
Fault-Tolerance Testing on Small
Quantum Error-Correcting Codes

Thesis

submitted in partial fulfilment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

Author:

Student ID:

Supervisor:

BSc. Y.Yang

4738896

Dr. C.G.Almudever

MSc. L.Lao

December, 2019

Quantum and Computer Engineering Department,

Faculty of Electrical Engineering, Mathematics & Computer Science,

Delft University of Technology,

Delft, The Netherlands.

Abstract

Fault-Tolerance Testing on Small Quantum Error-Correcting Codes

Yaoling Yang

Master of Science

Department of EEMCS

TU Delft

2019

Quantum computers hold the promise to solve some hard problems that are intractable for even

the most powerful current supercomputers. One of the most famous examples is Shor’s algorithm for

factorizing large numbers, which has exponential speedup compared to its best classical counterparts.

However, running such an algorithm will require to build a large-scale quantum computer consisting of

thousands or even millions of qubits that include quantum error correction (QEC) and fault-tolerant

(FT) mechanisms.

Quantum computing is already a reality with the so-called Noisy Intermediate-Scale Quantum (NISQ)

processors, some of them available in the cloud. Noisy refers to the imperfect control over the qubits and

intermediate-scale to the relatively low number of quits (from fifty to a few hundred). Although current

and near-term quantum devices will not have enough qubits for implementing large and fully corrected

quantum computations, the use of small quantum error correction codes may extend the computation

lifetime of NISQ devices. In this context and as a first step, it is important to test and demonstrate the

fault-tolerance of these QEC codes.

In this thesis, we explore the fault-tolerance of two small quantum correction codes that are good

candidates to be applied to NISQ processors, the [[4,2,2]] code and the [[7,1,3]] Steane code. To this

purpose, by following the FT criterion prosed by Daniel Gottesman in 2016, we tested both codes using

two simulators, the stabilizer formalism simulator that includes quite simple error models and a full

density matrix simulator called quantumsim, which includes more realistic noise. The simulations are

performed under reasonable noise parameter values. For the [[4,2,2]] code, 235 circuits are tested based

on the two simulators. The results show that in the stabilizer formalism simulation, the FT criterion is

satisfied for all circuits, while not fully satisfied in the full density matrix simulation. For the [[7,1,3]]

Steane code, we use a parallel-flag error correction implementation which is tested using the full density

matrix simulator. Our results show that without applying any QEC cycle, for all circuits (84 circuits

for 1 logical qubit simulation and 452 circuits for 2 logical qubits simulation), the error rate of the

encoded circuits is lower than the unencoded ones. Adding a quantum error correction (QEC) cycle will

in general increase the error rate of the computation.

ii

Acknowledgements

I would first like to thank my supervisor Dr.Carmen Garcia Almudever for offering me the chance

to work on a quantum related thesis topic pursuing my interest as well as her guidance and patiently

reviewing my thesis, and my daily supervisor Lingling Lao for her extremely patient guidance along half

of my graduate study. I would also like to thank those people help me with my thesis project, especially

Hans for helping me implement the OpenQL, Slava for answering my questions about quantumsim via

email, Diogo for our discussions about quantumsim and OpenQL. I would also like to thank my friends in

the QCA lab (Abid, Diogo, Hans, Peter, ...), and also my friends from the microelectronics track (Angqi,

Daguang, Jiarui, Mengxin, Miao, Qiyou, Wencong, Xianglong) as well as all my friends encountered in

TU Delft, for making my graduate life unforgettable.

Finally, I would like to express my gratitude to my family, especially to my parents for their uncon-

ditional support to my study and life.

Contents

1 Introduction 1

1.1 A glimpse of quantum computing . 1

1.2 Fault-tolerant quantum computation . 2

1.2.1 The necessity for quantum error correction . 2

1.2.2 Quantum fault-tolerance and the threshold theorem 3

1.2.3 The motivation for testing quantum fault-tolerance 5

1.2.4 Thesis organization . 6

2 Quantum error correction 7

2.1 Discretization of the errors . 7

2.2 The stabilizer formalism . 8

2.3 Syndrome extraction . 9

2.4 QEC codes used in the simulation . 11

2.4.1 The [[4, 2, 2]] error-detecting code . 11

2.4.2 The [[7,1,3]] Steane code . 13

3 Simulation of QEC circuits 17

3.1 The criterion for testing quantum fault-tolerance . 17

3.2 The stabilizer formalism simulation . 18

3.2.1 An overview of the stabilizer formalism simulation 18

3.2.2 The depolarizing error model . 19

3.3 The full density-matrix simulation . 19

3.3.1 A brief introduction to quantumsim . 19

3.3.2 The noise model . 20

3.3.3 Scheduling . 21

4 Simulation results 23

4.1 Simulation results using the stabilizer formalism simulator 23

4.1.1 The results of simulating the [[4,2,2]] code . 23

4.2 Simulation results using the full density-matrix simulator 26

4.2.1 The results of simulating the [[4,2,2]] code . 26

4.2.2 The results of simulating the [[7,1,3]] code . 29

iii

CONTENTS iv

5 Conclusion 34

5.1 Conclusion . 34

5.2 Future work . 35

Bibliography 37

A The test circuit families 39

Chapter 1

Introduction

1.1 A glimpse of quantum computing

Quantum computing, the concept as originally proposed by Richard Feynman and Yuri Manin [1] in

the 1980s, is a kind of computation model that harnesses more intrinsic principles of nature, such as

superposition and entanglement. Unlike the classical bits which store information like 0 or 1, quantum

bits can be 0 and 1 at the same time, which can be represented as follows:

|ψ〉 = α|0〉+ β|1〉 (1.1)

Where |0〉 and |1〉 are states vectors representing the two states of a qubit, α and β are two complex

numbers, where |α|2 and |β|2 represents the probability of obtaining |0〉 and |1〉 respectively when

measuring the state |ψ〉. For a single qubit, two states can be put in superposition, for two qubits, 4

states can be in superposition, the number of states can be put in superposition grows exponentially with

the number of qubits. Entanglement is a kind of physical phenomenon that quantum systems can be

closely correlated. In the standard interpretation of quantum mechanics, when two qubits get entangled

with each other, the change of one qubit state will affect the other one instantaneously no matter how

far they are from each other. An example of entangled states can be described by:

|φ〉 = α|00〉+ β|11〉 (1.2)

If a measurement is performed on one of the qubits, |φ〉 will collapse to either |00〉 or |11〉. That is,

though the measurement is only applied to one of the qubits, the state of the other qubit is affected.

The challenge of building a quantum computer is intriguing and meaningful, not only because a

quantum computer is supposed to have a speedup over classical computers in some specific tasks, but

also because quantum computers work directly and intrinsically based on quantum mechanics, which

are fundamentally different from classical computers.

Quantum computing has many different hardware realizations. Superconducting realization and

ion-trap based quantum computing are two popular ways that many companies are working on today.

Scalability and mature fabrication technology make semiconductor quantum dots a serious candidate for

large-scale quantum circuits. Majorana-based quantum computing may protect quantum information

topologically thus has also attracted a lot of attention in recent years.

1

Chapter 1. Introduction 2

The community of quantum computing is getting bigger and bigger since the 1980s, not only physi-

cists, electrical engineers, and computer scientists are joining this revolution. Many companies such as

Google, IBM, Intel, Microsoft, Alibaba, etc. together with many universities become the main players

in this field. However, the question that how far exactly we are from using quantum computers to solve

practical problems remains unclear.

Quantum algorithms promise a speedup on solving some practical problems over known classical

algorithms [2]. We can divide the algorithms into two categories. On the one aspect, simulating classical

intractable complicate quantum systems using quantum computers, could help us get a deeper under-

standing of nature. With a practical quantum computer, many aspects of fundamental science such

as condensed-matter physics, chemistry, etc. are likely to be driven forward. For example, solving the

quantum many-body problem might help to find superconductors at room temperature. On the other

aspect, the speed of many quantum algorithms may be able to surpass classical algorithms. The Shor’s

algorithm, which harnesses the periodicity finding ability brought by quantum mechanics, can factor

big numbers with exponential speedup over all known classical algorithms, which is of vital importance

for the safety of RSA encryption [3]. Many other known quantum algorithms like Grover’s algorithm

also provide polynomial speedup over classical algorithms. In recent years, new quantum algorithms are

being proposed constantly. For example, AW Harrow et al. [4] proposed a quantum algorithm for solving

linear systems of equations, which starts a trend for finding effective quantum algorithms for machine

learning, namely quantum machine learning. In general, quantum algorithms have the potentials to ef-

ficiently simulate quantum systems and might provide a speedup over many known classical algorithms.

However, it should be made clear that, for many problems, it often remains unknown that whether there

exists a classical algorithm that could outperform or at least be comparable to its quantum counterpart.

For the problem mentioned above, there is a related term called quantum supremacy, as originally

popularized by John Preskill [5]. Since executing quantum algorithms to solve practical problems is

not feasible using the quantum hardware we have today, many skeptics might doubt the power of

quantum computers. Demonstrating the quantum supremacy is a goal to convince skeptics that quantum

computer is indeed powerful [6]. To fulfill this, researchers have been working on the construction of a

specific algorithm in order to make it quantum easy and classically hard ‡. Running such an algorithm

using quantum hardware in the Noisy Intermediate-Scale Quantum (NISQ) era [8], can be regarded as

demonstrating quantum supremacy.

In summary, quantum computing is a new type of computation model that is inherently based on

quantum mechanics. Not only building a quantum computer is supposed to be meaningful, but also, on

the road of creating such a sophisticated machine, nature may likely reveal some secrets to us.

1.2 Fault-tolerant quantum computation

1.2.1 The necessity for quantum error correction

Unlike classical computing devices, which are reliable with a typical failure rate of less than 10−17 [9],

the typical failure rate of a quantum gate on different hardware realizations today, is only about 1%.

Such a high failure rate makes it impossible for large-scale quantum computations. This is because

various errors happening during computations are likely to accumulate and propagate, which would

‡Note that the hardness here is still conditional, it is very hard to eliminate all the possibilities that any efficient
classical algorithms might exist, see [7] for more details.

Chapter 1. Introduction 3

finally turn the computing results into useless. Besides, quantum states are usually intrinsically fragile.

Even without applying gates, being exposed to the environment, quantum states are constantly suffering

from decoherence, that is, the information stored by quantum states would be easily dissipated. Due to

these reasons, the quantum computer was once thought to be impossible by some physicists. It was not

until Shor [10] and Steane [11] proposed the first quantum error-correcting (QEC) code that resurrected

the wish to build a practical quantum computer.

Quantum information can be properly protected by error correction schemes. However, due to the

no-cloning theorem [12], qubits cannot be copied, and any direct measurement tries to read out the

states would disturb and lose track of the original quantum information. In spite of these limitations,

classical error correction schemes can still be adapted to the quantum case, protecting information by

adding redundant information.

In quantum error correction, we encode the quantum information using more data qubits, and we

use ancilla qubits to couple to the encoded system. By measuring the ancilla qubits, we obtain the error

syndromes. Based on these syndromes, the errors that happened to the encoded system can be inferred,

thus the recovery process can be performed and quantum information is protected. The further details

of quantum error correction will be introduced in chapter 2.

1.2.2 Quantum fault-tolerance and the threshold theorem

In general, only with the help of quantum error correction, it is not enough to support reliable quantum

computations. On the one hand, the error correction procedure itself introduces errors. On the other

hand, the error happens at one qubit may propagate to other qubits through multi-qubit gates e.g.

CNOT gate, as shown in Figure A. It is possible the error propagation would seriously degenerate the

output result. Therefore, the quantum fault-tolerance, which is a protocol that takes care of the error

propagation, was proposed.

X

X

|0〉 X • •

1

Figure 1.1: The error propagation of a CNOT gate. The X error happened to the qubit at the bottom
propagates to the two qubits on the top through the CNOT gate.

The concept of fault-tolerance is not a new idea. In the early stage of classical computers, the concept

of fault-tolerance was introduced. However, due to the high reliability of the classical hardware used in

most cases today, the concept becomes less significant. For the quantum hardware we have today, it is

indeed necessary to make the computation fault-tolerant (FT).

The quantum fault-tolerance can be defined as the property that, a single failure of one component in

a procedure will cause at most one error in each encoded block of qubits output from the procedure [9].

The procedure here can refer to the fault-tolerant preparation procedure, the fault-tolerant syndrome

extraction procedure, etc. An example of a quantum circuit diagram encoded with the FT protocol is

shown in Figure 1.2.

Chapter 1. Introduction 4

|0〉⊗7 /
FT prepare

|0〉L
FT error
correct

FT
Hadamard

FT error
correct

FT
CNOT

FT error
correct

FT
measure

|0〉⊗7 /
FT prepare

|0〉L
FT error
correct

FT error
correct

FT error
correct

FT
measure

1

Figure 1.2: A block diagram of 2 logical qubits encoded in the Steane code with the FT protocol [9].

Each procedure in the diagram is necessary to be made fault-tolerant. For example, the syndrome

extraction process in the error correction procedure should be fault-tolerant. The schematics of a Non-

FT and a kind of FT implementation of the syndrome extraction process are shown in Figure 1.3. While

Figure 1.3 (a) is a Non-FT implementation for the syndrome extraction process, in which the errors can

propagate to the data qubits through the multi-qubit gate. Figure 1.3 (b) gives a way to fault-tolerantly

implement the syndrome extraction process. The encoded system and the ancilla qubits are coupled

individually. Therefore, one error that happened in the ancilla qubit can at most propagate to one

qubit, which guarantees the fault-tolerance.

U

|0〉+ |1〉 • H Z

1

(a) A non-fault-tolerant implementation of
the syndrome extraction process of U.

U1

U2

U3

• H Z
|0...0〉+
|1...1〉 • H Z

• H Z

1

(b) A fault-tolerant implementation of the
syndrome extraction process of U.

Figure 1.3: The schematics of a Non-FT and a FT implementation of a syndrome extraction process
[13].

There are many ways for fault-tolerantly implementing the syndrome extraction process, for example,

the Shor’s style [14], the Steane’s style [15], and the Knill’s style [16]. A recent method called the flag-

based quantum error correction will be used in this thesis, which requires fewer ancilla qubits than the

other three methods mentioned above. The flag-based quantum error correction will be introduced in

the next section.

The FT circuits also have to compute fault-tolerantly. In general, this requires all the logical op-

erations to be fault-tolerant. One way for implementing the FT logical operations is by using the

transversal gates. For steane code, all the basic logical gates are transversal. The transversal CNOT

gate and Hadamard gate of the Steane code are shown in Figure 1.4. Note that with the transversal

logical gates, during each logical operation procedure, one error can at most result in one fault at the

output of each block.

One of the most remarkable results of fault-tolerant quantum computation and quantum error cor-

rection is the threshold theorem. The main idea of the threshold theorem is, there exists a threshold

pth, that when the failure probability p of the component in a circuit is below pth, one can concatenate a

quantum error-correcting code with another layer of quantum error-correcting code, namely increasing

the code distance by the concatenation, to further increase the accuracy of components. By doing this

Chapter 1. Introduction 5

H

H

H

H

H

H

H

1

(a) The transversal Hadamard
gate.

