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Summary

The global Offshore Energy recession since 2015 and the increased threat from Asian competitors made the
Boskalis Offshore Energy Division have to "tighten their belt". Moreover, to prevent human induced irre-
versible disastrous climate change, the IMO introduced their Green House Gas reduction strategy. This re-
quires Boskalis to reduce fleet carbon emissions with 40% and 50% in respectively 2030 and 2050 compared
to 2008. Currently, the Boskalis Offshore Energy Division is unable to quantify and improve the energy effi-
ciency of their fleet, since the required operational information is not available for data-driven decision mak-
ing. Nevertheless, the digital revolution gives the opportunity to collect, transfer and analyse large amounts
of data onshore for energy efficiency control and cost-effective improvements.

The objective is to develop a data-driven decision support system for cost-effective improvement of the fleet’s
energy efficiency, to (i) create competitive advantage for Boskalis, (ii) reduce operational energy costs and in-
herently (iii) comply with future law and legislation about energy efficiency and carbon emissions.

To fulfil this objective, a method is composed from Information System Development Theory and Data Sci-
ence. With this method a conceptual Business Intelligence Design for the Offshore Energy Division is devel-
oped and applied to the Long Distance Towage case study for development of the detailed prototype.
This conceptual Business Intelligence Design enables Boskalis to communicate the insights from operational
data to all management levels for data-driven Decision Support. The Business Intelligence Design phase
identified eight different vessel categories and introduces the data-driven organisation and decision hierar-
chy model. The performance control model for work vessels is developed, which is a composition of concepts
about the marine drive chain, sensor technology and operational profile description. These two developed
models required specified data input, which is used for the ideal database development and within the case
study for data collection.
The built prototype for Long Distance Towage quantifies the operational vessel profile, enables performance
monitoring and supports optimisation decisions. One dimensionless Shipping Performance Indicator is for-
mulated to quantify the overall energy efficiency of the Long Distance Towage, which can internally be used
for strategic control and possibly for legislation. The Key Performance Indicator of the quantified opera-
tional modes are related to benchmarks and targets for fuel efficiency control at tactical organisation level.
To control energy efficiency, the Performance Indicators were integrated within the Business Process Mod-
elling Notation. The developed prototype gives performance insights to make decisions about engines, hotel
and auxiliary performance optimisation. For example, the insights quantified the rapid decrease of engine
efficiency over time after an overhaul. Based on these insights different measures were considered for opti-
misation. These measures to improve energy efficiency were classified by their payback periods and "data
readiness". This way, the quick and more long term wins for energy efficiency improvement were identified.

The data-driven decision support system gives a competitive advantage by the cost-effective improvement of
the fleet’s energy efficiency and by the controlled compliance with the IMO Greenhouse Gas Reduction Strat-
egy. The conceptual Business Intelligence Design provides the foundation for data-driven decision support
about energy efficiency for the entire Offshore Energy fleet. Boskalis Long Distance Towage department can
cost-effectively improve their energy efficiency by 40% toward 2030 with respect to 2008 and thereby fully
comply with the outlines of the IMO Greenhouse Gas Reduction Strategy.
Boskalis offshore energy is recommanded to implement a Data-driven Decision Support System to manage
the cost-effective energy efficiency improvement and the reduction of carbon emission. The organisational
awareness and willingness to improve is a prerequisition for successful implementation.
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Chapter 1

Introduction

The topic of this master thesis is about how the concept of a data-driven decisions support system can help
to improve the energy efficiency of shipping at Boskalis in a cost-effective manner. The situation and com-
plication of Boskalis are explained in the background below (see section 1.1). In the objective is stated how
the complications within the current situation can be solved (see section 1.2). The scope is explained, about
what will be done for achieving the stated objective (see section 1.3). The thesis outline includes the reading
manual of this master thesis (see section 1.4).

1.1 Background

Boskalis owns 900 floating assets, that together emits 600 and 800 thousand tons of CO2 every year. The in-
ternational authorities will increasingly hold Boskalis responsible for these emissions. The concerns about
the global warming made the United Nations (UN) formulate their global Greenhouse Gas (GHG) reduction
strategy. As a consequence, the International Maritime Organisation (IMO), which is the specialised organ-
isation of the UN for shipping, is challenged to reduce the approximately global emission share by shipping
of 2% to 3%, equivalent to an annual emission of 800 million tons of CO2 (IMO, 2014). In April 2018 the IMO
adopted their GHG reduction ambition of 40% and 50% in respectively 2030 and 2050, compared to 2008
(Øyvind Endresen, 2018). By IMO rules, shipowners are responsible for aligning of their performance with
these IMO-ambitions. To accelerate the energy transition, shipowner already received the MARPOL guide-
lines about energy efficiency and the corresponding emissions. Additionally, the IMO will publish their more
specified GHG reduction strategy in 2023, which is about five years from the start of this research. The five
year docking interval of a vessel is the best opportunity to cost-effectively improve the energy efficiency of
the design and the technical installations. The UN climate scientists agreed that irreversible disastrous cli-
mate change is not likely to be prevented by these slow developments (Carrington, 2018). According to these
scientists, Boskalis should actively improve their energy efficiency and not wait to be forced by the IMO.
The second IMO GHG study stated that 75% GHG reduction is feasible by operational excellence and existing
technologies, of which many are also cost-effective and thus offer financial benefits too (H. Lindstad, 2009).
The cost-effective improvement of energy efficiency creates additional leverage when Boskalis starts using
higher priced renewable energy sources or low sulphur fuel from 2020. The shipowners who do not antici-
pate for an alignment with the IMO GHG strategy, which is already outlined, take a risk for non-compliance
and additional costs in the future due to e.g. fines.

The improved connectivity by satellites above the sea enables Boskalis to develop an information system to
support decisions onboard and onshore about fuel efficiency and related GHG emissions of each of their ves-
sels. The connectivity at sea improved over the last decades from the situation of receiving a global location
twice per day in 1992 to an affordable 24/7 VSAT connection for video calls in 2020. Moreover, the costs of
broadband internet over the stable satellite connections are expected to drop over the next decades. The in-
ternet is one of the most revolutionary digital concept of the last decades and the concept of the Internet of
Things (IoT) is expected to be the next (Jonathan Holdowsky, 2015). IoT is about the connection of machines
to humans, machines to machines and to establish automated interactions, which can be translated to con-
cepts of automation, remote controlled and autonomous shipping. These two concepts are highly promising
(C. Kooij and Visser, 2018) for the reduction of scarcely available crew and improvements of ship design. Their
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research field is focused on the avoidance and mitigation of technical and operational failures of systems and
less on the possible effects on energy efficiency, which makes this research interesting for exploration. Third-
parties offer data services to control and improve energy efficiency of vessels, like Damen Shipyard, We4sea,
Rolls Royce, Aviso instruments, TecnosVeritas and Enginei. The sustainability and technology leaders of ship-
ping like Maersk, Stena Line and Wallenius already developed information systems for decision support to
achieve operational and technical energy efficiency excellence and consequently this gave them competitive
advantage in their markets.

The Offshore Energy Division of Boskalis has no information system to support decisions about fuel efficiency
and GHG emissions, and their knowledge on the accompanied threats and opportunities is limited. Boskalis
Westminster N.V. is a Dutch global operating all round maritime service contractor, employs 10.700 people
and owns 900 floating assets over 75 countries in six continents. HAL Investments B.V is with a 40,3% shares
the most influential shareholder and has the reputation to have ’deep pockets’. The other shareholders own
less than 5% each and are widely spread internationally. In 1910 Boskalis started as a dredging company and
expanded in 1980 their activities to the Offshore Energy and later to the Towage & Salvage markets. Together
these activities form the three division of the Boskalis organisation (see fig. 1.1).
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Figure 1.1: Organisation structure of Boskalis (own composition)

The Offshore Energy Division owns an extremely diverse work vessel fleet in terms of design and operational
profile. This is more challenging for cost-effective improvement of fuel efficiency, compared to shipping com-
panies with a focus for one type of vessel and with a more constant operational profile. The seven business
units of the Offshore Energy Division operate in different segments of the Offshore Energy market with all
rather volatile characteristics. The OED is top-down organised and hierarchical, with many management
layers, for the controlled unification of acquired companies such as SMIT international (2010), Dockwise &
Fairstar (2013 & 2016), Fairmount (2014), STRABAG, VBMS and Gardline (2018). The fleet management de-
partment is responsible for the asset management of the acquired second-hand fleet. A significant part of
the technical management is responsible for the subcontractor Anglo-Eastern from Hong Kong. They deliver
crew, Technical Superintendents and they coordinate the daily operational support. Anglo-Eastern provides
a cost reduction of the technical management for Boskalis and owns more advanced technical data manage-
ment systems than the Boskalis Offshore Energy Division. The role of Boskalis Offshore Energy is increasingly
that of a marine contractor or broker and less of a shipowner, considering the outsourcing the technical fleet
management. Nevertheless the responsibility to reduce GHG emissions remains by law at Boskalis, so they
have to take suitable decisions about their energy efficiency. These complex and important decisions are pre-
ferred to be data-driven instead of intuitive.

The use of an information system to provide insights for data-driven decisions about the cost-effective im-
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provements of energy efficiency. This is interesting for Boskalis Offshore Energy to create competitive ad-
vantage and to realize the required GHG emission reduction. This is the first scientific research about the
combination of the energy efficiency challenges and the opportunities of new digital information technolo-
gies at Boskalis Offshore Energy fleet management. There were and are many different initiatives within the
Boskalis organisation related to this subjects, but nothing was organised at a corporate or division level, at
the start of this project. The GHG emission reduction task force group, that was founded during this research,
agreed about the urgency and showed interest in the research results. The taskforce and others struggle with
the lack of information and expertise to advice executives or to initiate and realize improvement bottom-up.

The case study of the Long Distance Towage (LTD) vessels developed a prototype to support decisions about
investments and maintenance for the ’quick wins’ of energy efficiency. Boskalis owns five identical designed
vessels that were previously owned by Fairmount Marine Service. The available data of daily reports and the
newly installed sensor data logging systems are used to build the prototype for data-driven decision support
onboard and onshore.

1.2 Objective

Develop a data-driven decision support system for cost-effective improvement of the fleet’s energy efficiency,
to (i) create competitive advantage for Boskalis, (ii) reduce operational energy costs and inherently (iii) com-
ply with future law and legislation about energy efficiency and carbon emissions.

1.3 Scope

This data-driven decision support systems development for shipping of the Offshore Energy Division is en-
abled by the information and communication technology developments of the last decade and is part of
a more long term development towards autonomous and smart shipping. The scope with respect to this
development from intuitive to autonomous shipping is graphically explained by fig. 1.2. This development
research is from the data-driven perspective for decision support and is focused on the operational data and
not on physics based modelling simulations or redesign. This research about both the technical and the op-
erational energy efficiency improvements is focused on intelligence for asset management and not on the
vessel (weather) routing.

Intuitive Decision
Shipping

Onboard Supported
Decision 
 Shipping

Shore Supported
Decision 
Shipping

Shore Controlled
Shipping

Autonomous
Shipping

Progression of the Digital Era

Scope

Figure 1.2: Scope with respect to development of autonomous shipping (own composition)

A methodology will be developed for both a conceptual business intelligence model for the Offshore Energy
Division and the prototype system for LTD. This methodology will be a composition from different scientific
disciplines found by literature study. The data input of the model and prototype are the daily reports and
additional logged sensor data received onshore. The study about this development method will specify the
type of information system that suits the offshore energy division best. A methodology for financial analysis
of design or operational improvements of energy efficiency will be part of this research, to argument deci-
sions how to improve the energy efficiency cost-effective or not. The financial analysis is focuses on the ’low
hanging fruits’ with short payback times, which makes additional sensitivity analysis overburden. The costs
for full implementation of the system will not be considered, nor whether to realize the system internally or
with a third-party.

The system development drivers will be investigated and specified for a wide scope about the application op-
portunities at Boskalis, which is the shipowner perspective. The main focus will be the cost-effectiveness of
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energy efficiency improvement and how to gain competitive advance consequently. The recent law and leg-
islation development from the IMO will be considered to identify the urgency and current state of Boskalis’
adaption. Carbon taxing will be noticed but is not considered for future financial scenarios. The Energy Effi-
ciency Operational Index (EEOI) and Energy Efficiency Design Index (EEDI) are both not affecting the existing
Boskalis fleet at the moment and are beyond scope for this reason. The LTD market will be studied to under-
stand how the clients, competition and contracting are related to energy efficiency.

The conceptual business intelligence design will consider how operational time-series data from vessels can
be processed by algorithms for different levels of the organisation and their decisions about energy efficiency.
The focus will be the operational and tactical level of the Offshore Energy organisation and their correspond-
ing decisions. The main focus about the fleet management department and their responsibilities about main-
tenance and design improvements. The improvement ideas for the operations and sales departments will be
mentioned and possibly quantified, but are not within the main focus of this research. Voyage optimisation
and weather routing will not be quantified by the information system.

The different energy consuming systems on board of vessel will be identified by their efficiencies and related
operational profile. The Social Network Analysis is an essential part of a business intelligence design and will
be done with the Business Process Modelling Notation (BPMN). This is the notation for visualisation of busi-
ness processes and their relations with information technology. A BPMN will be applied for the current and
an improved process of LTD with integration of the prototype. The business intelligence model will provide
what data and data quality are required for a well functioning system in the future.

Two out of the five equally designed Fairmount sister vessels of LTD are within scope for the prototype. The
Glacier and Sherpa are used to represent the whole LTD fleet and for the initial benchmarking of fuel effi-
ciency. The case study prototype will have a focus on the engines, turbocharger, hotel and auxiliary systems,
since the daily reports extensively considered these together with the logged engine sensors.

1.4 Thesis Outline

The main structure of this thesis is defined by the composed development approach (see chapter 2), which
resulted in the graphical overview (see fig. 2.11).
The drivers (see chapter 3) for the system development are explained and reports the context of this research
and the divergent process toward the more convergent conceptual design for the Offshore Energy Division
(see chapter 4). This conceptual design is applied for the case study of LDT (see chapter 5).
The conclusion (see chapter 6), and recommendation (see chapter 7) summarise and evaluate the research
results together.
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Chapter 2

Decision Support System Development
Methodology

This chapter connects the previous introduction chapter about the objective and the scope with the decision
support system developed in the flowing chapters, documented by this thesis. First the fundamentals of
DSSs are explained in section 2.1 for defining the term data-driven decision support. The fundamentals
of Data Science are explained in section 2.2 for understanding what data science is and how the model is
used to develop the DSS prototypes. The energy efficiency improvement approach of section 2.3 shows how
the operational, maintenance and design measurement are found, correlated and financially analysed. The
development methodology is composed from studied literature and graphically represented in section 2.4.
After reading this chapter the reader understands the terminology and the model of DSS, Data Science, energy
efficiency improvement and the financial terms used in this thesis.

2.1 Fundamentals of Decision Support Systems Development

The goal of this section is to introduce readers with the theory of DSS development and to explain how the
developed system design is defined. First the DSS category is specified and related to other Information in
section 2.1.1. Second the DSS categories are considered and the developed system defined as Data-driven in
section 2.1.2. The system development methodology is specified and related to existing systems at Boskalis
in section 2.1.3. Finally a model about sense making of data is introduced to distinguish different progression
states form data to a decision in section 2.1.4.

The conclusions are that DSS is per definition an indispensable element at the core of the IS field between
Management Information Systems and Organisational Computing. The evolution DSSs during the 20th cen-
tury resulted in many categories of DSS and the system design is Data-driven, which is a Intelligent DSS based
on time series data. The evolutionary prototype approach with Python is selected, because this suits raped
development of DSS. The DSS needs to progress from raw data to decisions in six independent steps to make
sense.

2.1.1 Information System Categories

A DSS is an information system (IS) devoted to supporting and improving human decision-making. Within
the field of IS science, the DSS is located at the core between Management Information Systems (MIS) and
Organisational Computing (OC), as shown in fig. 2.1.
The concept of a MIS provides structured information in pre-specified reports for structured problems and
frequently made decisions, typically at the operational level of organisation. The DSSs are distinguished
by the capability to serve ad-hoc decisions, derivation or discovery of new insights, direct accessibility by
their decision-making users, user specific customisation of functionality and interfaces, and/or learning from
prior made decisions (F. Burstein, 2008).
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Figure 2.1: DSS indispensable element at the core of the IS research field (F. Burstein, 2008)

The OC systems are computer-based systems that enable or facilitate multi-participant activities. These
multi-participant organisation range from dyads to complex enterprises. The OC systems serve activities
include entertainment, education, commerce, design, research, and multi-participant decision making. Typ-
ical topics of OC systems are computer-mediated communication, computer-supported cooperative work,
coordination systems, groupware, enterprise systems, and inter-organisational systems. The development
the multi-participant activities enriched to DSS developments of Group Support Systems (C.W. Holsapple,
1996).

The system design for cost-effective reduction of bunker costs is a DSS, which is an IS category, that theoret-
ically lays in between the MIS and OC categories. The system contains elements of both system categories,
since development of DSS is influenced by both other system developments in history. The development of
DSSs on-itself is captured by the next subsection about DSS categories. The multi-approach of the system de-
sign is conceptual, technical, analytical and financial. The discipline fleet management has the focus, within
the broad discipline of shipping management.

2.1.2 Decision Support System Categories

The category of DSS as IS contains many different categories to be distinguished. The development of DSS
evolved significantly over the last decades, as the graphical overview of fig. 2.2 suggests.
The first personal DSS was developed during the 1970s by fundamentals originating from Computer-based
Information Systems, Operation Research and Behavioural Decision Theory. These first systems evolved un-
der the influence of other scientific developments during 1980s and this resulted into three different subcat-
egories: Intelligent Decision Support Systems, Executive Information Systems and Group Support Systems.
The evolution proceeds during the 1990s and resulted in concepts of: Knowledge Management Bases DSS,
Data Warehousing and Negotiation support systems.

The developments after the 2000s are not included in fig. 2.2, but the evolution did not stop. The concept of
the Data Lake was developed during 2010s, which is an evolution of Data Warehousing and Machine Learning
that originates from Artificial Intelligence. A Data Lake contains a temporary large storage of semi-structured
high quality data to train ML algorithms for DSS. The virtual overflow of the Data Lack determines the history
presence within the Data Lack. A Data lake is present at the Dredging Division of Boskalis and this concept is
not introduced at the OED.

The system design is an Intelligent Decision Support Systems considering the literature study. The system
design called data-driven because this is the taxonomy for DSSs based on time series from internal and some-
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Figure 2.2: Evolution of DSS field (Arnott and Pervan, 2005)

times external data. Found opportunities for Boskalis considering other categories will be stated within the
recommendations.

2.1.3 System Development Methodology

The different DSS categories or DSS typology can be developed with different methodologies. A review study
created an graphical overview about the relations between different DSS typology and development method-
ology in fig. 2.3. The study provided insight about what methodologies are suitable or not to develop the
data-driven DSS system in mind. The data-driven DSS is not explicitly mentioned in fig. 2.3, but is most
related to the individual DSS. When Looking beyond scope of the research, the typology of Group Decision
Support Systems and Hybrid DSS are interesting to fulfil the objective of this research, which is more explicitly
explained within the chapter 7.

Figure 2.3: Methodologies, methods and techniques for development different DSS types (Brandas, 2011)

The Prototyping methodology is chosen, because this seemed applicable for all different types of DDS typol-
ogy and enables non implemented evaluations of DSS(Brandas, 2011). The Data Science approach in Python
can produce the prototype visualisations to be improved over time, without implementation required. There
are two types of prototyping mentioned within the literature: throwaway and evolutionary prototyping. The
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throwaway prototype built is not meant to be implemented, in contrast to the evolutionary prototype. The
evolutionary prototype is typically implemented and evolves over time by adding new functionalities and im-
prove existing content. The back-end development of the realized DSS prototype in Python is evolutionary
and the front-end development (visualisations) are throwaway prototypes. This prototyping approach pro-
vides relatively fast development of the back-end design.

Python is often used for back-end development of platforms, like for example Netflix, Google, Facebook,
Spotify and We4Sea. Front-end development is commonly not done with Python at these platforms, but for
example with the Dash package, an open-source library for building advanced interactive dashboards which
is provided under licence of MIT. Programmes like MS Power BI and Tableau are more user friendly to develop
front-end of applications. The director of the IT department of Boskalis, Karel Parre, stated that Boskalis is
an Microsoft based company and the focus is on further development of Data Warehousing (MS Azure) and
Power BI applications at Boskalis. The back-end development within python can be implemented as function
of the total corporate intelligence platform, called Boskalis World, that is programmed in C# and python ac-
cording founder Kees Pruis. The front-end examples are remade within MS power BI to illustrate possibilities
of a interactive dashboard. The development of the database with Python is evolutionary and the developed
Power BI dashboard are build upon this database, which makes the development evolutionary. The real ap-
plication of the developed system is beyond scope of the research.
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2.1.4 Progression of Knowledge

This subsection is not explicitly about the development of the system design or methodology, but about a
more fundamental theory about how data provides decision support. The fig. 2.4 originates from knowledge
management literature and show the progression form data to decisions, corresponding steps defined (van
Lohuizen, 1986). The model is used for understanding the different states for sense making of the data-driven
DSS prototype.

Three phases are distinguished in the model: Intelligence, Design and choice. All three phases, with cor-
responding steps need to be surpassed for support of a data-driven DSS. The Intelligence phases is about
gathering information with data, the Design phase about the databases, algorithms, visualisation and pre-
sentation of information, while the choice phase is about how decisions maker have to judge information
and evaluate to make decisions.

Figure 2.4: Knowledge as progression of states (van Lohuizen, 1986)

The lowest layer called data is gathered during operations. Only a selection of this data cleaned, represents
information about reality. This information can be analysed to created structured information by for ex-
ample filtering and labelling a data table within a database. Synthesised structured information can create
insight with filtering, statistics, predictions and visualisation of history. With created insight, decision makers
weights the importance of the insight for a judgement. Evaluation of this judgement leads to a decision. The
effect of made decisions changes reality that is captured by the data and creates new insight and judgement
for future decisions making.
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2.2 Fundamentals of Data Science

Reader who are not familiar with domain of Data Science are recommanded to read this section. The term
Data Science is defined by explanation of the development in section 2.2.1 and the process model in sec-
tion 2.2.2.

The conclusion is that Computer Science and Math & Statistic together developed Machine learning, which
is a subset of AI. Together with expertise of shipping management and navel architecture Data Science can be
performant. Data Science is typically practised by multi-disciplinary teams, which indicates a fully working
product is unlikely to be developed during this project.

2.2.1 Development of Data Science

Real-time Data from vessels can be sent to shore and enables opportunities to monitor, control and support
vessels by office and development new business models. These opportunities are typically explored by Data
Science. Large company do frequently ask for Data Scientists, since The Harvard Business Review of 2012
called Data Scientist "The sexiest Job of the 21st Century", which caused an explosion of data scientist jobs
on the market. Data Scientists commonly use open source programming languages as R and the most fast
growing programming language Python. Innovative maritime start-ups like We4Sea and Xiomnia (Shipping
Technology) are both Data Science oriented companies, who realise ’Digital Twins’ and autonomous vessels.
The Data Science perspective is already demonstrated to be effectively for predicting the balanced optimisa-
tion of cargo vessels (Andrea Coraddu and Anguita, 2018).

Data Science can be considered as a ’Buzz word’, resulting from a lack of definition, respect from conserva-
tive science communities and a high noise-to-signal ratio in daily conversation (Rachek Schutt, 2014). Data
Science is related to Information Science, Computer Science, Statistics, Predictive Modelling, Algorithms,
Machine Learning, Business Analytics and (Business) Intelligence. James Nicholas Gray, imagined Data Sci-
ence as a ’fourth paradigm of science’ next to empirical, theoretical and computational science. Data-driven
science as the ’fourth paradigm of science’, enabled by the data deluge (explosion of available data).

Data science is practised by multidisciplinary Data Science teams (Rachek Schutt, 2014), which typically con-
sists of a Data Scientist (Math & Statistics), Data Engineer (Computer Science) and a domain expert (Substan-
tive Expertise). The illustration of fig. 2.5 graphically explains the overlap of these three domains. The term
’Hacking Skill’ can be translated to the more formal term of Computer Science, but is explicitly called ’Hack-
ing skill’ for a reason. The term ’Hacking skill’ refers to life hacking, which is about unconventional use of ICT
to process overburden of information available.

Figure 2.5: Drew Conway’s Venn diagram of data science (Rachek Schutt, 2014)

Data science is typically practised by a multidisciplinary team, creating the Data Science team together, as
shown in fig. 2.5. Substantive experts (Domain and Business knowledge) about shipping within this project
were found at the TU Delft, Boskalis and within the curriculum of the writer. Knowledge about mathematics
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and statics were present in curriculum of Marine Engineering and much is learned during this project. Hack-
ing skills for processing big data sets were lacking at the start, but were developed during this project to do the
Data Science, instead of traditional research without hacking skills. Some literature states that Data Science
within the Venn diagram should be replaced by Unicorn. Data science can captured by a circle around this
whole Venn diagram as well, since nobody can do ’real’ data science alone. The field of machine learning, as
part of AI became understandable, but building tool requires real expertise.

2.2.2 Data Science Process Model

The fig. 2.6 gives graphical representation of the data science process. The reality of shipping is captured by
raw data. When the process starts, raw data have to be collected from organisations, departments, databases
and employees. When all required data is collected, the data can be processed for development of structured
database, which is ought suitable for Exploratory Data Analysis (EDA). The cleaning or cleansing of data is
mostly required for EDA, which is about restoring or deleting corrupted data.

The cleaning and EDA provide insight about the Data Quality. When all data is processed and (big) data
sets are developed, a Data Quality Assessment (DQA) is done. The DQA explicitly states the data quality of the
available data and the feasibility of significant outcomes of models and algorithms. A common saying of mod-
ellers is: "Rubbish in is rubbish out", which means that if there the data quality is to low, the model will not
produce significant outcomes. DQ need to be predefined for development and design of systems(Fu. Qian,
2017)). Two frameworks to determine data quality are explained within section 2.2.4.

Figure 2.6: Data science process (Rachek Schutt, 2014)

The EDA results in additional processing of data for analysis and useful models and algorithms. The addi-
tional processing can done when time and DQ are sufficient or are recommanded for future development.
The results Models and Algorithms are communicated by this thesis for Decision making.

The Models and Algorithms can implemented in the data product which is a Data-driven DSS. A positive
feedback loop can occur due implementation of the data product. User and data collectors of the data prod-
uct become aware of the importance of data quality. Implementation of the Data product is beyond scope of
this thesis.
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2.2.3 Machine Learning

Machine learning is the scientific study of algorithms and statistical models that computer systems use to ef-
fectively perform a specific task, without using explicit instructions, relying on patterns and inference instead
(Bishop, 2006).

There are basically three branches of Machine Learning: Supervised learning, unsupervised learning and Re-
inforcement learning. Supervised learning is used when a pattern is expected, typically classification and
regression methods. Unsupervised learning is about finding unknown patterns and correlations for predic-
tions, like clustering of data to label and classify. Reinforcement is about how a software agent ought to take
actions in an environment so as to maximise some notion of cumulative reward. A Graphical overview in
fig. 2.7 visualized a flowchart to find the suitable estimator for a certain problem.

Figure 2.7: Flowchart for choosing the right estimator (Scikit-learn, 2018)

Mention that the Artificial neural network is not mentioned in chapter 2. Artificial neural networks or con-
nectionist systems are computing systems, vaguely inspired by the biological neural networks, that constitute
neurons of the brain (van Gerven and Bohte, 2017). The neural network itself is not an algorithm, but rather
a framework for many different machine learning algorithms to work together and process complex data in-
puts.

Regression (Lucy Aldous, 2013) and Artificial Neural Networks (E. Bal Beşikçi, 2015) models have both proven
to be accurate for prediction fuel consumption of vessels. Wallenius and Stena line, who are shipping com-
pany from Scandinavia, stated the use Artificial Neural Networks to control their fleet, at the lighthouse con-
ference of 13-06-2018.

Deep Learning is a branch of Machine Learning and can be divided Image Recognition and Computer Vision.
Image and Video data are both not consider for the DSS.

2. Decision Support System Development Methodology 12



2.2.4 Data Quality Frameworks

The input data for data-driven DSS needs a required data quality for a sufficient representation of reality. The
term data quality suffers a lack of consensus among managers, so the frameworks are introduced to create a
consensus about and to understand the definitions and relations (see fig. 2.8 & fig. 2.9).
The required data quality depends on the goal to be achieved, this concept is called: "fitness of purpose". The
required data quality is preferably predefined before collecting data for analysis or data acquisition systems
development. A not clearly defined purposes and ’blind’ maximisation of the data quality requires unneces-
sary FTEs, data transfers and storage. In the worst case, the information infrastructure fails due overload or
clock synchronisation per second (ships are not electrical grounded).

