear vehicle axle 𝑚

𝑚 Vehicle mass 𝑘𝑔

𝑁፜ MPC control horizon

𝑁፩ MPC prediction horizon

𝑞ᎎ LQR cost on the driver expected torque input
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Nomenclature

𝑞፲ LQR cost on the shifted lateral position deviation with respect to the
reference

𝑟 Yaw rate 𝑟𝑎𝑑/𝑠

𝑇ፚ፜፭ Activation torque 𝑁𝑚

𝑇ፚ፫፦ Torque exerted by the arms muscle 𝑁𝑚

𝑇፜ Controller’s torque input to the steering-vehicle system 𝑁𝑚

𝑇 Driver’s torque input to the steering-vehicle system 𝑁𝑚

𝑇 ፛ Driver’s feedback torque 𝑁𝑚

𝑇።፧፭ Intrinsic dynamics muscle torque 𝑁𝑚

𝑇፩ Preview time 𝑠

𝑇፬ MPC sampling time 𝑠

𝑇፬,ፃፌ Sampling time of the Driver Model 𝑠

𝑇፬,፬።፦ Sampling time of the simulation 𝑠

𝑇፬፮፩ Supraspinal muscle torque 𝑁𝑚

𝑇፬፰ Steering wheel torque 𝑁𝑚

𝑇፭ Target shift time constant 𝑠

𝑇፰ Self-aligning moment 𝑁𝑚

𝑢(𝑘) MPC control input 𝑁𝑚

𝑉፱ Longitudinal velocity 𝑚/𝑠

𝑉፲ Lateral velocity 𝑚/𝑠

𝑤ᎎ Process noise 𝑁𝑚

𝑤፜ Gain crossover frequency 𝐻𝑧

𝑊፮ MPC weight for the stage cost function of the input

𝑋፩ Longitudinal position 𝑚

𝑌፩ Lateral position 𝑚

𝑦፫፞፟ Reference trajectory of the lateral position 𝑚
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1
Introduction and Motivation

Advanced Driver Assistance Systems have been one of the main focuses in the path towards
full automation during the last decades. These systems are introduced to increase comfort and
safety, as well as to reduce mental workload while driving [65, 107]. The principle behind these
systems is to capture the vehicle response and, if needed, intervene to accomplish a task or
to avoid dangerous situations. In the case of Lane Keeping Assist systems, a study performed
on German roads revealed that unintentional lane departures represented more than 1/3 of
all accidents with severely injured passengers [10], which makes the positive safety benefits
of LKAs clear, as discussed in [104]. However, if the ADAS overrule the driver when it is not
critical, user-acceptance is typically decreased, which can lead to drivers turning off the driving
assist systems [85]. Moroever, as described by Farah et al. [28], a mismatch in the driver’s
expected outcome can have a direct negative impact on safety and trust.

In particular for the steering task, current driving assist systems heavily rely on the path track-
ing error to generate the system’s control approach, without taking into account the driver’s
behaviour. This often results in conflict with the driver and tends to unexpectedly overrule their
actions, which leads to suboptimal acceptance and discomfort.

Therefore, until fully-automated vehicles become a reality, it is fundamental to include the inter-
action between the driver and the vehicle in order to develop safe, human-like, user-acceptable
driving assist systems [35, 67]. For the scope of this thesis, which focuses on the steering
task, the interaction between the steering-vehicle dynamics and the driver’s arms is coupled at
the steering wheel. Thereby, torques between the driver and controller can be exchanged to
enhance the driving task, also known as haptic guidance.

1



The importance of considering this interaction in a closed-loop system has been widely recog-
nised in previous studies [80], because it is representative of effective vehicle usage and in-
cludes the driver dependency. Furthermore, current research has shown that the understand-
ing of the driver behaviour is essential to enhance driving assist systems [73]. In addition, driver
models can be used to design new control alternatives that integrate the driver-in-the-loop dy-
namics and the cooperation or resistance with the driving assist systems.

However, the nature of the human behaviour is highly complex, nonlinear, and unpredictable.
Thus, despite the huge impact that the driver has on the closed-loop system, its modelling has
been ignored until recently and there has been uncertainty in the way the interaction takes place.
On the other hand, the increased difficulty to objectivise the closed-loop dynamics motivates the
need to use accurate driver models in the development of new steering control systems. In other
words, driver models could help us explain the link between subjective evaluations and objective
metrics.

Summarising, this thesis focuses on the design of a collaborative LKA with emphasis on the re-
duction of driver-assist conflicts in order to foster cooperation, tracking performance and safety.
The problem with current assist systems is that the integration of the driver dynamics in the
closed-loop driver-vehicle system is neglected, which often results in an intrusive, counter-
intuitive guidance. However, this change of concept is key to guarantee effective shared control.
In line with this requirement, the proposed SAE Level 2 system can cooperate with the driver by
predicting the driver-vehicle behaviour. Hence, the design of this control based LKA, in com-
bination with a standard ACC system, aims to provide an intuitive haptic torque guidance to
drivers and reduce their workload through a collaborative behaviour.

2 Delft University of Technology | Toyota Motor Europe



MPC-based haptic shared steering system: A driver modelling approach

1.1. Research objectives

Figure 1.1 presents a prospective timeline of the mobility sector. Automobiles with partial level
of automation provide intermediate scenarios, from basic driving aids to effective shared con-
trol between man and machine. The work in this thesis presents a case of MPC-based Hap-
tic Shared Control, predicting the driver-vehicle behaviour and, therefore, aiming to provide a
pleasant driving experience by keeping smooth driver-in-the-loop dynamics, as well as intuitive
levels of authority transitions. The proposed controller is implemented in a high fidelity model on
IPG Carmaker [52], which includes a detailed characterisation of the tyre dynamics and a pro-
prietary steering model [20]. The parametrisation of the steering model is based on a validated
Toyota mass production model. The use of IPG Carmaker makes it possible to integrate vehicle
sensors that can identify the lane marking, lane offset, and the yaw angle error with respect to
the lane centerline, which serve as reference to the MPC-based assist system. The scenario is
a highway road with straight and sinusoidal segments of different amplitudes, with a 5 m wide
lane in order to allow for more driver variability. This feature makes it possible to assess the
behaviour and adaptability of the proposed controller given different driver control strategies.

Figure 1.1: Timeline of the autonomous vehicles distribution.

In line with the aforementioned requirements and the gaps found in literature, as illustrated by
the question mark in Fig 1.2, the main goal of this thesis is:

“The design and assessment of a novel MPC-based shared steering control strategy
using torque guidance and an extensive driver model to foster symbiotic driving.”

This goal is broken down into the following research objectives:

I. Investigate driver models that can capture the driver’s intention during the steering task, as
well as the dynamics of the arms to tackle driver comfort at a neuromuscular level.

II. Perform a driving simulator pilot study in order to validate the applicability of the selected
driver model. Appropriate models should include the predictive human cognitive capabili-
ties, neuromuscular dynamics, and human limitations in the perception.

Andrea Michelle Rios Lazcano 3



1.1. Research objectives

III. Design an MPC-based shared steering control that can integrate the driver model and the
steering-vehicle dynamics to accurately model the driver-AI interaction, ensuring real-time
applicability.

IV. Address the collaborative characteristics of the controller using the Haptic Shared Control
framework as a strategy to keep the driver in the loop and continuously share the control
authority of the steering task.

V. Implement a dynamic cost-function algorithm to adapt the MPC controller to the time-
varying human behaviour and reduce conflicts between the driver and the driving assist
system.

VI. Design a driver-in-the-loop experiment in a fixed-base driving simulator to validate the sub-
jective acceptance of the proposed MPC controller. The selected scenario should allow for
driver variability.

VII. Define a list of Key Performance Indicators to create a link between the subjective evalua-
tions and objective metrics to assess the steering feel of the controller.

VIII. Compare the performance of the proposed MPC controller with respect to a state-of-the-
art commercial benchmark. For this objective, the commercial benchmark should first be
replicated and validated with real vehicle measurements.

Figure 1.2: Representation of the uncertain human-machine interaction during the steering task.
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The content of this chapter has been submitted to the IEEE-ASME Transactions on Mechatron-
ics as part of the focused section on Mechatronics in Road Mobility Systems.
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MPC-based Haptic Shared Steering
System: A Driver Modelling Approach for

Symbiotic Driving

Abstract—Advanced Driver Assistance Systems (ADAS) aim to
increase safety and reduce mental workload. However, the gap in
the understanding of the closed-loop driver-vehicle interaction of-
ten leads to reduced user acceptance. In this research, an optimal
torque control law is calculated online in the Model Predictive
Control (MPC) framework to guarantee continuous guidance
during the steering task. The novelty lies in the integration
of an extensive driver-in-the-loop model within the MPC-based
haptic controller to enhance collaboration. The driver model is
composed of a preview cognitive strategy based on a Linear-
Quadratic-Gaussian, sensory organs, and neuromuscular dynam-
ics, including muscle co-activation and reflex action. Moreover,
an adaptive cost-function algorithm enables dynamic allocation
of the control authority. Experimental data was gathered from 19
participants in a fixed-base driving simulator at Toyota Motor
Europe, evaluating an MPC controller with two different cost
functions against a commercial Lane Keeping Assist (LKA) sys-
tem as an industry benchmark. The results demonstrate that the
proposed controller fosters symbiotic driving and reduces driver-
vehicle conflicts with respect to a state-of-the-art commercial
system, both subjectively and objectively, while still improving
path-tracking performance. Summarising, this study tackles the
need to blend human and ADAS control, demonstrating the
validity of the proposed strategy.

Index Terms—Haptic Shared Control, Model Predictive Con-
trol, human–machine interaction, Driver Modelling, Collabora-
tive Driving.

I. INTRODUCTION

THE exponential growth of ADAS over the years has a
direct impact on increased safety and reduction of mental

workload while driving [1]. However, automation can also lead
to unsatisfactory user acceptance when the driver’s intention
or expectation does not match the behaviour of the driving
assist system [2].

Moreover, the different projections towards the deployment
of fully Automated Vehicles (AV) predict several decades of
progressive increase of automation before self-driving cars
become widespread [3]. Vehicles with partial level of automa-
tion provide intermediate scenarios, from basic driving aids to
effective shared control between human and AI.

The shared control approach is particularly suitable for the
steering task as forces can be exchanged at the steering wheel
to accomplish a common objective. Through Haptic Shared
Control (HSC), detailed in Appendix C, the authority of the
driving task is balanced between the driving assist system and
the driver. However, although HSC can lead to less steering
control activity and increased safety [4], drivers sometimes
resist the assist system’s guidance [5]. This can be due to, for
example, a mismatch between the driver’s cognitive intentions

and the controller’s objective, or, from a neuromuscular level,
the reflex action of the muscle spindles [6].

Therefore, it is clear that the closed-loop driver-vehicle
interaction needs to be carefully reviewed in order to design
collaborative, user-accepted systems. On the one hand, there is
an increasing interest in the study of driver models applicable
to the driving task. However, human complexity and unpre-
dictability have made it difficult to guarantee collaboration
and seamless control. On the other hand, the difficulty to
find objective metrics to analyse these closed-loop dynamics
incentivises the use of driver models in the development of
new driving assist systems to be able to determine which
characteristics are the cause of certain subjective feelings. In
the literature, the need to blend driver modelling and vehicle
controller systems has been widely acknowledged [7], [8],
but there has been limited implementation of detailed driver
models in haptic shared controllers [9].

However, oversimplified models, representing the arms as
a simple spring damper system, have been commonly used.
In particular for the steering task, some research studies have
tried to consider the driver-vehicle interaction, in which the
MPC strategy is often recognised as the most attractive control
approach. In a lane-keeping assist [10], this interaction is mod-
elled by coupling the arm dynamics to the steering system, and
this was also extended to a lane-changing scenario [11], both
using MPC. Together with a simple arm model, an attempt
to introduce an adaptive level of control authority within the
MPC cost-function is presented in [12], but the results were
constrained to a constant level of control authority for the
shared driving case. A more extensive psycho-physiology-
based driver model is implemented in [13] for an LKA case,
where there was only one participant in the driving simula-
tor experiment. The creation of important Key Performance
Indicators (KPI) to assess the collaborative behaviour of the
assistance is remarkable. From a more theoretical approach,
the use of game theory models in [14]–[16] have also been
designed using MPC to capture the driver-ADAS interaction.
Furthermore, the model developed in [17] takes special care
in tackling the human-machine conflicts, but the human-
compatible reference used by the haptic shared controller is
calculated offline. Thus, no modification during online simu-
lations is possible. Finally, from the results of these studies,
it can generally be seen that the conflicts in torque between
driver and driving assist system are not successfully addressed
and drivers either fight or correct the torque guidance instead
of collaborating with it.

The work in this paper presents a case of Haptic Shared
Control to provide continuous guidance during the steering
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task, in which the optimal torque control law is calculated
in the Model Predictive Control Framework. The novelty of
this approach is that the prediction model integrates both the
vehicle-steering dynamics and an extensive driver-in-the-loop
model. With this method, the MPC controller aims to foster
collaboration and provide a pleasant driving experience by
keeping smooth closed-loop dynamics.

The paper is an extension of the conference paper presented
in Appendix E [18] and is structured as follows. Section II
establishes the steering-vehicle dynamics. Section III describes
the theory behind the driver model integrated within the MPC
system, and Section IV presents the results of its validation in
a driving simulator pilot experiment. Afterwards, in Section V,
the MPC strategy is introduced. Section VI includes the details
of the subsequent driving simulator experiments to evaluate the
proposed driving assist system. In Section VII, the objective
and subjective results of a benchmark comparison between
a commercial LKA and two different collaborative modes of
the MPC controller can be found. Lastly, in Section VIII and
Section IX, the main conclusions of this research investigation
and the future directions of work are outlined.

II. STEERING-VEHICLE MODEL

A. Vehicle dynamics
The vehicle dynamics presented in Fig. 1 are based on

the linear single-track model. The model assumes a constant
longitudinal velocity, linear tyre dynamics and small angle
approximations. This model simplification can capture the
vehicle handling characteristics within the scope of this in-
vestigation. Particularly, a range of lateral acceleration up to 4
m/s2 for passenger cars, which includes path-following tasks
in non-evasive manoeuvres. Moreover, the selected steering-
vehicle parameters are derived from the complete nonlinear
steering-vehicle plant to ensure its applicability for standard
manoeuvres at 100 km/h.

Fig. 1. Arms-steering-vehicle model

Equations (1)–(2) represent the linearised vehicle motion
where m is the vehicle mass and Izz the inertia with respect
to the centre of mass. The vehicle front and rear distance from
the centre of gravity are denoted by lf and lr, respectively.
Moreover, the states of the vehicle are lateral acceleration, ay ,
longitudinal vehicle velocity, Vx, lateral vehicle velocity, Vy ,
yaw rate, r, and heading angle, ψ.

may = Fy,f + Fy,r (1)

Izzψ̈ = lfFy,f − lrFy,r (2)

The lateral axle forces, Fy,i, have a linear relation with
respect to the slip angles, αi, with i ∈ {f, r} to represent the
front and rear axle, and are calculated as:

αf = −δ +
Vy + lfr

Vx
(3)

αr =
Vy − lrr
Vx

(4)

Fy,f = −Cαf ,f · αf (5)

Fy,r = −Cαr,r · αr (6)

B. Steering system dynamics

The introduction of the steering system dynamics is key to
investigate the interaction between driver and driving assist
system. The steering dynamics are rigidly coupled to the arms
dynamics at the steering wheel, where torques are exchanged.
Thereby resulting in a lumped inertia that is the sum of the
inertia of the arms, Iarms, and the inertia of the steering wheel,
Isw. The neuromuscular dynamics of the arms are described
in detail in Section III-B.

The linear steering dynamics [19] are represented in (7)–(8)
with 2-Degrees-of-freedom (DoF), where the steering wheel
angle, θsw, and steering column angle, θc, denote each DoF.
The interaction of the driver is taken into account through the
introduction of the muscle angle of the arms, θa, which also
interacts with the steering wheel. In this paper, the difference
of the angles at the steering column is defined as ∆θsc =
(θsw− θc), and the same notation follows for their derivatives
with respect to time, ∆ ˙θsc = (θ̇sw − θ̇c).

(Isw + Iarms)θ̈sw = ka(θa − θsw)− ct∆ ˙θsc − kt∆θsc (7)

Icθ̈c + cswθ̇c + kswθc = ct∆ ˙θsc + kt∆θsc −
Tw
G

+ Tc (8)

where Ic denotes the inertia of the rack and the front wheels
with respect to the pinion, kt and ct are the steering column
stiffness and the torsion bar damping, respectively, and csw and
ksw are the damping and self-centering stiffness with respect
to the steering wheel axle.

Moreover, the road wheel angle is calculated proportionally
to the steering angle column with the steering gear ratio, G,

δ =
θc
G

(9)

The torques interacting at the steering wheel consist of
the self-aligning moment, Tw, and the torque input from the
driving assist system, Tc, calculated through the MPC strategy
described in Section V. The torque generated about the king-
pin axes is,

Tw = dFy,f (10)

where d is the pneumatic trail.
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III. DRIVER MODEL

The integration of a realistic driver model is central to the
design of the collaborative shared control strategy. A better
accuracy of the torque predictions can directly improve the
collaborative behaviour of the proposed driving assist system.

The driver model, as presented in Fig. 2, was developed by
Niu and Cole [19], building upon earlier work by Nash and
Cole [20]. The model is implemented in Simulink and the
cognitive model is adapted to enhance its validity in realistic
scenarios with real-time capability. It aims to represent the
cognitive and physiological mechanisms of the human driver,
and includes an internal model, neuromuscular dynamics,
sensory dynamics, sensorimotor noise, state estimation, and
cognitive and reflex control. In particular, the inclusion of
neuromuscular dynamics makes the model appropriate for
the development of a new driving assist system with torque
feedback. A detailed description of the driver model can be
found in Appendix A.5.

A. Cognitive behaviour

The cognitive model is used to predict the driver’s steering
intentions. For the cognitive control, a predictive approach
based on a Linear-Quadratic Regulator (LQR) is chosen.
Moreover, the states of the system are estimated with a
Kalman Filter to reduce the effect of measurement noise of
the sensory organs and process noise of the muscle activation.
This combination of approaches is also known as the Linear-
Quadratic-Gaussian and it requires an accurate internal mental
representation of the plant in order to achieve optimal state
estimation. In this regard, a forward internal mental model is
assumed to be acquired a priori by the driver.

The cost function of the LQR, which calculates the expected
driver torque input, is adapted and modified based on previous
work [20], [21]. This function minimises the lateral deviation
of the vehicle with respect to the upcoming reference trajectory
of the road with a certain preview time, Tprev .

JLQR =
∞∑
0

[[
xKF yp

]
CTQC

[
xKF
yp

]]
+ αRα (11)

where C is a matrix that selects the states on the lateral
position, heading angle, and the road preview points. Finally,
the expected driver torque input, α, is calculated as:

α = −KLQR ·
[
xKF
yp

]
(12)

where KLQR is the LQR gain, xKF is a vector with the
estimated states as derived from [19], and yp a vector con-
taining the upcoming preview lateral road coordinates of
length Np = Tprev/Ts,DM . The estimated states include the
lateral reference target path, the arms-steering-vehicle states,
the muscle activation states, and the delayed states perceived
through the sensory organs. The rest of the cost function
parameters can be found in Table I.

B. Neuromuscular dynamics

The muscle dynamics are described by a linearised Hill-
muscle model [22]. The elasticity of the tendons is represented
by the stiffness term, ka. The contractile element, on the other
hand, is described by the damping term, ca, and the neural
activation torque, Tact, which is a function of the desired driver
torque and the reflex action.

The neuromuscular dynamics of the driver are thus com-
posed of the reflex action of the muscle spindles, a linearised
Hill-muscle model including the activation dynamics of the
muscles, and the muscle dynamics of the arms, which are
interacting with the steering system. These elements are nec-
essary for the modelling of the co-activation mechanism of the
muscles.

Tact = caθ̇a + ka(θa − θsw) (13)

The activation dynamics, denoted by Hact, are subject to a
lag time constant of the motor neurons excitation, τ1, and a
lumped neuro-muscular transduction delay, τ2. The latter time
constant represents the muscle activation and deactivation lag.

Hact =
1

(τ1 · s+ 1) · (τ2 · s+ 1)
(14)

The reflex loop, an essential element of the co-activation
mechanism, is subject to a delay time constant, τr, and a gain

Fig. 2. Haptic Shared Control scheme with driver model representation.
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factor, kr. The expected muscle angle, γ, is calculated based
on the internal mental model of the driver and the estimated
states by the Kalman Filter.

