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Abstract

This thesis presents an insight in the Riemann zeta function and the prime number the-
orem at an undergraduate mathematical level. The main goal is to construct an explicit
formula for the prime counting function and to prove the prime number theorem using the
zeta function and a Tauberian theorem. The Riemann zeta function, defined as

∑∞
n=1

1
ns

for Re(s) > 1, can be continued analytically to the whole complex plane except at s = 1.
Two proofs of this continuation were given by Bernhard Riemann in his famous article
Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse from 1859. Those proofs
are studied in detail in this thesis after introducing all the required foreknowledge on the
gamma function.

The prime counting function π(x) counts the number of primes less than or equal to
x. An explicit formula for π(x) in terms of the nontrivial zeros of the zeta function will
be constructed in a similar way as Riemann did in his article. Finally, the prime number
theorem will be proved. This theorem describes the asymptotic distribution of the primes
among the natural numbers: limx→∞

π(x) log(x)
x = 1. Using the analytic continuation of the

zeta function and a Tauberian theorem, the prime number theorem can be proved quite
easily with only basic theory from complex analysis.

iv



Contents

1 Introduction 1
1.1 Counting Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Riemann Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Gamma Function 9
2.1 Properties of the Gamma Function . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Product Representations for the Gamma Function . . . . . . . . . . . . . . 12
2.3 Other Important Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Riemann Zeta Function 17
3.1 Riemann Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Euler Product Formula . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Eta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Functional Equation: Proof with Contour Integration . . . . . . . . . . . . 20
3.3 Functional Equation: Proof with Jacobi’s Theta Function . . . . . . . . . . 25
3.4 The Riemann Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Explicit Formula for the Prime Counting Function 31
4.1 π0(x) and J(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Chapter 1

Introduction

1.1 Counting Prime Numbers

Prime numbers have been an interesting topic for mathematicians since they were first
studied by the ancient Greek. Take all the natural numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

and the prime numbers are defined as those natural numbers greater than 1 which are
only divisible by 1 and itself. So, prime numbers cannot be written as the product of two
smaller natural numbers. The first number greater than 1 that is not a prime number is
4 = 2 · 2, the next is 6 = 2 · 3 and so on. The first ten prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

and some questions that arise are how many prime numbers are there, how do you find
them and how are they distributed among the other natural numbers? The ancient Greek
found out around 300 BC that there are infinitely many prime numbers. This is known
as Euclid’s theorem and was proved by assuming that there are only finitely many prime
numbers and then deriving a contradiction. This implies that the assumption must have
been wrong.

So there are infinity many primes, but which natural numbers are then prime and
which are not? A simple method to find the prime numbers less than or equal to a num-
ber n, was invented by Eratosthenes, the chief librarian of the great library in Alexandria.
The idea is to start with 2 and cross out all multiples of 2 that are less than or equal to
n. However, do not eliminate 2 itself. Then continue with the next number, 3, and cross
out the multiples. Repeat this procedure and all the numbers that remain are the prime
numbers less than or equal to n. This method is known as the Sieve of Eratosthenes. This
method can be applied for finding small prime numbers, but for large prime numbers this
algorithm is highly inefficient.

An even stronger result about primes was known more than two thousand years ago
and that result is so important that it is nowadays called the fundamental theorem of
arithmetic.

Theorem 1.1 (Fundamental theorem of arithmetic). Every natural number greater than
1 is either a prime number or can uniquely be represented as a product of prime numbers.

That a natural number n > 1 can be written as a product of prime numbers is more
or less obvious. If n is not prime, then by definition n = a · b with a, b < n. If a and b
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Chapter 1. Introduction

are not prime, then you repeat this until there are only prime numbers left in the factor-
ization. The fact that this representation of prime numbers is unique is not that obvious,
however with this theorem the prime numbers can be considered as the building blocks
of the natural numbers when only multiplication is used to combine the blocks. The two
theorems mentioned above can be found in one of the most important works from ancient
Greece, which is The Elements from Euclid.

The question about how the primes are distributed among the other natural numbers
is hard to answer. As a start, look at the prime counting function π(x) which is defined
as the number of primes less than or equal to a real number x. The graph of π(x) has
jumps at every prime number and is shown in figure 1.1 for x on two different domains.

Figure 1.1: The prime counting function π(x) for 0 ≤ x ≤ 50 and 0 ≤ x ≤ 1000.

The function on 0 ≤ x ≤ 1000 looks smoother than that on a smaller domain. Nonethe-
less, the behaviour of the prime counting function is very irregular. But if we can capture
an explicit formula for π(x), then this formula might tell us something about the distri-
bution of the primes. However, due to the irregularity and the jumps, it is not trivial that
such an explicit formula exists at all!

Before getting lost in the mathematics of finding an explicit formula, an approximation
of π(x) would also be nice. This was exactly what the great mathematicians Gauss and
Legendre were looking for at the end of the eighteenth century. One of the proposed
approximations was

L(x) =
x

log(x)
,

where log(x) denotes the natural logarithm. In figure 1.2 both π(x) and L(x) are shown.
This approximation might not be as accurate as we had hoped for, namely the difference
between both graphs (the error) becomes larger as x becomes larger. Nevertheless, this
approximation is good if we do not look at the absolute error, but look at the relative
error which is

π(x)− L(x)

L(x)
.

The claim is that this relative error tends to zero as x goes to infinity. This is known as
the prime number theorem, but for now it is only a conjecture.

2



Chapter 1. Introduction

Figure 1.2: The prime counting
function π(x) and the approxima-
tion L(x) for 0 ≤ x ≤ 1000.

Conjecture 1.2 (Prime number conjecture). The relative error between π(x) and L(x)
goes to zero as x goes to infinity:

lim
x→∞

π(x)− L(x)

L(x)
= 0

or after rewriting this

lim
x→∞

π(x)

L(x)
= lim

x→∞

π(x) log(x)

x
= 1.

Before continuing on this conjecture, first a little sidetrack. The approximation L(x)
as in figure 1.2 is not that marvellous if you at look at the absolute error, so can we find
a better one perhaps? Obviously, L(x) grows too slow with respect to π(x), meaning that
the derivative of L(x) is too small. Calculating this derivative using the quotient rule gives

L′(x) =
log x− x 1

x

log2 x
=

1

log x
− 1

log2 x
.

The derivative can be increased by ignoring the last part with the minus sign. Then,
integrating gives a function that is called Li(x) of which the derivative is larger than that
of L(x). Define the logarithmic integral for x > 0 by1

Li(x) =

∫ x

0

1

log(t)
dt.

Figure 1.3 shows the prime counting function together with the new approximation Li(x).
In comparison with the other approximation L(x), the logarithmic integral seems a better
estimate of π(x). In fact, Li(x) is a much better estimate concerning the absolute error
as can be seen in table 1.1. Regarding the relative error: it can be proven that the
approximation Li(x) is just a good as the approximation L(x). Hence, the prime number
conjecture can be reformulated as

lim
x→∞

π(x)

Li(x)
= 1.

1Note that the integrand 1
log(t)

is not defined for t = 1, so the integral should be interpreted as

limε→0

(∫ 1−ε
0

1
log(t)

dt +
∫ x
1+ε

1
log(t)

dt
)

.
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Chapter 1. Introduction

Figure 1.3: The prime counting
function π(x) and two approxima-
tions L(x) and Li(x) for 0 ≤ x ≤
1000.

x π(x) π(x)− L(x) Li(x)− π(x)

106 78, 498 6, 115 129

108 5, 761, 455 332, 774 754

1010 455, 052, 511 20, 758, 030 3, 104

1012 37, 607, 912, 018 1, 416, 706, 193 38, 263

Table 1.1: The absolute errors between π(x) and the two approximations L(x) and Li(x)
for some large values of x. The values of the errors are rounded.

Back to the proof of the prime number conjecture as formulated in conjecture 1.2.
A first step towards the proof was taken by the Russian mathematician Chebyshev. He
proved that

0.92129 . . . <
π(x) log(x)

x
< 1.10555 . . .

holds for x large enough. Even stronger, he proved that if the limit exists, then it would
1. But there was no proof that the limit as x goes to infinity would exist. Also, the above
estimate does not imply that the limit exists, namely the function π(x)

L(x) might oscillate
forever between 0.92129 . . . and 1.10555 . . . for x very large without converging to a fixed
number. So, besides the search for an explicit formula for π(x), also a proof (or disproof)
for the prime number conjecture is wanted.

Now, assuming the prime number conjecture to be true, what would that mean for
the distribution of the prime numbers? Nothing could be said about the exact locations
of the primes, but it can be established that the nth prime number pn is approximately
equal to n log(n). Note that π(pn) = n and then the prime number conjecture gives that

n log(pn)

pn
→ 1 as n→∞. (1.1)

Take the logarithm

log

(
n log(pn)

pn

)
→ log(1) = 0 as n→∞

and rewrite using the properties of the logarithm

log(n) + log
(

log(pn)
)
− log(pn)→ 0 as n→∞.

4



Chapter 1. Introduction

Dividing by log(pn) gives

log(n)

log(pn)
+

log
(

log(pn)
)

log(pn)︸ ︷︷ ︸
→ 0, as n→∞

− log(pn)

log(pn)︸ ︷︷ ︸
=1

→ 0 as n→∞, (1.2)

where it should be noted that log
(

log(x)
)

grows much slower than log(x) as x tends to
infinity, so that indeed their quotient goes to zero. Now, multiplying equation (1.1) and
(1.2) gives after rewriting that

n log(pn)

pn
· log(n)

log(pn)
=
n log(n)

pn
→ 1 as n→∞.

A fraction equals one, if and only if the numerator and denominator are equal. So from
this it can be concluded that the nth prime number pn is approximately equal to n log(n)
for large values of n. In fact, the larger the value of n, the better the approximation
n log(n) is.

1.2 The Riemann Zeta Function

There was not much progress in the research to the distribution of the primes until a short
article by Bernhard Riemann was published. Riemann (1826-1866) was a mathematician
and contributed mainly to the field of differential geometry which was essential for Ein-
stein’s general theory of relativity. The branch of mathematics to which the research to
prime numbers belongs is analytic number theory. Riemann’s article Ueber die Anzahl
der Primzahlen unter einer gegebenen Grösse (On the Number of Primes Less Than a
Given Magnitude, [Riemann, 1859]) only counted eight pages and is his only contribution
to the field of analytic number theory. However, this contribution was an important one:
Riemann described how to obtain an explicit formula for π(x) and introduced the mathe-
matics which was required for proving the prime number conjecture.

The research to prime numbers was all about one function, namely

ζ(x) =
∞∑
n=1

1

nx
= 1 +

1

2x
+

1

3x
+

1

4x
+

1

5x
+ · · · ,

which is called the Riemann zeta function. This is an infinite sum, so the value might
be infinity instead of that the sum converges to some fixed number. This function was
already introduced by Euler the century before Riemann’s article. It was shown that the
sum converges for x > 1, but finding the values to which ζ(x) converges is harder. Finding
the value of ζ(2) is known as the Basel problem and was solved by Euler. He proved that

ζ(2) =

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
.

The key idea of Riemann was to consider ζ(x) not as a function of a real variable x,
but as a function of a complex variable s. It is common to write s = σ + it where σ and
t are real and denote the real and imaginary part of s respectively. Now, all theory of
complex analysis, which was still in development at Riemann’s time, could be applied to
obtain new results.

5



Chapter 1. Introduction

At first sight the zeta function has little to do with prime numbers, but there is a rela-
tion between the zeta function and the prime numbers which is quite easy to establish. Let
Re(s) = σ > 1, so that ζ(s) converges. We will use the idea of the Sieve of Eratosthenes,
so first sieve all the terms with a factor 2. Observe that

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · (1.3)

and
1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+ · · · . (1.4)

Subtracting equation (1.4) from (1.3) gives that(
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+ · · · (1.5)

and all terms with multiples of 2 in the denominator have disappeared at the right hand
side. Now sieve all the terms with a factor 3. Note that

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+ · · · . (1.6)

Subtracting equation (1.6) from (1.5) gives(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · · .

Again, all the terms with multiples of 3 in the denominator have disappeared. Now,
continue sieving all the terms with a prime in the denominator. This will finally give

· · ·
(

1− 1

11s

)(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1,

which is equivalent to

ζ(s) =
1

1− 1
2s
· 1

1− 1
3s
· 1

1− 1
5s
· 1

1− 1
7s
· 1

1− 1
11s
· · · .

This connection between primes and the zeta function forms the foundation for the re-
search to the distribution of the primes. This formula was found by Euler and is called the
Euler product formula. The crucial step that Riemann took a century later, was making
an extension of the zeta function to the whole complex plane, except for s = 1 where ζ(s)
still diverges. This extension will be necessary for obtaining the result we want and hence
will appear everywhere throughout the research to prime numbers.

Using the extension of the zeta function, together with much complex analysis, Rie-
mann found an explicit formula for π(x) in which the most important term was Li(x),
the approximation of π(x) which was found before. This means that the other remaining
terms in the expression describe the absolute error between π(x) and Li(x). So the behav-
ior of this error tells much about the prime counting function. Unfortunately, this error
depends on the zeros of the zeta function, these are the points ρ in the complex plane such
that ζ(ρ) = 0. About the zeros ρ much is unclear, because it is unknown where all these
zeros lie exactly.

Despite the good ideas in Riemann’s article, we should also comment on the complete-
ness of the article. Of course, eight pages can never be enough to explain new ideas in

6



Chapter 1. Introduction

detail and do all the complex calculations. Some gaps can be easily filled in, but there
are also statements of which the truth was not trivial at all. In the course of time most
statements have been established to be true, which also means that the formula for π(x) is
valid. However, as mentioned before, the expression of this formula contains the zeros of
the zeta function. Riemann wrote about these zeros in his article, he expected that all the
nontrivial zeros would lie on the line with real part 1

2 , but he was not able to prove this
assertion. There are also trivial zeros, but these are relatively easy to find as the name
already suggests. About the nontrivial zeros, Riemann wrote

“Certainly one would wish for a stricter proof here; I have meanwhile tem-
porarily put aside the search for this after some fleeting futile attempts, as it
appears unnecessary for the next objective of my investigation.” Translated
from [Riemann, 1859].

In fact, until now nobody was able to prove or disprove this assertion. This became one of
the greatest unsolved problems in mathematics which is called the Riemann hypothesis.
This problem has become so important for the distribution of the primes and for problems
in mathematics that the mathematician who finds a proof or disproof is awarded with one
million dollars by the Clay Mathematics Institute.

Returning to the prime number conjecture, what was the influence of Riemann’s ar-
ticle on finding a proof? The analysis of the zeta function resulted in the prime number
theorem being equivalent to the zeta function having no zeros on the line with real part
1. This equivalent statement was proven in 1896, independently by the mathematicians
Hadamard and de la Vallée-Poussin. This turned the prime number conjecture finally in
a theorem. This was one of the highlights of mathematics in the nineteenth century.

Of course, mathematicians have not been doing nothing after achieving such a great
result. The proof of the prime number theorem was long and intricate. It was based on
an explicit formula for ψ(x) which is a function that not only counts primes (as π(x)),
but also counts powers of primes. It turned out that this function is easier to work with
than π(x). Nowadays, the explicit formula for π(x) that Riemann found is often neglected,
because the explicit formula for ψ(x) is easier and in fact contains the same information.

Since the first proof of the prime number theorem, mathematicians have been looking
for a less intricate one. Also, they looked for a proof that is elementary, i.e. a proof that
makes no use of complex analysis. Such an elementary proof was found in 1948 by Selberg
and Erdős. The most easy proofs are the ones that use so called Tauberian theorems.
Donald Newman found the most easy proof up to now of the prime number theorem in
the 1980’s. The proof of the Tauberian theorem he used, requires in fact nothing more
than Cauchy’s integral formula (a standard formula for calculating integrals in complex
analysis).

Having proved the explicit formula for π(x) and the prime number theorem, it remains
to find the nontrivial zeros of the zeta function, because the explicit formula could be
expressed using these zeros. The investigation to a proof of the Riemann hypothesis con-
tinues until today. Many more connections to the zeta function have been found, such as
the connection with random matrices and quantum mechanics.

7



Chapter 1. Introduction

1.3 Overview of this Thesis

The goal of this thesis is to give a rigorous mathematical introduction to the Riemann zeta
function and the prime number theorem suitable for undergraduate mathematics students.
This thesis will be mainly focused on Riemann’s article in which an explicit formula for
π(x) is constructed, and the proof of the prime number theorem. Of course, many books
and articles have been written about this topic, but usually not at an undergraduate level.
The explicit formula for π(x) and the prime number theorem can be proven with only ba-
sic theory about calculus, real and complex analysis. So the aim of this thesis is to write
down the details of the mathematics such that it is understandable for undergraduate
mathematics students familiar with real and complex analysis. Also, relevant references
will be included for further reading on the subject. People without mathematical back-
ground interested in the topic can read further in [Derbyshire, 2003] or [van der Veen and
van de Craats, 2011].

All the required knowledge of complex analysis, including the theory of infinite prod-
ucts, can be found in the appendices A and B. Chapter 2 deals with a very important
function which will be encountered all the time: the gamma function. This function is
in fact an extension of the factorials n!. Using the gamma function, several important
identities will be proved, such as the reflection formula and the infinite product represen-
tation for the sine and the gamma function. This is in fact general theory which is used
throughout all branches of mathematics.

In chapter 3 and 4 Riemann’s article is studied. Chapter 3 gives a formal proof of the
Euler product formula. Also, the two different methods Riemann gave to find the exten-
sion of the zeta function to almost the whole complex plane are studied. Chapter 4 deals
with the construction of the explicit formula for π(x). It will take several steps to find
this formula and still not all details are validated in this thesis, just as in Riemann’s article.

Chapter 5 and 6 have as main goal proving the prime number theorem using the zeta
function. In chapter 5 all the necessary theory from analytic number theory is introduced
and an equivalent form of the prime number theorem is established using the function
ψ(x). This equivalent statement will be proved in chapter 6. Hereby, the Tauberian
theorem as proved by Newman will be used. So the final result is a proof of the prime
number theorem, something which should bring joy to every mathematician.

8



Chapter 2

The Gamma Function

This chapter introduces the gamma function, which is needed for the study of the Riemann
zeta function in the next chapter. First, basic properties about the gamma function are
established together with Wielandt’s theorem. This theorem allows us to prove an infinite
product representation of the gamma function. In the last section, several important
statements will be proved such as Euler’s reflection formula and Legendre’s duplication
formula, which will be useful later.

2.1 Properties of the Gamma Function

Definition 2.1. The gamma function Γ : C+ → C with C+ = {z ∈ C : Re(z) > 0} is
defined as

Γ(z) :=

∫ ∞
0

tz−1e−tdt (2.1)

with tz−1 = e(z−1) log t, log t ∈ R and Re(z) > 0.

Proposition 2.2. The gamma function is absolutely convergent and analytic on C+.

Proof. To show the convergence, split the integral into two parts:

Γ(z) =

∫ 1

0
tz−1e−tdt+

∫ ∞
1

tz−1e−tdt. (2.2)

Note that the following statements hold

|tz−1e−t| = tRe(z)−1e−t < tRe(z)−1, for t > 0 and z ∈ C+

and ∫ 1

0

1

ts
dt

converges absolutely for s < 1.
Combining these two statements gives that∣∣∣∣∫ 1

0
tz−1e−tdt

∣∣∣∣ ≤ ∫ 1

0
|tz−1e−t|dt <

∫ 1

0
tRe(z)−1dt <∞, for Re(z) > 0.

Hence the first integral of equation (2.2) converges absolutely for z ∈ C+.

For the convergence of the second integral, note that for all x0 > 0 there exists a C > 0
such that

tRe(z)−1 ≤ Ce
t
2

9



Chapter 2. The Gamma Function

for all z with 0 < Re(z) < x0 and for all t ≥ 1. From this it follows that

|tz−1e−t| = tRe(z)−1e−t ≤ Ce−
t
2

for 0 < Re(z) < x0 and t ≥ 1. The second integral of equation (2.2) becomes∣∣∣∣∫ ∞
1

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞
1
|tz−1e−t|dt ≤ C

∫ ∞
1

e−
t
2dt = 2Ce−

1
2 <∞ for 0 < Re(z) < x0.

Thus, the integral converges absolutely for all z ∈ C+.

To prove that Γ(z) is analytic on C+, consider the sequence of functions f0, f1, f2, . . .
with fn : C+ → C for all n ∈ N defined by

fn(z) =

∫ n+1

n
tz−1e−tdt.

Every fn is analytic on C+ since tz−1e−t is continuous in t ∈ (n, n + 1) and analytic in
z ∈ C+ (see theorem A.6). Let D be a bounded subset and let 0 < ε ≤ Re(z) ≤ K < ∞
for all z ∈ D. Then

|f0(z)| ≤
∫ 1

0
tRe(z)−1dt =

1

Re(z)
≤ 1

ε
=: M0

and for n ≥ 1 and z ∈ D

|fn(z)| ≤ e−n
∫ n+1

n
tRe(z)−1dt

=
e−n

Re(z)

(
(n+ 1)Re(z) − nRe(z)︸ ︷︷ ︸

≥0, since n≥1

)
≤ e−n

ε
(n+ 1)K =: Mn.

Note that
∑∞

n=0Mn <∞, so by the Weierstrass M -test
∑∞

n=0 fn converges absolutely and
uniformly on D. If a sequence of analytic functions fn converges (locally) uniformly to f ,
then f is also analytic, see theorem A.16. Applying this to the sequence of partial sums
f0 + ...+ fn gives that Γ(z) =

∑∞
n=0 fn(z) is analytic on C+ (see also theorem A.18).

The gamma function satisfies certain properties, for example with integration by parts
it can be shown that

Γ(z + 1) = zΓ(z) for Re(z) > 0. (2.3)

Since Γ(1) = 1 (this can easily be seen from the definition), it follows that for n ∈ N∪{0}

Γ(n+ 1) = n!. (2.4)

So the gamma function interpolates the factorials. The next step is to define the gamma
function for the whole complex plane. An iterated application of equation (2.3) gives

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
. (2.5)

Here, Γ(z) is only defined for Re(z) > 0, but the right hand side is defined for Re(z) >
− (n+ 1) with z 6= 0,−1,−2, ...,−n. All these analytic extensions for various n are unique
by the identity theorem for analytic functions (theorem A.20). So the gamma function
can be uniquely extended as an analytic function to C \ S with S := {0,−1,−2, . . . } and

10



Chapter 2. The Gamma Function

for z ∈ C \ S equation (2.3) holds.
The elements of S are simple poles with residues

Res (Γ(z);−n) = lim
z→−n

(z + n) Γ(z)
(2.5)
=

Γ(1)

(−n)(−n+ 1)...(−1)
=

(−1)n

n!
. (2.6)

As can be seen from the definition, the gamma function also satisfies

|Γ(z)| ≤ Γ(Re(z)), for Re(z) > 0. (2.7)

So the gamma function is bounded on any closed vertical strip in the complex plane with
0 < a ≤ x ≤ b. The gamma function is completely determined by this property together
with property (2.3). This is described in the following theorem as found in [Remmert,
1996].

Theorem 2.3 (Wielandt). Let D ⊂ C be a domain containing the vertical strip

V := {z = x+ yi : x, y ∈ R, 1 ≤ x < 2} ⊂ C.

Let f : D → C be an analytic function satisfying:

1. f is bounded on V ,

2. f(z + 1) = zf(z) for z, z + 1 ∈ D.

Then
f(z) = f(1)Γ(z) for all z ∈ D.