The next two paragraphs are about the two data quality framework from scientific literature: ’The Data Qual-
ity Hierarchy’ and ’The Primary Data Quality Dimensions’. These two frameworks are consistent but differ
in the perspective of data quality. The both framework explicitly contain accuracy, completeness and timeli-
ness.
The hierarchical framework (R. Y. Wang and Kon, 1995) is from organisational perspective and specifies the
quality parameter of Attainability. This data quality framework is most applicable for considering the organi-
sational and business process data quality
The six primary quality dimensions framework (management association, 2013) centralises the accuracy di-
mension and is with a more technical perspective. This framework is useful for data quality assessments (see
section 5.1.2) data acquisition and database design (see section 4.3.2).

Data Quality Hierarchy

The hierarchy framework illustrates the data quality terminology in relation to use of corporate information
systems (see fig. 2.8). On top of this hierarchy is the term data quality explicitly located and split below in
Attainability, Accuracy and Credibility. These three parameter are explained by the paragraphs below.

Figure 2.8: Hierarchical structure of data quality (R. Y. Wang and Kon, 1995)

The Attainability can be split in availability and accessibility, which says something about how much data is
present, known or usable by employees. Data leadership is related to attainability, which can be split in data
dictatorship and democracy. If data dictatorship is the reality for an organisation, only one person has access
to the data or only knows about existence and possibilities. Within the a data democracy all related employ-
ees are do use and improve the for continues improvement of the data-driven decision making organisation.

The accuracy is split into Syntactic (form) and Semantic (content). The syntax is about the ’grammar’ of the
data, while semantic is about related to the meaning of the data.

The Credibility of the data can be split in Completeness and Timeliness, which are both about ’intrinsic val-
ues’ of data. The completeness is about the present data observations and attributes are complete enough to
sufficiently represent the reality. The timeliness is about whether the timing of data is consistent and allows
observations to be compared.
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Six Primary Data Quality Dimensions

This framework is applicable specific content of data tables or databases (see fig. 2.9). Next to these six core
dimension are the secondary dimensions, such as usability, flexibility, confidentiality and the value for busi-
ness (management association, 2013). Besides always question if the data are understandable, simple, rele-
vant and compatible. Only the six primary dimensions are further explained by this paragraph.

Figure 2.9: Six primary data quality dimensions (management association, 2013)

The definition of accuracy is the degree to which data correctly describes the "real world" object or event
being described. Accuracy is the centralised core dimension of this model with stronger relations to Validity,
Timeliness and Consistency. A less strong relation to Completeness is stated in this model, since this is about
the amount of observations.

The definition of Completeness is the proportion of stored data against the potential of 100% complete. The
business rules which define what is this 100% and what is critical data or significant amount of data. The
completeness of time series data is mostly required to be 100%, because this enables to summarize data over
longer periods. For example, the engine fuel consumption over one year have to be known and a few weeks
of data are missing, this causes a low completeness and consequently an inaccurate estimation.

The consistency of different data is 100% for perfect accurate data. A 100% consistency results in absence of
difference, when comparing two or more representations of a thing with the same definition. For example,
the fuel consumption summation of four quarter periods of 2018, should be 100% consistent with the annual
value of 2018. Another example, within the case study the engine power according controller and backward
calculation by shaft and alternator powers were inconsistent (see fig. C.4b).

Uniqueness of 100% states that all objects are indentified by one unique identity number. Labels, IDs or data
attributes should be stored uniquely by an organisation and not multiple times within the individual or dif-
ferent systems. A percentage can be calculated by dividing these number of thing in real world by number of
records describing these things.

The definition of Timeliness is degree to which data represent reality from the required point in time, referred
to the time of the real world event. A PMS logs engine power every second of the day and these values sum-
marized to average over the day, which gives a high data accuracy onboard. If this data is real-time update
onshore, the timeliness onshore is also high.
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2.3 Energy Efficiency Improvement Approach

The data-driven DSS design is for cost-effective reduction of bunker fuel consumption. The previous sec-
tions of this chapter were about the DSS as an instrument and this section is about the energy efficiency
improvement approach. This improvement approach explains how measurements are found, related and
financially analysed for decision making, supported by the insights from the DSS. This section is an introduc-
tion to methodology used for making judgements about energy efficiency of a vessel, based on insights from
the DSS.

The conclusions are that improvement of energy efficiency is systematically approachable, but the quality of
results depend on the data availability and accuracy. Literature about how to improve energy efficiency of
vessels is widely available but is mostly focussed on cargo vessels and not non-transport vessels, a problem
that can be solved by insights from the Data-driven DSS design.

2.3.1 Generation of Measures

Measures for improvement of operations and design are actively studied by the scientific communities. Lit-
erature study (Armstrong, 2013),(et al., 2018),(IMO, 2018a),(Andrea Coraddu and Anguita, 2018), Exploratory
Data Analysis and Marine Engineering expertise are required for judgement about the applicability of mea-
sures, but can be supported by a DSS. Recent study proved that tools can be build for cargo vessel to predict
the best measurements to improve energy efficiency over longer periods by Markov chains (van den Berg,
2018). A long list of all found measures is available in appendix D.1.

Results of a review study about 150 GHG reduction measures cases are presented in fig. 2.10. Most measures
do affect energy efficiency one-to-one, while others do only reduce GHG emissions. The scientist who made
this boxplot charts recommend to focus at the third quartile and exclude outliers, for a more realistic impres-
sion of measure potential in general. Mention that the work vessel are considered as outliers, since they are
no cargo vessels, that are considered to be the norm. All data points in the boxplots originates from 150 case
studies, with different vessel designs and markets and a large spread of reduction potentials as result. Most ef-
fective potentials for carbon emission reduction are the vessel size, biofuels, speed optimisation and capacity
utilisation. Speed optimisation seems most interesting for work vessels and is within scope. These results of
scientific research are used as starting point for finding energy efficiency improving measures. Another long
list is abstracted, with related indications about initial investment costs and energy efficiency improvement
potential as presented in appendix D.1.
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Figure 2.10: CO2 emission reduction potential from individual measures, classified in 5 main categories of measures (et al., 2018)

A Marine Engineer with knowledge about ship design and energy efficiency is capable of finding the best
applicable ideas from these literatures and proved cases, to develop a short list of interesting measurement
for the case. The found improvements are not necessarily stand alone measures and can be related to each
other for finding the best package, with required effect and synergy.
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2.3.2 Correlation Analyses

Applicable measurements are incompatible, create synergy or do not affect each other. These relations be-
tween measurements need to be known for optimisation of energy efficiency. Incompatibility between mea-
surement means that they can not be combined technically or economically. When both measures are cost-
effective, a decision which one to be chosen need to be made. The relations to other cost-effective measures
need to be considered before making the decision between two incompatible measurements. Synergies of
measurements can be both positive or negative. This can be identified by graphical representation of a tech-
nical correlation matrix.

The idea of a technical correlation matrix originates from Quality Function Deployment (QFD). Dr.A.A. Kana
thought and provided lecture slides about QFD, during a SDPO master course called Design of Complex spe-
cials. The QFD is useful for new build and conversions designs decisions. A QFD analysis quantifies relation
between a Voice of Customer and what is most effective considering a service or design to satisfy, by possibly
including weight to different stakeholders(Warkwick, 2007). QFD technique is not a form of hard science and
can be used in many different ways, as it suits the case.

When the voice of customer gives importance to sustainability, energy efficiency or fuel efficiency and carbon
emissions, this results in more energy efficiency products, operations and vessels of Boskalis. Development
of a QFD is useful to specify how important energy efficiency is related to other parameters for customers,
new buildings, conversions or projects. Other parameters could have been safety, duration of project (down-
time) and cash flow for example.

The scope of only energy efficiency is to narrow for a full QFD analysis to make sense, but is still to rec-
ommend for new build and conversion to identify importance of energy efficiency. The ’roof of the QFD
house’, the technical correlation matrix, seemed to be useful for finding possible combinations of energy effi-
ciency improvement measures, both technical and operational. The case study result of the relation analysis
is shown in fig. 5.31.

The relation matrix is an useful method to specify relations of energy efficiency improvement measurements
in the conceptual design stage of both operations and design.
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2.3.3 Financial Analysis

The financial analysis about cost-effectiveness for decisions supported by data is expressed in Net Present
Value (NPV), Payback Time and Internal Rate of Return (IRR). The Total Cost of Ownershipeq. (2.1) difference
by energy efficiency improvement is ideally used over the economical life time of a vessel. The investments
create a positive cash flow by reduced fuel costs over multiple years, compared with "doing nothing". Main-
tenance measurements are not considered as investment over multiple years, but only for one year without
discounting. The periods of years is equal to expected economical life of the vessel and the period of five
years is considered to identify quick wins. The expected second hand market or scrap prices are considered
within the Ctot al , to quantify the leverage of energy efficiency for the asset.

Ctot al =Ci nvestment︸ ︷︷ ︸
fixed

+Cmai ntenance +C f uel +Coper ati on +Ccar bon︸ ︷︷ ︸
variable

(2.1)

This simplified representation includes the costs of carbon, which is considered to be zero by Boskalis at the
moment. Although Boskalis can include the cost of carbon internally to stimulate reduction of their carbon
emission, there is a risk of carbon pricing by the governmental organisations, for example the IMO, in the
future. The cost of carbon are politically controversial and are mainly based on scientific estimations about
the human impact on the global warming and discounting on the future generations of human populations.
The climate costs of carbon are assumed to be between €40 and €390, depending on observation period and
impact assumptions, according Dr.S.T.H. Storm’s lectures about sustainable energy economics.

The objective function of NPV of Ctot al is used to analyse investment for improvements of energy efficiency
eq. (2.2). The number of year within the NPV of an investment is zero, is called the DPT. The Discount Rate is
assumed to be 10% for proven concepts and 15% for early adopter measurements. The discounting is applied
to compensate the future value of money because of interests, inflation, risks and alternative investments.
The Discount Rate can be considered as the minimal IRR required for investment.

N PV (Ctot al ) =C0 +
T∑

t=1

Ct

(1+ r )t (2.2)

Where:

C0 = Initial Investment Costs €

Ct = Total costs in year t €

r = Discount rate %
t = Number of year year
T = Period number of years years

The IRR is a percentage of what the discounting (or WACC when excluding the risk free rate) can be for still
have a profitable investment over a certain period of timeeq. (2.3). When the IRR is negative, this means a
negative discounting is required and the investment is expect no to cost-effective.

I I R = N PV (Ctot al ) =
T∑

t=1

Ct

(1+ r )t −C0 = 0 (2.3)

This model lacks the perspective of revenue from improved market position and only considers reduced
Ctot al . Budget and cash flow constraints, which are typically important for financial decisions within busi-
ness, are not considered by this financial model. These are all important to consider for making the real de-
cision. This models is able to quantify cost-effective improvement of energy efficiency and is applied within
case study to demonstrate the financial benefits of energy efficiency.
A sensitivity analysis can be made for bunker fuel prices, vessel utilization and operation profile variations.
This research is focused on the by problem owner requested quick wins with a DPT below two years. The
Sensitivity analysis is less interesting for investment decision over relative short periods of time and beyond
scope of this research.
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2.4 Developed Method Composition

The evolutionary prototyping approach of the Data-driven DSS is graphically presented by the own developed
composition in fig. 2.11. The composition contains a feedback mechanism, which originates form traditional
IS development based on systems development life cycle that is considered to be the founder of all other de-
velopment methodologies(Brandas, 2011). This life cycle development methodology refers to evolutionary
prototyping approach, also known under the name iterative design(E. Turban, 2010). Evolutionary prototyp-
ing is common for rapid and integrated development approach. DSS development is focused on a specific,
dynamic and complex activities which requests series of updates and testing. Mention that chapter and sec-
tion indications are represented, which makes the model useful as reader manual for this thesis.

There are five phases of development that can be distinguished and the first three are within scope of this
thesis, as suggested by the arrow in fig. 2.11. First the objective and scope are stated, which are formulated
by analysis of the drivers for the system development. The Business Intelligence Design (BID) process starts
afterwards and results in a conceptual model design of the system for the whole OED fleet of Boskalis. The
conceptual BID design is applied for the case study and practised by the DS process. The two following
phases are beyond scope and about implementation of the system, which is considered and roughly outlined
to complete the entire development cycle of information systems.
All the phases contain specified task to be proceed for procession of the development phase and system.
Colours that are specified in the legend represent the expertise required for the tasks for the system develop-
ment. No colours are included within tasks of the first two phases, because these are related to multiple fields
of expertise.

The graphical overview of fig. 2.11 graphically represent the overview of how the DSS was developed in this
thesis and can be used as manual. Moreover, this structured approach can be translated to other studies for
development of Data-driven systems and refined to a project guide for further professional development and
implementation of the system.

2.4.1 Drivers for Decision Support Development

The three main drivers for the system development are all ready spoiled within fig. 2.11. The driver are the
motives for why to develop a certain IS. The objected and scope are abstracted from the analysis of drivers,
this avoids changing objective and scope for the system design during development of the BID. The added
value of the data-driven DSS for cost-effective reduction bunker costs is specified, together with secondary
and tertiary objectives. The driver analysis succeed when it support development of a long term vision for IS
development.

2.4.2 Business Intelligence Design

The BID starts when the primary and preferably the secondary and tertiary objectives and scope are ought
not to change during the development project. The BID starts with the task of Business process modelling
or social network analysis to find participants and their decisions within the processes to support. A new
data supported business process can be developed and is specified by the task of performance control design
about models and algorithms to use for support. Finally requested data is specified to be collected within the
development of the preliminary design.
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2. Decision Support System Development Methodology 20



2.4.3 Preliminary design: Case study

The preliminary design is made by using python for back-end development of the system for the case study.
The DS process model is specified and applied for the case. This preliminary design learns the current state
of data quality and opportunities for algorithms and models. Mention that in practise their is an interaction
between lessons learned and further development of the BID.

2.4.4 Detailed design

Detailed design can start for creating the decision support content for user experience. This Detail design is
done sufficiently when data is enabled for judgement and decision. The user experience affects operational
decision making and operational data. Evaluation of the data proves energy efficiency improvements or not
and will be the input for possible new development ideas and objectives.

A DSS should always stimulate creativity of the users and not substitutes logical thinking. When vessel crew,
who collects operational data is involved in the system, they are expect to improve data quality and become
aware of energy efficiency of the vessel.

2.4.5 Hardware and software application: Implementation phase

The system implementation is beyond scope, but considered since this is an important part of system de-
velopment in shipping. The costs and bandwidth of VSAT data transfer from Marlink are summarized in
appendix D.4. The whole fleet of Boskalis is currently connected to the Marlink satellite system. The NMEA
and VDR at vessel are first systems to logged and transfer the data from.
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Chapter 3

Drivers for System Development

The problem of energy efficiency at Boskalis is driven by three different drivers that are inherently connected.
The Design of the Data-driven DSS is aligned with these three drivers. The first driver, that is aligned with the
primary objective, is about competitive advantage for Boskalis by cost-effectively improved energy efficiency
and is explain in section 3.1. The market driver of LTD is explicitly considered for understanding this niche
market and the competitive advantage by cost-effectively improvement of energy efficiency in section 3.2.
Finally the societal pressure for improvement of EE is considered in section 3.3.

The conclusion is that the Data-driven DSS provides competitive advantage due more cost-effective opera-
tions and being in control of the changing and increasingly stricter policy environment of energy efficiency
and corresponding emissions. Boskalis can make to most cosy-effective decision toward suitable fleet devel-
opment, supported bu insights of operations and design. The market of LTD is price competitive and there
are market opportunities for fuel efficient towing, especially outside the oil and gas market.

3.1 Competitive Advantage for Boskalis

One of the fundamental ideas of markets mechanism is that competition stimulates companies to innovate
their business. The market strategy and market positioning of Boskalis are briefly explained and related to
the competitive environment in section 3.1.1. The financial benefits of energy efficiency are explained by
??. When Boskalis gains control about their bunker fuels and energy efficiency, this creates an additional
advantage as described by section 3.1.3.

3.1.1 Competitive Environment

The strategy of Boskalis is to be an all round global maritime service provider. Boskalis participates for this
reason at the markets of Dredging, Coastal Engineering, Infrastructure, Offshore Energy, Salvage, Wreck Re-
moval and Harbour Tug Assistance. The general idea is that customers ask Boskalis to design and build their
ports or other projects and to deliver services to operate them. Boskalis wants to move forward as one strong
brand and all vessels will be painted grey with Boskalis logo and called for example BOKA Sherpa and BOKA
Vanguard.

Boskalis competes with smaller and larger companies spread over several markets. Especially the Chinese
companies are winning ground and water (LLC, 2018), with their fast response and large ambitions for the
Offshore and the Shipping Markets, as part of their ’Belt and road project’, to restore ’the old silk road’. The
Closed-stern Heavy Lifting Transport vessels are sold for scrap during the second half of 2018, because of
competition (Wallis, 2018). They CEO Peter Berdowski stated during interview with Fairplay: “This (lower-
end) segment is rapidly becoming a commodity transport market, often not oil- and gas-related, that is
structurally confronted with Asian overcapacity.” This statement indicates that Boskalis was not capable of
competing with the Asian market at sides of the offshore energy market. This development is projected at the
LTD market that is considered in section 3.2
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The developments of technology create competitive advantage for the companies who adapt. The concepts
of digital transformation, as Big Data, IoT, AI and Blockchain are often considered as threat and opportunity
for business. Boskalis needs to adapt to this technological transformation or is likely to loose competition on
the long term. The R&D of Boskalis is already actively applying these concepts to improve the core business
of Boskalis. The fleet is considered as equipment and not to be the core business at the OED, resulting in
less priority for innovation of shipbuilding and shipping management. New ship building projects only hap-
pened at the Dredging Division, but never at the OED. Shipping competitors outside the Offshore Energy like
Maersk, Wallenius and Stena line are more adapted to digital information technologies for controlling and
improving and their fleet, systems and bunker consumption. The company We4Sea offers their data solu-
tion to smaller shipping companies, who are not capable of own development, to control and improve their
fuel efficiency. The subcontractor of Boskalis for fleet management, Anglo-eastern, showed more advanced
information infrastructure for technical control of the fleet, compared to the system of Boskalis. Boskalis as
shipowner did increasingly outsource their fleet management to reduce costs and has a low level of applied
information technology at the OED.

3.1.2 Financial Benefits

The costs and revenues of shipping need to be distinguished first and for that reason a graphical overview
is presented in fig. 3.1. The model shows that costs of bunker fuels are not included, which makes this
model outdated considering increasingly importance consumption and related emissions (Victor N. Arm-
strong, 2015).

Figure 3.1: Abstracted Revenue & costs related to stakeholders within shipping company (Victor N. Armstrong, 2015)

.

Boskalis OED considers costs of fuel as an out-of-pocket expenditure, that is paid by the client. Sometimes
fuel is supplied by the client during a time chartering, but in the most cases supplied by Boskalis. The clients
contracts typically lumpsum the charter fee and the fuel costs for the predicted project duration, with an risk
coverage clause about bunker price fluctuations. The commercial stakeholder, as mentioned in fig. 3.1, real-
ized financial benefits if the ’real day rate’ is minimised to gain higher margins or offer sharper prices. Cost-
effective improvement of energy efficiency contributes to the minimisation function of eq. (3.1). Commercial
added value depends strongly on the client interests. The improvement of fuel efficiency can require initial
investments and additionally risks for the shipowner, assumable to increasing the charter fee and decrease
fuel costs for the client. Together the day rate of the vessel should be minimised by leverage of improved
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energy efficiency. Moreover, A data-driven DSS provides insight about actual fuel performance of a vessel for
more accurate prediction of fuel consumption, which decreases financial risks of contracting.

M I N (Dayr ate) =C har ter f ee +bunker cost s (3.1)

The technical added value of energy efficiency can be gained by enhance of the brand value. A green brand
image can appeal clients who prefer responsible organisations, with possibly willingness to extra fee for ad-
ditional green initiatives, like bio-fuel. A vessel with a strong brand can have higher value on the second hand
market, in case of disinvestment. More attention is paid to EEDI and EEOI, which can become increasingly
important, together with the operational cost in case of market recession. A data-driven DSS system iden-
tifies the operational profile of vessels, which provides insight about how to improve the technical system
design for matching with operations.

The operational added value can be gained when maintenance cost are decreased, next to fuel costs. Real-
time data of a data-driven DSS provides insight about system health and required maintenance for fuel ef-
ficiency, which means improved control and predictions of maintenance intervals. The future scenario of
carbon pricing can influence operational costs of value. Energy efficient vessels can prevent costs of carbon
emissions in the future.

3.1.3 Control of Business

The main objective is to cost-effectively reduce bunker costs. The competitive advantage can be gained with
a first-mover advantage, when Boskalis takes more effective and earlier decisions about fuel efficiency, ceteris
paribus. Insight from the data-driven DSS system is required for those decisions. Boskalis need to know how
much fuel they consumed for what and the corresponding efficiencies according section 4.2.

Although cooperate strategy of Boskalis is beyond scope of this thesis, there are opportunities at tactical and
operational level to become a more lean and agile organisation for reaching goals by top-down formulated
strategy. Achieving goals more efficiently (lean) and improve responsibility to environmental or organisa-
tional changes (agile), can improve competitiveness of Boskalis. The challenge is to cut bunker costs most
effectively, without affecting production and to monitor and control the results. Control of Business provide
insight how to improve operations, maintenance and design of their vessel. They can determine optimise
speeds, best engine configurations, retrofits and provide information about expected design requirements
for new vessels. The DSS system provides information to make sound business cases about new suitable
technologies like hydrogen fuel cells, hybrid conversion and waste heat recovery.

The IMO request an increasingly amount of data for compliance with law and regulations. The data-driven
system can automatically compile reporting for compliance with the DCS of IMO. When the strategy of the
IMO changes or increases pressure, the data-driven system provides information about how to adapt.
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3.2 Market Opportunities of Long Distance Towage

Shipping management is about how technology as product of shipbuilding serves economic prosperity at
a certain market. The market of LTD is analysed to understand how improvement of energy efficiency by a
Data-driven DSS creates added value for Boskalis’ sales and operational departments. First the market outline
in section 3.2.1 explains the context of the nice market of LTD. The competition at the market is considered in
section 3.2.2. The contracting of LTD is explained section 3.2.3 to identity how fuel performance are related
to client satisfaction.

3.2.1 Market Outline

The LTD market participates at the larger market of the Offshore Energy market that is briefly explained first.
The offshore energy market can be considered as late cyclical, that means the market reacts delayed to the
global economics and oil prices. The delay is typically about two years, since this is the duration of projects
and contracts. A recession of the offshore energy market is a driver for cost reductions and focus on con-
tinuation of cash flow. The lower oil prices due recession of the offshore energy contradict the incentive to
cost-effectively reduce bunker costs, but the lower bunker prices do not compensate the slink of the margins
and the order book. The International Energy Agency(IEA), which is considered as ’the authority’ about global
energy market, predicts difficult times for the energy market, according their World Energy Outlook 2018 (Lut-
tikhuis, 2018). The lower oil prices are expected to remain after 2018 and to create a scarcity consequently
by lack of investments by oil and gas companies (IEA, 2018). The renewable energy market is expending, but
this cannot avoid scarcity till 2023 due the increase of global energy demand and the lack of investments of
the oil and gas industry. The IEA warns this scenario threatens development of renewable energy market and
suitableness growth of the energy market. Boskalis is a contractor who serves these markets and have to deal
with this scenario. The LTD market experienced strong fluctuations of the markets the last five years, which
resulted in extreme situations form lay-up of vessels to sailing fast-as-possible.

The OED business unit of Marine transport & Services divided their transport activities in vertical (Lifting)
and horizontal (Transport) transportation. The transport market is divided in wet transport by Tugs and dry
transport by Semi-submersibles. The LTD fleet exclusively serves the niche market of the wet transport over
long distances. The LTD vessel additionally serve the salvage market since the vessels have fire fighting equip-
ment and are highly manoeuvrable. The LTD vessel are not participation at the market of Anchor handling,
due slow winch response and no present Dynamic Position system. The LTD vessel do perform contract for
only LTD, but also participate in larger contracts of the Boskalis Corporate. The participation of Boskalis at
LTD market is not clearly profitable or a cross-subsidisation.

The spot market or tramp trade of LTD is changing over time, according the sales manager Laurens Corporal
who serves the LTD for more than five years. The portfolio of LTD is shifting towards the lower-end markets
of scrap and oversized not oil- and gas-related cargo over the last few years, comparable to the sold closed-
stern fleet (Wallis, 2018). There are opportunities at the lower-end markets (often called offshore commodity
markets) by these require a lower day rate, partly possible by cost-effective improvement of fuel efficiency
with fuel as 60% to 70% of the total operational costs. The high-end or capability markets will become more
price-driven by the global sulphur capture of 2020, since MGO tugs will become more price competitive with
former HFO tugs.

3.2.2 Market Competition

The introduction of the Semi-submersible heavy lift vessels since 2000 was a significant threat for the LTD
market(van Dokkum, 2011). The clients of Boskalis have to decide to transport their asset wet or dry. The
economical optimum depends mostly on price and time of the transport. The trade-off between dry and wet
is basically determined by the thrusters of the asset, the time pressure for first oil production, the structural
integrity, the free board and the weather restrictions.

The Long distance towage is an oligopoly niche market with three significant participants: Boskalis, Alp Ma-
rine Service and POSH Terasea. Boskalis is market leader with a market share of approximately 42% of the
market, according Laurens Korporaal. Boskalis showed interest in acquisition of both competitors This is
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questionable to be accepted by market authorities for preventing monopoly. Boskalis is well known for their
relatively high cash reserves and acquisition of many offshore energy competitors.

The competitor Alp Marine Services from Rotterdam is founded by former Fairmount employees and is ac-
quired by the Teekay Offshore Partners in 2014. Alp Marine Services has a fleet of 10 comparable and more
advanced vessels. They can be indicated as a capability competitor for Boskalis. Their vessels are more ad-
vanced by higher bollard pull performance, anchor handling capabilities (DP class 2) and Ulstein X-bow de-
sign hull structure for improved work-ability range. Their new Alp striker, Defender, Sweeper and Keeper
are called the Ultra Long Distance Anchor Handling Tugs, which can sail full power for 45 days, sufficient
for non-stop Trans-Atlantic/Indian, Pacific Ocean towing operations without fuel calls. Niigata shipbuilding
built these vessel with 300 ton bollard pull, Ice class (1B) Ulstein design hull, FiFi-2 and DP-2 in 2016. The
LTD vessel of Boskalis were built at the same shipyard during 2006-2008 (see section 1.4).

POSH Terasea is considered as a price fighter from Singapore with 9 newer vessels compared to Boskalis,
causing relatively high price competition level at Asian region. Their newest vessels have DP-1 and anchor
handling capabilities. Posh Terasea develops their fleet with less sister vessels compared to the others.

Boskalis works with their brokers and face approximately between 1200 and 1800 tenders for LTD annually.
Laurens Korporaal stated that 70% of not won tenders is result of price competition. Operational expenditures
of towing full power are approximately 13.000 euro per day and 20.000 euro for bunkers. Lower bunker costs
can improve both competitiveness of LTD. A DSS system provides insight and control of the energy perfor-
mance and supports decisions for cost-effective reduction bunker consumption, which forms an important
part of the competitiveness.

3.2.3 Contracting

The LTD department of Boskalis uses standardized BIMCO contracts for time chartering (see appendix B.2).
The idea behind this contract is that all agreements are signed for the project by this one single contract. The
required bunker costs are roughly estimated by the operation department by a ’rule of thumb’ and looking
at SPOC. This estimation is contracted lump-sum, with an additional bunker escalation clause to cover the
risk bunker price fluctuations for both parties. The crew and other operational management are provided by
Boskalis.

These contracts avoid separate contradicting or overlapping contracts, claims and payments. Therefore the
most contracts contain two days of ‘spare time’ before and after transport, two days for mobilisation (to re-
place crew, store bunkers and consumables) and two days for unforeseen delays of transport due speed re-
duction. Additional charter fee and bunkers have to be paid by the client if the demurrage exceeds the delay
and ’spare time’ of the contract. Some client contract additional bonuses for arriving earlier.