αr =
kr

τr · s+ 1
· (γ − θa) (15)

C. Sensory organs

The sensory organs modelled are the visual perception
organs and the proprioceptors with the purpose of representing
the human limitations in the perception. The modelling of
the vestibular organs is considered out of the scope of this
research because the validation is carried out in a fixed-base
driving simulator [23]. The states perceived by the driver are
the vehicle lateral deviation with respect to the desired path,
ey , the heading angle, ψ, and the muscle angle of the driver,
θa. These states are subject to a visual delay, τvisual, and a
muscle sensory delay, τmuscle.

The feedback sensed by these organs is then sent to the
Central Nervous System, subject to additive measurement
noise. These noisy signals are used to estimate the states of the
plant with the Kalman Filter model, based on the assumption
that the driver has a good internal mental representation of
the vehicle and their own neuromuscular dynamics. In future
work, the introduction of signal-dependent noise, as presented
in [24], is of high interest. The parameters of the driver
model are listed in Table I. Most values are extracted from
[19], whereas Tprev and Q are selected based on the pilot
experiment, described in Section IV.

TABLE I
DRIVER MODEL PARAMETERS

Parameter Value Parameter Value

Tprev 1.4 s Iarms 0.0718 kg m2

ka 30 Nmrad ca 3 Nms/rad
kr 21 Nm/rad τr 0.04 s
τ1 0.03 s τ2 0.02 s
τvisual 0.24 s τmuscle 0.19 s
Q diag(3 · 103, 1 · 102) R 1

IV. DRIVER MODEL VALIDATION

As a first step in the validation process of the driver model,
the predictions of the torque are simulated offline in CarMaker.
Here, the driver model is compared to the IPG CarMaker
virtual driver. To represent the plant, we use nonlinear vehicle
dynamics and a proprietary nonlinear steering system [25] with
a Toyota production vehicle parametrisation. This allows for
a high-fidelity simulation of real-world scenarios. Afterwards,
a driver-in-the-loop pilot experiment was performed.

A. Pilot experiments with driving simulator

A pilot study was performed at Toyota Motor Europe, using
the fixed-base driving simulator of Fig. 7. Three different
drivers, listed in Table II in ascending order of driving ex-
perience, participated in the experiment to further validate the
accuracy of the driver model. In order to test the driver model
performance for different driving styles and behaviour, there

is significant variability in the drivers’ experience. Namely,
the participants are a novice driver, a driver with 12-years
of experience, and a driver with over 20 years of driving
experience and expert knowledge in driving simulators.

B. Results and discussion
The driver model fits all three drivers well, as objectively

shown in Table II, which further demonstrates the capabilities
of the model to capture inter- and intra-driver variability.

The driver model parametrisation is found to match slightly
better the novice and intermediate driver, which could be
because the linear internal mental model captures better users
with limited driving experience, whereas the mismatch be-
tween the linear model and the knowledge of expert drivers is
more significant.

Fig. 3. Driver model predictions based on driver 1, novice

Fig. 4. Driver model predictions based on driver 3, expert level

The sensitivity of the different driver model parameters was
studied preliminarily in order to obtain the best possible fit.
From this analysis, the driver preview time of the road is
highlighted and was tuned for each driver. This can be linked
to the different cognitive strategies that each driver has in order
to follow the road path. The novice driver, in Fig. 3, tends to
have a shorter preview time, as well as a noisier torque input.
On the other hand, for the most experienced driver, in Fig. 4,
even though the perception of the ideal road trajectory was
not correct, the torque input is smooth. This can be associated
with the accuracy of internal knowledge that the experienced
driver has concerning the vehicle dynamics, which influences
the level of muscle spindles activation.
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TABLE II
TORQUE PREDICTION ACCURACY OF THE DRIVER MODEL

Driver RMSE [Nm] % Accuracy

Driver 1: Novice 0.7344 89.96
Driver 2: Intermediate 0.6232 90.96
Driver 3: Expert 0.7355 87.30

Another relevant factor is that having the correct human
road preview is key for the model to give an accurate torque
prediction. A good fitting of the prediction was obtained for
the three drivers under the assumption that the vehicle position
corresponds to the desired vehicle trajectory. This assumption
would not be valid in the presence of, for instance, external
disturbances, in which case the muscle spindles torque would
be activated.

V. MPC FRAMEWORK

The MPC approach can compute the optimisation online
and in real-time, making it possible to integrate the driver’s
torque control behaviour in the loop, thereby capturing the
haptic interaction.

In this section, an overview of the mathematical background
of the proposed MPC-based LKA controller is presented. The
complete investigations concerning MPC can be found in
Appendix B. The general goal of the MPC is to iteratively cal-
culate the trajectory of a future control input, u(k), to optimise
the performance of the plant being controlled by minimising
a cost function subject to constraints. The optimisation takes
into account the plant states’ information, x(k), at the start
of the time window. The length of this finite-time window
is called the prediction horizon, Np. The control horizon of
the control input sequence, Nc, can differ from the prediction
horizon.

A. Structure of the MPC

The need for accurate precision in the steering task makes
the MPC technique highly attractive for the development of
ADAS systems. In this framework, we can introduce con-
straints on the control inputs and the states of the plant to
guarantee safety, smooth control, and driver comfort. These
additional benefits make the MPC ideal for the design of the
proposed haptic controller.

The general structure of the prediction model is

x(k + 1) = f(x(k), u(k)), with x(0) = x0 (16)

where x is the vector of the system states, with x ∈ RNx .
The variable x0 denotes the initial states, and f is the function
describing the prediction model dynamic equations. Lastly, the
variable u ∈ RNu is the control input, with Nu = 1 in this
study.

The state solution is

x(k) = φ(k;x0,uk) (17)

And the control input sequence is

uk := (u(0), u(1), ..., u(k − 1)) (18)

B. Cost function and system constraints

The constraints are essential to consider the driver-vehicle
limitations, as well as guaranteeing smooth control inputs to
foster driving comfort.

The cost function of this MPC-based haptic steering con-
troller in (19) improves path tracking performance and reduces
the driver-vehicle conflicts. Moreover, the settings are tuned
to allow the assist system to provide a more intuitive torque
guidance to the driver through the steering interface.

J(x, u) =

Np−1∑
k=0

‖(hx(xk)− yr,k)‖2Wx
+

+

Nc−1∑
k=0

‖hu(uk)‖2Wu
+ ‖hN (xNp

)− yr,Np
‖2WxN

(19)

where Wx, WxN
≥ 0, are the weighting matrices of the

stage and terminal cost for the states. The parameter Wu > 0
corresponds to the stage cost for the input. The time-varying
state reference vector is denoted as yr.

The selected costs for the MPC system can be seen in
Table III. First of all, the tracking performance objective is
implemented to minimise the lateral deviation with respect
to the reference path, subject to a look-ahead distance factor
depending on the vehicle velocity and the heading angle, ψ.
Moreover, driving comfort can be enhanced through weights
on the lateral velocity, Vy , and the yaw rate, r. Additional
costs on the driver’s effort or discomfort indicators can also be
added to reduce the activation of the muscle spindles’ torque
or the total driver steering torque.

TABLE III
MPC SETTINGS AND WEIGHTS

Variable Value Variable Value

Ts,cont 1 · 10−2 s Ts,DM 2 · 10−2 s
Ts,sim 1 · 10−3 s Np 40
Nc 40 Wy 1 · 106
WyN 1 · 102 Wψ Vx ·Wy

WTc 600 WTinput
40

WVy 1 · 102 Wr 1 · 102
Wspindles 1 · 102 Wdriver 6 · 102
|Vy,max| 4 m/s |rmax| 50 deg/s
|θsw,max| 360 deg |θ̇sw,max| 800 deg
|Tc,max| 10 Nm |Ṫc,max| 20 Nm/s

Furthermore, the MPC model is subject to constraints,
defined in Table III in absolute maximum value. These con-
straints are imposed on the lateral velocity and the yaw rate.
Moreover, constraints on the steering wheel angle, θsw, and
assist torque input, Tc, as well as their respective rates are
also introduced to guarantee a smooth assist guidance. Hard
constraints on the driver model states are avoided for stability
and, instead, weights to penalise their magnitude are included.

The different sampling times and prediction horizons, as
specified in Table III, are appropriately chosen to ensure
that the controller can be run in real-time without compro-
mising its performance, prediction capabilities, and stability.
The nonlinear plant operates at a higher sampling frequency,
Ts,sim, whereas the linear driver model can be accurately
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run at a lower sampling frequency, Ts,DM , which reduces
the computational requirements. For the MPC, the maximum
sampling frequency that allows the model to compute the
optimal control input in real-time, Ts,cont, is selected to ensure
stability and a long enough prediction time, Ts,cont ·Np, which
has a direct impact on its performance.

C. Adaptive MPC for conflict minimisation

Human behaviour is adaptive and time-varying. Therefore,
one approach to deal with the competing behaviour between
human and driving assist systems is to adapt the level of
automation [26]. However, due to the increased complexity of
the dynamic task allocation, most research studies implement
binary switches of control authority.

In this research, the MPC optimisation problem is solved
with the ACADO Toolbox [27]. This software allows us
to implement an adaptive cost function algorithm through
time-varying weights. These dynamic characteristics aim to
minimise conflicts between the applied driver torque and the
driving assist system torque, as well as dynamically share the
control authority. Adaptive weights are applied to the MPC
controller torque, its rate, and to the online difference with
the driver torque. This feature further enhances collaboration.
For instance, an increase in the control input torque cost results
in higher driver control authority. On the other hand, if there
are no torque conflicts, the cost is smoothly reduced, which
results in less steering effort for the driver and a higher level
of control authority for the collaborative automation system.
An example of this behaviour is displayed in Fig. 5. In order
to ensure smooth transitions, the dynamic objective has a
parabolic shape, with fast increments to better tackle conflicts
and slow reductions, reaching the minimum cost value in a
longer time frame.

Fig. 5. Adaptive behaviour of the cost on the MPC input

VI. DRIVING SIMULATOR EXPERIMENT: COLLABORATIVE
LANE KEEPING ASSIST

The aim of this fixed-base driving simulator experiment
is to assess the performance and collaborative behaviour of
the proposed MPC controller with two different cost-function
settings, as well as to compare them against a commercial
LKA used as a benchmark. All three controllers provide the
drivers with haptic torque guidance to track the centre of the
path.

A. Driving Scenario

The driving scenario designed was a route of 5 km long
with four straight segments and four sinusoidal segments of

Fig. 6. Set-up for the driving simulator experiment at Toyota Motor Europe,
Belgium

different amplitudes. In every trial, the vehicle was driving at
a constant vehicle speed of 100 km/h and the test subject’s
sole task was to control the lateral motion of the vehicle to
drive in the centre of the lane. In order to allow for more
driver variability, the lane width was set to 5 m and no lane
markings were present. The importance of this variability is
to better assess how the different LKA systems react and
adapt to driver behaviours and diverse driving strategies.
This is fundamental to obtain a meaningful comparison of
the collaborative behaviour of the different assist systems
proposed. An overview of the set-up for this driver-in-the-loop
experiment can be seen in Fig. 6. The graphics were rendered
with rFpro software based on an IPG CarMaker scenario in a
210 o projection screen, which can be seen in Fig. 7.

Fig. 7. Driving simulator at Toyota Motor Europe, Belgium

B. Experimental procedure

The experimental procedure was the same for all 19 par-
ticipants, with drivers ranging from 22 to 41 years old.
All participants are engineers at Toyota with comprehensive
knowledge on vehicle dynamics, with an average age of 29.7
years (SD = 6.9) and 10.7 years (SD = 8.0) of driving
experience. A relevant note is that three of the drivers have
extensive professional experience assessing LKA systems. The
experiment consisted of independent trials for each of the 3
driving assist systems evaluated. During each trial, the driving
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scenario and the task were the same, with the specific assist
system used unknown to the driver. The consistency and sta-
tistical significance of the results strengthens the expectations
that the number of participants was sufficient for this study.

At the start of the experiment, the participants were in-
structed of the task and the experimental conditions. The order
of the trials was randomised to avoid human bias. During the
driving experiment, the first minute of each trial was used
as training. This initial data is discarded from the objective
metrics and its purpose is to allow drivers to familiarise
themselves with the assist system and the driving simulator
set-up.

C. Lane Keeping Assist controllers

The controllers assessed during this experiment are de-
scribed below.

1) Baseline Lane Keeping Assist: The MPC modes are eval-
uated against a commercial LKA system. The current systems
available in the automotive industry are mainly focused on
minimising a lateral offset and they do not integrate the driver
interaction nor their impact on the closed-loop dynamics. This
approach aims to improve path tracking performance, but it
can result in a torque guidance with sub-optimal acceptance.

2) MPC Mode 1: The MPC framework makes it possible
to change the behaviour of the controller through different
cost-function parametrisations. The first MPC mode, which
corresponds to a typical cost-function algorithm, has weights
on the lateral error, yaw angle, and other vehicle states, as
defined in Section V. The costs on the driver model states
are not explicitly included in this cost-function. However, the
driver behaviour is taken into account by having the extensive
driver model from Section III within the prediction model of
the controller, aiming a more human intuitive guidance.

3) MPC Mode 2: The second MPC parametrisation makes
explicit use of the driver model in the cost-function through
the introduction of additional weights on the driver torque and
muscle spindles torque predicted by the driver model, which
can be found in Table III. Specifically, the proposed MPC
controller tries to minimise the muscle spindles activation,
which is related to the rejection of disturbances and muscle
discomfort at a neuromuscular level. Moreover, the adaptive
behaviour of the MPC is further customised to reduce conflicts
with the driver. For this purpose, the cost when the driving
assist torque is opposing the real driver, as described in
Section V-C, is increased.

VII. RESULTS AND DISCUSSION

Statistical significance of the metrics was verified using
a one-way ANOVA test comparing the three different LKA
systems. Further box-plots of the presented metrics are pre-
sented in Appendix D. First of all, to ensure the robustness
of the results, a Bartlett’s test for equal variances between
the three groups of controllers was executed. In the subjective
evaluations, the null hypothesis of equal variances is rejected
for the second criteria (tracking performance), thus, a non-
parametric Kruskal-Wallis test was performed in this case. A
similar approach is applied to the objective metrics.

A. Subjective evaluation

A questionnaire based on a 7-point scale with a total of 5
questions was designed to subjectively assess the behaviour of
each LKA. At the end of the experiment, the participants were
also asked to rank the three systems from best to worst. The
outcomes of these evaluations show that the proposed MPC
controllers outperform the baseline benchmark, with 84.21%
of the subjective responses choosing the MPC mode 2 as the
best LKA system, and the remaining 15.79% choosing MPC
mode 1.

The assessed characteristics are listed below:
• Overall steering effort: Based on the torque applied by

the driver, with the ideal range between 3-5 points.
• Performance and guidance level: Defined in terms of path

tracking performance of the ideal centerline. A range of
6-7 corresponds to high tracking precision.

• Collaborative behaviour: An evaluation of 6-7 points
means that torque conflicts between the driver and driving
assist system are reduced.

• Feeling of being in control: Defined in terms of how
easily the drivers feel that they can overrule the assist
guidance if desired, with 6-7 points if it is easy.

• Smooth control: In terms of the presence of unnecessary
corrections during authority transitions between the driver
and assist system control. The lower range being abrupt
(1-2) and the upper range smooth (6-7) control.

Fig. 8 presents the average grade of each subjective metric
per controller. The ideal range is highlighted in light green.
This is consistent with the preference of drivers to use the
second mode of the proposed MPC.

Fig. 8. Mean results of the subjective evaluation of 19 participants.

The participants consistently felt that proposed MPC con-
trollers provide an even more natural feel than the state-of-the-
art baseline system. In general, the presence of driver-assist
conflicts creates a perception of the baseline controller being
heavier than desired, as well as having a lower collaborative
behaviour. Moreover, drivers do not perceive small path track-
ing errors that the baseline assist tries to minimise, which may
explain a higher degree of conflict and, eventually, decreased
tracking performance. The feeling of being in control, as
expected, is lower because part of the control authority is
shared with the assist system. However, the MPC modes
are still graded higher than the baseline system for this last
subjective quality, as well as providing an even more smooth
guidance.

Statistical significance of the responses was positively ver-
ified, which can be seen in Table IV. For all five subjective
metrics, MPC mode 2 is the best, closely followed by the fist
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TABLE IV
ANALYSED DATA OF THE SUBJECTIVE EVALUATIONS

Criteria Baseline MPC 1 MPC 2 F p

Overall
effort

5.58
(0.90)

3.32
(1.25)

3.79
(1.18)

21.53 <0.001

Tracking
performance

3.11
(1.73)

5.68
(1.11)

5.95
(0.91)

27.86 <0.001

Collaborative
behaviour

2.42
(1.35)

5.32
(1.00)

5.95
(1.08)

50.60 <0.001

Feeling
of control

3.42
(1.74)

4.37
(1.34)

4.84
(1.50)

4.21 0.02

Smooth
control

3.84
(1.34)

5.16
(1.57)

5.37
(1.67)

5.51 0.007

MPC mode. The mean value of the responses for each metric,
as well as their standard deviation (SD) are also included.

B. Objective assessment

The objective evaluation is based on an extensive list of
Key Performance Indicators (KPI), which can be seen in
Appendix A, based on a recompilation of both literature
studies and industry standard metrics. These metrics were
meticulously selected to impartially evaluate the responses to
the subjective questions. Fig. 9 shows the box plot of two
representative objective metrics. In the following paragraphs,
the values of the numerical differences between the proposed
MPC mode 2 and the baseline benchmark LKA are discussed.

(a) (b)

Fig. 9. (a) Box plot of the objective KPIs of 19 participants (b) Torques over
time for participant 1.

In Table V, the results of the one-way ANOVA test are
presented, as well as the mean and SD values of each metric.
From this, it is clear that the proposed MPC controllers
significantly decreased the overall driver steering effort, in
particular, with an average reduction of 55.47% with respect to
the baseline system. This is in agreement with the subjective
evaluation of the MPC modes, which were judged as lighter
steering systems. The explanation lies in the behaviour of the
MPC controllers, which actively cooperate with the driver and
minimise the conflict, as can be seen in Fig. 9. In other words,
the intuitive, continuous guidance of the MPC modes makes an
efficient use of the torque feedback to achieve better symbiosis
with the driver. Objectively, the collaborative ratio of the MPC
controller in mode 2 increases by 62.86% with respect to the
baseline benchmark.

TABLE V
ANALYSED DATA OF THE OBJECTIVE METRICS

Criteria Baseline MPC 1 MPC 2 F p

Driver
effort

177.01
(37.74)

51.32
(37.38)

78.83
(50.31)

46.49 < 0.001

Controller
effort

2982.77
(170.05)

209.83
(92.90)

390.08
(193.23)

43.17 <0.001

Lateral
RMSE

0.51
(0.15)

0.29
(0.11)

0.33
(0.12)

15.38 <0.001

Maximum
ey

1.14
(0.54)

0.66
(0.33)

0.75
(0.43)

6.17 0.004

Mean ey
-0.06
(0.19)

0.03
(0.15)

0.03
(0.18)

1.81 0.173

SD ey
0.47

(0.16)
0.25

(0.10)
0.28

(0.10)
17.53 <0.001

Collaborative
ratio

0.43
(0.06)

0.62
(0.11)

0.70
(0.09)

45.70 <0.001

Intrusiveness
ratio

0.57
(0.06)

0.38
(0.11)

0.30
(0.09)

45.70 <0.001

Resistance
ratio

0.28
(0.04)

0.20
(0.13)

0.16
(0.11)

16.10 <0.001

Contradiction
ratio

0.29
(0.04)

0.18
(0.13)

0.14
(0.11)

18.50 <0.001

Coherence
-0.17
(0.17)

0.15
(0.29)

0.36
(0.27)

21.88 <0.001

Level of
control

authority

17.56
(3.68)

7.73
(8.03)

8.22
(8.79)

20.91 <0.001

Steering
reversal rate

31.84
(12.84)

23.76
(5.27)

22.68
(6.75)

8.38 0.015

Moreover, even though the baseline controller optimises
almost solely the tracking performance, the results show that
the proposed MPC mode 2 has an improvement of 35.93% in
regards to the RMSE of lateral error. This can be explained be-
cause the closed-loop human-vehicle interaction is considered
by the MPC controller. As previously mentioned, an accurate
prediction of the driver’s intention reduces conflicts. On the
other hand, driver-assist conflicts can result in decreased
tracking performance and user-acceptance.