Proof. Similarly as for the gamma function, f(z) can be extended to C \ S with S =
{0,−1,−2, . . . } using condition 2. Again f(z+ 1) = zf(z) holds on C\S and the residues
are

Res(f(z);−n) =
(−1)n

n!
f(1) for − n ∈ S. (2.8)

Note that f(z) and f(1)Γ(z) have the same poles and residues (compare equation (2.6)
and (2.8)). This implies that the singularities are removable for the function h : C → C
defined by h(z) = f(z) − f(1)Γ(z). So h is an entire function, which means that h is
analytic on the whole complex plane. Since f(z) and Γ(z) are bounded on the strip V
(condition 1 and equation (2.7)), h is also bounded on V . But h is also bounded on the
strip V0 := {z ∈ C : 0 ≤ Re(z) < 1}, because

• the set V0 ∩ {z : |Im(z)| ≤ 1} is compact, hence h is bounded on this set,

• for z ∈ V0 ∩ {z : |Im(z)| > 1} the equation f(z) = f(z+1)
z holds. Now f(z + 1) is

bounded since it lies in V . This means that f(z) is bounded on V0∩{z : |Im(z)| > 1},
thus h is also bounded on this set.

Note that h satisfies

h(z + 1) = f(z + 1)− f(1)Γ(z + 1) = z
(
f(z)− f(1)Γ(z)

)
= zh(z) for z ∈ C.

Now, consider the function H : C → C defined by H(z) = h(z)h(1 − z). Note that H is
an entire function (since h was also entire) and satisfies

H(z + 1) = h(z + 1)h(−z) = zh(z)
h(1− z)
−z

= −H(z).

So H is periodic up to the sign. Also, H is bounded on V0, since h(z) and h(1 − z)
are bounded on V0. Using the periodicity of H it is obtained that H is bounded on C.
Applying Liouville’s theorem (theorem A.7) gives that H(z) is constant, so

H(z) = H(1) = h(1)h(0) =
(
f(1)− f(1)Γ(1)

)
h(0) = 0.

By the definition of H it follows that h(z) ≡ 0. So the definition h(z) = f(z)− f(1)Γ(z)
implies that f(z) = f(1)Γ(z) for all z ∈ D.

11



Chapter 2. The Gamma Function

2.2 Product Representations for the Gamma Function

To continue, an infinite product representation of the gamma function is required. There-
fore, the following lemma is used.

Lemma 2.4. The infinite product

H(z) :=
∞∏
n=1

(
1 +

z

n

)
exp

(
− z
n

)
is analytic on C and H(z) = 0 if and only if −z ∈ N.

Proof. The zeros of H(z) lie at z = 0,−1,−2,−3, ..., so indeed H(z) = 0 if and only if
−z ∈ N (see remark B.1). Note that every factor of H is analytic on C. To show that
H(z) is analytic, use theorem B.2 and according to that theorem it remains to prove that

∞∑
n=1

[(
1 +

z

n

)
exp

(
− z
n

)
− 1
]

(2.9)

converges normally on C.
Let a ∈ C arbitrary and let K = B|a|+1(0) be a compact disk. Consider the Taylor
expansion of the complex exponential:

exp(−ω) = 1− ω +
(−ω)2

2
+O(ω3)

and thus

ω exp(−ω) = ω − ω2 +
ω3

2
+O(ω4).

Combining these equations gives

(1 + ω) exp(−ω)− 1 = −ω
2

2
+O(ω3) for all ω ∈ C.

The set K is compact, so there exists a constant CK ∈ R such that

|(1 + ω) exp(−ω)− 1| ≤ CK |ω|2 for all ω ∈ K.

If z ∈ K, then also z
n ∈ K for all n ∈ N. So∣∣∣(1 +

z

n

)
exp(− z

n
)− 1

∣∣∣ ≤ CK ∣∣∣ z
n

∣∣∣2 ≤ CK (|a|+ 1)2

n2
.

Hence, the series in (2.9) is bounded on K by c
∑∞

n=1
1
n2 where c is a constant and this

sum is finite. This implies that the series is normally convergent on K, but a was chosen
arbitrarily, so the series converges normally on C. By theorem B.2 it follows that H(z) is
analytic on C.

Define for all n ∈ N the function Gn : C→ C by

Gn(z) = z exp(−z log n)

n∏
j=1

(
1 +

z

j

)
.

12



Chapter 2. The Gamma Function

Then G(z) := limn→∞Gn(z) defines an analytic function on C. Rewrite

G(z) = lim
n→∞

Gn(z) = lim
n→∞

z exp(−z log(n))
n∏
j=1

(
1 +

z

j

)

= lim
n→∞

z

(
n∏
k=1

exp
(z
k

))
exp (−z log(n))

n∏
j=1

(
1 +

z

j

)
exp

(
−z
j

)

= lim
n→∞

z exp

[
z

(
n∑
k=1

1

k
− log(n)

)]
n∏
j=1

(
1 +

z

j

)
exp

(
−z
j

)
= z exp(γz)H(z),

where

γ := lim
n→∞

n∑
k=1

1

k
− log(n) ≈ 0.5772 . . .

is the Euler-Mascheroni constant. Lemma 2.4 gives that G(z) is analytic on C.

Just as H, the function G has zeros at the elements of S = {0,−1,−2, . . . } and the
gamma function has poles at the elements of S. Gauss showed that in fact 1/Γ(z) = G(z)
as in the following proposition. The proof given here is easier than the original proof by
Gauss, because the theorem of Wielandt (theorem 2.3) can be used.

Proposition 2.5 (Gauss’s product representation). For all z ∈ C

1

Γ(z)
= G(z) = lim

n→∞

n−z

n!
z(z + 1) · · · (z + n).

Proof. Rewriting

G(z) = lim
n→∞

Gn(z) = lim
n→∞

n−zz
n∏
j=1

(
1 +

z

j

)(
j

j

)
︸ ︷︷ ︸

=1

= lim
n→∞

n−zz
n∏
j=1

(j + z)
1

j

= lim
n→∞

n−z

n!
z(z + 1) · · · (z + n)

gives the second equality. For the first equality apply theorem 2.3 to the function 1/G(z).
Note that 1/G(z) is analytic on

D = {z = x+ yi : x, y ∈ R, 0 < x < 2},

since G has no zeros in D. This D contains the strip

V = {z = x+ yi : x, y ∈ R, 1 ≤ x < 2}.

Proof of the two conditions of theorem 2.3:

1. For all z ∈ V and n ∈ N: |n−z| = n−Re(z) and |z + n| ≥ Re(z) + n. Hence
|G(z)| ≥ G(Re(z)) for all z ∈ V . Note that the interval [1, 2] is compact, thus 1/G
is bounded on this interval. This implies that 1/G is also bounded on V .

13
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2. For all z ∈ D with z + 1 ∈ D and for all n ∈ N:

zGn(z + 1) = z
n−(z+1)

n!
(z + 1)(z + 2) · · · (z + n+ 1)

=
z + n+ 1

n

n−z

n!
z(z + 1) · · · (z + n) =

z + n+ 1

n
Gn(z).

Let n→∞, then

zG(z + 1) = G(z) and thus
1

G(z + 1)
=

z

G(z)

for all z ∈ D with z + 1 ∈ D.

Furthermore, for all n ∈ N:

Gn(1) =
n−1

n!
(n+ 1)! =

n+ 1

n
→ 1 as n→∞.

It follows that G(1) = 1 and thus 1/G(1) = 1. By theorem 2.3 we get that 1/G(z) = Γ(z)
for all z ∈ D. The gamma function has no zeros in D, hence 1/Γ(z) = G(z) for all z ∈ D.
By theorem A.20 it follows that 1/Γ(z) = G(z) for all z ∈ C.

From the statement of proposition 2.5 a product representation for Γ(z + 1) can be
recovered. This product representation will be needed later for the construction of an
explicit formula for the prime counting function.

Proposition 2.6. For all z ∈ C \ {−1,−2,−3, . . . }

Γ(z + 1) = lim
n→∞

n!(n+ 1)z

(z + 1)(z + 2) · · · (z + n)
.

Proof. Plugging z + 1 in Gauss’s product representation for 1
Γ(z) gives

1

Γ(z + 1)
= lim

n→∞

n−(z+1)

n!
(z + 1)(z + 2) · · · (z + n+ 1)

= lim
n→∞

(z + 1)(z + 2) · · · (z + n)

n!
· z + n+ 1

nnz

= lim
n→∞

(z + 1)(z + 2) · · · (z + n)

n!
· 1

(n+ 1)z
· z + n+ 1

n︸ ︷︷ ︸
→ 1 as n→∞

· (n+ 1)z

nz︸ ︷︷ ︸
→ 1 as n→∞

= lim
n→∞

(z + 1)(z + 2) · · · (z + n)

n!
· 1

(n+ 1)z

from which the desired product representation follows.

2.3 Other Important Identities

Using the statements found in the preceding sections, Euler’s reflection formula, Euler’s
product formula for the sine and Legendre’s duplication formula can be proved.

Define a new function f : C \ Z→ C by f(z) := Γ(z)Γ(1− z). The function Γ(z) has
simple poles for z ∈ S and Γ(1− z) has simple poles for z ∈ N. So f(z) has simple poles
for all z ∈ Z and the residues are

Res(f ;−n) = lim
z→−n

(z + n)Γ(z)Γ(1− z) (2.5)
= (−1)n

Γ(2n+ 2)

(2n+ 1)!

(2.4)
= (−1)n for − n ∈ Z.
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Also, for z ∈ C \ Z:

f(z + 1) = Γ(z + 1)Γ(−z) = zΓ(z)
Γ(1− z)
−z

= −f(z). (2.10)

So f is periodic up to the sign. Note that the above two properties also hold for the
function π

sinπz :

Res
( π

sinπz
;−n

)
= lim

z→−n
(z + n)

π

sinπz
= lim

z→−n

π

π cosπz
= (−1)n

using l’Hospital’s rule and
π

sinπ(z + 1)
= − π

sinπz
. (2.11)

Instead of only sharing these two properties it turns out that f and π
sinπz are in fact equal

on C \ Z. This identity is known as the Euler reflection formula.

Proposition 2.7 (Euler’s reflection formula). For z ∈ C \ Z it holds that

Γ(z)Γ(1− z) =
π

sinπz
.

Proof. The functions Γ(z)Γ(1− z) and π
sinπz have the same poles and residues, hence the

function h : C→ C given by

h(z) := Γ(z)Γ(1− z)− π

sinπz

is entire. Recall that Γ(z) and Γ(1−z) are bounded on {z ∈ C : 0 ≤ Re(z) ≤ 1, |Im(z)| ≥ 1}
(see the proof of theorem 2.3). Also, π

sinπz is bounded on this set, namely∣∣∣ π

sinπz

∣∣∣ =

∣∣∣∣ 2π

exp(πiz)− exp(−πiz)

∣∣∣∣ ≤ ∣∣∣∣ 2π

exp(−πIm(z))− exp(πIm(z))

∣∣∣∣
≤ 2π

1
2 exp(π|Im(z)|)

≤ 4π

exp(π)
.

Furthermore, h is bounded on {z ∈ C : 0 ≤ Re(z) ≤ 1, |Im(z)| ≤ 1}, since this set is
compact and h is analytic. Using the periodicity of h (which follows from equations (2.10)
and (2.11)) it follows that h is bounded on C, thus by Liouville’s theorem h is constant.
Note that h is odd:

−h(−z) = −Γ(−z)Γ(1 + z) +
π

sin(−πz)
= −zΓ(−z)Γ(z)− π

sin(πz)

= Γ(z)Γ(1− z)− π

sin(πz)
= h(z)

and this implies that h(z) = 0 for all z ∈ C and thus

Γ(z)Γ(1− z) =
π

sinπz
for all z ∈ C \ Z.

Remark 2.8. As a consequence it is obtained that Γ(1
2) =

√
π by plugging z = 1

2 in the
reflection formula.
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By combining propositions 2.5 and 2.7 the product formula for the sine is found:

sin(πz) =
π

Γ(z)Γ(1− z)

= π lim
n→∞

n−z

n!
z

 n∏
j=1

(z + j)

 · n−(1−z)

n!
(n+ 1− z)

n∏
j=1

(j − z)

= π lim
n→∞

z
n+ 1− z
n · (n!)2

n∏
j=1

(j2 − z2)

= π lim
n→∞

z
n+ 1− z

n

n∏
j=1

(
j2 − z2

j2

)

= πz
∞∏
j=1

(
1− z2

j2

)

for all z ∈ C \ Z. Note that for z ∈ Z both sin(πz) and
∏∞
j=1

(
1− z2

j2

)
are zero.

Proposition 2.9 (Euler’s product formula for the sine). For all z ∈ C

sin(πz) = πz
∞∏
n=1

(
1− z2

n2

)
.

For the last time we apply Wielandt’s theorem to prove Legendre’s duplication formula
for the gamma function.

Proposition 2.10 (Legendre’s duplication formula). The following identities hold:

Γ(z) = (2π)−
1
2 2z−

1
2 Γ
(z

2

)
Γ

(
z + 1

2

)
,

or equivalently

Γ(2z) = (2π)−
1
2 22z− 1

2 Γ(z)Γ

(
z +

1

2

)
.

Proof. Define f(z) = 2z−1Γ( z2)Γ( z+1
2 ). This function is analytic on a domain containing

V = {z = x+ yi : x, y ∈ R, 1 ≤ x < 2}.

It remains to prove conditions 1 and 2 of theorem 2.3:

1. Note that |Γ(z)| ≤ Γ(Re(z)) and |2z−1| = 2Re(z)−1, so f(z) is bounded on V .

2. Using the property Γ(z + 1) = zΓ(z) gives

f(z + 1) = 2zΓ

(
z + 1

2

)
Γ
(z

2
+ 1
)

= 2 · z
2
· 2z−1Γ

(
z + 1

2

)
z

2
Γ
(z

2

)
= zf(z).

Furthermore,

f(1) = Γ

(
1

2

)
Γ(1) = π

1
2

and theorem 2.3 now gives that

f(z) = f(1)Γ(z) =⇒ 2z−1Γ
(z

2

)
Γ

(
z + 1

2

)
= π

1
2 Γ(z).

Rearranging this equation gives the first identity and replacing z by 2z gives the second.
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Chapter 3

The Riemann Zeta Function

In Riemann’s paper Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse ([Rie-
mann, 1859]) two (incomplete) proofs are stated on how to extend the zeta function to the
whole complex plane (without s = 1). One proof involves contour integration to prove the
functional equation of the zeta function, this proof will be worked out in section 3.2. The
second proof uses the Jacobi theta function and its functional equation and will be given
in section 3.3. Both proofs, which differ from how Riemann wrote them originally, that
are given follow [Titchmarsh, 1986] and [Edwards, 1974]. In the last section the Riemann
hypothesis is briefly discussed.

Before diving into Riemann’s paper, the zeta function will be introduced in section 3.1.
The Euler product formula will be formally proven, together with an analytic continuation
of the zeta function to the right half-plane.

3.1 Riemann Zeta Function

Definition 3.1. The Riemann zeta function is defined for Re(s) > 1 by

ζ(s) :=

∞∑
n=1

1

ns
.

Proposition 3.2. The zeta function converges normally and is analytic in the half-plane
{s ∈ C : Re(s) > 1}.

Proof. Take s ∈ C with Re(s) > 1, then there exists a δ > 0 such that Re(s) ≥ 1 + δ > 1.
So each term of the sum can be bounded:∣∣∣∣ 1

ns

∣∣∣∣ =
1

nRe(s)
≤ 1

n1+δ

for Re(s) ≥ 1 + δ and
∑∞

n=1
1

n1+δ converges, hence the convergence is normal. Note that

every term 1
ns is analytic for Re(s) > 1, hence by theorem A.18 the zeta function is analytic

for Re(s) > 1.

As mentioned in chapter 1, it was Euler who found the value of ζ(2) by using the
product formula for the sine (proposition 2.9). In general, there is a formula for the values
of the zeta function for even arguments:

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!
B2k with k ∈ N,
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Chapter 3. The Riemann Zeta Function

where Bn are the Bernoulli numbers.

n 0 1 2 3 4 5 6 7 8 · · ·
Bn 1 −1

2
1
6 0 − 1

30 0 1
42 0 − 1

30 · · ·

Table 3.1: The Bernoulli numbers

There are also closed forms for other values of the zeta function with real arguments
greater than 1. But in general not much about them is known. For our purposes, concrete
values of the zeta function are not necessary, so we will not go deeper into this.

3.1.1 Euler Product Formula

In chapter 1 the intuition behind the Euler product formula was shown. Now, we will
proof this connection between the prime numbers and the zeta function formally.

Proposition 3.3 (Euler product formula). For Re(s) > 1

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
,

where p are all the prime numbers.

Proof. Since |p−s| = p−Re(s) < 1, the geometric series can be applied

(1− p−s)−1 =
∞∑
ν=0

p−νs.

Also, apply the Cauchy product formula for finitely many series (see corollary A.2):

m∏
k=1

(1− p−sk )−1 =
m∏
k=1

∞∑
νk=0

p−νksk

=

∞∑
v1=0

ν1∑
v2=0

· · ·
νm−1∑
νm=0

(
pνm1 p

νm−1−νm
2 · · · pν1−ν2m

)−s
.

By the fundamental theorem of arithmetic, each natural number can uniquely be factorized
by prime numbers. LetA(m) be the set of all natural numbers that only have p1, p2, . . . , pm
in their prime factorization. Then

m∏
k=1

(
1− p−sk

)−1
=
∞∑
v1=0

ν1∑
v2=0

· · ·
νm−1∑
νm=0

(
pνm1 p

νm−1−νm
2 · · · pν1−ν2m

)−s
=

∑
n∈A(m)

n−s.

For any N ∈ N there is an m ∈ N such that the whole set {1, 2, ..., N} is contained in
A(m), so it is expected that as m→∞ the zeta function appears on the right hand side.
Note that the sum

∑
n∈A(m) n

−s contains at least all the terms n−s for n ≤ m because all
n with n ≤ m can be factorized by the first m prime numbers. Hence, for Re(s) > 1∣∣∣∣∣ζ(s)−

m∏
k=1

(
1− p−sk

)−1

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
n=1

1

ns
−

∑
n∈A(m)

1

ns

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

n=m+1

n−s

∣∣∣∣∣
≤

∞∑
n=m+1

∣∣n−s∣∣ =

∞∑
n=m+1

n−Re(s) → 0 as m→∞.
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To conclude,

lim
m→∞

m∏
k=1

(
1− p−sk

)−1
=

∞∑
n=1

n−s

and thus for Re(s) > 1

∞∏
k=1

(
1− p−sk

)−1
=

∏
p prime

(
1− p−s

)−1
= ζ(s).

Remark 3.4. From the Euler product formula it follows that the zeta function has no
zeros for Re(s) > 1, since none of factors vanish (see also remark B.1).

3.1.2 Eta Function

The goal of this section is to extend the zeta function to the half-plane {s ∈ C : Re(s) > 0}.
For this, the eta function (which is the alternating zeta function) is used. The eta function
is defined for Re(s) > 0 by

η(s) := 1− 1

2s
+

1

3s
− 1

4s
+ ... =

∞∑
n=1

(−1)n−1

ns
.

Write the eta function in terms of the zeta function

η(s) = ζ(s)− 2

( ∞∑
n=1

1

(2n)s

)
= ζ(s)− 2

(
1

2s
ζ(s)

)
= ζ(s)

(
1− 21−s) .

And so

ζ(s) =
η(s)

1− 21−s . (3.1)

Now, using this formula the zeta function converges where the eta function converges
(apart from s = 1). We will show that the eta function converges in the right half-plane
{s ∈ C : Re(s) > 0}. To prove this, the following version of the Dirichlet test is used.

Theorem 3.5. Let an and bn be complex valued sequences. Then
∑∞

n=1 anbn converges,
if the following are satisfied:

(i) there exists M > 0 (independent of n) such that
∣∣∑n

k=1 ak
∣∣ ≤M ,

(ii) bn → 0 as n→∞,

(iii)
∑∞

n=1

∣∣bn − bn+1

∣∣ is convergent.

Remark 3.6. The standard Dirichlet test, which states that
∑∞

n=1 anbn converges under

the conditions that an → 0 monotonically and |
∑N

n=1 bn| < M for every N , cannot be
applied directly in the case of the eta function. This is because the Dirichlet test requires
the sequence an to be real valued. Application of this test would be possible if an = n−Re(s)

and bn = (−1)n−1n−iIm(s) are taken. Instead we will use the version as in theorem 3.5,
which allows both an and bn to be complex sequences.

Proposition 3.7. The eta function converges for Re(s) > 0.
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Proof. Use the Dirichlet test as in theorem 3.5.
Let ak = (−1)k−1 and bk = k−s with Re(s) > 0. Then the conditions of the Dirichlet test
are satisfied. Namely, ∣∣∣∣∣

n∑
k=1

(−1)k−1

∣∣∣∣∣ ≤ 1

and
bk = k−s → 0 as k →∞.

For the third condition:

∞∑
k=1

∣∣∣∣ 1

(k + 1)s
− 1

ks

∣∣∣∣ ≤ ∞∑
k=1

∫ k+1

k

∣∣∣∣ ddt
(

1

ts

)∣∣∣∣ dt =

∫ ∞
1

∣∣∣∣ ddt
(

1

ts

)∣∣∣∣ dt
=

∫ ∞
1

∣∣∣∣ −sts+1

∣∣∣∣ dt = |s|
∫ ∞

1

1

t1+Re(s)
dt

= |s|

[
t−Re(s)

−Re(s)

]∞
1

=
|s|

Re(s)
.

So the eta function converges for Re(s) > 0.

Hence, with the identity theorem for analytic functions (theorem A.20) the following
is obtained.

Proposition 3.8. For Re(s) > 0 with s 6= 1, the zeta function can be continued analyti-
cally by

ζ(s) =
η(s)

1− 21−s , with η(s) =

∞∑
n=1

(−1)n−1

ns
.

3.2 Functional Equation: Proof with Contour Integration

Riemann’s first proof of the functional equation of the zeta function made use of contour
integration, in which many details were omitted. In this section the full proof is given
including all details. The following lemmas provide two integral identities which will be
of use.

Lemma 3.9. For Re(s) > 0 ∫ ∞
0

e−ntts−1dt =
Γ(s)

ns
. (3.2)

Proof. Apply the substitution u = nt. This gives for Re(s) > 0∫ ∞
0

e−ntts−1dt =

∫ ∞
0

e−u
(u
n

)s−1 du

n

=
1

ns

∫ ∞
0

e−uus−1du

=
Γ(s)

ns
.

Lemma 3.10. For Re(s) > 1 ∫ ∞
0

ts−1

et − 1
dt = Γ(s)ζ(s). (3.3)
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Proof. Note that

1

et − 1
=

e−t

1− e−t
=

∞∑
n=1

e−nt

using the geometric series. Then interchanging sum and integral gives∫ ∞
0

ts−1

et − 1
dt =

∞∑
n=1

∫ ∞
0

e−ntts−1dt

(3.2)
=

∞∑
n=1

Γ(s)

ns

= Γ(s)ζ(s) for Re(s) > 1.

Switching the sum and integral is valid by the Fubini-Tonelli theorem:

∞∑
n=1

∫ ∞
0

∣∣e−ntts−1
∣∣ dt =

∞∑
n=1

Γ
(
Re(s)

)
ns

= ζ
(
Re(s)

)
Γ
(
Re(s)

)
<∞.

Let ε > 0 and R > 0 such that 0 < ε < R. Define the contour Cε,R = Γ1 ∪ γ ∪ Γ2 as
in figure 3.1 where

(i) Γ1 is the curve just above the real axis from R to ε,

(ii) Γ2 is the curve just below the real axis from ε to R,

(iii) γ is a circle around the origin in positive direction with radius ε.

Rε
Γ2

Γ1
γ

Re(t)

Im(t)

Figure 3.1: The contour Cε,R.