The ’Split incentive’ between Boskalis and charterers can be considered as a serious barrier to improvement
of fuel efficiency(Delft). The charter fee will increase as consequence of investments in energy efficiency,
while fuel efficiency benefits are clear for the clients. This can have a negative consequence for commercial
activities, although the total day rate can lower. The split incentive can be avoided by communication of the
decreased day rate by cost-effective fuel savings. Whether a shipowner can recoup a share of fuel efficiency
wins, depends on two factors. First, the equilibrium of the market, found be micro-economic analysis, shows
benefits are shared, depending on price elasticity of demand and supply. Second, the fuel saving measures
can create risk of underperformance and unsatisfied charterers, while over performance risk should be cov-
ered by charter rates to avoid only benefits for the charterer.

The standardized contract do explicitly contract the predicted fuel consumption. The actual daily consump-
tion is shared with the clients during the transport. The clients use the consumption as a performance in-
dicator and start complaining when the predicted amount of fuel is not burned. The daily consumption is
shared by e-mails containing unprotected excel sheets, with sensitive information about the performance of
LTD. New contract forms that exclude explicit numbers of fuel consumption and contain wire tensions and
towing speeds can be developed. A data-driven DSS system can provide accurate predictions and real-time
monitoring of these performance.
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3.3 Societal Drivers

The public opinion and political developments around GHG can not by ignored by Boskalis and the data-
driven DSS is useful for acting in the future. First the reduction strategy of the IMO is explained in section 3.3.1
and the SEEMP that already affects Boskalis in section 3.3.2. The increased importance of CSR at Boskalis is
explained section 3.3.3.

3.3.1 Greenhouse Gas Reduction Strategy of the International Maritime Organisation

The IMO is developing a GHG reduction strategy that makes shipowner responsible for their emitted GHG.
The decarbonization mega-trend is expected over the next decades, according the IMO GHG reduction strat-
egy (Øyvind Endresen, 2018). At April 2018 the IMO adopted their GHG reduction ambition of 40% and 50%
at 2030 and 2050 with respect to 2008. The strategy and targets will be specified by policy that is expected
in 2023. This GHG reduction policy will be based on collected data and the fourth GHG study, which will be
completed in 2019. The Maritime Environment Protection Committee (MEPC), works actively on this GHG
dossier, to achieve agreements between UN policy and Maritime industry.
The IMO aligns their policies with the Kyoto - DOHA amendment and UN for GHG reduction. The first GHG
study of the IMO was to monitor and forecast the GHG-emission of the maritime sector. The second study
was for effective reduction of GHG-emission of the maritime sector. The second study stated that 75% is fea-
sible by operational excellence and existing technologies, about many are cost-effective and offer financial
benefits. The third study combined both new collected data and knowledge for a GHG reduction policy, with
the SEEMP as result. The Marine Environment Protection Committee is currently developing stricter policy
for the GHG ambitions.

The future outlook of bunker fuel related is shown in fig. 3.2. The global sulphur cap of 2020 is expect to dis-
turb the residual fuel market prices, that will affect the energy intensive shipping more than energy efficient
shipping. The most effective for improvement of energy efficiency will be the carbon taxing, but is not explic-
itly mentioned in fig. 3.2. The EEOI and EEDI are both mentioned in the overview and will have impact on
all the new building vessels. The EEOI is not obligatory and the EEDI is for new build vessels and both not
explicitly formulated for LTD vessels. The laws and regulations were mainly focused on NOx, Sulphur and
less on GHG. A fundamental difference between NOx, Sulphur, PMs with respect to GHGs is that they rain
down and GHGs do accumulate in the atmosphere, with human induced global warming as result. The GHG
have to be captured for restoring concentration to pre-industrial time concentrations.

The GHG policies aim to avoid reaching the so called tipping point between 1.5 and 2.0 degrees Celsius in-
crease, with respect to pre-industrial times. At this tipping point further global warming is expect to enforce
itself and to be irreversible. Heat reflecting ice (with allot of methane captured) change in heat absorbing
black deep waters, as example reason. Mention that future warming of oceans increase CO2 absorbents,
lower PH value, consequently solve calcium and magnesium based stones and Coral, emitting CO2 again and
damage restore ability of the global ecosystem.
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Figure 3.2: Future outlook to emission policies (Øyvind Endresen, 2018)

3.3.2 Ship Energy Efficiency Management Plan

The resolution MEPC.203(62) was adopted on 15 July 2011 and includes regulation for energy efficiency for
ships in the MARPOL Annex VI. This was the first legally binding climate change treaty to be adopted since the
Kyoto Protocol by the IMO. A new International Energy Efficiency Certificate (IEEC) is required by 1 January
2013, which shall be issued for both new and existing ships above 400 gross tonnage to which the chapter 4
of MARPOL Annex VI applies.

The International Association of Classification Societies (IACS) introduced the Ship Energy Efficiency Man-
agement Plan (SEEMP) for compliance with IEEC. The Ship Energy Efficiency Management Plan (SEEMP) is
an operational measure that establishes a mechanism to improve the energy efficiency of a ship in a cost-
effective manner. The SEEMP also provides an approach for shipping companies, to manage ship and fleet
efficiency performance over time using, for example the Energy Efficiency Operational Indicator (EEOI) as a
voluntary monitoring tool (IMO, 2018b). This EEOI is not applicable for work Vessels at Boskalis.

The SEEMP is considered as a ’living document’ and is part of the annual survey, which only requires pres-
ence of SEEMP document on board. When no SEEMP is present on board, this is communicated with flag
state, who provided the IEEC. Non-compliance of the SEEMP does not affect International Air Pollution Pre-
vention Certificate (IAPP) of the vessel. The SEEMP is renewed like all other certificates after five years, which
is at 1 January 2019 for all vessels at Boskalis Offshore Energy built before 2013.

The IMO Data Collection System (DCS) requires mandatory reporting about Fuel oil consumption for all ves-
sels about 5000 gross tonnage, as first step to collect data for the GHG-reduction strategy as presented by
the IMO in 2023 (Øyvind Endresen, 2018). The reporting methodology is described in the SEEMP, part II, as
integrated part of the current SEEMP and need to be submitted at 31 December 2018. Details to be reported:
Period of calendar year, distance travelled, amount of each type of fuel consumed in total, hours underway
under own propulsion and DWT to be used as cargo proxy.

The LTD vessels have to comply with the SEEMP, which is renewed and approved by 1 January 2019. The
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SEEMP-II requests data, which has no approval requirement for these vessels below 5000 gross tonnage.
Boskalis is not obliged to deliver data of the LTD vessels to the IMO.

Data Collection System development

The Glomeep published a white paper about what data should be collected for validation of performance of
energy efficiency technologies, again focused on cargo vessel (to Support Low Carbon Shipping, 2018). This
white paper is related to the DCS of IMO and possibly represents minimal required data that should be col-
lected by industry. Shipowners who prefer the minimal data-driven development can use the presented table
in section 3.3.2 and DCS of SEEMP-II as bare minimum data requirement.

Figure 3.3: Data sources that can be obtained from using different data monitoring systems (to Support Low Carbon Shipping, 2018)
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3.3.3 Corporate Social Responsibility Policy

Boskalis considers Corporate Social Responsibility (CSR) required for survival. The maritime environment
of Boskalis does ask for a strategy to be sustainable in the future. The Strategy at corporate level is ought to
be interpret by all people within the organisation for being effective. Corporate Social Responsibility (CSR)
is increasingly important for Boskalis’ Stakeholders, clients, employees, partners and ’the war on talent’. The
Chairman Peter Berdowski stated more funds and resources will be available for decision support tools to
achieve CSR goals, at the CSR event at 29-10-2018 in Rotterdam.

Boskalis decided to start CSR activities and publicised the first annual CSR report in 2009. The CSR report
of 2017 (Boskalis, 2017) used a materiality matrix fig. 3.4 to explain the twenty most important topics for
Boskalis. Both emission and energy transition are highly ranked to the top twenty at Boskalis. Moreover, the
emissions are expected to have the largest business impact for Boskalis after health and safety.

Figure 3.4: Materiality matrix of Boskalis (Boskalis, 2017)

The CSR initiative provided the CSR data about fuel consumptions and the publication of 2017. The CSR data
was useful as starting point for prototyping the data-driven DSS. Boskalis had a total emission 1.223 MT C02,
for which the fleet was accountable for 99.7% and 0.3% by offices. The OED used 134.000 MT HFO and 78.000
MT MGO. Consequently OED produced 669.000 MT CO2, which is 55% of Boskalis. Boskalis uses a conver-
sion factor of 3.026 MT CO2 and 3.114 MT CO2 per MT of fuel, but internal CSR reports are all in cubic meters.
The LTD department reports in MT and CSR converts this in Cubic meters and carbon emissions, which is
inaccurate for about ±10% (see section 4.2.3). There were no other noteworthy development within the off-
shore energy fleet about fuel consumption and associated emissions, regarding the lower total amount with
respect to 2016 (790.000 MT CO2), except the nearly flat utilisation rate of Heavy Transport fleet (accountable
for 56% of Offshore Energy emissions in general). No data is available to specify activities or performance of
Boskalis. The CSR reporting only provides indicator instead of performance related indicators, like proposed
in section 4.2.

The Data-driven DSS design improves the currently available data about both fuel consumption and carbon
emissions. The system enables Boskalis to understand the fluctuations and trends of their carbon emissions.
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Chapter 4

Business Intelligence Design

Quote: "if everything that lives is defined by information structures within corresponding DNA? What is an or-
ganisation without structured information?" (Inspired by Robbert Dijkgraaf)

This Design of business intelligence enables the OED to quantify and control their energy efficiency with the
data-driven DSS. Business Intelligence enables organisations to process their raw data into insights and make
data-driven decisions. The developed conceptual models, algorithms and required data are specified in this
Business intelligence design and are applied in the case study.

The Business Intelligence Development process is illustrated in the geographical overview of fig. 4.1, which is
part of the entire developed DSS methodology shown in section 2.4. The drivers are previously explained and
clarified about why Boskalis is interested in data-driven DSS for energy efficiency. The BID is part of the whole
evolutionary prototyping methodology and the chronology of iteration steps indicate a logical sequence for
progress of BID, but is not necessarily required.
First the concept of a Data-driven shipping organisation is explained together with Business Process Mod-
elling Notation to specify the process of energy consumption in section 4.1. Performance control for energy
efficiency is developed for work vessels to gain insight and judgement about vessels of the categories of OED
in section 4.2. The Required data input for the DSS is specified and contains all found data attributes as input
for an advanced system in section 4.3 and is the starting point for raw data collection of case studies.

4.1 Business Process
Modeling

4.2 Performance
Control

4.3 Specify Required
(data) Input

Start Data Science

Figure 4.1: Geographical overview of BID, as structure of this chapter (own composition)
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4.1 Business Process Modelling

The organisation, business processes and their corresponding decisions structures and characteristics are
explained, which all need to be understood for building a suitable DSS or prototype. The concept of the
data-driven shipping organisation is explained in section 4.1.1, to understand how the organisational goal,
hierarchy, decision characteristics and operational data are related. Operational decisions need to be known
explicitly to identify both decision makers and the required insights from data. The Business Process Mod-
elling Notation (BPMN) is used and the method is explained in section 4.1.2. This method is located in this
section and not in chapter 2, since BPMN is a method for a Social Network Analysis within the development
of DSSs.

4.1.1 The Data-driven Organisation

The pyramid of section 4.1.1 graphically represents the relations of the hierarchical organisation, decision
making and operational data. This model provides overview and understanding of the fundamentally differ-
ent requirement for DSS design and prototyping.

At the top is ’the goal of organisation’ is present and is the main reason for all activities. Three layers are distin-
guished: the strategic, the tactical and the operation levels of the organisation. The corresponding decision
characteristics (left) and indicators (right) for controlling business are specified. The operational data (right
below) is processed toward the goal of organisation and consequently decisions are made for the top-down
control of the operations. The departments and executives corresponding to different layers of organisation
are discussed in following paragraphs of this subsection.

Optimisation of:  
Market approach, 

Organisation, assets & Compliance

Operational Excellence: 
Best practice

Strategic level: 
 Shipping Performance Indicators (SPI) 

Tactical level:  
Key Performance Indicators (KPI)

Operational level:  
Performance Indicators (PI)
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 The Data Supported Shipping Organisation
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s 

Perform
ance Data 

Engineers 

Officiers 
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Ad Hoc 
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Summarized 
infrequenct 
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external 

wide scope 
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Frequency 
Historical 
Internal 

Narrow focus 
 
 

Unstructured: 

Semistructured: 

Structured:

Level of Organisation Corresponding decisions
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The board  
&  

Directors 

Figure 4.2: Data-driven performance decision hierarchy model (own composition)

At the top, the board members and executives, state the goal of organisation for which a strategy is formu-
lated, by considering the business environment and core values of organisation. The decisions made at this
level do effect the long term energy performance of the Offshore Energy fleet. The typical decisions are to
build a completely new fleet, which is very fuel efficient, or to buying 30 year old, not fuel efficient vessels
and possibly modify them. There are many parameters besides the energy efficiency of vessel for the decision
making at this level of organisation. The indicators at this level are called Shipping Performance Indicators
(SPI), which are highly summarized numbers that represent the performance of the whole company, divi-
sions, business units and departments. The number of accidents is a well known example of a SPI at Boskalis
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and SPI for energy performance is developed by this project.

At the tactical level the strategy is interpreted, by Business Unit managers and self-directed teams. The
medium term (one to three months typically) decisions are made for alignment with strategy and for opti-
mised organisation of operations. These decisions should typically be the main concern of sales, operations,
engineering and fleet management departments of shipping organisations. Typical decision examples are
speed optimisation of voyages, weather routing, maintenance interval planning and awareness training. Tar-
gets and benchmarks can be set and be monitored by KPIs. These KPIs typically are a number between 0
(no improvement) to 100 (target fully accomplished), but can also surpass 100 (overachieved target). The
KPIs can be formulated differently for departments that work vessel or project oriented, but need to be con-
sistent and related. This ’unification of data’ prevents conflicting truths and sub optimisation of departments.

The operational level of organisation realises the projects offshore. The operating managers and Self-directing
teams, make decisions typically on daily or weekly based. When the intentions and targets of tactical level
are not clearly communicated, people on board will not notice the urgency of energy efficiency or do not
how to improve it. Procedures, training or a dashboard to monitor their performance can stimulate better
energy performance. Performance Indicators (PI) shows crew how they performance on a daily bases. Man-
agement can indicate minimums or challenge crew by competition between crews and vessels about energy
efficiency. Gamification and awareness training are both proven to be effective for improvement of energy
efficiency Delft.

The model of section 4.1.1 is the starting point of the BID, since it allows to specify required insights and
translate these to required operation data and algorithms to process. The section 4.1.2 explains to method
for more specific process analysis of the organisation and the next sections of this chapter are about the
algorithms and required data for the OED.

4.1.2 Fundamentals of Business Process Modelling Notation

The DSS development theory states that a BID proper design should contain a Social Network Analysis (SNA)
and the orchestration analysis. The BPMN is more specific about stakeholders, decision makers activity se-
quence and supporting information, compared to previous explained model of section 4.1.1. The current
process and the improved automated process illustrates the potential to increase process quality and reduce
costs, related to labour, material and capital. The decision for BPM is motivated to document requirements
for IT projects in general. This graphical notation gives the ability to communicate process and procedures
to gain understanding of performances, collaboration and business transactions between the organisations.
This section is mainly inspired by the master lectures of Prof.dr.ir. M.F.W.H.A. (Marijn) Janssen, with expertise
about IT & Governance, who responsible for the Business process modelling and Technology. This paragraph
briefly explains BPMN which is ought to be a simplistic technique to be interpretable for both business and
IT people.

Readers who are not familiar with BPMN can see appendix B.1 and read this explanation. BPMN contains
pools, which represent stakeholders of the business processes.

BPMN applied for the current situation create insight about how DSS can be improve (within) the current
IT-architecture and process. This research is about how operational data can be integrated within business
process to support decisions. The integration of DSS is done by adding the DSS as virtual stakeholder for the
process. Mention that there are many types of DSS systems as stated in fig. 2.2. Within the case study BPMN
is applied for understanding the relative complex process of LTD shipping and decisions that affect energy
consumption en efficiency.

The BPMN for the improved process results in information requirement as stated in both section 4.2 and
section 4.3. These sections describe how to control FC and EE more into detail and what data is required to
provide information to improve the process.
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4.2 Performance control

The insufficient insight from operational data about energy performance disables data-driven decision mak-
ing at the OED. This is considered as a serious barrier for several shipowners(Delft) to improve their energy
performance. This performance control design enables full control about energy efficiency business and gen-
erates support for decision making.

Theoretical implementation of SPIs, KPIs and PIs for different levels of organisation were already stated in
section 4.1.1. The section explains these into more detail for energy performance of work boats. These in-
dicators are explained by section 4.2.1, section 4.2.2 and section 4.2.3, which were explicitly requested by
Boskalis.

4.2.1 Shipping Performance Indicator

The SPI are used at strategy level of a shipping organisation for decisions that affect for example energy ef-
ficiency for over one year. They are used to communicate overall performance to the stakeholders of the
company. Typically SPI are used for financial, health & safety, human capital, technical, environment per-
formance. SPIs are aggregated expressions and can be calculated by a weighted average of KPIs (research
council of Norway, 2013).

Boskalis already reports fuel consumption and corresponding carbon emission in their annual and CSR re-
ports. Only the indicative numbers are collected per vessel. These numbers are based on bunker delivery
notes about bunker transfer volumes. These volumes are multiplied with factors to determine mass and car-
bon emission, which is inaccuracy. Boskalis can improve this indicator by relating them to activities and
defining targets for creating a SPI. The measured mass of the fuel instead of the volumes to calculate carbon
emissions, since this is more accurate. The days hired per vessel is an attribute in the CSR data, which has
an average correlation between 0,6 and 0,8 with fuel consumption, according analysis of LTD. These correla-
tions are to low and unspecified for performance control. Additional to the total amount of fuel and carbon,
an energy efficiency SPI is developed to communicate performance independently and stronger correlated
to production activities.

When quantities and performance are sufficiently known about energy consumption and efficiency, they can
be used for decision making. Typical decisions are about ’code of conduct’ for business or the scrap, retrofit,
modification or new build vessels. Benchmark can be enables to see how EE can be improved most effectively,
when improvement potentials and cost of amendment are clear per vessel, fleet or type of project. There is a
risk (Øyvind Endresen, 2018) of non-compliance with IMO GHG reduction strategy fig. 3.2, this is represented
by Ccar bon .

The energy performance is one of the many aspects of shipping performance, but typically between 20% and
60% of total costs of work vessels. The Cost-effective improvement of EE can have significant impact on total
cost reduction. The share of total cost depends on the vessel category and utilization.

The bunker expenses are currently considered as out-of-pocket expense and are payed by the client, who are
mostly oil related companies, which causes the split incentive (Delft) as barriers for improvement. Boskalis
and other shipowners do not consider bunker fuels as part of Total Cost of Ownership (TCO), which can be
considered as not taking accounting responsibility for carbon emissions. Nevertheless, Boskalis can start
collecting data for finding opportunities of cost-effective reduction and prepare future carbon pricing and
compliance.

Price on the second hand vessel market is related to bunker consumption as part of OPEX. If energy efficiency
of a vessel is undoubtedly better, total costs of shipping with the vessel will be lower, ceteris paribus. Added
value with smart improvement of energy efficiency, possibly results in a higher market price with leverage.
The risk and consequences of carbon pricing and non compliance can enforce this speculative phenomena,
since OPEX increases for energy inefficient ships.

The conclusion is that a SPIs for fuel performance are ’very straight forward’ for cargo shipping and less for
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the offshore work boats, since their operations are more diverse and complex. An SPI for fuel performance
is important for decision making since 20% to 60% ot Total is fuel consumption. A SPI for fuel performance
can simply be translated to one about CO2 emissions for CSR reporting and control alignment for future law
and legislation, because these have an one-to-one relation. The SPI of fuel performance gives insight about
fuel performance and is aggregated from other numbers that can explain the SPI in more detail, which are
not necessarily interesting for decision at board level of organisation.

SPI for work vessels

Boskalis faces an additional challenge to quantify energy efficiency, together with policy makers of for exam-
ple MEPC. Container, bulk and RORO transportation is relatively easy to quantify compared to work vessel,
cause of their less constant operational profile. The production is transport of a certain unit of cargo over a
certain distance. When this is related to a certain quantity of fuel mass or energy consumed, an equation like
eq. (4.1) can be formulated.

SPIEE ,car g o = Uni t scar g o ∗Di st ancetr avel l ed

Ener g yconsumed
(4.1)

The fleet of Boskalis OED is very diverse and is distinguished in eight different categories of vessels, shown
in the table below. Each category is different in purpose, design, operational profile and corresponding fuel
performance. Decision makers who use the SPI should be careful when comparing different categories with
the SPI. The Heavy lift and LTD can be compared since they both transport a mass over a distance. The
Geophysical Research vessels, Cable layers and fall-pipe vessels are comparable in the way they all three have
a tasks related to work at the sea bottom over long distances at reduced speed. The floating sheer legs and
Dive Support Vessel are comparable because of operations at their required DP-II systems.
The found vessel categories of Boskalis OED are summed below:

1. Heavy-lift Transport Vessels 5. Fall-pipe vessels
2. Long distance Towage 6. Anchor Handling Tugs
3. Geophysical Research Vessels 7. Crane Vessels & Floating Sheerlegs
4. Cable layers 8. Dive Support Vessels

The proposed eq. (4.2) enables to benchmark and compare vessels and to improve the project organisation.
Today, Boskalis can not compare Heavy Lifting or LTD transport for tenders with low GHG requirements and
bonuses, while they both transport a mass over a distance. The described formula enables Boskalis to gain
competitive advantage by offering clients the most carbon lean contract. The production is the towing force
or added resistance by additional displacement over a distance and the total energy is the equivalent mass of
bunkers or carbon emissions. The predicted total amount of fuel is still interesting to compare, because the
two type of transport have fundamental different parameters. Mention that fuel required for ’free-running’
to pick-up the project must be included for ’fair’ comparison.

SPIEE ,wor k = Pr oducti ontot al

Etot al
(4.2)

The Etot al is a summation of all energy from different fuel consumptions for a certain production, which
is shown in eq. (4.3). The ’SPI’ can be split and calculated by including or excluding modes, fuels, projects
or periods, so all energy consumption data is labelled by these attributes. This way of data storage enable
Boskalis to quantify and analysis their energy efficiency by operational data. For example Boskalis can see
the quantity of bio-fuel used for a certain project or period for meeting their GHG reduction targets. Energy
efficiency of certain vessels and periods can be compared to control progress and operational costs of energy.

Etot al =
∑

i , j ,k,l
Ei , j ,k,l (4.3)

Where:
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i : Mode of operation [-]
j : Type of fuel consumed [-]
k : Project ID [-]
l : Period of time [hours, days, weeks, quarters, years]

To understand the SPI and the Etot al , more detailed information is required. eq. (4.3) shows how energy
consumption can be captured and modelled by data in a numerical way. The operational data about con-
sumption should be labelled per mode of operation, type of fuel, period and project. This way Boskalis gains
insight of their consumptions.

4.2.2 Key Performance Indicators

The concept of Key Performance Indicators (KPIs) enables management to communicate benchmarks and
targets and to monitor actual performance. KPIs are widely used in business for setting targets and moni-
toring progress. KPIs can be applied at vessel, fleet, project, Business Unit, division or corporate level over
a certain time. Targets in KPIs form can be divided in sub-KPIs for understanding and communication to
organisation levels below.

The KPIs are typically used by the middle management at tactical level for targets with a time span between
one to three months. These KPIs can be used to create awareness and to stimulate creativity of the organ-
isation to meet their energy efficiency targets, which is one of the most effective and accepted way within
shippingDelft. Additional bonuses for achievement of targets enforces the effect of implemented KPIs.
KPIs result in a value typically between 0-100, but can exceed 100 in case of overachievement. The input val-
ues of target value and minimal value (benchmark) are required for the KPI formulation, as shown in eq. (4.4).

K PI = K PIvalue −K PIMi nReq

K PITar g et −K PIMi nReq
(4.4)

The Visualisation and communication of KPIs is done by dashboards. Examples of an Econometer and Bullet
charts are given in fig. 4.3, which both are suitable for KPI representation. Years and months can be selected
to represent KPIs over certain preferred periods. A real-time data stream will provide up-to-date KPIs in the
dashboard.

Figure 4.3: KPI visualisation examples in Microsoft Power BI

Example of KPI for work vessels

One KPI is developed for the overall performance for every operational mode over a certain period of time,
as described in eq. (4.5). A target and minimal required vessel efficiency is defined for cost-effective im-
provement every three months. When targets are met, energy efficiency of the vessel is cost-effectively be
improved.

Previously a data analysis quantifies the current energy performance per operational mode to determine the
required minimal value of the KPI. A realistic target can be set for three months, which corresponds with
the improvement plans of the organisation. A weighted average of efficiencies can be used to determine the
K PIEE ,vessel , that is explained by eq. (4.5).

K PIEE ,vessel =
∑
i , j

K PIvalue −K PIMi nReq

K PITar g et −K PIMi nReq
∗τi , j (4.5)
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Where the τi , j represent a fraction, between 0 and 1 and cumulative equals 1, of consumption by a certain
operational mode (i) and fuel type (j).

The KPI example of eq. (4.5) can be considered in a more abstracted manner. The concept of KPI can be
applied for categories of the fleet and varying time period. The KPI provide clear communication of bench-
marks and targets of energy efficiency within visualisation that is understandable for everyone with limited
explanation provided about algorithms.
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4.2.3 Performance Indicators

The PI provide insight about energy efficiency both onboard and onshore. These insights are synthesized (see
fig. 2.4) from an structured data both onboard and onshore. Research concluded that fuel efficiency of LNG
tanker can be predicted by regression algorithms, containing less than nine attributes, results in R2 of 0.88
for noon reports and 0.95 for PMS(Lucy Aldous, 2013). Research of the IMO concluded that PMS data is pre-
ferred over noon report for quantification of new sustainable technologies(to Support Low Carbon Shipping,
2018). The energy efficiency quantification of Non-transport vessel is complex compared to transport vessels
and requires more detailed analysis about vessel operations and systems(Henrique M. Gasper, 2009). For this
reason the energy efficiency control model for work vessels is developed during this research (see fig. 4.4).
This whole subsection is dedicated to explanation of this model.

The model of fig. 4.4 is a composition of marine drive chain theory, operational profiles and related sen-
sor application. The model can distinguishes the missions or projects, operational modes of profile, events
and related efficiencies of work vessels. The level of detail about operations depends on the available data
quality and triggers for observation. No only the whole vessel can be considered, but the different systems
efficiencies (PIs) are captured by this model. The full statistical control of energy efficiency provides Boskalis
to monitor efficiencies and quantify financial results of improvement.

The model of fig. 4.4 divides the total vessel performance, ’the black box’, in smaller parts of performance for
operational mode function of the vessel. Each block of the model can be quantified, if values of the circle
symbols are attributes of the data. When attributes are missing, blocks can be analysed together but insights
of performance are less. When the input and output of every block is known, a PI is calculated within the re-
lated distributions for insight of the performance. When benchmarking shows a block performs significantly
low (’weakest link’), corresponding measure examples are given below in the figure.
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Figure 4.4: Energy efficiency model for work vessels (own composition)
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An Artificial Neural Network can combine the different Machine Learning algorithms and data sources for
advanced application of illustrated model in fig. 4.4. For example, the real-time series data of the machin-
ery control room, bridge controls, nautical weather data and bunker supplies can be used as input for this
model. Stena line already implemented an Artificial Neural Network for energy efficiency improvements and
a graphical overview is shared in fig. 4.5. The current data quality onshore at the Offshore Energy is not suffi-
cient to develop an Artificial Neural Networks for energy efficiency. The current situation requires an expert
team to develop data quality and an acquisition system.

Figure 4.5: The Artificial Neural Network slide of Stena line at the Lighthouse conference about energy efficiency in 2018

A digital twin is an offline vessel simulation model, which is build by ship design and operational profile in-
formation and can be built by data of the model in fig. 4.4. The operational profile and design of the digital
twin can be changed and the effects can be predicted by the simulations. Implemented changes of design
and operation can be validated and be used to improve the digital twin algorithms. The company We4Sea
from Delft uses digital twin concepts for fuel efficiency control and improvement consults for cargo vessels.
The company NAPA from Helsinki uses digital twin concepts to improve their ship design and operational
solution software. No digital twin applications for change of ship design of operations were found at Boskalis.
The Artificial Neural Networks, found during the research, typically emphasises more on operational deci-
sions, compared the digital twin solution. Since Boskalis is an operator the application of an Artificial Neural
Network for energy efficiency seem to be more supportive for the core business of an operator.
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Energy consumption diagrams

The energy consumption diagram do visualize energy flows of system and can be applied for vessels as illus-
trated in fig. 4.6. These diagrams are typically made for the steady and frequently occurring conditions and
operations of a vessel for with the most energy is consumed. Vessel and ’flows’ can compared to find and
quantify the improvement potential.