Furthermore, the level of control authority is assessed in
terms of the ratio between the torque effort of the controller
and the driver. As expected, the authority is greatly shared
with the LKA, which relieves the driver partially from the
steering workload. Even though in all three controllers the
level of control authority is dominated by the assist system,
in the case of the MPC modes, the driver control is signif-
icantly higher than with the baseline system. This can lead
to less driver opposition to regain control. Besides, from the
subjective evaluations, most participants felt like they were
still in full control with MPC mode 2. This further reassures
the hypothesis that this novel LKA controller can provide a
human-like, collaborative guidance. In other words, the assist
system can make drivers feel in control while continuously
guiding them to the correct path, decreasing driver workload,
and significantly improving driver comfort. Lastly, the steering
wheel reversal rate (SRR) is an indicator of the smoothness of
both the control, as well as the driver workload. A lower SRR
means that the driver requires less corrections to follow the
target path. In this case, the proposed MPC mode 2 improves
the smoothness of the control by 28.76% with respect to the
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baseline. In the case of the baseline controller, a higher SRR
suggests that drivers tend to correct the guidance of the assist
guidance.

VIII. CONCLUSION

This novel MPC control strategy tackles the need to blend
driver and ADAS control through driver modelling in a Haptic
Shared Control strategy. The controller is able to predict the
human behaviour and, at the same time, it provides a smooth
and intuitive guidance to the driver. The results show that
the assist torque guidance matches the driver expectations and
their perception of collaboration.

In this study, a comprehensive driver model has been
integrated in the MPC controller, providing accurate torque
predictions when the driver target trajectory is known, as
shown by the pilot experiments performed in a fixed-base
driving simulator.

The MPC controller handles the nonlinearities and system
constraints, which enhances driving comfort. At the same
time, it allows a dynamic control authority sharing between
driver and assist system, which strengthens collaboration.
The adaptability of the driving assist system is essential to
positively cooperate with the time-varying human behaviour
during the steering task. Moreover, the controller can be
tuned to portray different behaviours, while maximising driver
comfort and improving tracking performance.

The data acquired from the 19 participants in a fixed-
base driving simulator consistently indicates that the proposed
controller fosters symbiotic driving and reduces driver-vehicle
conflicts. Moreover, it has been demonstrated that the pro-
posed strategy significantly improves the performance of the
currently available commercial system, both subjectively and
objectively with extensive KPIs.

IX. FUTURE WORK

As presented in this paper, while the users of the current
system appreciate the support given, the study shows that the
potential for further improvement towards top level comfort,
considering the long term target of automated driving, is still
high. This proposal suggests a significant step ahead in this
aspect, and more extensive tests in the driving simulator for
different scenarios are under investigation. Driving simulator
experiments are appropriate for the initial stages of the devel-
opment due to their reduced cost and their potential to help
extrapolating subjective measurements into objective KPIs.
Once validated, a wider scope of steering tasks, a higher degree
of plant nonlinearities, and driver model suitability will be
investigated in order to test the robustness of the proposed
MPC.

In parallel to these experiments, a more realistic environ-
ment is needed to further assess the validity of this approach.
For this purpose, the proposed MPC controller will be evalu-
ated with a real-time control system on a physical test vehicle.

APPENDIX
LIST OF KEY PERFORMANCE INDICATORS

A full list of all the Key Performance Indicators found both
in literature and in the industry are listed below.

A. Overall steering effort

• Driver torque steering effort during the time of the
manoeuver, seTd,

seTd =

∫ T

0

T2
d dt (20)

• Driving assist system torque steering effort during the
time of the manoeuver, seTc,

seTc =

∫ T

0

T2
c dt (21)

B. Path tracking performance

• Root-mean-square error of the lateral position with
respect to the ideal road centerline, RMSEy , with N
being the total number of data points.

RMSEy =

√√√√ 1

N

N∑
i=1

e2y,i (22)

• Maximum lateral position error, ey,max,

ey,max = max(ey) (23)

• Mean of the lateral position error, ey ,

ey =
1

N

N∑
i=1

ey,i (24)

• Standard deviation of the lateral position error, σey ,

σey =

√√√√ 1

N − 1

N∑
i=1

|ey,i − ey|2 (25)

C. Collaborative behaviour

• Consistency ratio [13], rco, calculated as the ratio
between the time where the driver torque and the assist
system have the same sign and the total time of the
simulated manoeuvre.

rco =
1

T

∫ T

0

sign(Tdr ·Tc) dt if Tdr ·Tc ≥ 0 (26)

• Intrusiveness ratio, rint, calculated as the ratio of the
time where the driver torque and the assist system
have opposite sign and the total time of the simulated
manoeuvre.

rint =
1

T

∫ T

0

sign(Tdr ·Tc) dt if Tdr ·Tc < 0 (27)

• Resistance ratio [13], rre, calculated as the ratio of
the time where the driver torque and the assist system
have opposite sign and the total time of the simulated
manoeuvre, as long as the driver torque is bigger than
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the driving assist torque.

rre =
1

T

∫ T

0

sign(Tdr ·Tc) dt

if Tdr ·Tc < 0 & Tdr > Tc

(28)

• Contradiction ratio [13], rcont, calculated as the ratio of
the time where the driver torque and the assist system
have opposite sign and the total time of the simulated
manoeuvre, as long as the driver torque is smaller than
the driving assist torque.

rcont =
1

T

∫ T

0

sign(Tdr ·Tc) dt

if Tdr ·Tc < 0 and Tdr < Tc

(29)

• Coherence [28], γ, defined in terms of the cosine of the
angles formed by the driver and driving assist torque.
It should be positive if the assist system is mainly
portraying a collaborative behaviour during the total
time of the simulated manoeuvre.

γ =

∫ T
0
Tdr ·Tc dt√∫ T

0
T2
dr dt ·

∫ T
0
T2
c dt

(30)

D. Control authority level

• Level of sharing [28], Tshare, is the ratio between the
assist system steering effort and the driver steering effort.

Tshare =
seTc
seTd

(31)

E. Smooth driving

• Steering reversal rate [29], SRR, is the number of
steering wheel reversals, per minute, that are larger than a
gap value, θsw,min. To reduce high-frequency noise, the
steering wheel angle and steering wheel velocity signals
are filtered with a 2nd order Butterworth filter with cut-
off frequency, fcut = 0.6 Hz. The SRR is calculated as
the number of times where |θsw(t1)−θsw(t2)| ≥ θsw,min
for time-steps t1, t2 corresponding to consecutive steering
wheel velocities equal to zero.

θsw,min = 3 deg, (32)

SRR =
nchange
T

· 60 (33)

F. Driver model accuracy

• Root-mean-square error (RMSE) of the predicted driver
torque, Td,pred, with respect to the real driver, Td ,

RMSETpred =

√√√√ 1

N

N∑
i=1

(Td,pred,i − Td,i)2 (34)

• Accuracy of the driver model torque prediction in per-
centage, defined as:

A(%) =

[
1− 1

SD(Td)
RMSETpred

]
· 100 (35)
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A
Driver Models for the Steering Task

Themodelling and understanding of the driver behaviour is key to create new control alternatives
that can take into account the driver-in-the-loop dynamics to develop more collaborative driving
assist systems.

A clear overview of the state-of-the-art driver models can be found in this section. The introduc-
tion of driver models is necessary to model the driver-vehicle interaction during the steering task
and to provide more effective haptic torque guidance. It also allows for a subjective-objective in-
terpretation of steering feel during closed-loop experiments with the driver. As demonstrated by
Horiuchi and Yuhara [44], subjective perception of handling characteristics of actively controlled
vehicles can be achieved by implementing driver models.

The main driver aspects to be modelled for a reliable representation can be divided into three
categories, which are the cognitive behaviour, the neuromuscular dynamics, and the sensory
organs, explained in Sections A.1, A.2 and A.3. Afterwards, the common range for the different
parameter values is presented in Section A.4, followed by the extended description of the se-
lected driver model in Section of A.5, with its validation in a pilot driving simulator experiment.
Lastly, the main conclusions related to driver modelling are outlined in Section A.6.

17



A.1. Cognitive behaviour

A.1. Cognitive behaviour

The cognitive models correspond to the reception, perception and processing of information of
the human driver. These models represent the human capabilities of predicting and anticipating
situations. In particular for the driving task, this can be illustrated as the driver being able to
create a preview of the upcoming road curvature and, as a consequence, generating the desired
control action.

A.1.1. The Central Nervous System

The Central Nervous System [57] is composed of the brain and spinal cord and its main func-
tion is to send control neural signals to the neuromuscular system, NMS. These motoneurone
commands (𝛼, 𝛾) are calculated through a certain control strategy based on the states of the
closed-loop system, such as vehicle position, velocity, and steering wheel torque, among oth-
ers. However, how the CNS decides its preferred control strategy, in terms of which costs or
states are minimised, has been the subject of significant controversy. The differences in the
objective function to be minimised can lead to different control strategies that range in perfor-
mance and resemblance to the actual human behaviour. In Fig. A.1, the divisions of the CNS
in the brain are illustrated.

Figure A.1: Divisions of the Central Nervous System [57].

All the signals coming from the CNS, known as efferent signals, are subject to small time delays
that are a function of the neurones’ firing rates. This rate is variable and has an upper limit. The
higher this firing rate is, the lower the transportation delays are, keeping the control stable. The
𝛼-motoneurone is also subject to motor noise, which has been found to be signal-dependent.

The cost function of the different strategies consists of different factors, each of which is asso-
ciated with a weighting parameter, and both the factor as well as the weighting play important
roles in determining the performance of the controller. The most common cost functions found
in literature include weights on the driver’s input command to the system, and path-following
performance, based on lateral position and yaw angle error. Nevertheless, indicators such as
the steering effort or muscle energy consumption have also been evaluated [47], in which the
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minimisation of such a cost function represents a trade-off between performance accuracy and
energy consumption minimisation.

A.1.2. Cognitive control models

This section contains an overview of the vast amount of research that has been undertaken in
the understanding of the human brain and the use of internal mental models. This allows us
to determine the preferred driver’s control strategy. Moreover, the human learning capabilities
and robustness against uncertainty are also acknowledged. More extensive reviews of driver
cognitive models can be found in the research of MacAdam [67] and Plöchl and Edelmann [89].

The first type of model introduced in this outline is based on compensatory control and its general
structure can be seen in Fig. A.2.

Figure A.2: Schematic representation of a compensatory controller for the steering task.

PID Compensation Model

The first mathematical representation of the steering task was developed by Tustin [103], who
approximated the steering human strategy as a linear transfer function. This method relies on
a proportional controller minimising the error and rate of the error subject to a time delay in the
control action.

Another PID compensation model can be found in early literature, by Iguchi [50]. The general
structure of the transfer function is
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𝐻(𝑠) = 𝐾፩ + 𝐾፝ ⋅ 𝑠 +
𝐾።
𝑠 (A.1)

Such approaches are an oversimplification of the actual cognitive control behaviour. This was
already observed by Tustin, who acknowledged that there was an unmodelled control part which
could not be defined by a linear transfer function. This nonlinear function was named the rem-
nant. Another disadvantage is that, in general, these models do not include any cognitive time
delays within the function either, such as Iguchi’s model. Lastly, there is an additional difficulty of
determining the optimal gains for the controller, which makes this approach less advantageous.

Crossover-Compensatory models

The steering task can be seen as a closed-loop compensatory control strategy, as described
by McRuer and Krendel [75, 76]. This strategy defines a closed-loop system representing the
driver and vehicle dynamics as a whole, where the driver corrects, or compensates, for the
tracking error based on the current states of the system.

The main objective of McRuer was to illustrate how the human-vehicle system can be described
in engineering terms when the human is actively participating in the control task. In his research,
the human was characterised by a quasi-linear mathematical model. Within the model, he
defined a linear transfer function representing the compensatory behaviour and an additional
remnant [103] to account for human nonlinearities. Further improvements are the introduction
of time delays representing the driver response delay and a gain related to the experience of
the driver.

This type of models are robust against disturbances at low frequencies. However, human de-
lays in the NMSmake this strategy unsuitable for the steering task. Another drawback is that the
compensatory models’ efficiency is limited to a certain frequency range, below the crossover fre-
quency 𝑤፜. If the closed-loop system is subject to inputs above this frequency 𝑤፜, the dynamics
are drastically changed and the system’s closed-loop response becomes poor.

Although McRuer did not include a more detailed driver model in his initial research, he pointed
out that amore complete cognitive control strategy should also include the predictive-anticipatory
human behaviour.

Preview-Anticipatory models

Unlike the above methods, preview-tracking approaches make use of future path information,
which results in better tracking accuracy. These models take into account the human anticipa-
tory capabilities and are also known as predictive, closed-loop models. They are based on the
current vehicle states, the previewed path to follow over a time horizon, the vehicle dynamics,
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and the knowledge of their own interaction with the steering wheel interface. This last compo-
nent can be seen as the internal mental representation that the driver has of the driver-vehicle
system.

The human predictive abilities allow them to send control signals to the neuromuscular system
even before actual sensory feedback is available [111]. The outcome of such a control strategy
results in accurate and fast tracking behaviour.

Figure A.3: Schematic representation of a predictive controller for the steering task.

Within the predictive models, which structure can be seen in Fig. A.3, it is possible to differen-
tiate two main subcategories.

• Single-point preview models [23, 39, 64, 90]:
One of the earliest attempts was made by Kondo and Ajimine [64], in which one single
preview point was used to calculate the control strategy. In this first model, the response
delay of the driver is ignored, and little background about the system’s gain is provided.
However, it is considered to add a significant step in the understanding of the cognitive
tracking strategies. The general structure of the transfer functions of this model, in agree-
ment with the notation in Fig. A.3, is described by Eqs. A.2, A.3, and A.4. As can be
seen, this is based on a linear prediction model, where the inputs to 𝐵(𝑠) are the lateral
position, 𝑦፩, and yaw angle, 𝜓.

𝑃(𝑠) = 𝑒ፓᑡ፬ (A.2)
𝐻(𝑠) = 𝐾 (A.3)

𝐵(𝑠) = (1, 𝑇፩ ⋅ 𝑉) (A.4)
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• Multiple-point preview models:

More complex representations include multiple preview points to represent the upcoming
road trajectory information available to the driver, as represented in Fig. A.4.

This optimal control strategy, initiated by MacAdam [69, 70], has been subject to different
modifications, both in the defined cost function, as well as in the control method selected
to perform the optimisation of the control input.

Among the control algorithms, the author highlights the use of Model Predictive Control
[59, 61, 69, 70, 86] and Linear-Quadratic-Regulator [87, 88, 99]. The LQR algorithm can
explicitly compute the optimal control input based on linear plant dynamics and a quadratic
cost function, but it can’t consider the system’s constraints. TheMPC strategy is discussed
in detail in Chapter B. Some of the benefits of using MPC are the suitability to investigate
nonlinear systems and the possibility to add constraints to the system, as discussed by
Cole et al. [19]. This can represent human limitations and result in more realistic control
strategies.

Figure A.4: Top view of the road displacements ahead of the vehicle [19].

The combination of both forward predictive control and feedback control allows for accurate path
tracking performance as well as compensate for disturbances and inaccuracies of the driver’s
internal mental model.

Neural networks and driver’s adaptation

The extensive research on drivers’ cognitive behaviour emphasises the complexity of the human
CNS. Therefore, in order to deal with these highly nonlinear input-output relationships, as well
as with the uncertainty of a clear control algorithm method, the use of Neural Networks has also
been investigated. In Fig. A.5, a general representation of a Neural Network is presented.
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The main benefit of using a NN is being able to mimic the human adaptive control behaviour.
Also, it is possible to identify the system’s input-output relationships, including nonlinear prop-
erties, without predetermining the control strategy. The general structure of a NN includes a
varying number of layers, in which each added layer increases the complexity of the system but
also its performance or capabilities. For instance, a three-layer system would be comprised of
an input layer, an output layer, and a hidden layer. This hidden layer is derived by training the
network based on examples of multiple different scenarios, also known as back-propagation.
In other words, the NN exemplifies the learning behaviour.

Figure A.5: Schematic representation of a Neural Network controller for the steering task.

The use of neural networks has proven to be effective for certain task scenarios [56, 68] within
the Identification Theory framework. One of the key features implemented in both papers is
the use of time delayed states information within the input layer, which symbolises the human
cognitive delays. However, the need for huge amounts of data and their poor performance when
tackling novel tasks, makes them less suitable to model the unpredictable, human behaviour.

Furthermore, from Kageyama et al. [56], it is interesting to highlight that the most significant
weighting variables found for the NN to compute the output steering torque were based on the
vehicle speed and information about the upcoming road shape. This result is in agreement
with the cognitive control strategy based on predictive models. Moreover, it was also found that
these weighting parameters can change over time, and that the drivers are able to learn. This
learning capabilities can result in less dependency on the environment states, for example, the
curvature of the upcoming road.
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Modular approaches for learning behaviour

Cognitive models can also include the human adaptability, variability, and learning capabilities
when executing a task [43]. For instance, drivers can learn based on previous driving history
or adapt their behaviour depending on the criticality of the scenario. Models portraying such
qualities display humans’ characteristics of learning and their adaptive behaviour [41, 53, 55,
112]. These models are based on a Mixture of Experts architecture, where expert networks are
classified and selected through a gating network, as shown in Fig. A.6. However, these models
have not been particularised to the driving task.

In the research carried out by Haruno et al. [41], these human capabilities are represented
through a modular approach, which was named the modular selection and identification for
control model (MOSAIC). In the model, each controller is applicable to a small set of contexts.
The model is composed of multiple coexisting pairs of forward and inverse models, which are
learnt and appropriately selected based on the environment. The learning architecture has
been based both on the gradient-descent method [112] and the expectation-maximization algo-
rithm [41], which resulted in a more robust behaviour against starting conditions and learning
parameters. However, the simulations were limited to cases of object manipulation tasks. The
selection of the suitable inverse model, the controller, is based on the shape of the object, which
has certain associated dynamics. In order to reduce transient periods where no controller is se-
lected, the model combines both feedforward selection based on the accuracy of predictions
and feedback of the outcome of the task. For novel situations, the model was able to adapt and
correct online for objects of which dynamics lie within the polyhedra of already learnt dynamics.

Figure A.6: Schematic representation of a Mixture of Experts controller for the steering task.
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A.1.3. Internal mental models

In Section A.1.2, the main driver cognitive modelling strategies have been described. However,
these methods alone are not enough to describe the cognitive behaviour of the driver. The
aforementioned models rely on the assumption that the driver has access to certain states of
the driver-vehicle system. In reality, the states available are subject to neural noise and they
are not a perfect copy of the actual states. Therefore, the knowledge about these states can
represent the level of experience of the driver [63].

The required states for the control task are assumed to be available to the individuals through
an internal mental model, which is a virtual representation of both the internal and external
dynamics that compose the system. In particular in the driving case, this can be seen as the
learnt dynamics that drivers have of their own NMS dynamics coupled with the vehicle through
the steering system.

An important function of the mental models is to allow the estimation of feed-forward commands
to the system. Therefore, they estimate the 𝛼-motoneurone signals that go into the NMS, which
can be interpreted as the expected torque command. Another function of the internal mental
model is to facilitate the adaptation to new environments. As presented in Section A.1.2, it has
been studied that drivers exhibit an adaptive behaviour while driving.

Throughout the years, several attempts to represent this internal mental model have beenmade,
which can be divided into two main categories.

Inverse internal mental models

Inverse internal mental models are a direct transformation of task goals into motor commands
[32]. In other words, within the driving framework, they transform the desired steering wheel
angle output into the motoneurone command, 𝛼, that goes into the NMS. The first attempts to
represent internal mental models were often based in inverse dynamics representations [32, 88],
but later driver models implemented at TU Delft [23, 58] also made use of this approach.

One significant drawback of these models is that their output is also the ultimate goal of the
controller. Moreover, due to the complexity of driver-vehicle systems, the inverse of the model
results in a highly improper transfer function, which needs to be filtered in order to remain proper.
Another disadvantage, which is a direct consequence of this method, is the high order of the
transfer functions of these models. Also, although a simplification can be derived to describe
the relationship between the task goals and motor commands, if the order of the inverse internal
representation is reduced, the model becomes imperfect by definition. This can influence sev-
eral outputs of the system. For instance, even with the same plant dynamics as in the internal
model, there will always be a certain degree of stretch reflex present in the system due to the
mismatch, which is not realistic.
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Forward internal mental models

Forward internal mental models allow an estimate of the states to be calculated, which are then
used as inputs for the driver’s cognitive controller. This controller can be based on one of the
previous methods described in Section A.1.2, such as LQR or MPC-based models. Examples
of forward models are best found in the investigations of Cambridge University [18, 47, 82].

Furthermore, the perceived states of the system can be transformed into reliable estimates
through a variety of methods. These states are subject to measurement noise and acquired
through the sensory organs as described later in Section A.3. Among the possible estimation
approaches, the most commonly used one is the Kalman Filter. Depending on the requirements
of the system, an Extended Kalman Filter can be used to deal with nonlinearities.

