
Delft University of Technology

TI3800 Bachelorproject

Decentralized Media Streaming on Android using Tribler

Final Report

Authors:
Wendo Sabée

Dirk Schut

Niels Spruit

Client:
Dr. ir. J.A. Pouwelse

TU coach:
Ir. E. Bouman

Coordinator:
Dr. ir. F.F.J. Hermans

July 7, 2014

Preface

This report concludes the course TI3800, the final bachelor project. It was com-
missioned by the Tribler team at the Parallel and Distributed Systems (PDS)
group at the faculty of Electrical Engineering, Mathematics and Computer Sci-
ence (EEMCS) at the Delft University of Technology.

The report documents the eleven weeks that were spend on developing ‘Tri-
bler Play’, an Android application to search and stream media in a decentralized
way. Since this goal is similar to that of Tribler, a big part of those weeks were
spend on getting the Tribler code to run on Android. The goal of this report
is to educate the reader on the workings of the application and to explain the
choices that led to this result, as well as documenting possible recommendations
to continue this project.

We would like to thank the Tribler team for making the original Tribler
code available and for helping us whenever we had a question. We would also
like to thank the Android Tor Tribler Tunneling (AT3) bachelor project group
for compiling libtorrent and their cheerful presence while working in the same
room. Special thanks go to our supervisor Johan Pouwelse for his vision and
enthusiasm during this project, to our coach Egbert Bouman for his coding tips,
and to Jaap van Touw, for his extensive feedback.

Delft, June 2014
Wendo Sabée
Dirk Schut
Niels Spruit

1

Contents

Glossary 7

Acronyms 10

1 Introduction 13

I Orientation Phase 15

2 Problem analysis 16
2.1 Current situation . 16
2.2 Project Goals . 16
2.3 AT3 Team . 17

3 Existing technology 18
3.1 Prior Work . 18
3.2 Video decoding frameworks . 20
3.3 BitTorrent video streaming . 21
3.4 Content discovery . 22

3.4.1 Centralized content discovery 22
3.4.2 Decentralized content discovery 22
3.4.3 Nomadic content discovery 23

II Design Phase 25

4 Design 26
4.1 Requirements . 26

4.1.1 Must haves . 26
4.1.2 Should haves . 27
4.1.3 Could haves . 27
4.1.4 Would haves . 28

4.2 Architectural constraints . 28
4.3 Software Architecture . 28
4.4 Test and implementation plan . 29

4.4.1 Test and quality control plan 29
4.4.2 Implementation plan . 30

4.5 Use cases . 31
4.5.1 Searching for torrents . 31

2

4.5.2 Streaming a video . 31
4.5.3 Channels . 32

III Implementation Phase 34

5 First Sprint: Foundation prototype 35
5.1 Running Tribler on Android . 35

5.1.1 Tribler core package . 35
5.1.2 Tribler dependencies . 36

5.2 Communication between Python and Java 37
5.2.1 PyJNIus . 38
5.2.2 Web services . 38
5.2.3 Selected approach . 39

5.3 Quality Control . 40
5.3.1 Test project set-up . 40
5.3.2 Jenkins set-up . 41

5.4 VLC Integration . 42
5.5 Reflection . 43

6 Second Sprint: Decentralized search prototype 44
6.1 Dispersy communities . 44
6.2 XML-RPC communication . 45
6.3 Creating a single Android application Package (APK) 45
6.4 BitTorrent streaming . 48
6.5 User Interface (UI) tests . 48
6.6 Reflection . 49

7 Third Sprint: Search and stream prototype 50
7.1 Downloading . 50
7.2 Streaming . 52
7.3 Distributed thumbnail discovery 52
7.4 Creating a single APK . 53
7.5 Settings . 54
7.6 GUI enhancements . 54
7.7 SIG Feedback . 55
7.8 Reflection . 55

IV Final Phase 57

8 Project outcome 58
8.1 Decentralized content discovery 58
8.2 Torrent downloading . 59
8.3 BitTorrent streaming . 60
8.4 Viewing and managing downloads 61
8.5 Viewing and modifying settings 62

9 Conclusion 64

3

10 Recommendations 66
10.1 Integrate anonymous tunnels . 66
10.2 Channels and vote support . 66
10.3 Integrate with the main Tribler repository 67
10.4 Add support for additional Android devices 67

A Original project description 69
A.1 Project description . 69
A.2 Auxiliary information . 69

B SIG feedback 71

C Plan of action 72

4

List of Figures

4.1 The application divided in components 29
4.2 How to search a for a download 32
4.3 How to play a video . 32
4.4 How to favorite a channel . 33

5.1 Jenkins test trends . 42

6.1 Flow of information during a search 46
6.2 Sequence of function calls during Python service launch 47

7.1 Results of the download stress test 51
7.2 Progress information . 55

8.1 How to search for a torrent . 59
8.2 How to download a torrent . 60
8.3 How to stream a torrent . 61
8.4 How to manage downloads . 62
8.5 How to view and edit settings . 63

5

List of Tables

4.1 Tools used for quality control . 30

5.1 Usage of VLC for Android source files 43

6

Glossary

activity is a full screen building block in the Android interface.

artefacts are errors that occur when trying to show incomplete or corrupt
image of video data.

BitTorrent is a protocol used for decentralized filesharing, used to distribute
large amounts of data.

Bloom filter is a space efficient probabilistic data structure to test if an item
is part of a set. False positives are possible, but not false negatives, so a
Bloom filter check either returns that the item is definitely not part of the
set or that it possibly is.

continuous integration is the software engineering practice of merging devel-
oper’s branches with the main branch at specific times. Usually automated
tests are run on the merged result afterwards.

cross-compiled is compiling code for a different instruction set than the one
that is used on the computer the code is compiled on.

Dispersy is an elastic database system, or a database designed for peer-to-
peers network where a lot of nodes share (parts of) a common database.

emulator is a piece of software that duplicates the functions of a computer
system inside another computer system.

forking means making a copy of the source code of a project and start inde-
pendent development on it.

headless is a term used to describe a system without any Graphical User In-
terface (GUI).

intent is the method of communicating between different activities in Android.

issue is a task to change something to the code on a repository, like fixing a
bug or implementing a feature. Once an issue is completed it, the changes
are often put into a pull request.

leeching means downloading files from peers without offering something in
return, the opposite of seeding.

libswift is a multiparty transport protocol used to distribute data in a decen-
tralized way, almost like BitTorrent but at the transport layer.

7

libtorrent is the most popular open source implementation of the BitTorrent
protocol, written in C++.

magnet link is a link that includes a hash (a small unique identifier) of a
torrent file. This hash can be used to ask other users to provide the full
torrent file.

Makefile is a special file that describes how to automatically build and install
the source code of a software project.

meshnet is a network topology where all nodes communicate directly with
nearby nodes and relay data for the rest of the network, without any
central servers.

metadata literally means data about data. In this context, it is used as data
about files, such as the length or screenshot of a video.

morphing means seamlessly transforming from one state to another.

MoSCoW is a software development technique to rank requirements in one of
four categories: Must have, Should have, Could have and Would/Won’t
have, which together make up the abbreviation.

node is a device connected to a network.

peer-to-peer is a term used to describe is a decentralized network in which
individual nodes (peers) consume and supply resources, using direct con-
nections between them.

polling is the process where the computer waits for external input by checking
its availability on a regular interval.

porting means making a project run on a system or architecture that it was
originally not designed to run on.

pull request is a request to adopt a collection of changes that were made in a
fork of a code repository.

Python bindings are Application Programming Interfaces (APIs) providing
‘glue code’ to use a library in Python, that was originally not written for
Python usage.

seeding is the process of making a torrent available to other peers when you
have the complete file(s), the opposite of leeching.

segmentation fault is a fault raised by hardware to notify an operating sys-
tem about a memory access violation.

socket is an endpoint of the communication flow inside a computer network.

sprint is a cycle of the Scrum software development process with predefined
length of one to four weeks in which a couple of tasks will be completely
finished.

streaming means processing data as it is received, instead of waiting to receive
all data and then process it.

8

stubbing means replacing functionality with a piece of code that does not
implement that functionality.

swarm is the collection of computers currently active in the uploading and
downloading of a torrent.

thumbnail is a small image that represents a bigger image or video.

Tor is a free network that provides online anonymity by forwarding data through
multiple nodes, available from https://www.torproject.org/.

torrent is a file that contains information about a collection of files so that it
can be downloaded over the peer-to-peer BitTorrent protocol. Can also
mean all the files that can be downloaded by a single torrent file.

upstream is used to describe the original project where a fork came from.

9

https://www.torproject.org/

Acronyms

API Application Programming Interface.

APK Android application Package.

AT3 Android Tor Tribler Tunneling.

EEMCS Electrical Engineering, Mathematics and Computer Science.

GIMP GNU Image Manipulation Program.

GPLv3 GNU Public License version 3.

GUI Graphical User Interface.

HTTP Hyper Text Transfer Protocol.

I/O Input Output.

IDE Integrated Development Environment.

IP Internet Protocol.

ISP Internet Service Provider.

JNI Java Native Interface.

JSON-RPC JSON Remote Procedure Calls.

MHL Mobile High-Definition Link.

NDK Native Development Kit.

PDS Parallel and Distributed Systems.

PIL Python Image Library.

REST Representational State Transfer.

RPC Remote Procedure Calls.

SIG Software Improvement Group.

SOAP Simple Object Access Protocol.

TLS Transport Layer Security.

TSAP Tribler Streaming for Android Project.

10

UI User Interface.

UML Unified Modelling Language.

WWW World Wide Web.

XML-RPC XML Remote Procedure Calls.

11

Summary

The amount of people using smartphones to access shared content has rapidly
grown in the last couple of years. Popular services to share the media all rely
on a client/server model, which have scalability issues and are prone to censor-
ship. A decentralized approach would make censorship more difficult and growth
more sustainable. Thus the main research question of this project is: How can
Android users search and stream media in a decentralized way? In answer of
this question, an Android application was developed that enables decentralized
searching and downloading of torrents and streaming of video torrents.

After a Research Phase and a Design Phase, which took a week each, the
Scrum software development strategy was used during the Implementation Phase.
This phase was divided over three sprints of two weeks, during which several
requirements, as defined by the MoSCoW model, were implemented. These
three sprints resulted in three iterations of prototypes, of which the last one
implemented all must have requirements, three out of four should haves and
even two could haves.

The resulting application is based on Tribler, a fully decentralized BitTorrent
client, which was developed by the Parallel and Distributed Systems (PDS)
research group at the Delft University of Technology. As Tribler is written in
Python, a language not supported by Android, a modified version of the Kivy
Python for Android framework was used. The reuse of the Tribler code results
in a more maintainable codebase, as no additional modifications are needed.

To provide a native Android experience to the user, an Android Graphi-
cal User Interface (GUI) was developed in Java. Because the standard means
of communication between the Tribler process (Python) and the Android GUI
(Java) are limited, they communicate via XML Remote Procedure Calls (XML-
RPC). This has the added benefit of providing a simple Application Program-
ming Interface (API) to the Tribler process, which could be reused in versions
for iOS or Windows Phone, or to run Tribler as a headless server.

Decentralized data exchange is handled by both libswift, used for small meta-
data (such as thumbnails), and libtorrent, which is used to download torrent
files. Both these libraries had to be ported to Android, of which the latter was
generously provided by the Android Tor Tribler Tunneling (AT3) team. In ad-
dition, the VLC for Android player was also integrated. The communication
between Tribler and VLC goes through a Hyper Text Transfer Protocol (HTTP)
server integrated in Tribler, which is used to stream media directly to the user.

The reuse of Tribler code also has some drawbacks: high definition content
can not be streamed reliably on low end hardware, such as the Samsung Galaxy
Nexus (2011). More recent hardware, such as the LG Nexus 5 (2013), has
no such problems. With smartphones rapidly getting faster (following Moore’s
Law), this was deemed as an acceptable trade-off.

12

Chapter 1

Introduction

In the last decade the smartphone market has grown from scratch to a market
in which more than one billion units are shipped in a single year1, meaning
that more and more people are in the possession of a smartphone. Most of
these smartphones are used to access (social) media through the Internet2. The
emergence of the smartphone market is therefore also related to the massive
growth of social media like YouTube, Facebook and Twitter. However, as all
these social media are based upon centralized servers, they are prone to be shut
down through censorship by governments or Internet providers. Examples of
this already exist, such as the censorship, or even complete blockade, of YouTube
in many countries3, and Turkey blocking access to Twitter during its elections4.
The content index website The Pirate Bay is another example of a website
getting blocked all around the world, this time by Internet providers. The avail-
ability of content providers and content indexers on smartphones without the
usage of any central servers would therefore bring a big blow to censorship, by
giving millions or even billions of smartphones owners the ability to access pre-
viously blocked content. Because the majority of smartphones sold worldwide
run Android, with 79.0% in the second quarter of 20135, the client decided to
focus on Android first.

Therefore, to fill this gap in the smartphone market, the main research ques-
tion of this Bachelor thesis is: How can Android users search and stream media
in a decentralized way? To answer this question, the problem will be analyzed
further first. After that, the existing technology is researched to come up with
a possible solution that will then be implemented. For a more detailed expla-
nation of the approach to this project, as well as its conditions and restrictions,
it is recommended to read the Plan of Action that is included in Appendix C
before reading the rest of this report. Additionally, a glossary and a list of used
acronyms is included with this report in which the definitions of some technical
terms are explained.

The structure of this report is as follows. First, the problem is defined and
analyzed in more detail in Chapter 2. Then the results of the research phase

1http://www.idc.com/getdoc.jsp?containerId=prUS24645514
2http://www.nielsen.com/us/en/newswire/2013/tops-of-2013-digital.html
3See http://en.wikipedia.org/wiki/Censorship_of_YouTube
4See http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
5http://www.gartner.com/newsroom/id/2573415

13

http://www.idc.com/getdoc.jsp?containerId=prUS24645514
http://www.nielsen.com/us/en/newswire/2013/tops-of-2013-digital.html
http://en.wikipedia.org/wiki/Censorship_of_YouTube
http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
http://www.gartner.com/newsroom/id/2573415

are discussed in Chapter 3. The requirements as well as the design and the
quality control and implementation plan are addressed in Chapter 4. The results
obtained in the three Scrum sprints are described in the Chapters 5, 6 and 7.
The outcome of the project is explained in Chapter 8. Finally, the conclusions
and recommendations are discussed in Chapter 9 and 10, respectively.