(a) Quantified Propulsion energy diagram of a well-maintained cargo ship,
head sea of Beaufort 6.(H. Lindstad, 2009) (b) Non-quantified Detailed Shankey diagram example(Baldi, 2013)

Figure 4.6: Examples of energy consumption diagrams

The summarized overview of energy consumptions and efficiencies (PIs) provides quantitative insight about
the actual performance at different moments and can be used to communicate changes of design or opera-
tion. The impact by these changes can by visualized for overall energy system. These diagrams are often used
in literature to explain that diesel engines produce more heat than propulsion energy and the improvement
effects due waste heat recovery.

These models can by used at Boskalis energy to communicate energy efficiency related matter to people who
not familiar with the topic, because these are easy interpretable. High quality data is required about the
engines, the systems onboard and the vessel environment for a detailed diagram like in the examples of fig
fig. 4.6.
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Vessel Performance Indicator

The overall vessel KPIs for work vessels are the weighted average of KPIs from all operational modes. The
eq. (4.6) shows how all operational mode KPIs can be compromised by one number per vessel. The Vessel
KPI provide insight how performance are related to benchmarks and targets of Boskalis.

K PIvessel =
∑

K PIi ∗τi (4.6)

Where:

K PIi : Dimensionless KPI number of operational mode

τi : Mode fraction of total fuel consumption

The different PIs of operational modes are not normalised values like the KPIs, but provide one number for the
actual performance. Different examples are shown for free-running (see eq. (4.7), production (see eq. (4.8)),
Dynamic Positioning (see eq. (4.9)) and Idle (see eq. (4.10)). Mention that fuel mass can be converted to
energy units, GHG emission or vice versa. The efficiencies together with total consumption can explain what
performance are, with respect to a certain distribution, for example kg/NM per sailing speed.

PIvessel , f r ee−r unni ng = m f uel

Dcover ed
[kg /N M ] (4.7)

PIvessel ,pr oducti on = Upr oducti on

m f uel
[uni t/kg ] (4.8)

PIvessel ,DP = m f uel

Scor r ected
[kg /N M ] or

m f uel

T
[kg /t ] (4.9)

PIvessel ,I dl e =
m f uel

T
[kg /t ] (4.10)

These PIs give insight about the actual performance of a vessel. Behind these numbers of the whole vessel
are the performance of systems that provide the performance, like illustrated in the control model of fig. 4.4.
The following paragraphs show how to quantify these other PIs.
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Onboard Energy Measurements

The most important attribute of energy performance data is the quantity of energy input at the vessel. An
uncertainty of ten percent, results in the same uncertainty for both the overall vessel performance and the
engine performances. For this reason, this paragraph is dedicated to fuel measurement on board and start
with the best method and end by the less accurate method.

The most accurate way to measure energy consumption on board is to measure and log the chemical energy
value input of the engines every second. Chemical energy quantities can not directly be measured onboard,
but the mass can be measure by a Coriolis meter and the Net calorific value of fuel, without water contami-
nation, can be determined by drip sample tests in the lab. Without lab test, Lower Heat Values (LHV) ranges
between 40 and 43 MJ/kg(Hans Klein Woud, 2002). The calculation according eq. (4.11) provides an uncer-
tainty about <±1%.

ECor i ol i s = m f uel ∗LHV f uel (4.11)

m f uel = Mass of fuel measure by Coriolis meter [kg]
LHV f uel = Net Calorific Value of fuel by lab [MJ/kg]

The second most accurate way of measurement is by a volumetric flow meter, as shown in eq. (4.12). This
meter measures the volume of fuel that passed the meter. The lab tests of the drip samples provide both
the density and the heat value to calculate the energy. The density range of marine bunkers is between 840
kg/m3 to 1010 kg/m3 at 15 °C(Hans Klein Woud, 2002), which is the ISO 12185 condition. The temperature of
fuel though the volumetric flow meter have to be logged, since the expansion coefficient (1∗ 10−3) results
approximately in 1% density uncertainty per 10°C temperature uncertainty. The temperature differences
of 50°C are common at flow meters. MGO is typically about 25°C and HFO between 95 and 130 °C. When
temperatures are measures at the flow meter, the uncertainty of the measurement is expect to be <±2%. The
volumetric flow meter requires proper maintenance to maintain this accuracy.

Evol umetr i c =V f uel ∗ρ f uel ,T ∗LHV f uel (4.12)

V f uel = Volume of fuel [m3]
ρ f uel ,T = Density of fuel at certain temperature [kg /m3]

The worst case scenario is no flow meter is installed onboard. Tank soundings need to be done and energy
values to be calculated according eq. (4.12). A manual tank sounding is typically of lower quality compared
to sounding by PMS, since the low measure frequency of the manual method. Flow meters and automated
sounding systems can log data at relative high frequency. The Tank soundings measure the dept of tank filled
with fuel. Agreement between the two tank readings themselves is only within ±2.5%, without additional dis-
turbance of ship motions or air mixture(14 authors, 2008). The motions of the vessel can increase inaccuracy
of soundings significantly depending on tank location and weather conditions. A trim table of corresponding
tank indicates how to determine the volume of fuel within the tank by sounding, with an additional uncer-
tainty. When fuel temperatures are measured, the uncertainty within calm waters of these measurements are
<±5% and useless for analysis at heavy seas.

Esoundi ng = Lsoundi ng ∗Cvol ume,tr i m ∗ρ f uel ,T ∗LHV f uel (4.13)

LSoundi ng = Fuel level of tank [m]
Cvol ume,tr i m = volume of tank at certain trim [m3/m]

Both the bunker transfers and the bunker consumption measurements are important to consider and com-
pare. The validity of energy consumption data can be improved over longer period by comparing these
two measurements of a certain vessel. These two measures can be compared over a period (T) as stated
in eq. (4.14). The lost energy indicates uncertainty of data over time and when there are relative high losses
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within system, there are example cases of back wash of purifiers in sludge tank, leakage of piping or theft.

Elost =
∑
T

Etr ans f er s −
∑
T

Econsumed (4.14)

The Bunker transfers data is typically of very low resolution, since bunker transfers happen a few times a
year. Fuel-pilferage, ’Cappuccino effect’, water added and air in piping are additional parameters causing
uncertainties. Coriolis meter for marine fuel bunker transfer application measures a single phase flow with
an accuracy of 0.1% and two phase generally within 0.2% to 3%(14 authors, 2008).
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Engine performance

The engine performance is in the context of this thesis mainly about fuel efficiency. The engines onboard
convert chemical energy first into heat energy and second to mechanical energy, which is called Brake power.
The engine efficiency performance are expressed in a engine efficiency percentage or the Specific Fuel Oil
Consumption (SFOC), that is expressed in grams of fuel per kWh output. The efficiency percentage of marine
medium speed diesel engines is typically between the 35% and 50% and a corresponding SFOC between
250 and 180 g/kWh. When the fuel consumption and brake power are known, the engine efficiency can be
calculated by integration over time (see eq. (4.15)).

PIeng i ne = SFOC =
∫
t

Pb

ṁ f uel
d t (4.15)

Where:

SFOC = Specific Fuel Oil Consumption [g /kW h]
Pb = Engine Brake Power [kW ]
ṁ f uel = flow through meter [g /s]

The SFOC of marine engines is related to the operational use with respect to speed and load (W. Shi and Sta-
persma, 2010). The marine engine efficiency in relation to the operational envelop are graphically indicated
(see fig. 4.7). The best efficiencies are typically found within the region of 85 to 95% engine speed and 65 and
90% engine load. A DSS should suggest to operate within these envelopes, for which the total power plant
system provides the highest efficiency.

Figure 4.7: Operational envelop of a typical diesel engine(W. Shi and Stapersma, 2010)

The engine load can be measured in three different ways, by controller, shaft power output or mean effective
pressure and rpm of cylinder(Listewnik, 1999). The controller data is very unreliable, since these controllers
are manually calibrated and are not based on the actual engine output. When the running hours from the
overhaul increase, differences between the controller output and the actual brake output increase, some-
times up to 20% as appeared in the case study.
The measurement of mean effective pressure per cylinder is strongly recommended by literature and mea-
sured typically every month during engine test in practice. The individual cylinder ’health’ can be measured.
The sensitive equipment that is required for testing of mean effective pressure can not continuously been
installed during common operations, which is the disadvantage of this method. This method might be used
to calibrate the controller data every month, if an electrical engineer is onboard.
The shaft power meters can directly measure the brake power output at the engine shaft or when installed
at the propellers shaft for backward brake power calculation. These shaft power sensors are a few percent
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accurate and not to decay over time when frequently calibrated.

The ISO 15550:2016 standard refers to the SFOC correction calculation (ISO 3046-1) for the ambient condi-
tion to enable comparison with the SFOC specifications of the engine manufacturer. The formulas for ISO
correction (see eq. (4.16), eq. (4.17) and eq. (4.18)) are explained and considered for the case study.
The K-value (eq. (4.16)) corrects for the engine inlet air temperature and pressure, together with the charge
air coolant temperature. The engine inlet air temperature refers often to the machinery room temperature
and can be above 40 degrees Celsius instead of the 25 °C reference value. The inlet temperatures, expressed
in Kelvin, has the highest power factor of 1,2 for the K-value. The charge air coolant temperature, expressed
in Kelvin, can be above the 40 °C instead of the 25 °C reference value. The operational coolant temperature
before and after the intercooler have to be known for this correction. The natural barometric pressure is typ-
ically between 990 and 1040 hPa, but can be higher within the machinery room. The reference value is 1000
hPa for calculation of the K-value. The humidity of the inlet air can additionally be related to the engine and
intercooler performance (condensation), but this is not included within the ISO correction.

K =
(

Px

Pr e f

)0.7

∗
(

Tr e f ,ai r

Tx,ai r

)1.2

∗
(

Tr e f ,cool ant

Tx,cool ant

)1

(4.16)

Where:

K = Ratio of indicated power [-]
Px = barometric pressure during test [hPa]
Pr e f = standard reference barometric pressure [1000 hPa]
Tr e f ,ai r = reference air temperature [298 K]
Tx,ai r = air temperature during test [K]
Tr e f ,cool ant = reference charge air coolant temperature [298 K]
Tr e f ,cool ant = charge air coolant temperature during test [K]

The α-value is related to the K-value and the mechanical efficiency of the engine (ηMech). This mechanical
efficiency is typically between 0,8 and 0,9 for marine diesel engines and is assumed to be 0,8 for the ISO
correction by Wartsila in 2006.

α= K −0.7∗ (1−K )∗
(

1

ηMech
−1

)
(4.17)

Where:

ηMech = mechanical efficiency (0.8-0.9) [-]

The next step for the ISO correction is about the LHV of the fuel and the engine driven pumps (EDP). The low
quality fuel with a lower LHV requires relative large corrections, since the direct multiplication with the factor
of LHV (see eq. (4.18)).

SFOC I SO = α

K
∗ LHVx

LHVr e f
∗SFOCx −EDP (4.18)

Where:

SFOC I SO = Specified fuel oil corrected [g/kWh]
SFOCx = Specified fuel oil of sample [g/kWh]
LHVr e f = Low Heat Value reference [42.7 MJ/kg]
LHVx = Low Heat Value of sample [MJ/kg]
EDP = Engine Driven Pump correction [5 g/kWh]

The difference between a corrected and uncorrected SFOC can be above 20 g/kWh for ’unfavourable’ con-
ditions, which is equal to 5% of the engine efficiency. An unfavourable condition example is the case of a
LHV equals 40 MJ/kg, inlet air temperatures above 40 degrees Celsius, 1040 hPa air inlet pressure, intercooler
coolant temperatures above 40 degrees Celsius and EDP.
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When all the operational conditions and the reference values are equal, the ISO correction has no effect on
the SFOC value. The ISO-correction is useful for comparison of the operational SFOC with ISO corrected
SFOC data delivered by the engine manufacturer.

The maintenance of the diesel engines and Turbochargers influences the SFOC. A lack of maintenance grad-
ually decreases the SFOC and can eventually result in total engine failure. The rule of thumb from midrange
diesel engines is to overhaul every 24.000 running hours on MGO and 12.000 on HFO at Boskalis. Wartsila
publicised their conclusions (see fig. 4.8) about specified maintenance jobs, recommanded running hours
intervals for maintenance and the relation with fuel efficiency. The SFOC before overhaul is typically cu-
mulative increased by more than 5% (±20 g/kWh), compared to after overhaul. The conclusions of Wartsila
are indicative for their maintenance intervals in between the overhaul interval. The numbers provided by
Wartsila are more detailed and are consistent with conclusions of IMO about manual engine performance
optimisation (IMO, 2018a).
The fouling of turbochargers can be responsible for more than 2% increase of the SFOC. Turbo washing is
recommanded with a typical interval about 500 running hours when sailing at HFO according Gaby Steentjes.
The cleaning or replacement of the nozzle ring should be done every 4.000 running hour interval, especially
when sailing on HFO. The turbochargers need to be fully cleaned and reconditioned during the overhaul. The
fouling of the air intake filters and air coolers can increase SFOC together with 1,5% and both be cleaned every
4.000 running hours. The injection pump wear can increase SFOC by more than 1% and should be replaced
every overhaul.
The combustion quality is correlated to the mean effective pressure within the cylinders and the engine per-
formance. The engine charge pressures and temperatures, together with exhaust gass temperatures can give
frequently insight about the combustion quality. An engine performance test with cylinder pressure sensors
additionally installed can give more detailed insights about ’health’ per cylinder and the total engine. The
incorrect valve and injection timing per cylinder can be found by installing these cylinder pressure meters
during tests.

Figure 4.8: The impact of maintenance on fuel efficiency between overhaul

The Turbochargers connected to marine engines deliver increased pressure for better internal combustion
within the cylinders and higher engine efficiencies. The Turbo speeds, pressures and temperatures are pa-
rameters to monitor to control performance of engines. The intercoolers after the turbo chargers decrease
the temperature of the compressed scavenge air for the cylinder. These intercooler have to be monitored for
their pressure difference before and after and temperature output.
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The engineers of AVK provided their performance monitoring sheet for engine performance tests after over-
haul (see )fig. 4.9). They relate the relevant operational parameter to their engine specifications after over-
haul. This model inspired for development of the prototype but is not implemented, because the graphical
design is relatively hard to interpreted for crew onboard and to complex for a prototype. Moreover, this model
of AVK works with kg/h instead of SFOC.
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Figure 4.9: AVK engine performance monitoring example sheet

A DSS prototype for manual engine performance optimization is provided by the case study of this thesis
(see section 5.3.4). The actual available uncorrected performance values of this PI are related to the engine
specifications.
The SFOC increase can be plotted over time to identify the relation between overhaul, performance decrease
over time and the relation to maintenance procedures.
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Transmission Performance

The transmission PI is about the transmission equipment and control management system to transform en-
ergy flows within the technical systems of a vessel. A hybrid vessel uses stored electrical power for propul-
sion instead of running an engines at inefficient loads and speed. The energy flows are fundamentally about
chemical, mechanical, hydraulic, electrical and thermal. The typical transform equipment components ex-
amples in shipping are gearboxes, shaft alternators, electrical converters and heat exchangers. Management
of energy flows can enable storage within batteries, boilers, thermal oil tanks and hydraulic pressure tanks.
Systems that improve energy efficiency by smart management of energy flow and storage are often called hy-
brids in literature. The direct driven propulsion systems do have a typically transmission efficiency about 97
to 98%, depending on load of the system. These efficiencies are important to consider, for the operational
performance of the transmission systems and the quantification of the improvement potential.

The formula in eq. (4.19) explains how to quantify Transmission performance as defined in fig. 4.4. This
formula does not directly indicate the advantage of smart transmission management, but indicates how a
system is transforming energy w.r.t the engine output and the stored power. Power inputs of the transmission
are the engine brake power and the stored power that entries the transmission system (by WHR-orcan mod-
ules or batteries for example). The outputs are propeller shaft power, electrical power on switchboard that is
transmitted to storage.

PIT RM =
∫
t

Psha f t +Pe +Psp,out

Pb +Psp,i n
d t (4.19)

PI(T RM) : Performance Indicator of Transmission [-]
Psha f t : Propeller Shaft Power [kW ]
Pe : Electric Power [kW ]
Psp,out : Stored Power out to Storage [kW ]
Psp,i n : Stored Power in from Storage [kW ]
Pb : Brake Power from engines [kW ]

The stored power within exhaust gas, cooling waters can be used by waste heat recovery. Thermal energy can
directly be used for preheating of bunkers, lube oils, condensation within fresh water makers or for heating of
water and Air conditioning. When waste heat quantities are sufficient, heat can be used to generate power via
steam turbines or Organic Rankine cycle. This all will decrease both brake power and electrical consumption,
but efficiency of transmission is expected to increase as whole because less conversion losses will be the case.

Battery technologies developed over the last decades and enabled already full electric ferries in Norway. The
energy density and charge speed are not sufficient for crossing oceans today. Though, hybrid applications
and intelligent transmission management can improve EE. Examples of applications are Peak Shaving dur-
ing DP or electric powered drive train for manoeuvring or sailing low speeds. Stored power in Batteries can
be used as spinning reserves for DP-II systems.

4. Business Intelligence Design 50



Thrust performance

The thrust power is required for most operational modes, like free-running, towing or DP for example. The
thrust efficiency gives an efficiency about how the shaft power is converted to the thrust power over time, as
stated in eq. (4.20). The thrust is the force that is produced by propeller(s) of a vessel. The axial compression
of a propeller shaft is measured by strain gauge and the produced thrust can be calculated. The difference
between the power on shaft and thrust produced by a propeller over time can be considered as lost energy.
The operational propeller efficiency is between 10% and 70% for marine application.

PITr ust =
∫
t

PT

Psha f t
d t (4.20)

The efficiency calculations of a propeller are complex, but can be simplified for operational practice. The
propeller performance is best, accordingly simplified disk theory, when the propeller diameter and dept are
maximised, revolution speed is minimised and there is uniform axial water flow though the propeller. The
wave system of the hull has preferably a high pressure at the propeller position. A trim and draft optimisation
can improve the propeller efficiency.

The two fundamentally different types of propellers are the Fixed Pitch Propeller (FPP) and the Controllable
Pitch Propeller (CPP). The FPP has a smaller hub and theoretically higher efficiency, when operating at design
load point. The CPP has a theoretically lower efficiency at design load point, but a relative larger operating
range with high efficiency, compared to FPP.
The section 4.2.3 illustrates the effect of operating with variable RPM (combinator mode) related the con-
stant RPM. The FPP design is 10% more efficiency at lower RPM, than a CPP at constant higher RPM. The CPP
is interesting for vessels with a varying operational profile, like most work vessels. The concept of adaptive
pitch control of CPPs can result in 5 to 15% fuel efficiency improvement and 30% improvement of accelera-
tion(R.D. Geertsma, 2018).

Figure 4.10: Open water propeller efficiency differences of fixed and variable frequency (J. Grevink, 2018)

The thrust power is hard to measure accurately in practise. The strain gauges can be placed at the propeller
shaft to measure the axial deformation of the propeller shaft by generated thrust. The solid shafts are more
difficult compared to the think-walled tubes, because the axial deformation of solids will hardly pass the noise
levels. Moreover, the strain gauges need to be place with an accuracy of less than one degree with respect to
the axial hard line of the shaft, otherwise the torsion of the shaft will corrupt the measurement significantly.
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Nautical Performance

When the hull is clean, anti fouling paint and water most smooth, the reference speed related to a reference
resistance and thrust can be determined. This best practise reference operational sailing of a certain vessel
will decrease over time. The fouling of the hull and the Sea Margins will occur after finding this optimum.
When eq. (4.21) can be assembled by operational data attributes, decrease of hull performance can be quan-
tified and the system performance corrected by weather data.
The reference resistance can be validated with calculated resistance with for example Holtrop & Mennen.
Large differences between references resistance and calculated resistance can be reason to investigate the
hull structure or the operational data for errors.

PIN auti cal =
∫
t

(Rr e f +Radded +RSM )∗Vshi p

PT
d t (4.21)

Rr e f : Reference Resistance from best practise measurement [kN ]
Radded : Added Resistance by fouling [kN ]
RSM : Resistance additional due Sea Margin [kN ]
Vshi p : Corresponding ship speed [m/s]
PT : Thrust power [kN ]

Data accuracy is required for success implementation of this PI. Deviations of all parameters over time are
preferably collected within the data system, to judge for example noon data point on their accuracy. The ’gold
standard data’ is with minimal deviations of all parameters over the measured hours or days.
Over time the hull roughness increases and can be monitored by this PI. An example visualisation is given in
section 4.2.3. The performance of different applied coating can be determined, hull and propeller cleaning
intervals optimised and weather routing effects be predicted. Weather routing is not considered, but can
additionally considered by adding high quality from VDR or ECDIS data about heading, speed and location.

Figure 4.11: Added Resistance (Armstrong, 2013)

The Sea Margins can be measured by crew at bridge or by a PMS. A graphical representation in section 4.2.3
shows how external vectors can by identified as attributes for high quality data. The Sea Margins can be
determined by simplified models with as input only length between perpendiculars and Beaufort number
(Fransen en de Jong, 1976) or more advanced empirical models (Kwom, 2008).

Figure 4.12: Sea Margin vector model (own composition)
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The nautical performance can be captured by a DSS design, but many data attributes of high quality are
required for convincing optimisation strategies. The Work vessel are smaller and do sail less in general com-
pared to cargo vessels, which makes this PI of lower development priority for the Offshore Energy Division.

Hotel & Auxiliary Performance

Many systems onboard prove auxiliary and hotel functions, depending on the vessel design and the opera-
tional profile. The hotel systems are related to human presents onboard, like heating of water, cooling of food,
lighting and air conditioning. The auxiliary systems are related preheating of engines and bunker, but also
to the navigational equipment and the pumps for cooling and the lube oils. The Po in eq. (4.22) represents
specific equipment for operations like cranes, equipment for divers or towing equipment. The fuel is typically
consumed by boilers or auxiliary engines.

PIH&A =
∫
t

(Pe +Ph +Po)

˙m f uel
d t (4.22)

Pe : Electrical Power of base load [kW ]
Ph : Heat Power of base load [kW ]
Po : Additional Power required for work operation [kW ]

The load balance provides information about what systems are installed and their expected operational pro-
file of power demand. The actual power demands over time are Preferable captured by the data, which can be
logged at engines, shaft alternators and the switchboard. The single line diagram and machinery room lay-
out are interesting information sources when considering improvement of energy efficiency onboard. The
crew numbers, moment of the day and temperatures of environment are interesting to create additional in-
formation from the data.

The most effective way to improve hotel and auxiliary performance is due reduction of required fuel by the
baseload of the vessel. The base load is the minimal power demand over time of a certain operational mode,
required by continuously demand of equipment. Recovered waste heat can deliver heat power to freshwater
makers, heaters for bunkers, accommodation (AC) and hot water boilers. The electrical baseload demand
can be reduced by efficient emergency lighting (with demand 100% of time), variable frequency controlled
motor of seawater cooling pumps and sensors and timers to switch-off lights, heaters and computers.
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4.3 Required Data Input

"Rubbish in is rubbish out, independent of the model used"

The required data for the data-driven DSS for energy efficiency is specified by this section, which is the last
step of this BID. The required data is specified by the required data accuracy according the DAMA framework
(see section 2.2.4) and the required data availability for development and prototyping.
The concept of data quality is previously explained (see section 2.2.4), a data quality assessment is written in
the next chapter (see section 5.1.2) and many data quality related matters are considered within the previous
paragraphs of this chapter.
Nevertheless, the required data quality is shortly specified in the next paragraph (see section 4.3.1).
The next paragraph about the required available data gives an generic overview of all data attributes the were
found useful for quantifications about energy efficiency, within an Entity Relationship Diagram (ERD) format
that can directly been translated to a data acquisition and database design. (see section 4.3.2)

4.3.1 Required Data Quality

The data quality frameworks are previously explained (see section 2.2.4), the data quality assessment of the
LTD case study is written in the next chapter (see section 5.1.2) and many data quality related matters are
considered within the previous paragraphs of this chapter.

The time series data for the data-driven DSS requires high quality data for being effective for decision making
and further development or prototyping, compared to financial data for annual corporate reporting.

The six primary dimensions are briefly specified now. The completeness for daily summarized data needs
to be 100% for 100% consistent quantification of energy performance in history over longer periods. The
timeliness is preferred to be high, with a least a daily data update. Moreover, the timeliness need to be consis-
tent for the different datasets for being consistent. The uniqueness of the vessels and equipment need to be
guaranteed by validity rules. These validity rules need to enable a ’happy flow’ of data from ship to the shore
databases, without being corrupted or missed.

4.3.2 Required Data Available

The Required data is determined for quantification of energy efficiency. This subsection give examples of
entities (tables) and their proposed cardinality (relations). A database programmer or ’Big data engineer’ is
able to formulate this Entity relationship Diagram (ERD) after reading this phase of intelligence development,
who can directly translate this ERD to a database format, in SQL or Hadoop for example. When the data is
acquired and transferred from a vessel, this can automatically be processed into the database. This database
is used to train model, develop model and output’s visualisation, which can be presented in a dashboards to
monitor, control and predict the energy efficiency. This subsection does not answer the question about how
to relate this system to existing data structures within the company.

The entity examples below do contain attributes at the left entity column and the data type on the right col-
umn. All these example entities aim to capture all required data found during this development research.
Every Entity is interconnected according below defined cardinality (see fig. 4.13). The unique IDs of for exam-
ple a certain vessel or engine connects the data according these cardinalities. The attributes do each represent
a column of the at row indexed time series data. The data type explains how to formulate the attribute within
the database and is a ’float’ if the unit is specified.

The examples entities below are derived from this entire development study. These are found within the case
study or are recommanded to be collected in the future for further system development research. The high
level (see table 4.1) entity can be interpreted as a data table, by readers who are not familiar with database
programming. This high level table contains different IDs with cardinalities to the other data tables. For ex-
ample, the call of a Glacier ID can deliver all Glacier related data captured by the following fuel, maintenance
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and engine entities.

Table 4.1: High level data entity

Corporate Meta data:

Attributes Data type

Class IDs ’Strings’
Fleet IDs ’Strings’
Vessel IDs ’Strings’
Project IDs ’Strings’
CSR ID ’Strings’
Engine Manufacturer ID ’Strings’

The cardinality presents the relations between entities in the database. the Examples of cardinality notation
are presented in fig. 4.13. The cardinality follow logically from reality considering the examples below. One
fleet contains many vessel, one ship contains many engines and one vessel many project and vice versa.

Figure 4.13: Cardinality notation examples

A table like below can be related one-to-many, considering the meta data to vessel level. A table can be
generated to compare all vessel performance, but a specific vessel can be considered into more detail as well.
Attributes like fuel consumption and efficiency can be abstracted by using formulas and data tables related
to the vessel.