A.1.4. Block diagram of the cognitive subsystems

The general subsystems of which the cognitive model of a driver can be composed of can be
seen in Fig. A.7. The input of the cognitive model of a driver are the sensed states of the
driver-steering-vehicle system, 𝑥፩፞፫፜፞።፯፞፝. These perceived states, subject to sensory delays
and measurement noise, can be transformed into reliable estimated states and are described
in further detail in Section A.3. The estimated states are then used to calculate the desired
control command to the NMS. This command is calculated through a control strategy like the
ones described in Section A.1.2.

In Fig. A.7, the measurement and process noise are represented by the parameters 𝑣 and
𝑤ᎎ, respectively. As defined in Section A.2, the 𝛼-motoneurone signal represents the desired
torque input command to the NMS, whereas the 𝛾-motoneurone signal symbolises the expected
muscle angle of the arms, both of them key to illustrate the co-activation mechanism of the
muscles, described in Section A.2.5.

Figure A.7: Block representation of a driver’s general cognitive model.
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A.2. Neuromuscular dynamics

The central nervous system, described in Section A.1.1, sends different types of efferent signals
to the periphery. In the scope of this thesis, special attention is given to the motoneurone signals
(𝛼, 𝛾) that stimulate the neuromuscular system with major impact.

The neuromuscular dynamics of the arms are essential to investigate the driver’s response to
feedback from the vehicle system, such as steering torque feedback or disturbances. Moreover,
it makes it possible to understand human discomfort at a neuromuscular level.

This section highlights the main features of the neuromuscular physiology which are relevant to
the steering task, along with some state-of-the-art modelling alternatives with their respective
advantages and limitations.

A.2.1. Skeletal muscle

There are two main types of motoneurones in the spinal cord, 𝛼- and 𝛾-motoneurone signals.
On the one hand, 𝛼-motoneurones coming from the cortex in the brain directly activate the
muscles, or more precisely, they induce the contraction of the extrafusal fibres contained within
the skeletal muscle.

The skeletal muscle [6] is an excitable, contractile tissue that connects bones via the tendons.
These muscles are arranged in opposing pairs of agonist-antagonist muscles . When the skele-
tal muscle is activated, the muscles can generate force, or torque, through their contraction.
Another function of the skeletal muscle is to generate information about the load encountered.

In the literature, many attempts to model the muscles can be found. A general overview is
presented in this section.

Phenomenological models

This type of models are mathematically less complex and in proper agreement with the dy-
namic behaviour of the muscles, but they provide bad muscle energy consumption predictions.
The most used types of models within this category are second-order low-pass filters [110]
representing the muscles as a spring-damper system. Generally, they are derived from fitting
experimental data into a 2፧፝ order transfer function. They can also be described in terms of the
damping ratio and the natural frequency of the model.

These models describe pairs of agonist-antagonist muscles grouped together. The level of
co-contraction of the muscles, explained in Section A.2.5, can be modelled by varying the co-
efficient related to the muscle stiffness.
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Physiological models

Physiological muscle representations are extremely complex mathematical models. They pro-
vide a good fitting of both the muscle behaviour and metabolic energy consumption of the mus-
cles. The most used models within this category are described below.

• Fractional order models [91], which attempt to describe the viscoelastic properties of mus-
cle tissue as a whole.

• Hill-muscle models are high-order, nonlinear, lumped-parameter models [110]. They can
be defined by two ordinary differential equations representing the excitation-to-activation
dynamics and activation-to-force dynamics. The Hill-muscle model is composed of three
main elements, as can be seen in Fig. A.8.

(a) A contractile element (CE) represents active muscle contraction and force generation.

(b) Nonlinear passive elements, representing the physiological muscle tissue response
under compressive and tensile loads. It includes a parallel elastic spring element (PE)
describing the passive elastic properties of the muscle fibres. A series elastic elements
group (SE), spring and damper, can also be modelled within this second group of ele-
ments. However, this second term can be neglected [7] without introducing significant
inaccuracy when the short-tendon actuator is not involved in the task.

(c) In series with the muscle, the tendon can be represented as a spring attached in series,
which describes the tendon’s elastic properties. This term is often neglected due to the
increased complexity, despite the relevant physiological meaning. The tendon’s elasticity
contribution is particularly important if the tendon stretches an amount approaching the
fibre length of the particular muscle [113].

Figure A.8: Hill-muscle model representation.
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• Huxley-based muscle models [42] are distributed-parameter models which require high
computational cost. They provide insignificant advantages with respect to Hill-muscle
models unless the study of the muscles in detail is needed, where the description of the
muscle contraction mechanism and its accuracy are critical.

In most of the research undertaken in this area, the 𝛼-motoneurone has been modelled as
actuating on a lumped pair of agonist-antagonist muscles to reduce complexity of the models.

Activation dynamics

The 𝛼-motoneurone is transformed into muscle activation force through an internal process
known as activation dynamics. This mechanism can be simplified into two sub-processes [110].

I. Excitation-to-activation dynamics.

It can be described by an ordinary differential equation that represents the time delay due
to the neural excitation lag time (𝜏ኻ).

II. Activation-to-force dynamics.

It is the activation force, or torque, derived from the muscle-tendon components. This can
be described by another time delay (𝜏ኼ), known as the neuro-muscular transduction delay.
In reality, the time delay corresponding to the activation dynamics is lower than the one
associated with the deactivation dynamics. However, this is generally modelled as the
same constant value symbolising both processes.

An example of how the simplified muscle activation dynamics can be modelled by a transfer
function is shown in Eq. (A.5). Third-order systems can also be found in literature to model the
activation dynamics [18], which include an additional time delay representative of the tendons,
independent of the activation time delay.

𝐻ፚ፜፭ =
1

𝜏ኻ ⋅ 𝑠 + 1
⋅ 1
𝜏ኼ ⋅ 𝑠 + 1

(A.5)

A.2.2. Muscle spindles

As mentioned in Section A.1.1, the CNS sends efferent signals to the periphery. Apart from
𝛼-motoneurones, another relevant type of signals is 𝛾-motoneurones which go into the muscle
spindles and cause the stretch reflex activation. The muscle spindles [6] are special fibres in
the muscles, also called intrafusal fibres. These fibres are located in parallel to the extrafusal
fibres within the skeletal muscles.
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Furthermore, the contraction of muscle spindles alone is not enough to generate forces due to
the smaller size of the muscle spindle fibres with respect to the extrafusal fibres, along with a
lower number of 𝛾-motoneurone signals [47]. Instead, when themuscle spindles are tensed, this
triggers the initiation of the stretch reflex loop. Their main function is to reject disturbances and
to stabilise the closed-loop performance of the NMS. However, the muscle activation through
the stretch reflex loop is subject to a small time delay. Moreover, the muscle spindles have been
found to linearise the nonlinear muscle behaviour [66].

The activation of the muscle spindles takes place when there is a difference between the ex-
pected muscle angle of the arms, represented by the 𝛾-motoneurone, and the actual muscle
arm angle. This can be explicitly manifested, for instance, when the torque command coming
from the motor cortex, 𝛼, is not accurate due to an imperfect internal representation of the sys-
tem, or, due to disturbances, which results in an operation mismatch. In these situations, the
muscle spindles react in order to correct the error and reject disturbances.

Another relevant function of the stretch reflex loop is to maintain the muscle length and muscle
stiffness. This is achieved by sending feedback information to the brain [57]. There are two
types of signals travelling to the brain from the muscle spindles, also known as afferent signals.
In Fig. A.9, it can be seen how the 𝛼-motoneurones activate the extrafusal fibres, also known
as skeletal muscle, whereas the intrafusal fibres are innervated by the 𝛾-motoneurones. On the
other hand, information signals are also sent from the muscles to the brain through the sensory
nerves, described below.

• Ia afferent signals: They send stretch and velocity feedback information about the muscle.

• II afferent signals: They send mainly stretch information about the muscle.

Figure A.9: Muscle model representation of the extrafusal fibres and the intrafusal fibres. The latter is also known
as muscle spindles [6].
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Modelling alternatives

In particular for the steering task, the muscle spindles compare the actual muscle length of the
arm to the 𝛾-signal, representing the expected muscle length. The difference between these
signals results in an error signal.

In most of the previous research, such as the investigations carried out at Cambridge University
[47, 82] and Delft University of Technology [23, 58], these signals have beenmodelled asmuscle
angle instead of muscle length.

The stretch reflex delay, 𝜏፫, represents the finite motoneurone signal transmission rate. This
delay depends on the neural conduction velocities, as well as the distance that the signals have
to travel, from the muscles to the motor neurons in the spine [57]. It is important to highlight
that this delay can lead to instabilities when the reflex gain, 𝑘፫, exceeds a certain threshold in
relation to the delay.

One relevant modelling alternative is to represent the stretch reflex as a phase compensator
[47]. Another one is to model it as a function of the muscle stretch and stretch velocity [58].
Lastly, in discrete-time, as a shift-time register multiplied with the reflex gain.

An example of how the simplified muscle spindle dynamics can be modelled by a transfer func-
tion is shown in Eq. (A.6). In this case, the input to the system can be the difference between the
expected muscle angle and the actual muscle angle, 𝛾−𝜃ፚ. Apart from the stretch dependency,
more complex examples can also model the velocity dependency of the muscle spindles.

𝐻፫ =
𝑘፫

𝜏፫ ⋅ 𝑠 + 1
(A.6)

Mismatch between the real and modelled behaviour

Ideally, given a perfect internal mental model of the driver-vehicle system, the muscle spindle
error signal should always be zero if there is no noise present and no disturbances. In other
words, there should be no stretch reflex activity during voluntary movements. However, it is not
possible to replicate this behaviour when using linear controllers such as the LQR [47]. In this
case, given finite weight function costs, the muscle spindles error cannot reach zero.

Moreover, the muscle spindle sensors are subject to a time delay. If high reflex gains are in-
cluded into the modelling of the stretch reflex dynamics, the model is destabilised [47]. This
behaviour is explained in further detail in Hagbarth [40] and Van der Helm et al. [105], and can
be summarised by the stretch reflex beingmost effective at low-frequency inputs. For high reflex
gains, the reflex time delay results in a resonance peak at the eigenfrequency of the closed-loop
system.

Andrea Michelle Rios Lazcano 31



A.2. Neuromuscular dynamics

A.2.3. Golgi tendon organs

Golgi Tendon Organs are located in the tendons. The tendon can be modelled as a spring
attached in series to the muscle model.

The main function of these tendons is to send force feedback information to the brain via Ib
afferent signals. Golgi tendon organs have been found to have a significant contribution for
ankle movements [79] and studies on airplane pilots [45], but their influence during the steering
task still remains unclear.

Modelling alternatives

An example of how the golgi tendon organs could be modelled is shown in Eq. (A.7), where
𝑘፠፭፨ is the tendon gain and 𝜏፠፭፨ represents the time lag of the organs.

𝐻፠፭፨ = 𝑘፟ ⋅ 𝑒ዅ፬Ꭱᑘᑥᑠ (A.7)

Golgi tendon organs have been found to deliver both excitatory and inhibitory effects [79]. Thus,
depending on the task, the sign of the tendon gain can change.

An overview of the aforementioned muscle components can be seen in Fig. A.10.

Figure A.10: Representation of the Muscle spindle and Golgi tendon organ [62].
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A.2.4. Intrinsic muscle dynamics

The muscle intrinsic properties include passive visco-elastic human properties of the muscle,
such as the intrinsic muscle stiffness and damping. These properties can be varied by means
of co-contraction, described in Section A.2.5. Unlike the muscle spindle properties, they do
not introduce delay, which translates into an instantaneous suppression of disturbances for all
frequencies [21]. However, their activation involves a considerable energy cost [96].

Modelling alternatives

Themodelling alternatives are generally based on a spring-damper-like behaviour of these prop-
erties. Previous studies showed that the behaviour was strongly dependent on the stiffness co-
efficient, 𝑘፩ [23, 88]. However, a more recent, muscle-centered driver model highlighted that,
at low frequencies, the intrinsic dynamics are dominated by the damping term, 𝑐፩ [46].

A.2.5. Muscle processes within the NMS

In this section, the main processes that take place within the NMS are described. During the
learning phase, the below specific processes can be intensified:

• Stretch reflex activity:
In order to reject disturbances, the stretch reflex activity increases. This activation is also
thought to decrease the learning phase duration [32] via feedback error learning. Besides,
the stretch activity indirectly contributes to the skeletal muscles’ activation through the
muscle co-activation process, described below.

• Muscle co-contraction:
Muscle co-contraction can be seen as increased intrinsic muscle properties such as in-
trinsic muscle stiffness. This helps to stabilise the system and it improves the control
performance.

Muscle co-activation

Muscle co-activation [32] is the process by which the skeletal muscles are activated to gen-
erate torque. Hence, muscle co-activation results in a certain degree of muscle activity. This
mechanism can be activated, mostly, from two sources which are described below.

I. Feedforward commands, 𝛼-motoneurones.

Motoneurones, 𝛼-signals, coming from the motor cortex in the brain, directly activate the
skeletal muscles to produce a torque. Conceptually, it can be seen as the estimate of

Andrea Michelle Rios Lazcano 33



A.2. Neuromuscular dynamics

the load that the muscle will operate against and can be calculated based on the human
cognitive strategies described in Section A.1.2 .

II. Feedback commands, 𝛾-motoneurones.

The main function of the 𝛾-motoneurones in the spine is to activate the muscle spindles.
However, these signals do not only activate the reflex loop, but they can also increase the
muscle activation level indirectly. The muscles’ activation via 𝛾-signals is known to be more
energy-efficient, since the stretch reflex is only activated in the presence of disturbances.

The co-activation mechanism occurs to a greater degree during the learning phase of the CNS.
For example, an increase in co-activation can be seen when the internal mental model is not
perfect due to the novelty in the undergoing task or the exposure to disturbances. The main
functions of the co-activation mechanism are:

• High levels of co-activation can effectively reduce the influence of disturbances [21]. How-
ever, muscle activation entails high metabolic energy consumption because the muscles
need to be continuously activated.

• Adjust the degree of muscle tension in step with voluntary movement and ensure that
muscle spindles are not unloaded during voluntary movement [47]. This maintains the
spindles’ sensitivity.

• Suppressing the reflex loop during voluntary movement [47]. In this situation, ideally, the
𝛾-signal is equal to the actual muscle length.

Muscle co-contraction

As described in Section A.1.2, humans can adapt their dynamics depending on the situation.
This can be particularised for the capability of varying their own muscle impedances. For in-
stance, the driver can consciously increase the intrinsic muscle properties, such as stiffness
and damping. This is largely exemplified while adapting to novel tasks and this co-contraction
is usually maintained until a new, more accurate internal mental representation of the environ-
ment is acquired. This mechanism also takes place when the system is subject to disturbances,
as well as noise in the motor and sensory systems.

Muscle co-contraction is the stiffening or relaxation of the muscle properties. Higher levels of co-
contraction entail a high metabolic energy consumption, since the activation command 𝛼-signal
needs to be sent continuously to maintain the level of co-contraction.

It is essential to stress that this behaviour is an instantaneous mechanism that occurs in re-
sponse to a mismatch between the driver’s expectations and the actual reaction of the closed-
loop system to the driver’s inputs, as described in Franklin et al. [32]. The fast activation of the
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process results in a reduced discrepancy during novel scenarios and it also provides additional
stability. This co-contraction build-up is possible due to muscle activation [14]. The deactivation
process is, on the contrary, slow. Once the new dynamics of the system are learnt, the driver
impedance is reduced in order to minimise the metabolic energy consumption, thereby reducing
the activation levels of all muscles. However, the impedance level never reaches zero. Despite
the metabolic energy consumption, there is always a minimum level of co-contraction present
to guarantee the stability of the system.

A.2.6. Block diagram of the neuromuscular subsystems

A complete structure of the different components of the neuromuscular system, as explained
in the previous sections, can be seen in Fig. A.11. For the scope of this thesis, some of the
elements have been simplified or removed, such as the golgi tendon organs.

Figure A.11: Block representation of a driver’s general neuromuscular system.

The inputs of the NMS are the motoneurone signals coming from the cognitive model, 𝛼 and
𝛾. On the other hand, the output of the system is the muscle activation torque, 𝑇ፚ፜፭, that goes
into the arms-steering-vehicle system. Moreover, at the steering wheel, the muscle angle of the
arms, 𝜃ፚ, interacts with the steering wheel angle, 𝜃፬፰.

As can be seen in Fig. A.11, two loops can be defined within the NMS system. The first one
corresponds to the reflex loop, which influences the amount of supraspinal torque, 𝑇፬፮፩, that ac-
tivates the muscles. This process represents to the co-activation mechanism defined in Section
A.2.5. The second loop can be derived from the impact of the muscle intrinsic dynamics.
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A.3. Sensory organs

The sensory organs represent the human capabilities to perceive the states of the controlled
closed-loop system. Thus, these organs characterise the driver skills to convert noisy sensed
signals into accurate estimates of the system states.

However, most of the research described in Section A.1 and A.2 neglects or oversimplifies the
importance of these organs. The sensory organs for human perception can be divided into three
subcategories [63].

I. Visual perception organs

The driver makes use of vision to sense the lateral deviation (𝑒፲) and heading error (𝑒Ꭵ)
with respect to the desired path.

This can be translated as the driver being able to sense a preview of the road path ahead.

II. Proprioception or somatosensory organs

Apart from the visual perception, drivers are capable of acquiring information about the ap-
plied steering wheel angle (𝜃፬፰), steering wheel velocity (�̇�፬፰), and applied steering wheel
torque (𝑇፬፰) or muscle angle (𝜃ፚ).
This is done via several organs that detect the states of the body, such as contact pressure,
temperature, and limb position.

III. Vestibular perception organs

The vestibular organs, together with the vision, allow drivers to sense the lateral velocity
(𝑎፲) and yaw rate (𝑟) of the vehicle. In a driving simulator experiment, this can only be
integrated if a moving-base simulator is available.

The organs responsible for the vestibular perception are the otoliths, for the lateral velocity,
and the semi-circular canals, for the yaw rate.

The feedback sensed by these organs is then sent to the CNS, subject to measurement noise,
which has been found to be signal-dependent [63, 102] but, for simplicity, this characteristic
is omitted and additive noise is used instead. An extensive review of human sensory organs,
human detection thresholds, and time delays was performed by Nash et al. [81].
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A.4. Relevant parameter values found in literature

From the literature, typical values characterising the most relevant human thresholds, time de-
lays, and physical limitations can be seen in the following tables.

In Table A.1, the main human parameters within the cognitive control model can be found.

Cognitive model parameters
Block Cognitive Controller

Variable 𝑇፩ 𝜏፜፨፠ 𝑇፭
Value range [0.85-3] 𝑠 [0.4-0.5] 𝑠 [0.15-0.55] 𝑠

Table A.1: Table of cognitive model parameters gathered from literature.

Table A.2 includes the range of neuromuscular parameters relevant for the steering task. The
wide range of the values is due to the fact that, as explained in Section A.2, drivers can con-
sciously co-contract their muscles, increasing the stiffness and damping of the different com-
ponents with respect to the relaxed conditions. The neuro-muscular (de-)activation transduc-
tion delay, 𝜏ኼ, corresponds to the lumped activation and deactivation process and the range
of these processes significantly varies. For instance, typical values found in literature for the
neuro-muscle activation range between 5 and 15 milliseconds, whereas the deactivation varies
between 20 and 60 milliseconds. However, in order to reduce the complexity and number of
parameters in the neuromuscular model, these processes are commonly lumped into one single
constant, 𝜏ኼ.

Neuromuscular parameters

Block
Activation
Dynamics

Reflex
Dynamics

Golgi Tendon
Organs

Intrinsic
Dynamics

Muscle
Arms Dynamics

Variable 𝜏ኻ 𝜏ኼ 𝜏፫ 𝑘፫ 𝑐፫ 𝜏፠፭፨ 𝑘፠፭፨ 𝑘።፧፭ 𝑐።፧፭ 𝐼ፚ፫፦ 𝑘ፚ 𝑐ፚ
Value
Range

[20-50]
𝑚𝑠

[5-60]
𝑚𝑠

[20-50]
𝑚𝑠

[0-50]
𝑁𝑚/𝑟𝑎𝑑

[0.2-3.4]
𝑁𝑚𝑠/𝑟𝑎𝑑

[20-48]
𝑚𝑠

[-]
𝑁𝑚/𝑟𝑎𝑑

[5-100]
𝑁𝑚/𝑟𝑎𝑑

[0.7-2]
𝑁𝑚𝑠/𝑟𝑎𝑑

[0.048-0.16]
𝑘𝑔 ⋅ 𝑚ኼ

[3.7-30]
𝑁𝑚/𝑟𝑎𝑑

[0.2-3]
𝑁𝑚𝑠/𝑟𝑎𝑑

Table A.2: Table of neuromuscular human parameters gathered from literature.