14

Part I

Orientation Phase

15

Chapter 2

Problem analysis

During the first meetings with the client, it became clear that the original project
description of the Shadow Internet [3], a meshnet of devices which are able to
share data anonymously, was too ambitious to be realized fully as a bachelor
project. However, a first step towards realizing this vision of a Shadow Internet
could be made by making it possible for Android devices to join an existing
decentralized network to search for media files, and stream those using the
BitTorrent protocol [1]. As such, the question that should be answered during
this project is:

Research question: How can Android users search and stream media
in a decentralized way?

2.1 Current situation

Tribler1 [4] is a BitTorrent compatible, social media sharing application that
allows its users to share media in a distributed way using Dispersy, a distributed
elastic database. It is developed at the Parallel and Distributed Systems (PDS)2

research group at the Delft University of Technology. It is written in Python
and currently runs on Linux, OSX and Windows.

Another project is the VLC-libtorrent streaming application3 by Jaap van
Touw. It is developed for Android, and a forking of the VLC for Android4

application, with the libtorrent library integrated, enabling it to stream videos
over the BitTorrent protocol in a non-centralized way. For a more detailed de-
scription of the existing technologies that were used in this project, see Chapter
3.

2.2 Project Goals

To answer the research question, several goals must be met:

1https://www.tribler.org/
2http://pds.ewi.tudelft.nl/
3https://github.com/javto/Tribler-streaming
4https://www.videolan.org/vlc/download-android.html

16

https://www.tribler.org/
http://pds.ewi.tudelft.nl/
https://github.com/javto/Tribler-streaming
https://www.videolan.org/vlc/download-android.html

• Run (parts of) the Tribler code on Android, as this would provide the
application with decentralized content discovery. However, as Tribler is
written in Python, Python code needs to run on an Android device, which
is not a supported language.

• Run libswift on Android. This is a dependency of Tribler, which would
provide the application with decentralized metadata, enhancing the search-
ing of media.

• Run libtorrent on Android with Python bindings. This is a dependency
of Tribler, which would provide the application decentralized downloading
via the BitTorrent protocol.

• Run and integrate VLC for Android into the application. This would
provide the application the ability to play downloaded media files.

A more detailed description of the requirements can be found in Section 4.1.
As the original problem description, as found in Appendix A, differs greatly, it
is only included for the sake of completeness, and not as a description of this
project.

2.3 AT3 Team

In parallel to this project, another team of three bachelor students under the
name of Android Tor Tribler Tunneling (AT3) will work on bringing a still
experimental part of the Tribler code, Tor-like anonymous tunnels, to Android.
As both projects have some overlapping parts, some work can be shared between
the groups. If time allows it, both the applications could be merged at the end of
the projects, making anonymous video streaming on Android devices possible.

17

Chapter 3

Existing technology

In this chapter the results of the research phase will be presented. The chapter
is divided into four sections that correspond with the main parts of the project.
The first section will give some information about the prior work that has been
done and that could be used for this project. Section 3.2 will present the features
and drawbacks of the video decoding frameworks that are currently available
for the Android platform. The workings of BitTorrent video streaming and the
available choices for a BitTorrent library are discussed in Section 3.3. Finally,
Section 3.4 will explain the available options in which content can be discovered.

3.1 Prior Work

In this section information will be given on projects that can be used to further
move forward towards the vision of the ‘Shadow Internet’ [3]. These projects
are:

• Tribler
Tribler [4] is a BitTorrent compatible, social media sharing application
that allows its users to share media through a peer-to-peer network. It is
developed at the PDS research group at the Delft University of Technology.
It offers true decentralized searching to replace the traditional BitTorrent
index sites. To do this they developed a protocol called Dispersy [6]. More
information on Dispersy can be found in Section 3.4.2.

• VLC-libtorrent streaming application
Last year, another Bachelor thesis group developed an application to
stream videos over BitTorrent1. It uses a forked version of VLC for An-
droid, the libtorrent library and it uses piece picking (see Section 3.3) to
buffer and stream media to the user, given a valid torrent file or magnet
link.

• Python for Android
To run Python code on Android, the Python for Android framework can be
used. The Python for Android framework is based on the Scripting Layer
for Android project2, which is also used by other scripting languages. The

1https://github.com/javto/Tribler-streaming
2https://code.google.com/p/android-scripting/

18

https://github.com/javto/Tribler-streaming
https://code.google.com/p/android-scripting/

original project has not been updated since August 2012, but luckily the
developers of the Graphical User Interface (GUI) framework Kivy have a
fork that is currently supported. This fork also includes support for Kivy
GUI framework and a system for packaging libraries.

• The Global Square social network
The Global Square application3 is an application created by members of
the Occupy movement4, with the aim to be a decentralized social network
using Dispersy. It uses a forked Python for Android runtime to run a
few core parts of the original Tribler code (such as Dispersy and libswift),
M2Crypto5 and netifaces6 on Android. However, not all code was written
in Python, as the GUI was made in Java to use the standard Android
interface.

• Android stealth application
One of the groups from the Hacking Lab course IN4253ET created an
application to store files in a virtual vault7. The application supports
morphing to hide itself amongst other applications by changing its name
and icon, and is able to hide itself from the launcher. To launch the
application you can call a secret phone number or tap an invisible widget.

• Popcorn Time and Flixtor
Popcorn Time8 is an open source media streamer that streams its media
over BitTorrent and sources the torrent files from various BitTorrent track-
ers. It aims to be an alternative of Netflix9, free of content restrictions
and with always the newest media.

Flixtor10 is a Popcorn Time fork which also provides an Android version.
This Android version is (currently) not open source, but it provides an
intuitive interface that could be used as inspiration.

• Tor
Tor11 is a privacy enhancing network that aims to provide strong anonymity
on the web. Tor encrypts and forwards traffic through various hops, in
such a way that a user cannot directly be linked to the data received by
the destination. The path of hops that the traffic takes, is changed every
10 minutes.

Tor does not provide end-to-end encryption for normal web browsing12 and
relies on existing technologies, such as Transport Layer Security (TLS),
to encrypt traffic between the last hop and the destination.

3https://github.com/d3vgru/tgs-minimal
4http://www.occupytogether.org/
5https://github.com/martinpaljak/M2Crypto
6https://alastairs-place.net/projects/netifaces/
7https://github.com/AlexKolpa/AndroidStealth
8http://get-popcorn.com/
9https://www.netflix.com/

10http://www.flixtor.com/
11https://www.torproject.org/
12Only up to the last hop, unless hidden services are used.

19

https://github.com/d3vgru/tgs-minimal
http://www.occupytogether.org/
https://github.com/martinpaljak/M2Crypto
https://alastairs-place.net/projects/netifaces/
https://github.com/AlexKolpa/AndroidStealth
http://get-popcorn.com/
https://www.netflix.com/
http://www.flixtor.com/
https://www.torproject.org/

3.2 Video decoding frameworks

The Android application that will be developed during the project should be
able to stream videos, therefore it is essential that it can play videos. As is not
possible to create a video decoding framework in the timespan of this project and
because some high quality video decoding frameworks for the Android platform
already exist, an existing framework for video decoding will be incorporated into
the application. To choose the framework that fits the project’s needs best, this
section will list the available options, including their features and drawbacks.

The available video decoding frameworks are:

• VLC for Android
VLC is a well-known open source video player that many people already
use on their desktop computer. Recently, the developers have also re-
leased a beta version for the Android platform13 that is both available as
an standalone application as well as in the form of a library. The appli-
cation supports the playback of most video formats14, streaming videos
over network streams15, subtitles and hardware decoding.

• Stagefright
Stagefright is the native video decoding framework that comes along with
Android. It supports video streaming through the network with the An-
droid Application Programming Interface (API). Using this framework is
quite easy as no external libraries for video decoding are required, only the
Android API needs to be used. However, this framework does not support
that many video formats, for instance a MKV video encoded with a H.264
encoder is not supported16 while it is a combination that is used for a lot
of videos on the BitTorrent network. Another disadvantage of Stagefright
is that is does not support hardware decoding out of the box17.

• Other frameworks
Many other video decoding frameworks are available for the Android plat-
form, like for instance the popular application MX Player18. However, this
player is not open source and is not available in library form and therefore
not suited for this project. Most other video players are not useful for this
project as well, for the same reasons as MX Player or because they do not
support enough of the popular video formats.

After looking at the features and drawbacks of the video decoding frame-
works described above, VLC and Stagefright seem to be best suited for the
project. After installing the VLC for Android application on a Samsung Galaxy
Nexus, a test has been performed to check how VLC and Stagefright handle some
popular video formats. The test has been done with several 720p videos and
with both MP4 videos with MPEG-4 encoding and MKV videos with H.264
encoding, which where top three video formats used in a sample of the most
popular torrents on several BitTorrent content index sites. Both Stagefright and

13http://www.videolan.org/vlc/download-android.html
14https://www.videolan.org/vlc/features.html
15https://www.videolan.org/streaming-features.html
16http://developer.android.com/guide/appendix/media-formats.html
17https://source.android.com/devices/media.html
18https://sites.google.com/site/mxvpen/

20

http://www.videolan.org/vlc/download-android.html
https://www.videolan.org/vlc/features.html
https://www.videolan.org/streaming-features.html
http://developer.android.com/guide/appendix/media-formats.html
https://source.android.com/devices/media.html
https://sites.google.com/site/mxvpen/

VLC were able to play the MP4 videos smoothly. However, the MKV videos
could only be played smoothly with VLC, playing these videos with Stagefright
was laggy or not even possible for some videos.

In addition, VLC has support for streaming media files over a network con-
nection using various protocols, of which Hyper Text Transfer Protocol (HTTP)
is the most basic. It uses the Content-range header19 to support seeking. Using
this feature, This means that VLC can be used as a standalone application in
the project, having a vastly smaller codebase in comparison to forking VLC for
Android and building upon that.

Therefore, VLC for Android seems to be the most appropriate choice as
video decoding framework for this project.

3.3 BitTorrent video streaming

To stream media files, BitTorrent [1] will be used. By default, BitTorrent works
by downloading the rarest pieces first with the aim to make all pieces evenly
available by all nodes in the swarm.

Tribler uses BitTorrent for streaming videos by having multiple priority levels
[5]: all pieces at the current playback position are given the highest priority,
with the priority level getting gradually lower as they are further away in time.
Pieces before the current playback position have the lowest priority and are only
downloaded after all pieces with a higher priority are downloaded. To support
video streaming, the BitTorrent library that will be used needs to support per
piece priority levels, or piece picking.

According to Wikipedia, the three popular BitTorrent libraries20 are:

• libtorrent (rasterbar)
The original version of libtorrent, developed by Arvid Norberg21. This is
the library that both Tribler and the VLC-libtorrent application use. It
has support for piece picking and there is a (relatively old) port available
for Android22. In addition, the AT3 team will try to compile the latest
version as part of their project.

• MonoTorrent
This is a BitTorrent library written in C#. The website for this library
is defunct23 and the last stable release is 4 years old. It is unknown if it
supports piece picking.

• rTorrent (rakshasa)
A fork of libtorrent (rasterbar), used by rTorrent. It introduces memory
mapped file pages to speed up down- and uploading. Currently, it has not
been ported to Android.

In the final report of the VLC-libtorrent streaming project, it was discussed
how a lot of time was lost trying to compile libtorrent for Android. The project

19https://en.wikipedia.org/wiki/Byte_serving
20https://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software#Libraries
21http://www.rasterbar.com/products/libtorrent/
22https://softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/jni/

libtorrent/
23http://monotorrent.com/

21

https://en.wikipedia.org/wiki/Byte_serving
https://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software#Libraries
http://www.rasterbar.com/products/libtorrent/
https://softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/jni/libtorrent/
https://softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/jni/libtorrent/
http://monotorrent.com/

ended up using a Android port of libtorrent by RuTracker24. A drawback of
this port is that it is a 4 year old version, lacking various features, that only
works on the ARM architecture, not MIPS or x86. No definitive numbers could
be found about the architecture market share for Android, but as all popular
and flagship devices25 are ARM based, this is seen as an acceptable trade off,
if the AT3 team will not succeed in compiling a newer version.

MonoTorrent is not actively maintained anymore and would add the Mono
Framework as an extra dependency, thus this is not seen as a serious option.
As both Tribler and the VLC-libtorrent application use the rasterbar version of
libtorrent, and there is an available port for Android for this version of libtorrent,
it seems to be the most sensible choice to choose this BitTorrent library.

3.4 Content discovery

In order to share media with other users, there must be a way to discover
the content that others are willing to share with you. Traditional, for-profit
media sharing services are usually fully centralized. The most popular, more
decentralized technologies still rely on centralized websites to index the content.

In contrast, the use of decentralized and nomadic content discovery cannot
be disrupted by blocking the access to one or a few central servers, which makes
it harder to prevent their use.

3.4.1 Centralized content discovery

Current technologies rely on centralized systems to discover content. The most
popular video sharing services, such as YouTube and Vimeo, are fully central-
ized and are susceptible to blocking by governments or can easily be forced to
cooperate with censorship, as most recently has been made clear in Turkey26.
They do provide a very easy and intuitive interface with a search bar and a list
of videos that start playing as soon as you click on them.

As BitTorrent does not provide a way to index and search torrent files, it
relies on websites, such as The Pirate Bay, to index them and provide torrent
files or magnet links to its users. These BitTorrent index sites are usually
hosted in countries with a more liberal view regarding copyright laws to prevent
organizations representing the entertainment industry, such as the MPAA27 or
BREIN28, from taking them down. A lot of countries29 have started blocking
The Pirate Bay and other torrent index websites at the Internet Service Provider
(ISP) level however, making them inaccessible for a majority of users.

3.4.2 Decentralized content discovery

Dispersy [6] is a protocol that is used for sending messages through a decen-
tralized network. A group of nodes can be clustered in a community, where
messages can be used to share a database in that community.

24http://rutracker.org/forum/index.php
25http://www.appbrain.com/stats/top-android-phones
26http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
27http://www.mpaa.org/
28http://www.anti-piracy.nl/english.php
29https://en.wikipedia.org/wiki/Countries_blocking_access_to_The_Pirate_Bay

22

http://rutracker.org/forum/index.php
http://www.appbrain.com/stats/top-android-phones
http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
http://www.mpaa.org/
http://www.anti-piracy.nl/english.php
https://en.wikipedia.org/wiki/Countries_blocking_access_to_The_Pirate_Bay

This works by letting the node first looks for a similar node in the community
by comparing the Bloom filter of his own characteristics with the same Bloom
filters of several candidate nodes. The node selects the part of the database
it wants to synchronize and sends the most similar node a Bloom filter that
contains the parts of the database that the node already has. The receiving
node checks for parts that are not in the received Bloom filter and sends those
parts back. As each node executes the same algorithm, they fill up the gaps in
their database until they all have the same data.