•
•

•
•

•
•

•

1

X

X

block
First
block

Second
block

(b) The transversal CNOT gate.

Figure 1.4: The transversal Hadamard gate and CNOT gate of the Steane code.

concatenation so forth ad infinitum, the arbitrary low failure rate can be achieved.

Though the number of required components of circuits will increase as more concatenations go on,

there is a proof [9] suggesting that the size of required gates in the encoded circuit is

O(poly(log p(n)/ε)p(n)) (1.3)

while ε is the target accuracy of the quantum algorithm, p(n) is a polynomial function of the size n of

the circuit. It suggests the size of the encoded circuit is only polylogarithmically larger than the size of

the original circuit. This result gives a stronger hope to large-scale quantum computation.

In summary, the threshold theorem is a remarkable result of fault-tolerant quantum computation and

quantum error correction, it reveals that the possibility of the arbitrary low failure rate of components.

However, in real hardware, and the threshold theorem is always accompanied by some assumptions.

1.2.3 The motivation for testing quantum fault-tolerance

The threshold theorem is a theoretic proof based on physically reasonable assumptions [9], such as high

parallel operations, the low overhead of classical computation and communication, and a constant supply

of fresh ancilla qubits, etc. Since things would naturally be far more complicated on real hardware,

skeptics might doubt the effectiveness of the proof. Besides, the fault-tolerant protocol also remains

unknown whether it can deal with realistic errors such as coherent error [17]. Therefore, it is important

to see how the fault-tolerant protocol performs in a real experiment.

Though many experiments of testing quantum error-correcting codes have been carried out over

the last few years, quantum fault-tolerance has not been widely tested. Daniel Gottesman suggested

the necessity for demonstrating quantum fault-tolerance [17] in 2016. An explicit criterion for testing

quantum fault-tolerance was proposed. After that, a few experiments were conducted to test fault-

tolerance based on the [[4, 2, 2]] code on IBM Q Experience devices (mainly on ibmqx5) [18, 19, 20].

Since we are in the NISQ era, it means the noise of the quantum systems is relatively high and the

available number of qubits is limited. Therefore, in this thesis, we will focus on the small quantum

error-correcting codes. We will simulate the fault-tolerance testing experiment for the [[7, 1, 3]] code and

the [[4, 2, 2]] code in two simulation environments, one is based on the stabilizer formalism, the other

one is called quantumsim [21, 22], which is a full density-matrix simulation environment. By using the

stabilizer formalism, we can only simulate simple error models such as the depolarizing error model.

Chapter 1. Introduction 6

In contrast, quantumsim simulates more complicated errors such as relaxation and dephasing errors,

two-qubit phase errors and measurement errors, etc. The parameters for the noise models used in our

simulation are based on real experiments indicated in [21]. For the [[7, 1, 3]] code, a flag-based quantum

error correction [23] is adopted. Our simulation could offer insights for experiments to be conducted in

the nearest future.

1.2.4 Thesis organization

This thesis is organized as follows: the second chapter introduces some basics about quantum error

correction and quantum fault tolerance. The flag-based error correction method, as well as the QEC

codes used in this thesis, are also introduced. The third chapter introduces the criterion to test quantum

fault-tolerance, followed by an overview of the two simulation environments: the stabilizer circuits

simulation environment and the full density-matrix simulation environment. The fourth chapter presents

the simulation results. The last chapter gives the conclusion and future perspectives.

Chapter 2

Quantum error correction

2.1 Discretization of the errors

The errors we consider in quantum information are any unwanted transformations of density matrices

living in Hilbert space. Quantum error correction is a process that bring a contaminated state Ei|ψ〉
back to |ψ〉, while Ei here refers to a so-called error operator. For a quantum state, errors are living

in a continuous space, for example, a qubit living in Bloch sphere might undergo a deformation like

rotating π/233 rad around y axis. To study the effect of noise, we can consider the interaction between

the environment and the qubit system, a typical observation is the following [24]:

|φ〉 |ψ0〉e →
∑
i

(Ei|φ〉) |ψi〉e (2.1)

while |φ〉 is a set of qubits we care about, |ψ0〉e represents the state of the environment (exclude |φ〉)
before the interaction, the arrow stands for “after interaction between the qubits and the environment”,

Ei is again the error operator applied on the set of qubits, and |ψi〉e represents the state of environment

after the interaction. A key observation here is each Ei in formula 2.1 can be represented by a tensor

product of Pauli matrices (together with an identity matrix for the error-free case):

σ0 = I =

(
1 0

0 1

)
(2.2)

σ1 = X =

(
0 1

1 0

)
(2.3)

σ2 = Y =

(
0 −i
i 0

)
(2.4)

σ3 = Z =

(
1 0

0 −1

)
(2.5)

This is true because Pauli matrices are a complete set, it can represent any transformation that

happened to qubits. For simplicity, we consider a single-qubit error as an example. For a single-qubit

error happened to a set of qubits, the error operators can always be written in a linear combination of

7

Chapter 2. Quantum error correction 8

Pauli matrices as [9]:

∑
i

Ei = ei0I + ei1X1 + ei2Z1 + ei3X1Z1 (2.6)

while the I,X1,Z1 apply on the single qubit. Note that we can use the notion XuZv to represent the

tensor products of Pauli matrices, with u,v are both a set of the binary array representing if an X

or Z error happened to qubits at certain positions. For example, X10110Z11010 represents applying

Y ⊗ Z ⊗X ⊗ Y ⊗ I on the five qubits respectively.

For an error operator applying on a multi-qubit system, we can write it as:

Ei|ψ〉 = XuZv|ψ〉 (2.7)

that is, to correct this error, we can first correct Xu, then correct Zv, it will bring us back to |ψ〉. Note

that this is a remarkable result of quantum error correction, it suggests that being able to correct a

discrete error set {X,Z} is enough for fighting against any errors living in the continuous space. This

is also the reason that why the depolarizing error model‡ is favored by many authors in quantum error

correction, a QEC code being good at correcting the discrete error set is likely to perform well in the

presence of real hardware noise.

2.2 The stabilizer formalism

The stabilizer formalism, as originated from group theory, offers a convenient and significant way to study

quantum states and quantum operations. With the stabilizer formalism, a large family of quantum error-

correcting codes can be easily described, and the syndrome extraction procedure which will be discussed

later can be more easily carried out. In this section, we will mainly focus on the basic ideas, for further

details, please refer to [25].

The key idea of the stabilizer formalism can be illustrated through a simple example. Considering a

bell state:

|ψ〉 =
|00〉+ |11〉√

2
(2.8)

It is easy to see that such state satisfies:

X1X2|ψ〉 = |ψ〉 (2.9)

Z1Z2|ψ〉 = |ψ〉 (2.10)

This shows that applying X1X2 and Z1Z2 on |ψ〉 does not change the state |ψ〉. Besides, it can be

verified that |ψ〉 is the only state (up to a global phase) that satifies the conditions. In other words, If

we select X1X2 and Z1Z2, we already define a state that would not be affected when we apply the two

operations. Formally, we can say X1X2 and Z1Z2 are the stabilizers of the state |00〉+|11〉√
2

, and |00〉+|11〉√
2

is stabilized by X1X2 and Z1Z2,.

The above example gives a first impression of the stabilizer formalism, now let us consider a more

general example [24]. For a n-qubit system, suppose S = {M} is a set containing all the error operators

‡In general, depolarizing error models refer to an error model that each component in a circuit undergoes X,Y ,Z errors
with certain probability p.

Chapter 2. Quantum error correction 9

that commute with each other. Let C = {|u〉} be the vector space where all the elements are orthogonal

to each other and satisfy the following equation:

M |u〉 = |u〉 ∀u ∈ C,∀M ∈ S (2.11)

Then the set C is a quantum error-correcting code, M is the stabilizer of any |u〉 in C, and |u〉 is called

codewords or code vectors. Suppose we are encoding k logical qubits with n physical qubits, then the

number of elements in C is 2k, the dimension of the space spanned by the vectors in C is 2k as well,

which is different from the classical coding theory since superposition is allowed in quantum cases. The

2k dimension space is a subspace of the 2n dimensions Hilbert space of the whole quantum system.

A logical state or encoded state |φ〉L of the quantum error-correcting code is a general vector in the

subspace, which can be expressed by the superposition of the codewords:

|φ〉L =
∑
u∈C

au|u〉 (2.12)

while the au is the normalization factor. The stabilizer formalism can also be used to describe some

errors happen to the quantum system. In general, a error operator E is detectable if it anti-commutes

with any stabilizers. Suppose E anti-commute with M1, we have:

M1(E|φ〉) = −EM1|u〉 = −(E|u〉) (2.13)

when the state |φ〉 is transformed to E|φ〉 by any noise, measuring M1 will give an eigenvalue −1, which

suggests the quantum state is no longer stabilized by S = {M}, errors must have happened, thus we

detect the errors.

In the group S, there are (n − k) elements {g1, g2, ..., gn−k} that can generate all the stabilizers in

the group, such elements are called stabilizer generators, the generated group S can thus be written as

S =< g1, g2, ..., gn−k >. It can be proved [9] that to detect errors, it is enough to only measure the

(n − k) generators, such measurement is called syndrome measurement, which will be discussed in the

next section.

At last, a natural question would be how to describe the logical operations under the stabilizer

formalism. In general, the logical operations such as XL or ZL should be detected when we measure the

stabilizer generators. Therefore, the logical operations are supposed to commute with all the stabilizer

generators. In other words, if any error changes the logical state in a way that a logical operation can

do, which cannot be detected or corrected by the QEC code, then it is a logical error.

2.3 Syndrome extraction

The stabilizer formalism can also be used to describe the process that how we extract the errors in a

qubit system, such procedure is called error syndrome extraction or error syndrome measurement.

Suppose an encoded system |u〉L is contaminated by some error operators Ei, denoted as Ei|u〉L,

In order to determine Ei, we use (n − k) ancilla qubits‡ to couple with the whole system. Before any

interaction happens between the ancilla qubits and the system, the state of the system can be represented

‡The number of required ancilla qubits (n− k) here is for convenient illustration purpose, the exact number depends
on how the error correction scheme is implemented.

Chapter 2. Quantum error correction 10

as:

|0〉a
∑
i

(Ei|φ〉) |ψi〉e (2.14)

where the ancilla qubits are coupled to the system through a tensor product. Then let’s make the

(n − k) ancilla qubits interact with the system in a specific way. The interaction is done by applying

some CNOT gates and Hadamard gates between the system and the ancilla qubits, a simple example is

shown in Figure 2.1, where the ancilla qubits are coupled to measure the six stabilizer generators of the

Steane code.

• •
•

•
• • •
• •

•
• •

sx1 |0〉 H • • • • H Z

sx2 |0〉 H • • • • H Z

sx3 |0〉 H • • • • H Z

sz1 |0〉 Z

sz2 |0〉 Z

sz3 |0〉 Z

1

Figure 2.1: The (Non-FT) syndrome extraction circuit for the Steane code. The sx1,sx2,sx3 mea-
sure XXIXXII, IIIXXXX, XIXXIIX respectively, the sz1,sz2,sz3 measure ZZIZZII, IIIZZZZ,
ZIZZIIZ respectively.

After the interaction, equation 2.14 becomes:∑
i

|si〉a (Ei|φ〉L) |ψi〉e (2.15)

During the interaction, the information of the error operators is passing to the ancilla qubits. Since

the whole system is still in superposition, if we measure the ancilla qubits, due to the collapse only one

term in the sum operator
∑
i of equation 2.15 will survive. Suppose the ith term is the survived term,

the state of the whole system becomes:

|si〉a (Ei|φ〉L) |ψi〉e (2.16)

where si is the final state of ancilla qubits, and we also obtain the information about si through the

measurement. The si is called the error syndrome, which gives the information of Ei. The whole

procedure is called syndrome extraction. Through syndrome extraction, the original errors in the system

are digitized and collapsed to the measurement basis that we select. Based on the syndrome, the decoding

process can be performed and we may deduce Ei and apply Ei to recover the state.

Chapter 2. Quantum error correction 11

2.4 QEC codes used in the simulation

2.4.1 The [[4, 2, 2]] error-detecting code

The [[4, 2, 2]] code† encodes 2 logical qubits with 4 physical qubits, since its code distance is 2, it can

only detect one error. The stabilizers of the [[4,2,2]] code is XXXX and ZZZZ, the codewords are

shown as follows:
|00〉L = 1√

2
(|0000〉+ |1111〉)

|01〉L = 1√
2
(|1100〉+ |0011〉)

|10〉L = 1√
2
(|1010〉+ |0101〉)

|11〉L = 1√
2
(|0110〉+ |1001〉)

(2.17)

The [[4, 2, 2]] code can be encoded in different ways. Based on different encoding circuits, we can

prepare different initial states. In this thesis, by following the suggestion of [17], three initial states are

prepared, they are |00〉L, |0+〉L, and |00〉L+|11〉L√
2

. The encoding process is shown in Figure 2.2.

ancilla |0〉 Z

q1 |0〉 •

q2 |0〉 H • •

q3 |0〉 •
q4 |0〉 •

1

(a) The fault-tolerant encoding of |00〉L.

|0〉

|0〉 H •

|0〉 H •

|0〉

1

(b) The fault-tolerant
encoding of |0+〉L.

|0〉
|0〉

|0〉 H •

|0〉 H •

1

(c) The fault-tolerant en-

coding of
|00〉L+|11〉L√

2

Figure 2.2: The fault-tolerant state preparation of |00〉L, |0+〉L, and |00〉L+|11〉L
2 for the [[4, 2, 2]] code.

For the state |00〉L, an ancilla qubit is needed to help to check whether the circuits are run in a

fault-tolerant way. If a gate error occurs and results in a two-qubit error‡ at the end of the procedure,

measuring the ancilla qubit will result in −1, which suggests the prepared state is no longer |00〉L, this

run should be rejected. Otherwise, we say the state is successfully prepared, we can move to the next

step. This ancilla qubit check guarantees the state preparation procedure is fault-tolerant, a single gate

error can only result in a one-qubit error at the beginning of the next procedure.

For the other two initial states, the codewords can be written as a tensor product of two bell states

with different numbering method of the qubits: (|00〉+ |11〉)⊗ (|00〉+ |11〉) up to a global phase. It can

be verified the encoding procedure is also fault-tolerant. This is because a two-qubit fault from a CNOT

gate only affects one of the bell states. The error can always be attributed to the case one-qubit error

happens or no error happens. For example, if the CNOT gate is followed by a two-qubit fault XX, it

will not affect the bell state, since applying XX on a bell state remains in bell state. If the CNOT gate

is followed by XZ, the bell state changes to (|10〉 − |01〉), which can be attributed to a Y error that

happens to a single qubit (up to a global phase).

†QEC codes usually writes as [[n,k,d]] form, where the n is of physical qubits, k is of logical qubits and d is the code

distance. A code with distance d is supposed to correct up to
⌊
d−1
2

⌋
, and detect up to

⌊
d+1
2

⌋
.