Lastly, in Table A.3, the relevant delays related to the sensory organs are listed. The vestibular
perception organs are omitted within the scope of this research since the experimental results
will be based on computer simulations and a fixed-base driving simulator experiment.

Sensory organs parameters
Block Visual perception Somatosensory organs

Variable 𝜏፯።,፲ 𝜏፯።,Ꭵ 𝜏᎕ᑒ
Value range [0.1-0.56] 𝑠 [0.1-0.56] 𝑠 [0.16-0.19] 𝑠

Table A.3: Table of sensory organs parameters gathered from literature.
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A.5. Adapted driver model

An extensive review of the cognitive behaviour, neuromuscular system, and the sensory or-
gans was presented in Section A.2. The complexity of modelling all the aspects of a driver can
rapidly increase. Therefore, there is a trade-off between the realism with which the driver is
represented and the possibility to use such a driver model for real-time vehicle control appli-
cations. Another factor to consider while modelling the driver behaviour is to take into account
how the different human parameters can be identified. A great number of variables can be not
realistically possible or result in over-fitting during the parameter identification.

A.5.1. Driver model description

The driver aspects modelled within the scope of the thesis are adapted from the state-of*the-art
work carried out at Cambridge University by Niu and Cole [82], because of the suitable LQG
control strategy based on a forward internal mental model, as well as an extensive, but adequate
representation of the NMS. The model designed by Katzourakis [58] was extensively studied
because of the detailed representation of the NMS, but the high-order of the transfer function of
the inverse internal mental model, as part of the cognitive controller, was a limiting factor. Fig.
A.12 shows a general scheme of the driver-steering-vehicle model.

Figure A.12: General scheme of a driver-vehicle model.
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Cognitive Behaviour

The controller chosen for the optimisation of the driver’s torque input is a predictive strategy
based on LQR. Along with the control strategy, the states of the system are estimated through
a Kalman Filter to reduce the effect of measurement noise of the sensory organs and process
noise of the muscle activation. This combination is also known as the Linear Quadratic Gaus-
sian, LQG. Moreover, the upcoming curvature of the road, illustrated in Fig. A.13, is considered
by introducing the human preview capabilities in the model, which is an improvement with re-
spect to the single-preview point model developed by Niu and Cole [82]. Lastly, the internal
mental representation that the driver has of the driver-vehicle system is based on a forward
mental model, which was found to be more advantageous with respect to inverse internal men-
tal models, as explained in Section A.1.3.

Figure A.13: General scheme of a driver-vehicle model.

The cost function of the LQR, which calculates the expected driver torque input, minimises the
lateral deviation of the vehicle with respect to the upcoming reference trajectory of the road with
a certain preview time, 𝑇፩፫፞፯.

𝐽ፋፐፑ =
ጼ

∑
ኺ
[[xፊፅ y፩]CፓQC [

xፊፅ
y፩
]] + 𝛼𝑅𝛼 (A.8)

where C is a matrix that selects the states on the lateral position, heading angle, and the road
preview points. In addition, there is a penalty in the amount of torque applied by the driver, 𝑅.
Finally, the expected driver torque input, 𝛼, is calculated as:

𝛼 = −Kፋፐፑ ⋅ [
xፊፅ
y፩
] (A.9)

whereKፋፐፑ is the LQR gain, xፊፅ is a vector with the estimated states, and y፩ a vector containing
the upcoming preview road points of length 𝑁፩ = 𝑇፩፫፞፯/𝑇፬,ፃፌ.
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Neuromuscular Dynamics

The neuromuscular dynamics of the driver are composed of the reflex action of the muscle
spindles and a linearised Hill-muscle model including the activation dynamics of the muscles.
These elements are necessary for the modelling of the co-activation mechanism of the muscles.
Moreover, the muscle dynamics of the arms that are interacting with the steering system are
also modelled. In order to reduce the complexity of the model, the intrinsic dynamics are omitted
because it is assumed that the passive stiffness and damping properties are dominated by the
steering system properties. Besides, based on previous research, it is considered that the effect
of the intrinsic properties during the rejection of unexpected events is less significant than the
reflex action of the muscle spindles. Lastly, the golgi tendon organs are set to zero because of
their unknown impact on the steering task.

The NMS dynamics are modelled as defined below, with the activation dynamics in Eq. A.10
and the reflex dynamics in Eq. A.11.

𝐻ፚ፜፭ =
1

(𝜏ኻ ⋅ 𝑠 + 1) ⋅ (𝜏ኼ ⋅ 𝑠 + 1)
(A.10)

𝛼፫ =
𝑘፫

𝜏፫ ⋅ 𝑠 + 1
⋅ (𝛾 − 𝜃ፚ) (A.11)

The expected muscle angle, 𝛾, is calculated based on the internal mental model of the driver.

𝛾 = [0 1 0] ⋅ �̂�ፊፅ (A.12)

Moreover, the arm-steering dynamics are modelled as

𝑇ፚ፜፭ = 𝑐ፚ�̇�ፚ + 𝑘ፚ(𝜃ፚ − 𝜃፬፰) (A.13)

In Eq. (A.12), the vector �̂�ፊፅ represents the estimated states via the Kalman Filter. The general
formulation of the Kalman Filter can be seen in Eqs. (A.14) – (A.15).

̇�̂�ፊፅ = Aፊፅ ⋅ �̂�ፊፅ + Bፊፅ ⋅ [
𝛼

z+ v
] (A.14)

xፊፅ = Cፊፅ ⋅ �̂�ፊፅ +Dፊፅ ⋅ [
𝛼

z+ v
] (A.15)
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The Kalman Filter state-space matrices, Eqs. (A.16) – (A.19), are based on the internal mental
model that the driver has concerning their own NMS dynamics, coupled in a closed-loop system
with the vehicle and steering system dynamics. The internal mental representation is described
by the state-space model composed of the matrices A።፧፭ , B።፧፭ , C።፧፭ , D።፧፭, where D።፧፭ = 0.

Aፊፅ = [A።፧፭ − Lፊፅ ⋅ C።፧፭] (A.16)

Bፊፅ = [B።፧፭ Lፊፅ] (A.17)

Cፊፅ = [I−M፱ ⋅ C።፧፭] (A.18)

Dፊፅ = [0 M፱ ⋅ C።፧፭] (A.19)

(A.20)

The gain matrix, 𝐿ፊፅ, and the innovation gains,𝑀፱ and𝑀፲, that are used in the equations above,
are shown in Eqs. (A.21) – (A.23).

Lፊፅ = A።፧፭ ⋅ P ⋅ Cፓ።፧፭ ⋅ (C።፧፭ ⋅ P ⋅ Cፓ።፧፭ + Rፊፅ)ዅኻ (A.21)
M፱ = P ⋅ Cፓ።፧፭ ⋅ (C።፧፭ ⋅ P ⋅ Cፓ።፧፭ + Rፊፅ)ዅኻ (A.22)

M፲ = C።፧፭ ⋅ P ⋅ Cፓ።፧፭ ⋅ (C።፧፭ ⋅ P ⋅ Cፓ።፧፭ + Rፊፅ)ዅኻ (A.23)

Finally, the matrix P is obtained by solving the Riccati equation, Eq. (A.24).

Aፓ።፧፭PA።፧፭ − P − Aፓ።፧፭PC።፧፭(Cፓ።፧፭PC።፧፭)ዅኻCፓ።፧፭PA።፧፭ + B።፧፭QፊፅBፓ።፧፭ = 0 (A.24)

Where the diagonal matrix with the variance of the process noise is represented byQፊፅ and the
variances of the measurement noise form the noise covariance matrix, Rፊፅ. The measurement
noise includes the noise over the plant outputs 𝑦, 𝜓, and 𝜃ፚ. Once the estimated states of the
system are obtained, the expected muscle angle can be derived, as shown in Eq. (A.12).

Sensory Organs

The sensory organs modelled are the visual perception organs and the proprioceptors. The
modelling of the vestibular organs is considered out of the scope of the thesis because the
investigation will be carried out in a fixed-base driving simulator.

Andrea Michelle Rios Lazcano 41



A.5. Adapted driver model

Driver model parameters

The parameters of the driver model are listed in table A.4. Most values are extracted from [82],
whereas 𝑇፩፫፞፯ and 𝑄 are selected based on the pilot experiment, described in section A.5.2.

Table A.4: Driver model parameters

Parameter Value Parameter Value

𝑇፩፫፞፯ 1.4 s 𝐼ፚ፫፦፬ 0.0718 kg mኼ

𝑘ፚ 30 Nmrad 𝑐ፚ 3 Nms/rad
𝑘፫ 21 Nm/rad 𝜏፫ 0.04 s
𝜏ኻ 0.03 s 𝜏ኼ 0.02 s
𝜏፯።፬፮ፚ፥ 0.24 s 𝜏፦፮፬፜፥፞ 0.19 s
𝑄 diag(3 ⋅ 10ኽ, 1 ⋅ 10ኼ) 𝑅 1

A.5.2. Driver model validation

The aim of this research is to reduce the conflicts between the driver and controller torque, as
well as to understand the driver-vehicle closed-loop interaction. For this purpose, a validated
driver model is essential.

The driving scenario designed was a route of 12 km long with straight and sinusoidal segments
in order to obtain consistent driving data for analysis. In every trial, the vehicle was driving at
a constant vehicle speed of 100 km/h and the test subject’s sole task was to control the lateral
motion of the vehicle to drive in the centre of the lane, indicated with a white line. The graphics
were rendered with rFpro software based on an IPG CarMaker scenario in a 210 projection
screen.

Three drivers participated in this pilot driving simulator experiment. In order to test the driver
model with different control strategies, drivers with great differences in the level of driving ex-
perience and experience in driving simulators were selected.

Offline simulations

The driver torque predictions are simulated using a high fidelity plant on IPG CarMaker, which
includes a detailed characterisation of the tyre dynamics and a validated Toyota steering model
[16], enabling more realistic simulations. The vehicle parameterisation corresponds to a mass
production commercial vehicle.
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Figure A.14: Driver model prediction based on CarMaker driver with a nonlinear, high-fidelity steering system.

The driver model is initially validated against “robotic” behaviour, using CarMaker’s virtual driver.
In Figure A.14, it can be seen that the driver model predictions are accurate both in magnitude
and in shape, with the exception of the initial torque peak. This initial mismatch is because
the LQR cognitive controller cannot enforce constraints. This could be resolved by introducing
a new MPC controller instead. However, the use of two MPC controllers, driver and ADAS,
may lead to instabilities due to competing objectives and increase the computational cost. The
driver model is also tested with simpler steering models, shown in Figures A.15 to A.16. With
decreasing nonlinearities, the accuracy of the torque predictions improves.

Figure A.15: Driver model prediction based on CarMaker driver with a kinematic steering system.

Figure A.16: Driver model prediction based on CarMaker driver with a Pfeffer steering system.
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Driving Simulator experiments

In order to test the driver model in a more realistic case, a driving simulator experiment was
performed with three different human drivers for the task of following a sinusoidal trajectory.
The drivers are listed in ascending order of driving experience, which can be observed in the
respective driving styles.

The driver model prediction fits all three drivers’ inputs well, even in the presence of high noise,
Figures A.17 to A.19, showing a good capability of the model to capture inter-driver variability.
The numeric results of the driver model predictions are listed in A.5.

Steering Pfeffer TME-TMC
Driver Driver 1 Driver 2 Driver 3 CMK Virtual
TRMSE 0.7344 0.6232 0.7355 0.6828

% Accuracy 89.96 90.96 87.30 85.08

Table A.5: Driver prediction accuracy values.

The sensitivity of the driver model parameters was investigated to obtain the best possible
fit. The most relevant ones are the driver preview distance of the road and the real reference
trajectory employed by each subject, which can significantly differ among drivers. Driver 3 has
a longer preview distance, resulting in smooth torque inputs, and it is assumed that the minimal
activation of the muscle spindles can be related to the driver’s good knowledge of their own
closed-loop dynamics (IMM). The perception of the reference trajectory has a major impact
on the model’s prediction. The reference trajectory was changed from the ideal invariant road
centerline to the actual lateral position of the car using road sensors in CarMaker.

Figure A.17: Driver model validation based on driver 1.
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Figure A.18: Driver model validation based on driver 2.

Figure A.19: Driver model validation based on driver 3.
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A.6. Conclusions

The integration of a realistic driver model is central to the design of the collaborative shared con-
trol strategy. A better accuracy of the torque predictions can directly improve the collaborative
behaviour of the proposed driving assist system.

In particular, within the HSC framework, driver models can facilitate the investigation of how the
driver reacts in the presence of the haptic feedback guidance. Thus, including the modelling of
the human behaviour is beneficial for the study of collaborative driving assist systems.

In the scope of this thesis, a validated mathematical driver model is used in the design of the
shared control strategy. The author of this thesis considers the research conducted at Cam-
bridge University [1]. to be the state-of-the-art reference for driver modelling focused on the
steering task. Driver models can represent human drivers’ behaviour and predict subjective as-
sessment of the steering torque feedback within the haptic control framework. Therefore, they
can minimise the need for testing of real vehicles, which is often time-consuming and involves
a higher cost than testing in a driving simulator.

One of the most relevant simplifications taken in the following chapters regarding the driver
model is the omission of certain parts of the NMS. For instance, due to their unknown impact on
the steering task, the modelling of the golgi tendon organs is omitted. The intrinsic dynamics are
also excluded in the scope of this thesis because of the less significant effect that they present
with respect to the reflex loop. The intrinsic dynamics, being passive properties, have a lower
influence during the steering task because these properties are dominated by the steering sys-
tem properties, 𝑘፭ and 𝑐፭. Moreover, due to the necessity of a moving-base driving simulator to
assess the vestibular perception of the drivers, the modelling of these organs is also considered
out of the scope of the thesis.

Finally, a comprehensive driver model has been implemented, providing accurate torque pre-
dictions when the driver target trajectory is known, as shown by the experiments performed in
a fixed-base driving simulator.
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This section presents a concise introduction to MPC, in Fig. B.1, its mathematical background,
and an overview of the software related to its implementation, the ACADO Toolkit. In particular
for the steering task, MPC-based systems are suitable due to the need for accurate precision in
the path tracking task performance. Also, smooth tracking makes MPC advantageous because
input constraints can be easily implemented. Thereby, these constraints avoid that the system
behaves abruptly when interacting with the driver, increasing safety and comfort.

Figure B.1: Schematic representation of the MPC approach for the steering task.
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B.1. Model Predictive Control

Model Predictive Control is a control strategy of which the main objective is to calculate the
trajectory of a future control input variable 𝑢(𝑘) in order to optimise the future behaviour of
the plant being controlled. The optimisation is performed within a finite-time window based
on the plant states’ information at the start of the time window 𝑥(𝑘) [108]. The time window is
composed of a number of time steps, called the prediction horizon,𝑁፩. The control horizon of the
control input sequence is denoted by 𝑁፜. This optimal control problem is iteratively performed
to minimise a cost function subject to constraints. A diagram of this process can be seen in Fig.
B.2, where 𝑁 = 𝑁፩ = 𝑁፜.

Model Predictive Control systems are based on amathematical model of the plant, which should
be as close as possible to the actual plant being controlled. Moreover, the systems can operate
in open- or closed-loop and the MPC framework allows the introduction of constraints to the
states and / or inputs to incorporate the physical limitations of the vehicle system, as well as
being able to handle nonlinearities. This makes the MPC framework very attractive for the
real-time dynamic optimisation of controllers for the driving steering task [60].

Figure B.2: General representation of the MPC prediction over the horizon.

Feedback control is introduced to the model by applying only the first control input of the cal-
culated optimal control sequence instead of the complete sequence. Applying the complete
sequence would result in open-loop control and it would make the system incapable of reacting
to external disturbances or uncertainties. In the next time-step, the finite-time window is shifted
and the process is repeated, which is also known as Receding Horizon Control, RHC [108].
With this process, MPC can make use of a preview trajectory to calculate the optimal control
input, which leads to higher performance.
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Therefore, it is clear that the MPC represents a strong control algorithm to tackle the current
issues in the path towards fully automated vehicles. An extensive summary of recent develop-
ments of MPC and future applications is given by Mayne [74]. In particular to vehicle control
systems, MPC strategies have been implemented for lane keeping assist systems [13], active
steering control [12, 27], collision avoidance [101], and emergency scenarios [34].

Furthermore, following the increasing trend to acknowledge the importance of the driver and
the interaction with the vehicle, there have also been MPC-based approaches that try to include
the driver model into the system, such as the lane keeping model of Gray et al. [36], the shared
steering system model by Guo et al. [37], and a novel driver assistance steering system that
takes into account the human impedances of the arm, implemented by Ercan et al. [25].

B.1.1. Prediction model

As previously mentioned, the MPC exploits a simplified plant model to predict the future plant
states’ evolution and to calculate the best control input sequence. For nonlinear systems, the
Nonlinear Model Predictive Control structure can be used. Therefore, it is fundamental to have
a model for the prediction of the plant that is accurate enough to capture the most significant
dynamics of the system, without compromising computational efficiency, in order to allow the
optimisation problem to be solved in real-time. This model is solved iteratively, resulting in an
optimisation based feedback control.

A general representation of the prediction model can be seen in Eq. (B.1),

x(𝑘 + 1) = 𝑓(x(𝑘), 𝑢(𝑘)) (B.1)
x(0) = xኺ

where x is the vector of the differential states of the system, with x ∈ ℝፍᑩ . The variable xኺ
denotes the initial states, and 𝑓 is the function that describes the prediction model dynamic
equations, which can be linear or nonlinear. Lastly, the variable 𝑢 ∈ ℝፍᑦ is the control input. For
the scope of this thesis, the dimension of the control input, 𝑁፮, is equal to one and it represents
the torque that the driving assist system exerts on the steering system.

The state solution is
x(𝑘) = 𝜙(𝑘;xኺ,u፤) (B.2)

And the control input sequence is

u፤ ∶= (𝑢(0), 𝑢(1), ..., 𝑢(𝑘 − 1)) (B.3)
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B.1.2. OCP formulation

Cost function

The general cost function of the MPC to be minimised can be defined as

𝐽ፍᑔ ,ፍᑡ(x(⋅), 𝑢(⋅)) =
ፍᑡዅኻ

∑
፤዆ኺ

[(ℎ፱(x፤) − y፫፞፟,፤)ፓW፱(ℎ፱(x፤) − y፫፞፟,፤)]+ (B.4)

+
ፍᑔዅኻ

∑
፤዆ኺ

[ℎ፮(𝑢፤)ፓ 𝑊፮ ℎ፮(𝑢፤)] + (ℎፍ(xፍᑡ) − y፫፞፟,ፍᑡ)W፱ᑅ(ℎፍ(xፍᑡ) − y፫፞፟,ፍᑡ)

Where W፱ , W፱ᑅ ≥ 0, are the weighting matrices of the stage and terminal cost for the states,
with appropriate matrix dimensions. The parameter𝑊፮ > 0 corresponds to the stage cost for the
input. These matrices can be used as tuning parameters that influence tracking performance.
The time-varying state reference vector is denoted y፫፞፟.

Constraints of the system

The state constraints are
𝑥 ∈ 𝕏 ⊆ ℝ፧ (B.5)

and input constraints are
𝑢 ∈ 𝕌 ⊆ ℝ፦ (B.6)

where subspaces 𝕏 and 𝕌 denote the allowed values that the differential states and input vari-
ables can have, respectively. In other words, these subspaces denote the bounds of the model.

B.1.3. Constraints and infeasibility

An MPC controller is only defined when the set of possible solutions is non-empty. If there
are no possible solutions, the MPC problem is infeasible and the control input might result in
arbitrary values. Therefore, the introduction of constraints to the system needs to be carefully
considered, both in terms of added complexity and solution feasibility.

The main sources of constraint violations are unrealistic control objectives or a mismatch be-
tween the actual plant and the modelled plant dynamics. Moreover, constraints can be defined
as hard or soft, where the latter can be slightly violated. In general, input constraints are hard
because they are directly considered in the optimisation and can always be satisfied. On the
other hand, state constraints arise from the allowed operating plant range or preferred operation
limitations.
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B.2. ACADO Toolkit

ACADO Toolkit [49] is an open-source software environment for automatic control and dynamic
optimisation written in C++. It is suitable for the study of closed-loop MPC applications in real-
time and its use is supported in MATLAB [8]. The modularity of the solver makes it possible to
combine different specialised algorithms and features.