Proposition 3.11. For Re(s) > 1

lim
ε→0
R→∞

∫
Cε,R

(−t)s−1

et − 1
dt = −2i sin(πs)Γ(s)ζ(s),

where Cε,R is the contour defined as above.
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Proof. The integrand must be defined on Cε,R, so then the branch cut of (−t)s−1 must
lie at the positive real axis. Hence, define (−t)s−1 = exp

(
(s − 1) log(−t)

)
with log(t) =

log |t|+ iArg(t), then indeed the integrand is only not defined on the positive real axis.
For t on Γ1, we have that −t lies just below the negative real axis, hence∫

Γ1

(−t)s−1

et − 1
dt =

∫ ε

R

(te−πi)s−1

et − 1
dt = −e−πi(s−1)

∫ R

ε

ts−1

et − 1
dt.

For t on Γ2, −t lies just above the negative real axis:∫
Γ2

(−t)s−1

et − 1
dt =

∫ R

ε

(teπi)s−1

et − 1
dt = eπi(s−1)

∫ R

ε

ts−1

et − 1
dt.

In total: ∫
Cε,R

(−t)s−1

et − 1
dt =

(∫
Γ1

+

∫
Γ2

+

∫
γ

)
(−t)s−1

et − 1
dt

=
(
eπi(s−1) − e−πi(s−1)

)∫ R

ε

ts−1

et − 1
dt+

∫
γ

(−t)s−1

et − 1
dt

= −2i sin(πs)

∫ R

ε

ts−1

et − 1
dt+

∫
γ

(−t)s−1

et − 1
dt,

since

eπi(s−1) − e−πi(s−1) = eπise−πi − e−πiseπi = −(eπis − e−πis) = −2i sin(πs).

Now, let ε→ 0 and R→∞, then for Re(s) > 1

lim
ε→0
R→∞

(
−2i sin(πs)

∫ R

ε

ts−1

et − 1
+

∫
γ

(−t)s−1

et − 1
dt

)
= −2i sin(πs)

∫ ∞
0

ts−1

et − 1
dt,

since the integral over γ goes to zero for Re(s) > 1. Namely, define

f(t) =

{
−(−t)s
et−1 if t 6= 0

0 if t = 0

and using the shrinking path lemma A.13 gives that

lim
ε→0

∫
γ

(−t)s−1

et − 1
dt = lim

ε→0

∫
γ

f(t)

t
dt = 2πif(0) = 0.

Finally, lemma 3.10 gives that for Re(s) > 1

lim
ε→0
R→∞

∫
Cε,R

(−t)s−1

et − 1
dt = −2i sin(πs)

∫ ∞
0

ts−1

et − 1
dt = −2i sin(πs)Γ(s)ζ(s).

Define C to be the contour Cε,R as ε→ 0 and R→∞. Using Euler’s reflection formula
(proposition 2.7) the statement from proposition 3.11 can be rewritten as

ζ(s) =
i

2Γ(s) sin(πs)

∫
C

(−t)s−1

et − 1
dt =

iΓ(1− s)
2π

∫
C

(−t)s−1

et − 1
dt. (3.4)
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Note that ζ(s) is analytic for Re(s) > 1 and that the integral over C is analytic for all
s ∈ C by theorem A.6. However, Γ(1 − s) has simple poles for s ∈ {1, 2, 3, . . . } since the
gamma function has simple poles in 0,−1,−2,−3, . . . . So equation (3.4) gives an ana-
lytic continuation of the zeta function to C \ {1, 2, 3, . . . }. Thus, the zeta function can be
continued analytically to C \ {1} because we already established that the zeta function is
analytic in 2, 3, 4, . . . .

So the only possible pole of the zeta function is at s = 1. This is a simple pole
with residue 1. Using the analytic continuation of the zeta function to Re(s) > 0 as in
proposition 3.8 gives that

lim
s→1

(s− 1)ζ(s) = lim
s→1

s− 1

1− 21−s · lims→1

∞∑
n=1

(−1)n−1

ns

= lim
s→1

1

21−s log(2)
· lim
s→1

∞∑
n=1

(−1)n−1

ns
(l’Hospital’s rule)

=
1

log(2)

∞∑
n=1

(−1)n−1

n
=

log(2)

log(2)
= 1,

where it is used that the power series of the logarithm

log(1 + x) =

∞∑
n=1

(−1)n−1x
n

n

also converges for x = 1.

In order to find the functional equation of the zeta function, the integral over C must
be evaluated. This can be done using the residue theorem (theorem A.12). Therefore, the
contour Cε,R as in proposition 3.11 need to be extended to a closed contour Cm = Cε,R∪γm,
see figure 3.2. Here γm is a circle with radius (2m+ 1)π in clockwise direction. Note that
Cm is a closed contour if R = (2m+ 1)π for Cε,R.

Rε
Γ2

Γ1
γ

γm

Re(t)

Im(t)

Figure 3.2: The closed contour Cm with R = (2m+ 1)π.
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For s ∈ C fixed, the poles of (−t)s−1

et−1 as function of t lying in the closed contour Cm are
at ±2mπi for m ∈ N. Note that the contour has a negative orientation, hence there is an
extra minus sign. So by the residue theorem∫

Cm

(−t)s−1

et − 1
dt = −2πi

m∑
k=1

Res

(
(−t)s−1

et − 1
;±2mπi

)
. (3.5)

For m > 0:

Res

(
(−t)s−1

et − 1
; 2mπi

)
= lim

t→2mπi
(t− 2mπi)

(−t)s−1

et − 1

= lim
t→2mπi

e(s−1) log(−t) · t− 2mπi

et − 1

= e(s−1)(log(2mπ)−iπ
2

) · 1

e2mπi
(l’Hospital’s rule)

= (2mπ)s−1e−
1
2
πise

1
2
πi

= (2mπ)s−1ie−
1
2
πis.

Similarly, for m < 0:

Res

(
(−t)s−1

et − 1
;−2mπi

)
= −(2mπ)s−1ie

1
2
πis.

Combining everything gives∫
Cm

(−t)s−1

et − 1
dt = −2πi

m∑
k=1

Res

(
(−t)s−1

et − 1
;±2mπi

)

= −2πi
m∑
k=1

[
(2πk)s−1i

(
e−

1
2
πis − e

1
2
πis
)]

= −2πi
m∑
k=1

[
(2πk)s−1i2i sin

(
−1

2
πs

)]

= −2πi
m∑
k=1

[
2(2πk)s−1 sin

(
1

2
πs

)]
.

Let ε → 0 and m → ∞, then the integrals over γ and γm go to zero, so the integral over
Cm as m→∞ is equal to the integral over C. Plugging the result in equation (3.4) gives

ζ(s) =
iΓ(1− s)

2π

∫
C

(−t)s−1

et − 1
dt

=
iΓ(1− s)

2π
· −2πi

m∑
k=1

[
2(2πk)s−1 sin

(
1

2
πs

)]

= Γ(1− s)2(2π)s−1 sin
(πs

2

) m∑
k=1

k−(1−s)

= Γ(1− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s).

It was shown in proposition 3.11 that the integral over γ goes to zero as ε→ 0. It remains to
show that the integral over γm goes to zero as m→∞. Note that on γm |t| = (2m+ 1)π
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and that t can be parametrized by t = (2m + 1)πeiθ = (2m + 1)π(cos θ + i sin θ) with
0 < θ < 2π. Then∣∣et − 1

∣∣ ≥ ∣∣|et| − 1
∣∣ =

∣∣∣eRe(t) − 1
∣∣∣ =

∣∣∣e(2m+1)π cos θ − 1
∣∣∣ ≥ ∣∣∣e(2m+1)π − 1

∣∣∣
and ∣∣(−t)s−1

∣∣ = |t|Re(s)−1 =
(
(2m+ 1)π

)Re(s)−1
,

which gives that∣∣∣∣∫
γm

(−t)s−1

et − 1
dt

∣∣∣∣ ≤ 2(2m+ 1)π2 max
|t|=(2m+1)π

∣∣∣∣(−t)s−1

et − 1

∣∣∣∣
≤ 2(2m+ 1)π2

(
(2m+ 1)π

)Re(s)−1

e(2m+1)π − 1

= 2π

(
(2m+ 1)π

)Re(s)

e(2m+1)π − 1
→ 0 as m→∞.

Finally, we find the functional equation of the zeta function for s 6= 1:

ζ(s) = Γ(1− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s). (3.6)

3.3 Functional Equation: Proof with Jacobi’s Theta Func-
tion

The second proof of the functional equation of the zeta function given in Riemann’s article
uses the Jacobi theta function ϑ(x). First, we will establish some properties of ϑ(x) and
the related function ψ(x).

Definition 3.12. The Jacobi theta function is defined for Re(x) > 0 by

ϑ(x) :=

∞∑
n=−∞

e−n
2πx.

Also, for Re(x) > 0 define the related function

ψ(x) :=

∞∑
n=1

e−n
2πx.

Both functions are related by

∞∑
n=−∞

e−n
2πx =

−1∑
n=−∞

e−n
2πx + 1 +

∞∑
n=1

e−n
2πx = 2

∞∑
n=1

e−n
2πx + 1

and thus
ϑ(x) = 2ψ(x) + 1. (3.7)

Proposition 3.13. The functions ϑ(x) and ψ(x) converge absolutely for Re(x) > 0.
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Proof. With the integral test the convergence of ψ(x) can be shown:∣∣∣∣ lim
n→∞

∫ n

1
e−y

2πxdy

∣∣∣∣ ≤ lim
n→∞

∫ n

1

∣∣∣e−y2πx∣∣∣ dy
= lim

n→∞

∫ n

1
e−y

2πRe(x)dy

≤ lim
n→∞

∫ n

1
e−yπRe(x)dy

= lim
n→∞

[
1

−πRe(x)
e−yπRe(x)

]n
1

=
1

πRe(x)
for Re(x) > 0.

Also, note that ψ(x) converges normally for Re(x) > 0, since
∣∣e−n2πx

∣∣ = e−n
2πRe(x) and∑∞

n=1 e
−n2πRe(x) converges. Hence, by theorem A.18 ψ(x) is analytic for Re(x) > 0.

From the relation in equation (3.7) it follows that also ϑ(x) is absolutely convergent
and analytic for Re(x) > 0.

The Jacobi theta function satisfies the following equation
√
xϑ(x) = ϑ(x−1) for Re(x) > 0.

This property can be proven with the Poisson summation formula, but is omitted here.
A proof can be found in [Edwards, 1974, Section 10.4]. Rewriting this equation for the
function ψ(x) using equation (3.7) gives

√
x
(
2ψ(x) + 1

)
= 2ψ(x−1) + 1,

which is equivalent to

ψ(x−1) = x
1
2ψ(x) +

1

2
x

1
2 − 1

2
. (3.8)

Also, the following two lemmas are needed for deriving the functional equation.

Lemma 3.14. For all x ∈ C with Re(x) ≥ 1 and k ∈ N there exists a C ∈ R such that

|ψ(x)| ≤ Ce−Re(x).

Proof. Let Re(x) ≥ 1 and k ∈ N, then

|ψ(x)| =

∣∣∣∣∣
∞∑
n=1

e−n
2πx

∣∣∣∣∣ ≤
∞∑
n=1

e−n
2πRe(x)

= e−Re(x)
∞∑
n=1

e−n
2πRe(x)+Re(x)

Re(x)≥1

≤ e−Re(x)
∞∑
n=1

e−n
2π+1

= e−Re(x)eψ(1)︸︷︷︸
<∞

= Ce−Re(x) for C ∈ R.

Lemma 3.15. For Re(s) > 1

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

x
s
2
−1ψ(x)dx =

∫ ∞
1

ψ(x)
(
x−

s
2
− 1

2 + x
s
2
−1
)
dx+

1

s(s− 1)
,

where the right hand side converges absolutely for s ∈ C \ {0, 1}.
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Proof. From lemma 3.9 with s
2 it follows that∫ ∞

0
e−ntt

s
2
−1dt =

Γ
(
s
2

)
n
s
2

.

Substitute t = nπx ∫ ∞
0

e−ntt
s
2
−1dt =

∫ ∞
0

e−n
2πxn

s
2
−1π

s
2
−1x

s
2
−1nπdx

=

∫ ∞
0

e−n
2πxn

s
2π

s
2x

s
2
−1dx

and it is obtained that for Re(s) > 0∫ ∞
0

e−n
2πxx

s
2
−1dx =

Γ
(
s
2

)
nsπ

s
2

.

Summing over all n ∈ N gives that for Re(s) > 1

π−
s
2 Γ
(s

2

)
ζ(s) =

∞∑
n=1

∫ ∞
0

e−n
2πxx

s
2
−1dx.

Interchanging limit and integral gives the first equality of the lemma. This is allowed by
the dominated convergence theorem, namely

∑k
n=1 e

−n2πxx
s
2
−1 is dominated by x

s
2
−1ψ(x)

and it remains to prove that
∫∞

0 x
s
2
−1ψ(x)dx converges absolutely for Re(s) > 1. First,

split the integral ∫ ∞
0

x
s
2
−1ψ(x)dx =

∫ 1

0
x
s
2
−1ψ(x)dx+

∫ ∞
1

x
s
2
−1ψ(x)dx. (3.9)

For the first integral substitute x = u−1:∫ 1

0
x
s
2
−1ψ(x)dx = −

∫ 1

∞

(
u−1

) s
2
−1
ψ(u−1)u−2du

(3.8)
=

∫ ∞
1

u−
s
2
−1

(
u

1
2ψ(u) +

1

2
u

1
2 − 1

2

)
du.

Plugging this in equation (3.9) gives∫ ∞
0

x
s
2
−1ψ(x)dx =

∫ ∞
1

ψ(x)
(
x−

s
2
− 1

2 + x
s
2
−1
)
dx+

1

2

∫ ∞
1

x−
s
2
−1
(
x

1
2 − 1

)
dx. (3.10)

Now, evaluate the second integral

1

2

∫ ∞
1

x−
s
2
− 1

2 − x−
s
2
−1dx =

[
1

1− s
x

1−s
2 +

1

s
x−

s
2

]∞
1

Re(s)>1
=

1

1− s
− 1

s
=

1

s(s− 1)

and plugging this back into equation (3.10) gives∫ ∞
0

x
s
2
−1ψ(x)dx =

∫ ∞
1

ψ(x)
(
x−

s
2
− 1

2 + x
s
2
−1
)
dx+

1

s(s− 1)
for Re(s) > 1. (3.11)

This already gives the second equality of the lemma. Now, for the integral on the right
hand side of (3.11) we can do the following estimate:∣∣∣∣∫ ∞

1
ψ(x)

(
x−

s
2
− 1

2 + x
s
2
−1
)
dx

∣∣∣∣ ≤ ∫ ∞
1

∣∣∣ψ(x)x−
s
2
− 1

2

∣∣∣+
∣∣∣ψ(x)x

s
2
−1
∣∣∣ dx

lemma 3.14
≤

∫ ∞
1

Ce−xx−
Re(s)

2
− 1

2dx+

∫ ∞
1

Ce−xx
Re(s)

2
−1dx <∞,
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since
∫∞

1 e−xxadx < ∞ for all a ∈ R. So the right hand side of (3.11) is absolutely

convergent for s ∈ C \ {0, 1} and thus
∫∞

0 x
s
2
−1ψ(x)dx converges absolutely for Re(s) > 1,

which allows the usage of the dominated convergence theorem.

By the identity theorem for analytic functions (theorem A.20), the equation

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
1

ψ(x)
(
x−

s
2
− 1

2 + x
s
2
−1
)
dx+

1

s(s− 1)

holds for all s ∈ C \ {0, 1}. Note that Γ
(
s
2

)
has a simple pole at 0 which corresponds with

the simple pole on the right hand side. Hence ζ(s) can be extended analytically to C\{1}.
The simple pole of the right hand side for s = 1 should also coincide with a simple pole of
Γ
(
s
2

)
ζ(s). Since Γ

(
s
2

)
has no pole at s = 1 it follows that ζ(s) has a simple pole at s = 1.

Also, Γ
(
s
2

)
has simple poles for s = −2k with k ∈ N. These poles must be canceled by

zeros of ζ(s) because the right hand side is defined for s = −2k with k ∈ N. These zeros
are called the trivial zeros of the zeta function.

Proposition 3.16. For C \ {0, 1} the functional equation of ζ(s) is given by

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Proof. Substitute 1− s in equation (3.11):

π−
1−s
2 Γ

(
1− s

2

)
ζ(1− s) =

∫ ∞
1

ψ(x)
(
x−

1−s
2
− 1

2 + x
1−s
2
−1
)
dx+

1

(1− s)(−s)

=

∫ ∞
1

ψ(x)
(
x
s
2
−1 + x−

s
2
− 1

2

)
dx+

1

s(s− 1)

= π−
s
2 Γ
(s

2

)
ζ(s).

Remark 3.17. Note that this functional equation is equivalent to the one that was found
using contour integration. Recall Legendre’s Duplication formula (proposition 2.10)

Γ(2z) = (2π)−
1
2 22z− 1

2 Γ(z)Γ

(
z +

1

2

)
and substituting z = − s

2 + 1
2 gives

Γ(1− s) = (2π)−
1
2 2−s+

1
2 Γ

(
1− s

2

)
Γ
(

1− s

2

)
.

By using this identity and Euler’s reflection formula (proposition 2.7) for the functional
equation as in equation (3.6) it is obtained that

ζ(s) = Γ(1− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s)

= 2−sπ−
1
2 Γ

(
1− s

2

)
Γ
(

1− s

2

)
2sπs−1 π

Γ
(
s
2

)
Γ
(
1− s

2

)ζ(1− s)

= πs−
1
2 Γ

(
1− s

2

)
ζ(1− s)

Γ
(
s
2

) .

Rearranging this equation gives the identity in proposition 3.16. So both functional equa-
tions are equivalent.
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Chapter 3. The Riemann Zeta Function

Multiply the functional equation in proposition 3.16 by s(s−1)
2 to obtain

π−
s
2 Γ
(s

2
+ 1
)

(s− 1)ζ(s) = π−
1−s
2 Γ

(
1− s

2
+ 1

)
(−s)ζ(1− s), (3.12)

where the property Γ(z + 1) = zΓ(z) is used.

Definition 3.18. Define for all s ∈ C

ξ(s) := π−
s
2 Γ
(s

2
+ 1
)

(s− 1)ζ(s).

This is an entire function, because

(i) the simple pole of ζ(s) at s = 1 is canceled with the zero of s− 1,

(ii) the simple poles of Γ
(
s
2 + 1

)
at s = −2k with k ∈ N are canceled with the trivial

zeros of the zeta function,

(iii) for all other s ∈ C the function π−
s
2 Γ
(
s
2 + 1

)
(s− 1)ζ(s) is analytic.

From equation (3.12) it follows that ξ(s) satisfies

ξ(s) = ξ(1− s).

Zeros of ζ(s) that are not trivial can only occur if ξ(s) = 0. These zeros are called the
nontrivial zeros and are denoted by ρ. By the other representation of the zeta function
for Re(s) > 1

ζ(s) =
∏

p prime

1

1− p−s

it follows that ζ(s) 6= 0 for Re(s) > 1. Also, from ξ(s) = ξ(1 − s) it follows that, apart
from the trivial zeros, ζ(s) 6= 0 for Re(s) < 0. Hence, all nontrivial zeros ρ must lie in the
strip: {s ∈ C : 0 ≤ Re(s) ≤ 1}. This strip can be narrowed down to what is called the
critical strip: {s ∈ C : 0 < Re(s) < 1}. That ζ(s) 6= 0 for Re(s) = 1 plays an important
role in proving the prime number theorem (even stronger: it is equivalent to the prime
number theorem) and this will come back in chapters 5 and 6 when we will prove the
prime number theorem. The fact that ζ(s) 6= 0 for Re(s) = 0 will not be proven here.

3.4 The Riemann Hypothesis

All kind of estimates can be made about the nontrivial zeros in the critical strip. Riemann
claimed that the number of roots ρ in the critical strip with imaginary part between 0 and
T is approximately

T

2π
log

(
T

2π

)
− T

2π
.

Riemann did not rigorously prove this assertion and neither will we in this thesis. A proof
can be found in [Ingham, 1932, Ch. IV].

The strongest estimate about the location of the nontrivial zeros was conjectured by
Riemann in his article. This conjecture is now know as the Riemann hypothesis and is
one of the greatest unsolved problems in mathematics.
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Chapter 3. The Riemann Zeta Function

Conjecture 3.19 (The Riemann hypothesis). All nontrivial zeros of the zeta function
have real part 1

2 .

If ξ(ρ) = 0 with ρ in the critical strip, then the relation ξ(s) = ξ(1− s) gives that 1−ρ
is also a zero. So the nontrivial zeros of the zeta function always come in pairs. Also,
from the definition of ξ(s) and the fact that ζ(s) = ζ(s) and Γ(s) = Γ(s) it follows that
ξ(s) = ξ(s). So, if ρ is a zero of ξ(s), then ρ is also a zero of ξ(s). Now, if a nontriv-
ial zero of the zeta function ρ1 does not satisfy Re(ρ1) = 1

2 , then there are directly four
nontrivial zeros with Re(ρ1) 6= 1

2 . The other three zeros correspond to ρ1, 1−ρ1 and 1− ρ1.

Numerically, it has been showed that at least the first 1013 nontrivial zeros indeed have
real part 1

2 . The mathematician Hardy even proved that infinitely many zeros must lie
on the line with real part 1

2 . Figure 3.3 shows the value |ζ(s)| on the line with Re(s) = 1
2

and 0 ≤ Im(s) ≤ 30. The first three zeros in the upper half-plane lie at 1
2 + i14.134 . . . ,

1
2 + i21.022 . . . and 1

2 + i25.010 . . . .

Figure 3.3: The absolute value of ζ(s) on the line with real part 1
2 and imaginary part y

between 0 and 30.

30



Chapter 4

Explicit Formula for the Prime
Counting Function

Riemann continued in his article with the construction of an explicit formula for the prime
counting function, which we already briefly discussed in chapter 1.

Definition 4.1. Define the prime counting function π(x) as the number of prime numbers
less than or equal to x for all x > 0. So

π(x) =
∑
p≤x

1 =
∑
n≤x

up(n),

where p denote all prime numbers and

up(n) =

{
1 if n is prime

0 otherwise
.

Remark 4.2. Obviously, the inequality π(x) < x holds for all x > 0, since π(x) = x
would mean that all numbers are prime which is not the case.

Riemann used a slightly different function, which he called F . This function is the
same as the prime counting function π(x) only when there is a jump, the function takes
the average value of the right and left limit. Riemann wrote that as follows

F (x) =
F (x+ 0) + F (x− 0)

2
.

Since this function is closely related to π(x), we will use π0(x) instead of F (x).

Definition 4.3. Define for x > 0

π0(x) =
1

2

∑
p<x

1 +
∑
p≤x

1

 .

This is exactly the same as π(x) only at every jump the function has the value halfway.
This can also be written as

π0(x) =
1

2

(
lim
t↑x

π(t) + lim
t↓x

π(t)

)
.
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The reason for this slightly different definition is that Fourier transforms are needed
in section 4.3. Recall that for an integrable function f(x)

(Ff)(λ) =

∫ ∞
−∞

f(x)e−ixλdx

is the Fourier transform and

(F−1f)(x) =
1

2π

∫ ∞
−∞

f(λ)eixλdλ

is the inverse Fourier transform. Assume that f is piecewise continuous and that f and
Ff are integrable. Then

F−1(Ff)(x) =
1

2

(
lim
t↑x

f(t) + lim
t↓x

f(t)

)
.

This is why the function π0(x) as in definition 4.3 is required.

The construction of a formula for π0(x) will take several steps, but let us first describe
the general idea of all the things that have to be done. The following will be treated in
the next sections:

4.1 A closely related function to π0(x) is introduced. This function, J(x), can easily be
written in terms of π0(x). With the aid of Möbius inversion we are able to invert
this formula so that π0(x) is written in terms of J(x).