Tribler uses Dispersy communities to share information about torrent files.
The three most important communities are:

• AllChannelCommunity is used to share torrent files amongst users. This
is done by broadcasting random torrent files, and rebroadcasting torrent
files that are received.

• SearchCommunity is used to search torrent files among the other nodes.
It does so by broadcasting your search term to which other nodes reply
with a collection of info about relevant torrent files.

• MetadataCommunity is used to share thumbnails or movie posters that
correspond to a certain torrent file. Tribler automatically generates and
broadcasts thumbnails for torrent files that are downloaded, but a user
can also select a thumbnail or poster manually.

The first two channels are most relevant. They provide the search and torrent
sharing that are used to replace traditional BitTorrent index websites. The last
channel is a useful addition that can be used to make the GUI more intuitive.

3.4.3 Nomadic content discovery

In a nomadic system, there is no simple way to have a full overview of the
content in a network because communication between nodes is sparse. To help
getting a more complete overview of the network, this method relies on the
nodes to more actively cache the content they receive from other nodes, even if
they do not plan on using it themselves. This way, content can spread without
a direct connection between two nodes.

There are two ways to share content information with other nodes, using
nomadic content discovery:

• Broadcasting
If a device uses broadcasting, it is always active and broadcasting its
presence to other devices, for example via WiFi or Bluetooth. Once two
devices find each other, they exchange information. This makes it easy to
share information with people without interacting with them personally,
creating a much larger network. The drawback of this method is that,
in very oppressive environments, it might not be in your best interest to
constantly broadcast information as this could be used to track or possibly
identify the user.

• Bumping
Bumping is a form of manual synchronization referring to the ‘bumping’ of
two phones when sharing something via NFC, but could also include Wifi

23

or Bluetooth sharing. Because this requires manual action and personal
interaction with the owner of the other device, the network is vastly smaller
than with broadcasting. On the plus side, in repressive environments this
method is far more secure, because only the people the user chooses to
interact with know about his participation in the network.

If this method of content discovery is used, it is probably best to give the
user the choice between broadcasting and bumping.

24

Part II

Design Phase

25

Chapter 4

Design

Before starting the Implementation Phase, it is useful to think about the struc-
ture of the Implementation Phase and of the features and limitations of the ap-
plication. Therefore this chapter will first list the requirements and constraints
in Section 4.1 and 4.2, respectively. After that, Section 4.3 will present the
global software architecture that will serve as the backbone of the Implementa-
tion Phase. To make sure the quality of the software remains high throughout
the project and to structure the Implementation Phase, a Test and Implemen-
tation Plan is given in Section 4.4. Finally, the last section of this chapter will
present the initial GUI in combination with the most important use cases of
the final product. The working title of the application that will be developed is
Tribler Streaming for Android Project (TSAP).

4.1 Requirements

To define what the end product of this project should be capable of and what
not, this section will list the requirements of the end product. To prioritize the
requirements into several categories, the MoSCoW method1 is used. In this way
it is easier to see which features have a high priority and have to be implemented
first, over features with a lower priority.

4.1.1 Must haves

1. Decentralized content discovery
When the user types something in the search bar and presses the search
button, the application must search for that string on a decentralized
network without any central servers. As a result a list of videos must
appear.

2. Stream video files via BitTorrent
When the user selects a video he wants to watch, the program must start
streaming that video over BitTorrent.

1http://en.wikipedia.org/wiki/MoSCoW_method

26

http://en.wikipedia.org/wiki/MoSCoW_method

3. Stream videos with H.264 and MPEG-4 encoding
The application should be able to stream videos with a H.264 or MPEG-4
encoding in both a MKV or MP4 container.

4. Pause the video
While the program is playing a video the user must be able to pause the
video. After pausing, the user must be able to resume the video.

5. Seek in the video
A slider must be located at the bottom of the screen, which the user can
set to a certain position in the video. The video must start buffering from
that point and resume to play once enough of the video has been buffered.

4.1.2 Should haves

1. Support numerous video formats as Tribler
The user should be able to play most video formats that can be played
with Tribler.

2. Single tap installer
The application can be packed into a single Android application Package
(APK) file which can be installed by just tapping on it.

3. Anonymous onion routing suppport
If the other group gets anonymous Tor like onion routing support stable,
we should integrate it to enable anonymous streaming.

4. Bandwidth management
The user should be able to manage the bandwidth that the application
uses (limit up- and download).

4.1.3 Could haves

1. Audio streaming
The user could be able to download and stream audio files, such as MP3
files.

2. Search and download file types other than media files
The user could search for other file types on the Dispersy network and
download them with the program.

3. Secondary screen support using MHL
The user could display the application on a secondary screen, like a com-
puter screen or TV by using an Mobile High-Definition Link (MHL) HDMI
cable.

4. Wireless playback on TV
The user could display the media on a TV without using a cable. One
way to achieve this would be to use Chromecast or Miracast.

5. Distribute local media
The user could be able to distribute its own media to the network, by
creating a torrent file and upload it into the Dispersy network.

27

6. Disk space management
The user should be able to specify how much disk space the application
can use. The user should also be able to specify which downloaded media
to keep and which media to purge.

7. Nomadic content discovery
The user must be able to find and distribute data without any internet
connection, as described in Section 3.4.3.

4.1.4 Would haves

1. Multiplatform support
The application would work on other platforms like iOS, Windows Phone
or Bada.

4.2 Architectural constraints

One constraint is the software version and API level of Android. Fragmentation
and supporting older versions of Android is often cited as one of the biggest
problems regarding developing for Android. Google provides statistics about
the Android versions that the devices using the Google Play Store run on their
Android Developer Dashboard2. At the time of writing, 82.7% of the devices
run Android 4.0.3 or higher, supporting at least API level 15. Given that a lot
of extra work comes from supporting versions lower than 4.0 (specifically 2.3),
Android 4.0.3 with API level 15 will be the minimum supported version for this
project.

Another constraint is the hardware architecture. Currently, both the version
of libtorrent that we use and the Python for Android runtime only run on
the ARM architecture. This means that the application will not work on any
device using the MIPS or x86 architecture. No statistics could be found about
the division of the market regarding hardware architecture, but as all major
brands use ARM for their flagship and other high selling devices3, targeting
only the ARM architecture should make the application run on a vast majority
of Android devices.

4.3 Software Architecture

The application will be divided into several components, as illustrated in Figure
4.1. This is done because code from different projects is used and because these
projects were written in different programming languages. It is also done to
separate dependencies. If a part uses a library, its dependencies should stay
within that part.

The libswift and libtorrent components already exist as libraries, with only
the latter available as an older version without any Python bindings. As part
of the project, libswift will be compiled for Android and the AT3 team will
compile libtorrent for Android with Python bindings. A big part of Tribler will
also be ported to Android. The existing implementation of Tribler is written in

2https://developer.android.com/about/dashboards/index.html
3http://www.appbrain.com/stats/top-android-phones

28

https://developer.android.com/about/dashboards/index.html
http://www.appbrain.com/stats/top-android-phones

GUI

(Java)

Tribler Service

Dispersy

(Python)

libswift

(C++)

Core

(Python)

HTTP Server

(Python)

libtorrent

(C++)

VLC for Android

Video Player

(Java)

libVLC

(C++)

Figure 4.1: The different components that are used in the application, including
all major libraries.

Python, so it will run on the Kivy Python for Android runtime. This runtime
uses a version of Cython, compiled with the Android Native Development Kit
(NDK), to run Python code on Android.

Instead of creating a video player from scratch, the application will use the
existing video player from the VLC for Android application and integrate it in
the APK. To send the video stream to the video player local HTTP streaming
will be used. Both Tribler and the VLC player already support this feature.

The GUI will be written in Java and will use the native Android layout. The
communication between the Tribler service in Python and the GUI in Java will
be further examined in the first sprint.

4.4 Test and implementation plan

To ensure the code quality of the software remains high throughout the project,
it is essential to properly test the software. A test and quality control plan
is useful to clarify the strategy used to accomplish this and to get all group
members on the same page. The same clarification is also useful to have for the
general structure of the implementation phase. Therefore an implementation
plan is explained in Section 4.4.2.

4.4.1 Test and quality control plan

During the project, unit testing will be used as well as integration testing and
manual testing. The unit tests serve to test whether the behaviour of the small
units, in particular classes and their methods, corresponds to their specification.

29

The integration tests will test the system ‘at a higher level’, meaning that they
will not test individual units like the unit tests, but instead they will test the
behaviour of several units at once. In this way the dependencies between the
individual units will be tested to ensure the system works as specified. Manual
testing will test the system at the highest level as it will test whether the software
behaves as specified when a user interacts with the system.

To check whether the unit and integration tests cover most parts of the
system, automated code coverage analysis tools will be used to check whether
the software requires additional unit and/or integration tests. Documentation
within the code will be used to give the people that did not write the code an
overview of what a certain piece of code is supposed to do without the necessity
to study the code itself. To make sure the code keeps behaving properly after
changes are made, a continuous integration server will be used to ensure this.
Finally, it is desirable to have a consistent format in the source files. Therefore,
one single code formatter will be used to accomplish this.

As the project will eventually create an Android application, tools for the
Java programming language have to be used for the quality control mechanisms
described above. As Python code for Tribler have to be included in the project
as well, the same kind of tools will also be used for code programmed in Python.
An overview of the tools, frameworks and Integrated Development Environments
(IDEs) that will be used during the project is given in Table 4.1.

Android Python
IDE Eclipse incl. ADT4 PyCharm5

Unit testing framework Android JUnit PyUnit
Code coverage analysis tool Emma6 Included in PyCharm
Code documentation JavaDoc Doxygen7

Continuous Integration Jenkins8 Jenkins
Formatting Eclipse PyCharm

Table 4.1: The tools that will be used for quality control

4.4.2 Implementation plan

During the implementation phase the Scrum9 software development strategy
will be used. Scrum was chosen because no members of the team had any prior
experience with Android development, which made it hard to plan everything
in advance. However, it is expected that the scope of the project is narrow
enough for multiple requirements to be completed in a single sprint. The im-
plementation phase lasts six weeks and will be divided over three sprints of two
weeks. Each sprint has the goal to create a prototype of the final application
that has implemented a certain functionality. To make it easier to refer to

4http://developer.android.com/tools/index.html
5http://www.jetbrains.com/pycharm/
6http://emma.sourceforge.net/
7http://www.stack.nl/~dimitri/doxygen/
8http://jenkins-ci.org/
9http://en.wikipedia.org/wiki/Scrum_(software_development)

30

http://developer.android.com/tools/index.html
http://www.jetbrains.com/pycharm/
http://emma.sourceforge.net/
http://www.stack.nl/~dimitri/doxygen/
http://jenkins-ci.org/
http://en.wikipedia.org/wiki/Scrum_(software_development)

these prototypes created in the three sprints, they will be labeled the Founda-
tion Prototype, the Decentralized Search Prototype and the Search and Stream
Prototype. For each of these prototypes, a milestone will be created on GitHub.

Each sprint will start with a relatively long meeting in which a detailed
analysis of the requirements of the prototype belonging to the sprint will be
performed. After that, a broad structure of the code for the new functionality
will be created, after which a task division and sprint planning can be made.
This division, including deadlines, will be put on GitHub in the form of issues
belonging to the milestone of the sprint. This system of issues and milestones
will make it easy to check the progress of the tasks as well as the progress of the
project in general. It can also be used to track the contributions that are made
by the individual team members. At the end of a sprint the prototype has to
be finished and tested according to the strategy described in Section 4.4.1. The
documentation of the prototype will have to be completely updated as well.

4.5 Use cases

The GUI was first created using empty placeholders and mock data for Input
Output (I/O) functions. This facilitates early development by giving a clearer
direction and communicates the product design to others, such as the client.
To amend this, several use cases are presented below. They describe the major
functionality of the application, supported by several screenshots.

4.5.1 Searching for torrents

As the user first starts the application, he is presented with a list of currently
popular torrents, as can be seen in Figure 4.2a. The torrents that have an
attached thumbnail show their thumbnail, in addition to the name of the torrent,
the size of the torrent and the health of the torrent.

If the user presses the search icon on the action bar, it will expand into a
textfield. The user can use the keyboard to type in his search query, as can be
seen in Figure 4.2b where the user is starting to search for a movie called Sintel.
While typing, already known torrents are filtered to give the impression of a
faster search.

After the user taps the search icon on their keyboard to indicate they are
done, the application launches a search for more torrents among its peers. As
results come in, the user is presented with them, as can be seen in Figure 4.2c.

4.5.2 Streaming a video

Starting from the previous use case, the user taps on one of the videos from
the list, in this case the movie Sintel. The user is presented with a screen that
shows the information about the selected torrent, as shown in Figure 4.3a.

When the user taps the ‘Play video’ button on this screen, the phone presents
the user with a list of available video players, of which the user picks the one
he wants to use. The chosen video player application will then be opened and
it will start streaming the selected video. In this case, the user picked the
recommended VLC for Android application, which can be seen in Figure 4.3b.

31

(a) The home screen
of the application. It
shows currently popular
torrents.

(b) The results found
while the user is still typ-
ing.

(c) The results found after
pressing the search but-
ton

Figure 4.2: Screenshots showing searching for a torrent.

(a) Information screen of
a certain video.

(b) Streaming the video
in VLC for Android.

Figure 4.3: Screenshots showing information and playback of a video.

4.5.3 Channels

The user opens the navigation drawer using the icon in the top left corner or by
swiping from the left, after which the user picks the ‘Channels’ option. This
is shown in Figure 4.4a. A list of channels appears in which the user marks a
channel as favourite by tapping the star icon next to the channel.

The user can also search for channels by tapping the search icon in the action
bar, and typing his search query in the textfield that expands at the top of the
screen. If the user taps on a channel, a screen with video thumbnails that looks
very similar to Figure 4.2a will appear which will contain the videos contained
in the selected channel.

32

(a) The navigation
drawer.

(b) List of channels. One
is marked as favorite.

(c) Searching for the word
‘open’ in the channel list.

Figure 4.4: Screenshots showing searching for and favoriting channels.

33

Part III

Implementation Phase

34

Chapter 5

First Sprint: Foundation
prototype

In this first sprint of the implementation phase, it was necessary to lay the
foundation for the rest of the project. A complete list of things that were done
during this sprint can be found under the relevant milestone in the GitHub issue
tracker1. The most important things that were implemented are discussed in
this chapter, such as getting Tribler to run on Android in Section 5.1, the com-
munication between the Python runtime and the Java GUI in Section 5.2, the
integration of VLC into the GUI in Section 5.4 and how a continuous integration
system was set up to maintain quality in Section 5.3.