Basic vessel data:

Attributes Data type

Vessel ID ’string’
Fleet ID ’string’
Last Update moment YYYY/MM/DD ; hh:mm:ss
Project ID ’string’
Captain ID ’string’
Chief engineer ID ’string’
Operational mode ’string’
Fuel consumption MT
Fuel efficiency score n
Carbon emission MT of CO2
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Sample data:

Attributes Data type

Vessel ID ’string’
Time of observation (UTC) YYYY/MM/DD ; hh:mm:ss
Time of observation (local) YYYY/MM/DD ; hh:mm:ss
Duration of sample hh:mm:ss
Time of sample received YYYY/MM/DD ; hh:mm:ss
Sample Trigger Clock or Technical trigger

Maintenance data:

Attributes Data type

Vessel ID ’string’
Dry docking dates YYYY/MM/DD - YYYY/MM/DD
Engine overhaul dates YYYY/MM/DD - YYYY/MM/DD
Hull cleaning dates YYYY/MM/DD
Propeller polish dates YYYY/MM/DD
Turbo washing dates YYYY/MM/DD
Calculated financial optimum for intervals days %

Fuel Data:

Attributes Data type

Fuel ID HFO, MGO, BIO
Vessel ID ’string’
Mass Quantity in tanks MT ∨MW h
Mass Quantity used MT ∨MW h
Mass Quantity remained MT ∨MW h
Heat value of different masses M J ∨MW h
Carbon content %
Bunker Supplier ID ’string’

Engine Data

Attributes Data type

Vessel ID ’string’
Engine IDs ’string’
Engine Manufacturer ID ’string’
Engine Maintainer ID ’string’
Number of engines running n
Running hours since last overhaul hh
Load input of controller %∨mm
Engine speed RPM
Engine output kW &kW h
HT temperatures and flow rates Cel si us&kg /s ∨m3/s
LT temperatures and flow rates Cel si us&kg /s ∨m3/s
Exhaust gass temperatures and flow rates Celci us&kg /s ∨m3/s
Lub oil consumption kg /kW h
Calculated Costs of maintenance €/hrs or €/kWh
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Turbo Charger data:

Attributes Data type

Vessel ID ’string’
Engine ID(s) ’string’
Turbo ID ’string’
Number of engines coupled n
Inlet temperature, pressure and humidity C ,bar,%
Pressures and temperatures over compressor wheel C ,bar
Pressures and temperatures over intercooler C ,mi l l i bar
Speed of compressor wheel RPM
Temperatures before and after turbo wheel °C

Transmission data:

Attributes Data type

Input of WHR kWh
Output of WHR kWh
Input battery kWh
Output battery kWh
Storage and capacity % MWH
Efficiency of alternators (load and powerfactor) %, factor 0-1
losses over Gearbox %

Propulsion data:

Attributes Data type

Shaft powers kW
Propeller trust power kW
Propeller speed RPM
Propeller pitch %∨p/d

Nautical data

Attributes Data type

Geographic Coordinates LAT: degrees:mm:ss LONG: degrees:mm:ss
Heading −πto +π

Trim and drafts(for,mid,aft) %andm
Dept of water m
Speed over ground knots, m/s, km/h
Distance covered over ground NM, km
Speed through water knots
Distance covered through water NM, km
Current speed and direction knot s,−πto +π

Dominant Wave speed, height and direction knot s,m,−πto +π

Dominant wind speed and direction knot s,m,−πto +π

Swell speed, height and direction knot s,m,−πto +π

Air and sea water temperature °C
Vision m
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Chapter 5

Case Study of Long Distance Towage

The prototype and other results of the case study about LTD are written in this chapter. First the BPMN
models about the current and new situation are visualised, to learn the overall process of fuel consumption,
allocate decision, stakeholders and how related operational data is used (see section 5.2). The Data Quality
Assessment is explicitly reported, since DQ seemed a significant constraint for data analysis and improve-
ments of the prototype (see section 5.1.2). The about data quality judged data is used to quantify the actual
energy performance (see section 5.3). An financial analysis for cost-effective reduction of bunker fuel con-
sumption is made, which is supported by the developed performance control (see section 5.4).

5.1 Case Study Outline

This chapter describes the outline of the LTD case study for understanding the vessel design, operations and
the prototype model input (section 5.1.1). First a brief history about the vessels and organisation of the cur-
rent LTD department. The five equally designed LTD vessels or previously called ’Fairmount vessels’ are all
built by Niigata Shipbuilding in Japan between 2006 and 2008. The Fairmount organisation was initially a
shipbroker from Rotterdam, the technical management was done by Hanzevast and the shipowner was an
external investment fund. The vessels are low cost of-the-shell designs with low level sea trials documen-
tation. The Hanzevast organisation did the technical management for a few year and Fairmount took-over
later, before Boskalis acquired Fairmount. Boskalis initially did the technical management in-house, but out-
sourced the technical management to Anglo-eastern since 2018-2019.
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Vessel Design

Limited technical information about the vessel was available from navel architecture perspective. Only the
minimal required documentation for the technical management survived all the organisational migrations
over the years. The design drawings are not owned by Boskalis, but paper copies of required documents for
asset management are available, like the general arrangement, shell plating and some construction drawings
in pdf-format. The most relevant data sheets are shared in appendix A.1 and summarised in section 5.1.
The MARIN had no available data about the vessel design or researches of the past. The original operational
settings and fuel performance of hull, propellers and other equipment are unknown at Boskalis.

Table 5.1: Design specification of BOKA Glacier and Sherpa

Main particular of the five LTD sister vessels

Builder Niigata Shipbuilding, Japan Storage Capacity (HFO / MGO) 1.994-2.201 / 539-746 [m3]
Building year 2006 Main engines 4 x Wartsila 6L32
Vessel type Long Distance Towage Installed engine power 12.000 [kW]
GT / NT 3239 / 971 [ton] Installed shaft alternator power 2 x 1.200 [kw] (50Hz)
Displacement 5320 [MT] Installed Thermal oil boilers 2 x 800 [kW]
Length overall 75 [m] Installed generator power 2 x 370[kw]
Beam 18 [m] Installed CPPS 2 x D3.85-4x0.625
Depth 8 [m] Speed (cruise/max) 9 / 15 knots
Design Draft 4-6 [m] Certified bollard pull power 200 [MT]

The mono hull displacement vessel with a Cb of 0.72 and has no bulb. The power system outline drawing
is present in appendix A.1. Four medium-speed Wartsila 6L32 are installed with 3 MW power at 100% MCR
each, parallel in sets of two. Each set has a PTO with a shaft alternators with a maximum electrical power out-
put of 1.2 MW. The vessels have keel skegged twin-screw ducted CPPs 4-0.645 from Wartsila, with A-brackets
and oil lubricated shafting. The both nozzles are fixed and the propeller cap is simple, with no boss cap fins.
The spade rudders are installed after both propellers. The two manoeuvring thrusters are installed at the bow
one of 825 kW and at the stern one of 736 kW.
The initial ship design theories of Holltrop & Mennen, marine power plants and propellers can be used to
predicts the theoretical required propulsion energy and efficiency of the LTD vessels. The theoretical daily
fuel consumption can be specified for certain speed and sea margins for regression analysis.

Two towing drums of with wires of 1500 m x Ø 76 mm and a working drum with 300 m x Ø 76 mm work wire
is present after wheel house. The towing wire pay-out is typically about 1000 m in length and the up to Ø 100
mm. The vessels both have a characteristic low, flat afterdeck with no obstructions, allowing to change angles
with respect to towed object. A gob robe around the towing wire prevents the angle becoming unsafe during
operations. The stern roller( Ø 2,500 mm x 5,400 mm) has a 300 MT save working load, to prevents blockage
and damage when setting objects overboard. The two pedestal mounted 360 slewing deck crane of 8t safe
working load at 7 m outreach are present at the after deck.
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Figure 5.1: Outboard Profile and main deck drawings

The tugs are highly manoeuvrable and have fifi-1 classification, which enables the vessels to do jobs related
to salvage, steering assistance and environmental services to avert an imminent environmental disaster. The
two 813kW fire fighting pumps are installed and direct-driven by separate gearboxes at engine 1 and 4 (see
appendix A.1). The vessels are no Anchor Handling Tugs (AHT), although they have a stern roller which is
typical for a AHT. They are not AHT, because the towing drums do have slow reaction times and the vessel has
no DP system.
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Vessel Operations

The vessel are ought to deliver a continuous bollard pull of 200 MT for five minutes during the bollard pull
tests every 10 years, which is certified by class society. When the vessels induce a towing speed, the hull resis-
tance will reduce the effective bollard pull to approximately max 180 MT. The structural integrity of the towed
object need to be sufficient for such extreme loads. Both the wire length and the towing speed are limited
within areas with shallow water and high traffic density. The towing wires bends by its own weight and can
easily hit the bottom in shallow waters, which require reduced wire-pay-out and consequently reduced tow-
ing speed by the wake.

The project examples are shown in fig. 5.2. The offshore installation is the most profitable market that the LTD
serves followed by scrap and other exceptional transports, which are more explicitly described in section 3.2.

Figure 5.2: Photo impression of LTD operations

The projects can be done by a single vessel operation or up to three vessels. The number of vessels required is
determined by the project engineering department, who uses by class prescribed bollard pull requirements
for save transport of the towed object. The highest bollard pull certificate is preferred from compliance per-
spective. Operations are executed with an angle with respect to the direction of the towed object, which
currently is the result of using the two rudders constantly causing additional resistance.

5. Case Study of Long Distance Towage 62



5.1.1 Prototype Model Input

The available data and required processing (see section 5.1.1) to obtain useful time-series data as prototype
model input are both explained by this subsection. The Data Quality Assessment explains ’the usefulness’ of
the model input and the current state of data development of the LDT shipping at Boskalis.

Data Processing description

The Data Science process before data analysis, modelling and visualisation is sequentially illustrated by sec-
tion 5.1.1. The next paragraphs describe these three process blocks and evaluate the ouput of the collected,
processed and cleaned case study data.
The origin and fundamentals of Data Science are previously explained by section 1.1 and section 2.2. This
subsection describes how this DS process is executed before EDA and modelling the data.

Figure 5.3: Data Science work before EDA and modelling(Rachek Schutt, 2014)

Raw Data Collection

The table 5.2 shows an overview of the collected data. These data are found at the Boskalis Sharepoint and
the PMS database was shared by NPS-Diesel within separate CSV-files. The table gives an overview about
the number of files, their format and included observations and attributes. The cells that contain a − do not
represent the parameter.
No automated data collection or infrastructure available for LTD, so all data was manually collected and
added over time. Real-time prototyping was not possible due the not available IT-infrastructure.

Table 5.2: Table of collected data

Name of data file number of files format of files Observations Attributes

Daily Progress Reports (DPR) 1824 Excel ± 800 39
Daily Technical Reports (DTR) 1824 Excel ± 800 26
Performance Monitoring Systems (PMS) 2 csv +50.000 56
Sea Trial Reports of shipyard 4 pdf - -
Sea Trial Reports of Wartsila 1 pdf - -
Bunker report Summary 1 Excel ± 10 -
Corporate Social Responsibility 2 pdf 20 (x5) 3

The two daily noon report, called Daily Progress Report (DPR) and Daily Technical Report (DTR) from 2016,
2017 and partly 2018 were collected. The two unprotected excel files (see appendix C.1 and appendix C.1)
were sent to shore by outlook e-mail. This historical manual data was collected at the Boskalis sharepoint
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with months of delay. Software was written to process these DPR and DTR to a time-series database, which
will explicitly explained by the following paragraph. The both report have many overlapping attributes, which
means that the actual attribution per day were less. The DPR data is manually copied by the invoice manage-
ment and shared with CSR.

The PMS has an extremely high number of observations compare to the noon reports, because of high sample
frequency. The PMS data was processed and stored in a single table per vessel of the case study. The time-
series data was frequently triggered and no averages were calculated within the intervals. The database was
located at the third party NPS-diesel and no direct excess was provided. The data was sent to shore by e-mail
over the 4G internet in coastal waters, typically days delayed.
The NPS applied many useless post processing scripts and were not willing or able to share these algorithms
or provide significant accuracy indications of the logged sensors data. The sensor loggers were installed at
the engine controllers, fuel flow meter, shaft alternators, NMEA and shaft power meters. The useful attributes
were: GPS position and time, flow meter reading without temperatures, both shaft powers, both electrical al-
ternator outputs and clock values (see table 5.3).

Table 5.3: Overview of significant PMS data

Data attribute Sensor & source unit of entry accuracy indication

Time GPS NMEA seconds
GPS speed NMEA 10−1 2%
GPS distance NMEA 10−1 2%
Fuel flow Volumetric flow meter litres 1%(Seafish, 2009)
Engine load Engine controller percentage 23%
Fuel rackpos Engine controller mm -
Shaft power Torque sensor kW 1%
PTO power Three phase power transducer kWe 1%

The densities and LHV’s were found within the bunker report data (see table 5.4). No information about the
fuel used during the operations was available, so the min, maximum and accuracy of these two attributes
were both considered for HFO and MGO. Together the inaccuracy of density and LHV is below 2%.

Table 5.4: Overview of bunker report data

2017-2018 density [kg/m3] HFO @ 15 °C Lower Heat Value HFO [MJ/kg] Total

min max accuracy min max accuracy inaccuracy
Glacier 988 991 3 0,3% 39,80 40,30 1 1,2% 1,5%
Sherpa 988 992 4 0,4% 33,90 40,30 6 15,9% 16,3%

2017-2018 density [kg/m3] MGO @ 15 °C Lower Heat Value MGO [MJ/kg] Total

min max accuracy min max accuracy inaccuracy
Glacier 856 859 3 0,4% 42,63 42,67 0 0,1% 0,4%
Sherpa 856 856 0 0,0% 42,66 42,66 0 0,0% 0,0%

Data processing

All files had to be processed and assembled in one big datatable or database to enable EDA. This process is
called data wrangling, data munging or data crunching. After the data processing, the data cleaning was exe-
cuted.

The data processing in general is about conversion of the raw data in the desired and usable format. The
main concern was the processing of the non-protected and unstructured data to the structured time-series
database. The DPR, DTR and PMS data is outer joined per day, with additional classification labels and cal-
culated values by use of available data.
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The major challenge was to programme the automated process to convert all separate noon reports per day
to one big time-series datatable over years. All the report files were collected at Sharepoint and downloaded
with a certain directory format, which was structured by year, month and vessel name. At every directory
location were one DTR and DPR file for every day of the month. The excel file were format as unprotected
tables at one sheet. The object names, sheet names and table formats were randomly changed over time by
office and crew, which cause an additional challenge for both processing and cleaning.
A python script was built with Operating System, Pandas and Datatime packages. The script was able to cre-
ate an structured Database with all reports processes in one single run. For loops were built for a variable
working directory by years, months and vessel names for both DPR and DTR files. When the ’for loop’ deter-
mined a certain directory, all DPR and DTR sheets of that specific month were opened and placed within one
table, with original format. Another ’for loop’ was used to select entries per day and place them at one single
row together.
The result was the software function for automated data processing in Python. The function input were pe-
riod of time and vessel name of the LTD fleet. This script generated one big database of time-series data with
all DPR and DTR data per day on one row and columns of the operational data attributes. Since only the LTD
vessels share the same noon report format, only LTD report can be processed by the script. Additionally the
PMS was joined to validate data of both data acquisition systems.

Data Cleansing

Data cleaning or cleansing, which both mean the same, is about upgrading data quality for EDA. The cor-
rupted data is cleaned by correcting syntax, removing outliers, interpolate missing values or deleting not
repairable observations. The process of cleansing has a reputation and is time consuming, several websites
stated that Data Science is about cleansing data for 80% of the time. The automation of cleansing and to-
gether with smart data management avoids unnecessary time spent on cleaning. This paragraph aims to
explain how the data cleansing is done effectively.

Manually redo of cleansing should be avoided by automation. This can be done by integration of cleansing
functions within the data processing script. When processing is done for other data entries, vessel or period
of time, the cleansing will automatically be done. Working with one cleaned, labelled and joined Data table is
recommended, because this avoids in consistency between Data tables with same raw data origin and extra
cleaning required. There is always a trade-off between deleting data or repair. Deleting data has negative
effect on the completeness of the data and analysis reliability. Manual cleansing can sometime be frustrating
and time consuming.
The best way to avoid cleansing is a well designed acquisition system. Preferably wrong or lacking entries are
bounced and unauthorised people are not allowed to change validity rules and formats.
The results of this research about cleansing were ’power coding’ for automated cleaning and knowledge to
support the design of the new data acquisition system at OED. Martijn Rijnsoever and Youri Buskens, both
intern students from Industrial engineering and management of Rotterdam school of applied science, were
challenged to redesign data acquisition temples of OED within 6 months. They worked from August to Jan-
uary and were supported by the DAMA Data Quality frameworks (see fig. 2.9) and found and solved the many
corruptions during cleansing of the noon reports of this research.

The accepted data had a certain quality requirement to be allowed. The separate noon reports had not to
be totally corrupted and the processing algorithm had to be able to process them to the database. The daily
fuel consumption DPR and DTR had to be consistent for every day. All the invalid entries were automati-
cally or manually cleaned for the zero error data attributes. The strange outliers were manually corrected for
remaining the day of reporting or were excluded for the analysis.

Results for Model Input

The noon data (see table 5.5), PMS data (see table 5.3), bunker analysis (see table 5.4), CSR data (see ap-
pendix C.1) and other mentioned in table 5.2.
The completeness of 72% and 33% which is low, but sufficient for prototyping.
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Table 5.5: Noon data input after cleansing

Idle Free-running Towing Completeness

Vessel Number Perc Number Perc Number Perc Number Perc

Glacier 122 13 56 6 479 52 657 72
Sherpa 145 16 88 10 62 7 295 33

5.1.2 Data Quality Assessment

The case study data quality is considered to be ’very low’. What the required data quality should be is already
stated within section 4.3 and different framework about data quality and progression of data were presented
within this thesis (see chapter 3).

The progression of data to knowledge is introduced in fig. 2.4 and enables the explanation of the current state
and what is achieved with the prototype. No significant structured information was available about the fuel
performance at the start of the case study. The information that was selected from the gathered noon data
was sampled over 24 hours and of low accuracy. The PMS provided infrequently sampled observations about
seconds till hours within unrelated and inconsistent datasets for the engines and the winches. The PMS pro-
vided semi-structured information and a dashboard, which did not give useful insights for decision makers
at the LTD.

The noon data is judged by the six primary dimensions (see fig. 2.9) and the hierarchical structure (see fig. 2.8).
No database of noon reports is available for the LTD business unit. The Noon reports are stuck at the Share-
point and do contains information, which are uploaded with a delay of months. The data acquisition of noon
data was done by unprotected excel files, which are changed frequently over time, with no entry validity rules.
The excel templates were changed mostly accidentally by crew and kept unnoticed at shore, causing incon-
sistency of the data structures, which is challenging for automated database development. The database as
input for modelling (see table 5.5) had completeness 72% for the Glacier and 33% for the Sherpa, which is
very low for operational profiling. More than 20% of all entries had to be cleaned for analysis. The accuracies
of the data attributes were low, fuel volumes were reported without temperatures, towing forces only over 10
minutes at noon, no outputs of shaft power or alternator meters were reported, no ambient conditions or
running hours at the machinery room and no average speed through water. The low data quality of the LTD
noon reports is concerning, if LTD want to other important data analysis in the future. A new data acquisition
design should be build with more relevant attributes of required quality (see section 4.3).

The PMS system provided semi-structured time-series data of low quality. The semi-structure does not allow
to related the dataset about engines, winches and noon reports in an accurate way, since they were incon-
sistent. The PMS needs a clock-trigger every hours to enable integration over 24 hours and comparison with
the noon data. The system-based triggers of the engines and winches need to be synchronised to be consis-
tent. when this data is consistent, the more accurate measurements can distinguishes the fuel performance
per operational mode. The mean values and deviations over the observation period may be calculated and
logged by the system to enable filtering of the most accurate observations.
The third party NPS Diesel provided many post-scripted attributes within the datasets and was unclear about
the meaning and accuracy of these values. The analysis found that these post-scripted attributes are so low
in accuracy, that they can be considered useless. The average temperatures at the flow meter were not mea-
sured, so fuel measures were still inaccurate about 10% and the engine controller data was badly calibrated
and was very inconsistent with shaft powers and alternator powers (see fig. C.4b). The winch data did not
measure the highest peak bollard pull, but measured a sample of 20 MT less during the bollard pulls tests.

The low data quality at the LTD business unit seems the result of no data leadership. All the effort to improve
the data acquisition failed during this research. There seemed a lack of IT expertise and the willingness or the
urgency to improve the data quality at LTD. The first introduction with the LTD data included a statement that
nothing about the data acquisition could be changed, which was the reality during this research. The people
at LTD who tried to improve data quality in the past, were pessimistic about the future of the data develop-
ments. The Anglo-Eastern’s structured information of noon reports, was not shared after several requests.
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There were no IT employees available within LTD or budgets for any support from outside. These examples
are given to illustrate that people are the biggest constrained for progression of knowledge at LTD and not the
affordable technology. There is no data dictatorship or democracy, but data anarchy at LTD, within scope of
this research.
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5.2 Business Process Modelling

The conceptual BID (see chapter 4) is applied for the LTD case study to monitor and control the fuel per-
formance. First the business process model is explained by one overview and the specified indicators (see
section 5.2.1). The current LTD BPMN explains the process of fuel consumptions and the relation to IT archi-
tecture (see section 5.2.2). A new BPMN design is made to explain the improvements by a Data-driven DSS
implementation (see section 5.2.3).

5.2.1 Business Process Model

The model overview for LTD is at the next page (see fig. 5.4) and is a composition of the previously explained
models (see section 4.1 & section 4.2)). The SPI, KPI’s and PI’s are specified by the right column on the next
page. Not all the data was available to calculate the values, but these number can control performance if
present within the Boskalis organisation.

The Shipping Performance Indicator

One dimensionless number quantifies the energy performance of the LTD (see eq. (5.1)) to monitor, control
and target the energy efficiency and the carbon emissions at the strategic level of organisation. The core
business of towing over a (long) distance is quantified and related to consumed energy types, by this single
number. The SPI enables benchmarking and comparison with different LTD vessels or even with Heavy Lift
Transport (HLT) vessels, if an corresponding dimensionless number is realized for HLT.

The data behind the SPI should contain the information about the fuels used (i), the speeds sailed (v) and the
corresponding periods of time (t) for the explanation of the SPI, which is the summation of these all. The SPI
can be calculated individually for the vessels, for the whole fleet over one or multiple years.

SPILT D = ∑
i∈I

∑
v∈V

∑
t∈T

Fv t ∗Dv t

Ei t
≥ SPITar g et (5.1)

where:

SPILT D = Performance Indicator of towing [-]
v = Vessel speeds [-]
t = periods of time [-]
i = Fuel types [-]
Fv t = Average wire tension over time [kN]
Dv t = Covered distance over ground and period [km]
Ei t = Total energy of certain type over period [MWh]

The actual SPI of the Glacier and Sherpa over 2018 can not be determined with the currently available data,
since no average wire tensions are known (see section 5.1.2). The theoretically approximation of 50% engine
efficiency and 50% efficiency for the other equipment and systems, suggests that the number will be positive
and below 0,25.

The SPI can be used for the control of the carbon emissions. For example, Boskalis wants to reduce their
carbon emission with 50%. The SPI, which represents the overall fossil fuel efficiency of 2018, is assumed to
be 0,10. The SPI target will be 0,20 and can be achieved by improvement of technical and operational energy
efficiency and use of biofuels. The improved energy efficiency requires less energy consumption for the same
work and the biofuels have partly to be included for the fossil fuel consumption.

The IMO wants that shipowners reduce their carbon emissions with 40% in 2030 with respect to 2008 (Øyvind
Endresen, 2018). The used fuels and energy efficiency did not change since the LTD vessel were build dur-
ing 2006-2008. The economical life time expectancy of ocean going vessels is between the 20 and 30 years,
depending on the shipping and scrap market conditions. This means the LTD vessels are expected to be op-
erational towards 2030.
First Boskalis needs to quantify their SPI of LTD and afterwards formulate a strategy to align with the IMO
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GHG strategy, to avoid unnecessary non-compliance costs and irreversible environmental damage. The SPI
might be used by the IMO to regulate the energy efficiency of LTD.

5. Case Study of Long Distance Towage 69



Strategic level: 
 Shipping Perform

ance Indicators (SPI) 

Tactical level:  
Key Perform

ance Indicators (KPI)

O
perational level:  

Perform
ance Indicators (PI)

O
perational

data

B
usiness Process M

odel of Long D
istance Tow

age

Fleet m
anagem

ent

O
perations 

Sales 

Decisions 

Performance Data 

Engineers 

O
fficiers 

The goal of organisation 

Ad H
oc 

U
nscheduled 

Sum
m

arized 
infrequenct 

forw
ard looking 
external 

w
ide scope 

Structured:

Level of O
rganisation 

The board  
&  

D
irectors 

Project Engineering 

Prespecified 
Schedule 
D

etailed 
Frequency 
H

istorical 
Internal 

N
arrow

 focus 
  

U
nstructured: 

Sem
istructured: 

Structured:

C
orresponding decisions

structures and characteristics 
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Key Performance Indicators

The KPI’s capture the fuel performance reality for control at tactical level of the organisation (see section 4.2.2)
for decisions about typically months. These KPI values are dimensionless in relation to a benchmark and tar-
get value.

The three PI’s (see eq. (5.4), eq. (5.3) & eq. (5.5)) are translated to KPI format and can form together one KPI
number, which is a fuel consumed weighted average per operational mode (see eq. (5.2)).

K PILT D,vessel =
∑

K PIi ∗τi (5.2)

Where:

K PIi = Dimensionless KPI number of operational mode [-]
τi = Mode fraction of total fuel consumption [-]

The towing activities do consume the most fuel per day (see fig. 5.11) and is related to the towing wire force,
distance covered and speed. The increased towing speed non-linearly increases the resistance of both the
vessel(s) and the towed object, ceteris paribus. The resistance and installed propulsion power of the towed
object is dominant, compared to the vessel’s hull resistance. The dimensions and displacement of the towed
object are interesting to consider for predictions of fuel consumption.

PIvessel ,towi ng = Fwi r e ∗Dcover ed

E f uel
[T ∗N M/MT ] (5.3)

The free-running LTD vessels consume tons of fuels per nautical mile for a certain speed (see fig. 5.12). The
nautical performance are included for analysis of the operational performance and can be excluded for anal-
ysis of the technical performance. A thrust meter data or sea-margin correction are required to subtract
the environmental effects, which both were not available for the case study. The nautical performance are
included for analysis of the operational performance and are excluded for the analysis of the technical per-
formance. A thrust meter data or sea-margin correction are required to subtract the environmental effects,
which both were not available for the case study.

PIvessel , f r ee−r unni ng = m f uel

Dcover ed
[MT /N M ] (5.4)

The Idle condition is quantified by ton of fuel consumed per day. The use of onboard auxiliary, shore power
or a generator on deck need to be specified and quantified per day.

PIvessel ,I dl e =
m f uel

T
[MT /d ay] (5.5)

The LTD vessel do have other operational modes, like for salvage and manoeuvring, but these modes are
excluded because they have a negligible share of total fuel consumption.

5.2.2 Current Business Process Modelling Notation

The current situation of LTD is shown in fig. 5.5. The model contains the six operational process stakeholders,
that are related to the fuel performance of LTD.

The larger amount of stakeholders within the process constraint the flexibility and the innovation. The BPMN
shows that six stakeholder are involved in relation to the fuel performance. All these stakeholders need to
communicate and argue their interests and priorities within this process, which can be contradicting. For
example, Operations does not want to do turbo washing since the transport will slow down and fleet man-
agement give instructing to wash every day, this results in that turbo washing moments are skipped or done
with too high temperatures, causing damages of components and lower efficiency of both turbo and engines.
No structured information about the actual performance is available for group decision making and for ex-
ample turbo wash optimisation.
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The Operation department is the most influential decision maker of the whole process and works with rough
estimates about fuel performance. The operational manager is supported by his own ’rule of thumb’, SPOS
for weather forecasting and difference project collected in the Final Voyage Records (see fig. 5.5). The fuel
predictions are not done by the use of statistics, but by ’intuitive’ guesstimates. These are used for tendering
and for control of operational fuel performance.

The standardized BIMCO provides a lump-sum agreement about the total fuel required for the project, with a
coverage of bunker price fluctuation risks for both parties. These contracts do not challenge LTD to improve
their fuel efficiency, because "the customer pays the fuel anyway attitude. The sales department stated that
reduced OPEX will have positive results for the competitiveness of LTD. The improved contracting contain
less explicit fuel consumption statements, but only an accurate predicted fee for the project.

There are no numbers about fuel efficiency available, no structured overviews for benchmarking and target-
ing improvements of fuel performance and there is no feed-back mechanism to do fuel predictions when fuel
efficiency is improved. There is no database present within the business process, but only separate Word,
Excel and PDF files. The LTD is not able to develop dashboards or do optimisation calculations with actual
performance data, because all noon data is ’stuck’ within separate unprotected excel files. Moreover, LTD is
the only fleet without a database of noon data. The TSI of LTD has to search through separate excel files day-
by-day and has low trust in the data. His requested attributes like Shaft alternator powers and shaft powers
were never answered by the business unit.

The daily fuel consumption data is shared unprotected with the clients, who consider the amount of fuel
burned as an actual performance. The clients have no idea about what the efficiencies are or how the fuel
consumptions are related to towing forces and speeds. Besides, this information is sensitive of Boskalis and
enables cooperate espionage by competitors about the variable but approximately 60% fuel share of the total
OPEX. The LTD may consider to protect their data or not share fuel consumption on daily bases, but only
share the towing forces, speed and E.T.A.