‡A single gate fault might cause a one-qubit error, two-qubit error, or four-qubit error at the end of the encoding
circuit. However, the case that the one-qubit error left is fault-tolerant, the case that the two-qubit error left will flip the
ancilla qubit, the case four-qubit error left changes the state of the four qubits, this is equivalent to leave the original state
unchanged.

Chapter 2. Quantum error correction 12

The [[4, 2, 2]] code allows FT logical operations such as X1 , X2, Z1, Z2, H1H2SWAP , CZ, in this

thesis we also use these operations. The methods for applying those gates on the state encoded in the

[[4, 2, 2]] code and applying those gates on an unencoded state (2 physical qubits) are shown in Table

2.1.

Gate
Unencoded

version
FT encoded

version

X1
q1 X
q2

q1 X
q2

q3 X
q4

X2

q1

q2 X

q1 X

q2 X
q3
q4

Z1
q1 Z
q2

q1 Z

q2 Z
q3
q4

Z2

q1

q2 Z

q1 Z
q2

q3 Z
q4

H1 ⊗H2 · SWAP

q1 H • H • H •

q2 H H H

q1 H

q2 H

q3 H

q4 H

CZ

q1 •
q2 H H

q1 S

q2 S Z

q3 S Z

q4 S

Table 2.1: The fault-tolerant logical operations used in [[4,2,2]] code.

Since the [[4, 2, 2,]] code is an error-detecting code, it does not have the syndrome extraction proce-

dure. Instead, after applying all the logical operations, we measure the 4 qubits. The state of the logical

qubits is decided by comparing the measurement outcomes of the four data qubits to the codewords. If

the measured state is inside the codeword, we obtain a valid measurement outcome. If the measured

state is not a valid codeword, we know any error is detected, and we reject the result. This is called the

post-selection process.

Chapter 2. Quantum error correction 13

2.4.2 The [[7,1,3]] Steane code

The Steane code encodes 1 logical qubit by using 7 physical qubits. The 6 staibilizer generators of Steane

code are shown as follows:

Name Operator
g1 X1X2X4X5

g2 X4X5X6X7

g3 X1X3X4X7

g4 Z1Z2Z4Z5

g5 Z4Z5Z6Z7

g6 Z1Z3Z4Z7

Table 2.2: The stabilizer generators of the Steane code [[7, 1, 3]].

The logical states of the Steane code are shown as below‡:

|0〉L =
1√
8

(|0000000〉+ |0111010〉+ |0001111〉+ |0110101〉

+|1011001〉+ |1100011〉+ |1010110〉+ |1101100〉)
(2.18)

|1〉L =
1√
8

(|1111111〉+ |1000101〉+ |1110000〉+ |1001010〉

+|0100110〉+ |0011100〉+ |0101001〉+ |0010011〉)
(2.19)

For the Steane code, all the procedures including encoding, syndrome extraction, and logical oper-

ations can be implemented in a fault-tolerant way. In this thesis, the encoding procedure is done by

performing a Non-FT encoding with 8 CNOT gates and 3 Hadamard gates shown in Figure 2.3, followed

by a complete syndrome extraction and recovery procedure [26], which will be introduced later. The

Non-FT encoding process is shown in Figure 2.3.

q1 |0〉
q2 |0〉 H • •

q3 |0〉 H • • •
q4 |0〉 •
q5 |0〉
q6 |0〉 H
q7 |0〉 • •

1

Figure 2.3: The Non-FT encoding of |00〉L of the Steane code.

The flag-based quantum error correction

As previously mentioned, there are different syndrome extraction schemes for quantum error correction,

such as Shor’s style [14], Steane’s style [15], and Knill’s style [16]. In this thesis, we do not use the

methods mentioned above, since they usually have a large overhead of qubits. Instead, a recent fault-

tolerant method called the flag-based quantum error correction, which was initially introduced by [27]

‡Note that in this thesis, in the state vector representation, the rightest qubit is numbered as q1, the index of qubit
increases from the right to the left side, while in the circuit, from the top to the bottom, the qubits are numbering from
q1 to qn.

Chapter 2. Quantum error correction 14

•
•

•
•

|0〉 Z

1

(a) The Non-FT version.

•
•

•
•

s |0〉 Z

f |+〉 • • X

1

(b) The fault-tolerant version based on
the flag technique.

Figure 2.4: Syndrome extraction circuits of ZZZZ for the Steane code: (a) The Non-FT version and
(b) the flag-based method.

is selected. This method requires fewer qubits than the mentioned methods, it uses some ancilla qubits

acting as flags to detect correctable error to make the procedure fault-tolerant. The basic principle of

the flag-based method can be illustrated in Figure 2.4.

In Figure 2.4 (a), without the flag qubit, it is easy to see that a Z error on the ancilla qubit can

propagate to multiple qubits through the CNOT gates without detection. This problem can be fixed

by adding an extra ancilla qubit working as the flag qubit shown in Figure 2.4 (b). Excluding the

case that the error propagation does not change the stabilizers of the state, e.g. a Z error occurred at

the beginning of the syndrome extraction qubit s can propagate to 5 qubits but will not flip the flag

qubit. It can be verified that for all the other cases the error propagation can be detected by the flag

qubit. In general, when the measurement results are non-trivial, some actions may need to be taken.

The flag-based quantum error correction also measures the six stabilizers. Figure 2.4 (b) is an example

measuring Z1Z3Z4Z7, while the circuits measuring the other stabilizers are similar. The flag-based error

correction algorithm for the Steane code used in this thesis is summarized as follows:

Algorithm 1 The flag-based quantum error correction algorithm for the Steane code

Suppose C1, C2,..., C6 are the six stabilizer measurement circuits, {Mi} is the measurement results for

the syndrome qubit(s) and the flag qubit of each circuit.

Step 1: Run C1, C2,..., C6 sequentially, measure the syndrome measurement qubit and the flag qubit

after each cycle, if {Mi} is not all +1, stop Step 1 and jump to Step 2, otherwise no action needs to be

taken. If all the six circuits are all measuring +1, no decoding is needed.

Step 2: Run C1, C2,..., C6 sequentially, record all the {Mi}. Use {Mi} in Step 1 and Step 2 for

decoding.

For the Steane code, there are several ways to implement the flag error correction scheme [23, 28].

For example, we can measure the syndrome using two ancilla qubits, one acting for syndrome extraction,

one acting as the flag qubit, like what we have seen in Figure 2.4 (b). We can use six ancilla qubits

in total to sequentially measure all the stabilizer generators. The circuits for measuring the Z and X

stabilizer generators sequentially are shown in Figure 2.5 and Figure 2.6 respectively. That is, we need

to first use the six ancilla qubits to measure the X (or Z) syndromes, then reuse them to measure the

Z (or X) syndromes. In the real case, if we need to reuse any ancilla qubit, one way to doing that is

resetting it digitally, not physically. However, in the full density-matrix simulation, for simplicity, we

Chapter 2. Quantum error correction 15

directly use ResetGate to reset the qubits. Since after a qubit is reset to zero states, unlike the case that

resetting it digitally, it no longer suffers from the decoherence, the final measurement results might have

a lower error rate. A similar problem was discussed in [21], and the result shows that the logical fidelity

is slightly improved when apply a conditional gate to flip the nontrivial measurement state, which is

negligible. Therefore, we think it is safe to reset the state of the ancilla qubits by using ResetGate after

the measurement.

q1 • •

q2 •

q3 •

q4 • • •

q5 • •

q6 •

q7 • •

s1 |0〉 Z

f1 |0〉 H • • H Z

s2 |0〉 Z

f2 |0〉 H • • H Z

s3 |0〉 Z

f3 |0〉 H • • H Z

1

Figure 2.5: The sequential flag syndrome extraction for measuring the Z stabilizer generators. In the
figure, s1,s2,s3 measure Z1Z2Z4Z5, Z1Z3Z4Z7, Z4Z5Z6Z7 respectively.

q1

q2

q3

q4

q5

q6

q7

f1 |0〉 • • Z

s1 |0〉 H • • • • H Z

f2 |0〉 • • Z

s2 |0〉 H • • • • H Z

f3 |0〉 • • Z

s3 |0〉 H • • • • H Z

1

Figure 2.6: The sequential flag syndrome extraction for measuring the X stabilizer generators. In the
figure, s1,s2,s3 measure X1X2X4X5, X1X3X4X7, X4X5X6X7 respectively.

An alternative way of the flag-based error correction is using 4 extra qubits: three qubits act for

syndrome extraction, one qubit acts as the flag qubit. All the X or Z stabilizer generators can be

measured in parallel fault-tolerantly. The flag-based method for measuring Z and X stabilizer generators

in parallel are shown in Figure 2.8 and Figure 2.7 respectively.

The method using 6 ancilla qubits and the method using 4 ancilla qubits are both correct for syndrome

extraction. However, they are different in the number of ancilla qubits and the duration time. When

running the syndrome extraction circuits in simulation or on real hardware, which method is better

Chapter 2. Quantum error correction 16

q1 •

q2 •

q3 •

q4 • •

q5 • •

q6 •

q7 •

s1 |0〉 Z

s2 |0〉 • • Z

s3 |0〉 • • Z

f |0〉 H • • H Z

1

Figure 2.7: The parallel flag syndrome extraction for measuring the Z stabilizer generators. In the figure,
s1,s2,s3 measure Z1Z2Z4Z5, Z1Z3Z4Z7, Z4Z5Z6Z7 respectively.

q1

q2

q3

q4

q5

q6

q7

s1 |0〉 H • • • • H Z

s2 |0〉 H • • • • • H Z

s3 |0〉 H • • • H Z

f |0〉 • • • Z

1

Figure 2.8: The parallel flag syndrome extraction for measuring the X stabilizer generators. In the
figure, s1,s2,s3 measure X1X2X4X5, X1X3X4X7, X4X5X6X7 respectively.

depends on many factors. For example, a typical coherent time for superconducting transmon qubits

can be 30µs, while the value is much bigger for the ion-trap qubits. Thus, for superconducting systems,

parallelism is important, scheduling these circuits to increase parallelism in order to execute all operations

in a shorter time is likely to be considered. In this thesis, to decide which method works better, we will

evaluate the two methods using a metric called “logical fidelity” suggested in [21], further details will be

introduced in Chapter 4.

After the syndrome extraction procedure, we simply use a look-up table for decoding, which is

obtained by enumerating all the possible syndromes caused by one Pauli error that happened in any

place in the circuit. After the decoding process, for convenience, we directly apply error-free corrections

to recover the state.

Chapter 3

Simulation of QEC circuits

3.1 The criterion for testing quantum fault-tolerance

The criterion for testing quantum fault-tolerance used in this thesis is proposed by Daniel Gottesman

in 2016 [17]. To introduce the criterion, we consider an original circuit (unencoded) and its FT encoded

version. To test the quantum fault-tolerance, we need to run both the original circuit and its encoded

version. For a single circuit, after applying all the quantum operations, we measure all the qubits

resulting in a measurement output i. Under certain noise condition, if we repeatedly run the circuit

for many times, we can obtain an output distribution of a circuit (Let {ri} and {qi} denote the output

distribution of an original circuit and its encoded version respectively). We can also directly calculate

the ideal output distribution in error-free case if the circuit is not too large, denote as {pi}. To show

the effectiveness of the FT protocol, we need to calculate the statistical distance (also called the error

rate) between {qi} and {pi}, as well as {ri} and {pi}, which can be done in a simple way as follows:

Pu(C) =
1

2

∑
i

|pi − qi| (3.1)

Pe(C) =
1

2

∑
i

|pi − ri| (3.2)

while Pu(C) and Pe(C) refer to the statistical distance of an unencoded circuit and its encoded version

respectively.

The main idea of the criterion to test fault-tolerance is comparing Pu(C) and Pe(C) for many different

test circuits C. If for all the test circuits in a circuit family {C}, the encoded versions have lower statistical

distances than the unencoded versions, we say the quantum fault-tolerance criterion is successfully

demonstrated. In contrast, if there exists any unencoded circuit in {C} that has a lower error rate than

the encoded version, the demonstration is failed.

To make the demonstration convincing, there are a few points worth mentioning:

1. All the procedures in the encoded circuits are necessary to be fault-tolerant.

2. In the error-free case, the encoded circuits should have the same output distribution as their

unencoded versions.

3. All the circuits are necessary to be run in the same system, that is, under the same noise condition.

17

Chapter 3. Simulation of QEC circuits 18

4. The test circuits family {C} needs to be representative and not prohibitively large for practical

experiments.

A method for choosing the circuit family was given in [17]. Firstly, all the circuits in the family are

constructed from a gate set containing several gates‡. The circuit family generated from the gate set

should be representative, both long circuit and the short circuit should be considered. In general, there

are three parameters need to be specified beforehand, the maximum circuit depth T in the family, the

number of different circuit types r, and the maximum periodicity to test p. Note that for some small

number t, we can enumerate all the possible circuits. The details of the method can be illustrated as

follows:

1. For a circuit containing t gates, randomly choose r types of the circuit using the gate from the

gate set with the number of timesteps equals to t, the t is enumerated from 0 to T .

2. Select r types of circuits with q timesteps, and repeat it for bT/qc times, the q is enumerated from

1 to p.

Based on the method, we generated 235 circuits for the [[4, 2, 2]] code simulation (by setting the T

equals to 12,r equals to 6, and p equals to 5), 84 circuits (by setting T equals to 10, r equals to 3, and p

equals to 3) for the 1 logical qubit simulation encoded in the Steane code, and 452 circuits (by setting T

equals to 16, r equals to 10, and p equals to 6)† for the 2 logical qubits simulation encoded in the Steane

code. The circuits lists are appended in the appendix.

For more details about the criterion, we refer to [17].

3.2 The stabilizer formalism simulation

3.2.1 An overview of the stabilizer formalism simulation

For the [[4, 2, 2]] code, we first performed a fault-tolerance testing experiment based on the stabilizer

formalism simulation. The stabilizer formalism simulation refers to simulate a kind of quantum circuits

that only contains or can be decomposed to Clifford gates, namely Phase gate, Hadamard gate, and

CNOT gate. The simulator keeps track of the stabilizers of the quantum states. According to Gottesman-

Knill theorem [9, 29], those circuits, also called the stabilizer circuits can be efficiently simulated on

classical computers, thousands of qubits can be easily simulated in this way.

Computation based on stabilizer circuits is not universal. However, the stabilizer circuits form an

important class of quantum circuits. Quantum error correction can be studied with the stabilizer circuits.

By considering an important circuit-level error model, the depolarizing error model, simulating QEC code

with stabilizer circuits gives a good benchmark of the code’s capability.

In the stabilizer formalism simulation under the depolarizing error model, in order to obtain a well-

estimated output distribution, usually, it is necessary to run the circuit many times. We have performed

experiments to test how many iterations are enough for giving a good estimation for the expected

distribution, it turns out 104 times is a reasonable number. Therefore, for all the stabilizer formalism

simulations mentioned in this thesis, we repeatedly run the circuits for 104 times.

‡Note that if a gate e.g. a Hadamard gate is applied on two different qubits, the two cases are counted separately as
two gates in the gate set.

†Note that for the circuits used in two logical qubits simulation, we have removed some circuits manually to avoid
unnecessary repetitions.