The controller implemented for this thesis is based on a discrete-time model of the plant and
the optimal control input minimises the system’s response along a number of discrete time
steps, known as the prediction horizon. The predicted response is compared with the actual
reference and the difference is penalised with the defined cost function to improve path tracking
performance and the collaborative behaviour. The torque input and its rate are also penalised
by the cost function in order to obtain a smooth, within the system constraints, control input.

Some of the solution methods available within the ACADO solver are listed in this section [48].

B.2.1. Discretisation method

The discretisation of the prediction model is necessary to solve the optimisation problem. The
prediction horizon is divided into 𝑁፩ sampling periods, which leads to a shooting grid of the form
[𝑡፤ , 𝑡፤ዄኻ, ..., 𝑡፤ዄፍᑡ]. This grid is commonly defined as an equidistant grid. Then, the control
input sequence is parametrised for each sub-interval [𝑡፣ , 𝑡፣ዄኻ] for 𝑗 ∈ [𝑘, 𝑘 +𝑁፩−1], with 𝑗 ∈ ℤ.

Afterwards, the discretised OCP can be solved with either a single-shooting or multiple-shooting
approach. The multiple-shooting method handles better highly nonlinear and unstable systems.
However, it also increases the number of variables and complexity of the OCP.

B.2.2. Integration method

Dynamic optimisation usually requires integrating differential equations. Hence, numerical algo-
rithms are fundamental. Themost common integration algorithms available are the Runge-Kutta
and BDF integrators. All the integrators provide first and second order sensitivity generation via
internal numerical differentiation.

B.2.3. NLP methods and solvers

MPC is most often formulated using a quadratic cost function and, thus, solved as a Quadratic
Programming instance. In order to incorporate the system dynamics into the QP problem, there
are two main approaches.
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First, a sparse or simultaneous approach, in which both the states and the control inputs form
the optimisation variables. The second formulation, named primal dense or sequential, uses
recursion of the state transition to express the predicted states as a function of the control input
sequence and the initial state.

There are several types of Sequential-Quadratic-Programming, SQP, methods available for the
NLP solution with, for instance, Hessian approximations or Gauss-Newton Hessian approxima-
tions. These approximations can be in sparse form or dense, reduced form. An overview of the
three main methods to solve QP instances is presented below [29].

Active Set Method

This method is based on the possibility that only some of the inequality constraints are active at
the constrained optimum. The solution lies within the boundary of the active set, and inactive
inequality constraints do not influence the solution. The active set method works in an iterative
way until a feasible solution is found. This can lead to a potential drawback when the number of
constraints is too big. In order to improve the computational performance, the previous active
set can be reused as an initial guess for the next control input calculation.

Barrier Interior Point Method

The barrier interior point method transforms the constrained OCP into an unconstrained non-
linear problem at each iteration. This is approximated by a quadratic function, and Newton’s
algorithm is applied to solve the problem. For this, the inequality constraints are removed from
the problem, and the optimisation performance criterion is modified by a differentiable additive
barrier function to prevent constraints violations. Logarithmic functions are often used for this
purpose. As a disadvantage, the method is required to start in the interior of the feasible re-
gion. On the other hand, it is computationally more efficient and, thus, appealing for real-time
applications.

Gradient Projection Method

The gradient projection method makes use of the steepest descent, which is a step in the neg-
ative gradient direction at each iteration, projected into the feasible set. Depending on the type
of constraints, the projection into the feasible set can become computationally expensive. For
ill-conditioned problems, the method can converge slowly because of an uneven scaling of the
problem.
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Lastly, the above methods are used with different solvers, which can be found in further detail
in [29]. Among the great number of solvers, the author highlights the following ones.

FORCES

Fast Optimal Real-time Control on Embedded Systems [22] automatically generates code fea-
turing interior point methods coupled with Newton’s algorithm, particularly focused on MPC
systems. It has a very good computational performance and it scales well with problem size.

qpDUNES

The qpDUNES solver is specialised for QP [33]. It makes use of the Dual Newton strategy,
which combines the benefits of the structure exploitation of the interior point method and the
capabilities to introduce an initial guess from the active set methods. Unlike the previous solver,
this one is a free software for both academic and commercial use.

qpOASES

Lastly, the resulting large, but sparse, QP can be condensed and passed to the dense solver,
qpOASES [30], that employs an active set method. It makes use of an initial active set guess,
known as awarm start, based on the assumption that the active set does not change significantly
between consecutive control steps. This allows the system to be computationally very efficient
as long as the assumption remains valid. This solver is also free for both academic and industrial
use.

For all of the above methods, Linear Time-Varying, LTV, systems are supported.

B.2.4. Controller settings

The MPC and ACADO Toolkit settings for the LKA controller are defined in Tables B.1 and
B.2. The values included in the controller settings are the sampling time of the MPC, and the
sampling times for the vehicle-steering system simulation and the driver model, respectively.
Finally, the prediction horizon, 𝑁፩, and control horizon, 𝑁፜, are also included. These two last
parameters are set to the same value.

MPC Settings
Variable 𝑇፬ 𝑇፬,፬።፦ 𝑇፬,ፃፌ 𝑁፩ 𝑁፜
Value 1ዅኼ 𝑠 1ዅኽ 𝑠 2ዅኼ 𝑠 40 40

Table B.1: MPC settings.
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The different sampling times and prediction horizons are appropriately chosen to ensure that the
MPC model can be run in real-time without compromising its performance, prediction capabili-
ties, and stability. The nonlinear plant operates at a higher sampling frequency, 𝑇፬,፬።፦, whereas
the linear driver model can be accurately run at a lower sampling frequency, 𝑇፬,ፃፌ, which re-
duces the computational requirements. For the MPC, the maximum sampling frequency that
allows the model to compute the optimal control input in real-time, 𝑇፬,፜፨፧፭, is selected to en-
sure stability and a long enough prediction time, 𝑇፬,፜፨፧፭ ⋅ 𝑁፩, which has a direct impact on its
performance.

For the ACADO Toolkit settings, there are many algorithm options that can be tuned. Table B.2
shows the most relevant settings that were considered. For the rest of the algorithm possibil-
ities, default settings are used, which can be found in further detail in Houska et al. [48]. An
explanation of the main function of the selected settings can also be found in the table below.

ACADO Settings
Variable Value Function

HESSIAN_APPROXIMATION GAUSS_NEWTON Solving algorithm: Gauss-Newton Hessian approximation

DISCRETIZATION_TYPE MULTIPLE_SHOOTING Shooting discretisation algorithm

SPARSE_QP_SOLUTION FULL_CONDENSING_N2 Condensing technique of the sparse QP solution

INTEGRATOR_TYPE INT_EX_EULER State integrator: Euler integration method

NUM_INTEGRATOR_STEPS 3*N_prediction Number of integration steps along the prediction horizon

QP_SOLVER QP_QPOASES3 Quadratic-Programming solver type

LEVENBERG_MARQUARDT 1ዅኾ Value for Levenberg-Marquardt regularisation

MAX_NUM_QP_ITERATIONS 20 Maximum number of QP iterations

HOTSTART_QP YES Hotstart QP from previous solution

Table B.2: ACADO settings.
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B.3. Conclusions

An extensive investigation on the MPC’s mathematical background presents Model Predictive
Control as an attractive framework to implement the shared control objectives between the
driver and the driving assist system.

First of all, Model Predictive Control fulfils the requirements needed for real-time implementation
of the steering system control, as well as being able to handle nonlinearities and constraints on
the system. Moreover, the RHC approach makes it possible to be robust against disturbances
and iteratively calculate the optimal torque input of the controller.

Secondly, this approach enables us to respect the driver-vehicle constraint limitations by explic-
itly introducing bounds to certain states. This is beneficial in terms of safety, as well as driving
comfort. For instance, limiting the maximum torque input of the MPC, 𝑇፜, allows the driver to
overrule the system and remain in control of the task in case of conflict of intention with the assist
guidance. Thereby, the range of 𝑇፜ should be restricted to a value below the maximum torque
that a human can apply. Moreover, a maximum torque and torque rate input, coming from the
controller, ensures an appropriate level of comfort and safety. In addition, the introduction of
constraints in the vehicle states, such as lateral acceleration or yaw rate, also enhances driving
comfort.

Furthermore, MPC-based approaches are especially suitable within the vehicle steering con-
trol context, where there is a need for accuracy in the path tracking performance, as well as
smoothness of the control actions. These characteristics are fundamental to guarantee the
development of safe, intelligent ADAS.

Lastly, the chosen solver for real-time implementation is the open-source ACADO Toolkit. As
previouslymentioned, this software is designed for dynamic optimisation control and it is suitable
to predict the behaviour of closed-loop systems online. Therefore, the real-time optimisation
facilitates the integration of the driver’s behaviour in the loop. As a consequence, the controller
can be used to dynamically allocate the control authority between the driver and the driving
assist system. This feature further fosters collaboration and reduces potential conflicts while
driving, while still improving the path tracking performance.
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C
Haptic Shared Control

This appendix presents an overview of the state-of-the-art Haptic Shared Control strategies that
are relevant within the scope of this thesis. In Fig. C.1, a schematic representation of a shared
steering system control can be seen.

Figure C.1: Representation of shared steering system control.

As highlighted in Chapter 1, it is essential to understand the driver behaviour and their interaction
with automation. However, human complexity and unpredictability make it difficult to guarantee
collaboration and seamless control between the human and the driving assist systems. A po-
tential control strategy that has gained increased attention throughout the past decade is Haptic
Shared Control.
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C.1. Automation and the role of the driver

The current exponential technological progress drives the development of new, more capable
automated systems. In the driving context, this has become patent from the rising importance
of ADAS. However, until fully automated driving vehicles become a reality, it is paramount to
take into account the interaction between the driver and the vehicle in the development of more
collaborative driving assist systems.

A well-established first approach in the design of driving assist systems lead to the introduction
of a new role for the human driver. Initially, the focus of automation was to increase perfor-
mance by substituting the driver in specific tasks. Hence, this can be translated into assist
systems capable of taking over a driving task in a specific Operational Design Domain, ODD.
Notwithstanding, this approach imposed the role of supervisor to the driver, having to monitor
the automation system for the tasks that designs cannot automate. This new role has been
thoroughly investigated, and it is widely acknowledged that humans often perform badly under
supervisory control roles, as highlighted by Parasuraman [84] and Wickens and Kessel [109].
This role is remarkably challenging during driving and can be considered a highly demanding
task. This context leads to an interesting irony of automation [9] where, if there is an automation
failure, the driver is expected to detect the errors from the automation system [83] and take over
during critical situations that are out of the control of the automation system.

Therefore, it is clear that the human-machine interaction needs to be carefully treated in order
to guarantee an increase of performance, safety, and the appropriate use of automated sys-
tems [77]. One important aspect to be taken into consideration is clarifying what the driving
assist systems are capable of doing and transmitting this to the driver in a suitable manner [15].
Besides, drivers should be capable of maintaining a good level of situation awareness to cor-
rectly react in case of an automation failure [92, 97, 98]. Drivers can easily disengage from the
driving task when they are not aware of the status of the scenario. This can lead to dangerous
situations [83], also known as the ‘out-of-the-loop’ performance problem [11]. In addition, the
lack of manual driving activity can result in skill degradation [17] due to automation.

In line with the aforementioned automation issues, Haptic Shared Control is presented as a
promising alternative. Through HSC, the authority of the driving task is balanced between the
automation system and the driver in order to accomplish a common objective. The goal of this
strategy is to keep the driver in the loop, rather than letting the automation exert full control over
the vehicle. Additionally, this approach ensures smooth, intuitive authority transitions.

Furthermore, some other potential benefits of HSC are to reduce human control activity, and
thus the steering effort, while still enhancing driving performance, safety, and keeping the driver
in the loop. Ultimately, this can be seen as the ideal combination between the human intelligence
and adaptability with the benefits of automation systems [80].
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C.1.1. Design guidelines for shared control

The shared control approach is particularly suitable for the steering task because forces can be
exchanged through the common interface. This interconnection at the steering handwheel pro-
motes the interaction of both controllers, the driver and driving assist system. It also facilitates
the awareness of each other’s actions and intentions. Moreover, it allows drivers to overrule
the system by, for instance, increasing the co-contraction level of the muscles, as described in
Section A.2.5.

In order to model such an approach, a clear understanding of how shared control is interpreted
and its foremost design guidelines are required. The definition of shared control used for this
thesis is taken from Abbink et al. [5]:

“In shared control, human(s) and robot(s) are interacting congruently in a perception-
action cycle to perform a dynamic task that either the human or the robot could ex-
ecute individually under ideal circumstances.”

The design guidelines for human-machine interaction towards the development of shared con-
trol systems are defined based on Abbink et al. [4], and particularised for the driving steering
task.

I. The driver should always remain in control, although subject to different levels of automation
authority. To guarantee this principle, the haptic guidance limits should remain within the
boundaries of the human limitations.

II. The control should be provided to the driver through continuous feedback and effectively
communicating the limits of automation and functionality.

III. Continuous interaction between human and driver assistance system should be provided.

IV. Shared control should result in increased performance and/or reduced driver workload.

C.1.2. Human-machine conflicts

An interesting result found by Mulder et al. [80] is that, although HSC can lead to less steering
control activity and increased safety, drivers often resist the assist system’s guidance ??. This
can be due to, for example, a difference in the desired vehicle trajectory or different driving
control strategies.

One approach to deal with the competing behaviour between human and driving assist systems
is to adapt the level of automation [51]. However, most automation systems restrict the shift of
authority to binary models.
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In order to understand how these conflicts arise, it is necessary to illustrate the different levels of
cognition, which were reported by Michon [78]. These levels are present during the accomplish-
ment of any task. Afterwards, a general outline of the influence of different levels of authority
on performance is presented.

Levels of Cognition

• Strategic level:

This level corresponds to the navigation or route planning over a long time window.

• Tactical level:

In a manoeuvre, shared tactics can be represented by the guidance that influences the
direction of the vehicle.

• Operational level:

The control of the vehicle belongs to this level. The control commands are often the most
time critical, and highly influence vehicle stability.

• Execution level:

This fourth stage has been described by Abbink et al. [5] and comprises the neuromuscular
control loops, which execute the operational level control commands.

The above cognitive levels are not independent from each other, but rather interdependent.
Consequently, it seems plausible that, in order to enhance the human-machine interaction, all
levels should be taken into consideration.

Level of Authority

Another concern in the development of HSC systems is how to appropriately determine the
level of automation [100]. This level of authority can be constant [24] or adaptive [51, 94]. The
latter can potentially adjust to the time-varying behaviour of the driver. However, most research
studies fail to design the adaptive transitions of control authority in a natural way. Instead, binary
switches of control authority are often implemented. A more intuitive approach is to smoothly
switch the control authority [31], which results in more compliant systems. On the other hand,
it has an increased complexity in the dynamic task allocation.

Furthermore, the maximum level of torque guidance provided to the driver should not exceed
the human limitations to exert torque. This is because of safety concerns and to allow the driver
to remain in control and being capable of overruling the system at any point if desired.
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C.1.3. Importance of modeling the driver behaviour

A key element in the design of shared controllers is the accurate modelling of the driver in
order to improve the prediction of their behaviour and intentions. As emphasised by Abbink
and Mulder [2], a better understanding of the human behaviour is expected to reduce conflicts
between humans and automated systems.

In particular, in order to describe the strategic level of cognition of the drivers, it is necessary to
model their complex cognitive behaviour. As described in Section A.1, this includes the selection
of an appropriate human control strategy to predict their intentions, an estimator of the states of
the system, and an accurate internal mental representation of the driver-vehicle dynamics and
their interaction. Secondly, the use torques through HSC allows for the exploitation of the NMS,
which is highly adaptive and fast. Hence, a detailed representation of the muscle dynamics,
as presented in Section A.2, is fundamental. Lastly, it is also important to consider the driver
limitations in the perception of the environment. This involves the introduction of the sensory
organs described in Section A.3.

Furthermore, on a tactical level, the driver can feel the torque guidance of the controller through
the steering handwheel. This continuous feedback facilitates the driver awareness and main-
tains the driver engaged in the steering task.

Nevertheless, although there is an increase in the research of driver models applicable to the
driving task, based on neuro-scientific background and summarised in Chapter A, the study of
these models is often independent from the driving assist systems development.
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C.2. State-of-the-art research

Nowadays, there is a significant increase in the amount of research found in literature for driver
modelling, both in the field of neuroscience, as well as particularised to the driving task. Like-
wise, HSC has received an increased amount of attention in the path towards automation, ap-
pearing as a promising control strategy that keeps the driver in the loop, while improving driving
performance and safety.

In agreement with the recent directions of research, the need to blend driver modelling and
vehicle controller systems has been widely acknowledged [2]. However, there has been limited
implementation of detailed driver models in haptic shared controllers, with a haptic gas pedal
by Abbink [3] and, for the steering task, [73]. In his research, Abbink modelled the haptic driver-
vehicle interaction with a high emphasis on the development and investigation of an extensive
NMS.

In particular to the steering task, the most relevant representations found in literature are high-
lighted and briefly described in this section. The main focus of the models below is to predict
the driver behaviour better in order to develop more collaborative ADAS. Some of these ap-
proaches consider the driver as an external disturbance. Hence, global stability, collaboration,
and robustness cannot be guaranteed [93].

Psycho-physiology-based driver model

A psycho-physiology-based driver model is implemented by Mars and Chevrel [72] for the de-
sign of a lane keeping assist system. The model is then embedded into an HSC system, blend-
ing the driver’s sensorimotor control and a continuous assist support.

The cognitive behaviour of the driver is based on a two-point predictive model including visual
anticipation of the road curvature and compensation of the lateral error. The NMS includes a
transfer function transforming motor commands to the steering wheel torque, as well as the
reflex loop. The identified driver parameters were validated, resulting in only a 70% steering fit
for an average driver, which can be considered not accurate enough with respect to high-fidelity
driver models. On the controller’s side, an H2-Preview optimisation approach is used [93].

One of the main drawbacks of the proposed model is the limitation of the human representation,
which is not particularised for the driving context. Apart from that, the stability of the system is
highly sensitive to the cognitive processing delay. Besides, the results of the experiment were
only validated with one single participant in a fixed-base driving simulator. The results show less
steering effort in most of the simulation. However, there are clear conflicts during many parts
of the curve negotiation path, even though the experiments were restricted to a lane keeping
scenario. Lastly, another key disadvantage is the impossibility to exploit the information about
the driver’s intentions in real-time.
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An interesting finding of this research was the creation of different indicators for collaborative
behaviour, which are scarce in literature. Examples of such criteria are the consistency rate,
resistance rate, and contradiction rate. These indicators are based on the direction of the assist
torque and the driver torques, as well as their respective magnitudes.

Hierarchical cooperative control architecture using MPC

An MPC shared control strategy was proposed by Guo et al. [38]. The novelty of the approach
originates from the introduction of two competing costs to minimise, the driver torque and assist
torque. Through a varying weighting parameter, 𝜌, the cost weight between these two objectives
can be modified, representing the shift in the level of control authority.

One limiting factor is that the driver presence was oversimplified to a stiffness and damping
parameter representing the arms, coupled with the steering system dynamics. Another major
concern that can be highlighted from this implementation is the binary parametrisation of 𝜌.
Therefore, the system is set to zero when the driver exerts more than a certain torque value.
On the other hand, when the value is set to one, there are two scenarios that can take place.
One scenario is full automation if the driver has their hands off the steering wheel. Alternatively,
the shared driving scenario can be represented, where the MPC minimises the two competing
objectives. However, the reduction of conflicts between driver and the assist system is not
directly addressed and a detailed driver model is not present either. This becomes clear by
analysing the large variance of steering wheel reversals when the assist system exerted torque
guidance, which suggests that drivers tend to correct the suggested trajectory by the automation
system.

MPC-based driver steering assistance system

The research carried out by Ercan et al. [25] presents an MPC-based driver steering assistance
system providing corrective torque guidance to the driver for a lane-keeping scenario. A similar
model, applied for highway scenarios [26], was also developed by the authors based on the
same principles.

Again, using an oversimplified approach, the interaction between the driver and steering system
are considered. The neuromuscular dynamics are included by modelling the arms as a spring-
damper system coupled with the steering system dynamics.

An interesting novelty of the approachwas the online estimation of the driver parameters through
a nonlinear recursive least squares algorithm. Although the controller’s ability to adapt to changes
in the time-varying NMS properties was demonstrated, the estimated impedances of the arms
were not consistent due to lack of robustness in the estimation method for the applied signals.
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Haptic shared controller to reduce steering conflicts

The model developed by Scholtens et al. [95] takes special care in tackling the human-machine
conflicts in terms of the difference in the applied torque sign. It is based on the Four-Design-
Choice-Architecture [106], where a human-compatible reference is introduced as the input ref-
erence for the haptic shared controller. Moreover, the controller corrections are based on both
anticipatory and compensatory control. The added contribution of both types of corrections is
then weighted within a Level of Haptic Authority specification. A complete schematic represen-
tation of the described architecture can be seen in Fig. C.2.