4.2 The function ξ(s), as introduced in the previous chapter, can be written as an infinite
product. Using this infinite product representation we can find an expression for
log ζ(s). The proof of the infinite product for ξ(s) is included at the end of this
chapter in section 4.6.

4.3 Also, there is a relation between J(x) and log ζ(s). First, log ζ(s) can be written in
terms of an integral involving J(x). Mellin inversion will give an expression for J(x)
in terms of an integral with log ζ(s).

4.4 Finally, we will substitute the expression for log ζ(s) (found in section 4.2) in the
integral which was found in section 4.3. Evaluating this integral termwise will give
an explicit formula for J(x).

4.5 Combining the results from section 4.1 and 4.4 gives an explicit formula for π0(x).

4.6 As already mentioned, this section contains a proof of the infinite product represen-
tation of ξ(s).

4.1 π0(x) and J(x)

Definition 4.4. Define for x > 0

J(x) =
1

2

( ∞∑
k=1

∑
pk<x

1

k
+

∞∑
k=1

∑
pk≤x

1

k

)
=

1

2

( ∑
pk<x
k∈N

1

k
+
∑
pk≤x
k∈N

1

k

)
,

where the last identity is just a shorthand notation to avoid writing double sums every
time. This function jumps with 1

k at every prime power pk and at a jump, J(x) has the
value halfway:

J(x) =
1

2

(
lim
t↑x

J(t) + lim
t↓x

J(t)

)
.
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Remark 4.5. Note that for all x > 0 it holds that J(x) < x. This follows from the
definition of J(x) and the fact that π(x) < x (see remark 4.2).

Proposition 4.6. A relation between J(x) and π0(x) is given by

J(x) =
∑

1≤k≤x

1

k
π0

(
x

1
k
)
.

Proof. Rewrite J(x) as

J(x) =
1

2

 ∞∑
k=1

∑
p<x

1
k

1

k
+

∞∑
k=1

∑
p≤x

1
k

1

k


=

1

2

∞∑
k=1

1

k

∑
p<x

1
k

1 +
∑
p≤x

1
k

1


=

∞∑
k=1

1

k
π0

(
x

1
k
)
.

Note that this sum is finite: if k is large enough, then x
1
k < 2 so that π0(x

1
k ) = 0 (since

2 is the first prime number). Definitely, if k > x, then π0(x
1
k ) = 0 because x

1
x < 2 for all

x > 0. Hence,

J(x) =
∑

1≤k≤x

1

k
π0

(
x

1
k
)
.

4.1.1 Möbius Inversion

The aim is to get an expression for π0(x), hence the identity in proposition 4.6 needs to
be inverted. This will be done using Möbius inversion. First, the heuristics behind this
method is explained and after that a generalization of the Möbius inversion formula will
be proved.

Define ak = 1
kJ
(
x

1
k

)
and for the sake of clarity write π(x) for a moment instead of

π0(x). Then obviously

a1 = J(x) = π(x) +
1

2
π
(
x

1
2
)

+
1

3
π
(
x

1
3
)

+
1

4
π
(
x

1
4
)

+ · · ·

and

a2 =
1

2
J
(
x

1
2
)

=
1

2
π
(
x

1
2
)

+
1

4
π
(
x

1
4
)

+
1

6
π
(
x

1
6
)

+
1

8
π
(
x

1
8
)

+ · · · .

Subtracting them gives

a1 − a2 = π(x) +
1

3
π
(
x

1
3
)

+
1

5
π
(
x

1
5
)

+
1

7
π
(
x

1
7
)

+
1

9
π
(
x

1
9
)

+ · · · .

It is clear that only the odd terms remain. The idea is to add or subtract terms on the
left hand side, so that on the right hand side only π(x) remains. Note that

a3 =
1

3
J
(
x

1
3
)

=
1

3
π
(
x

1
3
)

+
1

6
π
(
x

1
6
)

+
1

9
π
(
x

1
9
)

+
1

12
π
(
x

1
12
)

+ · · · .
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Subtracting a3 gives

a1 − a2 − a3 = π(x) +
1

5
π
(
x

1
5
)
− 1

6
π
(
x

1
6
)

+
1

7
π
(
x

1
7
)

+
1

11
π
(
x

1
11
)
− 1

12
π
(
x

1
12
)

+ · · · .

Unfortunately, some even terms are back on the right hand side, but there are still no
terms which are powers of 2 or powers of 3. Continue subtracting ap for all primes p gives
that only π(x) and terms with non-pure powers of primes remain on the right hand side:

a1 −
∑
p

ap = π(x)− 1

6
π
(
x

1
6
)
− 1

10
π
(
x

1
10
)
− 1

12
π
(
x

1
12
)
− 1

14
π
(
x

1
14
)
− · · · .

For numbers that can be written as the product of two distinct prime numbers p and q,

a term with a minus sign remains. Namely, both ap and aq give a term − 1
pqπ
(
x

1
pq
)

and

a1 = J(x) contains one term 1
pqπ
(
x

1
pq
)
, so indeed − 1

pqπ
(
x

1
pq
)

remains. To get rid of those
terms, define P ×P as the set containing all natural numbers which can be written as the
product of two distinct primes. Then

a1 −
∑
p

ap +
∑

k∈P×P
ak = π(x) +

1

30
π
(
x

1
30
)

+ · · · .

Note that the term with 12 = 22 · 3 has also disappeared, because a6 (which contains the
term with 12) has been added. In general, all terms which do not have more than two

different primes in their prime factorization have vanished. However, the term 1
30π
(
x

1
30

)
survives, this is because 30 arises in aj with j = 1, 2, 3, 5, 6, 10, 15. Three times there is a
minus sign (for the primes 2, 3, 5) and all the other times there is a plus sign. Hence, one

term 1
30π
(
x

1
30

)
remains. To continue, all numbers which are the product of three distinct

primes should be subtracted again at the left hand side and so on. Finally, it is obtained
that

a1 −
∑
p

ap +
∑

k∈P×P
ak −

∑
k∈P×P×P

ak + · · · = π(x).

Plug in the definition of ak = 1
kJ
(
x

1
k

)
and note that the sum is finite again:∑

1≤k≤x

µ(k)

k
J
(
x

1
k
)

= π(x), (4.1)

where µ(k) is the Möbius function defined by

µ(k) =


1 if k = 1

(−1)n if k is the product of n distinct primes

0 otherwise

.

The above method is known as generalized Möbius inversion and the corresponding in-
version formula is proved in the next theorem. The normal Möbius inversion formula is
not sufficient in this case. We do not need it here, hence it is omitted. For proving this
generalized formula, one result from analytic number theory about µ(k) is needed. This
result is in the following lemma.

Lemma 4.7. If n ≥ 1, then ∑
k|n

µ(k) =

{
1 if n = 1

0 if n > 1
,

where k|n means that k divides n.
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Proof. The statement is clearly true for n = 1. For n > 1, write n in its factorization of
prime numbers: n = pa11 · · · parr . In the sum

∑
k|n µ(k) the only nonzero terms come from

k = 1 and from the divisors of n which are the product of distinct primes. This gives∑
k|n

µ(k) = µ(1) + µ(p1) + · · ·+ µ(pr) + µ(p1p2) + · · ·+ µ(pr−1pr) + · · ·+ µ(p1p2 · · · pr)

= 1 + (−1)

(
r

1

)
+ (−1)2

(
r

2

)
+ · · ·+ (−1)r

(
r

r

)
= (1− 1)r = 0.

Theorem 4.8 (Generalized Möbius inversion). Let x > 1 and suppose that

Gx(m) =
∑

1≤l≤mx
Fx

(m
l

)
for some m ∈ N. Then ∑

1≤k≤x
µ(k)Gx

(
1

k

)
= Fx(1).

Proof. Define for x, y ∈ R

Ix=y =

{
1 if x = y

0 if x 6= y
.

Now, ∑
1≤k≤x

µ(k)Gx

(
1

k

)
=
∑

1≤k≤x
µ(k)

∑
1≤l≤x

k

Fx

(
1

kl

)

=
∑

1≤k≤x
µ(k)

∑
1≤l≤x

k

∑
1≤r≤x

Ir=klFx
(

1

r

)

=
∑

1≤r≤x
Fx

(
1

r

) ∑
1≤k≤x

µ(k)
∑

1≤l≤x
k

Il= r
k︸ ︷︷ ︸

=µ(k) if k|r

=
∑

1≤r≤x
Fx

(
1

r

)∑
k|r

µ(k)

︸ ︷︷ ︸
=0 if r>1

lemma 4.7
= Fx(1).

With this theorem equation (4.1) can be proved.

Proposition 4.9. An expression for π0(x) in terms of J(x) is

π0(x) =
∑

1≤k≤x

µ(k)

k
J
(
x

1
k
)
.
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Proof. Fix x > 0 and let Fx( 1
k ) = 1

kπ0

(
x

1
k

)
and Gx( 1

k ) = 1
kJ
(
x

1
k

)
. Note that

Gx(1) = J(x) =
∑

1≤k≤x

1

k
π0

(
x

1
k
)

=
∑

1≤k≤x
Fx

(
1

k

)
,

so the condition of theorem 4.8 is satisfied. Now, it is obtained that∑
1≤k≤x

µ(k)

k
J
(
x

1
k
)

=
∑

1≤k≤x
µ(k)Gx

(
1

k

)
= Fx(1) = π0(x).

4.2 log ζ(s) and ξ(s)

Recall the function ξ(s) which was introduced in the previous chapter (definition 3.18):

ξ(s) = π−
s
2 Γ
(s

2
+ 1
)

(s− 1)ζ(s).

The infinite product representation of ξ(s) is

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
, (4.2)

where ρ are the zeros of ξ(s) (which are the nontrivial zeros of the zeta function). The
infinite product is taken in an order which pairs each root ρ with the root 1 − ρ. Rie-
mann uses this identity in his article, but was not able to prove it. Three decades later
Hadamard finally proved this identity using his factorization theorem. Hadamard’s fac-
torization theorem is applicable in many more cases than only for the function ξ(s). The
proof of (4.2) can be simplified and is included in the last section of this chapter.

Plugging in the definition of ξ(s) in the left hand side of equation (4.2) and taking the
logarithm gives that for Re(s) > 1

−s
2

log(π) + log Γ
(s

2
+ 1
)

+ log(s− 1) + log ζ(s) = log ξ(0) +
∑
ρ

log

(
1− s

ρ

)
and after rewriting it is obtained that

log ζ(s) = log ξ(0) +
∑
ρ

log

(
1− s

ρ

)
− log Γ

(s
2

+ 1
)

+
s

2
log(π)− log(s− 1). (4.3)

Remark 4.10. In this chapter, if there is a logarithm with a complex argument, then the
principal branch of the logarithm is used.

4.3 J(x) and log ζ(s)

In this section, J(x) and log ζ(s) are linked, so that (together with the expression obtained
from the Möbius inversion) π0(x) can be expressed in terms of log ζ(s).

Proposition 4.11. A relation between log ζ(s) and J(x) for Re(s) > 1 is given by

log ζ(s)

s
=

∫ ∞
0

J(x)x−s−1dx.
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Proof. First, note that for Re(s) > 0

s

∫ ∞
pn

x−s−1dx = −x−s
∣∣∣∞
pn

= p−ns. (4.4)

From Euler’s product formula (proposition 3.3) it is obtained that for Re(s) > 1

log ζ(s) = log
∏
p

(
1− 1

ps

)−1

= −
∑
p

log

(
1− 1

ps

)
=
∑
p

∞∑
n=1

p−ns

n
,

where it is allowed to use the Taylor expansion of the logarithm since |p−s| < 1. Then,
use equation (4.4) and interchange the integral and summations (which is allowed by the
Fubini-Tonelli theorem)

∑
p

∞∑
n=1

p−ns

n
= s

∑
p

∞∑
n=1

1

n

∫ ∞
pn

x−s−1dx = s

∫ ∞
0

∞∑
n=1

∑
p

1

n
1[pn,∞)(x)x−s−1dx,

where 1[a,b)(x) denotes the indicator function, which is 1 if x ∈ [a, b) and zero elsewhere.
The last identity is only nonzero if pn ≤ x for any fixed x > 0. Hence, it can be rewritten
as

s

∫ ∞
0

∞∑
n=1

∑
p

1

n
1[pn,∞)(x)x−s−1dx = s

∫ ∞
0

∑
pn≤x

1

n
x−s−1dx = s

∫ ∞
0

J(x)x−s−1dx,

where the last step is allowed since the jumps of J(x) occur on sets with measure zero.
To conclude,

log ζ(s)

s
=

∫ ∞
0

J(x)x−s−1dx.

4.3.1 Mellin Inversion

The aim is to find an expression for J(x) in terms of log ζ(s) instead of the other way
around. To invert the relation in proposition 4.11 the Mellin transformation is used.

Definition 4.12. The Mellin transformation of a function f(x) is defined as

(Mf)(s) =

∫ ∞
0

f(x)x−s−1dx

and (under certain conditions) the inverse transformation is

(M−1f)(x) =
1

2πi

∫ σ+i∞

σ−i∞
f(s)xsds,

where the integral is taken over a vertical line with real part σ for some appropriate σ.

Remark 4.13. The Mellin transform is usually defined as

(Mf)(s) =

∫ ∞
0

f(x)xs−1dx.

However, in order to invert the expression for J(x) as in proposition 4.11, it is more
convenient to define the Mellin transform as in definition 4.12.
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Lemma 4.14. Write s = σ+ it and let f(x) be a piecewise continuous function on (0,∞)
taking the average value of the right and left limit in discontinuities. Also, assume that
f(eλ)e−σλ is integrable for a < σ < b. If

F (s) =

∫ ∞
0

f(x)x−s−1dx

is analytic for a < σ < b and F (s) goes to zero as Im(s)→ ±∞, then

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)xsds,

where σ is chosen arbitrarily such that a < σ < b.

Proof. Write s = σ + it with σ, t ∈ R and a < σ < b. Substitute x = eλ and consider t as
the free variable:

F (σ + it) =

∫ ∞
0

f(x)x−σ−it−1dx =

∫ ∞
−∞

f(eλ)eλ(−σ−it−1)eλdλ

=

∫ ∞
−∞

f(eλ)eλ(−σ−it)dλ =
1

2π

∫ ∞
−∞

g(λ)e−itλdλ,

where g(λ) = 2πf(eλ)e−σλ. Note that g(λ) is integrable, so using the Fourier inversion
formula an expression for g(λ) is found:

2πf(eλ)e−σλ =

∫ ∞
−∞

F (σ + it)eitλdt.

Again substitute x = eλ and rewrite:

f(x) =
1

2π

∫ ∞
−∞

F (σ + it)xσ+itdt.

Doing another substitution s = σ + it finally gives

f(x) =
1

2π

∫ σ+i∞

σ−i∞
F (s)xs(−i)ds =

1

2πi

∫ σ+i∞

σ−i∞
F (s)xsds,

where σ is fixed such that a < σ < b. Since F (s) is analytic on a < σ < b and tends to
zero as Im(s) → ±∞, Cauchy’s theorem (theorem A.4) ensures that it does not matter
over which vertical line in the strip between a and b is integrated.

Remark 4.15. The inverse transformation of the ‘ordinary’ Mellin transformation (see
remark 4.13) can be proven similarly, only one has to use the substitution x = e−λ. Also,
note that the Mellin transformation is nothing more than a Fourier transformation in
different coordinates.

Proposition 4.16. An expression for J(x) in terms of log ζ(s) is

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)

s
xsds,

where s = σ + it with σ > 1.
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Proof. From proposition 4.11 it follows that for Re(s) > 1

log ζ(s)

s
=

∫ ∞
0

J(x)x−s−1dx.

Also, J(x) satisfies the conditions of lemma 4.14 and J(eλ)e−σλ ≤ e−(σ−1)λ (since J(x) ≤ x
for all x > 0). Since e−x is integrable for x > 0, also J(eλ)e−σλ is integrable and thus the
Fourier transform used in the proof of lemma 4.14 exists. So application of the lemma
gives that for σ > 1

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)

s
xsds.

4.4 Termwise Integration

Combining equation (4.3):

log ζ(s) = log ξ(0) +
∑
ρ

log

(
1− s

ρ

)
− log Γ

(s
2

+ 1
)

+
s

2
log(π)− log(s− 1) (4.5)

and the formula for J(x) from proposition 4.16:

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)

s
xsds

will hopefully give an explicit formula J(x) and thus also for π0(x). Direct substitution
and evaluating the integral termwise will not work, since this leads to a divergent integral.
This can easily be seen from the term s

2 log(π):

1

2πi

∫ σ+i∞

σ−i∞

s
2 log(π)

s
xsds = C

∫ σ+i∞

σ−i∞
xsds

s=σ+it
= C̃

∫ ∞
−∞

eit log(x)dt,

where C and C̃ are constants and obviously the last integral is divergent. To avoid this
problem, apply integration by parts to obtain

1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)

s
xsds =

1

2πi

log ζ(s)

s

xs

log(x)

∣∣∣σ+i∞

s=σ−i∞

− 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log ζ(s)

s

]
xsds.

To prove that the first term obtained after integration by parts is zero, it needs to be
shown that

lim
t→∞

log ζ(σ ± it)
σ ± it

xσ±it = 0. (4.6)

Note that xσ±it only oscillates and is thus bounded and that 1
σ±it goes to zero as t→∞.

It remains to show that log ζ(σ ± it) is finite as t → ∞. As seen earlier in the proof of
proposition 4.11, we have for s = σ + it with σ > 1

| log ζ(s)| =

∣∣∣∣∣∑
p

∞∑
n=1

p−ns

n

∣∣∣∣∣ ≤∑
p

∞∑
n=1

p−nσ

n
= log ζ(σ)
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using the Euler product formula and the Taylor expansion of the logarithm. From log ζ(σ) <
∞ for σ > 1 it follows that | log ζ(σ)| is finite for σ > 1, which thus proves (4.6).

After integration by parts the expression for J(x) is reduced to

J(x) = − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log ζ(s)

s

]
xsds.

Plugging expression (4.5) into this formula for J(x) gives

J(x) = − 1

2πi

1

log(x)
I with (4.7)

I =

∫ σ+i∞

σ−i∞

d

ds

 log ξ(0) +
∑

ρ log
(

1− s
ρ

)
− log Γ

(
s
2 + 1

)
+ s

2 log(π)− log(s− 1)

s

xsds.
This integral will be evaluated termwise and in each of the following subsections one term
is investigated. It will turn out that all integrals are finite, so that indeed integrating
termwise is allowed.

4.4.1 Principal Term

First, consider the term in (4.7) with − log(s − 1), thus the following integral must be
evaluated

I1 :=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log(s− 1)

s

]
xsds, σ > 1. (4.8)

It will turn out that this integral equals the logarithmic integral Li(x) which was discussed
briefly in chapter 1. This function is defined for x > 1 as

Li(x) = lim
ε↓0

(∫ 1−ε

0

dt

log(t)
+

∫ x

1+ε

dt

log(t)

)
,

which has to be interpreted as a Cauchy principal value. In order to evaluate integral
(4.8), fix x > 1 and define

F (β) :=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log( sβ − 1)

s

]
xsds.

Thus the goal is to evaluate I1 = F (1). Redefining log( sβ − 1) = log(s − β) − log(β) is
valid as long as Re(β) < σ and β ∈ C \ {s : s ≤ 0}.

Lemma 4.17. F (β) is absolutely convergent for Re(β) < σ and β ∈ C \ {s : s ≤ 0}.

Proof. Note that the part xs only oscillates and is bounded, since |xs| = xσ which is
constant. The derivative gives∣∣∣∣∣ dds log( sβ − 1)

s

∣∣∣∣∣ ≤
∣∣∣∣∣ log( sβ − 1)

s2

∣∣∣∣∣+

∣∣∣∣ 1

s(s− β)

∣∣∣∣
and the integral over both parts is finite.
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The function F (β) cannot be evaluated directly, hence we will look for another function
which is equal to F up to an additive constant and try to evaluate that one. Note that

d

dβ

log( sβ − 1)

s
=

1

(β − s)β

and from theorem A.6 the derivative with respect to β and the integral can be interchanged.
Also, changing the order of differentiation, which is allowed since both derivatives with
respect to s and β are continuous, gives

d

dβ
F (β) =

1

2πi

1

β log(x)

∫ σ+i∞

σ−i∞

d

ds

[
1

β − s

]
xsds.

Integration by parts gives

d

dβ
F (β) =

1

2πiβ

1

log(x)
xs

1

β − s

∣∣∣∣σ+i∞

s=σ−i∞
− 1

2πiβ

∫ σ+i∞

σ−i∞

1

β − s
xsds

= − 1

2πiβ

∫ σ+i∞

σ−i∞

1

β − s
xsds

and this is an integral which can be evaluated.

Lemma 4.18. If Re(β) < σ, then

1

2πi

∫ σ+i∞

σ−i∞

1

s− β
xsds =

{
xβ if x > 1

0 if x < 1
.

Proof. Let Re(β) < σ. The inverse Mellin transformation as in lemma 4.14 is given by

f̃(x) =
1

2πi

∫ σ+i∞

σ−i∞
F̃ (s)xsds

with

F̃ (s) =
1

s− β
.

Using the Mellin transform F̃ (s) is found:

1

s− β
=

∫ ∞
0

f̃(x)x−s−1dx.

Moreover, note that for Re(β) < σ

1

s− β
=

∫ ∞
1

x−sxβ−1dx

and equating the above two integrals leads to the conlcusion that

f̃(x) =

{
xβ if x > 1

0 if x < 1
.
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It was assumed that x > 1, so from the lemma it follows that

d

dβ
F (β) =

1

β
xβ.

We will search for a function which has the same derivative. Therefore, define the path
C+ as the line segment from 0 to 1 − ε, a semicircle Cε(1) around 1 with radius ε in
the upper half-plane and the line segment from 1 + ε to x, see figure 4.1. Also, define a
function which is closely related to Li(x) for β = 1:

G(β) :=

∫
C+

tβ−1

log(t)
dt

for Re(β) > 0. Note that G is there absolutely convergent and analytic by theorem A.6.
The derivative can be taken into the integral:

d

dβ
G(β) =

∫
C+

d

dβ

tβ−1

log(t)
dt =

∫
C+

tβ−1dt =
tβ

β

∣∣∣∣x
0

=
xβ

β
=

d

dβ
F (β).

O x1

Cε(1)

Re(t)

Im(t)

Figure 4.1: The path C+.

So the derivatives of F and G are equal, what means that F and G itself only differ by
a constant c. Since G is easier to work with, this constant will be determined. Note that
F was defined for Re(β) < σ and G for Re(β) > 0. So F (β) = G(β) + c only holds for
0 < Re(β) < σ. However, F and G are analytic on this strip, so by analytic continuation
F (β) = G(β) + c holds for Re(β) > 0.
To find c, introduce another function

H(β) :=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

 log
(

1− s
β

)
s

xsds,
where Re(β) < σ and log

(
1− s

β

)
is defined as log(s − β) − log(−β) for all β ∈ C \ {s :

s ≥ 0}. The functions F and H are both defined in the upper half-plane, so H(β)−F (β)
can be calculated there:

H(β)− F (β) =
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log(β)− log(−β)

s

]
xsds

=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
πi

s

]
xsds,

where the last step is valid since the principal branch of the logarithm is used and the
difference between the arguments of β and −β is πi if β lies in the upper half-plane. Now,
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apply integration by parts and use lemma 4.18 (with β = 0) to obtain

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
πi

s

]
xsds =

1

2πi

1

log(x)

πi

s
xs
∣∣∣∣σ+i∞

σ−i∞
− 1

2πi

∫ σ+i∞

σ−i∞

πi

s
xsds

= − 1

2πi

∫ σ+i∞

σ−i∞

πi

s
xsds

= −πi.