In the implementation plan (see Section 4.4.2), it was specified that at the
start of each sprint a broad structure of the code would be created. It was
decided not to do this for this sprint as, for a big part, this sprint consisted of
setting things up and getting them to work. In addition to that, the code for
the GUI using empty placeholders was already created in the previous phase
and functioned as the code structure of the Java part of the application.

5.1 Running Tribler on Android

One of the core parts of the project is getting the Tribler core running on
Android using the Python for Android framework. Tribler and its submodules
are written in Python, but it also uses several libraries written in C and C++.
This means that in addition to getting the Tribler Python code2 to run, these
libraries have to be cross-compiled for Android as well. Therefore this section is
divided into two subsections: Section 5.1.1 is about the Tribler code and Section
5.1.2 about its dependencies.

5.1.1 Tribler core package

Tribler is divided into eleven Python packages. Several interesting packages are:

1See https://github.com/wtud/TSAP/issues?milestone=2&state=closed
2Found on https://www.github.com/tribler/tribler.

35

https://github.com/wtud/TSAP/issues?milestone=2&state=closed
https://www.github.com/tribler/tribler

1. Tribler.Core is the core package that includes subpackages that do most
of the heavy lifting.

2. Tribler.dispersy is the Dispersy package that handles all the decentral-
ized database communication.

3. Tribler.community is the package that includes all the Dispersy commu-
nities.

4. Tribler.SwiftEngine is the package that communicates with the libswift
binary.

5. Tribler.Main is the package that includes all the GUI code.

At first the plan was to take the Tribler.Core package and every package it
depends on, and create a separate Python package for each of them. After some
experimentation it was discovered that at most two or three packages could be
excluded this way. In addition to that, a lot of references between the packages
had to be modified to make everything work. Therefore the decision was made
to make a single package that includes all the Tribler code.

This decision also makes it easier to keep up with the upstream Tribler
source code as only a few small additions to the Tribler source code are needed,
which can be contributed upstream. Updating the Tribler package is as easy as
downloading the latest Tribler code and use a simple script to create a package.

5.1.2 Tribler dependencies

In addition to the Tribler Python code, several other libraries are needed. Some
are written in Python, such as Dispersy and pymdht3, but most of them are
written in C or C++ which makes cross compilation for Android necessary.
Several of these dependencies were already provided by the Python for Android
framework, which includes ‘recipes’ that describe how to build each library.
These include the Cython python interpreter and libraries such as OpenSSL4,
PyCrypto5, M2Crypto6, pyasn17, SQLite38 and netifaces9. Compiling and in-
cluding those in the project was as easy as adding their name to a list of included
packages.

libtorrent

Another substantial library that Tribler uses is libtorrent. As compiling libtor-
rent for Android is not a trivial task, it was originally planned to use a pre-
compiled version that shipped with the VLC-libtorrent streaming application
described in Section 3.1. This is a version from a Russian BitTorrent application
that can be called from Java. As the design moved to one where Tribler does all
the heavy lifting and where the GUI is mostly a shell around it, a version with

3https://github.com/rauljim/pymdht
4https://www.openssl.org/
5https://www.dlitz.net/software/pycrypto/
6http://chandlerproject.org/Projects/MeTooCrypto
7http://pyasn1.sourceforge.net/
8https://sqlite.org/
9https://alastairs-place.net/projects/netifaces/

36

https://github.com/rauljim/pymdht
https://www.openssl.org/
https://www.dlitz.net/software/pycrypto/
http://chandlerproject.org/Projects/MeTooCrypto
http://pyasn1.sourceforge.net/
https://sqlite.org/
https://alastairs-place.net/projects/netifaces/

Python bindings10 was needed. After two weeks of hard work, Rolf Jagerman
of the AT3 team was able to compile a mostly functional version of libtorrent
for Android including these bindings.

libswift

Another dependency that Tribler has is libswift11. The newest version of lib-
swift depends on libevent12 and libcryptossl13, but the version used by Tribler
depends only on libevent. Because of this, and to maintain the highest com-
patibility with the current Tribler source, the older version is used. Because
compiling libevent is also not that trivial, a pre-compiled library was used. An-
other issue with libswift is that Tribler expects it to be a regular binary, but
the included Makefiles only build a library by default. The included Android
Makefile had to be modified to include the shell interface and build a binary
instead.

APSW

The APSW library14 is also used in Tribler to save all the channels, torrents and
other objects that Tribler collects. This library is a wrapper around SQLite3,
providing higher level Python bindings. The build script of APSW downloads
the corresponding SQLite3 release and compiles it together with the APSW
source.

The standard version specified in the recipe15 gave I/O errors, most likely
because of the big SQL transactions that Tribler uses. After trying numerous
other versions, including the same version number as the SQLite3 shipped with
Python for Android, it was concluded that the SQLite3 version included by
Python for Android was a heavily modified version, with over 2000 differences
from the source of the version it claims to be. Compiling APSW against this
modified version made the I/O errors disappear.

5.2 Communication between Python and Java

To run Python code, the Kivy Python for Android framework is used, which is
currently the only supported Python runtime on Android. Since it is designed
to make platform independent applications in pure Python with a Kivy GUI, it
does not offer support for two way communication with the native language of
the platform, in this case Java. It does offer support for calling Java code from
Python, using the PyJNIus library, but it has no support for calling Python
code from Java.

When this was discussed with the client, several solutions were proposed.
The client also noted that they would like Tribler to be some sort of standalone
package or service, so it could be more easily ported or run on a server with an
external client. In this section the different solutions for calling Python code

10Which enables Python to call C++ functions in a compiled library.
11https://github.com/libswift/libswift
12https://github.com/libevent/libevent
13IncludedinOpenSSL.
14https://github.com/rogerbinns/apsw/
15Found on the Python for Android mailing list.

37

https://github.com/libswift/libswift
https://github.com/libevent/libevent
Included in OpenSSL.
https://github.com/rogerbinns/apsw/

from Java will be looked into. In Section 5.2.3, the decision to use XML Remote
Procedure Calls (XML-RPC) is motivated.

5.2.1 PyJNIus

PyJNIus is a library designed to enable Python code running under Cython
to access Java libraries. It is developed by the Kivy team for their Python
for Android framework and it automates the process of making Java Native
Interface (JNI) bindings that are used to communicate between Java and C
and making Python bindings that are used for communication between C and
Python, which would normally be a tedious process to do manually.

With this library a Java class can be exported to Python by using the
autoclass function. Calls to the resulting class will be converted into calls
of its Java original. This can be very useful for accessing Android specific func-
tions, like accessing the hardware or GUI, from Python code. In our case it has
few uses, because our GUI already runs in Java. For most uses, Tribler should
not access Android functionality and the GUI will call Tribler instead of the
other way around.

One way to achieve communication from Java to Python with PyJNIus would
be polling. This scheme is used in the TGS-minimal application, which was used
as an example throughout the project. With polling, the Java part creates a
queue in which it puts messages. The Python part calls a Java function with
a constant frequency, which returns the contents of the queue. Python receives
these messages and executes the associated functions, optionally sending results
back via PyJNIus.

This method is easy to implement and can work well with a few different
types of messages. The system does not scale well when more messages are
added, because each message has to be implemented manually in both languages.
It does not scale to any other languages because pyJNIus only supports calling
Java code from Python.

5.2.2 Web services

A more generalized way of making the Tribler code accessible to Java, is by
turning it into a web service. A web service exposes data to other processes by
specifying a format for storing data and a protocol for sending the formatted
data. The format is not bound to a programming language so communication
between different languages is possible. The protocol is often build on top of
existing protocols like HTTP, which makes communication across the Internet
possible.

Protobuffers and ØMQ

One combination of format and protocol is protobuffers16 and ØMQ17, which
were both developed fairly recently compared to the alternatives discussed in
this section. Protobuffers are used internally by Google to efficiently store in-
formation that is used between different programs. The format is specified in
a text based .proto file, which can be compiled to code in multiple languages

16https://developers.google.com/protocol-buffers/
17http://zeromq.org/

38

https://developers.google.com/protocol-buffers/
http://zeromq.org/

to read and write the actual data. The data itself is stored in a binary format,
which makes reading and writing the data very efficient18 19.

ØMQ is a framework that is used to send messages over sockets (which can
include Unix domain sockets or traditional Internet Protocol (IP) sockets) that
represent a many-to-many connection. The big advantage over the other options
is that ØMQ is bidirectional and thus supports push messages.

REST

A term that is also often heard in the world of web services is Representational
State Transfer (REST) [2]. REST is not a clearly defined protocol but an
architectural style originally described by Roy Thomas Fielding. When a web
service complies with this style it is said to be RESTful. REST is based on
the World Wide Web (WWW) and because of that the WWW is said to be
RESTful.

A RESTful system has a very clear client server model, where the client
pulls data from the server via a symbolic link. The client does not know about
the implementation of the server. The pull requests do not change the state
of the server, so the state of the session is only defined by the representation
of the data that the client has pulled already. A REST style system could
useful for handling search requests and receiving thumbnails, where the Volley
framework20 could aid the Java side of the requests.

RPC

A different approach to web services is Remote Procedure Calls (RPC). With
RPC it is possible to expose functions on the server which can then be called
by connected clients. Several standards exist for formatting the call and the
result. The most popular standards are XML-RPC, Simple Object Access Pro-
tocol (SOAP) and JSON Remote Procedure Calls (JSON-RPC). XML-RPC is a
relatively simple and old standard which is supported on many systems. Python
has XML-RPC support in its standard library.

SOAP extends XML-RPC with many features including named variables
and classes. It used to be the industry standard, but it is less widely used now
because it is seen as bloated. JSON-RPC is a newer standard that is about as
complicated as XML-RPC. JSON is more compact than XML and is by many
perceived as more readable, which can be usefull during debugging. This is
however a personal preference and the performance is also mostly based on the
interpreter used.

5.2.3 Selected approach

Because the client wanted Tribler to be some sort of standalone object it was
decided to run Tribler as a web service. For communication the following three
aspects were identified as most important: The ease of implementation, the ro-
bustness of the protocol and how future proof the protocol is. Because relatively
small amounts of data are sent over the network, performance and support for

18https://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking
19http://damienbod.wordpress.com/2014/01/09/comparing-protobuf-json-bson-xml-with-net-for-file-streams/
20https://developers.google.com/events/io/sessions/325304728

39

https://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking
http://damienbod.wordpress.com/2014/01/09/comparing-protobuf-json-bson-xml-with-net-for-file-streams/
https://developers.google.com/events/io/sessions/325304728

advanced features were seen as less important. Because XML-RPC scored well
on all three aspects it was decided to use XML-RPC.

Ease of implementation was seen as important because it makes the service
more useful to future projects, which was the main reason to turn Tribler into
a web service. RPC scored best on this aspect because it only requires code for
specifying which functions can be called on the server side and code for handling
the calls asynchronously on the client side. Both ØMQ and REST need a user
specified format, which requires custom code on the server and the client.

Robustness of the protocol was seen as important because this reduces code
maintenance. Newer libraries such as ØMQmight still evolve, while the XML-
RPC specification has not been changed since 2003. Of the many libraries that
exist for XML-RPC, most will very likely continue to work, because it’s unlikely
that the specification will be changed at this point.

Future proofness was seen as important, for similar reasons as with the
previous two aspects. If the technology and used libraries stay popular longer,
the service will be useful in other projects for a longer time, and if the libraries
are maintained longer, less work is needed to keep the existing applications
running. ØMQ, REST and JSON-RPC seem like the most popular options to
use currently across different languages. However, XML-RPC is supported in
the Python standard library, so it will probably be supported and used for a
long time too. For Java the XML-RPC libraries seem less future proof, but the
aXMLRPC library is currently maintained and written specifically for Android.

5.3 Quality Control

To execute the quality control plan described in Section 4.4.1, several mecha-
nisms had to be set up in this sprint. In particular, an Android test project
had to be set up as well as a Jenkins continuous integration server that is able
to show the test results and the Emma code coverage report. Setting up the
test project is described in Section 5.3.1 and setting up the Jenkins server is
explained in Section 5.3.2.

5.3.1 Test project set-up

To write tests for the Android application project, an Android test project
had to be created and set up by following the steps on the Android developer
website21. After performing these steps, an empty test project was created and it
could be executed from Eclipse. The next step was to actually create test fixtures
and add tests to them. At the end of this sprint, all classes from the application
project have their own test fixture filled with some basic tests. In practice this
means that functional test cases have been written for the MainActivity class
and all the Fragment classes using the ActivityInstrumentationTestCase2

class from the android.test package. The standard Android JUnit TestCase

class could not be used for testing these classes, as the application’s activity has
to be started to run the tests and this could not be achieved with the Android
JUnit TestCase class. For all other classes it was not necessary to launch the
application, therefore the default Android TestCase class from JUnit has been
used. The test project including the test fixtures that has been set up in this

21http://developer.android.com/tools/testing/index.html

40

http://developer.android.com/tools/testing/index.html

sprint serves as a basis for the rest of the project, as tests for new functionality
can easily be added to the existing test fixtures and new test fixtures can easily
be added to the test project as well.

5.3.2 Jenkins set-up

To set up a continuous integration server, first an Amazon EC222 instance was
launched and set up to function as a web server. After that, Jenkins was installed
and set up using the tutorial about installing Jenkins on Ubuntu23. As the
Amazon instance now functioned as a Jenkins continuous integration server, it
was time to configure a build job that is able to check out the source code from
GitHub, build the Android application project, run the tests on an Android
emulator and publish the test and Emma code coverage reports. However,
after trying to start an emulator with several different configurations using the
Android Emulator Plugin24, it was discovered that the Amazon EC2 instance
was not powerful enough to start an emulator as it did not have enough main
memory.

However, the client provided us with an account on the Tribler continuous
integration server25. As this server is more powerful than the created Amazon
instance, it should be able to run an Android emulator with ease. However,
after trying numerous emulator configurations, the Android Emulator Plugin
kept giving a time-out error when waiting for the emulator to start. As this
time-out period could not be changed manually, another solution needed to be
found. Therefore, an emulator was created and run on a laptop and a snapshot
was saved, which means that the emulator’s state was saved so that it can be
started much quicker the next time the emulator was run. After changing the
configuration files of this snapshot so that it could be run on the Jenkins server,
the snapshot was put on the server and it is was expected that the emulator
would now be able to start within the time-out period. However, this was not
the case, as the plugin did not recognize the snapshot and therefore tried to
start a ‘normal’emulator. After searching the web, it was found out that this
was caused by a bug in the code of the Android Emulator Plugin. Luckily
enough the developers released an update for this plugin just two days before,
on 19 May 2014, that included a fix for the time-out error as well as the snapshot
error. Installing this update on the Jenkins server fixed the problems and the
emulator could now be started within the time-out period.