Figure C.2: The implemented Four-Design-Choice Haptic Shared Controller from [95].

A major limitation of the model is that the human-compatible reference trajectory is calculated
offline based on a two-point control strategy, the far and near point. Thus, the model is con-
strained to predefined trajectories and no modification during online simulations is possible.
Furthermore, the LOHA was set to a value of one, which can be translated as no adaptation to
a particular optimal steering angle. Lastly, no neuromuscular behaviour is modelled.

Game-Theoretic Approach

In this paper, the shared steering torque control problem is tackled by an affine-Linear-Quadratic
method and makes use of a new trend to model driver-vehicle interaction, the game theory
models [54]. The controller is used to optimise path tracking performance during lane changes,
using only computer simulations.

A sixth-order driver–vehicle system is presented and the model includes the uncertainty of the
system. The stochastic Nash and Stackelberg equilibrium solutions were derived using stochas-
tic dynamic programming. This is considered a potential research direction in the understanding
of the driver-controller interaction.
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C.3. Conclusions

Haptic Shared Control increases driving performancewith respect tomanual driving, while keep-
ing the driver in the loop, which positively influences the situation awareness of the drivers.

One of the main advantages of this control strategy is the possibility to model the interaction
between the driver and the driving assist system and provide haptic guidance. However, the
driver can react differently to this external torque input. For instance, drivers can be compliant
with the driving assist system, amplifying the forces provided by the assist. On the other hand,
the driver can also resist these forces. The resisting behaviour can come both from a mismatch
between the driver’s cognitive intentions and the automation, or from a neuromuscular level,
such as the reflex action of the muscle spindles.

Consequently, the understanding of the human-machine interaction needs to be carefully anal-
ysed in order to avoid steering torque conflicts and keep the driver in control, while still guiding
their behaviour to improve path tracking performance.

Figure C.3: General scheme of the Haptic Shared Control strategy.

In short, a potential benefit of HSC is that it provides an effective, fast, and intuitive commu-
nication between the driver and driving assist system. The exchange of torques through the
steering handwheel interface can be exploited to take advantage of the human neuromuscular
behaviour. Therefore, the drivers can interact with the driving assist system both at a cognitive
or strategic level, as well as in a more operational-execution level.
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However, current HSC approaches do not try to reduce driver-vehicle conflicts, or, when they do,
this is tackled in a reactive manner. Therefore, a promising course of action to reduce conflicts
and increase user acceptance is to focus on the development of reliable driver models. By
integrating them in the controller, we can predict better the driver’s behaviour and foster a more
collaborative guidance. However, there is no clear consensus on how these driver models
should be implemented, the amount of detail required, or how to make the interaction between
the human and automation system possible.

Lastly, other key features in the development of collaborative ADAS can be the model’s adapt-
ability to human behaviour and / or a dynamic shift of the control authority depending on the
scenario. These feature can be introduced with a mindful selection of the most appropriate cost
function. This human adaptability can be observed when, for example, the driver consciously
decides to increase their level of muscle co-contraction or instantaneously reacts through reflex
action of the muscle spindles.
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Results and Discussion

The purpose of the driving assist system is to allow the controller to provide a more intuitive
torque guidance to the driver through the steering wheel, also known as haptic guidance. The
system can predict the behaviour of the vehicle plant being controlled, as well as the driver-in-
the-loop action.

The contents of this Appendix include the initial computer simulation results, as well as the out-
come of a fixed-base driving simulator experiment. In the latter, the proposed MPC controller is
evaluated against a state-of-the-art commercial benchmark. The results include the subjective
evaluations of 19 drivers, as well as 13 objective Key Performance Indicators calculated from
the experiment of each participant.
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D.1. Computer simulation results

D.1. Computer simulation results

The simulations of the initial linear MPC-based Haptic Shared Control strategies are included
here, along with a discussion of the benefits of using this novel approach.

The MPC assist system is assessed for different scenarios, such as a lane change subject to
an external force disturbance and a sine test. Initially, both were assessed in a bicycle model
plant. To further validate its applicability, the sine test was chosen to be performed in a high-
fidelity environment using CarMaker. The nonlinear vehicle dynamics and steering system [16]
are based on a validated mass production vehicle model.

D.1.1. Lane change scenario

The MPC controller is investigated for a lane change manoeuvre to test its robustness:

• Case 1. Baseline scenario. Manual driving.

• Case 2. Manual driving with a disturbance of 800 N at 12 s.

• Case 3. Shared driving.

• Case 4. Shared driving with a disturbance of 800 N at 12 s.

Figure D.1: Lane change scenario: Path tracking performance and MPC-controller torque.

The controller adapts to the different situations, improving the path tracking performance while
minimising the muscle spindle torque and the overall driver effort. In Figure D.1, it can be seen
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that the RMSE is lower for the shared case (𝑦፫፦፬ = 0.054 𝑚) compared to manual driving
(𝑦፫፦፬ = 0.055 𝑚). The same applies for the case with a disturbance with shared control (𝑦፫፦፬ =
0.073 𝑚) and manual driving (𝑦፫፦፬ = 0.076 𝑚). Moreover, in cases 2 and 4, the MPC helps the
driver to reject the disturbance, thus, minimising the reflex action by 25.27 %, as displayed in
Figure D.2.

Figure D.2: Lane change scenario: Driver torques.

D.1.2. Sine test manoeuvre

The controller can be tuned to portray different behaviours and the competing objectives of
driver comfort and path tracking performance are investigated in Figures D.3 to D.4.

Figure D.3: Mode 1: Performance optimisation.
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D.1. Computer simulation results

A strong torque guidance of the assist system is presented in Figure D.3. The optimisation
algorithm makes use of the prediction of the driver behaviour to provide a human-like guidance
and release the driver of most of the steering effort, which results in a more accurate path
tracking performance. This controller could potentially be helpful to more inexperienced drivers
or compliant users.

In Figure D.4, on the other hand, the aim is to reduce the conflicts with the driver before they
arise. The controller exploits the adaptive nature of the MPC cost function and it uses the driver
model to enhance driver comfort. Here, reduction of conflict is more relevant than maximum
performance, although the latter is also improved with respect to manual driving. In this case,
the assist system guidance is less strong, allowing the driver to easily overrule the system if
desired. This behaviour is achieved by modifying the settings of this second controller to have
a higher cost on the reflex torque of the driver, which is related to driver discomfort and the
rejection of disturbances. This makes the MPC to be less intrusive than in the previous case.

Figure D.4: Mode 2: Conflict minimisation.

In short, the collaborative behaviour of the MPC assist system allows for a better balance be-
tween performance and comfort due to the introduction of an advanced driver model within the
prediction model.

The MPC computes the optimisation depending on the cost function parameters without com-
promising driver comfort and its behaviour is enhanced through adaptive costs. Moreover, even
though the behaviour of the CarMaker virtual driver is rather constant, the possibility to cus-
tomise both the driver parametrisation and the MPC assist system makes it possible to tackle
the individual needs of each user.
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D.2. Driving simulator experiment

The aim of this experiment is to assess the performance and collaborative behaviour of the
proposed MPC controller with two different cost-function settings, as well as to compare them
against the commercial LKA used as benchmark, both objectively and subjectively. All three
controllers provide the drivers with a haptic torque guidance to track the centre of the path. In
Fig. D.5, an overview of the driving simulator set-up is presented, with the human driver in the
loop interacting with the controllers.

Figure D.5: Driving simulator experiment.
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D.2. Driving simulator experiment

D.2.1. Subjective Evaluations

The box-plots results of the subjective evaluations are presented in Fig. D.6, along with the
statistical results in Table D.1. The results are based on the responses of 19 participants, with
five qualities per controller in a 7-point scale, with the ideal range in green.

Figure D.6: Boxplot of the subjective evaluations of 19 participants, with the ideal range in green.

Criteria Baseline MPC 1 MPC 2 F p

Overall
effort

5.58
(0.90)

3.32
(1.25)

3.79
(1.18)

21.53 <0.001

Tracking
performance

3.11
(1.73)

5.68
(1.11)

5.95
(0.91)

27.86 <0.001

Collaborative
behaviour

2.42
(1.35)

5.32
(1.00)

5.95
(1.08)

50.60 <0.001

Feeling
of control

3.42
(1.74)

4.37
(1.34)

4.84
(1.50)

4.21 0.02

Smooth
control

3.84
(1.34)

5.16
(1.57)

5.37
(1.67)

5.51 0.007

Table D.1: Analysed data of the subjective evaluations with mean(SD) and ANOVA results.
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D.2.2. Objective evaluations

In general, the presence of driver-assist conflicts creates the perception of the baseline con-
troller being heavier than desired, as well as having a lower collaborative behaviour.

In Fig. D.7, we can see from recorded simulator data that the MPC is in phase with the driver
inputs. In other words, the MPC actively cooperates with the driver and minimises conflict,
which results in improved path tracking performance.

Figure D.7: Torque versus time of the driver and the driving assist system.

Moreover, several Key Performance Indicators were also defined and selected to verify the re-
sults impartially and to create a link between subjective and objective evaluations. For this,
extensive research was performed, and the KPIs are grouped according to the subjective ques-
tions. The formulas of these metrics are defined in Chapter 2.
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D.2. Driving simulator experiment

The steering effort is objectively quantified based on the steering torque effort over the total
duration of the manoeuvre for both the driver and assist system, of which the box plots are
displayed in Fig. D.8.

Figure D.8: Boxplot of the objective evaluation of 19 participants for steering effort.

Moreover, the main indicator for the path tracking performance can be defined as the root-mean-
square lateral error. Other metrics used to assess the tracking performance are the mean lateral
error, the maximum lateral error, and the standard deviation of the lateral error, presented in Fig.
D.9.

Figure D.9: Boxplot of the objective evaluation of 19 participants for path tracking performance.
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For the collaborative behaviour, four different ratios are calculated, where each depends on the
signs of the driver’s torque and the driving assist’s torque. When the signs are the same, the
collaborative ratio increases. On the other hand, when there are torque conflicts, the intrusive-
ness ratio increases, which is subdivided into resistance and contradiction ratio. In addition, the
coherence metric indicates when the simulated manoeuvre is collaborative overall.

Figure D.10: Boxplot of the objective evaluation of 19 participants for collaborative behaviour.

Lastly, the level of control authority can be determined with the ratio of the driver and controller
steering torque effort, whereas the steering reversal rate is calculated according to [71].

Figure D.11: Boxplot of the objective evaluation of 19 participants for the level of control authority and smoothness.
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D.2. Driving simulator experiment

For all 13 objective metrics, the proposed MPC controllers outperform the commercial system.
In Table D.2, the mean and standard deviation values for each KPI are summarised, as well
as their statistical results. From these values, we can conclude that, except for the mean error,
all differences in the controllers are statistically significant. In other words, the proposed MPC
controllers significantly increase the performance of the haptic shared controller. Table D.2
shows the p- and F-values calculated using the statistical test ANOVA. First of all, a Bartlett’s
test for equal variances between the three groups of controllers was executed. Then, for the
metrics where it was not appropriate to use ANOVA, the non-parametric Kruskal-Wallis test was
performed. The F-values in bold correspond to the ones calculated through Kruskal-Wallis.

Criteria Baseline MPC 1 MPC 2 F p

Driver
effort

177.01
(37.74)

51.32
(37.38)

78.83
(50.31)

46.49 < 0.001

Controller
effort

2982.77
(170.05)

209.83
(92.90)

390.08
(193.23)

43.17 <0.001

Lateral
RMSE

0.51
(0.15)

0.29
(0.11)

0.33
(0.12)

15.38 <0.001

Maximum
𝑒ᑪ

1.14
(0.54)

0.66
(0.33)

0.75
(0.43)

6.17 0.004

Mean 𝑒ᑪ
-0.06
(0.19)

0.03
(0.15)

0.03
(0.18)

1.81 0.173

SD 𝑒ᑪ
0.47
(0.16)

0.25
(0.10)

0.28
(0.10)

17.53 <0.001

Collaborative
ratio

0.43
(0.06)

0.62
(0.11)

0.70
(0.09)

45.70 <0.001

Intrusiveness
ratio

0.57
(0.06)

0.38
(0.11)

0.30
(0.09)

45.70 <0.001

Resistance
ratio

0.28
(0.04)

0.20
(0.13)

0.16
(0.11)

16.10 <0.001

Contradiction
ratio

0.29
(0.04)

0.18
(0.13)

0.14
(0.11)

18.50 <0.001

Coherence
-0.17
(0.17)

0.15
(0.29)

0.36
(0.27)

21.88 <0.001

Level of
control
authority

17.56
(3.68)

7.73
(8.03)

8.22
(8.79)

20.91 <0.001

Steering
reversal rate

31.84
(12.84)

23.76
(5.27)

22.68
(6.75)

8.38 0.015

Table D.2: Analysed data of the objective metrics, with mean(SD) and ANOVA results.
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ABSTRACT: Driving assist systems aim to increase comfort and safety while driving. However, if the assist system
overrules the driver action, user acceptance and comfort become a challenge. Therefore, until fully Automated Driving
(AD) vehicles become a reality, it is paramount to take into account the interaction between the driver and the vehicle in the
development of more collaborative driving assist systems. In line with the aforementioned requirement, this work describes
an optimal torque control law to foster haptic guidance and continuous cooperation with the driver during the steering task.
This strategy is implemented within the Model Predictive Control (MPC) framework. Moreover, the driving assist system
considers both the behaviour of the vehicle-environment being controlled and the driver’s action in the presence of torque
input. For this purpose, the closed-loop dynamics of the driver-vehicle interaction are thoroughly investigated. A novel
concept of the proposed controller is based on a detailed driver-in-the-loop model generating an estimation of the expected
driver torque. In particular, high emphasis is given to the modelling of the driver’s cognitive behaviour based on a Linear-
Quadratic-Gaussian (LQG) strategy, the sensory organs, and neuromuscular dynamics of the arms, which include the muscle
activation dynamics and reflex action of the muscle spindles. Lastly, another key element of the model is the introduction
of an adaptive cost function algorithm that fosters the collaborative behaviour and driver comfort. The validity of the driver
model is successfully determined based on a driving simulator study in a high-fidelity nonlinear vehicle-steering system with
different human drivers. The MPC controller, on the other hand, is assessed via offline computer simulations for several
scenarios using a high-fidelity nonlinear plant using CarMaker. It is concluded that this model captures better the driver’s
intention and is suitable for the investigation of cooperation during the shared driving task. The proposed system predicts
the driver’s response accurately, enhances the human-vehicle closed-loop interaction, and reduces driver-controller conflicts.

KEYWORDS: Driving assist systems, haptic guidance, driver modelling, driver-in-the-loop, symbiotic driving

1. Introduction

Advanced Driver Assistance Systems (ADAS) are frequently intro-
duced to increase safety and reduce mental workload while driving.
However, current intelligent systems often lead to a lack of driver
awareness while driving and to decreased user acceptance. The lat-
ter is particularly affected when the driver’s intention is overruled
by the assist systems in non-critical scenarios.

Figure 1. Timeline of the deployment of autonomous vehicles on
the road

On the other hand, the different projections concerning Automated
Vehicles indicate that their deployment is still decades away from
becoming widespread [1]. A prospective timeline of the mobility
sector is presented in Figure 1. From these projections, it is clear
that vehicles equipped with SAE AD Level 2 and 3 [2] are valuable
milestones to be reached in the near future.

One of the key challenges of these levels of automation is how to
take into account the driver-vehicle interaction [3]. Therefore, the
focus of this research is to design a collaborative shared control
strategy that assists users during demanding scenarios while still
providing a pleasant driving experience, with the potential to adapt
to the ample spectrum of users’ needs. In particular, the aim of this
study is to reduce the conflicts between the driver’s intention and
the driving assist torque input, as well as to understand the driver-
vehicle closed-loop interaction that occurs through the exchange
of torques at the steering handwheel. For this purpose, the use of
Haptic Shared Control is considered to be the appropriate strategy
for semi-automated vehicles.

In line with these requirements, research concerning control strate-
gies present Model Predictive Control as an attractive framework to
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implement the shared control objectives between the driver and the
driving assist system. The MPC approach can compute the optimal
control law online, making it possible to integrate the driver’s real
behaviour in the loop. As a result, dynamic allocation of the control
authority is possible. All these elements are essential for minimis-
ing the user-assist conflict and the introduction of the driver model
is best handled by MPC.

Finally, an important element to reduce the aforementioned driver-
assist conflicts is the integration of a detailed driver model into the
controller’s logic, as well as a mindful selection of the most appro-
priate adaptive cost function for the MPC controller.

The contribution of this paper is to introduce a novel approach for
the design of shared control strategies using an advanced driver
model within the prediction model of the MPC controller. The
following sections present an overview of the different elements
employed, as well as the main results achieved. Section [2] es-
tablishes the steering-vehicle dynamics. Section [3] describes the
driver model integrated within the MPC prediction model, and the
results of the driving simulator experiments performed to validate
its use can be found in Section [4]. Afterwards, in Section [5], an
overview of the MPC strategy is presented. In Section [6], the dif-
ferent collaborative behaviours portrayed by the assist system are
introduced, along with the results of its application in the presence
of external disturbances. Lastly, the main conclusions and the rec-
ommendations for future work are outlined in Section [7] and Sec-
tion [8], respectively.

2. Steering-Vehicle Model

2.1. Vehicle dynamics

In this section, the vehicle-steering dynamics model is presented.
The vehicle dynamics are represented in Figure 2 based on the linear
bicycle model. This simplified model can adequately capture the
path tracking performance and vehicle handling characteristics in
the range of lateral acceleration up to 4 m/s2 for passenger cars.
It assumes a constant longitudinal velocity, linear tyre dynamics,
small angle approximations, and other assumptions.

Figure 2. A linear bicycle model

The Newton-Euler equations of the linearised vehicle motion can
be found in equations (1)–(2). The notation denotes the mass of the
vehicle,m, and inertia with respect to the center of mass, Izz . The
vehicle parameters related to the front and rear distance from the
center of gravity are lf and lr , respectively.

may = Fy,f + Fy,r (1)

Izzψ̈ = lfFy,f − lrFy,r (2)

Moreover, the states of the vehicle are lateral acceleration, ay , lon-
gitudinal vehicle velocity, Vx, lateral vehicle velocity, Vy , yaw rate,
r, and heading angle, ψ.

The front and rear lateral axle forces, Fy,f and Fy,r , are assumed
to have a linear relation with respect to the slip angles through the
cornering stiffness per axle, and are calculated as:

Fy,f = −Cαf ,f · αf (3)

Fy,r = −Cαr,r · αr (4)
Lastly, the front and rear axle slip angles, derived from the bicycle
model, are:

αf = −δ + Vy + lfr

Vx
(5)

αr =
Vy − lrr

Vx
(6)

2.2. Steering system dynamics

In order to study the interaction between the driver and the vehicle at
the steering handwheel interface, it is essential to model the steering
dynamics.

In this section, the steering dynamics [4] are represented by two
degrees of freedom, the steering wheel angle, θsw, and steering
column angle, θc. In equations (7)–(8), the linear dynamics of the
steering system are described. It can be seen how the interaction
of the driver is already taken into account, through the introduction
of the muscle angle of the arms, θa, which also interacts with the
steering wheel. For readability, the difference of the angles at the
steering column is defined as ∆θsc = (θsw − θc), and the same
notation can be derived for the derivatives with respect to time,
∆ ˙θsc = (θ̇sw − θ̇c).

(Isw + Iarms)θ̈sw = ka(θa − θsw)− ct∆ ˙θsc − kt∆θsc (7)

Icθ̈c + csw θ̇c + kswθc = ct∆ ˙θsc + kt∆θsc −
Tw
G

+ Tc (8)

The inertia of the rack and the front wheels with respect to the pin-
ion is represented by the term Ic, whereas the steering column stiff-
ness and the torsion bar damping are defined by kt and ct, respec-
tively. Lastly, the steering system also includes the damping and
self-centering stiffness termswith respect to the steeringwheel axle,
csw and ksw, respectively. Concerning other torques exchanged at
the steering wheel, the model includes the self-aligning moment,
Tw, and the torque input from the driving assist system, calculated
through theMPC controller. The self-aligningmoment is calculated
based on the torque generated about the king-pin axes by the lateral
axle force, as can be seen in equation (9), where the pneumatic trail
is denoted by the parameter d.

Tw = dFy,f (9)

Finally, the steering gear ratio, G, transforms the steering angle
column into the road wheel angle based on equation (10).