So it is obtained that in the upper half-plane F (β) = H(β) + πi. Before, it was found
that F and G differ by a constant, so also G and H must differ by a constant. This
constant will be determined by setting β = u+ vi and calculating limv→∞G(u+ vi) and
limv→∞H(u+ vi) with 0 < u < σ. The first limit is

lim
v→∞

G(u+ vi) = lim
v→∞

∫
C+

tu+vi−1

log(t)
dt.

Substitute t = eν and note that the path C+ is changed to a path that starts in −∞ and
ends in log(x) where it avoids the singularity in 0. Using Cauchy’s theorem (theorem A.4)
the integral over the closed contour in figure 4.2 is zero if δ > 0 is chosen such that there
are no poles inside the contour. It can easily be verified that the integral from −R+ δi to
−R vanishes if R→∞.

−R log(x)

δi

O Re(ν)

Im(ν)

Figure 4.2: The closed contour for changing the path of integration.

So it follows that

G(u+ vi) =

∫ log(x)+δi

−∞+δi

eν(u+vi)

ν
dν +

∫ log(x)

log(x)+δi

eν(u+vi)

ν
dν

for some appropriate δ > 0. For the first integral substitute ν = z + δi∫ log(x)

−∞

e(z+δi)(u+vi)

z + δi
dz = e−δveδui

∫ log(x)

−∞

ez(u+vi)

z + δi
dz → 0 as v →∞,

since e−δv → 0 and the integral remains finite as v →∞. For the second integral substitute
ν = log(x) + wi∫ δ

0

e(log(x)+wi)(u+vi)

log(x) + wi
(−i)dw = −ixu+vi

∫ δ

0

e−wvewui

log(x) + wi
dw → 0 as v →∞,

since e−wv → 0 and the term in front of the integral is bounded. So

lim
v→∞

G(u+ vi) = 0.
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Second, evaluate the same limit for H(u + vi). Work out the derivative in the definition
of H(β):

d

ds

log
(

1− s
β

)
s

= −
log
(

1− s
β

)
s2

+
1

s(s− β)
= −

log
(

1− s
β

)
s2

+
1

β(s− β)
− 1

βs
.

The first term becomes

lim
v→∞

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞
−

log
(

1− s
u+vi

)
s2

xsds.

Using the dominated convergence theorem ( s
ε

s2
xs is integrable) the limit and integral can

be interchanged. Note that log
(

1− s
u+vi

)
→ 0 as v →∞, thus the above expression goes

to zero as v → ∞. This trick would not have worked if it was applied to F (β), since the
expression inside the log would not become zero. This is the main reason to define the
function H(β). The other two terms of the derivative give using lemma 4.18

lim
v→∞

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

xs

(u+ vi)
(
s− (u+ vi)

) − xs

(u+ vi)s
ds = lim

v→∞

(
xu+vi

u+ vi
− 1

u+ vi

)
.

Again, this goes to zero (since the numerators are bounded). To conclude:

lim
v→∞

G(u+ vi) = 0 and lim
v→∞

H(u+ vi) = 0

and thus G(β) = H(β) for 0 < Re(β) < σ. It was already found that F (β) = H(β) + πi,
so that limv→∞ F (β) = πi. Hence, F (β) = G(β) + πi for 0 < Re(β) < σ which means
that F (1) can be evaluated:

F (1) = G(1) + πi =

∫ 1−ε

0

dt

log(t)
+

∫
Cε(1)

dt

log(t)
+

∫ x

1+ε

dt

log(t)
+ πi.

To evaluate the integral over the semicircle, note that limt→1
t−1

log(t) = 1 by l’Hospital’s rule,
so at t = 1 there is a simple pole with residue 1. Therefore, by corollary A.14 the integral
over the semicircle as ε→ 0 is −πi. This cancels with the πi and we are left with

I1 = F (1) = lim
ε↓0

(∫ 1−ε

0

dt

log(t)
+

∫ x

1+ε

dt

log(t)

)
= Li(x).

4.4.2 Term with Roots ρ

Next, consider the term in (4.7) with∑
ρ

log

(
1− s

ρ

)
,

where ρ are the zeros of ξ(s). So the following integral must be evaluated

I2 := − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

∑ρ log
(

1− s
ρ

)
s

xsds. (4.9)
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It was unknown to Riemann whether the sum and the integral could be interchanged. He
assumed it was possible and continued. For the moment we also assume it is possible and
we will come back to this in section 4.5. So it is obtained that

I2 = −
∑
ρ

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

 log
(

1− s
ρ

)
s

xsds = −
∑
ρ

H(ρ),

where H is as defined in the previous section. It is known that all the nontrivial zeros of
the zeta function ρ lie in the critical strip {s ∈ C : 0 < Re(s) < 1} as was found at the
end of chapter 3. So all zeros ρ lie in the first or fourth quadrant. For the first quadrant
it was shown in the previous section that G = H by calculating the limits of G and H as
Im(β)→∞. Unfortunately, calculating the limit for G(β) as Im(β)→ −∞ is not possible
because it diverges. Note, that it still holds that H(β)→ 0 as Im(β)→ −∞. This follows
from redoing the calculation in the previous section with Im(β)→ −∞. To overcome the
divergence of G(β), redefine G by changing the path of the integral a little bit:

G−(β) =

∫
C−

tβ−1

log(t)
dt,

where C− is the line segment from 0 to 1− ε, a semicircle Cε(1) around 1 with radius ε in
the lower half-plane and the line segment from 1 + ε to x, see also the path in figure 4.1
only now the semicircle is in the lower half-plane. Now calculating the limit in the same
manner as in the previous section gives again that G−(β) → 0 as Im(β) → −∞. Hence,
G− = H in the fourth quadrant.

Pairing the terms ρ and 1− ρ, which lie in the first and fourth quadrant respectively,
gives that

−
∑
ρ

H(ρ) = −
∑

Im(ρ)>0

(∫
C+

tρ−1

log(t)
dt+

∫
C−

t(1−ρ)−1

log(t)
dt

)
. (4.10)

If β would be real and positive, then the substitution t = u
1
β gives∫

C+

tβ−1

log(t)
dt =

∫ xβ

0

u
1
β

(β−1)

1
β log(u)

1

β
u

1
β
−1
du =

∫ xβ

0

du

log(u)
= Li(xβ)− πi,

where the path is in the upper half-plane avoiding the singularity u = 1. The left integral
converges for Re(β) > 0, so this gives an analytic continuation of Li(xβ) to this half-plane

(where x > 1 is fixed). Similarly, the substitution t = u
1

1−β gives that∫
C−

tβ−1

log(t)
dt = Li(xβ) + πi,

where the πi has a plus sign, because C− goes in counterclockwise direction around the
pole at 1. Combining these results with equation (4.10) gives

I2 = −
∑
ρ

H(ρ) = −
∑

Im(ρ)>0

(
Li(xρ) + Li(x1−ρ)

)
,

if interchanging the sum and the integral in equation (4.9) is allowed. We comment on
this matter in section 4.5. The sum is only conditionally convergent and the sum is taken
in order of increasing |Im(ρ)|.
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4.4.3 Constant Term

The third integral obtained from (4.7) is

I3 := − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log ξ(0)

s

]
xsds

and integration by parts gives

I3 =
1

2πi

∫ σ+i∞

σ−i∞

log ξ(0)

s
xsds = log ξ(0),

where lemma 4.18 is used with β = 0. It remains to calculate ξ(0).

Lemma 4.19. The value of ξ(s) in zero is 1
2 .

Proof. By the definition of ξ(s) (see definition 3.18) it follows that

ξ(0) = π0Γ(1)(0− 1)ζ(0) = −ζ(0).

To calculate ζ(0), use the functional equation for the zeta function as in equation (3.6)

ζ(s) = Γ(1− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s)

and since there is a simple pole at s = 1 with residue 1, it holds that lims→1(s−1)ζ(1) = 1,
which is equivalent to

lim
s→1

(1− s)ζ(1) = −1.

Multiplying the functional equation with (1− s) gives

(1− s)ζ(s) = (1− s)Γ(1− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s).

Take the limit and use that Γ(z + 1) = zΓ(z) to obtain

−1 = lim
s→1

(1− s)ζ(1) = lim
s→1

Γ(2− s)2(2π)s−1 sin
(πs

2

)
ζ(1− s) = 2ζ(0).

Rearranging this gives ζ(0) = −1
2 and thus ξ(0) = 1

2 .

From this lemma it follows that

I3 = log ξ(0) = log

(
1

2

)
= − log(2).

4.4.4 Integral Term

The fourth integral obtained form (4.7) is

I4 :=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log Γ

(
s
2 + 1

)
s

]
xsds.

Using proposition 2.6 it follows that

Γ(s+ 1) = lim
n→∞

n!(n+ 1)s

(s+ 1)(s+ 2) · · · (s+ n)

= lim
n→∞

n!

(s+ 1)(s+ 2) · · · (s+ n)

(
2

1
· 3

2
· · · n+ 1

n

)s
=

∞∏
n=1

n

s+ n

(
n+ 1

n

)s
=
∞∏
n=1

(
1 + 1

n

)s(
1 + s

n

) .
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And thus

log Γ
(s

2
+ 1
)

=
∞∑
n=1

[
− log

(
1 +

s

2n

)
+
s

2
log

(
1 +

1

n

)]
,

which gives

I4 =
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[∑∞
n=1

[
− log

(
1 + s

2n

)
+ s

2 log
(
1 + 1

n

)]
s

]
xsds. (4.11)

Again, the sum will be taken outside the integral and derivative. That this is valid will
be proven at the end of this section. It is obvious that the second term in the derivative
is constant, hence

I4 = −
∞∑
n=1

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

log
(
1 + s

2n

)
s

xsds. (4.12)

Recall the definition of H,

H(β) :=
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

 log
(

1− s
β

)
s

xsds
for Re(β) < σ and β ∈ C \ {s : s ≥ 0}. Then it is clear that (4.12) equals

−
∞∑
n=1

H(−2n).

Note that indeed H(β) is defined on the negative real axis, but that the functions F (β)
and G(β) are not. Hence, any relations between H and F or G are not valid any longer
because they were only true in the half-plane Re(β) > 0. To get a formula for Re(β) < 0
define

E(β) := −
∫ ∞
x

tβ

log(t)
dt,

which converges absolutely for Re(β) < 0:∫ ∞
x

|tβ−1|
log(t)

dt ≤ 1

log(x)

∫ ∞
x

tRe(β)−1dt =
1

log(x)

1

Re(β)
tRe(β)

∣∣∣∣∞
x

<∞.

Again, the derivative and integral can be interchanged by theorem A.6 to obtain

d

dβ
E(β) = −

∫ ∞
x

d

dβ

tβ−1

log(t)
dt =

tβ

β

∣∣∣∣∞
x

=
xβ

β
=

d

dβ
F (β) =

d

dβ
H(β).

So E(β) and H(β) differ by a constant. Both E and H go to zero as β → −∞ (along the
negative real axis). Thus E = H for Re(β) < 0. Hence,

−
∞∑
n=1

H(−2n) =

∞∑
n=1

∫ ∞
x

t−2n−1

log(t)
dt

=

∫ ∞
x

1

t log(t)

∞∑
n=1

t−2ndt

=

∫ ∞
x

1

t log(t)

( ∞∑
n=0

t−2n − 1

)
dt

=

∫ ∞
x

t2

t(t2 − 1) log(t)
− t2 − 1

t(t2 − 1) log(t)
dt

=

∫ ∞
x

1

t(t2 − 1) log(t)
dt,
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where the last integral is convergent which shows that interchanging summation and in-
tegration was allowed. So the fourth integral becomes

I4 =

∫ ∞
x

1

t(t2 − 1) log(t)
dt.

Interchanging

It remains to show that (4.11) and (4.12) are equal. First, show that

∞∑
n=1

d

ds

log
(
1 + s

2n

)
s

(4.13)

converges uniformly on any closed disk |s| ≤ K, because this allows the switch of the sum
and the derivative. For a fixed s there is an N ∈ N such that for all n ≥ N it holds that∣∣ s

2n

∣∣ < 1. Thus for |s| < 2n the Taylor expansion

log
(

1 +
s

2n

)
=
∞∑
k=1

(−1)k+1

k

( s

2n

)k
converges absolutely and uniformly on every closed disk with radius less than 2n. Now,

d

ds

log
(
1 + s

2n

)
s

=
d

ds

∑∞
k=1

(−1)k+1

k

(
s

2n

)k
s

=
d

ds

∞∑
k=1

(−1)k+1

k

sk−1

(2n)k

= −1

2

1

4n2
+

2

3

s

8n3
− 3

4

s2

16n4
+ · · · .

So the summand of the sum in (4.13) has as highest order term n−2. Hence, by the M -test
(4.13) converges uniformly on any closed disk with finite radius which gives that

∞∑
n=1

d

ds

log
(
1 + s

2n

)
s

=
∞∑
n=1

d

ds

log
(
1 + s

2n

)
+ s

2 log
(
1 + 1

n

)
s

=
d

ds

∞∑
n=1

log
(
1 + s

2n

)
+ s

2 log
(
1 + 1

n

)
s

.

Next, show that the sum and the integral can be interchanged. The uniform convergence
shows that the sum and integral can be interchanged on a finite domain∫ σ+iT

σ−iT

d

ds

[
log Γ

(
s
2 + 1

)
s

]
xsds = −

∞∑
n=1

∫ σ+iT

σ−iT

d

ds

[
log
(
1 + s

2n

)
s

]
xsds (4.14)

for finite T . It will be shown that the last integral is bounded by Cn−2 for some constant
C, so that the summation is uniformly convergent in T . This would imply that the limit
as T → ∞ and the summation can be interchanged, which then proves the equality of
(4.11) and (4.12). First, do a substitution v = s−σ

2n to estimate the integral in the nth
term of the sum:∫ σ+iT

σ−iT

d

ds

[
log
(
1 + s

2n

)
s

]
xsds =

∫ iT
2n

− iT
2n

1

2n

d

dv

[
log
(
1 + v + σ

2n

)
2nv + σ

]
xσ+2nv2ndv

=
xσ

2n

∫ iT
2n

− iT
2n

d

dv

[
log
(
1 + v + σ

2n

)
v + σ

2n

]
x2nvdv.
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Apply integration by parts to the total nth term (up to a minus sign):

1

2πi

xσ

2n log(x)

∫ iT
2n

− iT
2n

d

dv

[
log
(
1 + v + σ

2n

)
v + σ

2n

]
x2nvdv =

1

2πi

xσ

2n log(x)

1

2n log(x)
Q with

Q =
d

dv

[
log
(
1 + v + σ

2n

)
v + σ

2n

]
x2nv

∣∣∣∣∣
iT
2n

− iT
2n

−
∫ iT

2n

− iT
2n

d2

dv2

[
log
(
1 + v + σ

2n

)
v + σ

2n

]
x2nvdv.

Now, Q has a finite maximum, so that the whole expression can be bounded by Cn−2,
where C is independent of n and T . Calculate the derivative:

d

dv

log
(
1 + v + σ

2n

)
v + σ

2n

=

(
v + σ

2n

)
1

1+v+ σ
2n
− log

(
1 + v + σ

2n

)
(
v + σ

2n

)2
=

1(
v + σ

2n

) (
1 + v + σ

2n

) − log
(
1 + v + σ

2n

)(
v + σ

2n

)2 .

This expression can be bounded independently of n when v is on the imaginary axis. Also,
the second derivative

d

dv

[
1(

v + σ
2n

) (
1 + v + σ

2n

) − log
(
1 + v + σ

2n

)(
v + σ

2n

)2
]

is absolutely integrable over the imaginary axis for every n. So indeed the nth term of the
sum in (4.14) can be bounded by Cn−2 for all T and thus the series converges uniformly
in T . Hence, the limit and sum can be interchanged, which finishes the proof.

4.4.5 Zero Term

The last integral obtained from (4.7) is

I5 := − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[ s
2 log(π)

s

]
xsds

and the derivative in the integral is zero, hence the whole term is zero.

4.5 The Explicit Formula

To obtain an explicit formula for the prime counting function, π0(x) was expressed in
terms of the function J(x) (proposition 4.9):

π0(x) =
∑

1≤k≤x

µ(k)

k
J
(
x

1
k
)
. (4.15)

It remained to find an expression for J(x). It turned out that this function could be
written as

J(x) = − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log ζ(s)

s

]
xsds.

Also, an expression for log ζ(s) was established using the infinite product representation
for ξ(s):

log ζ(s) = log ξ(0) +
∑
ρ

log

(
1− s

ρ

)
− log Γ

(s
2

+ 1
)

+
s

2
log(π)− log(s− 1),
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where ρ denotes the nontrivial zeros of the zeta function. It remained to evaluate the
integral termwise, which was done separately for each term in section 4.4. Combining all
these results gives that

J(x) = I1 + I2 + I3 + I4 + I5

= Li(x)−
∑

Im(ρ)>0

(
Li(xρ) + Li(x1−ρ)

)
− log(2) +

∫ ∞
x

dt

t(t2 − 1) log(t)
for x > 1.

Together with formula (4.15) we have finally found an explicit expression for the prime
counting function. We will briefly look at the contribution of each term in J(x).

(i) The function Li(x) is diverging as x → ∞. This term can be considered as the
principal term.

(ii) The term with the nontrivial zeros of the zeta function is hard to bound because
the location of the zeros is unknown. As we have seen the Riemann hypothesis
conjectures that all the nontrivial zeros lie at the line with real part 1

2 . Assuming
the Riemann hypothesis to be true, then it can be proven that this term grows as
O
(√
x log(x)

)
as x→∞.

(iii) The constant log(2) ≈ 0.69 is very small in comparison the principal term Li(x) as
x→∞.

(iv) The integral term also takes very small values, namely if x ≥ e, then∫ ∞
x

dt

t(t2 − 1) log(t)
≤
∫ ∞
e

dt

t(t2 − 1) log(t)
≤ 1

log(e)

∫ ∞
e

dt

t(t2 − 1)
≈ 0.07.

So, J(x) can be approximated by the principal term Li(x), which then gives the approxi-
mation for the prime counting function proposed by Riemann:

Ri(x) =
∑

1≤k≤x

µ(k)

k
Li
(
x

1
k
)

= Li(x)− 1

2
Li
(
x

1
2
)
− 1

3
Li
(
x

1
3
)
− 1

4
Li
(
x

1
4
)

+ · · · .

Note that the first term is Li(x). Only this term as approximation for the prime counting
function was considered in chapter 1, but now this approximation can be improved by
adding and subtracting finitely many terms of the form 1

kLi
(
x

1
k

)
. Table 4.1 shows the

errors between π(x) and the three approximations

L(x) =
x

log(x)
, Li(x) =

∫ x

0

dt

log(t)
and Ri(x) =

∑
1≤k≤x

µ(k)

k
Li
(
x

1
k
)
.

x π(x) π(x)− L(x) Li(x)− π(x) Ri(x)− π(x)

106 78, 498 6, 115 129 29

108 5, 761, 455 332, 774 754 97

1010 455, 052, 511 20, 758, 030 3, 104 −1828

1012 37, 607, 912, 018 1, 416, 706, 193 38, 263 −1476

Table 4.1: The errors between π(x) and the three approximations L(x), Li(x) and Ri(x)
for some large values of x. The values of the errors are rounded.
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The error between Riemann’s approximation and π(x) changes sign, something which
we have not seen yet for the other approximations. However, it has been proven by Lit-
tlewood in 1914 that also Li(x)− π(x) changes sign infinitely many times. The first time
that this will happen is around x ≈ 10316.

Riemann’s article contained eight pages and did of course not cover all the details we
provided in this and the previous chapter. In fact, many gaps were left open by Riemann
and it took quite some time before all details were filled in. All details apart from the
Riemann hypothesis which is still unproven. One of the gaps was the validity of the infinite
product formula for ξ(s). This was proved later by Hadamard. Another gap, which we
also left open here, was whether interchanging the sum and the integral in section 4.4.2
is allowed. If this goes wrong, then all effort we put in constructing the formula for the
prime counting function would be in vain. Fortunately, Von Mangoldt proved in 1905 that
indeed the formula is correct. For this he did not use J(x), but another function:

ψ(x) =
∑
pk<x

log(p).

This function does not only count primes but also powers of primes with a weight log(p).
Von Mangoldt used the same method as Riemann and found a relation between ζ(s) and
ψ(x):

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)x−s−1dx.

With the same method as in section 4.3 this formula can be inverted to obtain

ψ(x) =
1

2πi

∫ σ+i∞

σ−i∞
−ζ
′(s)

ζ(s)
xs−1ds

for σ > 1. This integral can again be evaluated using the infinite product formula for ξ(s).
Finally, it is obtained that

ψ(x) = x−
∑
ρ

xρ

ρ
+
∑
n

x−2n

2n
− ζ ′(0)

ζ(0)
(4.16)

and from this formula also the formula for π0(x) can be derived. The proof of this can be
found in [Edwards, 1974, Ch. 3]. This only proves the correctness of the formula for π0(x),
but not whether indeed the sum and the integral in section 4.4.2 could be interchanged.
This was proved by Landau in 1908, thus the method of constructing the explicit formula
as we did is correct.

In fact, the formula for ψ(x) played a more important role than the explicit formula
for π(x), because it is easier to work with while it contains the same information. Also,
formula (4.16) led to the first proof of the prime number theorem. It will be shown in the
next chapter that

lim
x→∞

π(x) log(x)

x
= 1 if and only if lim

x→∞

ψ(x)

x
= 1.

The second statement follows immediately from the formula for ψ(x) if ζ(s) has no zeros
on the line with real part 1. Instead of using (4.16) we will use another, more recently
found method in the next chapters to prove the prime number theorem.
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4.6 The Product Formula for ξ(s)

In the derivation of the expression for π0(x) the product formula for ξ(s) was used:

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
,

where ρ are the zeros of ξ(s). The infinite product is taken in an order which pairs each
root ρ with the root 1− ρ. Recall that

ξ(s) = π−
s
2 Γ
(s

2
+ 1
)

(s− 1)ζ(s).

The infinite sum was originally a corollary of a much more general method proven by
Hadamard. Now, only the product formula for ξ(s) is needed, so that the proof becomes
easier for only this case. This section is devoted to proving the product formula for ξ(s).

First, the number of roots ρ is a disk centered at s = 1
2 will be estimated using Jensen’s

theorem. This estimate is much less precise than the estimate of Riemann about the zeros
in the strip with imaginary part between 0 and T as in section 3.3. However, our estimate
is enough to show the convergence of the infinite product for ξ(s). Also, it is proved
under which conditions an even entire function is constant. Finally, using this theorem,
the infinite product representation of ξ(s) can be established.

4.6.1 Jensen’s Theorem

Note that by writing log(s) for s ∈ C still the principal branch of the logarithm is meant.

Theorem 4.20 (Jensen’s Theorem). Let f(z) be an analytic function on the disk BR(0) =
{z : |z| ≤ R} for some R > 0 and suppose that f(z) has no zeros on the boundary |z| = R.
The zeros inside the disk are labeled: z1, z2, . . . , zn where zeros of order k ≥ 1 (zeros that
occur k times) are also included k times in the list. Also, assume that f(0) 6= 0. Then

log

∣∣∣∣f(0)
R

z1

R

z2
· · · R

zn

∣∣∣∣ =
1

2π

∫ 2π

0
log
∣∣f(Reit)

∣∣ dt.
Proof. First, assume that f(z) has no zeros in BR(0). Note that f(z) might be negative.

To let the logarithm be well-defined, define log f(z) = log |f(0)| +
∫ z

0
f ′(t)
f(t) dt in the disk.

Using Cauchy’s integral formula (theorem A.5) it is obtained that

log f(0) =
1

2πi

∫
|z|=R

log f(z)

z
dz =

1

2πi

∫ 2π

0

log f(Reit)

Reit
iReitdt =

1

2π

∫ 2π

0
log f(Reit)dt.