Now that the emulator could finally run, the build job needed to be set
up to run the tests on the emulator and publish the test and code coverage
reports afterwards. When building the job, the tests were executed but the
build was marked as successful while one of the test failed, which is not the
desired behaviour. After looking for a solution to this problem, following another
tutorial26 made it possible to retrieve a JUnit XML test report from the emulator
and this report could then be published on Jenkins after the build, and mark
the build as unstable when one or more tests failed.

After reading through the list of installed plugins on the Jenkins server, it

22http://aws.amazon.com/ec2/
23https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
24https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin
25http://jenkins.tribler.org/
26http://blackriver.to/2012/08/android-continuous-integration-with-ant-and-jenkins-part-2-2/

41

http://aws.amazon.com/ec2/
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin
http://jenkins.tribler.org/
http://blackriver.to/2012/08/android-continuous-integration-with-ant-and-jenkins-part-2-2/

was discovered that the Android Lint Plugin27 was installed as well. This plugin
analyses the code statically for possible bugs and improvements and publishes
the results afterwards. As this tool seems to be useful for the project, it was
included to the build job as well. At the end of this sprint the test results, code
coverage and Lint trends on Jenkins looked as shown in Figure 5.1a, 5.1b and
5.1c, respectively.

(a) The test results trend. (b) The Emma code coverage trend.

(c) The Android Lint trend.

Figure 5.1: Jenkins trend figures.

5.4 VLC Integration

Last Year, Jaap van Touw made an application for streaming videos from tor-
rents with the VLC player28. He had a lot of trouble with seeking, because
he was accessing the data of the torrents directly from within VLC, instead of
buffering it before playback. Learning from his experience, it was decided to
send the data to the VLC player through a local HTTP server using the code
of this feature from the desktop version of Tribler. Originally the plan was to
install VLC separately and send an intent every time the user wanted to play
a movie. This would give the user the option to pick another player and it
would be easier to maintain the application, since the video player would be
maintained by the VLC team. However, having to install another application
could be confusing to the user and it would break the flow of the user interface.
Because of this usability issue it was decided to include the VLC player in the
APK.

Because only functionality for playing videos was needed from VLC, it was
decided to remove the other parts of the VLC-for-Android application. To
make sure the application would still run, some files had to be modified. If
possible, files were either copied without modifications or stubbed, so that it
would be easier to update to a newer version of VLC. Which files are used
in what way is shown in Table 5.1. In the end only the Util class and the

27http://developer.android.com/tools/help/lint.html
28https://github.com/javto/Tribler-streaming

42

http://developer.android.com/tools/help/lint.html
https://github.com/javto/Tribler-streaming

Copied Stubbed Modified Removed
MediaDatabase VLCApplication VideoPlayerActivity All 70 other files
VlcCrashHandler PreferencesActivity Util

WeakHandler

All 9 files from the
libVLC package

Table 5.1: The usage of VLC files in the application.

VideoPlayerActivity class needed to be slightly modified to remove depen-
dencies in unused features. These changes are marked in the code with a TODO
comment.

To stream a video with VLC, an intent with the video URL can be sent to the
VideoPlayerActivity. This was also the behaviour of the VLC for Android
application, so no modifications were needed in the code. This functionality
is already tested by streaming from a web server. In the final version of the
application, the video will be streamed from a local HTTP server hosted by the
Tribler part of the application.

5.5 Reflection

In this sprint several major decisions were made about the foundation of the
project. The overall architecture of the application shifted from a Java core
that communicated with a few Tribler Python packages to a full Tribler process
running with a native Android GUI written in Java around it. For communica-
tion between the two parts it was decided to use XML-RPC because of its ease
and robustness. VLC moved from a full, external application to an integrated
player. Tests were written and integrated with the Tribler Jenkins server to
enable continuous integration.

In conclusion, the application now consists of three parts: a native Android
GUI in Java, a slightly modified and integrated VLC player in Java and a Tribler
session in Python that is able to access Dispersy communities and expose its
functionality through XML-RPC. The next step would be to integrate XML-
RPC in the Java GUI and merge the two parts to create a single Android APK.

43

Chapter 6

Second Sprint:
Decentralized search
prototype

In the previous sprint the foundation of the project was laid. In this sprint,
which was a few days shorter than the previous one due to holidays, many of
the features were added on top of that foundation. All changes made during this
sprint are again listed in the GitHub issue tracker under the relevant milestone1.
The most significant changes will be discussed in more detail in this chapter.

In Section 6.1, the information that is retrieved from Dispersy will be dis-
cussed. How this information is communicated to the Android GUI using XML-
RPC is shown in Section 6.2. The creation of a single Android package contain-
ing both the Tribler service and the GUI is treated in Section 6.3. Streaming a
video directly from a torrent is examined in Section 6.4. How all code is tested
is explained in Section 6.5. Finally, Section 6.6 will contain a reflection on this
sprint.

6.1 Dispersy communities

As explained in Section 5.1, the Tribler package consists of several packages, of
which Tribler.community contains all the Dispersy communities. Each of these
communities is a separate distributed database, in which participating peers can
send each other messages to share torrents, channels, votes, comments, etcetera.

In this sprint, two communities were implemented and exposed to the Java
GUI over XML-RPC:

1. SearchCommunity is used by peers to search for torrents. Each peer keeps
a local database in which it stores (actively) collected torrent files. When-
ever someone performs a keyword search, it sends a search-request mes-
sage to this community and each of its peer responds with a search-

response message containing info about the matches from their local tor-
rent database. Whenever a client wants to use the torrent file, it uses the
torrent-request message to request the actual torrent file.

1See https://github.com/wtud/tsap/issues?milestone=3&state=closed

44

https://github.com/wtud/tsap/issues?milestone=3&state=closed

2. AllChannelCommunity is the community in which the channels are shared.
These channels can be used to create a collection of torrents. Whenever a
peer subscribes to a channel, it downloads all the torrents that the channel
contains and thus helps seeding the channel contents for other peers.

For the specific functionality that was exposed to the Java GUI, see Section
6.2.

6.2 XML-RPC communication

With Tribler it is possible to search locally and remotely in Dispersy commu-
nities. On a local search, Tribler will search in its local databases that contain
collected Dispersy data such as torrents and channels. Whenever a remote
search is launched, Tribler will use Dispersy to ask its peers for search results.
Since searching locally is faster than searching remotely, but searching remotely
provides far more results, because both modes are used simultaneously.

On the Tribler side of this project, a wrapper containing a TorrentManager,
which uses the SearchCommunity, and a ChannelManager, which uses the All-

ChannelCommunity, provide access to Tribler from the GUI. The managers do
all the search actions, cache the results, and serve them to the GUI on request.
They register their functions with the XMLRpcManager, which starts a XML-
RPC server and provides the actual communication to the GUI. The functions
that are exposed to the client line up with the functions that are shown in Figure
6.1.

From the Android GUI side, searching for torrents or channels is very similar.
The items are retrieved from a manager derived from AbstractXMLRPCManager,
which calls remote functions through tasks derived from XMLRPCCallTask and
the items are stored in an adapter derived from AbstractArrayListAdapter.
The communication between these three elements is displayed in the sequence
diagram in Figure 6.1. Conform the Unified Modelling Language (UML) stan-
dard, synchronous messages are displayed with a closed arrow, and asynchronous
messages are displayed with an open arrow.

First, the search function is called which starts searching both locally and
remotely. Once the local search results are found, they will be added to the
adapter. Because the remote results do not arrive all at once, another system is
used for retrieving those results. A poller is started which checks for new search
results at a constant interval. If new results are found, they are requested and
then added to the adapter as well.

6.3 Creating a single APK

At the start of this sprint, the Android part of the project was in one APK
file and the Python part running Tribler was in another APK file. So, the
functionality of the application was distributed over two APKs, meaning the user
needed to install two applications before he could actually use the application.
This was of course undesirable and therefore it was needed to find a way to
integrate both parts into a single APK containing all the functionality.

When looking at the code in the distribution that was created by Python
for Android, it was discovered that the Python for Android project contains

45

Figure 6.1: Sequence diagram showing the flow of information at the client side
when searching. Open arrows represent asynchronous messages, closed arrows
represent synchronous messages. The onPostExecute() function is called to
send the result of a request.

code for what they call the ‘Java bootstrap’. When you open an application
that has been built using Python for Android, the first activity that is started is
the PythonActivity class. In the run method of this class the following assets
are extracted first: private.mp3 and public.mp3. These two files, which are
actually gzip compressed TAR files instead of MP3 files, contain all the Python
code. After these assets are extracted, the necessary libraries are loaded, the
GUI is started and the Python code is executed.

The GUI that is started in the process described above is actually a GUI
created with the Kivy framework. As this project will use a native Android GUI
instead of a Kivy GUI, all the bootstrap code related to creating and updating
the Kivy GUI has been removed to clean up the bootstrap code and to remove
the dependency on the Kivy framework. As the project will not use billing, all
the code related to this was removed as well. Finally, the bootstrap code also
contained a ResourceManager class. After removing the Kivy related code, this
class was not needed anymore and the standard Android R class could be used
to manage the application’s resources instead.

As the Tribler Python code needs to run in the background, an Android

46

Figure 6.2: A sequence diagram showing the startup process of the application.

service needs to be created. The Python for Android project also includes a
PythonService class that can execute the Python code in the background as a
standard Android service. Therefore, this class will be used to run the Tribler
code as a service. After the Python code has been extracted and the necessary
libraries are loaded in the run method mentioned above, an instance of this
PythonService class will need to be started. Therefore the run method has
been adapted to start this service instead of starting the Kivy GUI at the end
of the method.

The final issue that had to be resolved was to integrate the Java code of
this project into the remaining bootstrap code from the Python for Android
project. Basically, this means that after the assets have been extracted, the
libraries are loaded and the PythonService is started, the MainActivity of the
project needs to be to launched to start the GUI. Therefore, the code necessary
to perform this was appended to the end of the run method. A sequence diagram
showing the current startup process of the application in a clearer way is shown
in Figure 6.2. In the next sprint, the service will be adapted to actually run
Tribler instead of the Python code that was used to adapt the startup process
as described above, as this code only printed a text message every second.

47

6.4 BitTorrent streaming

One of the main features of this project is streaming videos via BitTorrent. This
means that a video should be downloaded sequentially via BitTorrent and that
it starts playing before it is fully downloaded. In the previous sprint, VLC for
Android was integrated into the Java GUI (see Section 5.4), and shown to be
able to stream and seek video files over a normal HTTP connection.

In this sprint, the first steps were taken to run the HTTP server in the
Tribler.Core.Video package. This package had a few dependencies on wx, the
GUI framework used by the Tribler desktop client, which cannot run on Android.
Because of this, some unused functions had to be disabled or rewritten to use
other libraries such as Python Image Library (PIL)2. At the end of the sprint,
it was possible to stream and seek a hardcoded torrent via the Tribler HTTP
server to VLC for Android.

The modifications that were needed to get this working, plus the modifica-
tions that were made during the previous sprint (see Section 5.1), were con-
tributed upstream and merged into the main Tribler codebase3.

6.5 User Interface (UI) tests

At the start of this second sprint, the code for the Android part mainly consisted
of code for creating and updating the GUI. It is not easy to test this particular
code with unit tests, as creating and updating the GUI is mainly done within
Android specific callback functions like the onCreate function. These callback
functions do not have return values that can easily be checked with regular unit
tests. Excluding the GUI code from the tests did not seem to be a viable option
for this project however, because they form a large part of the Java codebase.
Therefore, it was decided to write UI tests so the GUI specific code, at least the
results that these functions need to have, would be tested as well.

By following the tutorial on UI testing on the Android developer website4, a
new project containing the UI tests was created. After that, tests were written
for each fragment in the main project, as these fragments are responsible for
updating the GUI with the correct content. As the GUI layout is different in
landscape mode than in portrait mode, subclasses of the created test classes were
made so that the same tests would also be run when the phone is in landscape
mode. Finally, a test class was made that tests the application’s behaviour when
‘special’ events occur, like when the user presses the home button or when he
opens the notifications bar.

To integrate the UI tests in the continuous integration process, the tests
would also need to run on the Jenkins server. This was more difficult than it
sounds as when the tests were initially run, they all failed because the application
could not be found when the tests tried to open it. This issue was not present
when running the tests on a laptop, either with a real device or an emulator,
which made it hard to find out why the application could not be found. After
trying several other ways to open the application, the tests kept failing. Finally
it was discovered that when using an emulator with the exact same configuration

2http://www.pythonware.com/products/pil/
3https://github.com/Tribler/tribler/pull/619
4http://developer.android.com/tools/testing/testing_ui.html

48

http://www.pythonware.com/products/pil/
https://github.com/Tribler/tribler/pull/619
http://developer.android.com/tools/testing/testing_ui.html

as used by Jenkins, the tests were failing on the laptop as well. After playing
around with the emulator options, it was discovered that the UI tests failed
because of the no-window option that caused the emulator to run without a
display, which is necessary as the Jenkins server is headless. This issue was
fixed by designating an Android device as test device, and letting the Jenkins
server connect with it via an adb connection over the Internet instead of running
on an emulator. This has the added benefit having a testing environment much
closer to the real usage, plus faster running tests.

The final issue that needed to be solved was that when the tests fail, the
build needs to be marked as unstable or failed. As this was also the case with
the unit tests created in the previous sprint (see Section 5.3.2), the method to fix
this issue was already known. Using the automator-log-converter library5,
a JUnit XML report could be created from the output of the test run. This
report could then be published after the build and it could give the build the
appropriate mark based on the test results. As Jenkins has the ability to merge
multiple JUnit XML reports, the report of the UI tests was merged with the
unit test report resulting in one test result report and one figure showing the
test result trend.

6.6 Reflection

As a continuation of the previous sprint, many features were added or polished
during this sprint. Searching for torrents and channels from the Java GUI using
Dispersy is now functional. The Python for Android loader that executes the
Python code was integrated in the project, making a single APK within arm’s
reach. UI tests were created and integrated into the Jenkins server and an
Android device was designated as test device instead of using an emulator. It
was shown that streaming a video over BitTorrent to VLC for Android using
the Tribler HTTP server works as well. At the end of the sprint the code was
submitted to the Software Improvement Group (SIG) for quality control.

In conclusion, the application now almost consists of a single APK, which
should not take up much time in the next sprint. The search functionality works,
but still needs some minor improvements. A step for the next sprint would be
to create a manager for the download and streaming process, and download and
integrate metadata, such as thumbnails, for torrents.