δ =
θc
G

(10)

Moreover, the steering dynamics are rigidly coupled to the arms
dynamics in contact with the steering handwheel. Thereby resulting
in a total inertia that is the summation of the inertia of the arms,
Iarms, and the inertia of the steering wheel, Isw. Further details
concerning the neuromuscular dynamics of the arms, coupled to the
steering system, are described in equation (13) of Section [3.2].
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3. Driver Model

The integration of a realistic driver model is central to the design of
this collaborative shared control strategy. A better accuracy of the
torque predictions can directly improve the collaborative behaviour
of the proposed driving assist system. For this reason, an extensive
driver model is desirable, with each of its elements serving a unique
purpose.

The driver model, as presented in Figure 3, was developed by Niu
and Cole [4], building upon earlier work by Nash and Cole [5]. The
model is implemented in Simulink and adapted to enhance its va-
lidity in real-life scenarios and real-time capability. It aims to rep-
resent the significant cognitive and physiological mechanisms of
the human driver, and includes an internal model, neuromuscular
dynamics, sensory dynamics, sensorimotor noise, state estimation,
and cognitive and reflex control. In particular, the inclusion of neu-
romuscular dynamics makes the model appropriate for the develop-
ment of a new driving assist system with torque feedback.

Figure 3. Schematic representation of the driver model

3.1. Cognitive behaviour

The cognitive model is used to predict the driver’s steering inten-
tions. For the cognitive control, a predictive approach based on a
Linear-Quadratic Regulator (LQR) is chosen. Moreover, the states
of the system are estimated with a Kalman Filter to reduce the ef-
fect of measurement noise of the sensory organs and process noise
of the brain. This combination of approaches is also known as the
Linear-Quadratic-Gaussian and it requires an accurate internal men-
tal representation of the environment in order to achieve optimal
state estimation. In this regard, a forward internal mental model is
assumed to be acquired a priori by the driver.

The cost function of the LQR, which calculates the expected driver
torque input, is derived based on previous work [5, 6] and can be
seen in equations (11)–(12). This function minimises the lateral
deviation of the vehicle with respect to the upcoming reference tra-
jectory of the road with a certain preview time, Tprev .

JLQR =
∞∑
0

[[
xKF yp

]
CTQC

[
xKF
yp

]]
+ αRα (11)

where C is a matrix that selects the states on the lateral position,
heading angle, and the road preview points. An illustration of the
upcoming road trajectory can be seen in Figure 4. Finally, the ex-
pected driver torque input, α, is calculated as:

α = −KLQR ·
[
xKF
yp

]
(12)

where KLQR is the Kalman Filter gain, xKF is a vector with the
estimated states, and yp a vector containing the upcoming preview
road points of length Np = Tprev/Ts,DM . The rest of the cost
function parameters can be found in Table 1.

Figure 4. Schematic representation of the road preview points

3.2. Neuromuscular dynamics

The muscle dynamics are described by a linearised Hill-muscle
model [7]. The elasticity of the tendons is represented by the stiff-
ness term, ka. The contractile element, on the other hand, is de-
scribed by the damping term, ca, and the neural activation torque,
Tact, which is a function of the desired driver torque and the reflex
action.

The neuromuscular dynamics of the driver are thus composed of
the reflex action of the muscle spindles, a linearised Hill-muscle
model including the activation dynamics of the muscles, and the
muscle dynamics of the arms, which are interacting with the steer-
ing system. These elements are necessary for the modelling of the
co-activation mechanism of the muscles.

Tact = caθ̇a + ka(θa − θsw) (13)

The NMS dynamics are modelled as defined in equations (14)–(15)
and shown in with Figure 3. The activation dynamics, denoted by
Hact, are subject to a lag time constant of the motor neurons excita-
tion, τ1, and a lumped neuro-muscular transduction delay, τ2. The
latter time constant represents the muscle activation and deactiva-
tion lag.

Hact =
1

(τ1 · s+ 1) · (τ2 · s+ 1)
(14)

The reflex loop, an essential element of the co-activation mecha-
nism, is subject to a delay time constant, τr , and a gain factor, kr .
The expected muscle angle, γ, is calculated based on the internal
mental model of the driver and the estimated states by the Kalman
Filter.

αr =
kr

τr · s+ 1
· (γ − θa) (15)

3.3. Sensory organs

The sensory organs modelled are the visual perception organs and
the proprioceptors with the purpose of representing the human lim-
itations in the perception. The modelling of the vestibular organs is
considered out of the scope of this research because the validation is
carried out in a fixed-base driving simulator. The states perceived
by the driver are the vehicle lateral deviation with respect to the de-
sired path, ey , the heading angle, ψ, and the muscle angle of the
driver, θa. These states are subject to a visual delay, τvisual, and a
muscle sensory delay, τmuscle.
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The feedback sensed by these organs is then sent to the Central Ner-
vous System, subject to measurement noise. These noisy signals
are used to estimate the states of the plant with the Kalman Filter
model, based on the assumption that the driver has a good internal
mental representation of the vehicle and their own neuromuscular
dynamics. The parameters that the driver model uses can be seen
in Table 1.

Parameter Value
Tprev 1.4 s
Iarms 0.0718 kg m2

ka 30 Nmrad
ca 3 Nms/rad
kr 21 Nm/rad
τr 0.04 s
τ1 0.03 s
τ2 0.02 s
τvisual 0.24 s
τmuscle 0.19 s
Q diag([3 · 103, 1 · 102])
R 1

Table 1. Driver model parameters

4. Driver Model validation

4.1. High-fidelity offline simulations

As a first step in the validation process of the driver model, the
predictions of the torque are simulated offline in CarMaker, an ad-
vanced software for model-based design. Here, the driver model is
compared to the CarMaker virtual driver. To represent the plant,
nonlinear vehicle dynamics and a TME-TMC nonlinear steering
system are used [8] with a Toyota production vehicle parametri-
sation. This allows for a high-fidelity simulation of real-world sce-
narios.

Figure 5. Driver model prediction based on CarMaker virtual
driver and high-fidelity steering-vehicle plant

The driver model is initially validated against a rather robotic hu-
man behaviour. In Figure 5, it can be seen that the driver model
predictions are accurate both inmagnitude and in shape, with the ex-
ception of the initial peak of themanoeuvre. This initial mismatch is
due to the impossibility to introduce constraints in the driver model
when using an LQR cognitive controller. This could be resolved
by introducing an MPC controller instead, which would have the
additional capability of modelling a nonlinear driver. However, the
introduction of two MPC controllers, related to driver and driving
assist system, can lead to instabilities due to competing objectives
as well as rapidly increase the computational requirements.

The model was also tested with simpler steering models, and with
the consequent reduction of steering friction nonlinearities. As ex-
pected, the precision of the torque predictions is higher for these
simplified models, namely a Pfeffer steering and a kinematic ra-
tio steering model [9], both based on the parametrisation of the
aforementioned vehicle. For these validations, the internal men-
tal model of the driver was adjusted mainly by introducing a linear
assist torque gain depending on the steering system and selecting
different preview times for each driver. The nonlinear CarMaker
vehicle provided the signals fed to the driver sensory organs.

4.2. Pilot experiments with driving simulator

A pilot study was performed at Toyota Motor Europe, using the
fixed-base driving simulator of Figure 6. Three different drivers,
listed in Table 2 and Figures 7–9 in ascending order of driving ex-
perience, participated in the experiment to further validate the ac-
curacy of the driver model. In order to test the driver model perfor-
mance for different driving styles and behaviour, there is significant
variability in the drivers’ experience. Namely, the participants are
a novice driver, a driver with 12-years of experience, and a driver
with over 20 years of driving experience and expert knowledge in
driving simulators.

Figure 6. Driving simulator at Toyota Motor Europe, Belgium

The driver model fits all three drivers well, as objectively shown
in Table 2, which further reassures the capabilities of the model to
capture driver inter- and intra-variability.

The driver model parametrisation is found to match slightly better
the novice and intermediate driver, which could be because the lin-
ear internal mental model captures better users with limited driving
experience, whereas the mismatch between the linear model and the
knowledge of expert drivers is more significant.

Driver RMSE [Nm] % Accuracy
Driver 1: Novice 0.7344 89.96

Driver 2: Intermediate 0.6232 90.96
Driver 3: Expert 0.7355 87.30

Table 2. Torque prediction accuracy of the driver model

The sensitivity of the different driver model parameters was pre-
liminary studied in order to obtain the best possible fit. From this
analysis, the driver preview time of the road is highlighted. This
can be linked to the different cognitive strategies that each driver
has in order to follow the road path. The novice driver tends to
have a shorter preview time, as well as a noisier torque input. On
the other hand, for driver three, even though the perception of the
ideal road trajectory was not correct, the torque input is smooth and
the muscle spindles are calculated to be barely activated. This can
also be associated to the fact that the muscle spindles are active both
when rejecting disturbances and when they have a wrong internal
mental model.
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Another relevant factor is that using a human-like road preview is
key for the model to give an accurate torque prediction. This refer-
ence trajectory was changed from the ideal invariant road centerline
to a lateral position of the vehicle using road sensors in CarMaker.
A good fitting of the prediction was obtained for the three drivers
under the assumption that the vehicle position corresponds to the
desired vehicle trajectory. This assumption would not be valid in
the presence of, for instance, external disturbances, in which case
the muscle spindles torque would be activated. This element is fur-
ther analysed in Section [6].

Figure 7. Driver model predictions based on driver 1, novice

Figure 8. Driver model predictions based on driver 2, intermediate
expertise

Figure 9. Driver model predictions based on driver 3, expert level

5. MPC framework

Model Predictive Control is an approach of which the main objec-
tive is to calculate the trajectory of a future control input variable,
u(k), in order to optimise the future behaviour of the plant being
controlled. The optimisation is performed within a finite-time win-
dow based on the plant states’ information at the start of the time
window x(k) [10]. The time window is composed of a number of
time steps, called the prediction horizon, Np. The control horizon
of the control input sequence is denoted by Nc. This optimal con-
trol problem is iteratively performed to minimise a cost function
subject to constraints.

5.1. General structure of the MPC

MPC-based systems are particularly suitable for the steering task
due to the need for accurate precision in the path tracking task per-
formance. Moreover, it is possible to introduce input and state con-
straints to guarantee safety and comfort. This makes the MPC par-
ticularly advantageous for the shared driving task, where smooth
control inputs can foster a more pleasant interaction with the driver.

The general representation of the prediction model can be seen in
equation (16).

x(k + 1) = f(x(k), u(k)), with x(0) = x0 (16)

where x is the vector of the system states, with x ∈ RNx . The
variable x0 denotes the initial states, and f is the function that de-
scribes the predictionmodel dynamic equations, which can be linear
or nonlinear. Lastly, the variable u ∈ RNu is the control input. For
the scope of this research, the dimension of the control input,Nu is
equal to one and it represents the torque rate input that the driving
assist system exerts on the steering system.

The state solution is

x(k) = ϕ(k; x0,uk) (17)

And the control input sequence is

uk := (u(0), u(1), ..., u(k − 1)) (18)

5.2. Cost function and system constraints

In particular for this research, the purpose of the driving assist sys-
tem is to allow the controller to provide amore intuitive torque guid-
ance to the driver through the steering interface, also known as hap-
tic guidance. Therefore, the cost function of the MPC-based steer-
ing controller improves path tracking performance, ensures driving
comfort, and reduces the conflicts between the driver and driving
assist system.

J(x, u) =
Np−1∑
k=0

∥(hx(xk)− yr,k)∥2Wx
+

+

Nc−1∑
k=0

∥hu(uk)∥2Wu
+ ∥hN (xNp)− yr,Np∥

2
WxN

(19)

where Wx, WxN ≥ 0, are the weighting matrices of the stage
and terminal cost for the states, with appropriate matrix dimensions.
The parameter Wu > 0 corresponds to the stage cost for the in-
put. These matrices can be used as tuning parameters that influence
tracking performance. The time-varying state reference vector is
denoted yr .

First of all, the tracking performance objective is implemented to
minimise the lateral deviation with respect to the reference path,
subject to a look-ahead distance factor depending on the vehicle
velocity and the heading angle, ψ. The relation between the costs
for the MPC system can be seen in Table 3.

Moreover, driving comfort can be enhance by applying a weight
parameter to the lateral velocity, Vy , and the yaw rate, r. Addi-
tional costs on the driver’s effort or discomfort indicators can also
be added to, for example, reduce the activation of the muscle spin-
dles’ torque or the total driver steering torque, as described in Ta-
ble 3.
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Furthermore, the MPCmodel is subject to constraints that represent
the vehicle handling limits. These constraints are imposed on the
lateral velocity and the yaw rate. Moreover, in order to guarantee
a smooth assist guidance, constraints on the steering wheel angle,
θsw, and assist torque input, Tc, as well as their respective rates
are also introduced. The allowed maximum absolute value of the
constrained states can be found in Table 3. Hard constraints on the
driver model states are avoided for stability and, instead, weights to
penalise their magnitude are included.

Variable Value
Ts,cont 1 · 10−2 s
Ts,DM 2 · 10−2 s
Ts,sim 1 · 10−3 s
Np 40
Nc 40
Wy 1 · 106
WyN 1 · 102
Wψ Vx ·Wy

WTc 600
WTinput 40

WVy 1 · 102
Wr 1 · 102
Wspindles 1 · 102
Wdriver 6 · 102
Vy,max 4 m/s
rmax 50 deg/s
θsw,max 360 deg
θ̇sw,max 800 deg
Tc,max 10 Nm
Ṫc,max 20 Nm/s

Table 3. MPC Settings and weights

The different sampling times and prediction horizons, as specified
in Table 3, are appropriately chosen to ensure that the MPC model
can be run in real-time without compromising its performance, pre-
diction capabilities, and stability. The nonlinear plant operates at a
higher sampling frequency, Ts,sim, whereas the linear driver model
can be accurately run at a lower sampling frequency, Ts,DM , which
reduces the computational requirements. For the MPC, the maxi-
mum sampling frequency that allows themodel to compute the opti-
mal control input in real-time, Ts,cont, is selected to ensure stability
and a long enough prediction time, Ts,cont ·Np, which has a direct
impact on its performance.

5.3. Adaptive MPC for conflict minimisation

The software used for the implementation of this MPC system is
the ACADO Toolbox [11]. This is an open-source software envi-
ronment for automatic control and dynamic optimisation written in
C++. It is suitable for the study of closed-loop MPC applications in
real-time and its use is supported in MATLAB [12]. Moreover, it
has the additional advantage to implement adaptive weights of the
cost function. These time-varying weights are based both on the
difference between the applied driver torque and the driving assist
system torque to minimise torque conflicts, and on the MPC con-
troller torque and its rate.

The cost function is designed to be adaptive in order to dynami-
cally share the control authority depending on the driver input and
promote smooth control inputs. The adaptive behaviour is applied
to the cost on the MPC assist torque and its rate with a factor of

1.5. In other words, when certain criteria are met, the cost on the
state and input increases from their baseline to up to 1.5 times more
in a parabola-shape. An example of this behaviour is displayed in
Figure 10 for one of the weights. Such criteria are, for instance,
when the assist torque rate exceeds a threshold or when the driver
torque´s direction is opposite to that of the driving assist system
torque. The MPC settings for the controller are defined in Table 3.

Figure 10. Adaptive behaviour of the cost on the MPC input

The values include the sampling time of the MPC, and the sam-
pling times for the driver model and vehicle-steering system simu-
lation, respectively. Finally, the prediction horizon, Np, and con-
trol horizon, Nc are set to the same value. The different possibili-
ties for the ACADO Toolkit settings can be found in further detail
in [13]. In this research, a Quadratic-Programming solver is used,
with a Gauss-Newton Hessian approximation and a multiple shoot-
ing discretisation algorithm. The integration type used is an implicit
Runge-Kutta integrator with a maximum of 3Np integration steps.

6. MPC application

The MPC assist system is assessed for different scenarios, such as a
lane change subject to an external force disturbance and a sine test.
Initially, the lane change was assessed in a bicycle model plant. To
further validate its applicability, the sine test was performed in a
high-fidelity environment using CarMaker. The nonlinear vehicle
dynamics and steering system parametrisation are the same as de-
scribed in Section [4].

6.1. Lane change scenario

The MPC controller is investigated for a lane change manoeuvre to
test the robustness of the controller:

• Case 1. Baseline scenario. Manual driving.

• Case 2. Manual driving with a disturbance of 800 N at 12 s.

• Case 3. Shared driving.

• Case 4. Shared driving with a disturbance of 800 N at 12 s.

The controller adapts to the different situations, improving the path
tracking performance while minimising the muscle spindle torque
and the overall driver effort. In Figure 11, it can be seen that the
RMSE is lower for the shared case (yrms = 0.054 m) compared
to manual driving (yrms = 0.055 m). The same applies for the
case with a disturbance with shared control (yrms = 0.073m) and
manual driving (yrms = 0.076m). Moreover, in cases 2 and 4, the
MPC helps the driver to reject the disturbance, thus, minimising the
reflex action by 25.27 %.
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Figure 11. Lane change results of the MPC and driver model

6.2. Sine test manoeuvre

The controller can be tuned to portray different behaviours and the
competing objectives of driver comfort and path tracking perfor-
mance are investigated in Figures 12–13.

A strong torque guidance of the assist system is presented in Fig-
ure 12. The optimisation algorithm makes use of the prediction of
the driver behaviour to provide a human-like guidance and release
the driver of most of the steering effort, which results in a more ac-
curate path tracking performance. This controller could potentially
be helpful to more inexperienced drivers or compliant users.

Figure 12. Mode 1: Performance optimisation

Figure 13. Mode 2: Conflict minimisation

In Figure 13, on the other hand, the aim is to reduce the conflicts
with the driver before they arise. The controller exploits the adap-

tive nature of the MPC cost function and it uses the driver model to
enhance driver comfort. Here, reduction of conflict is more relevant
than maximum performance, although the latter is also improved
with respect to manual driving. In this case, the assist system guid-
ance is less strong, allowing the driver to easily overrule the system
if desired. This behaviour is achieved by modifying the settings of
this second controller to have a higher cost on the reflex torque of
the driver, which is related to driver discomfort and the rejection of
disturbances. This makes the MPC to be less intrusive than in the
previous case.

In short, the collaborative behaviour of the MPC assist system al-
lows for a better balance between performance and comfort due
to the introduction of an advanced driver model within the predic-
tion model. The MPC computes the optimisation depending on the
cost function parameters without compromising driver comfort and
its behaviour is enhanced through adaptive costs. Moreover, even
though the behaviour of the CarMaker virtual driver is rather con-
stant, the possibility to customise both the driver parametrisation
and the MPC assist system makes it possible to tackle the individ-
ual needs of each user.

7. Conclusion

This study tackles the need to blend driver modelling and driving
assist systems in a shared control strategy. The use of a linear yet
extensive and complex driver model perfectly matches the require-
ments of the controller. In other words, an accurate prediction of the
driver in the loop is integrated without compromising the real-time
capabilities of the controller.

The results show that modelling the driver behaviour is a key feature
in order to develop collaborative assist systems that can minimise
conflicts with the driver. Drivermodels can represent the human be-
haviour and predict the driver’s intentions while driving. Therefore,
accurate driver models canminimise the need of testing in real vehi-
cles when developing user-accepted AD systems. Besides, they can
also be used to predict subjective assessments of the steering feel.
In particular, within the Haptic Shared Control framework, driver
models can facilitate the investigation of how the driver reacts in
the presence of the haptic feedback guidance.

On the other hand, the complexity, adaptability, and unpredictability
of the human behaviourmakes the use of driver models challenging.
Moreover, how to introduce the driver within the loop and how to
model the human-machine interaction is often unclear. However,
with the increasing research on driver models, the added complexity
is worth the potential benefits of taking into account the driver-in-
the-loop dynamics, as demonstrated in this work.

On the controller’s side, the designed Model Predictive Controller
fulfils the requirements needed for real-time implementation of the
shared steering task, as well as being able to handle constraints
on the system and the nonlinearities of the plant. The constraints
are essential to consider the driver-vehicle limitations, as well as
guaranteeing smooth control inputs for driver comfort. Finally, the
novel cost function allows dynamic allocation of the control author-
ity between driver and driving assist system, which fosters symbi-
otic driving and reduces potential steering conflicts.

8. Future work

Due to the vast amount of behaviours that can be portrayed by the
MPC controller, an intensive fixed-base driving simulator study is
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required to further assess the subjective acceptance of the different
modes of collaboration. This also enables us to test the controller
with human dispersion and more variability.

The proposed control strategy should be able to predict the human
behaviour and, at the same time, be sufficiently smooth and intu-
itive so that the driver can perceive it as expected and cooperative.
For this purpose, the adaptability of the driver model will be fur-
ther investigated. Current work focuses on a benchmark compari-
son between an industry standard Toyota Lane Trace Assist and the
proposed MPC driving assist system.
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