Sub-optimisation of the stakeholders negatively influence the fuel performance of LTD. This is not captured
by the model, but explained by this paragraph. All the departments of LTD have their own financial per-
formance. The operational department is responsible for operational cost when the vessels are sailing, but
Boskalis Corporate when the vessel lays idle. This stimulates the operational department to do higher speed
free running transits, than is optimal for the entire business unit. This mechanism is preventing slow steam-
ing, which is very effective for energy efficiencyet al. (2018).
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Figure 5.5: BPMN of current situation (own composition)
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5.2.3 Data-driven Business Process Modelling Notation

The data-driven decision support system is integrated within the business process in fig. 5.6. The system pro-
vides a back-end system that stores all reports and PMS data onshore in a database or cloud. The required
minimum and targets about fuel performance can be combined and by a processing scripts translated into
PIs, KPIs consistently for both the fleet management, the operations and the vessel crew. The actual perfor-
mance and corresponding visualisations support decisions of vessel operations. The ’big data’ stored by this
system will be used for prediction at operational, tactical and strategic level of the organisation.

A front-end design, called dashboard, will provide protected insights about the transport operation. The
client does not receive any explicit daily information about bunkers, but only the delivered towing force, the
speed and E.T.A. The dashboard can provide daily and project overviews and predictions with uncertainties
in the future.

The feedback loop of information is realised, which provides insight about performance, improvements and
predictions for tendering by Sales and Operations. The Fleet management is enabled to control the relation
between maintenance en fuel consumption by Decision support.

Mention that a DSS system for LTD can and maybe should be used for more than only fuel performance. If
the implementation of the proposed system is done, other relevant data and algorithms can be included at
this IT-architecture. Examples are a Negotiation Support System for sales, shipping planning optimisation as
groupware for whole LTD and Condition Based Maintenance.
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Figure 5.6: BPMN of Data-driven Decision Design (own composition)
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5.3 Prototype for Performance Control and Optimisation

Quote: "All models are wrong, but some are useful"

The Data-driven DSS prototype shows examples about how operational information can by visualised for
fuel efficiency insights and decision making. The vessel performance paragraph (see section 5.2.1) provides
an overview of the annual fuel consumption and typical shares per operational mode. The daily vessel per-
formance are quantified per operational mode (see section 5.3.2). The engine performance (see section 5.3.4)
and turbo performance (see section 5.3.5) are analysed and a more detailed DSS prototyped is presented for
onboard and TSI onshore. The hotel and auxiliary performance are analysed and quantified for both vessels
(see section 5.3.3). All the quantified performances are used to support energy efficiency improvement mea-
sures for the remained economical life time of the LTD vessels (see section 5.4.2).

Many variables are assumed to be constant, to reduce the complexity of the prototype (see table 5.6). The
values are averages and for the calculations within this section and the next section.

Table 5.6: Variables assumed to be constant

Used constants

ρHFO,15°C 0,990 MT /m3
ρMGO,15°C 0,857 MT /m3
THFO,meter 85 °C
TMGO,meter 30 °C
CT her malexpensi on, f uel 1∗10−1 m3/∆T
HHFO 40,4 MJ/ kg
HMGO 42,6 MJ / kg
M J tokW h 0,2778 kWh/MJ
Pr i ceHFO 450 USD/MT
Pr i ceMGO 660 USD/MT
Eur o f orU SDr ate 0,87 EURO/USD
Emi ssi onHFO 3114 CO2/MT
Emi ssi onsMGO 3206 CO2/MT
ηg ear box 0,97 -
ηg ener ator (AV K ) 0,95 -
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5.3.1 Annual and Quarter performance

The annual fuel consumption data indicates a range of 0,5 and 10,5 thousand MT and the 6,4 thousand MT
mean(see fig. 5.7). The first and third quartile interval are between 5 and 8 thousand MT, which can be used
for scenario analysis. The consumption spread over periods is relatively large compared to merchant vessel,
which are assumed to sail more constantly. Fuel predictions per quarter or year for these work vessel is more
complex, compared to vessels that sail standardized routes and speeds.
All the five vessel are included for their individual fuel consumption per quarter and year from 2014 till 2017.
The fuel required to serve the LTD market is statistically stronger, compared to only considering the Glacier
and Sherpa. Both the HFO and the MGO masses are included and calculated by multiplication of volumes
and assumed densities of table 5.6. Some quarter of the fig. 5.7 show zero consumption, caused by docking
or lay-up.

� � � 	 � ��
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Figure 5.7: LTD fleet consumption according CSR data (own composition)

The fuel measurement procedures of LTD and corresponding calculations (see section 4.2.3) have the inaccu-
racy of the CSR data, which is <±15%. When the fuel temperatures are included within data for the measured
volumes and the calculation procedures are done correctly, the inaccuracy can be improved to at least <±2%.
The CSR data stated volumetric consumption of bunker fuels per quarter. The LTD business unit reports vol-
umes every month to CSR of Boskalis. The invoice managers, like Karolien Boeynaems, manually sums all at
noon reported fuel mass for every month. These calculated masses are translated to volumes again for CSR
reporting, without corresponding temperatures of the volumes. The density used by CSR is not standardised
and is uncertain. The incompleteness of the noon reports in the developed database for prototyping did not
enable significant comparisons of CSR and daily reporting.

The full table of statistical results is present in the appendix (see appendix D.5) and the year results are sum-
marised below (see table 5.7). The conclusions for every vessel are that the mean values per year equals
212 days hired, 6.400 MT of bunker fuels, € 2.3 million costs, 72 thousand MWh and 20 millions MT of CO2
emitted. The statistic overview provide the low quality benchmark with the currently available data.
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Table 5.7: Summarised statistics of LTD consumption

Statistics of LTD CSR consumption

count mean std min 25% 50% 75% max
year Occupied days 20 212 76 20 181 237 258 305
year HFO m3 20 5.695 2.397 387 4.287 5.937 7.048 10.022
year MGO m3 20 897 536 321 630 699 933 2.354
YEAR HFO MT 20 5.638 2.373 383 4.244 5.877 6.977 9.922
YEAR MGO MT 20 768 460 275 540 599 800 2.018
YEAR BOTH MT 20 6.406 2.435 711 4.819 6.480 7.944 10.600
YEAR HFO USD 20 2.207.220 929.163 150.019 1.661.653 2.300.937 2.731.580 3.884.377
BOTH USD YEAR 20 2.648.486 976.007 338.222 1.991.869 2.764.263 3.295.918 4.273.620
YEAR HFO EUR 20 1.920.282 808.372 130.516 1.445.638 2.001.815 2.376.475 3.379.408
YEAR MGO EUR 20 383.901 229.625 137.281 269.534 299.169 399.434 1.007.973
BOTH EUR YEAR 20 2.304.183 849.126 294.253 1.732.926 2.404.909 2.867.449 3.718.049
YEAR Energy MWH 20 72.363 27.396 8.179 54.436 73.481 89.776 119.366
YEAR GHG MT 20 20.020.354 7.593.583 2.244.068 15.060.561 20.293.107 24.832.611 33.069.729

The occupation is captured within the CSR data indicates the days of being contracted clients. The correla-
tion analysis showed that the correlation between occupation and consumption is between 0,6 and 0,8. This
correlation concluded to be low and not usable for statistical analysis.

The time-series visualisation of LTD consumption (left axes) and occupation (right axes) are shown below in
fig. 5.8. The weak correlation is visual, together with fluctuations of HFO and MGO consumption over time.
The HFO consumed for 80% of total, but when operation in Emission Control Areas the MGO consumption is
higher compare to the HFO consumption. The average fleet consumption (1,6 thousand MT) is almost equal
for the Glacier and lower for the Sherpa (black line). At 15Q3 of Glacier, occupation and consumption show
no correlation, this is because of laying idle for long time under contract.
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(a) CSR data of Glacier
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(b) CSR data of Sherpa

Figure 5.8: Time-series virtualisation of CSR data

The conclusion is that a LTD vessel mean consumption and standard deviation is 6.406± 2.435 MT of fuel,
which indicated high uncertainty for predictions of future consumption. This consumption is divided over
different operational modes: free-running, towing and Idle. Again the FC over a period of a certain opera-
tional mode is uncertain, because this differs per period. The QD of noon data did not allow accurate statis-
tical analysis per mode, but a educated guess by filtering data per period in the Power BI showed FC share of
towing and free-running differs approximately around 20% per period.
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Operational mode consumption shares

The PMS and noon data were not able to distinguish different operational modes consumptions and dura-
tions, because the data was incomplete (see section 5.1.2). The shares of fuel consumption per operational
do differ over time, which was not quantifiable by available, but a guestimate by use of Power BI tools showed
variation over 20% per quarter.
The winch data and the other vessel data samples have different triggers and sample timings, resulting in two
unrelated data sets. When this data quality problem is fixed, a more accurate estimation can be done.
The noon data is used to assemble a typical operational profile (see fig. 5.9) for one operational year. The
fuel consumption share per operational mode varies over the periods of time. The found consumption per
day of mode and summation per quarter are used to determine an typical share per operational mode. The
estimation is visualised in the figure below (see fig. 5.9). This approximation can be improved data quality,
which is not available at the moment.

The absolute and share values about averages and spreads of fuel consumption and time have to be known
for full control. This information will enable Boskalis to quantify operational and technical improvements of
their vessel. Possibly the new build project and maintenance procedures can be matched with such quanti-
fied operational profile.

Figure 5.9: estimated typical year of fuel consumption and shares of operational modes

The operational condition of towing is the most fuel consuming mode and can theoretically be split with
intervals of example 50 MT constant wire tensions. The Fire Fighting and Salvage operations can be dis-
tinguished, which was undoable with the available data. This model can also be used for history project
overviews to substitute the Final Voyage Report that are used now.
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5.3.2 Speed Profile

The cleaned noon data is used to show the operational profile distribution over 2016, 2017 and first half of
2018 as illustrated for both Glacier and Sherpa in fig. 5.10. The distributions do give a representation of how
operational modes and SOG were present in the data. More data is available for the Glacier compared to
Sherpa, which is partly explained by the fact the Sherpa was docked for three months and had lower util-
isation. the Free running mode of the Sherpa drives faster compared to Glacier, while the towing speeds
of Glacier were higher. These figures illustrate how modes and SOG with corresponding consumption and
efficiency can differ over time, while the design of hull and propulsion systems are identical.
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(a) Operational profile distribution of Glacier
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Figure 5.10: Operational profile distribution of cleaned data

Ships between 0-10 knots have increased fouling problems, especially in warm waters, because the anti-
fouling does not release the grown fouling. The fouling of hull and propeller can reduce speed by 10-15%,
increased required engine power by 23-38% and increase fuel consumption with 25-40%. This added resis-
tance can occur in case of cleaning twice per five year (van Dokkum, 2011). The speed profiles show that both
LTD vessel mostly operate below 10 knots SOG or laying idle, which both are indications of increased hull
fouling growth. Cleaning more often than twice per five year is interesting for the LTD vessel.
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Towing performance

The towing mode is the most frequently measured with the highest consumption per day, with a fundamental
correlation to the towing force and the speed. In fig. 5.11, the consumption per day is related to average
SOG and wire tension indication over the latest 10 minutes at noon. The clusters that appear within these
visualisations represent ’steady runs’ of different projects. This data already enables LTD to fine tune there
’rule of thumb’ about fuel consumption. The used assumption of 50-52 MT fuel per day for full power towing
is true according the figures. These figures show the increase of hull resistance with speed, since scatter points
over the line of 50-52 MT are non-linear divided by lower speed with higher towing force and higher speed
with lower responding forces.
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(a) Towing consumption of Glacier
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(b) Towing consumption of Sherpa

Figure 5.11: Towing consumption related to SOG and Towing force

The towed structure resistance is measured by these data point and can validate the prediction models of
the engineering department. Cleaning of the towed structure underwater surface can increase the transport
speed up to 10-15% and reduce the resistance and required fuel up to 25-40%.

The scatters of fig. 5.11 do have wide ranged clusters, which is the reason of other operational variables. The
weather conditions can induce a Sea Margin of typically 20-30% for both the vessel(s) and the towed struc-
ture. The vessel and weather interaction can accurately be predicted by analysis of required nautical data
(see section 4.3). The towed structures resistance is initially determined with Holtrop & Mennen and the Sea
Margins with the additional operational data analysis.

The PI for towing mode (see eq. (5.6)) will enable Boskalis to develop a KPI with by formulation of a bench-
mark and target, but more variables than currently available should be included. This PI will provide an initial
benchmark of performance and can future developed. The mass of fuel can be converted to energy (MWh) to
realize a dimensionless PI or the ηtow . The towed structures and vessel can be distinguished in the equation
for more detailed analysis of performance. If the observations of data are labelled per speed (v), period (t),
project and environmental condition class, this PI can be used for control of improvement over time, project
evaluation and quantification weather routing effects.

PItow = ηtow = ∑
v∈V

∑
t∈T

Fwi r e ∗Dcover ed

E f uel
∗ (1−Cenvi r onment ) (5.6)

where:
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PItow = Performance Indicator of towing [-]
ηtow = Tow efficiency [-]
Fwi r e = Average wire tension over time [kN]
Dcover ed = Covered distance over time [km]
E f uel = Energy of consumed over time [MWh]
Cenvi r onment = Environment correction factor [-]

The concept of towing efficiency can be used for validation of physics-based modelling and simulation for
naval architecture of LDT.

Free-running Performance Optimisation

The free-running condition is analysed in relation to SOG in fig. 5.12 and a fit for noon data by a third order
polynomial. Both the PMS (red) and noon (green) data are plotted and are consistent, except the ’towing
cluster’ of the Glacier(see fig. 5.12a).
The ’steady state’ data is filtered for the 24 hours average ground speed almost equals distance covered over
24 hours (see fig. C.4a) and for the speed deviation of less than 1 knot over 24 hours. The data is not corrected
for environmental condition, but will provide the fit with R2 of 0.75 till 0.95 (Lucy Aldous, 2013). The regres-
sion of that accuracy is sufficient for predictions and control of the free-running fuel performance.
No significant differences were found between sailing HFO or MGO. The boiler consumptions are included
within these daily performances.
The initial ship design theories of Holltrop & Mennen, marine power plants and propellers are used to pre-
dicts the theoretical required propulsion energy of 0,04 MT/NM for 9 knots, which seem feasible and is below
the operational performance. These theories found and assumed a 136 Kn hull resistance, 60% propeller effi-
ciency, 97% transmission efficiency and 40% engine efficiency. This theoretical daily fuel consumption seems
reasonable and can be specified for all service speeds and sea margins for a regression analysis.
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(a) Free-running consumption of Glacier
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(b) free-running consumption of Sherpa

Figure 5.12: free-running consumption

A PI for free-running (see section 4.2.3) is MT per NM covered for different speeds, which is visualised within
fig. 5.13. The outliers were hard to be removed by additional constraints and are still in both figures to illus-
trate control of fuel performance at the LTD.
A sea trial was organised to test the combinator mode of the Glacier. Both the crew manually reported results
and the PMS data was used to compare the fuel efficiency. There seems a significant potential of the combi-
nator mode to increase fuel efficiency of the free-running mode about 15 to 30% (see fig. 5.12 & fig. 5.13). The
three hours during sea trial results are extrapolated to daily consumption 14.9 MT and corrected for boiler,
hotel and auxiliary consumptions of 2,5 MT. The consumption for fixed frequency operation is 27 MT for
both vessel according the fit. The combinator mode consumes 65% of the required fuel for the fixed fre-
quency mode at the speed about 12 knots.
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The Glacier did the trial during sunny weather and very little wave and currents around 1-2 knots, with vari-
able directions. The Glacier sailed one way fixed frequency and back at the combinator mode, instead of the
instructed two directions over one line per mode, to correct for the environmental effects. More trials or ex-
perience with the combinator mode at different speeds and weather conditions provide an additional fit and
support the decision about to sail combinator mode or not.
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(a) Free running FE of Glacier

2 4 6 8 10 12 14
Average SOG [knots]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fu
el
 e
ffi
cie

nc
y 
fre

e-
ru
nn

in
g 
[M

T/
NM

]

Sherpa: combined data: MT/NM versus 24 hours speed
fit(R2=0.19)
Noon data

fixed trial (crew)
fixed trial (sensor)

Combinator trial (crew)
Combinator trial (sensor)

(b) Free running FE of Sherpa

Figure 5.13: Free running FE of both vessels

This significant fuel saving by combinator mode is theoretically explainable. The difference of SFOC between
combinator mode and fixed frequency is typically about 2 g/kWh(Grevink, 2018). The openwater efficiency of
a FPP is up to 10% higher compared a CPP at constant RPM (see section 4.2.3). Sailing combinator mode can
be 15% to 30% more efficient by optimisation of both the RPM and the propeller pitch. The main principle
of combinator mode is visualised and the combinator mode button at the bridge of Sherpa is designated in
fig. 5.14.
The Shipyard included the combinator mode within the vessel design and installed the controls. Not using
the combinator mode is a off-design vessel operation.

(a) The generic combinator curve from Wartsila (b) Chief officer and the author pushing the combinator button at the Sherpa

Figure 5.14: Free running FE of both vessels
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Idle performance

The idle performance distributions are shown in fig. 5.15 for both vessels and range between 1 and 5 MT of
MGO per day. The data originates from manual filled noon reports, both the boilers and the auxiliary engines
run only on MGO. The data does not contain information about by shore supplied electricity or generators
from the ports at deck. No flow meters installed for MGO and the measurements are done by reading the
gauge glass of the MGO daytank. The consumption of the boilers and the auxiliary engine can not be distin-
guished at the LTD fleet.
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(b) Idle consumption of Sherpa

Figure 5.15: Idle consumption

The most frequently measured values are between 2 and 2,5 MT per day, with between 1,25 and 1,5 consump-
tion of boilers, the electricity demand seem to require between 0,5 and 1,25 MT of MGO. These number are
important for decisions about implementation of for example solar panels, cold ironing or heat storage on-
board.
The consumption of the Glacier seems higher compared to the Sherpa, but no conclusions about efficiencies
can be drawn from these differences, which can be the result of seasonal conditions or activities onboard.
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5.3.3 Hotel and Auxiliary Performance Optimisation

The hotel and auxiliary equipment have an energy demand about roughly 5-15% of the total and are consid-
ered separately for the different operational modes. The switchboards and boilers can be monitored separa-
bly to determine operational electricity and heat demand. The demand always consists about both the power
and the energy for matching, depending on operational modes and weather conditions.

Heat Performance Optimisation

The heat demand onboard is delivered by two 800 kW thermal oil boilers (see fig. 5.16) and ±450 kWe by
different electrical heaters. The heat baseload is defined as the average heat power demand over a whole
day and equals ±740 kW by boilers and approximately ±100 kW by other electrical heaters. The daily heat
consumption of both the boilers and the electrical heaters, which requires about 1,5 MT of MGO and ±600
kWhe.

The daily boiler consumptions for free-running and towing are between 1,25 and 1,5 and are graphically
represented (see fig. 5.16). These boilers heat the thermal oil system for HFO bunker heating and lube oil
heating to 50° Celsius. The noon report MGO data was filtered for remaining only the boiler consumption
for sailing, which was measured by gauge glasses onboard. The differences between the two vessels are not
significant, because these are below 0,5 MT and the measurement are ±10% inaccurate. The kWh’s at the
upper horizontal axis are rough indications and need to be multiplied by 1000.
The total idle or zero speed consumption of 2-3 MT of MGO of fig. 5.16 are not correct and are correctly shown
in the previous paragraph (see fig. 5.15).
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(b) Shaft alternator power distribution

Figure 5.16: Boiler Consumption

The heat baseload at the electricity grid onboard is assumed to be 100 kWe while sailing, which is equal to 2400
kWh and 0,5 MT MGO per day. The ’electrical’ heat baseload and consumption are not measured onboard,
but assumptions are made by use of the available load balance (see table 5.8). The HFO trace heater (25 kW)
is specified to be working 100% of the time and is specified as ’c’ in the most right column of the table. The
other electrical heater units are specified as variable over time and specified by ’v’. The AIRCO unit is assumed
to run at least with one electrical heater of 40 kW and the other consumers demand the other 45 kW baseload.
If Boskalis is interested in operational data, they can install sensors and loggers at the switchboard.
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Table 5.8: Load balance summary of heaters

Heaters number Output [kW] total input[kW] sailing mode

Main engine preheat 1 72 72 v
Fuel oil heater 2 48 96 v
Lube oil Heater 2 45 90 v
Eletrical heaters AIRCO 3 40 120 v
HFO trace heater 1 25 25 c
Heater(accommodation) 23,5 2 47 v
Hot water boiler 2 3 6 v

Total 456

The boilers can be switched of or set lower in power, while laying in port or at warmer locations. Moreover,
one heat exchangers for a 950 kW engines can deliver 670 kW heat power by exhaust gas recovery (see ap-
pendix D.3), which is sufficient to switch off the boilers and save €860 of MGO per day. The installation of one
exchanger cost about €6000 (see appendix D.1). The pay-back period of one exchanger is 7 operational days
by only substitution of the MGO boilers. The financial effect over longer period, together with replacement
of electrical heaters are analysed in section 5.4.
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Electrical Performance Optimisation

The both vessel have an electric baseload of 350±50 kW for the sailing conditions (see fig. 5.17), which is re-
sponsible for 1,0 and 2,0 MT of fuel per day. The previous paragraph argued a 100 kW baseload is reasonable
for the share of electrical heaters. The installed pumps and ventilators have a baseload power demand of
±140 kW according the load balance (see table 5.9). Another 110 kW electrical power demand is left for the
lighting and other smaller and infrequent demanding consumers onboard.
The electrical power demand onboard can theoretically ranges from 0 to 3270 kW, when including all installed
engine and alternator powers. The operational data showed the power demand almost never require more
than 400kW, except when using the manoeuvring thrusters or deck crane. The alternators efficiencies are
about 93-95 %, depending on the load and the powerfactor. The both alternators are always grid synchro-
nized and can deliver a constant maximum power of 1.200 kWe each.

The mean sailing baseload for Glacier is about 385 kW and the Sherpa 350 kW. These numbers are interest-
ing for matching with power suppliers onboard, since one auxiliary engine onboard can deliver a constant
output of 350 kW at 100% MCR. The use of the combinator mode requires the power supply from the auxil-
iary engine(s). Operating with one auxiliary engine will save fuel and maintenance, compared to operating
two auxiliary engines at lower loads and SFOC. Moreover, the classification companies require one standby
generator to cover the electrical baseload, which may not be the emergency engine of 100 kW. The reduction
of the electrical baseload with about 100 kW is required to enable combinator mode and to avoid auxiliary
engine overloads while sailing long distances.
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(b) Electrical performance of Sherpa

Figure 5.17: Electrical performance of LTD

The electrical performance optimisation can by achieved by installation of LED sensor lighting, frequency
controlled electric motors and thermal oil heaters. The main engine seawater pumps and machinery room
ventilation are the most interesting for frequency controlled electric motors application, since they both run
at constant 100% power while sailing (see table 5.9).
The application of a battery system is recommended to "peak shave" short and small electricity demands
both the power of one auxiliary engine.

Table 5.9: Load balance summary of electrical consumers, excluding electrical heaters

Pumps: number Output [kW] total input[kW] sailing mode

Main eng SW cool pump 2 25 50 c
Air con Units SW cool pump 1 25 22 c
LO purifiers pump 2 8,6 15 v
Compressor AHU 3 75 243 v
Vent. Fan for engine room 4 15 65 c

Sailing constant 137 c
Total 395
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The use of the combinator mode and inherently the auxiliary engines do cover the additional maintenance
and fuel costs. The overhaul of one auxiliary engine is required after about 16.000 running hours (see fig. 4.8),
which costs €100.000 per overhaul. The engines can run for 667 days with additional maintenance cost about
€150 per day.
The high-speed 4-stroke auxiliary line-engines can only use MGO, which is more expensive compared to the
use of HFO. The engine efficiency differences between main and auxiliary sets or cost of maintenance per hr
of kWh are not known at LTD. The use of 2 MT MGO instead of the 2 HFO by the alternators, costs €420 per
day for assumed constant fuel prices. The combinator mode saves about 7,5 MT per day, which equals €3750
per day for the assumed fuel mixture.

The use of electrical rectifiers after the shaft alternators and Organic Rankin Cycle (ORC) Technology are
interesting for avoiding the additional maintenance and fuel costs by the auxiliary engines, but are both not
considered to be ’quick wins’ for Boskalis since they require investment over the €100.000 and not all required
data is available at the moment. The both design improvement are considered by a ’back-in-the-envelope’
calculation below and are technically considered over the vessel life time in section 5.4.
The electrical rectifier can save the additional maintenance costs and possibly price difference, which is €570
per day. The initial investment will be about €100.000, with a minimal pay-back period of 175 days sailing.
The pay-back period will be longer in reality due the assumption of €420 saving per day on fuel prices is opti-
mistic, but a pay-back investment within 2-4 year seems not unlikely.
The ORC technology can save maximum €1320 of fuel (2MT MGO) and €150 maintenance per day. The ini-
tial investment is assumed to cover the electrical baseload and assumed be 4 time €175 thousand, equal to
€700.000 (see appendix D.1). Divide this investment by the daily maximum saving of €1470 and conclude the
pay-back period over 476 days, when all four engines are running. The pay-back period is higher in reality
since, the savings are lower and the ORC installations require maintenance. Moreover, this optimisation so-
lution is not ’data ready’, since the running hours and related HT-cooling water properties are not known. The
main principles of ORC are explained by appendix D.3.
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5.3.4 Engine Performance Optimisation

The operational performance of the four Wartisla 6L32 engines of both vessels are expressed and related to
the operational engine load distribution, the temperatures of exhaust gas, HT-cooling water and turbocharger
performance (see section 5.3.5). The relations between engine and turbocharger are graphically explained by
fig. 5.18. The data of point 1 and 3 were not available and this subsection considers the available data of the
other points.

Figure 5.18: Data and interaction of the engine and turbocharger (Baldi, 2016)

The engine PI can be expressed in both engine efficiency percentage or SFOC. Boskalis explicitly required
SFOC expressed in gram of fuel used per kWh of output. An advantage of SFOC compared to an efficiency
percentage is less inaccuracy by assumptions for calculations. The most heat energy of the fuel is wasted and
transported via engine and intercoolers coolants and exhaust gasses, which are both interesting for decisions
about WHR.
No information was available to distinguish MGO or HFO engine runs, but should be distinguished if fuel
temperature data at the flow meter is available. The engines do operated fixed at 750 RPM, variable engine
speeds will require inclusion of this parameter as third dimension. This dimension can be visualised by the
use of a third axis or contour lines of SFOC regions.
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Specific Fuel Oil Consumption

The uncorrected vessel SFOC regression is visualized, together with corresponding SFOC according the Wart-
sila 6L32 specification data of 2006 (see fig. 5.19).
The four blue Wartsila curve-fits represent from left to right the allocation of one, two, three and four engines
running at the power plant.
The PMS data about the one flow meter, duration, shaft alternator powers and two shaft power meters are
used to assemble the operational SFOC. The flow meter reading over 24 hours was used to determine the
consumed volume. The grams of HFO fuel are calculated according eq. (4.12) and an expansion by 70°C ∆T
was corrected. The backwards calculated brake power originates from the sum shaft power and alternator
power meters with constant gearbox correction.
The day duration is used and is filtered for values between 22 and 24.5 hour, the corresponding duration
weighted average kWh values were used for the SFOC calculations. The average speed is above 4 knots and
the standard deviation below 2 knot for filtering the ’steady runs’.
No ISO correction is applied since there was no ambient data available of the LTD vessels.
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(a) SFOC of Glacier
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(b) SFOC of Sherpa

Figure 5.19: SFOC over 24 hours integration from PMS data of both vessels

The regression analysis (see fig. 5.19) shows increased SFOC for many days at both vessel compared to Wart-
sila specifications. The Sherpa (see fig. 5.20b) performed according the Wartsila specs for 6-8 days in April
2018 after the engine overhaul, which indicates that regression analysis makes sense. The operations with
two and four engines can be distinguished and the increased SFOC of LTD is a fact.
The Glacier has a more increased SFOC compared to the Sherpa, which can be explained by the last overhaul
of the Glacier in 2017. The Glacier is running four engines at loads between 20% and 40% MCR, which is
closed to the Wartsila specifications.
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The next iteration of SFOC visualization can distinguish the number of engines running, related to the spec-
ified SFOC of Wartsila (see fig. 5.20). The number engines are counted by average RPM above zero at the
certain day. Four engines are allocated while two would be sufficient considering required brake power and
this increase the SFOC by about 20 g/kWh.
Some green scatters passed the 3000 kW brake power, which is unrealistic. The engine counting algorithm
works, but the PMS loosed contact with engine controller data. Later these problems were fixed by NPS.
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(b) SFOC and engine count of Sherpa

Figure 5.20: SFOC and engine count in relation to total brake power
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The engine performance optimisation can be controlled by this prototype and saves 1-4% of the annual fuel
consumption (IMO, 2018a), but this is conservative for the LTD case since both vessel regressions showed an
increase over ±20 g/kWh (equal to ±5% engine efficiency). The implementation of this control system for en-
gine performance optimisation cost about €10.000 and 1% of annual fuel consumption is €23.000 per vessel,
which makes this a strong business case. The performance optimisation with 5% improvement seems to save
€115.000 and 5% CO2 emissions and €575.000 for all five LTD vessels per year.