Note that log |f(z)| is the real part of the log f(z), hence

log |f(0)| = Re[log f(0)] = Re

[
1

2π

∫ 2π

0
log f(Reit)dt

]
=

1

2π

∫ 2π

0
log |f(Reit)|dt.

This proves the case with no zeros in BR(0). Now, assume that f(z) has the zeros
z1, z2, . . . , zn in BR(0). The function

F (z) := f(z)
R2 − z1z

R(z − z1)

R2 − z2z

R(z − z2)
· · · R

2 − znz
R(z − zn)

52



Chapter 4. Explicit Formula for the Prime Counting Function

is analytic and has no zeros in the disk BR(0). Apply the result from above to obtain

log |F (0)| = 1

2π

∫ 2π

0
log |F (Reit)|dt.

Obviously, using the definition of F (z)

log |F (0)| = log

∣∣∣∣f(0)
R

z1

R

z2
· · · R

zn

∣∣∣∣
and it remains to show that |f(Reit)| = |F (Reit)|, which is equivalent to proving∣∣∣∣ R2 − ziz

R(z − zi)

∣∣∣∣ = 1

with z = Reit for i = 1, 2, ..., n. Note that |z| = |Reit| = R and thus∣∣∣∣ R2 − ziz
R(z − zi)

∣∣∣∣ =

∣∣∣∣ R2 − ziz
R(z − zi)

∣∣∣∣ ∣∣∣∣ zR
∣∣∣∣︸︷︷︸

=1

=

∣∣∣∣R2z − ziR2

R2(z − zi)

∣∣∣∣ =

∣∣∣∣z − ziz − zi

∣∣∣∣ = 1.

Combining the results gives

log

∣∣∣∣f(0)
R

z1

R

z2
· · · R

zn

∣∣∣∣ =
1

2π

∫ 2π

0
log
∣∣f(Reit)

∣∣ dt
as was to be proven.

Jensen’s theorem is specific for a disk around zero, but this can of course be generalized
to disks centered around an arbitrary point z0 ∈ C. The theorem will change as follows:

Corollary 4.21. Let f(z) be an analytic function on the disk BR(z0) = {z : |z− z0| ≤ R}
for some R > 0 and suppose that f(z) has no zeros on the boundary |z − z0| = R. The
zeros inside the disk are labeled: z1, z2, . . . , zn where zeros of order k ≥ 1 are also included
k times in the list. Also, assume that f(z0) 6= 0. Then

log

∣∣∣∣f(z0)
R

z1 − z0

R

z2 − z0
· · · R

zn − z0

∣∣∣∣ =
1

2π

∫ 2π

0
log
∣∣f(Reit + z0)

∣∣ dt.
Proof. This follows from applying theorem 4.20 to the function g(z) = f(z − z0).

4.6.2 Estimate of the Number of Roots in a Disk

Proposition 4.22. For sufficiently large R > 0, the estimate |ξ(s)| ≤ RR holds in the
disk |s− 1

2 | ≤ R.

Proof. By the maximum modulus principle (theorem A.8) |ξ(s)| attains its maximum at
the boundary of the disk. Also, the function ξ(s) is entire, thus it has a power series
expansion in s = 1

2 which is of the form

ξ(s) =

∞∑
n=0

a2n

(
s− 1

2

)2n

.
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Since ξ(s) is symmetric in the line Re(s) = 1
2 it is obvious that all odd coefficients a2n+1

are zero. Also, all even coefficients a2n are positive. We will not prove this here, but a
proof can be found in [Edwards, 1974, Section 1.8]. The triangle inequality gives that

|ξ(s)| =

∣∣∣∣∣
∞∑
n=0

a2n

(
s− 1

2

)2n
∣∣∣∣∣ ≤

∞∑
n=0

a2n

∣∣∣∣s− 1

2

∣∣∣∣2n
and equality holds for s = 1

2 +R. So |ξ(s)| has its maximum at s = 1
2 +R and it suffices to

show that ξ(1
2 +R) ≤ RR for R large enough. Recall that ξ(s) = π−

s
2 Γ
(
s
2 + 1

)
(s− 1)ζ(s)

and that ζ(s) decreases to 1 if s → ∞ on the real line. For a given R > 0 choose N ∈ N
such that 1

2 +R ≤ 2N < 1
2 +R+ 2. Then

ξ

(
1

2
+R

)
≤ ξ(2N) = π−NΓ (N + 1) (2N − 1)ζ(2N)

= π−NN !(2N − 1)ζ(2N)

≤ NN2Nζ(2) = 2ζ(s)NN+1

≤ 2ζ(s)

(
1

4
+
R

2
+ 1

) 1
4

+R
2

+1

≤ RR

for sufficiently large R. Note that 2ζ(s) and 1 + 1
4 are relatively small in comparison to

R, so that indeed the last inequality holds.

Let n(R) denote the number of roots ρ of ξ(s) which are in the disk BR
(

1
2

)
(counted

with multiplicity). Now, n(R) can be estimated as in the following theorem.

Theorem 4.23. For all sufficiently large R, the estimate n(R) ≤ 3R log(R) holds.

Proof. Apply Jensen’s theorem to ξ(s) on the disk B2R

(
1
2

)
. Note that ξ(s) is entire and

if there is a zero on the boundary of the disk, then there exists a δ > 0 such that there are

no roots on the boundary of B2R+δ

(
1
2

)
. In this case continue working with the slightly

larger disk. The centre of the disk is at s = 1
2 , so Jensen’s theorem for arbitrary disks

(corollary 4.21) gives

log

∣∣∣∣∣ξ
(

1

2

)
2R

ρ1 − 1
2

· · · 2R

ρn − 1
2

∣∣∣∣∣ = log ξ

(
1

2

)
+

∑
|ρ− 1

2
|≤2R

log
2R

|ρ− 1
2 |

=
1

2π

∫ 2π

0
log

∣∣∣∣ξ(2Reit +
1

2

)∣∣∣∣ dt.
Using proposition 4.22 the last integral can be bounded by

1

2π

∫ 2π

0
log
∣∣(2R)2R

∣∣ dt = 2R log(2R).

Consider the roots ρ inside the disk with radius R instead of 2R. For these roots it holds
that

log
2R

|ρ− 1
2 |
≥ log

2R

R
= log(2).
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Hence,

n(R) log(2) =
∑

|ρ− 1
2
|≤R

log(2) ≤
∑

|ρ− 1
2
|≤R

log
2R

|ρ− 1
2 |

≤
∑

|ρ− 1
2
|≤2R

log
2R

|ρ− 1
2 |
≤ 2R log(2R)− log ξ

(
1

2

)
.

Dividing by log(2) gives

n(R) ≤ 2

log(2)
R log(R) + 2R−

log ξ
(

1
2

)
log(2)

≤ 2R

(
log(R)

log(2)
+ 1

)
≤ 3R log(R)

for sufficiently large R. Note that 1
log(2) <

3
2 and thus log(R)

log(2) + 1 < 3
2 log(R) for R large

enough.

4.6.3 Convergence of the Product

The product ∏
ρ

(
1− s

ρ

)
is taken over all roots ρ where ρ and 1− ρ are paired. So the product can be rewritten as∏

ρ

(
1− s

ρ

)
=

∏
Im ρ>0

(
1− s

ρ

)(
1− s

1− ρ

)
=

∏
Im ρ>0

(
1− s(1− s)

ρ(1− ρ)

)
.

Note that ζ(s) is nonzero on [0, 1) so that there are no roots ρ for Im(ρ) = 0. The infinite
product converges if ∑

Im ρ>0

1

|ρ(1− ρ)|

converges (see appendix B). For all roots ρ the following inequality holds

1

|ρ(1− ρ)|
=

1∣∣(ρ− 1
2)2 − 1

4

∣∣ < C
1∣∣ρ− 1

2

∣∣2 ,
where C is a constant. Hence, it suffices to show that

∑
Im ρ>0

∣∣ρ − 1
2

∣∣−2
converges. Of

course, this converges if the sum over all ρ ∈ C converges. This is a consequence the next
theorem.

Theorem 4.24. For a given ε > 0 the series
∑

ρ

∣∣ρ− 1
2

∣∣−(1+ε)
converges, where ρ are all

roots ρ ∈ C of ξ(ρ) = 0.

Proof. Label the roots ρ1, ρ2, . . . in order of increasing |ρ − 1
2 |. Let R1, R2, . . . be the

sequence of positive real numbers which are implicitly defined by 4Rn log(Rn) = n for all
n ∈ N. By theorem 4.23 it follows that the number of roots in the disk |s− 1

2 | ≤ Rn can be
bounded by 3Rn log(Rn) if Rn is large enough for the estimate to work. Note that from
the equation defining Rn it follows that n

4 = Rn log(Rn). Combining this gives

n(Rn) ≤ 3Rn log(Rn) =
3n

4
.
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So there are at most 3n
4 roots in the |s − 1

2 | ≤ Rn, which implies that obviously the nth
root does not lie in the disk, thus |ρn − 1

2 | > Rn. Now,

∑
n

1∣∣ρn − 1
2

∣∣1+ε ≤
∑
n

1

R1+ε
n

=
∑
n

(
4 log(Rn)

)1+ε

n1+ε

≤ 41+ε
∑
n

log1+ε(n)

n1+ε
,

since log(n) = log(4) + log(Rn) + log log(Rn) ≥ log(Rn). For every a > 0 there exists
N ∈ N such that na > loga(n) for all n ≥ N . Let a = ε

2(1+ε) , then

∑
n

1∣∣ρn − 1
2

∣∣1+ε ≤ 41+ε
∑
n

log1+ε(n)

n1+ε
≤ 41+ε

∑
n

n
ε(1+ε)
2(1+ε)

n1+ε

= 41+ε
∑
n

1

n1+ ε
2

= 41+εζ(1 +
ε

2
) <∞.

This shows that the product converges for all ε > 0.

4.6.4 Even Entire Functions

Lemma 4.25. Let f(s) be analytic on BR(0). Let f(0) = 0 and define M = max|s|=R Re[f(s)].

Let r < R, then |f(s)| ≤ 2r M
R−r for all |s| ≤ r.

Proof. Consider φ(s) = f(s)
s(2M−f(s)) and let the real and imaginary part of f be denoted

by u and v respectively. The real part of an analytic function is harmonic, hence by the
maximum principle the maximum is taken at the boundary (theorem A.10 and A.11).
Thus Re[f(s)] = u(s) ≤ M for all s ∈ BR(0). This also implies that u(s) ≤ |2M − u(s)|
on BR(0). Now, for |s| = R

|φ(s)| =
(
u2 + v2

) 1
2

|s|
(
(2M − u)2 + v2

) 1
2

≤
(
u2 + v2

) 1
2

R
(
u2 + v2

) 1
2

=
1

R
.

So |φ(s)| ≤ 1
R for all s in the disk. Rewriting f(s) in terms of φ(s) gives

f(s) =
2Msφ(s)

1 + sφ(s)
.

For |s| = r < R the modulus of f can be bounded:

|f(s)| =
∣∣∣∣ 2Msφ(s)

1 + sφ(s)

∣∣∣∣ ≤ 2M |sφ(s)|∣∣1− |sφ(s)|
∣∣ ≤ 2M r

R

1− r
R

=
2Mr

R− r
.

According to the maximum modulus principle, the inequality holds for all |s| ≤ r.

Theorem 4.26. Let f(s) be an even entire function, i.e. f(s) = f(−s). If for every
ε > 0 there exists R > 0 such that Re[f(s)] < ε|s|2 for all s with |s| ≥ R. Then, f(s) is
constant.

Proof. Let ε > 0 and let f(s) satisfy the conditions of the theorem. Also, f(s) + c with
c ∈ C satisfies the conditions. So without loss of generality it can be assumed that

56



Chapter 4. Explicit Formula for the Prime Counting Function

c = −f(0) and thus that f(0) = 0. Since f is entire, it has a power series expansion
f(s) =

∑∞
n=0 ans

n with a0 = 0 that converges on whole C. All the other an satisfy

an =
1

2πi

∫
|s|=R

2

f(s)

sn+1
ds

according to theorem A.5 and A.19. Thus,

|an| =

∣∣∣∣∣ 1

2πi

∫
|s|=R

2

f(s)

sn+1
ds

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣∣∣ f
(

1
2Re

it
)(

1
2Re

it
)n+1

1

2
iReit

∣∣∣∣∣ dt =
1

2π

∫ 2π

0

∣∣f(1
2Re

it
)∣∣

Rn
2ndt.

Note that Re[f(s)] < ε|s|2 = εR2 on |s| = R and thus M = max|s|=R Re[f(s)] = εR2.
Using lemma 4.25 gives

2n

Rn

∣∣∣∣f (1

2
Reit

)∣∣∣∣ ≤ 2n

Rn
2εR2

(
1
2R
)

R− 1
2R

= 2n+1ε
1
2R

3

Rn+1 − 1
2R

n+1

= 2n+1ε
1
2

1
2R

n−2
= 2n+1ε

1

Rn−2
.

Hence,
1

2π

∫ 2π

0

∣∣f(1
2Re

it
)∣∣

Rn
2ndt ≤ 1

2π

∫ 2π

0

2n+1ε

Rn−2
dt =

2n+1ε

Rn−2

n≥2
≤ 2n+1ε.

For n ≥ 2 the modulus of the coefficient an can be bounded by 2n+1ε where ε > 0 is
arbitrary, hence an = 0 for n ≥ 2. Also, it was assumed that a0 = 0, this means that
f is linear: f(s) = a1s. From the fact that f(s) is even, it follows that f(s) must be
constant.

4.6.5 Product Formula

Using the results obtained in the preceding sections, the product formula can be proven.
Define for s ∈ C the function

F (s) :=
ξ(s)∏

ρ

(
1− s− 1

2

ρ− 1
2

) ,
which is entire. The only possible singularities are at s = ρ, but these are canceled by the
zeros in the numerator. Theorem 4.26 will be used to show that the function logF

(
s− 1

2

)
is constant and with this the product formula of ξ(s) can be proved.

Conditions of theorem 4.26

The function F (s) is entire and has no zeros, so the logarithm is well-defined by logF (s) =

logF (0) +
∫ s

0
F ′(z)
F (z) dz. The condition that the real part is bounded is stated in the next

theorem.

Theorem 4.27. Let ε > 0. Then

Re logF (s) ≤
∣∣∣∣s− 1

2

∣∣∣∣1+ε

for all sufficiently large |s− 1
2 |.
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Proof. Let R be given and write

Re logF (s) = uR(s) + vR(s)

with

uR(s) := Re log
ξ(s)∏

|ρ− 1
2
|≤2R

(
1− s− 1

2

ρ− 1
2

) and

vR(s) := Re log
1∏

|ρ− 1
2
|>2R

(
1− s− 1

2

ρ− 1
2

) .
Both uR and vR are defined and analytic for all s ∈ C except for s = ρ if |ρ − 1

2 | > 2R.
For these points note that uR goes to −∞ as s → ρ since limx↓0 log(x) = −∞ and that
vR goes to ∞ as s→ ρ.

First, consider uR where the product of the denominator is taken over all ρ such that
|ρ− 1

2 | ≤ 2R. On the circle |s− 1
2 | = 4R it holds that∣∣∣∣∣1− s− 1

2

ρ− 1
2

∣∣∣∣∣ ≥
∣∣∣∣∣1−

∣∣∣∣s− 1
2

ρ− 1
2

∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣1− 4R

2R

∣∣∣∣ = 1.

So the factors in the denominator are greater than 1, hence

uR(s) ≤ Re log ξ(s) = log |ξ(s)|

and using proposition 4.22 gives

uR(s) ≤ log |ξ(s)| ≤ log
[
(4R)4R

]
= 4R log(4R) ≤ R1+ε

if R is large enough, that is if 4 log 4R < Rε.
For ρ in the disk |s − 1

2 | ≤ 2R, the function uR is analytic, but for ρ in the annulus
2R < |s− 1

2 | ≤ 4R there is a problem because uR is not analytic in these points. To avoid
this problem, a little neighborhood around s = ρ is deleted such that the function remains
analytic.
Note that uR is harmonic, since it is the real part of an analytic function. By the maximum
principle the maximum is attained at the boundary, which is thus the circle |s−1

2 | = 4R and
the boundaries of the little neighborhoods around s = ρ in the annulus 2R < |s− 1

2 | ≤ 4R.
Recall that around singularities the value of uR is near −∞, so that the maximum must be
attained at the circle |s− 1

2 | = 4R. To conclude, uR ≤ R1+ε on the whole disk |s− 1
2 | ≤ 4R

and thus in particular on the circle |s− 1
2 | = R.

Now, consider vR where the product is over all ρ such that |ρ − 1
2 | > 2R. If x ∈ C

satisfies |x| ≤ 1
2 , then

Re log
1

1− x
= −Re log(1− x) = Re

∫ x

0

1

1− t
dt ≤

∣∣∣∣∫ x

0

1

1− t
dt

∣∣∣∣ ≤ |x| max
t∈[0,x]

1

|1− t|
= 2|x|.

(4.17)
Also, if ρ and 1− ρ are paired, then

∏
ρ

(
1−

s− 1
2

ρ− 1
2

)
=

∏
Im ρ>0

(
1−

s− 1
2

ρ− 1
2

)(
1 +

s− 1
2

ρ− 1
2

)
=

∏
Im ρ>0

(
1−

(
s− 1

2

)2(
ρ− 1

2

)2
)
. (4.18)
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Take in the next calculation Im ρ > 0, then for |s− 1
2 | = R

vR(s) = Re log
1∏

|ρ− 1
2
|>2R

(
1− s− 1

2

ρ− 1
2

)
≤ 2

∑
|ρ− 1

2
|>2R

R2

|ρ− 1
2 |2

,

where (4.17) is applicable since |ρ − 1
2 | > 2R and |s − 1

2 | = R implies that
∣∣ s− 1

2

ρ− 1
2

∣∣ ≤ 1
2 .

Now, introduce an ε by rewriting the above as

vR(s) ≤ 2
∑

|ρ− 1
2
|>2R

(
R

|ρ− 1
2 |

)1−ε(
R

|ρ− 1
2 |

)1+ε

≤ 2
∑

|ρ− 1
2
|>2R

(
1

2

)1−ε
(

R

|ρ− 1
2 |

)1+ε

,

since |ρ− 1
2 | > 2R implies that

∣∣ R
ρ− 1

2

∣∣ ≤ 1
2 . Rewriting gives

vR(s) ≤ 2εR1+ε
∑

|ρ− 1
2
|>2R

(
1

|ρ− 1
2 |

)1+ε

<∞.

The last sum is finite by theorem 4.24 and as R→∞ the sum
∑
|ρ− 1

2
|>2R

∣∣ρ− 1
2

∣∣−(1+ε) → 0.

Also, R is large so

2εR1+ε = R(2R)ε
R≥2
≤ R1+2ε.

Since, ε > 0 can be chosen arbitrarily small, it follows that for R sufficiently large and ε
small enough it holds that vR(s) ≤ R1+ε for |s− 1

2 | = R.

For both uR(s) and vR(s) it holds that they can be bounded by R1+ε. However, it was
to be shown that Re logF (s) = uR(s) + vR(s) ≤ R1+ε. Let ε decrease to ε′ and choose
R large enough such that both uR and vR can be bounded by R1+ε′ . Now, choose ε′ > 0
such that 2 ≤ Rε−ε′ , then

Re logF (s) = uR(s) + vR(s) ≤ 2R1+ε′ ≤ R1+ε

as was to be proven.

The last condition of theorem 4.26 is that logF
(
s − 1

2

)
should be even. This follows

from the fact that F
(
s− 1

2

)
is even. It need to be shown that F

(
s+ 1

2

)
= F

(
− s+ 1

2

)
.

From the functional equation ξ(s) = ξ(1− s) it is obtained that ξ
(
s+ 1

2

)
= ξ
(

1
2 − s

)
.

Writing the denominator of F (s) as (see equation (4.18))∏
Im ρ>0

(
1−

(
s− 1

2

)2(
ρ− 1

2

)2
)

and plugging in s+ 1
2 and s− 1

2 gives that

∏
Im ρ>0

(
1− s2(

ρ− 1
2

)2
)

=
∏

Im ρ>0

(
1− (−s)2(

ρ− 1
2

)2
)
.
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To conclude, both the numerator and the denominator of F
(
s − 1

2

)
are even, thus so is

F
(
s− 1

2

)
.

Applying theorem 4.26

The conditions of theorem 4.26 are satisfied, hence as a result logF
(
s− 1

2

)
is constant and

thus also logF (s) is constant. Taking the exponential gives that

ξ(s) = c
∏
ρ

(
1−

s− 1
2

ρ− 1
2

)

with c a constant. To eliminate this constant, divide by

ξ(0) = c
∏
ρ

(
1−

−1
2

ρ− 1
2

)
,

which leads to

ξ(s)

ξ(0)
=
∏
ρ

(
1−

s− 1
2

ρ− 1
2

)(
1−

−1
2

ρ− 1
2

)−1

=
∏
ρ

ρ− 1
2 −

(
s− 1

2

)
ρ− 1

2 −
(
−1

2

)
=
∏
ρ

ρ− s
ρ

=
∏
ρ

(
1− s

ρ

)
.

Finally, the desired result is found

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
.

60



Chapter 5

The Prime Number Theorem

The final goal is to prove the prime number theorem, which describes the asymptotic
distribution of the primes. In the coming chapters p will always denote a prime number
and pn will denote the nth prime number.

Theorem 5.1 (Prime Number Theorem). The relative error between π(x) and x
log x goes

to zero as x tends to infinity:

lim
x→∞

π(x)− x
log x

x
log x

= 0,

or equivalently

lim
x→∞

π(x) log(x)

x
= 1.

Recall that the prime counting function π(x) is the number of primes less than or equal
to x:

π(x) =
∑
p≤x

1 =
∑
n≤x

up(n),

where

up(n) =

{
1 if n is prime

0 otherwise
.

In this chapter we do the preparations for proving the prime number theorem in chapter
6. The first section covers Abel summation in the discrete and continuous case. Section
5.2 introduces the Chebyshev theta and psi functions. Certain relations between those
functions are proved, together with some other properties which are needed for proving
the prime number theorem. In the last section an equivalent statement of the prime
number theorem is established, which was already mentioned at the end of section 4.5.
The theory covered in this chapter mostly comes from [Apostol, 1976] and [Jameson, 2003].

5.1 Abel Summation

We start with Abel summation in the discrete case, this is also called summation by parts.
Let a(k) and f(k) be real or complex sequences. Define A(n) =

∑n
k=1 a(k) with A(0) = 0.

Proposition 5.2. Let 0 ≤ m < n. Then

n∑
k=m+1

a(k)f(k) =

n−1∑
k=m

A(k)
[
f(k)− f(k + 1)

]
+A(n)f(n)−A(m)f(m)
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and in particular,

n∑
k=1

a(k)f(k) =
n−1∑
k=1

A(k)
[
f(k)− f(k + 1)

]
+A(n)f(n).

Proof. Note that a(k) = A(k)−A(k − 1). Now,

n∑
k=m+1

a(k)f(k) =
n∑

k=m+1

[
A(k)−A(k − 1)

]
f(k)

=

n∑
k=m+1

A(k)f(k)−
n∑

k=m+1

A(k − 1)f(k)

=
n∑

k=m+1

A(k)f(k)−
n−1∑
k=m

A(k)f(k + 1) (5.1)

=
n−1∑
k=m

A(k)
[
f(k)− f(k + 1)

]
+A(n)f(n)−A(m)f(m).

The second statement corresponds to the case m = 0.

The Abel summation as in the previous proposition can be written in different forms.
Another useful form is stated in the next proposition.

Proposition 5.3. Let 0 ≤ m < n. Then

n∑
k=m

f(k)
[
a(k + 1)− a(k)

]
= f(n)a(n+ 1)− f(m)a(m)−

n∑
k=m+1

[
f(k)− f(k − 1)

]
a(k).