Chapter 3. Simulation of QEC circuits 19

3.2.2 The depolarizing error model

In the stabilizer formalism simulation, an error model called the depolarizing error model was used to

insert circuit-level errors. The depolarizing error model is a simple error model that only considers

Pauli errors. For the depolarizing error model used in this thesis, given a single error happened with

probability p, we follow the following settings:

1. Each single-qubit gate is followed by one-qubit error with probability p/3 selected from {X,Y, Z}.

2. Each CNOT gate is followed by a two-qubit error with the probability p/15 selected from {I,X, Y, Z}⊗2\{I⊗
I}.

3. The initial state of qubits and the final measurement results suffer from a bit-flipping error with

probability p.

In the depolarizing error model, if an error happened after a gate, the spectator qubits (the qubits

that do not participate in the quantum gate) are considered as being applied to an identity gate, that

is, the identity gates are also followed by a Pauli error. This can be further shown in Figure 3.1.

I E

I E

H E

I E

H

1
(a) A Hadamard
gate without error.

I E

I E

H E

I E

H

1

(b) A Hadamard gate
with errors.

I E

•
E

I E

•

1
(c) A CNOT gate
without error.

I E

•
E

I E

•

1

(d) A CNOT gate with
errors.

Figure 3.1: The implementing method of the depolarizing error model used in the stabilizer circuits
simulation. The E represents the one-qubit and two-qubit depolarizing errors mentioned above. (a) and
(c) are the error-free gates before applying the depolarizing error model. (b) and (d) are examples of
how the errors apply to the gates.

In the simulation, different gates might be able to be executed in parallel, which may reduce the

errors in the circuits. In our experiment, the parallelism was added to the state preparation procedure,

as well as to the single gate in the gate set used for constructing the circuit family. For simplicity, we

do not especially add parallelism between different logical operations in the circuits, that is, in each

timestep, only one operation is performed.

3.3 The full density-matrix simulation

3.3.1 A brief introduction to quantumsim

Quantumsim [21] is a full density-matrix simulation environment built in Python. It offers a more

complicated error model than the depolarizing error model. The quantum operations in quantumsim

are Complete-Positive Trace-Preserving (CPTP), all the quantum operations including gates and errors,

can be represented in Pauli Transfer Matrix (PTM) form [30]. Under the representation of PTM,

Chapter 3. Simulation of QEC circuits 20

applying quantum operations is converted to multiply matrices. This process can be represented as

follows:

|Λ2 (Λ1(ρ))〉〉 = RΛ2 ·RΛ1 ·| ρ〉〉 (3.3)

While RΛ2 ·RΛ1 is the PTMs of quantum operation Λ1 and Λ2, |ρ〉〉 is obtained by expanding the density

operator in Hilbert-Schmidt space.

Since the right side of equation 3.3 is purely matrices multiplication, GPU can be used to accelerate

the simulation. Besides, since quantumsim keeps track of the density matrix, the output distribution of a

circuit can be extracted directly. This means, if there is no intermediate measurement in the circuit and

the final measurement errors are negligible, the final probability distribution can be obtained directly

without repeatedly running the circuit.

The quantumsim version used in this thesis is v0.2 [22], and the GPU used for the simulations is

NVIDIA’s GTX 1080 Ti (11 GB memory).

3.3.2 The noise model

Quantumsim includes several types of error sources. The error sources that are used in this simulation

are introduced in the following context. The parameters setting used in this simulation follows the

standard-setting in [21]. For further details about the error model, please refer to the supplement

material of [21].

The idling qubit error

The qubits at |1〉 or superposition state tend to suffer from relaxation and dephasing error. The com-

bined effects can be characterized by passing experimentally obtained values T1,T2 to quantumsim. The

standard relation between T1, T2 is:
1

T2
=

1

Tφ
+

1

2T1
(3.4)

Quantumsim uses the idling gate to insert The relaxation and dephasing error (the idling qubit error).

This kind of error is the main error source in quantumsim v0.2.

The gate noise

In quantumsim, each gate has a duration. In general, there are three types of gate used in this simulation,

the X rotation gate, the Y rotation gate, and the CZ gate. The X rotation and Y rotation gates take

20 ns, while the Z gate used in this thesis is decomposed into X rotation and Y rotation gates, it takes

40 ns. The two-qubit gate (CZ gate) takes 40 ns. All of these gates are modeled by sandwiching an

instantaneous gate with two idling gates. For example, the X gate is modeled by sandwiching an π-degree

X rotation gate with two idling gates with each takes 10 ns, they sum to the duration of a single-qubit

gate. The instantaneous gate in the middle can be modeled by the product of the PTM of the gate

without noise and an extra noise term represented in the PTM form. For the single-qubit gates, the extra

noise is modeled by a phenomenological depolarizing error extracted from experiments. For the X/Y

rotation gates, two parameters are needed to parameterize the extra gate noise, namely the dephasing

of X/Y rotations along the axis paxis, and the dephasing of X/Y rotations in the plane pplane.

Likewise, CZ gate can also be represented by an instantaneous CZ gate sandwiched by two idling

gates applied on each qubit. The noise of the instantaneous CZ gate comes from an incoherent deviation

Chapter 3. Simulation of QEC circuits 21

from the expected phase value [21], the noise parameter of CZ gate is also needed to set manually.

Note that in the full density-matrix simulation, the CNOT gate is decomposed into a CZ gate sand-

wiched by two single-qubit Y rotation gates, as shown in Figure 3.2. The Hadamard gate is decomposed

into an X gate and a Ry(−π/2) rotation gate, as shown in Figure 3.3.

• ≡ •

Y−90 • Y+90

1

Figure 3.2: The decomposition of a CNOT gate into a CZ gate and two Y rotations.

X Ry(−π/2)

1

Figure 3.3: The decomposition of a Hadamard gate into an X gate and a Ry(−π/2) rotation gate.

The Measurement error

Quantumsim offers a measurement model to approximate the behavior of real measurements. The

measurement model is built by sandwiching a readout process with declaration errors εR, with two

amplitude-phase damping process. In our simulation, we have tested that under the standard parameters

setting, the measurement error does not significantly contribute to the final measurement result of the

circuits. Therefore, for simplicity, for circuits that do not have intermediate measurements, we extract the

probability distribution from the density matrix directly, which considerably decreases the computational

cost.

Summary for the noise parameters setting

The default noise parameters for the density-matrix simulation used in this thesis are shown in Table 3.1,

we use the parameters unless otherwise mentioned.

Table 3.1: The standard parameters setting in the full density-matrix simulation.

Parameters Value
T1 30000 ns
T2 30000 ns

Single-qubit gate duration 20 ns
CZ gate duration 40 ns

paxis 10−4

pplane 5× 10−4

CZ dephasing 0.01
2π

Declaration error rate 0.0015

3.3.3 Scheduling

For the full density-matrix simulation, each gate is executed at a specific moment. For many cases,

the gates can be executed in parallel to avoid unnecessary qubit idling error. By adding the scheduling

Chapter 3. Simulation of QEC circuits 22

process, we can increase the parallelism of the circuits. In our simulation, we schedule all the gates in an

as-late-as-possible (ALAP) way, that is, delaying a quantum gate until it must be executed to continue

the computation. OpenQL [31] was used to perform the scheduling process.

Chapter 4

Simulation results

4.1 Simulation results using the stabilizer formalism simulator

4.1.1 The results of simulating the [[4,2,2]] code

To test the quantum fault-tolerance criterion, we encode the [[4,2,2]] code with three different initial states

(|00〉L, |0+〉L, and |00〉L+|11〉L√
2

), and select a circuit family containing 235 different circuits constructed

from the gate set {X1, X2, Z1, Z2, H1H2SWAP,CZ}. The depolarizing error rate p is set to 0.01 unless

otherwise stated. For both the encoded and unencoded circuits, the output distributions were obtained

by running each circuit 104 times.

The statistical distance results of the circuits with initial state |00〉L are shown in Figure 4.1. In

the figure, the x-axis is the index of the test circuits, the y-axis is the statistical distance (also called

the error rate). The orange dots represent the results of the Non-FT circuits, the blue ‘x’ represent the

results of the FT circuits and the green dots are the corresponding post-selection ratios.

0 50 100 150 200
The circuit index

0.0

0.1

0.2

0.3

0.4

0.5

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.55

0.60

0.65

0.70

0.75

0.80

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.1: The results of testing the FT criterion for the [[4,2,2]] code with the initial state |00〉L based
on the stabilizer formalism simulation.

23

Chapter 4. Simulation results 24

Figure 4.1 shows that for most of the circuits, the statistical distance of the FT encoded circuits

is lower than the unencoded ones. However there are some other circuits for which the encoded and

unencoded versions have very close statistical distances. We examined those circuits, some of them are

shown in Table 4.1.

Table 4.1: Some of the circuits with the initial state |00〉L for which the [[4,2,2]] code encoded circuits
and the unencoded ones have very close statistical distances in the stabilizer formalism simulation.

Circuit index The content
9 H1H2SWAP X2
12 X1 H1H2SWAP
13 Z1 H1H2SWAP X1
19 Z2 X1 H1H2SWAP X1
25 CZ Z1 X1 CZ H1H2SWAP
26 X2 H1H2SWAP Z2 Z2 Z2
29 X1 CZ Z2 H1H2SWAP Z2

Table 4.1 shows that all those circuits have the H1H2SWAP gate. The H1H2SWAP gate is able

to bring a collapsed state to a superposition state. In this simulation, if a quantum state (whether it is

encoded or not) is brought to the superposition (e.g. |00〉+ |11〉), it is no longer affected by any logical

errors‡. For the unencoded circuits, the errors caused by the depolarizing error model are all logical

errors. For the encoded circuits, the errors can be either logical errors or non-logical errors. If the error

is not a logical error, the measurement result will be rejected by the post-selection process; that is, for

the encoded circuits, we also only have logical errors at the output. Since both the logical encoded and

unencoded circuits are robust to the errors caused by the depolarizing error model, they both have low

statistical distances. These specific circuits are not relevant to the effectiveness of FT implementation

of QEC codes, Therefore the circuits can be discarded when we consider whether the FT criterion is

satisfied.

In the case the circuits are initialized to the |0+〉L or the |00〉L+|11〉L√
2

state, the encoded circuits

always have lower statistical distance than the unencoded versions, (see Figure 4.2 and 4.3). Therefore,

the FT criterion is satisfied.

We can also observe from Figure 4.2 and 4.3 that the post-selection ratios decrease with the increase

of statistical distances. This means if there are more errors inside circuits, more measurement outputs

will be rejected, showing the effectiveness of the post-selection process.

Test under different error rates

We also analyzed the fault-tolerance of the [[4,2,2]] code under different error rates of the depolarizing

error model. From the above results, we conclude there is no specific type of circuits or gate combinations

that may result in a low or high statistical distance where using the stabilizer formalism simulator. The

factor that affects the statistical distance most is the circuit depth, since the deeper the circuit depth

is, the higher the probability that errors might happen. Therefore, here we only test a few circuits.

The error rate is swept from 0.001 to 0.1 with a step of 0.001. The results of two selected circuits, one

consisting of ten X1 gates, the other one consisting of ten CZ gates are shown in Figure 4.4.

‡This is because the logical X does not change the state, and the logical Z only changes the sign before |1〉, which does
not contribute to the measurement result since we measure all qubits in the standard basis.

Chapter 4. Simulation results 25

0 50 100 150 200
The circuit index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.2: The results of testing the FT criterion for the [[4,2,2]] code with the initial state |0+〉L based
on the stabilizer formalism simulation.

0 50 100 150 200
The circuit index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.3: The results of testing the FT criterion for the [[4,2,2]] code with the initial state |00〉L+|11〉L√
2

based on the stabilizer formalism simulation.

We observe that for both circuits, when the error rate increases, the statistical distance of the encoded

circuits will soon be larger than the unencoded ones. The result suggests that whether the FT criterion

is satisfied also depends on the noise condition of the system.

In general, simulating the stabilizer circuits under the depolarizing error model can be used to evaluate

whether the FT criterion is likely to be satisfied in real hardware. In summary, for the circuit family

containing 235 circuits used in this simulation, all encoded circuits have lower statistical distances than

the unencoded circuits (excluding the cases that both the encoded and unencoded versions are robust

to the depolarizing errors). Therefore, we regard the FT criterion is satisfied in this experiment.

Chapter 4. Simulation results 26

0.00 0.02 0.04 0.06 0.08 0.10

The error rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

(a) The results of simulating a circuit consisting of ten
X gates.

0.00 0.02 0.04 0.06 0.08 0.10

The error rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

(b) The results of simulating a circuit consisting of ten
CZ gates.

Figure 4.4: The results of running a circuit consisting of ten X or ten CZ gates based on the stabilizer
formalism simulation. The error rate of the depolarizing error model is swept from 0.001 to 0.1 with a
step of 0.001.

4.2 Simulation results using the full density-matrix simulator

We performed full density-matrix simulations based on a Python package called quantumsim for the

[[4,2,2]] code and the [[7,1,3]] Steane code. The noise parameters used in quantumsim are based on the

standard parameter values given in [21].

4.2.1 The results of simulating the [[4,2,2]] code

For the [[4, 2, 2]] code, we used the same circuit family and the three initial states as in the stabilizer

formalism simulation. In the density-matrix simulation, since the CZ gate is available, we directly use it

instead of decomposing it into a CNOT gate and two Hadamard gates as we did in the stabilizer formalism

simulation. The statistical distance of the circuits initialized to state |00〉L is shown in Figure 4.5.

0 50 100 150 200
The circuit index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.5: The results of testing the FT criterion for the [[4,2,2]] code with the initial state |00〉L in the
density-matrix simulation.

Chapter 4. Simulation results 27

They show that there are a series of circuits for which the FT criterion is not satisfied. For example,

the unencoded circuits with index from No.85 to No.96 in Figure 4.5 have lower statistical distance than

the encoded ones, some of those circuits are shown in Table 4.2.

Table 4.2: Some of the test circuits with initial state |00〉L for which the FT criterion is not satisfied in
the density-matrix simulation.

Circuit index The content
85 CZ
86 CZ CZ
87 CZ CZ CZ
88 CZ CZ CZ CZ
89 CZ CZ CZ CZ CZ

The table shows that those circuits only contain a series of CZ gate. Thus the reason that the FT

criterion is not satisfied is rather direct: for the unencoded states the CZ gate is directly applied to

the two physical qubits. The initial state |00〉 will not be affected by CZ gate (suppose CZ gate is

error-free here). Therefore, in our simulation, the statistical distance of the unencoded states will always

remain close to zero no matter how many CZ gates are applied. In contrast, the encoded state |00〉L
is a superposition state as shown in equation 2.17 and it constantly suffers from the idling error. For

those circuits with an index from No.85 to No.96, the statistical distance of the encoded circuits tend to

increase with the increase of the circuit depth.

0 50 100 150 200
The circuit index

0.00

0.02

0.04

0.06

0.08

0.10

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.6: The results of testing the FT criterion for the [[4,2,2]] code with the initial state |0+〉L based
on the density-matrix simulation.