The SFOC only shows the decreased engine performance, which can be the reason of avoidable low engine
loads, decreased combustion quality, wrong or not provided maintenance procedures for engines and tur-
bochargers or unfavourable ambient conditions. The ambient conditions and maintenance procedures and
data were not available, but the other reasons are considered within the next paragraphs.

Operational Engine Load Distribution

The previously shown SFOC regression (see fig. 5.19) showed the suggestion of low engine loads and this is
confirmed by the operation engine load distribution (see fig. 5.21).
The Wartsila 6L32 run for many days at load below 70% MCR and constant speed, which is fuel inefficient,
this is illustrated by fig. 5.21. The engine load indicators over 24 hours are shown in the distribution of fig. 5.21
over the 2016, 2017 and first half 2018. The SFOC of the Wartsila 6L32 is lowest between loads of 70% and 90%
MCR, like the black SFOC line indicates.
The load indication can be 20% inaccurate above the 50% MCR load according the DQA. The fit of SFOC-
curve originates from individual engine performance of PMS data and is projected at this graph, to illustrate
typical SFOC relation of the diesel engines.
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(b) Distribution of SFOC Sherpa

Figure 5.21: Operational engine load distribution of both LTD vessels

The both LTD vessels can improve their SFOC by avoiding the engine loads below the 60% MCR. The situation
running four engines at loads below the 50% occurred frequently, for spinning reserves and ’redundancy’
which are not required by Classification company. The LTD vessel might decide to run the minimal number
of engines required, to improve the fuel efficiencies with typically 20 to 40 g/kWh, which is equivalent to 5 to
10% engine efficiency.
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Exhaust Gas Temperatures

The low combustion quality or insufficient engine cooling result in higher exhaust gas temperatures, which
is the case for the both LTD vessels (see fig. 5.22).
The exhaust gas temperature noon data is visualised for all engines, together with the Wartsila specifications.
The lowest and highest temperatures of the 6 cylinders are logged and visualised for HFO and MGO.

The regression (see fig. 5.22) shows that the temperatures are increased about 50°C and 100°C compared to
the Wartsila specification. If engine loads increase, the temperatures are relatively more increased, which can
be result of more frequent low quality combustion.
The corresponding scavenge or often called charger temperatures are decreased by 5° degrees according re-
gression (see fig. 5.29). These charge and exhaust temperature have a typical 1:10 relation, according the ’rule
of thumb’ used by engineers onboard. One degree increased charge temperature results in ten degrees ex-
haust gas temperatures, which means that exhaust temperatures are increased by 150° without tuning of the
intercoolers.
The engineers onboard tune the intercool to avoid the alarm value of 500°C per cylinder, which is known by
the TSI onshore. The crew onboard tunes the high temperatures back to 475°C to avoid alarm value and this
is obvious for engine three at the Glacier. If tuning of the intercooler is not enough for avoiding the alarm
values, engineers onboard do change the fuel pump offset on the fuel rack. The changed fuel pump offset
results in lower outputs for the same engine controller loads, which are on the horizontal axis. The scatters
have to be translated to the left over the load on this horizontal axis.
No significant differences are found between MGO and HFO within the data, but temperatures for MGO seem
slightly lower.

The increased temperatures of all eight engines are indications of low ’engine health’. The result is a relative
high thermal loads of both the engines and the turbochargers, causing increased wear and tear and decreased
engine performance (see fig. 4.8). The technical reasons are unbalanced ignition or valve timing, polluted in-
jector nozzles by hard carbon or compression losses of turbocharger and cylinders. The engines running
hours are positively correlated to the increase of temperatures over time, with relations to the maintenance
activities, especially by use of HFO. The engine overhauls are done every 12.000 hours for HFO and 24.000 for
MGO according procedures, but these intervals are extended in cases of project opportunities.

The data about exhaust gasses area PI’s that can be used onboard and by TSI. The engine health can be moni-
tored and result in maintenance decisions and interval optimisation. The engineers onboard can for example
decide to clean injection nozzles and do technical check if temperatures are increased by 30° Celsius or switch
to another engine by 100° increase. TSI can judge the urgency of an overhaul according the increased tem-
peratures and SFOC and benchmark before and after the engine overhaul.

The curve fit of the bowman heat exchanger specification data (see appendix D.3) has the equation: y =
0,7055x + 1.8788. This means between 70-90% MCR, the recoverable heat power is 1500-1900 kW per en-
gine. This is sufficient for ORC recovery about 120-260 kWe for one engine and 180-400 kWe for two engine,
according (appendix D.3).
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Figure 5.22: The exhaust gas temperature PI
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High Temperature Cooling System

The HT-temperatures, pressures and flow rates of the cooling water system are interesting for decision mak-
ing, since the system transports typically about ±30% of the total heat energy produced. The cooling waters
or coolant do cool down the engines and the Turbocharger intercoolers.

No data was logged onboard about the cooling temperatures, but the Wartsila specification stated what tem-
perature differences before and after engines should be, as shown in table 5.10. A constant specific heat of
4180 kJ/cbm*K is assumed for the cooling water to calculate the HT heat power per engine. Every engine de-
livers a constant heat power between 280 and 650 kW (see table 5.10). The HFO seems to provide more heat
power compared to MDF, but this is not confirmed by operational data. The operational data represents the
reality better and is recommended to be collected in the future.

The decisions about maintenance, the frequency controlled electric cooling motors, the thermal energy stor-
age or the waste heat recovery are supported by the HT heat power. The power and efficiency of for example
an ORC modules by the determined typical operational heat power profile over the year. The interesting in-
formation about cooling systems are specified in table 5.10 and section 4.3.
The curve fit of the bowman specification data (see appendix D.3) has the equation: y = 0,2956x + 0.7396.
This means between 70-90% MCR, the recoverable heat power is 620-800 kWth per engine. This is sufficient
for replacement of the one boiler required for sailing. Thermal oil storage can be considered, since the vessel
mostly operate with two or four engines.

Table 5.10: HT data from Wartsila for 6L32

load 25 50 75 85 100 110 25 50 75 100

fuel HFO HFO HFO HFO HFO HFO MDF MDF MDF MDF
HT before 93 92 83 87 85 80 92 92 88 83
HT after 96 95 90 90 90 87 93 94 92 88
HT delta 3 3 7 3 5 7 1 2 4 5
Flowrate [m3/hr] 80 80 80 80 80 80 80 80 80 80
HT_wh_kW 279 279 650 279 464 650 93 186 372 464
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5.3.5 Turbocharger Performance Optimisation

The 6L32 engine’s SFOC is related to his corresponding the Napier 297 turbocharger performance. The charge
pressure and temperature do influence combustion quality within the cylinder (see fig. 5.18). The turbocharg-
ers are running of design and this is quantified by regression analysis of turbine temperatures, compressor
speeds, charge pressure and temperatures in the next paragraphs of this subsection.
All the turbocharger PI’s called in the previous sentence support decisions about turbocharger replacement,
upgrades and maintenance.

The general turbocharger work principle and components are shown by fig. 5.23 and ??. The turbocharger
has the turbine section with exhaust gas inlet and the compressor section with machinery room air inlet. The
compressed air passes the intercooler before being charged within the cylinders.
The inlet and outlet temperatures of turbine section, speed of compressor wheel, pressure and temperature
after intercooler are reported and used for regression. The operational engine protocols of Wartsila were used
for benchmarking these operational parameters.

Figure 5.23: Turbo Charger operation diagramRich (2019)

The turbocharger of LTD have a bad reputation at the fleet management department, due many occurred
failures and relative high maintenance costs and downtime, compared to other turbochargers of the OED
fleet. The LTD project can require running with maximum engine power for many days at HFO, which results
in relative high thermal loads and pollution (see fig. 5.24). The pollutions found are indications for decreased
turbocharger and engine performance.
The visits and interviews onboard of the Sherpa and Glacier explained no or minimal maintenance proce-
dures were available. This paragraph explains how to support and control maintenance decisions and proce-
dures onboard.
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(a) Constipated inlet filter of Compressor section (b) Constipated nozzle-ring of Turbine section

Figure 5.24: Examples that indicate low TC performance of LTD

Turbine Section Temperatures

The increased temperatures before and after the turbine causes increased thermal loads and inherent main-
tenance, while the temperature differences are slightly increased or according Wartsila specification for the
most engines.
The temperatures before the Turbine section are related to the exhaust gas temperature of the corresponding
engine and operate both within the range between 300° and 600° Celsius, as shown in fig. 5.22 and fig. 5.26.
At the engine loads above 60% MCR the temperatures increased and below the 60% MCR decreased. The
increased temperatures with 100°C are not uncommon and cause increased thermal load of the turbine sec-
tions, with additional maintenance costs. More than 30° Celsius is considered undesirable and above 50° Cel-
sius alarming according TSI’s. The LTD turbochargers turbine wheels showed initial cracking, possibly due
increased temperatures and turbo washing at high temperatures (see fig. 5.25b). The turbine nozzle rings
were buckled and penetrated (fig. 5.25a), this is called blown away, reducing the turbo speeds and charge
pressure. The low temperatures indicate to reduces available energy within the exhaust gases for the tur-
bochargers, this can consequently result in reduced turbo speeds and pressures. The temperature difference
over the turbine is a better PI to consider in relation with speed and charge pressures.

(a) Buckled and Penetrated nozzle ring of turbine section (b) Turbine wheel with initial cracking

Figure 5.25: Examples that indicate low TC performance of LTD

The energy or entropy absorption from exhaust gasses is presented by the temperature differences over the
turbine section. The increased energy absorbance is the case for most engines of the Glacier, which is related
to the increased compressor speeds. These both result in increased wear and tear, with reduced life-time of
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components.
The temperature differences of the Sherpa are considered within acceptable range.

The DQA showed that data point above 70% often can be translated 10 to 20& MCR lower, which means less
alignment with Wartsila temperature differences specifications.

The increased temperatures and energy absorption result in reduced life time of the turbine section. The
engineers and TSI should avoid increase temperatures and energy absorption over the turbine sections. This
data should always be considered in relation to compressor speeds, charge pressures and other temperatures.
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Figure 5.26: PI of turbine temperatures
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Compressor Speed

The absorbed exhaust gas energy by the turbine wheels induce the compressor wheels. These compressor
wheels ’suck’ air through an inlet filter from the machinery room and compresses an airflow through the in-
tercooler and the inlet of the engine cylinders. The speed of the compressor wheel is related to the engine
load and required pressure for combustion.

The increase speeds, compared to the reference speed from specs, are found at the Glacier (see fig. 5.27). this
results in reduced life time off components, compared to an at design working turbo unit. The increased
speeds are an indications of low inlet pressure of the compressor section, which can be caused by low ma-
chinery room pressure or constipated of the inlet filters as shown in fig. 5.24a. Mention this is the case for all
four engines at the Glacier.

The reduced speeds, compared to reference speed from spec, are found at the Sherpa see (fig. 5.27). This log-
ically results in decreased charger pressures and lower SFOC, which is the case at four engines of the Sherpa.
The reasons for these decreased performances are damaged or constipated turbine sections or a constipated
intercooler units. The pressures over the intercoolers are measures onboard by not communicated to shore.
When the high pressure drop over the intercooler can be confirmed, this confirms this explaines the de-
creased performances.

This PI represents the performance of the compressor section to create the improved charger pressure. This
realtime PI can create awareness about the off-design compressor wheel speeds and support decisions for
maintenance actions. The inlet filter, intercoolers and nozzle rings might be checks and cleaning.
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Figure 5.27: The PI of compressor speed
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Charge Pressure

The engine cylinders are filled with air for combustion with a charge pressure, these Napier turbos have a
compression ratio of 3 for 100% MCR (see fig. 5.28).

The decreased charger pressures after the intercoolers at the Glacier and Sherpa (see fig. 5.28) indicate the less
charged oxygen within the cylinders, which means lower combustion quality. The combustions of decreased
quality will have lower mean effective pressures within cylinders and higher exhaust gas temperatures, which
means lower SFOC and reduced life time of turbo components. The decreased charger pressures, compared
to specs, can be the reason of damaged gaskets or polluted turbine (see compressor speed), damaged or pol-
luted compressor wheel or constipated intercoolers and constipated inlet filter.

The increased charge pressures at the lower engine load regions of the Glacier are overcharging the cylinders.
The increased pressures on the valves can have a negative effect on the combustion timing and engine bal-
ance.
The increased charge pressures are in line with the increased compressor speeds and the situation. The en-
gine 3 of Glacier is most increased of all engines and the same is truth for the increase temperature difference
and compressor speeds. These thee show a relation, but the technical reason is not known. The SFOC is
expect to be higher, compared the an at design running engine and turbo, but this cannot be quantified by
available data.

Charge Temperatures

The charge temperatures are manually tuned at the intercooler onboard to avoid alarm values of the exhaust
gas temperatures. The linear regression analysis shows reduces charge temperatures compared to the Wart-
sila specifications (see fig. 5.29).
Scavenge temperatures after intercooler is a PI of the intercoolers, which is visualised in fig. 5.29 and is related
to engine and exhaust temperatures.

When the charge temperatures are increased with respect to specification, this results in decreased combus-
tion quality, higher SFOC and higher thermal loads of engine and turbo chargers. The most charge tempera-
ture data is on or below specification.

The decreased charger pressure for a certain load or wrong settings of the intercooler. The crew possibly set
the intercooler to lower to avoid alarm values for increase exhaust gas temperatures, which is form of symp-
tom fighting and no solution of the actual problem of low engine health. The decreased temperatures can be
the result of both under performing inter-coolers and relative low charger pressures, which are both unlikely.
The decreased charge temperatures can result more oxygen for better combustion, but also higher thermal
engine load due larger temperature difference within the cylinders by injected air.

The PI of charge temperatures does support the decisions about solving the real problem of high engine tem-
peratures. The scavenge temperatures need to be known to see if the problem is compensated by relatively
low temperatures settings of the intercoolers.
The pressure and coolant differences over intercoolers should be known to quantified the performance of the
intercooler.
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Figure 5.28: Examples of PI TC pressure
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Figure 5.29: PI of charge temperatures
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5.4 Data-driven Measures Classification

The previous sections of this chapter had the focus on management and decisions support for energy ef-
ficiency, while this section is about the decisions to improve both the technical and operation energy effi-
ciency. Both are interrelated, since the support by the DSS enables quantification of the initial and long term
measure effects over the time.

The relation of the performance control model with measure correlation analyse triggered the own develop-
ment of the classification matrix, which is graphically explained on the next page (see fig. 5.30).
First the operational data and the performance control model are used to quantify the operational perfor-
mance profile (see section 5.4.1). This performance profile is used for measure selection and financial cal-
culations in the measure analysis (see section 5.4.2). The classification matrix graphically summarises the
results of this section (see section 5.4.3)
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5.4.1 Operational Performance Profile

The case study data "went thought" the the performance control model algorithms (see section 4.2) and re-
sulted in the below described summary for financial calculations.

The operational annual profile (see section 5.4.1) specifies the annual consumption per operational mode
and the vessel utilization. The total annual fuel costs and shares per operational mode are previously deter-
mined (see section 5.3.1). These assumed costs per operational mode numbers are estimates from the noon
report analysis.
The vessel utilization was subtracted from the CSR data and additional by onboard meter readings. The on-
board reading divided by the operational years gave 0,57, which is close the utilization 0,58 according the
hired day from CSR data. These values should not be equal since the some hired days are idle, but this analy-
sis indicates the number are not contradicting and can be used for the financial analysis.

Table 5.11: Operational annual profile for financial analysis

Operational profile used for financial analysis

Operational Fuel costs Vessel utilization

[x€1000] [-] [days/year] [-]

Total cuel costs (CSR) 2.300 1 Days hired(CSR) 212 0,58
Towing 1.610 0,7 [hours/year] [-]
Free-running 460 0,2 Engine running 3571 0,41
Idle 230 0,1 Vessel(gearbox) 5000 0,57

The performance control model is quantified for the sailing modes (see table 5.12). The original performance
are given by the shipyard, the actual are measured by operational data and optimal are the theoretical optimal
performance.
Only the engine performance are fully quantified, because of the available data from Wartsila, the PMS sys-
tem and DTR data. The actual engine performances are significantly lower, compared to original specification
and the theoretical optimum. Moreover, according the operational data the four engines never deliver loads
above 80% MCR.
The propeller efficiencies were not measured, but the combinator trail showed about 30% improved propul-
sion efficiency. The theoretical propeller efficiency optimum is between 60 and 70%. The educated guess by
use of the available number argues an operational propeller efficiency between 20% and 30% for free-running
and reduced speed towing. The actual propeller efficiency might be higher for full power towing, but recent
bollard pull tests (see fig. A.5) showed decreased propeller performance (180 MT bollard pull) compared to
the original (200 MT bollard pull). The reason might be increased tip clearance with the fixed propeller ducts
or less likely a wrong calibrated the pitch control.
The original hull resistance is unknown and the actual was not determined. The optimal can be determined
due new efficient hull design, which was beyond scope of this research.
Both the actual daily heat and electrical performance demand are between 1 and 2 MT of MGO every day,
but the electrical demand is mostly delivered by on HFO running shaft alternators. The heat demand of boil-
ers can be fully reduced by a retrofit to sail fully on MGO. The original consumption are not specified by the
shipyard, but the electrical baseload (350-400 kW) is high, compared to other vessels.

Table 5.12: Generic performance quantification of LTD

Vessel System Performance Overview

Engine performance Propeller/Hull Performance Hotel & Auxiliary Performance

Engine [g/kWh] Load [% MCR] Propeller efficiency [%] Hull[kN] Heat [MT/day] Electical[MT/day]
Original 190 - 230 ? ? ? ? ?
Actual 210 - 270 20 -80 20 - 30 ? 1 - 2 1 - 2
Optimal 180 -200 70 - 100 60 - 70 ? 0 0
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The CSR data analysed showed the HFO and MGO mixture about 80:20 represents the average annual fuel
mixture. The €/kWh is calculated (see table 5.13) by considering the different SFOCs, the mixture and the
constants about fuel properties (see table 5.6). The numbers of this table can be used to calculate the fuel ef-
ficiency effects or switching fully to MGO by 2020. The SFOC is translated to the engine efficiency percentage
and 20 g/kWh is about equal to 5% engine efficiency.

Table 5.13: Fuel costs and efficiency overview

Fuel efficiency, costst and mix

HFO MGO Mix(80:20)
SFOC [g/kWh] m3/kWh MJ/kWh efficiency [%] euro/kWh euro/kWh euro/kWh
180 196 7,2 0,50 0,070 0,103 0,077
200 217 8,1 0,45 0,078 0,115 0,086
220 239 9,9 0,41 0,086 0,126 0,094
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5.4.2 Measure Analysis

This analysis explains the relations between measures for finding "synergy" for energy efficiency improve-
ment. Afterwards, the financial analysis is done to show how fuel efficiency can be improved cost-effectively.

Measure relations

The correlations matrix is previously explained (see section 2.3.2) and is used to specify technical relations
between energy efficiency improving measures (see fig. 5.31).

The measures are located at both the axis and the colours are according their corresponding part of the per-
formance control model (see fig. 4.4). The relations of measures are indicated from strong positive ’++’ to
strong negative ’–’ and incompatible ’!’. The correlation matrix supports decisions about which measures to
combine for fuel efficiency improvement en development towards low carbon shipping.

Figure 5.31: Correlation matrix of measures (own composition)

The use of the currently installed combinator mode is beneficial and does not require significant investments.
Due the combinator mode the engine speeds will decrease and exhaust gas temperatures possibly increase.
These side effects can be managed with the previously by this research developed engine optimisation tool
(engine en turbo tuning plus engine maintenance optimisation in matrix).
The combinator mode requires to switch-off the shaft alternators and switch-on one or two auxiliary engines.
The hotel and auxiliary demand reduction, to reduce the required baseload while sailing, can avoid the need
of two auxiliary engines and has therefore a strongly positive correlation with the combinator mode.
The hotel and auxiliary baseload demand reduction has a strongly positive relation to the WHR-ORC, because
this technology required relatively large investment for the installed power. The baseload demand reduction
can be effective for reduction of this required investment. Mention that this WHR-ORC technology works for
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both fixed frequency and combinator mode and auxiliary engines can be switched-off.

The electrical frequency converter after shaft alternators will enable to switch-off all auxiliary engines during
combinator mode activation, but this system is incompatibly with the WHR-ORC since they both share this
same purpose. The electrical frequency converter can be interesting for reduction of maintenance costs and
to save the additional costs of MGO with respect to HFO. The LTD vessels will fully switch to MGO by 2020, so
the second argument is not valid any more.

Other interesting measures in combination with combinator mode are updates of the CPPs control for im-
proved propeller efficiency and possibly with an autopilot for yaw control while towing, to eliminate rudder
angles with additional drag. These two measures were not quantifiable by available data and DSS.
A turbo upgrade is strongly positive with the combinator mode, since the upgraded turbos will have faster
response times and can generate relative high speeds and pressures for improved SFOCs, while running at
variable frequency.

The positive correlated measures to combinator mode are considered within the next financial analysis, to-
gether with some other measures.

Financial Analysis

The previously specified and related measures are considered by this financial analysis. The measure’s NPVs
and payback periods are quantified to support decision about energy efficiency improvement. The suggested
improvement measure package (see section 5.4.2) contains the combinator mode, the engine performance
optimisation, the heat optimisation, the Frequency Controlled Electric (FCE) motors and the annual cleaning
of propellers and hull. Together these measures will cost-effectively improve the energy efficiency and reduce
carbon emissions between 20-30%. The actual improvement depends on the execution of improvement, but
seem to improve energy efficiency by at least 20%. The most measures have a payback period below one year
and all are all cost-effective.

The economical life-span for LTD activities is assumed to be maximal 10 years and NPS calculations are con-
sidered for this period. Boskalis explicitly requested to find the investments with a payback period below 4
year, called "quick wins". No sensitive analysis is done, because of the relative short payback periods.
The cumulative cash flow over the expected remained economical life-span of 10 year is added for people
who do not understand the principles of discounting.

The financial analysis results are summarised by one table (see section 5.4.2) and are explained by next para-
graphs of this subsection. The full overview of the NPV calculations are shown within the appendix. The
analysis shows that Boskalis LTD can cost-effectively improve their by at least 20%, compared to the current
situation that is assumed to be unchanged since 2008. This 20% is a conservative estimation and be proved
to be 30% by the developed DSS in the future. Other possible cost-effective improvements, like for example
the ORC, can future improve energy efficiency toward 40% by 2030 to comply with the IMO GHG reduction
strategy.

Table 5.14: Financial overview of selected measures for LTD

Financial results

Measures X €1000 C0 Fuel saving [%] ∆C f uel ,n ∆Cmai nt ,n Payback N PV10
∑10

n=0 Cn

Combinator mode €1 4,5 €105 €0* <1 €580 €1.600
Engine optimisation €10 3,0 €70 €0* <1 €380 €1.600
Heat optimisation €24 7,8 €180 €0 <1 €980 €1.770
FCE motors €8 0,5 €10 €3 <5 €45 €80
Annual propeller Polishing 0 2,5 €50 €4 <1 - €480
Annual hull cleaning 0 2,0 €40 €10 <1 - €315

Total €45 20 €460 €15 <1 €2.410 €4.350
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This financial analysis is not an investment proposal, since the scope is limited to quick wins only, but is
made to illustrate the benefits of onshore data for decision support. The TCO should be considered over
the by Boskalis expected life-time of their vessels. The scenarios of expected fuel and carbon prices can be
included for comparison of the ’quick wins ideas’, including additional ’long term wins’ ideas, second hand
options and the new building options. The maintenance costs should be considered more extensively to-
gether with more detailed engineering of measures for a investment proposal. For example, the additional
maintenance cost for engine performance optimisations is no or hardly quantifiable in advance.

Combinator mode

The combinator mode tries to optimise both the CPP pitch and RPM, to improve the daily fuel efficiency by
30%(see section 4.2.3 & section 5.3.2), equivalent to 7,5 MT, for the free-running consumption share of 20%
(see section 5.2.1 & fig. 5.13), which is equivalent to 6% annual fuel saving. The combinator mode is currently
installed and operational at all vessels, but not used except during the organised sea trial, so €1000 is assumed
for the initial investment to train and instruct the crew.

The lowest annual fuel save of 4,5 (22,5% more efficient per nautical mile) is assumed for a "careful" calcula-
tions, since more experience with the combinator mode is required, but still the choice for combinator mode
is obvious. A discount rate of 10% is used for this a low risk investment. The N PV5 is €360 thousand and the
N PV10 is €580 thousand. If the combinator mode effectively will save 15% instead of measured 30% of the
daily free-running fuel consumption, the N PV5 is €273 thousand and the N PV10 €443 thousand. For both
cases of 15% or 30% the payback period is less than one year.

The combinator mode seems interesting for reduced towing modes at two engines, but the LTD department
did not test this during this research. The effect and improvement potential can be quantified by the devel-
oped data-driven DSS.
The programming logic controller for combinator mode can be updated for 1-3% additional fuel saving (Arm-
strong, 2013). A combinator mode was installed by the shipyard and has a relatively simple PLC that only
considers the RPM and Pitch of the engines. The PLC seems to linear interpolate between 8 defined point,
which is a simple control

The results are not validated for different engine loads and speeds, but a combinator curve next to fixed fre-
quency can be produced for MT/NM by the data-driven prototype for operational decision support onboard.

Engine Performance Optimisation

A data-driven decision support tool for engine performance optimisation was developed (see section 5.3.4
& section 5.3.5) and showed SFOC improvements about 10 to 30 g/kWh to a 200 g/kWh average (see sec-
tion 5.3.4)), equivalent to 2,5% and 7,5% engine efficiency improvement.
The 3% of section 5.4.2 conservative and might by 60 g/kWh, since the current awareness of SFOC and related
daily maintenance and tuning is low onboard and the not available data. Engine performance optimisation in
general as the potential the save 1 to 4% of annual fuel consumption (IMO, 2018a) and the shipping company
Stena Line claimed they achieved a 8% fuel saving during their lighthouse conference presentation about en-
ergy efficiency.

A discount rate of 10% is used, considering this measure as low risk investment. The initial investment to
implement the system onboard is maximal 10.000 euro (IMO, 2018a) and no significant maintenance costs
are required. The estimated annual fuel saving is 3% and the N PV10 of €380 thousand. The payback time less
than one year.

Heat optimisation

The heat optimisation is mainly about the two MGO boiler, that consume 1,5 MGO per day all year, which
is about 7% of total annual fuel consumption. The LTD vessel can stop using HFO or install exhaust gas
economisers to heat HFO by thermal oil instead.
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One exhaust gas economiser is assumed to cost €6.000,- and is installed at all four engines, resulting in a in-
vestment of €24.000,-. The two boilers burn together 1,5 MT of MGO equals €860 per day. The vessels are sail-
ing 57% of the year and produce enough heat 208 days, that saves €180.000 per year. Noaddi ti onal mai ntenancecost ar eaccountedby theheatexchang er i nthechi mne yneed tobecleaned toavoi di ncr eased pr essur es,especi al l y whensai l i ng HFO.

The financial results are a N PV10 of €980 thousand and a payback period of less than one year.

The kWh output of one exchanger is more than required to substitute both boilers (see appendix D.3). The
overcapacity can be stored and used instead of electrical heaters. A control system will be required to prevent
overheating over thermal oil and storage of heat. Future research can be done to investigate implementa-
tion of two exchangers instead of four. These heat exchanger can be used for application of ORC (see ap-
pendix D.3).