Proof.

n∑
k=m

f(k)
[
a(k + 1)− a(k)

]
=

n∑
k=m

f(k)a(k + 1)−
n∑

k=m

f(k)a(k)

=

n∑
k=m

f(k)a(k + 1)−
n−1∑

k=m−1

f(k + 1)a(k + 1)

= f(n)a(n+ 1)− f(m)a(m) +

n−1∑
k=m

[
f(k)− f(k + 1)

]
a(k + 1)

= f(n)a(n+ 1)− f(m)a(m) +

n∑
k=m+1

[
f(k − 1)− f(k)

]
a(k)

= f(n)a(n+ 1)− f(m)a(m)−
n∑

k=m+1

[
f(k)− f(k − 1)

]
a(k).

As the notation already suggested f(k) could also be a function of a real or complex
variable. So in the continuous version of proposition 5.2 sums will be replaced by integrals
using that f(k+1)−f(k) =

∫ k+1
k f ′(t)dt. In the continuous case, define A(x) =

∑
k≤x a(k).

This leads to the following theorem.
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Theorem 5.4. Let y < x and let f be continuously differentiable on [y, x]. Then∑
y<k≤x

a(k)f(k) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt.

Proof. Let m,n ∈ N such that n ≤ x < n+ 1 and m ≤ y < m+ 1. Then A(n) = A(x) and
A(m) = A(y). Also,

f(n) = f(x)−
∫ x

n
f ′(t)dt and f(m+ 1) = f(y) +

∫ m+1

y
f ′(t)dt.

Using this and equation (5.1) from the proof of proposition 5.2 gives∑
y<k≤x

a(k)f(k) =

n∑
k=m+1

a(k)f(k)
(5.1)
=

n∑
k=m+1

A(k)f(k)−
n−1∑
k=m

A(k)f(k + 1)

=
n−1∑

k=m+1

A(k)
[
f(k)− f(k + 1)

]
+A(n)f(n)−A(m)f(m+ 1)

=−
n−1∑

k=m+1

A(k)

∫ k+1

k
f ′(t)dt+A(n)f(n)−A(m)f(m+ 1)

=−
n−1∑

k=m+1

∫ k+1

k
A(t)f ′(t)dt+A(n)f(n)−A(m)f(m+ 1)

=−
∫ n

m+1
A(t)f ′(t)dt+A(x)f(x)−

∫ x

n
A(t)f ′(t)dt

−A(y)f(y)−
∫ m+1

y
A(t)f ′(t)dt

=A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt.

Corollary 5.5. Let f be continuously differentiable on [2, x] and a(1) = 0. Then∑
2≤k≤x

a(k)f(k) = A(x)f(x)−
∫ x

2
A(t)f ′(t)dt.

Proof. Use theorem 5.4 and note that a(1) = 0 implies that A(2) = a(2):∑
2≤k≤x

a(k)f(k) = a(2)f(2) +
∑

2<k≤x
a(k)f(k)

= a(2)f(2) +A(x)f(x)−A(2)f(2)−
∫ x

2
A(t)f ′(t)dt

= A(x)f(x)−
∫ x

2
A(t)f ′(t)dt.

5.2 Chebyshev Functions

This section introduces the Chebyshev functions θ(x) and ψ(x). We prove how these
functions relate to another and how they relate to π(x). Also, it is proved that both θ(x)
and ψ(x) have the asymptotic behavior O(x) as x→∞. This result is needed for proving
the prime number theorem in the next chapter.
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5.2.1 Chebyshev Theta Function

Definition 5.6. Define the Chebyshev theta function for x > 0 as

θ(x) :=
∑
p≤x

log(p) =
∑
n≤x

up(n) log(n).

Proposition 5.7. For all x > 0: θ(x) ≤ π(x) log(x).

Proof. Let p1, p2, ..., pn be all the prime numbers less than or equal to x. Note that in this
case π(x) = n. Then

θ(x) = log(p1) + log(p2) + ...+ log(pn) ≤ n log(x) = π(x) log(x).

Also, an exact relation between θ(x) and π(x) can be found.

Proposition 5.8. For x ≥ 2 two relations between θ(x) and π(x) are given by

θ(x) = π(x) log(x)−
∫ x

2

π(t)

t
dt (5.2)

and

π(x) =
θ(x)

log(x)
+

∫ x

2

θ(t)

t log2(t)
dt. (5.3)

Proof. Apply corollary 5.5 with a(n) = up(n) and f(n) = log(n):∑
2≤n≤x

up(n) log(n) =
∑
k≤x

up(n) log(x)−
∫ x

2

∑
n≤t

up(n)
[

log(t)
]′
dt.

and plugging in the definition for θ(x) (note that θ(x) = 0 for x < 2) and π(x) gives

θ(x) = π(x) log(x)−
∫ x

2

π(t)

t
dt.

The second identity follows corollary 5.5 with a(n) = ũp(n) and f(n) = 1
log(n) , where

ũp(n) =

{
log(n) if n is prime

0 otherwise
.

Note that the definitions of θ(x) and π(x) can be rewritten as

θ(x) =
∑
n≤x

ũp(n) and π(x) =
∑
n≤x

ũp(n)

log(n)
.

Corollary 5.5 gives

π(x) =
θ(x)

log(x)
+

∫ x

2

θ(t)

t log2(t)
dt.

For describing the behavior of θ(x) as x tends to infinity the Landau notation is used,
see appendix C.
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Theorem 5.9. The Chebyshev theta function has the asymptotic behavior θ(x) = O(x)
as x→∞.

Proof. Recall that (
n

k

)
=

n!

k!(n− k)!
.

Note that for n ∈ N (
2n

n

)
=

(2n)!

n!n!
=

1 · 2 · · · 2n
12 · 22 · · ·n2

.

Consider all the primes in the interval [n+ 1, 2n]. They only appear in the numerator, so
every p ∈ [n+ 1, 2n] divides

(
2n
n

)
. Hence, the following inequality holds

∏
n+1≤p≤2n

p ≤
(

2n

n

)
. (5.4)

Using the binomial formula, we get for all n ∈ N that

22n = (1 + 1)2n =

(
2n

0

)
+ · · ·+

(
2n

n

)
+ · · ·+

(
2n

2n

)
≥
(

2n

n

)
(5.4)

≥
∏

n+1≤p≤2n

p

= exp

 ∑
n+1≤p≤2n

log(p)

 = eθ(2n)−θ(n).

From this it follows that
eθ(2n)−θ(n) ≤ e2n log(2)

and since t 7→ et is increasing it is obtained that

θ(2n)− θ(n) ≤ 2n log(2).

In particular, if n is a power of 2, then

θ(2r+1)− θ(2r) ≤ 2r+1 log(2).

Summing over r = 0, 1, 2, . . . k gives

k∑
r=0

θ(2r+1)− θ(2r) ≤
k∑
r=0

2r+1 log(2) = 2 log(2)
1− 2k+1

1− 2
= 2k+2 log(2)− 2 log(2).

Note that the left hand side telescopes and that θ(1) = 0, so it is obtained that

θ(2k+1) ≤ 2k+2 log(2) +O(1).

Choose k such that 2k ≤ n ≤ 2k+1, then

θ(n) ≤ θ(2k+1) ≤ 2k+2 log(2) +O(1) ≤ 4n log(2) +O(1).

This proves that θ(x) = O(x).
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5.2.2 Chebyshev Psi Function

Definition 5.10. Define the Chebyshev psi function for x > 0 as

ψ(x) :=
∞∑
k=1

∑
pk≤x

log(p) =
∑
n≤x

Λ(n),

where

Λ(n) =

{
log(p) if n = pk with p prime and k ∈ N
0 otherwise

is the Von Mangoldt function.

Remark 5.11. This function ψ(x) has nothing to do with function ψ(x) that was used in
section 3.3.

The functions θ(x) and ψ(x) are related by

ψ(x) =

∞∑
k=1

∑
p≤x

1
k

log(p) =
∞∑
k=1

θ(x
1
k ).

Note that the last infinite sum is finite since θ(x
1
k ) = 0 if x

1
k < 2. Hence,

ψ(x) =
∑

k≤log2(x)

θ(x
1
k ). (5.5)

Similar to proposition 5.7, an upper bound for ψ(x) can be obtained.

Proposition 5.12. For all x > 0: ψ(x) ≤ π(x) log(x).

Proof. Let p1, p2, ..., pn be all the prime numbers less than or equal to x. For all j ≤ n
define kj = maxpkj≤x

k which is the number of prime powers less than or equal to x

corresponding to pj . Note that each pkj contributes log(pj) to ψ(x). Hence,

ψ(x) = k1 log(p1) + ...+ kn log(pn).

Also, for every j ≤ n: kj log(pj) = log(p
kj
j ) ≤ log(x). Thus,

ψ(x) =

n∑
j=1

kj log(pj) ≤ n log(x) = π(x) log(x).

Before continuing with the proof that ψ(x) = O(x) introducing another formula for
ψ(x) is required. Therefore, we need the following definition.

Definition 5.13. For x > 0 write x = [x] + {x}, where [x] ∈ N is the largest integer
smaller than or equal to x and {x} ∈ [0, 1) is the decimal part of x.

Proposition 5.14. Another expression for ψ(x) is

ψ(x) =
∑
p≤x

[
log(x)

log(p)

]
log(p). (5.6)
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Proof. Consider, as in the proof of proposition 5.12

ψ(x) =
n∑
j=1

kj log(pj),

where kj is the largest possible k such that pkj ≤ x. Note again that

p
kj
j ≤ x ⇐⇒ kj log(pj) ≤ log(x) ⇐⇒ kj ≤

log(x)

log(pj)
.

Since kj is the largest integer such that p
kj
j ≤ x, it is obtained that

kj =

[
log(x)

log(pj)

]
,

which gives the desired expression.

Theorem 5.15. The Chebyshev psi function has the asymptotic behavior ψ(x) = O(x) as
x→∞.

Proof. Note that

ψ(x) =
∑
pk≤x

log(p) =
∑
p≤x

log(p)

︸ ︷︷ ︸
=θ(x)

+
∑
p2≤x

log(p) +
∑
p3≤x

log(p) + · · · .

It is proven in theorem 5.9 that θ(x) = O(x), so to prove ψ(x) = O(x) it remains to show
that the sum of the terms in ψ(x) corresponding to k ≥ 2 is not larger than O(x). Recall
that

ψ(x) =
∑
p≤x

[
log(x)

log(p)

]
log(p)

and the sum equals θ(x) if
[

log(x)
log(p)

]
= 1. So for the terms corresponding to k ≥ 2, the case[

log(x)
log(p)

]
> 1 should be studied. This is equivalent to log(x)

log(p) ≥ 2, since [ · ] ∈ N. Also,

log(x)

log(p)
≥ 2 ⇐⇒ log(x) ≥ log(p2) ⇐⇒ x ≥ p2 ⇐⇒

√
x ≥ p.

So the terms in ψ(x) with
[

log(x)
log(p)

]
> 1 only occur if p ≤

√
x, hence their contribution to

ψ(x) can be bounded:∑
p≤
√
x

[
log(x)

log(p)

]
log(p) ≤

∑
p≤
√
x

log(x)

log(p)
log(p) =

∑
p≤
√
x

log(x) = π(
√
x) log(x) ≤

√
x log(x).

Hence,
ψ(x) = O(x) +O

(√
x log(x)

)
= O(x),

which proves the statement.
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5.3 Equivalent Form of the Prime Number Theorem

Instead of proving the prime number theorem using π(x), another equivalent form will be
proven. This equivalence is in the following theorem.

Theorem 5.16. The following are equivalent:

(i) lim
x→∞

π(x) log(x)

x
= 1,

(ii) lim
x→∞

θ(x)

x
= 1,

(iii) lim
x→∞

ψ(x)

x
= 1.

Proof. (i) =⇒ (ii):
Rewriting equation (5.2) from proposition 5.8 gives

θ(x)

x
=
π(x) log(x)

x
− 1

x

∫ x

2

π(t)

t
dt.

So it suffices to show that

1

x

∫ x

2

π(t)

t
dt→ 0 as x→∞.

Note that (i) is equivalent to

lim
x→∞

π(x)
x −

1
log x

1
log x

= 0.

So (see appendix C for the little-o notation)

π(x)

x
− 1

log(x)
= o

(
1

log(x)

)
and thus

π(x)

x
= O

(
1

log(x)

)
,

which means that there exists an M > 0 and x1 > 0 such that π(t)
t ≤M

1
log(t) for all t ≥ x1.

Now if t ≥ x1, then
1

x

∫ x

x1

π(t)

t
dt ≤ 1

x

∫ x

x1

M
1

log(t)
dt

and the integral from 2 to x1 is finite, which means that

1

x

∫ x

2

π(t)

t
dt = O

(
1

x

∫ x

2

1

log(t)
dt

)
.

It remains to bound the last integral:∫ x

2

1

log(t)
dt =

∫ √x
2

1

log(t)︸ ︷︷ ︸
≤1

dt+

∫ x

√
x

1

log(t)︸ ︷︷ ︸
takes maximum at

√
x

dt

≤
∫ √x

2
1 · dt+

1

log
√
x

∫ x

√
x

1 · dt

=
√
x− 2 +

x−
√
x

log
√
x

= O
(√
x
)

+O
(

x

log
√
x

)
= O

(
x

log
√
x

)
.
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Now,

lim
x→∞

1

x

∫ x

2

π(t)

t
dt ≤ lim

x→∞
O
(

1

x

x

log
√
x

)
= lim

x→∞
O
(

1

log
√
x

)
= 0,

which proves (i) =⇒ (ii).
For (ii) =⇒ (i) the proof is similar: rewriting equation (5.3) from proposition 5.8 gives

π(x) log(x)

x
=
θ(x)

x
+

log(x)

x

∫ x

2

θ(t)

t log2(t)
dt

and it remains to show that the last term goes to zero. Note that (ii) implies that
θ(x) = O(x), hence

log(x)

x

∫ x

2

θ(t)

t log2(t)
dt = O

(
log(x)

x

∫ x

2

dt

log2(t)

)
and ∫ x

2

dt

log2(t)
=

∫ √x
2

dt

log2(t)
+

∫ x

√
x

dt

log2(t)

≤
√
x− 2 +

x−
√
x

log2√x

= O
(√
x
)

+O
(

x

log2√x

)
= O

(
x

log2√x

)
.

Now,

lim
x→∞

log(x)

x

∫ x

2

θ(t)

t log2(t)
dt ≤ lim

x→∞
O
(

log(x)

log2√x

)
= lim

x→∞
O
(

4

log(x)

)
= 0,

which proves (ii) =⇒ (i).
It remains to show (ii) ⇐⇒ (iii). Use that

0 ≤ ψ(x)− θ(x) =
∑

k≤log2(x)

θ(x
1
k )− θ(x) =

∑
2≤k≤log2(x)

θ(x
1
k )

and that θ(x) ≤ x log(x) (which follows from proposition 5.7).

0 ≤ ψ(x)− θ(x) ≤
∑

2≤k≤log2(x)

x
1
k log

(
x

1
k

)
≤ log2(x)

√
x log

√
x

=
log(x)

log(2)

√
x

2
log x

=

√
x log2(x)

2 log(2)
.

Hence,

0 ≤ lim
x→∞

(
ψ(x)

x
− θ(x)

x

)
≤ lim

x→∞

log2(x)

2 log(2)
√
x

= 0,

which proves that ψ(x)
x and θ(x)

x will have the same limit if it exists.
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Proof of the Prime Number
Theorem

At the end of section 4.5 we discussed how the first proof of the prime number theorem
was found. This was done in 1896 independently by Hadamard and de la Vallée-Poussin.
The proof was rather intricate since it used the explicit formula for the Chebyshev psi
function. Finding an explicit formula for π(x) was a lot of work as we have noticed in
chapter 4 and the formula for ψ(x) is derived in similar manner. Hence, we will not go
through the trouble of finding another explicit formula. Luckily, the proof of the prime
number theorem has been fine tuned and for the proof given here, nothing more difficult
than Cauchy’s integral formula is needed.

Several proofs of the prime number theorem have been found after the first one. One of
the proofs was elementary (not making use of complex analysis) and was found by Selberg
and Erdős in 1948. Other proofs relied on the zeta function and a Tauberian theorem.
The precise meaning of a Tauberian theorem is explained in section 6.2. The Tauberian
theorem that was required for proving the prime number theorem (the Wiener-Ikehara
theorem) was difficult to prove and has many more applications. However, in 1980, Don-
ald Newman found a weaker version of the general Wiener-Ikehara theorem which also
leads to the proof of the equivalent statement that limx→∞

ψ(x)
x = 1 as in theorem 5.16 at

the end of the previous chapter.

The weaker Tauberian theorem that Newman proved will be given in section 6.3. This
theorem will lead to the following corollary as is described in [Korevaar, 1982] and [Ash
and Novinger, 2007].

Corollary. Let f(x) be a nonnegative, piecewise continuous and nondecreasing function
on [1,∞) such that f(x) = O(x) and that the integral

g(z) = z

∫ ∞
1

f(x)x−z−1dx

exists for Re(z) > 1 and defines an analytic function. Assume that for some constant c

g(z)− c

z − 1

has an analytic extension to a neighborhood of the line Re(z) = 1. Then

f(x)

x
→ c as x→∞.
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This corollary is proved in section 6.4. Obviously, we want to apply it to f(x) = ψ(x).
All the necessary conditions for applying this corollary will be established in the first
section. Combining the result of this corollary with theorem 5.16 will complete the proof
of the prime number theorem in section 6.5.

6.1 The Zeta Function and ψ(x)

For applying the corollary to f(x) = ψ(x) the integral

g(z) = z

∫ ∞
1

ψ(x)x−z−1dx

is needed. In theorem 6.2 an expression for this transform is proved. First, we need the
following lemma. Recall that the Von Mangoldt function was defined for n ∈ N as

Λ(n) =

{
log(p) if n = pk with p prime and k ∈ N
0 otherwise

.

Lemma 6.1. For Re(s) > 1 it holds that

−ζ
′(s)

ζ(s)
=

∞∑
k=1

k−sΛ(k).

Proof. Recall the Euler product formula for Re(s) > 1:

ζ(s) =
∏

p prime

1

1− p−s
,

from which it follows that the zeta function has no zeros for Re(s) > 1 (see remark 3.4).
Define fn(s) = (1− p−sn )−1 which is analytic for Re(s) > 1. Then

∑∞
n=1 fn − 1 converges

normally and theorem B.2 gives that

ζ ′(s)

ζ(s)
=
∑
p

[(
1− p−s

)−1
]′

(
1− p−s

)−1 =
∑
p

−
(
1− p−s

)−2
p−s log(p)(

1− p−s
)−1

= −
∑
p

p−s log(p)

1− p−s
= −

∑
p

log(p)p−s
∞∑
k=0

p−sk

= −
∑
p

log(p)

∞∑
k=1

p−sk = −
∞∑
k=1

∑
p

log(p)
(
pk
)−s

= −
∞∑
n=1

Λ(n)n−s,

where interchanging the order of summation is allowed since the iterated sum converges
absolutely for Re(s) > 1:

∑
p

∞∑
k=1

∣∣∣p−sk log(p)
∣∣∣ =

∑
p

∞∑
k=1

p−Re(s)k log(p) =
∑
p

log(p)

pRe(s) − 1
≤
∞∑
n=1

log(n)

nRe(s) − 1
.

Let ε > 0 be small, then for n large enough we have that log(n) < nε. Hence,

log(n)

nRe(s) − 1
<

1

nRe(s)−ε
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and the sum
∞∑
n=1

1

nRe(s)−ε

converges for 0 < ε < Re(s)− 1.

Theorem 6.2. For Re(s) > 1

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)x−s−1dx.

Proof. Note that by definition 5.10 of ψ(x)

Λ(k) =
∑
m≤k

Λ(m)−
∑

m≤k−1

Λ(m) = ψ(k)− ψ(k − 1).

Hence,

−ζ
′(s)

ζ(s)
=
∞∑
k=1

k−sΛ(k) =
∞∑
k=1

k−s
(
ψ(k)− ψ(k − 1)

)
.

Now, look at the partial sums and apply proposition 5.3 with m = 1, f(k) = k−s and
a(k + 1) = ψ(k). Also, note that a(1) = ψ(0) = 0.

n∑
k=1

k−s
(
ψ(k)− ψ(k − 1)

)
= n−sψ(n)−

n∑
k=2

ψ(k − 1)
(
k−s − (k − 1)−s

)
= n−sψ(n)−

n−1∑
k=1

ψ(k)
(
(k + 1)−s − k−s

)
= n−sψ(n) +

n−1∑
k=1

ψ(k)
(
k−s − (k + 1)−s

)
.

From proposition 5.12 follows that ψ(x) ≤ x log(x), hence for Re(s) > 1

ψ(n)n−s ≤ n log(n)

ns
→ 0 as n→∞.

Use the integral ∫ k+1

k
x−s−1dx = − 1

s
x−s
∣∣∣∣k+1

k

= −1

s
(k + 1)−s +

1

s
k−s

for the remaining sum:

n∑
k=1

ψ(k)
(
(k)−s − (k + 1)−s

)
=

n∑
k=1

ψ(k)s

∫ k+1

k
x−s−1dx

=

n∑
k=1

s

∫ k+1

k
ψ(x)x−s−1dx

= s

∫ n+1

1
ψ(x)x−s−1dx,

where in the second step ψ(k) can be taken into the integral because ψ(x) is constant on
[k, k + 1). Taking limits as n→∞ finally gives that

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)x−s−1dx for Re(s) > 1.
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Another condition of the corollary is now that

−ζ ′(s)
ζ(s)

− c

s− 1

should be analytic is a neighborhood of the line Re(s) = 1 for some constant c. Therefore,
an analytic continuation of the zeta function is needed. Also, the zeta function may not
be zero on this line. These two properties are proved in the rest of this section.

Theorem 6.3. The function ζ(s)− 1
s−1 has an analytic continuation to Re(s) > 0.

Proof. First note that for Re(s) > 0∫ ∞
1

x−sdx =
1

1− s
x1−s

∣∣∣∣∞
1

=
1

s− 1
(6.1)

and ∫ x

n
u−s−1du = −1

s
u−s
∣∣∣∣x
n

= −1

s
x−s +

1

s
n−s. (6.2)

Now, for Re(s) > 1

ζ(s)− 1

s− 1

(6.1)
=

∞∑
n=1

1

ns
−
∫ ∞

1

1

xs
dx

=

∞∑
n=1

∫ n+1

n

(
1

ns
− 1

xs

)
dx (6.3)

and this series converges normally for Re(s) > 0:∣∣∣∣∫ n+1

n

(
1

ns
− 1

xs

)
dx

∣∣∣∣ (6.2)
=

∣∣∣∣∫ n+1

n

∫ x

n

s

us+1
dudx

∣∣∣∣
≤ 1 · max

n≤x≤n+1

∣∣∣∣∫ x

n

s

us+1
du

∣∣∣∣
≤ max

n≤x≤n+1

∣∣∣∣(x− n) max
n≤u≤x

∣∣∣ s

us+1

∣∣∣∣∣∣∣︸ ︷︷ ︸
increasing, so maximum at x=n+1

=
(
(n+ 1)− n

)
max

n≤u≤n+1

∣∣∣ s

us+1

∣∣∣
= max

n≤u≤n+1

∣∣∣ s

us+1

∣∣∣︸ ︷︷ ︸
decreasing for Re(s)>0

=
|s|

nRe(s)+1

and
∞∑
n=1

|s|
nRe(s)+1

converges for Re(s) > 0. Note that the integral in equation (6.3) is analytic for Re(s) > 0
by theorem A.6. Hence, the series in (6.3) is a normally convergent series of analytic
functions on the right half-plane Re(s) > 0. By theorem A.18 it follows that

ζ(s)− 1

s− 1

is analytic for Re(s) > 0.
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Remark 6.4. This theorem could also be proved using the analytic continuation of the
zeta function for Re(s) > 0 as derived in chapter 3 and the fact that the zeta function has
a simple pole in s = 1. In chapter 3 we got an expression for the analytic continuation
on the right half-plane using the eta function. However, as the above proof shows, it also
possible to prove the existence of the analytic continuation only.