5https://github.com/dpreussler/automator-log-converter

49

https://github.com/dpreussler/automator-log-converter

Chapter 7

Third Sprint: Search and
stream prototype

In the third and final sprint of this project, many features were implemented
and polished. This means that many GitHub issues have been processed and
closed. The complete list of these closed issues are listed under the relevant
milestone in the GitHub issue tracker1. As it is not practical to address all
these issues in this chapter, only the most significant changes will be addressed.
During the sprint, the title of the application has also been changed from the
working title TSAP into Tribler Play.

The most important use cases of the application, downloading and stream-
ing, will be addressed in Section 7.1 and 7.2, respectively. The addition of
Tribler’s MetadataCommunity is examined in Section 7.3 and the integration of
Tribler into a single APK file is explained in Section 7.4. The addition of set-
tings, the enhancements made to the GUI and the feedback given by SIG are
discussed in Section 7.5, 7.6 and 7.7, respectively. Finally, a reflection on this
final sprint is given in Section 7.8.

7.1 Downloading

At the end of the previous sprint, it was possible to download and stream a single
hardcoded video over BitTorrent (see Section 6.4). The libtorrent library that
was used was only able to handle one download at a time. If another download
was started, it causes a segmentation fault and crashes the whole application.

During this sprint, the AT3 team2 was able to compile a libtorrent ver-
sion that was largely free of segmentation faults, which paved the way for a
DownloadManager that would expose the download functionality to the Android
GUI via XML-RPC calls. The first implementation was quite simple, because
the Tribler session provides simple functions to add, remove and list downloads.
In addition to working fine on a computer, a simple test which added, down-
loaded and removed a single torrent also worked fine on an Android device.

However, after the first tests with the actual Android GUI, it was discovered
that Tribler would stop responding after calling some of the download func-

1https://github.com/wtud/tsap/issues?milestone=4&state=closed
2https://github.com/rjagerman/AT3

50

https://github.com/wtud/tsap/issues?milestone=4&state=closed
https://github.com/rjagerman/AT3

Android
Without callbacks,

Computer
with channels.

Android
With callbacks

Computer
and channels.

Android
With callbacks,

Computer
without channels.

0 2 4 6 8 10

Figure 7.1: Number of consecutive finished downloads (out of 10) of a 102 MB
torrent. The numbers are an average of 10 runs on a Samsung Galaxy Nexus
and on a Linux computer.

tionality several times. To debug this functionality, a stress test was written.
The test tries to add, fully download and then remove a torrent ten times in
a row. During the actual downloading, the status is requested in one second
intervals. As can be seen in Figure 7.1, the first implementation was usually
able to download a single torrent, and would freeze during the second. As a
control experiment, the same code was run on a computer, which would do ten
consecutive downloads without a hitch.

The following days, one team member was fully devoted to fixing this prob-
lem. After some debugging and studying the Tribler code, the DownloadManager
was rewritten to use callbacks. This meant that instead of calling a function
that would return every download on a set interval, the Tribler session would
inform the DownloadManager about any changed downloads every two seconds.
These changes were cached and served over XML-RPC on request. The re-
sults can be seen in Figure 7.1, showing that the application would now usually
freeze after finishing the second or third download. An improvement, but far
from acceptable.

What followed were two full days of debugging, rewriting code and running
download tests. The XML-RPC server was first rewritten to use a different
thread for every request, then it was rewritten to use the Twisted framework
(that was already used by Dispersy) to handle the XML-RPC calls. The tests
were even rewritten to bypass the XML-RPC calls altogether and directly call
the DownloadManager functions, and then the Tribler sessions functions itself,
all without making any significant improvement.

On the third day, the project coach suggested that the AllChannelCommunity,
the community that handles everything relating to channels (see Section 6.1),
is quite heavy to run, and it might help to disable it. As a lot of code was
already written for the channel functionality, and quite an integral part of the
application, this was not considered before. However, as Figure 7.1 shows, dis-
abling the AllChannelCommunity fixed the issue completely. In addition, any
other Dispersy related actions, such as searching, were sped up significantly. De-
spite channels being an important feature of Tribler, reliable downloading was
more important and as such, it was decided to keep the AllChannelCommunity

51

disabled and hereby any channel and voting functionality was dropped.

7.2 Streaming

As the main use case of this project is to stream videos on an Android phone,
functionality had to be added to stream videos from BitTorrent from inside the
application. At the end of the previous sprint it was already possible to stream
a hardcoded torrent from BitTorrent (see Section 6.4). Besides, the GUI of the
application already contains a ‘Play video’ button since the design phase, but
this button did not have any functionality attached to it until this sprint.

Now, the ‘Play video’ button provides a single click play experience: when-
ever the user presses the button, a download for the torrent is started as de-
scribed in Section 7.1. After the download is started, the application opens
a dialog that shows the current status of the download to the user. When
the torrent is actually being downloaded, the dialog shows the user how much
time it will take before the video can be streamed. When the video is ready
to be streamed, meaning that 5% of the video has been buffered, the built-in
VLC player is opened and it will start to stream the selected torrent from the
integrated HTTP server.

When this new streaming functionality was tested on the Galaxy Nexus
phones that have been used as testing devices throughout this project, it was
found out that they were not able to stream HD videos smoothly. Instead,
streaming HD videos on these phones was glitchy as the CPU was not powerful
enough to stream HD videos. Therefore, the client provided us with a Nexus 5
phone, which is more powerful and therefore able to stream HD videos smoothly.

7.3 Distributed thumbnail discovery

A fairly recent addition to the Tribler codebase is the introduction of the
MetadataCommunity. This Dispersy community is used to share extra informa-
tion about torrents, in particular torrents that contain videos. The metadata
of these torrents includes thumbnails (posters, as well as screenshots from the
actual video) and information about video files such as play length and reso-
lution. The image files are shared via libswift (see Section 5.1.2) peer-to-peer
connections.

Since the first interface design in Section 4.5, the Android GUI relied heav-
ily on the presence of thumbnails to make the interface more intuitive to use.
During the previous sprints however, placeholders were used instead of actual
thumbnails. At the start of the sprint a small effort was made to implement
this community, but when this did not work immediately, priority was given to
other features.

Near the end of the sprint, several hundreds of additions were made to the
Tribler code base, including to libswift. As it turned out, the version of libswift
used previously did not work consistently on Android and would fail without
throwing any errors. This resulted in no metadata being downloaded at all.
However, after recompiling this newer version for Android, Tribler soon started
collecting thumbnails from its peers and storing them in a hidden directory on
the SD card, each torrent in its own subdirectory. After running for several

52

days, and collecting nearly 250 thumbnails, it was found that for every 1 MB
storage used, about 24 thumbnails could be stored. This was deemed well within
an acceptable range.

The way that Tribler saves the thumbnails made it quite simple to use them
in the Android GUI. Whenever a search result is presented to the user, the GUI
checks if there is a directory with thumbnails available for each result. If found,
it looks for a thumbnail file and loads it asynchronously using the open source
library Picasso3. If not, a placeholder thumbnail is shown.

As this is feature is not yet released in the main Tribler client, the number
of torrents that have thumbnails associated with them is still quite low, with
the exception of some keywords such as “vodo”. As this feature makes its way
into a main Tribler release, it is planned to run a bot that will automatically
inject metadata for a large amount of torrents which will significantly boost the
amount of available thumbnails.

7.4 Creating a single APK

At the end of the previous sprint it was possible to build a single APK including
both the Android code and the Python code. In this APK the Python code
ran inside a background service. However, the Python code that was used for
this only contained testing code, that printed some text every second. In the
real application, it should instead run a Tribler session in the background. To
accomplish this, the build script used to create a Python for Android distribution
needed to be adapted.

To simplify the build process, the decision was made to add the Python for
Android repository as a Git submodule to the repository of this project. This
means that people that want to build the code do not need to clone the Python
for Android repository themselves and then give the path to it as a command-
line argument to the build script. After the submodule was added, the path to
the Python for Android project could be put into the build script so that the
user does not need to pass it as a command-line argument.

The next step was to let the build script automatically copy the required
libraries and assets from the created Python for Android distribution to the
project code itself. This was done by adding commands to the build script
that run after the Python for Android distribution is created. One new com-
mand simply copies all the generated static libraries from the distribution’s
/libs folder to the main project’s /libs folder to ensure the project has all the
necessary libraries at its disposal. A similar command was added to copy the
generated MP3 files containing the Python code from the distribution to the
project’s /assets folder.

Finally, two string resources containing the version number of the generated
assets needed to be copied to the main project’s resources. This was done by
putting these resources into a separate file, that is updated every time the build
script is run. At the end of this sprint it was possible to build a single APK
file containing the Android code and the Python code running a Tribler session,
simply by executing the build script and by building the project with Eclipse
or Ant afterwards. This new build process has also been put into the Jenkins
server to ensure the Python code is up-to-date when the application is tested.

3https://github.com/square/picasso

53

https://github.com/square/picasso

7.5 Settings

At the end of this sprint the application has two types of settings: settings that
apply to the Android GUI or ones that apply to the Tribler service. However,
this distinction is of no interest to the user and therefore they should both be
presented inside a single screen. Programmatically, it is also nice to store any
settings that are presented to the user in a single place, to prevent them from
getting out of sync from each other. Even though most settings apply to the
Tribler service, it was decided to let the Android GUI store these settings. This
has the advantage that whenever the settings screen is loaded, the settings are
immediately presented to the user, without loading time caused by XML-RPC
calls. In addition, the native Android settings screen automatically stores its
settings without any additional code.

The Tribler service has a special SettingsManager that deals with push-
ing and reading settings from the service via XML-RPC calls. Whenever the
application is started, the Python unpacker reads any settings applying the to
Tribler service, and passes them to the service via environment variables. They
are then loaded by the SettingsManager, which makes them available to the
rest of the service.

On the GUI side, there is a static Settings class, that can be used to read
any settings applying to the GUI. This class is also in charge of providing ac-
cess to any read only settings that can be read from the Tribler service via
an XML-RPC call, such as the location of the folder containing the thumb-
nails. Whenever a setting is changed that also applies to the Tribler service, the
Settings class is in charge of doing an XML-RPC call to inform Tribler.

The settings fragment also hosts the about screen and a screen with the
licenses of all used open source software. The open source licenses setting opens
a dialog that loads a HTML file containing all the licenses of the software used
for the application, like the Python for Android project. The about screen is
also a dialog that shows some information about the project, like the version of
the application and a link to the GitHub page of the project.

7.6 GUI enhancements

The Android GUI sometimes takes a while to respond to an action. For example,
when the user starts a search for torrents it takes a while before any torrents are
found. To provide the user with more feedback about whether the application is
still working properly, loading screens were added in the torrents and download
screens. These screens show the user progress information whenever the GUI is
waiting for the Tribler service to start, as shown in Figure 7.2a, or when Tribler
is busy searching for a torrents, see Figure 7.2b. In addition, messages were
added to invite the user to perform an action, such as searching or downloading,
whenever they encounter an otherwise empty screen.

An enhancement was also made to the overall color of GUI elements. The
Tribler logo uses a very distinct shade of orange (#FF3300), which is also the
dominant color on the Tribler website and in the desktop version of Tribler.
To relate to the Tribler brand it was decided to use this color in the GUI. To
change the color of the layout elements, the Android Holo colors generator4 and

4http://android-holo-colors.com/

54

http://android-holo-colors.com/

(a) The screen show-
ing that Tribler is being
loaded.

(b) The screen showing
that Tribler is searching
for a torrent.

Figure 7.2: Screenshots showing progress information.

the action bar style generator5 were used. These two websites generate a set
of images to replace the images of the Android standard layout with similar
looking images, but with a different color.

The icons used by the integrated VLC player are not from the standard set,
so they were not changed by these tools. A GNU Image Manipulation Program
(GIMP) script was modified6 to shift the colors of these icons from VLC orange
to Tribler orange using the ‘hue saturation’ tool.

7.7 SIG Feedback

The SIG was positive about the code that was written at this point and awarded
it with the above average score of four out of five stars. The score of five stars
was not achieved because of a lower score on code duplication. They noted
the class XMLRPCChannelManager as an example of this. At the moment the
feedback was received it was already decided to remove that class, because
channel functionality was no longer needed. Still, similar XMLRPCManager classes
were refactored, which reduced code duplication amongst other improvements.
The SIG was also pleased to see that test code was available for the project.
The complete feedback can be found in Appendix B.

7.8 Reflection

In the previous sprints most of the back end of the application was made. Be-
cause of that, many visible features could be implemented in this sprint. Down-
loading was implemented and when a movie is downloading, it can already be
streamed. The GUI now shows more info on torrents and downloads and even

5http://jgilfelt.github.io/android-actionbarstylegenerator
6From http://www.gimptalk.com/index.php?/topic/52571-hue-saturation-batch-script/

55

http://jgilfelt.github.io/android-actionbarstylegenerator
http://www.gimptalk.com/index.php?/topic/52571-hue-saturation-batch-script/

retrieves thumbnails. All features are combined into one package that is easy to
build and trivial to install. The SIG also had positive feedback on the code, and
the code has been improved according to the single negative point they pointed
out.

In conclusion, the project is almost finished. All the main features are work-
ing and are integrated into an easily installable package. With a little more
testing and tweaking the application would be ready for release.

56

Part IV

Final Phase

57

Chapter 8

Project outcome

After the implementation phase consisting of three Scrum sprints, the project
is nearly finished. To get a better overview of what has been achieved in this
project, this chapter will discuss the main features of the application that was
created during the six week lasting implementation phase. This will be done
by examining each main feature one by one. For each feature, the technology
behind it will be addressed in short and screenshots will be shown to see how
the user will experience the feature.

First, Section 8.1 will examine the feature of searching for torrents in more
detail. Downloading and streaming these torrents will be discussed in Section
8.2 and 8.3, respectively. Viewing the running downloads and editing them is
further examined in Section 8.4. Finally, Section 8.5 will address the feature of
viewing and updating the application settings.

8.1 Decentralized content discovery

When the user opens the application, he or she is welcomed with the home
screen, as shown in Figure 8.1a. This figure also shows the navigation drawer on
the left which is used to quickly navigate between the most important screens of
the application. The ‘Home’ option opens a screen in which the user can search
for torrents. The ‘Downloads’ option shows a screen containing the information
of all torrents the user is downloading. Finally, the ‘Settings’ option opens the
settings menu in which the settings can be viewed and changed. For this section
all actions are performed in the screen selected with the ‘Home’ option, the other
options will be addressed in the sections below.

After the user has opened the application and selected the ‘Home’ option,
the search screen is opened. When the search icon in the top right of the screen
is clicked, the user can enter a query to search for, as shown in Figure 8.1b. For
instance, when the user enters the query ‘vodo’ and presses the search button,
an XML-RPC call to the Tribler service will be made and it will launch a search
for ‘vodo’ in Dispersy’s SearchCommunity. When the results are found, they will
be shown on the screen with their title, size, health and thumbnail (if available).
The screen containing the results for the query ‘vodo’ is shown in Figure 8.1c.
Clicking on a specific result will open a new screen showing more information
about the torrent and the ability to play and download it. An example of the

58

screen that is shown whenever clicking the top right result in the previous figure,
is shown in Figure 8.1d.