Frequency Controlled Electric Motors

The seawater cooling runs a full power while sailing, without a sense for the required power. The electrical
baseload can be reduced for improvement matching of auxiliary engines or ORC. The energy saving is 0,5 of
the total annual energy consumption (IMO, 2018a). A frequency controlled motor can save 20-30% of energy
consumption compared to fixed frequency controlled motor. The investment, additional maintenance costs
and gains are respectively small, but the payback period about 2-4 years for the two seawater pumps of 25kW
each.
The required initial investment is different according different website, but the prices are expected to drop
fast during the coming decade due expected increased demand. Per 100 kW installed pump power 150 USD
initial investment is assumed and €2.600 additional maintenance (IMO, 2018a).

Electrical Frequency Converter

The EFC can be installed after shaft generators to produce a synchronised AC power for the grid, when the
main engines are running at variable frequency during combinator mode. No additional auxiliary engines
are required that consume higher prices MGO instead of HFO, but this situation will not occur, since all LTD
vessel will switch to MGO before 2020.

The EFC is not expected to cover instantaneous power demands of for example bow thrusters, but this is not
a problem since the EFC will only be used during combinator mode. Possibly the EFC cannot handle other
relatively small power demands onboard, which can be solved with a battery and ’peak shaving’ control sys-
tem.

Organic Rankin Cycle

The working principle and calculation sheets (see appendix D.3 and appendix D.3) give insight about how
to quantify the measure. The operational data was not sufficient to match the ORC system with the vessels,
because relevant flow rates, temperatures and running hour were not available in the data. Nevertheless, an
educated guess is made.
The ORC systems are only operation for ’steady state’ situations of the power plant, which is during free-
running and towing. For the current situation, the average baseload is assumed to be 350 kW for 5000 run-
ning hours per year, for 0,115 €/kWh (MGO price at 200 g/kWh). The WHR-OCR can theoretically deliver
the electrical baseload and save €200.000 every year. The initial investment of €450.000-€750.000 and annual
maintenance costs are €1.700. Together the estimated payback period will be between 2 to 4 years, according
the simplified assumptions.
Operational data have to show the hours that the ORC system actual can deliver the required baseload, which
is unknown for sailing at two allocated engines. The actual operational data of LTD is not convincing and
the payback period can also by 6 years or even longer. Future research can find more accurate numbers for
decision support.
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Turbocharger upgrades

The upgrade of turbochargers costs €175.000 per turbocharger and assumed to save 1-3% of annual fuel con-
sumption. The NPV calculation showed a required payback period of about 20 year per upgrade.

Propeller Polish and Hull cleaning

The annual hull cleaning can save between 1-5% and propellers polish 3-4% of the annual fuel consumption
(IMO, 2018a). The estimates of 2% and 2,5% respectively are conservative, but are still cost-effective. These
maintenance procedures are currently done every 2,5 to 5 year.

The prototype system did not quantify added resistance by fouling, but the BID did explain how this can be
done and what data is required.
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5.4.3 Classification

The primary objective of this research is to develop a DSS to improve energy efficiency cost-effectively. The
data-driven DSS perspective can theoretically include all measures, (i) which can financially be quantified
or not. If the DSS is capable to quantify, (ii) the measure may have a short or long pay-back period. These
two parameters together form the four classes of energy efficiency measures catagorisch (see fig. 5.32). This
classification matrix gives a generic overview about the seriously considered measures by this research, their
payback periods and ’Data Readiness’. This matrix does not represent a static environment and parameters
can significantly change overtime, due fuel price fluctuations, technology prices and for example future car-
bon prices.
The term ’Data Readiness’ is introduced to softly quantify if the DSS is capable of quantification of the pay-
back periods. The Data Readiness is expressed in required years for the data collection and DSS development
to support these decisions about investment. The Data Readiness of one year is chosen because of the equal
case study duration, to divide the ’quick wins’ and ’long term wins’. The Data Readiness is related to the mea-
sure complexity and the available data (quality) onshore.
The payback period is the financial parameter of the classification matrix and divides the quick and long term
wins by the duration of four year. This duration can be doubted, but is assumed for this case study to illustrate
the overview.

Engine Performance
Optimisation

Combinator Mode Heat
Optimisation

Annual Wet
Surface Cleaning

Turbo Upgrade

Organic Rankin
Cycle

Electrical frequency
converter (PTO)

+ 10

Frequency Controlled
Motors

JIT- Management

Figure 5.32: Measure Classification matrix (own composition)

The Classification matrix concept is applied for the case study in a simplistic manner, but classification is
a branch of machine leaning. If Boskalis collects the relevant data of all vessels, all the measures can be
classified for all vessels. The measures can be dots, seized by their NPV-value, so a roadmap the further cost-
effective improvement of energy efficiency.

This same calcification matrix is used for SEEMP workshops at Boskalis. Most ’quick wins’ were related to
human behaviour and awareness. The implementation of a DSS in combination with awareness trainings
(Delft) is not explicitly mention in fig. 5.32, but the most effective measure.
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5.5 Conclusions of Case Study

This case study for development of a data-driven DSS was the first initiative development for data-driven de-
cision making about energy efficiency at Long Distance Towage business unit. No previous related studies or
ICT systems were internally available from previous work. The prototype system is built from ’scratch’ with
historical low quality data. The LTD organisation has no awareness about fuel efficiency or data quality and
did not improve during this case study research.

The LTD organisation can cost-effectively increase their competitiveness on the wet transport markets by
improvement of their fuel efficiency, which is about 60-70% of the total OPEX. The older vessel designs cannot
compete the capabilities of the newer LTD vessel designs of ALP, but can be more price competitive then they
are now. This price competitiveness is especially interesting for the offshore commodity market which has a
30% share of the total projects and is expect to increase to 45% by 2021. The capability market competition
of the oil and gas installations will become more prices driven by 2020 due the sulphur capture, since more
MGO vessels are expected to enter this LTD market.
The proposed dimensionless shipping performance indicator for energy efficiency can be used to quantify,
monitor and control by Boskalis and authorities. The key performance indicators do enable the middle man-
agement to monitor their benchmarks and target of operational fuel efficiency.
The business process modelling notation showed the complexity of the fuel consuming business process,
with many decision makers involved and no available database with relevant data. The developed prototype
is implemented within the new process design and illustrated the applicability for the data-driven decision
making.

The LTD organisation did not previously quantify their fuel consumption and efficiencies in relation to their
systems or activities. The developed prototype proved that onshore control of fuel efficiencies is possible, to
enable data-driven decision making for optimisation.
The combinator mode was tested and quantified for the free-running mode optimisation decisions. The pro-
totype can define the combinator curve to support the decision of sail combinator mode.
The engine performance optimisation tool found the days after overhaul on the Wartsila specifications and
is capable of real-time engine performance monitoring, if real-time data becomes available. The engine con-
troller data is unreliable, since data was missing and inaccurate. Both improved the engine allocation and
maintenance procedures can be monitored by this engine performance optimisation prototype in practise.
The turbocharger underperformance are specified and monitored by the prototype, but the data quality did
not allow to find the quantitative relation with the SFOC.
The hotel and auxiliary performance optimisation quantified the heat and electrical performance and sup-
ported optimisation opportunities.

The use of the combinator mode, the engine performance optimisation, heat optimisation, frequency con-
trolled electric motors and annual hull and propeller cleaning save at least 20% of the annual fuel consump-
tion and carbon emissions. The NPV of this package over 10 years is €2,4 million. The 20% is conservative,
but theoretical complies the LTD vessel with IMO GHG strategy till 2025. The fuel mixture of 80% HFO and
20% MGO is likely change to 100% MGO or higher priced low sulphur HFO from 2020, which will increase
the NPV and this measure package. The LTD organisation is recommended to take action and prepare for the
future before 2020.
The Organic Rankin Cycle based wast heat recovery systems can be cost-effective, but convincing operational
data is not available. This technology is not a proven concept yet, but the investment can be a payback period
of 2 to 6 years.
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5.6 Future work

This Data-driven DSS prototype development case study was limited by time and can be further developed in
the future. This section highlight some possibly interesting future work. The following suggestions are purely
related the DSS system and not to improvement of operations or design.
The time series indexes of both the PMS and the noon report can be matched in the future, to related and in-
tegrated these data source to each other. Moreover, the winch data and engine related data cannot by joined
without large quality losses, again this is result of unmatchable time series indexes. If these data are inte-
grated, different parameters can be connected within, for example a Artificial Neural Network that related
turbocharger and weather to the engine performance.

The both data acquisition systems can be improved for higher data quality and more rapid evolution of the
prototype. The noon reports require a protected format with all relevant information, which can automat-
ically be processed within the onshore database. The PMS system can sent daily or real-time data to the
onshore database, instead of days delayed. The improved timeliness will enable ’real time’ decision support
at the fleet management department.

The degreased performance over time can be visualized by a corrected value of decrease to determine optimal
maintenance intervals. For example, the increased hull resistance corrected for weather effect or increases
SFOC corrected for environment and power output.

The relation of propulsion efficiency, rudders and propeller speed, pitch and the advanced water inlet speed
can be quantified for free-running and towing modes. The combinator mode and rudder angle optimisation
seem interesting to improve fuel efficiency beyond already quantified optimisations.

The statistics and operation data can be used in combination with physics based simulation modelling, which
is called ’a digital twin’. The theoretical optimums can be determined and large design conversion be quanti-
fied. The digital twin supports decisions for new build projects, conversion or retrofits.
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Chapter 6

Conclusions

The data-driven decision support system, developed during this research, gives a competitive advantage by
the cost-effective improvement of the fleet’s energy efficiency and by the controlled compliance with the IMO
green house gas reduction strategy. The conceptual Business Intelligence Design provides the foundation for
data-driven decision support about energy efficiency for the entire Offshore Energy fleet.

Boskalis Long Distance Towage can cost-effectively improve their energy efficiency by 40% toward 2030 with
respect to 2008 and thereby fully comply with the IMO green house gas reduction strategy. The suggested
measures can improve the energy efficiency between 20% and 30%, the actual improvement have to be mea-
sured by the developed data-driven decision support system. Additional measures can cost-effectively im-
prove the remained required energy efficiency improvements in the future. The formulated Shipping Perfor-
mance Indicator can monitor the energy efficiency improvements over time by one dimensionless number.
The conclusions of this whole development study are summarized and thereafter each point is explained in
a separate paragraph.

• The developed system provides a competitive advantage by cost-effective reduction of fuel consump-
tion;

• The system gives insight and organisational control of fuel performance by quantitative benchmarks
and targets about energy efficiency, which supports compliance with future law and regulations about
energy efficiency and green house gas emissions;

• The developed work vessel energy performance control model is required to derive insights from the
vessel data;

• The low data quality and the not available information infrastructure are the major constraints for de-
velopment and prototyping of the data-driven decision support systems at the Boskalis Offshore Energy
Division;

• The Long Distance Towage prototype gives useful insights for energy performance optimisation of en-
gines, turbochargers, hotel and auxiliary systems, free-running and towing;

• The Long Distance Towage case study showed a realistic cost-effective reduction of annual fuel con-
sumption by at least 20%.

The cost-effective improved energy efficiency has the financial benefits of lower costs and less fuel stock or
less bunker transfers required. The improved energy efficiency creates additional advantage, when Boskalis
will switch to higher priced low sulphur fuels or renewable energy sources like bio-fuels. Being more cost-
effective enables Boskalis to offer sharper prices to clients or create additional profit. The competitive advan-
tage by fuel efficiency is larger at the more elastic price-driven offshore commodity markets, compared to the
inelastic availability offshore markets.

117



The Corporate Social Responsibility department collects the best available fuel consumption and carbon
emission data with a ±10% inaccuracy per quarter of a year. Moreover, this data has no significant rela-
tions to operational activities or technical systems and therefore provides no performance insights. The de-
veloped Business Intelligence Design and prototype both do give insights and organisational control about
energy efficiency by Shipping Performance Indicators, Key Performance Indicators and Performance Indica-
tors, which are mathematically related. This organisation control supports compliance with future law and
legislation with the IMO greenhouse gas reduction strategy.
The developed energy performance control model for work vessel give a graphical overview of what opera-
tional data to collected and how to relate this data for insights. The currently available unstructured oper-
ational vessel consumption data gives no insights for decision making. The structured data related to the
operational modes, operation and design profiles and the equipment do give insights.

The currently available data quality is insufficient for advanced energy efficiency analysis and algorithms. The
data is inaccurate, because the data is incomplete and inconsistent, contains non-unique identities, lacks va-
lidity rules and has both an inconsistent and delay timeliness. The information infrastructure can not provide
real-time or a daily data flows, which is a constraint for decision support prototyping at operational, tactical
and strategic level of the organisation.

The prototype system of the case study is a preliminary design made after the conceptual Business Intelli-
gence Design. The engine performance optimisation tool had the focus and gives insight and performance
control about Specific Fuel Oil Consumption. The energy performance decrease is quantifiable after over-
haul and the energy efficiency of different engine allocations. The related turbochargers performance were
off-design and have a negative effects on combustion quality. Engine performance optimisation can at least
save 3-6% of annual fuel consumption.
The developed hotel and auxiliary system optimisation tool gives insight to improve energy efficiency by
better matching of auxiliary engines with the baseload. These insight are useful for optimal use of the com-
binator mode, which was quantified by the system for free-running.

The suggested optimisation package for Boskalis Long Distance Towage can cost-effectively save at least 20%
of the annual fuel consumption, with an investment payback period below one year and a combined 10 year
Net Present Value of €2.5 million. This package focused for sailing long distances at combinator mode, with a
onboard tool for engine and auxiliary system optimisation, together with annual cleaning of hull and polish-
ing of propellers. The 20% saving is an absolute saving for equal productivity and is a conservative prediction.
The actual savings in the future can be monitored by the developed data-driven decision support system.
The waste heat recovery with the Organic Rankin Cycle was not convincingly quantifiable with the currently
available data, but has an expected payback period between 2 to 6 years and the potential of 6-9% cost-
effective improvement of fuel efficiency. The financial benefits of this measure will increase by fully switching
to MGO from 2020.
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Chapter 7

Recommendations

The research conclusions are translated to recommanded actions for Boskalis Offshore Energy. The inter-
related bullet points below are related to their previously stated conclusion bullet points. The bullet point
below are explained per paragraph of this section.

• Implement a data-driven decision support system for cost-effective reduction of fuel consumption,
competitive advantage and compliance with the IMO greenhouse gas reduction strategy;

• Define and communicate actual energy efficiency performances, benchmarks and targets for the or-
ganisation and their corresponding fleet catagorisch to support compliance with the IMO greenhouse
gas reduction strategy;

• Use and improve the developed work vessel and organisational energy performance model for all present
vessel catagorisch of Boskalis Offshore Energy to create insights about energy efficiency;

• Implement an improved data acquisition system and a real-time information flow for required data
quality;

• Implement and further improve the developed monitoring system for all the vessel of Boskalis Offshore
Energy;

• Create awareness about energy efficiency within the Boskalis Offshore Energy organisation.

The implemented system for energy efficiency will create a competitive advantage for Boskalis Offshore En-
ergy. Find the most cost-effective improvements of every vessel. The system can be realized as extension of
Boskalis.world or by third-parties like We4Sea. Consider to build an API for Anglo-eastern and Boskalis.world.
Other large shipping companies, like Maersk, Wallenius and Stena line already made this decision and pre-
ferred the in-house development.

Define the energy performance understandable for the project oriented organisation to improve productivity,
cooperation and creativity of both individuals and departments. Mitigate the risk of no performance moni-
toring and control if the IMO regulation demands it.

Develop and monitor Shipping Performance Indicators and Key Performance Indicators for all the eight ves-
sel catagorisch of Boskalis energy to monitor overall improvement. Use and further develop the energy per-
formance control models for more business intelligence. Enrich the noon report data and the performance
monitoring systems data with the required data, according to the Business Intelligence Design within this
thesis. Find opportunities of physics-based simulation models or Artificial Neural Networks that can be built
or validated with this data.

The data quality have to be improved for required insights of the energy efficiency. The time series data have
to be 100% complete, 100% consistent, contain 100% unique identities and only valid entries. The timeliness
of performance monitoring systems and reports need to be consistent for integration of these data sources
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and to create additional additional added-value. This level of data quality requires a new data acquisition sys-
tem at Boskalis Offshore Energy. This system is recommended to be structured by standardized general mod-
ules and fleet category specific modules. Establish an information flow from vessels to the onshore databases
and dashboards with at least a daily update.

The developed monitoring system can be further improved by more focus for effects over time and the main-
tenance interval optimisations. The engine performance optimisation tool has the potential to improve en-
ergy efficiency and can be implemented at every vessel with diesel engines.
Boskalis Long Distance Towage is recommended to use the data-driven system to quantify effects of combi-
nator mode for reduced towing and reprogramming of the Controllable Pitch Propeller controls and rudder
angles elimination for long distance towing.

Start to create and train energy efficiency awareness onboard and onshore. This research found many way to
cost-effectively improve energy efficiency and the incentive of the IMO strategy about Greenhouse gas reduc-
tions. Most employees within the operational and tactical management layers were not aware or convinced
by the benefits of energy efficiency or the societal responsibility of Boskalis.
The developed Data-driven Decision Support System is an useful tool, but the wiliness of the organisation to
improve energy efficiency and cut carbon emissions is a prerequisite for being effective.
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A.1 Main Particulars

Figure A.1: Main particulars from Shipyard: Niigita
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Figure A.2: Main particulars from sales department
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A.2 Deck Arrangement

Figure A.3: Power system of Fairmount vessel
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A.3 Power Plant Outline

Figure A.4: Power system of Fairmount vessel
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A.4 Bollard pull trail results of MARIN

Figure A.5: Bollard pull trial result of Expedition 2019
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B.1 Poster to Explain Business Process Modelling Notation 2.0

Figure B.1: BPMN 2.0 Poster
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B.2 BIMCO Ocean Towage Agreement

Sam
ple copy

Copyright © 2008 BIMCO. All rights reserved. Any unauthorised copying, duplication, reproduction or distribution of this BIMCO SmartCon document will 
constitute an infringement of BIMCO’s copyright. Explanatory notes are available from BIMCO at www.bimco.org. First published 1985, revised 2008. 
Recommended by the International Salvage Union (ISU).

1. Date and place of Agreement
          
         

2. Tugowner/place of business (Cl. 1)
                
         

3. Hirer/place of business (Cl. 1)
          
         

4. Tow (name and type) 
          
         

5. Gross tonnage/displacement tonnage
          
         

6. Maximum length/maximum breadth & towing draught 
(fore and aft)
         
         
         

7. Flag and place of registry
          
         

8. Registered owners
          
         

9. Classification society
         

10. P. & I. liability insurers
         

11 General condition of tow
         

12. Particulars of cargo and/or ballast and/or other property on board the tow
         

13. Tug (name and type)
               
         

14 Flag and place of registry
         
         

15. Gross tonnage
         

16. Classification Society
         

17. P. & I. liability insurers
         

18. Certificated bollard pull (if any)
         

19. Indicated BHP
         

20. Estimated daily average bunker oil consumption in good weather and smooth water
(a) at full towing power with tow
         
(b) at full sea speed without tow
         

21. Winches and main towing gear
         

22. Nature of service(s) (Cl. 2)
         

23. Contemplated route (state restricted waters if any (Cl. 1, 
7 and 24)
         

24. Place of Departure (Cl. 13)
         

25. Place of Destination (Cl. 14)
         

Figure B.2: BIMCO TOWCON 2008 for ocean towage
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Figure B.3: BIMCO TOWCON 2008 for ocean towage
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C.1 Provided Data by Boskalis

Figure C.1: Example of Daily Progress Report
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Figure C.2: Example of Daily Technical Report
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Figure C.3: Example of CSR data sheet
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C.2 Visualisation of Data Quality
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Glacier: noondata: comparision of travelled distance per 24 hours

(a) Travel distance calculation accuracy check
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Glacier: Engine 1: Calculated break power comparison
Regression 3th order(r2 = 0.98)
power comparision

(b) Break power calculation accuracy check

Figure C.4: Data accuracy checks of engine power and travelled distance over 24 hours

C. Provided Case Study Data 141





Appendix D

Energy Efficiency Improvement Measures

143



D.1 Long List of Energy Efficiency Improvement Measures

Table D.1: Long list of ideas

Design level

Idea Case study scope Initial investment Annual Energy Saving

Hull conversion - - -
Propeller & rudder retrofit - - -
WHR-ORC (per 100 kWe) + € 150.000 - 200.000 2-9%
Exhaust to Thermal oil heat exchange + € 4.000 - 6.000 per unit 1-2 %
HT-cooling to fresh water heat exchange - € 1.000 - 2.000 per unit -
To Hybrid conversion - > €250.000 3-42%
Power Management System application - € 80.000 - 100.000 1- 35%
PTO to PTI conversion - € 150.000 -
Variable-frequency drive PTO conversion - € 50.000 -
Propulsion Improvement Device + € 150.000 1-10%
Turbo retrofit - € 600.000 -
Turbo upgrade + € 150.000-200.000 1-3%
Cold ironing - - -
CPP reprogramming (Adaptive) + 1-15 %
Peak shaving - - -
Solar panel - - 1-12%
Flettner Rotors - - -
Kite - - -
Weight of material reduction - - 1-21%
frequency controlled electric motors + € 100-200 per kW installed 1%
Air lubrication - - 2-17%

Maintenance level

Idea Case study scope Initial investment Annual Energy Saving

Anti Fouling paint - € 30.000 - 500.000 2-10%
Hull cleaning + € 5.000 - 50.000 1-5%
Propeller polish + € 4.000 - 6.000 3-4%
Engine maintenance optimisation - - 1-10%
Efficient auxiliary demand + - 1-2%
Efficient hotel demand + - 1-2%
Auto pilot upgrade + < € 1.000 0.25-1.5%
Purification optimisation - - -

Operational level

Idea Case study scope Initial investment Annual Energy Saving

Engine & Turbo optimisation (manual) + € 5.000-10.000 1-4%
Engine & Turbo optimisation (automatic) - € 3.000-7.000 per cylinder 1-4%
Combinator mode + € 0 present or € 5.000 to install 1-20%
Awareness Training (crew) + 1-10%
Weather routing - - -
Trim & draft optimisation - - 0-3%
Just-in-time (JIT) routing + - 1-50%
Spinning reserve optimisation - - -
Ballast water reduction - € 0 3-8%
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D.2 Net Present Value Sheet of Case Study

Figure D.1: NPV calculation sheet of case study
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D.3 Organic Rankin Cycle Technology Sheets

Figure D.2: Combine heat recovery performance table (provided by bowman)
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Figure D.3: Orcan efficiency pack working principle and maintenance cost overview

D. Energy Efficiency Improvement Measures 147



Figure D.4: Organic Rankin Cycle electrical output in relation to thermal power and thermal oil temperatures (provided by Viking heat
engines)
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Figure D.5: Organic Rankin Cycle system development timeline (provided by Viking heat engines)

D.4 Cost Overviews of Monitoring Related System

Table D.2: Costs of Performance Monitoring System components according Gaby Steentjes

Hardware

Component Initial Investment Annual Maintenance cost
GPS logger € 3000 €100
Volumetric flow meter € 5.000 €1.500
Coriolis flow meter € 15.000 €1.500
shaft power meter € 25.000 €1.000
Thrust power meter € 45.000 €1.500
Electric power meter € 5.000 < €100

Data Transfer

Remote controlled vessel € 150.000 per month (bron)
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Table D.3: Pricelist Marlink data plan

Marlink price list

Bandwidth options [kbps] Lease Period [$ / months]
Package MIR Down MIR Up CIR Down CIR Up 36 months 60 months
Standard A+ 1024 512 128 64 2.700 2.295
Standard B+ 2048 512 256 128 3.900 3.315
Standard C+ 3072 512 512 256 7.700 6.545
Standard D+ 6144 1024 1024 512 8.800 7.48
Standard E+ 6144 1024 2048 1024 16.000 13.600
Standard F+ 6144 1024 3072 1024 20.800 17.680
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D.5 Corporate Statistic Data of Long Distance Towage

count mean std min 25% 50% 75% max
year 20 2.016 1 2.014 2.015 2.016 2.016 2.017
Q1_O 20 59 30 0 43 66 86 91
Q1_HFO 20 1.729 1.142 0 710 1.708 2.540 4.225
Q1_MGO 20 201 117 0 135 165 275 469
Q2_O 20 53 30 0 35 59 78 91
Q2_HFO 20 1.351 1.029 0 796 946 1.988 3.958
Q2_MGO 20 225 232 0 151 167 206 1.021
Q3_O 20 55 29 0 47 60 79 92
Q3_HFO 20 1.363 989 0 403 1.393 2.259 2.960
Q3_MGO 20 256 247 0 124 161 367 1.032
Q4_O 20 45 25 0 32 52 62 87
Q4_HFO 20 1.252 994 0 667 999 1.646 3.212
Q4_MGO 20 215 144 0 135 173 231 565
year_O 20 212 76 20 181 237 258 305
year_HFO 20 5.695 2.397 387 4.287 5.937 7.048 10.022
year_MGO 20 897 536 321 630 699 933 2.354
Q1_HFO_MT 20 1.712 1.130 0 703 1.691 2.515 4.183
Q2_HFO_MT 20 1.337 1.018 0 788 937 1.968 3.919
Q3_HFO_MT 20 1.349 979 0 399 1.379 2.236 2.930
Q4_HFO_MT 20 1.239 984 0 660 989 1.629 3.180
YEAR_HFO_MT 20 5.638 2.373 383 4.244 5.877 6.977 9.922
YEAR_MGO_MT 20 768 460 275 540 599 800 2.018
Q1_BOTH_MT 20 1.884 1.114 0 921 1.918 2.636 4.428
Q2_BOTH_MT 20 1.530 1.053 0 977 1.197 2.227 4.060
Q3_BOTH_MT 20 1.569 1.003 0 706 1.653 2.423 3.047
Q4_BOTH_MT 20 1.424 989 0 800 1.184 1.783 3.296
YEAR_BOTH_MT 20 6.406 2.435 711 4.819 6.480 7.944 10.600
YEAR_HFO_USD 20 2.207.220 929.163 150.019 1.661.653 2.300.937 2.731.580 3.884.377
YEAR_MGO_USD 20 441.265 263.936 157.795 309.809 343.872 459.119 1.158.590
BOTH_FUEL_USD_Q1 20 769.012 434.299 0 400.347 792.605 1.053.968 1.778.214
BOTH_FUEL_USD_Q2 20 634.289 423.161 0 412.611 498.196 898.012 1.615.521
BOTH_FUEL_USD_Q3 20 654.242 403.189 0 351.507 710.266 976.388 1.214.313
BOTH_FUEL_USD_Q4 20 590.987 390.006 0 339.850 497.314 747.504 1.311.707
BOTH_FUEL_USD_Y 20 2.648.486 976.007 338.222 1.991.869 2.764.263 3.295.918 4.273.620
YEAR_MGO_EUR 20 383.901 229.625 137.281 269.534 299.169 399.434 1.007.973
BOTH_FUEL_EUR_Q1 20 669.041 377.840 0 348.302 689.566 916.952 1.547.046
BOTH_FUEL_EUR_Q2 20 551.831 368.150 0 358.972 433.430 781.270 1.405.503
BOTH_FUEL_EUR_Q3 20 569.191 350.775 0 305.811 617.931 849.458 1.056.452
BOTH_FUEL_EUR_Q4 20 514.158 339.305 0 295.669 432.663 650.329 1.141.185
BOTH_FUEL_EUR_YEAR 20 2.304.183 849.126 294.253 1.732.926 2.404.909 2.867.449 3.718.049
Q1_E 20 21.248 12.494 0 10.467 21.667 29.652 49.839
Q2_E 20 17.290 11.846 0 11.061 13.530 25.084 45.653
Q3_E 20 17.739 11.291 0 8.174 18.723 27.288 34.268
Q4_E 20 16.088 11.103 0 9.071 13.402 20.101 37.063
year_E 20 72.363 27.396 8.179 54.436 73.481 89.776 119.366
Q1_BOTH_GHG 20 5.882.539 3.467.844 0 2.887.607 5.994.495 8.218.655 13.810.673
Q2_BOTH_GHG 20 4.782.639 3.282.951 0 3.056.425 3.741.925 6.949.450 12.656.951
Q3_BOTH_GHG 20 4.905.179 3.129.224 0 2.236.227 5.174.172 7.560.241 9.499.789
Q4_BOTH_GHG 20 4.449.997 3.079.992 0 2.505.823 3.704.954 5.565.806 10.275.397
YEAR_BOTH_GHG 20 20.020.354 7.593.583 2.244.068 15.060.561 20.293.107 24.832.611 33.069.729
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