The results of the circuits with initial state |0+〉L are shown in Figure 4.6. It shows that there are

more circuits do not satisfy the FT criterion. For the circuits with small statistical distance for both

encoded and unencoded versions, we found that except for the CZ gate discussed above, the circuits also

include two other types of gates, the X2 gate (applying X gate on the second qubit (|+〉 state)) and the

Z2 gate (applying Z gate on the second qubit (|+〉 state)). Some of the circuits are shown in Table 4.3.

To explain why those unencoded circuits also have a low statistical distance, we take the No.80 circuit

Chapter 4. Simulation results 28

Table 4.3: Some of the circuits with the initial state |0+〉L that have close statistical distances for the
[[4,2,2]] encoded and unencoded circuits based on the density-matrix simulation.

Circuit index The content
80 X2 X2 X2 X2 X2 X2 X2 X2
85 CZ
86 CZ CZ
169 Z2 X2
170 Z2 X2 Z2 X2
193 Z2 X2 Z2

in Table 4.3 as an example. For the unencoded state, applying multiple X gates on a |+〉 qubit state

can relieve the relaxation process of the qubit. This is because in the |+〉 state, part of the decay that

the qubit is suffering in the upper half of Bloch sphere, is compensated by the decay in the lower half of

Bloch sphere when the qubit is flipped by an X gate. Therefore, applying multiple X gates to a qubit

at |+〉 state would reduce the statistical distance, leading to the results of the unencoded circuits with

index from No.74 to No.85 shown in Figure 4.6. Since in our simulation, the Z gate is decomposed into

X and Y gates, the circuits consisting of multiple Z2 gates (e.g. from No.157 to No.162) can also be

explained in this way.

In the case of the circuits with initial state |00〉L+|11〉L√
2

, Figure 4.7 shows that for most circuits, the

FT criterion is satisfied. While only a small number of circuits with index from No.93 to No.97 do not

satisfy the criterion due to the same effect of the unencoded CZ gate as discussed above.

0 50 100 150 200
The circuit index

0.00

0.02

0.04

0.06

0.08

0.10

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.7: The results of testing the FT criterion for the [[4,2,2]] code with initial state |00〉L+|11〉L√
2

based on the density-matrix simulation.

In summary, in the density-matrix simulation, the system encoded in the [[4,2,2]] code does not fully

satisfy the FT criterion. However, the fault-tolerant encoded circuits indeed have a lower error rate than

the unencoded ones for most the cases.

Chapter 4. Simulation results 29

Test under different T1,T2

We also tested the [[4,2,2]] code under different T1 and T2. With the initial state |00〉L, two different

simulations were performed. T1=T2 were set to 3000 ns and 300000 ns.

0 50 100 150 200
The circuit index

0.0

0.1

0.2

0.3

0.4

0.5

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.4

0.5

0.6

0.7

0.8

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.8: The density-matrix simulation for the [[4,2,2]] code with T1=T2=3000 ns. The other param-
eters follow the standard parameters setting.

Figure 4.8 shows the result of setting T1,T2 to 3000 ns. In general, both the statistical distance of the

encoded and unencoded circuits increases. For some circuits such are the circuits with index No.1, No.7,

and No.11, the increase of the statistical distance of the encoded circuit is higher than the unencoded

ones comparing to Figure 4.5 where the T1,T2 are set to 30000 ns. This means under small T1, T2, the

FT criterion is not likely to be satisfied. Figure 4.9 shows the results of setting T1,T2 to 300000 ns.

Comparing to Figure 4.5, the shapes of the curves do not significantly change. The statistical distances

decrease for both encoded and unencoded circuits, and the post-selection ratios of the [[4,2,2]] code

increase. This suggests that in an idling error dominated system, the encoded circuits might be better

than the unencoded ones even though the physical qubit also has quite low error rate.

4.2.2 The results of simulating the [[7,1,3]] code

Test for the parallel QEC cycle and the sequential QEC cycle

As we mentioned in Chapter 2, there are two ways to implement the flag-based error correction: the

sequential flag-based method, and the parallel flag-based method. We simulated the syndrome extraction

process for the two methods. Before running the simulation, the syndrome extraction process is scheduled

manually for both methods to reduce idling qubit errors. Note that the scheduling process needs to be

done carefully, since the circuits might not be fault-tolerant if some gates are switched during the

scheduling process, even in the noise-free case they are equivalent.

We use logical fidelity to evaluate the two methods. The logical fidelity refers to the probability

that without applying any logical operation, the final measurement result is the same as the initial

state. Since the syndrome measurement process includes intermediate measurements, it is necessary to

Chapter 4. Simulation results 30

0 50 100 150 200
The circuit index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The FT circuits
The NFT circuits
The post-selection ratio

Figure 4.9: The density-matrix simulation for the [[4,2,2]] code with T1=T2=300000 ns. The other
parameters follows the standard parameter values.

run the circuits many times to obtain an average logical fidelity. Table 4.4 shows the average logical

fidelity obtained by averaging the results over 104 repetitions for both methods. The results suggest the

parallel method has a slightly higher logical fidelity. Therefore, in the following simulation, the parallel

flag-based method is selected as the syndrome extraction method.

Table 4.4: The average logical fidelity of the sequential and the parallel flag-based method.

The flag-based method The average logical fidelity

The sequential method 0.8300
The parallel method 0.8665

Simulating one logical qubit with logical operations

Since inserting error correction procedures at different places (e.g. apply the QEC cycle after each logical

operation, or only apply it at the end of the circuit) of a circuit can lead to different results, we performed

simulations to test four different ways to insert the QEC cycle. The four ways are:

1. Many QEC cycles are inserted: the QEC cycle is applied after each procedure.

2. Two QEC cycles are inserted: one is applied after the Non-FT encoding procedure and the other

one is applied at the end of the circuit.

3. One QEC cycle is inserted after the Non-FT encoding procedure.

4. No QEC cycle is inserted: the Non-FT encoding is followed by a series of FT logical operations

and the final measurement, which is followed by a post-selection process.

In this simulation, we tested some specific circuits, such as the circuits consisting of ten X gate, or ten

Z gates. The statistical distance is used as the metric again. The results of the circuit consisting of ten

Chapter 4. Simulation results 31

Table 4.5: The results of testing the four ways to insert QEC cycles in the density-matrix simulation. A
circuit containing ten Z gates is selected as the test circuit.

The QEC type The statistical distance
With many QEC cycles after each operation 0.3968

With two QEC cycles in total 0.1538
With one QEC cycle in total 0.1155

No QEC cycle, only with encoding & post-selection process 0.0001

Z gates are shown in Table 4.5. Similar results are obtained for the ten X gates circuit, which are not

listed here.

They show that the case without inserting any QEC cycle has the lowest statistical distance followed

by the case inserting one QEC cycle. The worst case is when inserting a QEC cycle after each procedure

has the highest statistical distance. This suggests that, increasing the number of QEC cycles will make

the output results worse. Therefore, for the following experiment simulating one logical qubit, we will

not insert QEC cycle; that is, we only encode the physical qubits in the Steane code and apply logical

operations; after that we measure all qubits, followed by a post-selection process. However, if no QEC

cycle is applied to the encoding process, the circuit is not fault-tolerant. Therefore, our simulation

here might not be considered as an experiment to test the FT criterion, but an experiment to test the

effectiveness of encoding, as well as FT logical operations.

0 20 40 60 80
The circuit index

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The encoded circuits
The unencoded circuits
The post-selection ratio

Figure 4.10: The results of simulating the 84 circuits encoded in the Steane code in the density-matrix
simulation with no QEC cycle applied.

The results of simulating the 84 circuits generated from the gate set {X,Z,H} encoded in the Steane

code with no QEC cycle are is shown in Figure 4.10. For all circuits, the encoded ones have lower

statistical distances than the unencoded ones. Though, there are some circuits that the statistical

distance of the encoded and unencoded versions are quite close. Some of those circuits are listed in

Table 4.6.

We can observe that all circuits listed in Table 4.6 are in superposition states at the output of the

Chapter 4. Simulation results 32

Table 4.6: Some of the circuits that have close statistical distances for the encoded and unencoded
circuits in simulating one logical qubit based on the density-matrix simulation.

Circuit index The content
1 H
6 X H
7 H X X
11 X H X X
13 H H X Z H
14 Z Z H Z X
26 Z H Z H Z H X Z X

circuits. The reason the unencoded circuits also have low statistical distances can be regarded as a

combined effect of single-qubit decay which can be described in Bloch sphere. The general idea can

be illustrated as follows: before a state is brought to the superposition, it remains in the y-z plane of

Bloch sphere, while a Ry(π/2) rotation brought by Hadamard gate (remember that Hadamard gate is

decomposed into an X gate and a Ry(π/2) rotation) brings any state in the y-z plane to the equatorial

plane of Bloch sphere. If we measure the state right after applying the Hadamard gate, we will have

equal probability to get +1 or -1 (in the case we only consider the idling error); that is, before applying

a Hadamard gate to the qubit, the qubit decay (e.g. from |1〉 decays to |0]〉) does not contribute to the

final statistical distance. Therefore, for those unencoded circuits which states are in superposition in the

end, the statistical distance can be reasonably low.

In general, our results show the effectiveness of the encoding process as well as the FT logical

operations.

Simulating two logical qubits with logical operations

Initially, we planned to simulate two logical qubits in quantumsim, with each implemented with the

parallel flag-based quantum error correction. However, since each encoded block of qubits requires to

simulate (7 + 4) qubits, the two blocks require 22 qubits in total. This means the size of the density

matrix in quantumsim is 222 × 222, which is far intractable for our simulation hardware (GTX 1080Ti).

It turns out, the GPU we used can maximally simulate 14 qubits. Therefore, for the two logical qubits

simulation, we can only simulate the case without adding quantum error correction, which is the same

as we did in the one logical qubit simulation. This simulation also does not satisfy the FT criterion,

since without the QEC procedure, the encoding process is not fault-tolerant.

We simulated two logical qubits encoded in the Steane code. 452 circuits were generated from the

gate set {X,Y, Z,H,CNOT}. The results are shown in Figure 4.11 and 4.12.

For all circuits, the encoded ones have a lower distance than the unencoded versions. This again

shows the effectiveness of the encoding process as well as the FT logical operations.

Chapter 4. Simulation results 33

0 20 40 60 80 100 120 140 160
The circuit index

0.000

0.005

0.010

0.015

0.020

0.025
Th

e
st

at
is

tic
al

 d
is

ta
nc

e

0.75

0.80

0.85

0.90

0.95

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The encoded circuits
The unencoded circuits
The post-selection ratio

Figure 4.11: The results of simulating two logical qubits encoded in the Steane code without QEC cyle.
There are 452 circuits tested in total, here are the results of the first 160 circuits.

150 200 250 300 350 400 450
The circuit index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Th
e

st
at

is
tic

al
 d

is
ta

nc
e

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Th
e

po
st

-s
el

ec
tio

n
ra

tio

The encoded circuits
The unencoded circuits
The post-selection ratio

Figure 4.12: The results of simulating two logical qubits encoded in the Steane code without QEC cyle.
There are 452 circuits tested in total, here are the results of the last 292 circuits.

Chapter 5

Conclusion

5.1 Conclusion

Quantum fault-tolerance is necessary for quantum error correction and building large-scale quantum

machines capable of outperforming classical computers. In this thesis, we have explored the fault-

tolerance of two small quantum correction codes: the [[4,2,2]] code, and the [[7,1,3]] Steane code, that

are good candidates to be applied to NISQ processors. We have tested if they satisfy the fault-tolerance

criterion proposed by Daniel Gottesman using 2 simulators, the stabilizer formalism simulator that

includes simple error models and a full density matrix simulator called quantumsim, which includes

more realistic noise. The criterion for checking fault-tolerance is a method to test the effectiveness

of fault-tolerant encoding and operations. It requires for all the test circuits that the error rate (the

statistical distance) of encoded circuits is lower than their unencoded versions.

We first simulated the [[4,2,2]] code on the two simulators. A circuit family consisting of 235 cir-

cuits was used to perform the FT testing experiment. Under the condition that the error rate of the

depolarizing error model is 0.01, the results show for all the circuits (with 3 different initial states

|00〉,|0+〉, |00〉L+|11〉L√
2

) that the error rate of the encoded circuits is lower than their unencoded versions,

which suggests the FT criterion is satisfied. If the error rate is swept from 0.001 to 0.1, the encoded

circuits may have a higher error rate than the unencoded ones in the end, which suggests the effectiveness

of FT encoding depends on the noise condition of the environment.

In the full density-matrix simulation, for the [[4,2,2]] code we performed the same fault-tolerance

testing experiment on the 235 circuits. The results show that, under the standard parameters setting

extracted from a near-term device, the FT criterion is not fully satisfied. Specifically, for the initial

states |00〉, |0+〉, and |00〉L+|11〉L√
2

, 9 circuits out of the 235 circuits, 32 circuits out of the 235 circuits, and

5 circuits out of the 235 circuits do not satisfy the criterion, respectively. In general, two types of circuits

make the FT testing criterion not satisfied. The first type is the circuits that have CZ gates. The second

type the circuits initialized to the |0+〉 state and have the X2 (applying X gate on the second qubit (|+〉
state)) and the Z2 (applying Z gate on the second qubit (|+〉 state)) gates. However, our simulation

results show that encoded logical qubits indeed lead to lower error rates for most of the circuits.

For the Steane code, we only performed the full density-matrix simulation as it is more realistic.

We simulated the parallel flag-based implementation of the quantum error correction cycle. For the

simulation of one logical qubit with logical operations, we first compared three different cases to insert

34

Chapter 5. Conclusion 35

QEC cycles and one case is that no QEC cycle is inserted. The results show that under the standard

parameters setting, if no QEC cycle is used, the error rate is around 0.0001, while adding one QEC

cycle has an error rate of 0.1136, which is 1000x larger. It seems that adding more QEC cycles increases

the error rate. The best result was obtained where no QEC cycle was inserted, that is, only with the

encoding process and logical operations. Therefore, we decided to test the circuit family consisting of 84

circuits without inserting any QEC cycle. Note that in this case, the process of encoding the physical

qubits into logical qubits is not fault-tolerant. Thus, this simulation only tested the effectiveness of

the encoding process, not the FT criterion, which requires all the procedures to be fault-tolerant. The

results show that the encoding process improves the statistical distance of all 84 circuits. All encoded

circuits have a lower error rate than the unencoded ones.

Regarding the simulation of two logical qubits with logical operations using the Steane code, it was

not possible to run such an experiment. This is due to the extremely high memory cost of simulating

two logical qubits with QEC cycles. It requires to simulate 22 physical qubits (the required size of the

density matrix is 222 × 222). We were only able to simulate the encoding (without the QEC cycle) and

logical operations; that is, we encoded two blocks of qubits containing 14 qubits in total and performed

logical operations. The results show again that the encoding process is effective for all 452 circuits; the

encoded versions have lower error rates than the unencoded ones.

Our final remark is whether satisfying the FT criterion is a tradeoff among many factors, e.g. the

noise of the system, the time the QEC cycle takes, the QEC code’s capability, the decomposition method

of gates, the scheduling approach, etc. In general, the FT criterion is more likely to be satisfied if a

better system (low noise, a short period of QEC cycle, efficient decomposition of gates, etc.) is used.