(a) The home screen of
the application. It also
shows the navigation
drawer.

(b) The home screen
when the search option is
clicked.

(c) The results found
when searching for ‘vodo’.

(d) The screen that is
showed when clicking on
a result.

Figure 8.1: Screenshots showing searching for a torrent.

8.2 Torrent downloading

Following the user’s navigation explained in the previous section, the screen with
more info about the selected torrent contains a ‘Download video’ button. When
this button is pressed, another XML-RPC to the Tribler service is made. This
call basically makes sure that Tribler starts downloading the torrent using the
libtorrent library. The result of clicking this button is a small pop-up showing

59

the user that the download has started, as can be seen in Figure 8.2a. When the
download has started, the user can open the navigation drawer and select the
‘Downloads’ option to monitor the progress of the started download, including
the download status, the download speed and the estimated remaining time, as
shown in Figure 8.2b. This information is continuously updated by performing
XML-RPC calls to Tribler every two seconds.

(a) The screen with more
info about a torrent when
the download button is
pressed.

(b) Downloads screen
showing the progress of
the download.

Figure 8.2: Screenshots showing downloading a torrent.

8.3 BitTorrent streaming

Continuing the user’s navigation as explained in Section 8.1, the information
screen also contains a ‘Play video’ button. Pressing this button first starts the
download process of the torrent as discussed in Section 8.2 and then it opens
a dialog that asks the user to wait, like in Figure 8.3a. When the download
is added to Tribler, the message of dialog is replaced by the current download
status as illustrated in Figure 8.3b. At the moment the torrent is actually being
downloaded, the dialog message will show how long it will take until the video
can and will be streamed, as in Figure 8.3c.

When the video is ready to be streamed, meaning that 5% of the video
frames have been buffered, the integrated VLC player is automatically started
as shown in Figure 8.3d. After a few seconds of loading, VLC will start playing
the selected video, see Figure 8.3e. Once the video is playing, the user can pause
or stop the video and also seek within the video. All of this while the torrent is
not even entirely downloaded.

60

(a) The dialog shown
when the play button is
pressed.

(b) The dialog showing
the download status.

(c) The dialog showing
how long it will take
until the video can be
streamed.

(d) The screen shown
when VLC is started.

(e) The screen shown
when VLC is streaming
the video.

Figure 8.3: Screenshots showing streaming a torrent.

8.4 Viewing and managing downloads

When the user has started one or more downloads and wants to see the progress
of these downloads, he can select the ‘Downloads’ option from the navigation
drawer. This will open a screen containing a list of all started downloads in-
cluding their status, download speed and estimated remaining time, as in Figure
8.4a. Clicking one of these downloads opens a screen with more info about the
torrent, which also contains buttons for playing the video and removing the
torrent, see Figure 8.4b.

The ‘Play video’ button in the download information screen behaves exactly
the same as the one explained in Section 8.3. The ‘Remove download’ button

61

opens a dialog asking the user whether he or she wants to remove the download
and the files associated with it, as in Figure 8.4c. Pressing ‘No’ in this dialog
will only remove the download from the list of downloads. Pressing ‘Yes’ will
also remove the already downloaded files from the phone.

(a) The screen showing
the progress of all started
downloads.

(b) The info screen shown
when clicking a download
from the list.

(c) The dialog shown
when the remove but-
ton in the info screen is
pressed .

Figure 8.4: Screenshots showing how to manage downloads.

8.5 Viewing and modifying settings

Selecting the ‘Settings’ option in the navigation drawer opens a screen in which
the user can view and edit the application’s settings, as in Figure 8.5a. The
‘Family filter’ setting, which is enabled by default, is used to enable or disable
Tribler’s family filter. Clicking the ‘Supported torrent types’ setting opens a
dialog in which the user can set the supported torrent types to either Video
(default) or All, see Figure 8.5b. The maximum download and upload rate used
by libtorrent can also be set within the settings screen. Selecting one of these
two settings opens a dialog in which the user can enter a number that represents
the rate in kilobytes per second, see Figure 8.5c. By default these rates are set
to an unlimited speed.

Finally, the list of settings also contains two items that are not really settings,
namely the ‘Open-source licences’ and ‘About this app’ items. The first one
opens a dialog that displays the licences of all open-source software that is used
for creating the application (see Figure 8.5d) as it is legally required to include
these licences. The second one opens a dialog showing some useful information
about the application including which licence this application uses (GNU Public
License version 3 (GPLv3)), as shown in Figure 8.5e.

62

(a) The screen showing
the available settings.

(b) The dialog shown
when the supported
torrent types setting is
pressed.

(c) The dialog shown
when the maximum
download rate setting is
pressed.

(d) The dialog shown
when the open-source li-
cences setting is pressed.

(e) The dialog shown
when about this applica-
tion setting is pressed.

Figure 8.5: Screenshots showing viewing and editing settings.

63

Chapter 9

Conclusion

When comparing the outcome of this project with the original problem descrip-
tion, it can be said that the problem has been solved and therefore the project
can be marked as successful. This is the case because the Android application
that has been developed provides the answer to the research question, as the
application is able to search and stream videos in a decentralized way. In this
way the application contributes to society as a whole by contributing to the
fight against censorship.

Besides, the project’s goals have all been realized as Tribler and its depen-
dencies, as well as VLC for Android, have been integrated in the application.
Any changes made to the Tribler code were contributed back upstream. Finally,
the project can also be called successful because all must have requirements have
been met as well as three out of four should haves and even two could haves.

During the development of the application, as much existing software as
possible was reused to avoid re-inventing the wheel. This resulted into a design
consisting of a Tribler service written in Python, an Android Graphical User
Interface (GUI) written in Java and a modified version of the open source VLC
video player which is also written in Java. The GUI communicates with Tri-
bler through XML Remote Procedure Calls (XML-RPC) using the Hyper Text
Transfer Protocol (HTTP) and the modified VLC player communicates with
Tribler through HTTP streaming.

Combining Python and Java code was the main challenge of the project as
Python is not natively supported by Android, so a third party framework was
needed. The Kivy Python for Android framework was used for this purpose,
because it is the only Python runtime for Android that is currently being main-
tained. It also has a convenient system for managing libraries written in C and
C++. However, the framework was designed for applications that are written
in Python only, using Kivy for the GUI. To allow for an Android GUI written in
Java, the framework had to be modified. Also communication between Tribler
and the GUI was a challenge, but that was fixed by using XML-RPC, which
uses HTTP as transport protocol.

The main advantage of having a separate Tribler service is that the Tribler
code that is run as a service in the background is the same as in the PC version,
which makes maintaining and updating the code easy. An additional benefit of
having all communication with Tribler over HTTP is that the Tribler service
can be run on a different device. This was useful for testing and it could be the

64

starting point of the development of new applications, like applications for iOS
and Windows Phone or running Tribler on a headless server.

However, sending all information over HTTP has its downsides too, as it
introduces overhead that can be a problem while streaming videos. When the
application was used to stream a 720p video on a Galaxy Nexus smartphone,
which was first released on 19 October 2011, it showed artefacts. When the same
video was displayed from its internal storage, without using HTTP streaming,
the video would display without problems. Lower quality videos and the rest of
the application work without problems. On a newer Nexus 5 smartphone, which
was first released on 31 October 2013, HD videos could be streamed without
problems.

Concluding, this project resulted into an Android application that solves
the client’s problem and that is ready to be published in the Google Play Store.
The focus on reusing existing code resulted in an application that is maintain-
able, but might be less responsive on lower-end devices. Since smartphones are
getting faster rapidly, this seems like a reasonable trade-off for maintainable
code. Currently, the application provides decentralized content discovery and
streaming in a single Android application Package (APK), which is a good step
in the fight against censorship.

65

Chapter 10

Recommendations

During the weeks of the project, a lot of work was spend on researching, im-
plementing features and making the application as stable and user friendly as
possible. Looking back at the MoSCoW requirements set in Section 4.1, all
must have requirements have been met, as well as the majority of the should
have requirements. Given the limited time however, there is still room for im-
provement. Some of these recommendations for future work are described in
the following sections.

10.1 Integrate anonymous tunnels

As described in Section 2.3, the Android Tor Tribler Tunneling (AT3) team was
working in parallel to this project on getting an experimental feature of Tribler
working on Android devices. As both teams did not have enough time at the
end of the project to bring both projects together, this idea was dropped for
the moment.

Integrating the two projects should not be a whole lot of work however, as all
fixes by the AT3 team were contributed back into the main Tribler repository.
Importing the ProxyCommunity when starting the Tribler sessions, plus exposing
its functionality in the Android GUI are the main steps that should be taken to
get this feature working.

10.2 Channels and vote support

During the last sprint of the development cycle, it was found out that the
AllChannelCommunity required a lot of resources and would bring the whole
application to a halt during downloads (see Section 7.1). If a way could be
found to make this Dispersy community run reliably and without taking up too
much resources, bringing back channel management would be a big feature.

In addition to channel management, the AllChannelCommunity also enables
users to vote on the quality of torrent. Distributed quality control in the form of
voting is an effective way to filter out broken torrents or spam, greatly improving
the quality of the found search results.

66

10.3 Integrate with the main Tribler repository

Currently, the application is a standalone product, that uses the Tribler code
as a package, and wraps a Python service around it, which interfaces with the
Tribler core and exposes some of its functionality over XML-RPC to the Android
GUI. The reasons to do this were that the functionality of the application is a
subset of the full Tribler functionality and that this makes keeping up with the
main Tribler code trivial, as this requires no additional modifications to the ever
evolving Tribler code.

The downside to this approach is that there is some code duplication, in
particular in the Tribler.Main.vwxGUI.SearchGridManager package and the
various Manager classes in the Python service. The code in this SearchGrid-

Manager package was written with the Tribler wx GUI in mind, and thus relies
heavily upon it and cannot be used on Android at all without modifications.

One approach would be to take this code and create a more generalized
version of it, containing all functionality not specific to the wx GUI, such as the
searching and downloading of torrents and the management of channels. The
current wx GUI should be able to plug into this code, and use it for its main
functionality. The current XML-RPC server, as used by the applications Python
service, could then use this same generalized version and could be integrated
into the main Tribler repository. This would make running Tribler on other
platforms, with different kind of GUIs, or no GUI at all, a possibility.

10.4 Add support for additional Android devices

Currently, the application was only run and tested on Samsung Galaxy Nexus
and Google Nexus 5 devices. A simple improvement would be to test it on
various other Android devices, ranging from small screen phones to big screen
Android TVs to increase the amount of potential users.

In addition to testing on these extra devices, support for tablet screens can
be added. As tablet penetration is nowhere near as high as that of smartphones,
no time was spend on developing a tablet interface. It is currently not known
how the interface looks on a tablet device, but it is expected that the usage of
screen estate is not optimal.

67

Bibliography

[1] B. Cohen. Incentives build robustness in bittorrent. In Workshop on Eco-
nomics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[2] R. T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

[3] J. Pouwelse. The shadow internet: liberation from surveillance, censor-
ship and servers. Internet-Draft draft-pouwelse-perpass-shadow-internet-00,
IETF Secretariat, Feb 2014.

[4] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H.
Epema, M. Reinders, M. R. Van Steen, and H. J. Sips. Tribler: a social-
based peer-to-peer system. Concurrency and Computation: Practice and
Experience, 20(2):127–138, 2008.

[5] N. Zeilemaker, M. Capotă, A. Bakker, and J. Pouwelse. Tribler: P2p media
search and sharing. In Proceedings of the 19th ACM international conference
on Multimedia, pages 739–742. ACM, 2011.

[6] N. Zeilemaker, B. Schoon, and J. Pouwelse. Dispersy bundle synchroniza-
tion. IFIP Networking 2013, 4820:203–214, 2013.

68

Appendix A

Original project description

Included here is the project description, as specified on BEPSys1.

A.1 Project description

The shadow Internet is an alternative communication infrastructure.
Under active development for several years, it’s specifically crafted
to be resilient to sniffing, blocking, filtering and shutdown. A place
for free expression and innovation. Censorship is a key threat to The
Internet, with the Shadow Internet this project will start to protect
you. Android-based smartphones, the TOR protocol, Bittorrent and
a novel reputation system form the Internet-deployed technical foun-
dations. For the past years we worked hard with a group of dozens of
scientists and engineers to realize this vision (including 3 phd-level
cryptographers). The team have come a long way and with addi-
tional support we can make this project self-sustainable and ready
for release. Your BEP assignment is to contribute to this work and
build a fully usable Android prototype from existing pieces of code.

A.2 Auxiliary information

The smartphone application you will develop enables people to dis-
tribute videos by copying them from phone to phone wirelessly. So
even without an Internet connection you can share videos and other
content. This is specifically targeted for recording and spreading
of protest videos. Work on easy-to-use cryptography for protect-
ing content on your phone and masquerading it as innocent content
is ongoing. The Shadow Internet ensures people no longer are re-
liant on websites like YouTube or Facebook to view and share con-
tent with friends. Many smartphones have data limits and these
deter people from uploading video files. We will let you share con-
tent with friends simply by holding your phones against each other.

1https://bepsys.herokuapp.com/projects/view/49

69

https://bepsys.herokuapp.com/projects/view/49

The existing foundations you can use for you work can be found
here: https://github.com/AlexKolpa/AndroidStealth/issues/ (this
project will finish 15 April 2014)

70

Appendix B

SIG feedback

The feedback as provided by the SIG is included below.

De code van het systeem scoort 4 sterren op ons onderhoudbaarhei-
dsmodel, wat betekent dat de code bovengemiddeld onderhoudbaar
is. De hoogste score is niet behaald door een lagere score voor Du-
plication.

Voor Duplication wordt er gekeken naar het percentage van de code
welke redundant is, oftewel de code die meerdere keren in het sys-
teem voorkomt en in principe verwijderd zou kunnen worden. Va-
nuit het oogpunt van onderhoudbaarheid is het wenselijk om een
laag percentage redundantie te hebben omdat aanpassingen aan deze
stukken code doorgaans op meerdere plaatsen moet gebeuren. In jul-
lie geval komt dit voornamelijk door XMLRPCChannelManager.java,
waar de verschillende XMLRPCCallTask implementaties veel her-
haling bevatten. Het is aan te raden om dit soort duplicaten op te
sporen en te verwijderen.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het
om dit niveau te behouden tijdens de rest van de ontwikkelfase.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk
zal het volume van de test-code ook groeien op het moment dat er
nieuwe functionaliteit toegevoegd wordt.

71

Appendix C

Plan of action

72

Plan of Action

Wendo Sabée, Dirk Schut, Niels Spruit

Contents

1 Introduction 2
1.1 Current state . 2
1.2 Accordance and adjustments . 3
1.3 Document structure . 3

2 Project assignment 3
2.1 Project environment . 3
2.2 Project goals . 3
2.3 Project description . 4
2.4 Deliverables . 4
2.5 Requirements . 4
2.6 Conditions . 4

3 Approach and planning 5
3.1 Orientation Phase . 5
3.2 Design Phase . 5
3.3 Implementation Phase . 5
3.4 Release Phase . 6

4 Project design 6
4.1 Organization . 6
4.2 Personnel . 6
4.3 Administrative procedures . 7
4.4 Resources and Finances . 7
4.5 Reporting . 7

5 Quality control 7

6 Attachments 8

Preface

This document serves as the plan of action for the project that will be conducted
for the course TI3800 and it will serve as a foundation for the remainder of
the project. The problem that will be solved during this project, as well as
the responsibilities of the client, the supervisor and the project team and the
structure of the project will be established in this plan.

Summary

There is a pre-existing Android application that streams media files over Bit-
Torrent. The aim of this project is to extend that application to use the search
technology used by Tribler (Dispersy) to enable users to easily search for files,
in a decentralized way.

The project will take eleven weeks, during which there are four phases: the
Research phase, the Design phase, the Implementation phase and the Release
phase. During these phases there will be weekly meetings between the group and
the client to discuss the progress of the project. In the final week there will be
a presentation and demo of the final product. The group works on a voluntary
basis, but client is expected to provide the necessary Android hardware.

Quality control will be enforced with the use of Scrum, GitHub Issues and
SIG. The first two will encourage the use of branches and maintaining a working
master branch, while the latter will provide feedback during the last twee weeks
of the Implementation phase on how to improve the overall code quality of the
final product.

1 Introduction

The security and robustness of current media and information sharing applica-
tions are at best flawed. They usually incorporate a central component in their
design and do not provide strong anonymity. This is bad when their users reside
in a hostile environment. Services such as Twitter can be completely blocked
by governments or forced to collaborate in censorship because of their central
nature, as has been done in Turkey1. More decentralized technologies such as
BitTorrent are fairly easy to disrupt by blocking their central trackers, as has
been done with The Pirate Bay in for instance Australia2.

Services that especially focus on providing strong anonymity to their users
are not well maintained. More than a week after the discovery of one of the most
severe security bugs in the history of the Internet, Heartbleed3, more than 12%
of the exit and guard nodes of the most popular privacy enhancing network, Tor,
are still leaking private keys and information about their users4, with thousands
of relay nodes still vulnerable too.

1.1 Current state

To combat the shortcomings of these technologies, a fully decentralized ap-
plication providing strong anonymity is needed. Tribler, a fully decentralized
and BitTorrent compatible media sharing application developed by the Parallel
and Distributed Systems (PDS) research group of the Delft University of Tech-
nology, is currently in the process of implementing Tor-like privacy enhancing
technology5.

1http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
2http://au.ibtimes.com/articles/551214/20140506/pirate-bay-blockade-australia.

htm
3https://en.wikipedia.org/wiki/Heartbleed
4https://lists.torproject.org/pipermail/tor-relays/2014-April/004336.html
5http://github-pages.tribler.org/anonymity.html

As part of the effort to bring this technology to Android, an application
was developed that enables users to stream media files on their phone or tablet
using BitTorrent. After several meetings with Johan Pouwelse, the client, it was
decided to extent this application with Dispersy, the technology behind Triblers
decentralized search.

1.2 Accordance and adjustments

This report will be discussed with our client before starting the project, and
amended where needed. If during the project it is found that the planning is
insufficient, adjustments can be made in agreement with the client.

1.3 Document structure

In section 2, the assignment will be discussed. A global planning is provided in
section 3. The project design is discussed in section 4 and finally, the plan to
maintain high quality code is discussed in section 5.

2 Project assignment

In this section will be explained what the actual project consists of and what
the deliverables, restrictions and conditions associated with this project are.
First, the environment of the project will be examined, followed by the goals
and the description of the project. Finally, the project’s deliverables, demands,
restrictions and conditions will be explained.

2.1 Project environment

The project is an initiative of the Parallel and Distributed Systems (PDS) re-
search group of the Delft University of Technology, which focuses on the re-
search areas of “P2P systems and online social networks, massively multiplayer
online games, grids and clouds, and multicore architectures and parallel pro-
gramming”6. The project can be viewed in particular as a part of the research
area of P2P systems and online social networking, as the project is initiated by
the Tribler team and Tribler is an example of a P2P system using online social
networking. The long-term vision of the Tribler team is to create the ‘Shadow
internet’, which is defined as “an infrastructure in which the ability of govern-
ments to conduct indiscriminate eavesdropping or censor media dissemination is
reduced”7. To facilitate the evolution of this ‘Shadow internet’, Tribler has been
created and it uses “the Dispersy elastic database for providing: keyword search,
content discovery, content voting and spam prevention using crowd sourcing”8.

2.2 Project goals

The Tribler team wants an Android application that is capable of streaming
videos anonymously using the Dispersy elastic database to further create the

6http://www.pds.ewi.tudelft.nl/
7http://tools.ietf.org/html/draft-pouwelse-perpass-shadow-internet-00
8http://tools.ietf.org/html/draft-pouwelse-perpass-shadow-internet-00#

ref-TRIBLER

‘Shadow internet’. Therefore, the goal of this project is to develop an Android
application that is able to stream videos from the Dispersy database using ex-
isting knowledge and projects.

2.3 Project description

There is a pre-existing Android application that can stream videos using Bit-
Torrent9. This application uses traditional torrent files or magnet links10. The
client wants us to integrate the distributed Dispersy database, which is also
used by Tribler, for finding these torrents and the metadata of these torrents.
This project will try to link the Dispersy database to the existing video stream-
ing application to create the Android application that the client wants to have.
The project will not focus on providing Tor-like anonymity, as this is done by
another group (see section 4.1).

2.4 Deliverables

Eventually, the project will result in an Android application with the features
described above. Apart from the final product, the following reports, excluding
this Plan of Action, will be written during the project: a Research Report,
a Design Document and a Final Report. The Research Report will explain
the existing knowledge, technologies and projects in more detail as well as the
problems and challenges of these projects. The Design Document will show the
results of the requirements analysis as well as the proposed software architecture
and a Test and Implementation Plan. The Final Report will contain everything
that is necessary to get a potential new project team informed about the project
and the choices that have been made during the project so that they are able
to continue the project without much trouble.

2.5 Requirements

As described in the previous sections, the final product will be a mobile appli-
cation specifically targeted to the Android platform. This application can be
considered as a prototype and it will contain the features described in section
2.3. The exact requirements of this prototype will be determined during the
design phase and will therefore be documented in the design document.

2.6 Conditions

The project team will deliver all deliverables described in section 2.4 during the
fourth quarter (Q4) of the academic year 2013-2014. This quarter will last from
Tuesday 22 April 2014 until Friday 4 July 2014 and this period will therefore
be the exact timespan of the project.

The client, Johan Pouwelse, and the supervisor, Egbert Bouman will help
the team in getting the necessary resources for the project, like some Android
devices to test the software.

During the weekly meetings they will also discuss the progress of the project
and they will provide feedback on the work that has been done.

9https://github.com/javto/Tribler-streaming
10https://en.wikipedia.org/wiki/Magnet_links

3 Approach and planning

The project is divided into four phases: the Orientation Phase, the Design
Phase, the Implementation Phase and the Release Phase. These phases will
be explained in more detail in the sections of this chapter. The overall global
planning of the project has been put in a Gantt chart11 and can be found as an
attachment in Section 6. In this section a timeline (Figure 2) of the project can
be found as well to give a better overview on the project and its phases.

3.1 Orientation Phase

The first phase lasts two weeks and is divided into two parts. In the first part of
the first week, this document, the Plan of Action, is written. In this document
the project and our proposed approach to it are explained.

The second part of this phase is for research. The currently existing projects
and literature will be examined and decisions about which technologies to use
will be made. The results of this research will be included in a Research Report.

3.2 Design Phase

The second phase lasts a week and will be divided into four parts. During the
first part of this phase a requirements analysis will be made, according to the
MoSCoW method12. The GitHub Issues system will be used to keep track of
the requirements during the Implementation phase.

The second part of phase two will be spend on defining the software archi-
tecture. In this phase all components that will be used in our project will be
defined, as well as how they will be used.

During the third part of this phase, a Test and Implementation plan will be
written and in the last part a GUI mock-up will be created. The result of the
four parts of this phase will be included in a Design Report.

3.3 Implementation Phase

In this phase, consisting of six weeks, the actual coding and implementation will
be done. The project team will use Scrum13 to gradually expand the code base,
while still maintaining a working master branch, with sprints consisting of two
weeks.

At the beginning of each sprint there will be a meeting to make plans and
divide tasks. At the end of each sprint there will be a meeting with the client.
At the beginning of each day there will also be a short meeting where the group
members discuss what they have done and decide what they are doing that day.

At the end of the fourth week of this phase, the code will be submitted to
SIG (See section 5). Depending on when they provide us with the feedback,
parts of the fifth or sixth week will be spent improving the quality of the code
according to their recommendations.

11http://www.gantt.com/
12https://en.wikipedia.org/wiki/MoSCoW_Method
13https://en.wikipedia.org/wiki/Scrum_(software_development)

3.4 Release Phase

This final phase consists of two weeks, which will be spent on presenting and
distributing the application. All the implementation work should already be
finished in the previous phase. A Final Report will be written, which describes
the process and how the application works. At the end of this phase, a pre-
sentation will be given to the client, supervisor, course coordinators and other
interested parties. The application itself will be made into an APK file, which
can be released in the Play Store.

4 Project design

In this part of the plan of action the organization of the project is shown in
more detail, including the personnel, administrative procedures, resources and
reporting. These plans have been made in agreement with the client and the
supervisor.

4.1 Organization

Members of the group do not have any specific roles throughout the project.
The client is Johan Pouwelse, co-founder of Tribler. During the timespan of the
project, two other groups are working on other Android applications in parallel
to this project in order to make additional steps towards the ‘Shadow internet’.
These groups, another Bachelor End Project (BEP) group and a group of MSc
students, are responsible for adding Tor-like anonymity to the video streaming
application and making a stealth application14.

The end goal is to merge the work done by all groups into one application
to create the application the client desires. It will depend on the progress of all
groups whether this will happen during or after the project.

4.2 Personnel

The members of the group are working on this project full time. All members
have prior experience with Linux and Java, but no real experience with Android
development, Tribler or video streaming applications. The contact information
of the group members is shown below.

Wendo Sabée
) w.f.sabee@student.tudelft.nl

Dirk Schut
) d.e.schut@student.tudelft.nl

Niels Spruit
) n.spruit@student.tudelft.nl

14https://github.com/AlexKolpa/AndroidStealth

4.3 Administrative procedures

To monitor the project, GitHub15 will be used extensively. If a group member
encounters a serious issue or if he wants to see a new feature, an issue can be
created on GitHub. The group members will try to commit often and with clear
accompanying messages. Apart from the GitHub repository containing the code
of the project, another repository will be used for the reports.

4.4 Resources and Finances

Currently there are no costs related to this project. The group members work
on a voluntary basis on their own hardware, with Android phones provided
by the client. The client provided the group with a room to work in, room
EWI-HB 07.250, which is part of the Parallel and Distributed Systems Group
at the faculty of Electrical Engineering, Mathematics and Computer Science
(EEMCS).

4.5 Reporting

The group will have weekly meetings with the client and the supervisor in which
the current progress of the project and the future plans will be discussed. The
team will also deliver the required reports and other deliverables as described
in section 2.4.

5 Quality control

There are several ways in which quality is monitored throughout the project.
As the project is open source and openly available on GitHub, both the team
members and the project supervisor have constant access to the most recent
code. After the initial start of the project, non-trivial changes to the codebase
will be done via GitHub issues. In this way, the use of branches is enforced and
the process of each change can be reviewed by the other team members before
merging it into the production code.

A more formal way of quality control will be provided by SIG16. They will
judge the code twice on several factors during the project. Their first code
review will be done at last on 13 June 2014. Feedback on this review will be
provided before 20 June 2014, and will be used to improve the quality of the
code where possible. Their second review will be done over the final product
and will count towards the final grade.

15https://github.com/
16http://www.sig.eu

6
A
tt
a
ch

m
e
n
ts

F
ig

u
re

1
:

T
h

e
p

ro
je

ct
ed

p
la

n
n

in
g

o
f

th
e

p
ro

je
ct

.

F
ig

u
re

2:
T

h
e

ti
m

el
in

e
co

rr
es

p
o
n

d
in

g
to

th
e

p
la

n
n

in
g

in
fi

g
u

re
1
.

	Glossary
	Acronyms
	Introduction
	I Orientation Phase
	Problem analysis
	Current situation
	Project Goals
	AT3 Team

	Existing technology
	Prior Work
	Video decoding frameworks
	BitTorrent video streaming
	Content discovery
	Centralized content discovery
	Decentralized content discovery
	Nomadic content discovery

	II Design Phase
	Design
	Requirements
	Must haves
	Should haves
	Could haves
	Would haves

	Architectural constraints
	Software Architecture
	Test and implementation plan
	Test and quality control plan
	Implementation plan

	Use cases
	Searching for torrents
	Streaming a video
	Channels

	III Implementation Phase
	First Sprint: Foundation prototype
	Running Tribler on Android
	Tribler core package
	Tribler dependencies

	Communication between Python and Java
	PyJNIus
	Web services
	Selected approach

	Quality Control
	Test project set-up
	Jenkins set-up

	VLC Integration
	Reflection

	Second Sprint: Decentralized search prototype
	Dispersy communities
	XML-RPC communication
	Creating a single apk
	BitTorrent streaming
	ui tests
	Reflection

	Third Sprint: Search and stream prototype
	Downloading
	Streaming
	Distributed thumbnail discovery
	Creating a single apk
	Settings
	GUI enhancements
	SIG Feedback
	Reflection

	IV Final Phase
	Project outcome
	Decentralized content discovery
	Torrent downloading
	BitTorrent streaming
	Viewing and managing downloads
	Viewing and modifying settings

	Conclusion
	Recommendations
	Integrate anonymous tunnels
	Channels and vote support
	Integrate with the main Tribler repository
	Add support for additional Android devices

	Original project description
	Project description
	Auxiliary information

	SIG feedback
	Plan of action