5.2 Future work

In our simulation, the Steane code with flag-based error correction simulating one logical qubit requires

only eleven qubits. Therefore, it might be possible to map the circuits to the IBM Quantum Experience

devices and compare the experimental results with the simulation.

In general, to make a more accurate demonstration of quantum fault-tolerance, many aspects have to

be considered. For example, a broad family of circuits, generated from a universal gate set is required.

For the error correction procedure, it is also interesting to use more qubits in the syndrome extraction

procedure instead of reusing the ancilla qubits. However, this is not feasible here due to the high compu-

tational costs. Besides, in simulation, we often omit a lot of hardware constraints, such as connectivity,

the classical decoding time, different gate fidelity, etc. As we mentioned before, whether satisfying the

FT criterion depends on many factors. Therefore, to really demonstrate quantum fault-tolerance, a

comprehensive experiment on hardware is needed.

Indeed, simulation results can offer insights to hardware experiments. In the full density-matrix

simulation of this thesis, the version of quantumsim we used is v0.2. Though it includes a few kinds of

error sources, one significant error source such as the leakage error in the superconducting qubit system

is not taken into account. Quantumsim will release its 1.0 version in the future, in which a new CPhase

gate called the Netzero CPhase that includes the leakage error is implemented. It would be interesting

to see how the FT protocol performs in the presence of leakage.

Apart from the density matrix simulation, another type of simulation is the Hamiltonian simulation.

In [20], a Hamiltonian simulation coupling the data qubits to some extra qubits to study the effect of

Chapter 5. Conclusion 36

decoherence on the FT criterion is performed. It would be interesting to compare the decoherence due

to the coupling to the environment in the Hamiltonian simulation and the decoherence due to the T1

and T2 decay in the density matrix simulation.

Bibliography

[1] Wikipedia contributors, “Quantum computing — Wikipedia, the free encyclopedia,” 2019.

[2] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Information 2 (2016) 15023.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and

public-key cryptosystems,” Communications of the ACM 21 no. 2, (1978) 120–126.

[4] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,”

Physical review letters 103 no. 15, (2009) 150502.

[5] J. Preskill, “Quantum computing and the entanglement frontier,” arXiv:1203.5813 (2012) .

[6] K. A. Frank Arute et al., “Quantum supremacy using a programmable superconducting

processor,” nature 574 (2019) 505.

[7] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy

experiments,” in 32nd Computational Complexity Conference (CCC 2017), Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[8] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum 2 (2018) 79.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th

Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th ed., 2011.

[10] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical review A

52 no. 4, (1995) R2493.

[11] A. M. Steane, “Error correcting codes in quantum theory,” Physical review letters 77 no. 5, (1996)

793.

[12] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299 no. 5886,

(1982) 802.

[13] D. Gottesman, “An introduction to quantum error correction and fault-tolerant quantum

computation,” in Quantum information science and its contributions to mathematics, Proceedings

of Symposia in Applied Mathematics, vol. 68, pp. 13–58. 2010.

[14] P. W. Shor, “Fault-tolerant quantum computation,” in Proceedings of 37th Conference on

Foundations of Computer Science, pp. 56–65, IEEE. 1996.

37

Bibliography 38

[15] A. M. Steane, “Active stabilization, quantum computation, and quantum state synthesis,”

Physical review letters 78 no. 11, (1997) 2252.

[16] E. Knill, “Scalable quantum computing in the presence of large detected-error rates,” Physical

review A 71 no. 4, (2005) 042322.

[17] D. Gottesman, “Quantum fault tolerance in small experiments,” arXiv:1610.03507 (2016) .

[18] R. Harper and S. T. Flammia, “Fault-tolerant logical gates in the ibm quantum experience,”

Physical review letters 122 no. 8, (2019) 080504.

[19] C. Vuillot, “Is error detection helpful on ibm 5q chips?,” arXiv:1705.08957 (2017) .

[20] D. Willsch, M. Willsch, F. Jin, H. De Raedt, and K. Michielsen, “Testing quantum fault tolerance

on small systems,” Physical review A 98 no. 5, (2018) 052348.

[21] T. O’Brien, B. Tarasinski, and L. DiCarlo, “Density-matrix simulation of small surface codes

under current and projected experimental noise,” npj Quantum Information 3 no. 1, (2017) 39.

[22] “Quantumsim v0.2.”. https://github.com/quantumsim/quantumsim/tree/stable/v0.2.

[23] R. Chao and B. W. Reichardt, “Quantum error correction with only two extra qubits,” Physical

review letters 121 no. 5, (2018) 050502.

[24] A. M. Steane, “A tutorial on quantum error correction,” in PROCEEDINGS-INTERNATIONAL

SCHOOL OF PHYSICS ENRICO FERMI, vol. 162, p. 1, IOS Press; Ohmsha; 1999. 2007.

[25] D. Gottesman, “The heisenberg representation of quantum computers,” arXiv quant-ph/9807006

(1998) .

[26] H. Goto, “Minimizing resource overheads for fault-tolerant preparation of encoded states of the

steane code,” Scientific reports 6 (2016) 19578.

[27] T. J. Yoder and I. H. Kim, “The surface code with a twist,” Quantum 1 (2017) 2.

[28] L. Lao and C. G. Almudever, “Fault-tolerant quantum error correction on near-term quantum

processors using flag and bridge qubits,” 2019.

[29] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical Review A

70 no. 5, (2004) 052328.

[30] D. Greenbaum, “Introduction to quantum gate set tomography,” 2015.

[31] “Openql.”. https://github.com/QE-Lab/OpenQL.

Appendix A

The test circuit families

39

Appendix
A.1 The test circuit families

Table 1. The test circuit family for the [[4,2,2]] code simulation.

No. The content No. The content

1 empty 32 HHSWAP X1 X1 Z2 X1 CZ

2 X1 33 HHSWAP Z1 CZ Z2 X2 X2

3 X2 34 CZ X2 HHSWAP Z2 Z1 HHSWAP

4 Z1 35 CZ Z1 X2 X1 HHSWAP HHSWAP

5 Z2 36 X2 X2 Z2 X2 HHSWAP HHSWAP

6 HHSWAP 37 HHSWAP Z1 HHSWAP Z1 X1 X2

7 CZ 38 CZ HHSWAP Z1 Z2 CZ Z2 X2

8 Z1 Z2 39 Z1 X1 X2 X1 Z2 X1 X2

9 CZ HHSWAP 40 X2 X1 X2 HHSWAP X1 Z1 Z1

10 HHSWAP X2 41 X2 Z2 Z1 X1 HHSWAP X2 Z1

11 Z2 CZ 42 CZ Z2 X1 X1 X1 X2 CZ

12 X1 X1 43 X1 X1 X2 HHSWAP HHSWAP X2 CZ

13 X1 HHSWAP 44 X1 HHSWAP Z1 Z1 X2 Z2 Z1 CZ

14 Z1 HHSWAP X1 45 X1 X2 Z2 Z1 CZ HHSWAP X1 Z2

15 CZ Z2 CZ 46 Z2 X2 CZ Z2 Z2 Z1 Z1 Z2

16 X1 CZ X2 47 X1 Z1 Z1 Z1 X2 X2 Z2 HHSWAP

17 Z2 X2 X2 48 X1 CZ X1 Z1 X2 X2 X2 Z1

18 X2 X1 X1 49 CZ HHSWAP Z2 X2 CZ CZ HHSWAP X2

19 Z2 Z2 Z1 50 HHSWAP CZ X2 HHSWAP X2 Z1 Z1 Z2 CZ

20 Z2 X1 HHSWAP X1 51 Z1 X1 CZ Z1 Z1 Z1 X1 X1 X2

21 CZ Z2 CZ Z1 52 CZ Z2 CZ Z2 X2 HHSWAP HHSWAP X2 X2

22 Z2 Z2 Z1 Z1 53 X1 Z1 HHSWAP Z2 X2 Z1 Z2 X2 X2

23 X2 CZ Z2 Z1 54 HHSWAP X1 X2 X1 X2 HHSWAP X1 HHSWAP X1

24 Z1 Z1 CZ Z1 55 X1 X1 HHSWAP Z1 CZ HHSWAP X1 Z1 CZ

25 CZ Z1 Z2 Z1 56 X2 X1 X1 X1 X2 CZ X1 X1 X2 HHSWAP

26 CZ Z1 X1 CZ HHSWAP 57 X1 Z1 HHSWAP HHSWAP X1 CZ HHSWAP*3 X1

27 X2 HHSWAP Z2 Z2 Z2 58 X2 X2 Z1 X1 HHSWAP HHSWAP Z1 HHSWAP Z2 X2

28 HHSWAP CZ CZ HHSWAP Z2 59 Z1 Z2 Z1 X2 HHSWAP X1 X2 Z2 Z2 X1

29 Z1 CZ X2 Z2 Z2 60 Z2 X1 X1 Z1 X1 CZ Z1 HHSWAP Z1 X1

30 X1 CZ Z2 HHSWAP Z2 61 CZ Z1 CZ Z1 Z1 HHSWAP X2 HHSWAP Z1 X2

31 CZ X1 X2 CZ Z2 62 HHSWAP Z1 HHSWAP CZ CZ X1 Z2 Z2 CZ CZ X1

Appendix A. The test circuit families 40

63 HHSWAP HHSWAP X1 HHSWAP Z2 CZ X1 X1 X2 CZ X2 108 HHSWAP *11

64 Z1 Z2 HHSWAP Z1 Z1 Z2 HHSWAP CZ Z2 X2 Z1 109 HHSWAP *12

65 CZ X1 Z1 HHSWAP CZ HHSWAP HHSWAP X1 HHSWAP CZ Z2 108 HHSWAP *11

66 CZ CZ Z2 Z1 Z2 CZ X1 Z2 HHSWAP Z2 X1 110 Z1 *1

 67 HHSWAP CZ Z1 CZ X1 Z1 Z2 X2 X2 X2 HHSWAP 111 Z1 *2

68 HHSWAP X2 Z1 HHSWAP Z2 Z1 X1 HHSWAP X1 CZ X1 CZ 112 Z1 *3

69 HHSWAP X2 HHSWAP Z1 CZ HHSWAP X1 X1 Z1 Z1 CZ X1 113 Z1 *4

70 X2 X1 X1 CZ X2 Z2 Z2 Z1 X2 HHSWAP Z2 Z1 114 Z1 *5

71 Z1 X1 X2 Z2 X1 Z1 Z1 Z2 CZ Z2 X1 Z1 115 Z1 *6

72 X1 Z2 X1 Z1 HHSWAP X2 X1 HHSWAP CZ X2 Z2 HHSWAP 116 Z1 *7

73 CZ Z1 Z2 Z1 X2 X1 X1 HHSWAP Z1 X2 Z1 X1 117 Z1 *8

74 X2 *1 118 Z1 *9

75 X2 *2 119 Z1 *10

76 X2 *3 120 Z1 *11

77 X2 *4 121 Z1 *12

78 X2 *5 122 X1 *1

79 X2 *6 123 X1 *2

80 X2 *7 124 X1 *3

81 X2 *8 125 X1 *4

82 X2 *9 126 X1 *5

83 X2 *10 127 X1 *6

84 X2 *11 128 X1 *7

85 X2 *12 129 X1 *8

86 CZ *1 130 X1 *9

87 CZ *2 131 X1 *10

88 CZ *3 132 X1 *11

89 CZ *4 133 X1 *12

90 CZ *5 134 Z2 *1

91 CZ *6 135 Z2 *2

92 CZ *7 136 Z2 *3

93 CZ *8 137 Z2 *4

94 CZ *9 138 Z2 *5

95 CZ *10 139 Z2 *6

96 CZ *11 140 Z2 *7

97 CZ *12 141 Z2 *8

98 HHSWAP *1 142 Z2 *9

99 HHSWAP *2 143 Z2 *10

100 HHSWAP *3 144 Z2 *11

101 HHSWAP *4 145 Z2 *12

102 HHSWAP *5 146 (HHSWAP X2) *1

103 HHSWAP *6 147 (HHSWAP X2) *2

104 HHSWAP *7 148 (HHSWAP X2) *3

105 HHSWAP *8 149 (HHSWAP X2) *4

106 HHSWAP *9 150 (HHSWAP X2) *5

107 HHSWAP *10 151 (HHSWAP X2) *6

Appendix A. The test circuit families 41

152 (X1 Z2) *1 192 (X2 CZ Z2)*3

153 (X1 Z2) *2 193 (X2 CZ Z2)*4

154 (X1 Z2) *3 194 (Z2 X2 Z2)*1

155 (X1 Z2) *4 195 (Z2 X2 Z2)*2

156 (X1 Z2) *5 196 (Z2 X2 Z2)*3

157 (X1 Z2) *6 197 (Z2 X2 Z2)*4

158 (Z2 Z2) 198 (X2 Z1 HHSWAP)*1

159 (Z2 Z2)*2 199 (X2 Z1 HHSWAP)*2

160 (Z2 Z2)*3 200 (X2 Z1 HHSWAP)*3

161 (Z2 Z2)*4 201 (X2 Z1 HHSWAP)*4

162 (Z2 Z2)*5 202 (X2 CZ HHSWAP)*1

163 (Z2 Z2)*6 203 (X2 CZ HHSWAP)*2

164 (HHSWAP CZ)*1 204 (X2 CZ HHSWAP)*3

165

1

(HHSWAP CZ)*2 205 (X2 CZ HHSWAP)*4

166 (HHSWAP CZ)*3 206 (Z1 X1 X2 Z2)*1

167 (HHSWAP CZ)*4 207 (Z1 X1 X2 Z2)*2

168 (HHSWAP CZ) *5 208 (Z1 X1 X2 Z2)*3

169 (HHSWAP CZ) *6 209 (X2 HHSWAP X2 X2)*1

170 (Z2 X2)*1 210 (X2 HHSWAP X2 X2)*2

171 (Z2 X2)*2 211 (X2 HHSWAP X2 X2)*3

172 (Z2 X2)*3 212 (Z2 X1 Z1 Z1)*1

173 (Z2 X2)*4 213 (Z2 X1 Z1 Z1)*2

174 (Z2 X2)*5 214 (Z2 X1 Z1 Z1)*3

175 (Z2 X2)*6 215 (Z2 X1 X2 X2)*1

176 (CZ X2)*1 216 (Z2 X1 X2 X2)*2

177 (CZ X2)*2 217 (Z2 X1 X2 X2)*3

178 (CZ X2)*3 218 (X2 X1 X2 CZ)

179 (CZ X2)*4 219 (X2 X1 X2 CZ)*2

180 (CZ X2)*5 220 (X2 X1 X2 CZ)*3

181 (CZ X2)*6 221 (X1 Z2 X1 CZ)*1

182 (Z1 X1 Z2)*1 222 (X1 Z2 X1 CZ)*2

183 (Z1 X1 Z2)*2 223 (X1 Z2 X1 CZ)*3

184 (Z1 X1 Z2)*3 224 (X2 X1 Z2 Z1 X1)*1

185 (Z1 X1 Z2)*4 225 (X2 X1 Z2 Z1 X1)*2

186 (HHSWAP Z2 Z1)*1 226 (HHSWAP HHSWAP Z1 CZ Z1)*1

187 (HHSWAP Z2 Z1)*2 227 (HHSWAP HHSWAP Z1 CZ Z1)*2

188 (HHSWAP Z2 Z1)*3 228 (Z2 Z1 Z2 Z2 X1)

189 (HHSWAP Z2 Z1)*4 233 (Z2 Z1 Z2 Z2 X1)*2

190 (X2 CZ Z2)*1 234 (HHSWAP Z2 Z1 Z1 Z2)*1

191 (X2 CZ Z2)*2 235 (HHSWAP Z2 Z1 Z1 Z2)*2

Appendix A. The test circuit families 42

Table 2. The test circuit family for the 1 logical qubit simulation encoded in the [[7,1,3]] code.

No. Content No. Content

1 H 42 X X

2 Z 43 X X X

3 X 44 X X X X

4 X X 45 X X X X X

5 Z X 46 X X X X X X

6 X H 47 X X X X X X X

7 H X X 48 X X X X X X X X

8 H X H 49 X X X X X X X X X

9 H H Z 50 X X X X X X X X X X

10 X X X X 51 H

11 X H X X 54 H H

12 H Z H X 55 H H H

13 H H X Z H 56 H H H H

14 Z Z H Z X 57 H H H H H

15 X Z X X X 58 H H H H H H

16 H Z Z H X Z 59 H H H H H H H

17 X Z X X H Z 60 H H H H H H H H

18 Z H X H X H 61 H H H H H H H H H

19 Z X X Z X X Z 62 H H H H H H H H H H

20 X H Z Z H Z Z 63 X Z

21 X X X X Z Z X 64 X Z X Z

22 H H X Z X Z X Z 65 X Z X Z X Z

23 H Z H X Z X H H 66 X Z X Z X Z X Z

24 X Z H H Z Z Z Z 67 X Z X Z X Z X Z X Z

25 H X Z H H X Z X H 68 H Z

26 Z H Z H Z H X Z X 69 H Z H Z

27 H Z X H H X Z Z Z 70 H Z H Z H Z

28 Z H Z H Z Z X X Z H 71 H Z H Z H Z H Z

29 H Z X Z H X X X X X 72 H Z H Z H Z H Z H Z

30 Z H Z Z Z Z X H H Z 73 X H

31 Z 74 X H X H

32 Z Z 75 X H X H X H

33 Z Z Z 76 X H X H X H X H

34 Z Z Z Z 77 X H X H X H X H X H

35 Z Z Z Z Z 78 H H Z

36 Z Z Z Z Z Z 79 H H Z H H Z

37 Z Z Z Z Z Z Z 80 H H Z H H Z H H Z

38 Z Z Z Z Z Z Z Z 81 Z X Z

39 Z Z Z Z Z Z Z Z Z 82 Z X Z Z X Z

40 Z Z Z Z Z Z Z Z Z Z 83 Z X Z Z X Z Z X Z

41 X 84 X H Z

Appendix A. The test circuit families 43

Table 3. The test circuit family for the 2 logical qubits simulation encoded in the [[7,1,3]] code1.

No. Content No. Content

1 Y1 52 X2 H2 X2 Y2 X2 Y1

2 CNOT1 53 Y1 Y2 CNOT1 X1 Y2 X1

3 Y2 54 CNOT1 CNOT2 H1 Y2 Z1 CNOT2

4 Z2 55 X1 Z1 H2 X1 H2 H2

5 X1 56 H2 H2 Z1 Y1 CNOT2 Z1

6 X2 57 X1 X2 X2 CNOT1 CNOT1 H1

7 H2 58 Y1 Y1 Y2 Y1 CNOT2 H2

8 H1 59 Y2 Z2 Z2 X2 H2 H1

9 Z1 60 Y1 CNOT1 X2 Y2 H1 CNOT1

10 CNOT2 61 Y1 CNOT2 X1 Y2 Y1 Y2 Z1

11 H1 Y2 62 Y2 Z1 Y2 H2 Y1 CNOT2 Y2

12 H2 Y2 63 CNOT1 Y1 X1 X2 Y2 X2 H1

13 CNOT2 X2 64 CNOT2 X2 Z2 H1 Y1 H1 CNOT2

14 Z2 Z1 65 H2 H2 CNOT1 Z2 Z2 Z1 Y1

15 CNOT2 Y1 66 X1 H2 X2 CNOT2 X2 H1 X2

16 X1 Y1 67 X1 H1 CNOT1 H1 Y1 CNOT2 Z1

17 CNOT2 CNOT2 68 H1 CNOT2 Y2 X2 CNOT1 CNOT1 CNOT2

18 CNOT1 X1 69 Y1 Y2 X2 Z2 X1 H2 Y1

19 Z1 Y1 70 Y2 Z1 Y1 CNOT1 H2 Z2 Z1

20 Y2 CNOT2 71 X2 CNOT1 H1 H2 X2 CNOT2 X2 Y1

21 H1 X2 X1 72 Z2 X2 X2 Y1 Y2 H1 X1 Y1

22 Y1 H2 Y2 73 X2 CNOT1 H2 X2 H1 H1 H2 H2

23 Z2 Z1 CNOT2 74 X2 X1 X2 CNOT1 CNOT1 CNOT1 X1 Y2

24 Y1 H1 CNOT1 75 Y1 Y1 Y1 CNOT1 Z1 Z1 Y1 CNOT1

25 CNOT2 Y2 Y1 76 Y2 X2 Z2 X2 Z1 H2 H2 Z1

26 X2 Z2 CNOT2 77 Z2 CNOT2 Z2 Z2 Y1 Y2 H1 X1

27 H2 H2 Y2 78 X1 H2 Y1 Y1 X1 X2 Y1 X1

28 CNOT1 Z1 Z1 79 Y2 X1 Z1 H2 X2 H2 H1 Z2

29 CNOT1 H2 CNOT2 80 X2 Y1 Z1 X1 CNOT1 Y2 Y1 X1

30 Z1 Y1 CNOT1 81 H2 CNOT2 Z2 Z1 Y1 Z2 Z2 Y1 X2

31 H2 H1 CNOT1 Y2 82 X2 X1 H2 Z1 X1 H1 H2 CNOT1 Z1

32 H2 Z1 H1 Y1 83 CNOT1 X1 X2 CNOT1 Z2 CNOT1 Z2 CNOT1 CNOT2

33 Y2 Z1 Y2 CNOT2 84 X2 CNOT2 X1 Z2 H1 X1 CNOT2 Z2 X1

34 Z1 H1 Y1 CNOT1 85 Z1 H2 CNOT1 Y2 Y1 CNOT1 Z1 H1 X1

35 H1 Y1 H2 Y2 86 Y2 X2 Z1 X1 Y1 X1 CNOT1 X2 X1

36 Z1 H1 X1 CNOT1 87 H2 Y2 CNOT2 H2 CNOT2 H2 X2 X2 CNOT1

37 H1 CNOT1 Z1 CNOT1 88 Y2 H2 H1 H1 CNOT2 H2 Y1 Z2 Y2

38 X2 H2 CNOT1 Z1 89 Z2 Y2 Z2 CNOT2 H2 CNOT1 CNOT2 H2 CNOT1

39 Z2 Z2 X2 X2 90 Y1 Y2 X2 H1 Y2 X2 Y2 Y2 X2

40 CNOT2 Y2 Z1 X1 91 Z2 X2 X2 X2 CNOT2 X2 X2 Y1 CNOT1 Y2

41 Y1 Z2 CNOT2 Y2 X2 92 H1 Y1 X1 Y2 Z1 H2 H2 Y1 X2 CNOT1

42 Y2 Z1 Y1 H1 CNOT2 93 Z2 X2 H1 CNOT2 X1 H2 Y1 CNOT2 Y2 H1

43 Z1 X2 H2 Z1 Y2 94 X2 X2 H1 X1 H1 Y1 Z2 X1 Y1 Y2

44 H2 Z1 CNOT2 H2 H1 95 H2 CNOT2 Z2 Z1 H2 Y2 CNOT2 H2 CNOT2 CNOT1

45 Z2 Y1 H1 H1 Y2 96 X2 Y2 X1 Z1 CNOT1 Z2 X1 Z1 X1 CNOT1

46 CNOT2 X1 CNOT1 CNOT1 Y1 97 CNOT2 CNOT1 Z2 CNOT2 X1 X1 Z1 X2 X2 X2

47 H1 CNOT1 H2 Z2 Y2 98 Y2 Z2 Y1 Z2 CNOT1 CNOT1 Y1 H1 Z1 Y1

48 Z2 CNOT2 Y1 Y2 H1 99 Z1 X1 Y2 Z2 X1 Y2 X2 X2 H2 Z1

49 H2 Z1 CNOT2 CNOT2 CNOT1 100 H1 X2 H1 CNOT2 CNOT1 CNOT1 X1 X1 H1 X1

50 Z1 Y2 H2 Z1 Y2 101 Z1 CNOT1 H2 X1 H1 H2 Y2 CNOT1 Z2 Y2 CNOT1

51 Y1 X1 Y2 CNOT1 Y2 H1 102 Y1 Z2 Z2 Y2 Z2 Y2 Z2 H2 H1 X2 H2

1 Note that CNOT1 refers to apply the CNOT from the first qubit to the second qubit, CNOT2 refers to apply the CNOT gate in the opposite way.

Appendix A. The test circuit families 44

103 Y1 H2 CNOT2 X1 H2 Z2 H1 Y1 Z1 H2 H2 160 Y2 Z2 Z2 H1 H2 X2 H1 X1 H2 H1 H2 CNOT2 Z2

Z2 H2 Y2
104 Y2 Z1 X2 X2 CNOT1 X2 X1 CNOT1 X2 Z1 Z2 161 H1 *1

105 Z2 X1 Y2 CNOT2 CNOT2 H2 X2 Z2 CNOT1 Z1 Y1 162 H1 *2

106 Z2 X1 CNOT1 CNOT1 H1 Z1 H1 CNOT1 X2 X1 X1 163 H1 *3

107 Y2 Y2 X1 CNOT1 H1 Z1 CNOT1 H1 Y2 CNOT2 X2 173 H1 *13

108 CNOT1 H2 H1 Z2 CNOT1 Y2 Z1 H2 CNOT1 X2 X2 174 H1 *14

109 CNOT1 Z1 X2 X2 Z2 CNOT2 X1 CNOT2 Z1 X1 Z2 175 H1 *15

110 CNOT1 H1 H1 CNOT1 Z1 CNOT1 X2 Z2 CNOT1 CNOT1 CNOT1 176 H1 *16

111 CNOT1 Z1 Z1 X1 X1 CNOT2 Z1 H1 Y1 Z1 X1 CNOT2 177 CNOT1 *1

112 H1 Y1 CNOT1 Y1 CNOT2 X2 Y1 Y2 Y1 Y2 X2 H1 178 CNOT1 *2

113 X1 Z2 CNOT2 X1 Y1 Y1 H2 H1 CNOT2 Z1 Y2 CNOT1 179 CNOT1 *3

114 Z2 Y1 CNOT1 Z1 CNOT2 X1 Y2 X2 X1 Z2 Z2 X2 180 CNOT1 *4

115 Y1 Y1 X2 Z1 Y2 Y1 CNOT2 Y2 Y1 CNOT2 Z1 CNOT1 181 CNOT1 *5

116 H1 H2 CNOT1 X1 H1 Z2 CNOT1 Z1 Z2 Z1 Y1 H2 182 CNOT1 *6

117 X2 CNOT1 Y2 H1 Z1 X1 CNOT1 X1 H1 H2 X1 Y2 183 CNOT1 *7

118 Z2 X2 H2 H1 X1 H1 CNOT1 H2 Y2 X2 H2 H2 184 CNOT1 *8

119 Y1 Y1 Y1 X2 Y1 X2 CNOT1 H1 X2 CNOT2 Z2 Y1 185 CNOT1 *9

120 CNOT1 H2 CNOT2 X1 Y1 Z1 X1 Z2 CNOT1 Z2 Z1 CNOT1 186 CNOT1 *10

121 Z1 H2 H2 X2 Y1 X2 X2 Z1 Y1 X1 H1 H2 Z2 187 CNOT1 *11

122 H1 CNOT1 H2 CNOT1 H2 CNOT2 CNOT2 H2 H1 Z1 Z1 Y2 Y1 188 CNOT1 *12

123 H1 H2 Y1 Z1 Y1 H1 H1 X2 CNOT1 Z2 H1 H1 Z2 189 CNOT1 *13

124 H2 CNOT1 Z1 X1 H1 H2 X1 CNOT2 H1 X1 H2 Z2 H2 190 CNOT1 *14

125 Y1 X1 Z1 Z2 H1 X2 H1 Y2 Y2 Y2 CNOT2 CNOT2 Y1 191 CNOT1 *15

126 X1 X1 Z1 CNOT1 Y2 Z2 Z1 CNOT1 CNOT2 X2 X1 H1 Z1 192 CNOT1 *16

127 H2 CNOT1 CNOT2 Z1 Y2 X2 X2 Y2 Z1 X1 CNOT2 X1 X2 193 (Y1) *1

128 Z1 CNOT2 CNOT1 Z1 CNOT1 Y2 CNOT1 CNOT2 X2 X2 Z1 X2

X1

194 (Y1) *2

129 Y2 X1 Z2 X2 H1 CNOT1 CNOT2 Y2 CNOT1 X2 X1 Z2 CNOT1 195 (Y1) *3

130 Z2 H1 Y1 H1 CNOT1 Y1 H2 H2 CNOT1 CNOT2 Z2 Y2 Z2 196 (Y1) *4

131 H1 Z1 Z2 Y2 X2 Z1 Z2 CNOT1 Y2 CNOT2 X2 Z1 CNOT1 H2 197 (Y1) *5

132 H2 X1 Y2 Z1 Z2 CNOT2 CNOT1 CNOT2 Y1 H1 Y2 CNOT2 Y1 CNOT1 198 (Y1) *6

133 Y2 Y2 CNOT2 Y1 CNOT1 H2 CNOT1 Y1 H2 Y1 H2 CNOT1 CNOT1 H1 199 (Y1) *7

134 H1 X2 H2 Z2 X2 X1 Y2 Z1 X1 CNOT1 Y2 Y1 CNOT2 H2 200 (Y1) *8

135 Z1 X1 CNOT2 H1 Z1 CNOT2 Z1 H1 Z1 CNOT2 Y2 Z1 Z2 H1 201 (Y1) *9

136 Z1 X1 Z1 Z1 Z2 Z1 Z1 Y2 Z2 CNOT1 Y1 Y2 Z1 X2 202 (Y1) *10

137 X2 CNOT2 CNOT2 CNOT2 CNOT2 H2 CNOT2 Y2 Z1 CNOT2 CNOT1 CNOT1

Y2 CNOT1

203 (Y1) *11

138 Z2 X1 CNOT1 Y2 H1 H1 Z1 H2 X1 H1 X1 X1 CNOT2 CNOT2 204 (Y1) *12

139 CNOT1 Z2 H2 Z2 X1 H2 H1 X2 H2 X2 X2 CNOT1 CNOT1 CNOT2 205 (Y1) *13

140 H1 CNOT2 H1 CNOT1 X1 Y2 X2 H1 H2 CNOT1 CNOT1 H1 H2 H2 206 (Y1) *14

141 H2 Z2 Z1 Y1 Y2 H2 Y1 CNOT1 CNOT2 Z1 Z1 Y2 Y1 X2 X1 207 (Y1) *15

142 Y2 Z1 X2 CNOT2 X1 CNOT1 Y2 Z2 Y2 Y1 CNOT1 X1 Y1 Y2 X1 208 (Y1) *16

143 X1 CNOT1 CNOT2 CNOT2 Y1 Y1 CNOT2 H2 Z1 X1 H1 Y1 H2 Z2 X2 209 X1 *1

144 Y1 X2 Y2 Z1 CNOT1 H1 Z1 CNOT1 X2 H1 H2 Y1 Z2 CNOT2 Z2 210 X1 *2

145 Y1 Y2 H1 Y2 X1 CNOT2 Z1 CNOT2 Y1 Y2 Z1 CNOT2 CNOT1 X1 Z2 211 X1 *3

146 H1 X2 X2 CNOT1 H2 Z2 Z2 Y1 Y1 H2 Y2 CNOT1 X2 CNOT2 CNOT1 212 X1 *4

147 H2 H2 Z1 CNOT1 CNOT1 X2 Z1 H1 X2 Z2 Z2 CNOT1 Z2 Y2 Y2 213 X1 *5

148 Y1 CNOT2 Y2 X1 CNOT1 H2 X2 CNOT2 Z1 Y1 CNOT1 X1 H2 X1 X2 214 X1 *6

149 CNOT2 Y2 X2 CNOT1 Y2 Y1 X1 Y2 Y1 H2 Y1 X2 Z1 Y2 H2 215 X1 *7

150 H2 H1 X2 Z2 X2 X1 CNOT1 Y2 X1 Y2 CNOT1 Y2 CNOT1 H1 CNOT2 216 X1 *8

151 H1 CNOT1 X2 H2 CNOT1 Z1 CNOT2 CNOT1 Z1 Y2 Z2 CNOT2 H1 Y2 CNOT1

X2

217 X1 *9

152 H1 CNOT1 Y1 Y2 Z2 X1 Y1 H1 Y1 Z2 H1 Y1 X2 X2 H1 H1 218 X1 *10

153 X1 H2 H2 Z1 Z2 Z2 Z1 Y1 Y2 H2 Z1 H1 X1 H2 X1 Y2 219 X1 *11

154 CNOT1 Z1 X1 X1 X1 CNOT2 Z2 Y2 Y2 X2 CNOT2 H1 CNOT2 Y2 H1 Y2 220 X1 *12

155 Y1 CNOT1 X2 Y2 CNOT1 X1 Y2 Z2 X1 Z2 CNOT2 Y1 Y2 H2 X1 Z2 221 X1 *13

156 H1 H2 Z1 Y2 X1 CNOT1 Y2 H1 Y1 CNOT2 Y1 Z1 Z1 H2 Z1 Y2 222 X1 *14

157 CNOT1 X2 H1 CNOT2 X2 H1 CNOT1 Z1 CNOT1 CNOT1 Y2 Y1 Y1 H2 Z1 Y2 223 X1 *15

158 X2 Y2 Z2 Y2 X2 Y2 Z1 H2 X1 Y2 X1 Y2 Y1 Y1 H2 Y1 224 X1 *16

159 H2 CNOT1 X1 CNOT1 Z2 CNOT2 Z1 H1 Y1 Y2 Y2 Y2 H2 CNOT2 H1 CNOT2 225 Z1 *1

Appendix A. The test circuit families 45

226 Z1 *2 283 (Z2 H1) *3

227 Z1 *3 284 (Z2 H1) *4

228 Z1 *4 285 (Z2 H1) *5

229 Z1 *5 286 (Z2 H1) *6

230 Z1 *6 287 (Z2 H1) *7

231 Z1 *7 288 (Z2 H1) *8

232 Z1 *8 289 (CNOT2 X2)*1

233 Z1 *9 290 (CNOT2 X2)*2

234 Z1 *10 291 (CNOT2 X2)*3

235 Z1 *11 292 (CNOT2 X2)*4

236

5

Z1 *12 293 (CNOT2 X2)*5

237 Z1 *13 294 (CNOT2 X2)*6

238 Z1 *14 295 (CNOT2 X2)*7

239 Z1 *15 296 (CNOT2 X2)*8

240 Z1 *16 297 (Z1 H1) *1

241 (X1 CNOT1)*1 298 (Z1 H1) *2

242 (X1 CNOT1)*2 299 (Z1 H1) *3

243 (X1 CNOT1)*3 300 (Z1 H1) *4

244 (X1 CNOT1)*4 301 (Z1 H1) *5

245 (X1 CNOT1)*5 302 (Z1 H1) *6

246 (X1 CNOT1)*6 303 (Z1 H1) *7

247 (X1 CNOT1)*7 304 (Z1 H1) *8

248 (X1 CNOT1)*8 305 (H2 X2) *1

249 (X1 Y2)*1 306 (H2 X2) *2

250 (X1 Y2)*2 307 (H2 X2) *3

251 (X1 Y2)*3 308 (H2 X2) *4

252 (X1 Y2)*4 309 (H2 X2) *5

253 (X1 Y2)*5 310 (H2 X2) *6

254 (X1 Y2)*6 311 (H2 X2) *7

255 (X1 Y2)*7 312 (H2 X2) *8

256 (X1 Y2)*8 313 (Z2 H1 Y1) *1

257 (H1 Z1) *1 314 (Z2 H1 Y1) *2

258 (H1 Z1) *2 315 (Z2 H1 Y1) *3

259 (H1 Z1) *3 316 (Z2 H1 Y1) *4

260 (H1 Z1) *4 317 (Z2 H1 Y1) *5

261 (H1 Z1) *5 318 (H1 CNOT2 H1)*1

262 (H1 Z1) *6 319 (H1 CNOT2 H1)*2

263 (H1 Z1) *7 320 (H1 CNOT2 H1)*3

264 (H1 Z1) *8 321 (H1 CNOT2 H1)*4

265 (H1 CNOT2) *1 322 (H1 CNOT2 H1)*5

266 (H1 CNOT2) *2 323 (Y2 CNOT1 H2)*1

267 (H1 CNOT2) *3 324 (Y2 CNOT1 H2)*2

268 (H1 CNOT2) *4 325 (Y2 CNOT1 H2)*3

269 (H1 CNOT2) *5 326 (Y2 CNOT1 H2)*4

270 (H1 CNOT2) *6 327 (Y2 CNOT1 H2)*5

271 (H1 CNOT2) *7 328 (CNOT1 Y2 CNOT2)*1

272 (H1 CNOT2) *8 329 (CNOT1 Y2 CNOT2)*2

273 (Z1 H2) *1 330 (CNOT1 Y2 CNOT2)*3

274 (Z1 H2) *2 331 (CNOT1 Y2 CNOT2)*4

275 (Z1 H2) *3 332 (CNOT1 Y2 CNOT2)*5

276 (Z1 H2) *4 333 (CNOT1 Z2 X2) *1

277 (Z1 H2) *5 334 (CNOT1 Z2 X2) *2

278 (Z1 H2) *6 335 (CNOT1 Z2 X2) *3

279 (Z1 H2) *7 336 (CNOT1 Z2 X2) *4

280 (Z1 H2) *8 337 (CNOT1 Z2 X2) *5

281 (Z2 H1) *1 338 (X1 H1 X2) *1

282 (Z2 H1) *2 339 (X1 H1 X2) *2

Appendix A. The test circuit families 46

340 (X1 H1 X2) *3 396 (H2 Z2 H2 H1)*2

341 (X1 H1 X2) *4 397 (H2 Z2 H2 H1)*3

342 (X1 H1 X2) *5 398 (H2 Z2 H2 H1)*4

345 (CNOT2 X1 CNOT1)*1 399 (H2 H1 Y2 CNOT1)*1

346 (CNOT2 X1 CNOT1)*2 400 (H2 H1 Y2 CNOT1)*2

347 (CNOT2 X1 CNOT1)*3 401 (H2 H1 Y2 CNOT1)*3

346 (CNOT2 X1 CNOT1)*4 402 (H2 H1 Y2 CNOT1)*4

347 (CNOT2 X1 CNOT1)*5 403 (X2 Z2 CNOT1 H1 Y1)*1

348 (Z1 Y1 Z2)*1 404 (X2 Z2 CNOT1 H1 Y1)*2

349 (Z1 Y1 Z2)*2 405 (X2 Z2 CNOT1 H1 Y1)*3

350 (Z1 Y1 Z2)*3 406 (CNOT1 H2 X2 Z1 X2)*1

351 (Z1 Y1 Z2)*4 407 (CNOT1 H2 X2 Z1 X2)*2

352 (Z1 Y1 Z2)*5 408 (CNOT1 H2 X2 Z1 X2)*3

353 (H1 Z2 H2) *1 409 (X1 X1 Y1 H2 Z1)*1

354 (H1 Z2 H2) *2 410 (X1 X1 Y1 H2 Z1)*2

355 (H1 Z2 H2) *3 411 (X1 X1 Y1 H2 Z1)*3

356 (H1 Z2 H2) *4 412 (CNOT1 CNOT1 Z2 H2 H2)*1

357 (H1 Z2 H2) *5 413 (CNOT1 CNOT1 Z2 H2 H2)*2

358 (CNOT1 X1 CNOT2)*1 414 (CNOT1 CNOT1 Z2 H2 H2)*3

359 (CNOT1 X1 CNOT2)*2 415 (X1 H1 H2 Z2 Y1)*1

360 (CNOT1 X1 CNOT2)*3 416 (X1 H1 H2 Z2 Y1)*2

361 (CNOT1 X1 CNOT2)*4 417 (X1 H1 H2 Z2 Y1)*3

362 (CNOT1 X1 CNOT2)*5 418 (CNOT1 CNOT1 Z2 Z1 Y2)*1

363 (CNOT1 Y1 H2 Z2)*1 419 (CNOT1 CNOT1 Z2 Z1 Y2)*2

364 (CNOT1 Y1 H2 Z2)*2 420 (CNOT1 CNOT1 Z2 Z1 Y2)*3

365 (CNOT1 Y1 H2 Z2)*3 421 (H2 H2 Y2 CNOT2 Z2)*1

366 (CNOT1 Y1 H2 Z2)*4 422 (H2 H2 Y2 CNOT2 Z2)*2

367 (H1 Z2 Z1 Y2)*1 423 (H2 H2 Y2 CNOT2 Z2)*3

368 (H1 Z2 Z1 Y2)*2 424 (X1 X2 H1 H1 Y2)*1

369 (H1 Z2 Z1 Y2)*3 425 (X1 X2 H1 H1 Y2)*2

370 (H1 Z2 Z1 Y2)*4 426 (X1 X2 H1 H1 Y2)*3

371 (Y2 Y2 Z1 H1) *1 427 (Y2 CNOT2 Y1 H2 CNOT2)*1

372 (Y2 Y2 Z1 H1) *2 428 (Y2 CNOT2 Y1 H2 CNOT2)*2

373 (Y2 Y2 Z1 H1) *3 429 (Y2 CNOT2 Y1 H2 CNOT2)*3

374 (Y2 Y2 Z1 H1) *4 430 (Z1 CNOT2 H2 Z2 Z1)*1

375 (Z1 Y2 Y2 X1)*1 431 (Z1 CNOT2 H2 Z2 Z1)*2

376 (Z1 Y2 Y2 X1)*2 432 (Z1 CNOT2 H2 Z2 Z1)*3

377 (Z1 Y2 Y2 X1)*3 433 (X1 CNOT1 Y1 Z1 H2 Y2)*1

378 (Z1 Y2 Y2 X1)*4 434 (X1 CNOT1 Y1 Z1 H2 Y2)*2

379 (Y1 CNOT2 Y2 CNOT2)*1 435 (X1 CNOT2 X2 X1 CNOT2 H1)*1

380 (Y1 CNOT2 Y2 CNOT2)*2 436 (X1 CNOT2 X2 X1 CNOT2 H1)*2

381 (Y1 CNOT2 Y2 CNOT2)*3 437 (CNOT1 CNOT1 H1 Z2 CNOT2 Z2)*1

382 (Y1 CNOT2 Y2 CNOT2)*4 438 (CNOT1 CNOT1 H1 Z2 CNOT2 Z2)*2

383 (Y2 Y1 H2 X1)*1 439 (Z1 X1 CNOT2 X2 CNOT1 Y2)*1

384 (Y2 Y1 H2 X1)*2 440 (Z1 X1 CNOT2 X2 CNOT1 Y2)*2

385 (Y2 Y1 H2 X1)*3 441 (CNOT1 CNOT1 Y1 X2 Z1 Z1)*1

386 (Y2 Y1 H2 X1)*4 442 (CNOT1 CNOT1 Y1 X2 Z1 Z1)*2

387 (Y1 X2 X1 Z2)*1 443 (Z2 H1 X1 Y1 Y2 X2)*1

388 (Y1 X2 X1 Z2)*2 444 (Z2 H1 X1 Y1 Y2 X2)*2

389 (Y1 X2 X1 Z2)*3 445 (CNOT1 X2 CNOT1 Y2 X1 X1)*1

390 (Y1 X2 X1 Z2)*4 446 (CNOT1 X2 CNOT1 Y2 X1 X1)*1

391 (CNOT2 H2 Y2 X2)*1 447 (CNOT1 Y2 Y1 Z2 X1 Z1)*1

392 (CNOT2 H2 Y2 X2)*2 448 (CNOT1 Y2 Y1 Z2 X1 Z1)*2

393 (CNOT2 H2 Y2 X2)*3 449 (Y2 H1 CNOT1 Y1 H1 X2)*1

394 (CNOT2 H2 Y2 X2)*4 450 (Y2 H1 CNOT1 Y1 H1 X2)*2

395 (H2 Z2 H2 H1)*1 451 (H1 H1 H1 Y1 H2 Y2)*1

Appendix A. The test circuit families 47

452 (H1 H1 H1 Y1 H2 Y2)*2

	Introduction
	A glimpse of quantum computing
	Fault-tolerant quantum computation
	The necessity for quantum error correction
	Quantum fault-tolerance and the threshold theorem
	The motivation for testing quantum fault-tolerance
	Thesis organization

	Quantum error correction
	Discretization of the errors
	The stabilizer formalism
	Syndrome extraction
	QEC codes used in the simulation
	The [[4,2,2]] error-detecting code
	The [[7,1,3]] Steane code

	Simulation of QEC circuits
	The criterion for testing quantum fault-tolerance
	The stabilizer formalism simulation
	An overview of the stabilizer formalism simulation
	The depolarizing error model

	The full density-matrix simulation
	A brief introduction to quantumsim
	The noise model
	Scheduling

	Simulation results
	Simulation results using the stabilizer formalism simulator
	The results of simulating the [[4,2,2]] code

	Simulation results using the full density-matrix simulator
	The results of simulating the [[4,2,2]] code
	The results of simulating the [[7,1,3]] code

	Conclusion
	Conclusion
	Future work

	Bibliography
	The test circuit families