Theorem 6.5. The zeta function has no zeros on the line with real part 1, i.e. ζ(1+it) 6= 0
for all t ∈ R.

Proof. For a fixed real number t 6= 0 introduce the function

φ(σ) = ζ3(σ)ζ4(σ + it)ζ(σ + 2it)

for σ > 1. From the Euler product formula it follows that for Re(s) > 1

log
∣∣ζ(s)

∣∣ = −
∑
p

log
∣∣1− p−s∣∣ = −Re

(∑
p

Log
(
1− p−s

))
,

where it is used that for w ∈ C \ {s : s ≤ 0}

Re
(
Log(w)

)
= Re

(
log |w|+ iArg(w)

)
= log |w|.

Now, using the power series for the logarithm

Log(1− w) = −
∞∑
n=1

wn

n
for |w| < 1

gives that

log
∣∣ζ(s)

∣∣ = Re

(∑
p

∞∑
n=1

p−ns

n

)
.

Hence,

log
∣∣φ(σ)

∣∣ = 3 log
∣∣ζ(σ)

∣∣+ 4 log
∣∣ζ(σ + it)

∣∣+ log
∣∣ζ(σ + 2it)

∣∣
=
∑
p

∞∑
n=1

p−nσ

n
Re
(
3 + 4p−int + p−2int

)
=
∑
p

∞∑
n=1

p−nσ

n
Re
(

3 + 4e−int log(p) + e−2int log(p)
)

=
∑
p

∞∑
n=1

p−nσ

n

(
3 + 4 cos

(
nt log(p)

)
+ cos

(
2nt log(p)

))
≥ 0,

since that for θ ∈ R

3 + 4 cos(θ) + cos(2θ) = 3 + 4 cos(θ) + 2 cos2(θ)− 1

= 2
(
1 + 2 cos(θ) + cos2(θ)

)
= 2
(
1 + cos(θ)

)2 ≥ 0.

The exponential function is increasing, hence log |φ(σ)| ≥ 0 implies that for σ > 1∣∣φ(σ)
∣∣ =

∣∣ζ(σ)
∣∣3∣∣ζ(σ + it)

∣∣4∣∣ζ(σ + 2it)
∣∣ ≥ 1. (6.4)
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To prove that ζ(1+it) 6= 0 for every t ∈ R it suffices to consider t 6= 0, because at t = 0 the
zeta function has a pole. Assume that ζ(1 + it) = 0 for some t ∈ R and rewrite equation
(6.4) as ∣∣(σ − 1)ζ(σ)

∣∣3 ∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4 ∣∣ζ(σ + 2it)
∣∣ ≥ 1

σ − 1
for σ > 1. (6.5)

Now letting σ ↓ 1 gives that
∣∣(σ− 1)ζ(σ)

∣∣→ 1 since ζ(s) has a simple pole with residue 1
at s = 1 (see section 3.2). Also,

∣∣ζ(σ+ 2it)
∣∣→ ∣∣ζ(1 + 2it)

∣∣. Note that the zeta function is
analytic for Re(s) > 0, hence it is differentiable in 1 + it, which gives that∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣ =

∣∣∣∣ζ(σ + it)− ζ(1 + it)

σ − 1

∣∣∣∣→ ∣∣ζ ′(1 + it)
∣∣ as σ ↓ 1.

Now, in equation (6.5) the left hand side tends to
∣∣ζ ′(1 + it)

∣∣4∣∣ζ(1 + 2it)
∣∣ as σ ↓ 1, but the

right hand side goes to infinity as σ ↓ 1. This gives a contradiction, hence ζ(1 + it) 6= 0
for all t ∈ R.

6.2 Abelian and Tauberian Theorems

Consider the series of complex numbers
∑∞

n=0 cn. We call this series convergent (or

summable) if the sequence of partial sums
(∑k

n=0 cn
)∞
k=0

converges to some limit. Obvi-
ously, not all series are convergent, take for example the series

∞∑
n=0

(−1)n,

where the sequence of partial sums is 1, 0, 1, 0, . . . . However, it would be natural to assign
the value 1

2 to this series, which is the average of the partial sums. In general, define the
sequence

σk =
s0 + s2 + · · ·+ sk−1

k
,

where si =
∑i

n=0 cn is the ith partial sum. Now, if the sequence (σk)
∞
k=0 converges, then

we call the series
∑∞

n=0 cn Cesàro summable. Note that ‘ordinary’ summability implies
Cesàro summability.

There is an even more general way to sum series: Abel summability (not to be confused
with the Abel summation in section 5.1). A series is Abel summable if

lim
r↑1

∞∑
n=0

cnr
n

exists. If a series is summable, then it is also Abel summable (this is called Abel’s theorem).
Moreover, if a series is Cesàro summable, then it is also Abel summable. It follows that

ordinary summable =⇒ Cesàro summable =⇒ Abel summable.

The theorems that show that a summation method gives the same sum as ordinary summa-
bility are called Abelian theorems. However, the implications above cannot be reversed
without any further conditions. Theorems that give conditions under which the implica-
tions can be reversed are called Tauberian theorems.
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We considered series to introduce Tauberian theorems, but there is also a continuous
analogue with integrals instead of sums. In general, Tauberian theorems state the con-
ditions under which ‘ordinary’ convergence (of sums or integrals) can be deduced from
some weaker type of convergence. The Tauberian theorem that will be proved in the
next section states that under certain conditions the convergence of

∫∞
0 F (t)e−ztdt for all

Re(z) > 0 implies that the improper integral
∫∞

0 F (t)dt converges.

Remark 6.6. There are more ways to assign a value to a series than the three methods
discussed above. Note that

∑∞
n=1 n is not convergent in the sense of any of these three

summability methods. However, using the analytic continuation of the zeta function we
can link

∑∞
n=1 n with ζ(−1) and the functional equation of the zeta function (3.6) gives

that

ζ(−1) = Γ(2)2(2π)−2 sin

(
−π
2

)
ζ(2) = − 1

2π2
· π

2

6
= − 1

12
.

6.3 A Tauberian Theorem

Theorem 6.7. Let F (t) be bounded and piecewise continuous on [0,∞), so that the Laplace
transform

G(z) =

∫ ∞
0

F (t)e−ztdt

is well-defined and analytic throughout the open half-plane Re(z) > 0. Suppose that G(z)
can be continued analytically to a neighborhood of every point on the imaginary axis,
Re(z) = 0. Then ∫ ∞

0
F (t)dt

exists as an improper integral and equals G(0).

Proof. Let F be bounded and piecewise continuous on [0,∞) and the Laplace transform G
is defined and analytic for Re(z) > 0. Also, assume that G has been extended analytically
to a neighborhood of Re(z) = 0, thus G is analytic on a domain U ⊃ {z : Re(z) ≥ 0}. The
function F (t) is bounded, so without loss of generality it will be assumed that

|F (t)| ≤ 1, for all t > 0. (6.6)

Define for 0 < λ <∞

Gλ(z) =

∫ λ

0
F (t)e−ztdt.

Note that by theorem A.6, Gλ(z) is analytic on C. The idea is to prove

lim
λ→∞

∫ λ

0
F (t)dt = G(0), or equivalently G(0)−Gλ(0)→ 0 as λ→∞ (6.7)

using the Cauchy integral formula. The path over which is integrated cannot be a cir-
cle around 0. A circle might go too far into the left half-plane and G(z) might not be
analytic there. Instead, for each R > 0, let δ > 0 be large enough such that G is an-
alytic inside and on the closed contour CR. This contour consists of an arc of a circle
with radius R and a vertical segment at Re(z) = −δ, see figure 6.1. The contour CR is
split in two parts: C+

R is the part of CR with Re(z) > 0 and C−R is the part with Re(z) < 0.
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Re(z)

Im(z)

−δ RO

C+
R

C−R

CR = C+
R ∪ C

−
R

Figure 6.1: The closed contour CR.

Cauchy’s integral formula (theorem A.5) now gives that

G(0)−Gλ(0) =
1

2πi

∫
CR

G(z)−Gλ(z)

z
dz. (6.8)

The goal is to estimate this integral as λ → ∞. First, try to estimate the integral using
an ML-bound. Thus, for x = Re(z) > 0

|G(z)−Gλ(z)| =
∣∣∣∣∫ ∞
λ

F (t)eztdt

∣∣∣∣ (6.9)

≤
∫ ∞
λ
|F (t)|

∣∣ezt∣∣ dt
(6.6)

≤
∫ ∞
λ

e−xtdt

=
e−xt

−x

∣∣∣∣∞
t=λ

Re(z)>0
=

e−λRe(z)

Re(z)
(6.10)

and for x = Re(z) < 0 (the reason that only Gλ is estimated will become clear later)

|Gλ(z)| =
∣∣∣∣∫ λ

0
F (t)e−ztdt

∣∣∣∣
≤
∫ λ

0
e−xtdt

=
e−xt

−x

∣∣∣∣λ
t=0

=
e−λRe(z) − 1

−Re(z)
≤ e−λRe(z)

−Re(z)
. (6.11)

The domain U where G(z) is analytic contains the line Re(z) = 0. For values of z near this
line both estimates blow up. To avoid this problem, the factor 1

z in (6.8) will be replaced
by 1

z + z
R2 . Note that if |z| = R, then

1

z
+

z

R2
=
R2 + z2

zR2
=
|z|2 + z2

zR2
=
zz̄ + z2

zR2
=

2Re(z)

R2
. (6.12)
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In this way the 1
Re(z) in (6.10) and (6.11) will be canceled. Since

z
(
G(z)−Gλ(z)

)
R2

is analytic on U , the value of the contour integral CR will be unchanged. Also, in (6.11)
e−λRe(z) will blow up if Re(z) < 0. Hence, both G(z) and Gλ(z) will be multiplied by
eλz. Since eλz is entire and equals 1 at z = 0, Cauchy’s integral formula in (6.8) can be
rewritten as

G(0)−Gλ(0) =
1

2πi

∫
CR

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz. (6.13)

Let ε > 0 and to prove that G(0)−Gλ(0)→ 0 as λ→∞ there must exist a λ0 such that
for all λ ≥ λ0

|G(0)−Gλ(0)| =
∣∣∣∣ 1

2πi

∫
CR

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣ < ε.

Redoing the estimate for x = Re(z) > 0 gives∣∣∣∣(G(z)−Gλ(z)
)
eλz
(

1

z
+

z

R2

)∣∣∣∣ (6.10),(6.12)

≤ e−λx

x
eλx

2x

R2
=

2

R2

and thus by using an ML-bound∣∣∣∣∣ 1

2πi

∫
C+
R

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ πR 1

2π

2

R2
=

1

R
≤ ε

4

for R ≥ 4
ε . For the integral over C−R , first use the triangle inequality:∣∣∣∣∣ 1

2πi

∫
C−R

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
≤

∣∣∣∣∣ 1

2πi

∫
C−R

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣+

∣∣∣∣∣ 1

2πi

∫
C−R

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ .
Note that for Re(z) > 0 it was possible to write (see (6.9))

G(z)−Gλ(z) =

∫ ∞
λ

F (t)eztdt.

However, for Re(z) < 0 there is no explicit integral formula for G(z), hence G and Gλ
are treated separately. Note that the integral formula for Gλ(z) for Re(z) < 0 is still
valid. Recall that Gλ(z) was analytic on C, hence according to Cauchy’s theorem A.4 the
contour C−R can be replaced by a semicircle in the left half-plane from iR to −iR (black
contour in figure 6.2), without changing the value of the integral:∣∣∣∣∣ 1

2πi

∫
C−R

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2πi

∫
|z|=R

Re(z)<0

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣∣ .
This change of contour is done in order to use (6.12) again. Now, redoing the estimate for
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Re(z)

Im(z)

iR

−iR

−R −δ1−δ

AR,δ

AR,δ

BR,δ

Figure 6.2: The semicircle |z| = R with Re(z) < 0 and the parts AR,δ and BR,δ from C−R .

x = Re(z) < 0 gives∣∣∣∣Gλ(z)eλz
(

1

z
+

z

R2

)∣∣∣∣ (6.11),(6.12)

≤ e−λx

|x|
eλx

2|x|
R2

=
2

R2
.

And by using an ML-bound∣∣∣∣∣∣ 1

2πi

∫
|z|=R

Re(z)<0

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣∣ ≤ πR 1

2π

2

R2
=

1

R
≤ ε

4

for R ≥ 4
ε . The last integral ∣∣∣∣∣ 1

2πi

∫
C−R

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
is the most tricky one, since G on C−R is an analytic extension and it is not known how it
actually looks like, but it is possible to find an MR > 0 such that |G(z)| ≤MR on C−R .
For some δ1 with 0 < δ1 < δ, the contour C−R is split in two parts: AR,δ for Re(z) ≥ −δ1

and BR,δ for Re(z) < −δ1. Both contours are shown in figure 6.2 in respectively red and
green.

Note that on BR,δ it holds that |eλz| ≤ e−λδ1 and that δ ≤ |z| ≤ R. Hence, by using
an ML-bound∣∣∣∣∣ 1

2πi

∫
BR,δ

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

2π
πRMRe

−λδ1
(

1

δ
+

R

R2

)
=

1

2
RMR

(
1

δ
+

1

R

)
e−λδ1 .

For fixed R and δ1 this goes to zero as λ→∞. The integral over AR,δ becomes∣∣∣∣∣ 1

2πi

∫
AR,δ

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

2π
2R arcsin

(
δ1

R

)
MR

(
1

δ
+

1

R

)
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using |eλz| ≤ 1 and that the arc length of AR,δ equals 2R arcsin
(
δ1
R

)
. So for fixed R, the

above expression goes to zero as δ1 goes to zero.

To complete the proof, let ε > 0 be given and fix δ > 0 such that G is analytic inside
and on the closed contour CR. Take R = 4

ε and then recall the results from above∣∣∣∣∣ 1

2πi

∫
C+
R

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

R
=
ε

4

and ∣∣∣∣∣ 1

2πi

∫
C−R

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

R
=
ε

4
.

Also, choose a δ1 such that 0 < δ1 < δ and∣∣∣∣∣ 1

2πi

∫
AR,δ

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ < ε

4
.

This is possible since the this integral goes to zero as δ1 → 0 (R is fixed). Finally,∣∣∣∣∣ 1

2πi

∫
BR,δ

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ < ε

4

for all λ ≥ λ0, since this integral goes to zero as λ→∞ (R and δ1 are fixed). So it follows
that

|G(0)−Gλ(0)| =
∣∣∣∣ 1

2πi

∫
CR

(
G(z)−Gλ(z)

)
eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣ < ε

for all λ ≥ λ0, which completes the proof.

6.4 Corollary to the Tauberian Theorem

Using the Tauberian theorem the corollary can be derived which will allow us to complete
the proof of the prime number theorem.

Corollary 6.8. Let f(x) be a nonnegative, piecewise continuous and nondecreasing func-
tion on [1,∞) such that f(x) = O(x) as x→∞ and that the integral

g(z) = z

∫ ∞
1

f(x)x−z−1dx

exists for Re(z) > 1 and defines an analytic function. Assume that for some constant c

g(z)− c

z − 1

has an analytic extension to a neighborhood of the line Re(z) = 1. Then

f(x)

x
→ c as x→∞.

Proof. Let f(x) and g(z) be as assumed in the corollary. Define F (t) = e−tf(et) − c for
t ∈ [0,∞). First, check if this F satisfies the conditions of the Tauberian theorem. The
condition f(x) = O(x) gives that

F (t) = e−tO(et)− c = O(1),
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so F (t) is bounded on [0,∞), which is a hypothesis of the Tauberian theorem. Consider
the Laplace transform and apply the change of variables x = et

G(z) =

∫ ∞
0

(
e−tf(et)− c

)
e−ztdt

=

∫ ∞
1

(
x−1f(x)− c

)
x−zx−1dx

=

∫ ∞
1

f(x)x−z−2dx− c
∫ ∞

1
x−z−1dx

=

∫ ∞
1

f(x)x−z−2dx+
c

z
x−z

∣∣∣∞
1

=

∫ ∞
1

f(x)x−z−2dx− c

z

=
g(z + 1)

z + 1
− c

z

=
1

z + 1

(
g(z + 1)− c

z
− c
)
,

where

g(z) = z

∫ ∞
1

f(x)x−z−1dx

exists for Re(z) > 1 and is analytic because of the hypothesis of the corollary. So g(z+ 1)
exists and is analytic for Re(s) > 0. Furthermore, it follows from the assumptions that
g(z+1)− c

z has an analytic extension to a neighborhood of the line Re(z) = 0. As a result,
the same holds for G(z). Thus all conditions of the Tauberian theorem are satisfied, hence
it is obtained that

∫∞
0 F (t)dt exists and equals G(0).

Equivalently, in terms of f the integrals∫ ∞
0

(
e−tf(et)− c

)
dt

x=et
=

∫ ∞
1

(
x−1f(x)− c

)
x−1dx

exist and are finite. To prove that f(x)
x → c as x → ∞, it must be shown that for any

ε > 0 there exists a constant M such that

f(x0)

x0
− c < 2ε and

f(x0)

x0
− c > −2ε

for all x0 ≥M . Suppose that this is not the case, then for a given ε > 0 and x0 ≥M it is
assumed that

f(x0)

x0
≥ 2ε+ c or

f(x0)

x0
≤ c− 2ε.

The first case, if x ∈
[
x0, ρx0

]
with ρ := c+2ε

c+ε > 1, then

f(x) ≥ f(x0) ≥ x0(c+ 2ε) ≥ x(c+ ε),

where in the first inequality is used that f(x) is nondecreasing. Hence,∫ ρx0

x0

(
f(x)

x
− c
)
x−1dx ≥

∫ ρx0

x0

(
x(c+ ε)

x
− c
)
x−1dx

≥
∫ ρx0

x0

ε

x
dx (6.14)

= ε
(

log(ρx0)− log(x0)
)

= ε log(ρ) > 0, (ρ > 1).

81



Chapter 6. Proof of the Prime Number Theorem

However, ∫ x2

x1

(
f(x)

x
− c
)
x−1dx→ 0 as x1, x2 →∞

because
∫∞

1

(
x−1f(x)− c

)
x−1dx is convergent. So there exists a constant M̃ such that for

all x0 ≥ M̃ ∫ ρx0

x0

(
f(x)

x
− c
)
x−1dx < ε log(ρ). (6.15)

Now, if x0 ≥ max{M, M̃}, then equations (6.14) and (6.15) contradict. To conclude, for

x0 sufficiently large f(x0)
x0

< 2ε+ c.

The second case: f(x0)
x0
≤ c − 2ε. Let µ := c−2ε

c−ε < 1 for ε < c and let x ∈ [µx0, x0].
Then

f(x) ≤ f(x0) ≤ x0(c− 2ε) ≤ x(c− ε).

Again, integrating gives the contradiction∫ x0

µx0

(
f(x)

x
− c
)
x−1dx ≤

∫ x0

µx0

(
x(c− ε)

x
− c
)
x−1dx = ε log(µ) < 0, (µ < 1).

6.5 The Final Result

To complete the proof of the prime number theorem, apply corollary 6.8 to f(x) = ψ(x).
We will check the conditions.

The Chebyshev psi function was defined for x > 0 as

ψ(x) =
∑
pk≤x

log(p).

Hence, ψ(x) is nonnegative, piecewise continuous and nondecreasing on [1,∞) as the corol-
lary requires. Furthermore, in theorem 5.15 it was proved that ψ(x) has the asymptotic
behavior ψ(x) = O(x) as x→∞. In theorem 6.2 we found the integral

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)x−s−1dx

for Re(s) > 1. In theorem 6.3 it was proven that ζ(s) has an analytic continuation to

the half-plane Re(s) > 0 without s = 1 where it has a simple pole. Hence, − ζ′(s)
ζ(s) has an

analytic continuation to a neighborhood of {s : Re(s) ≥ 1, s 6= 1} provided that 1
ζ(s) has

no zeros on that neighborhood. As stated several times before (see remark 3.4), ζ(s) has
no zeros for Re(s) > 1. In addition, theorem 6.5 proved that the zeta function has no
zeros for Re(s) = 1, so there exists a neighborhood of {s : Re(s) ≥ 1, s 6= 1} on which

− ζ′(s)
ζ(s) is analytic. Since ζ(s) has a simple pole at s = 1, also − ζ′(s)

ζ(s) has a simple pole at
s = 1. Hence,

−ζ
′(s)

ζ(s)
− 1

s− 1

has an analytic extension to a neighborhood of the line Re(s) = 1.
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Corollary 6.8 now gives that

lim
x→∞

ψ(x)

x
= 1,

which is equivalent to the prime number theorem

lim
x→∞

π(x) log(x)

x
= 1

according to theorem 5.16. This finishes the proof of the prime number theorem.

6.6 Final Remarks

The goals of this thesis were to construct an explicit formula for the prime counting func-
tion and to prove the prime number theorem at an undergraduate mathematical level.
After a general introduction about the gamma and zeta function, we finally succeeded in
constructing the formula and proving the prime number theorem. The construction of the
explicit formula for π(x) was quite technical and it took a lot of effort to prove most of
the details. Unfortunately, in section 4.4 one proof of switching an integral and sum is
missing. Nevertheless, the rest of the construction contains sufficient details to make it
understandable for an undergraduate mathematics student.

The prime number theorem was one of the highlights of mathematics in the nineteenth
century. The original proof was long and intricate since it requires the construction of
an explicit formula for ψ(x). This construction is similar to the construction of π(x).
Fortunately, a modern version of the proof, that was demonstrated above, only uses basic
knowledge from complex analysis, which makes the proof of the prime number theorem
understandable for mathematics students.
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Appendix A

Prerequisites from Complex
Analysis

This appendix contains the necessary knowledge and theorems of complex analysis. For
a complete introduction to complex analysis and the proofs, see for example [Ash and
Novinger, 2007], [Freitag and Busam, 2009] or [Asmar and Grafakos, 2018].

Cauchy Product Formula

Theorem A.1 (Cauchy product formula). Let an and bn be complex valued sequences
such that

∑∞
n=0 an and

∑∞
n=0 bn are absolutely convergent series. Then( ∞∑
n=0

an

)( ∞∑
n=0

an

)
=

∞∑
n=0

(
n∑
ν=0

aνbn−ν

)
.

Corollary A.2. Let a1,ν1 , . . . , am,νm be complex valued sequences such that
∑∞

ν1=0 a1,ν1,. . . ,∑∞
νm=0 am,νm are absolutely convergent series. Then

m∏
k=1

 ∞∑
νk=0

ak,νk

 =

( ∞∑
ν1=0

a1,ν1

)
· · ·

( ∞∑
νm=0

am,νm

)

=
∞∑
v1=0

ν1∑
v2=0

· · ·
νm−1∑
νm=0

a1,νma2,νm−1−νm · · · am,ν1−ν2 .

Complex Integration and Theorems

Definition A.3 (domain). A domain is an arcwise connected non-empty open set D ⊂ C.

Theorem A.4 (Cauchy’s theorem). Let f be analytic on a simply connected domain. If
γ is a closed path in this domain, then∫

γ
f(z)dz = 0.

Theorem A.5 ((Generalized) Cauchy integral formula). Let f be analytic on a domain
that contains a simple closed path C with positive orientation and its interior. If z ∈ C
lies in the interior of C, then

f (n)(z) =
n!

2πi

∫
C

f(ζ)(
ζ − z

)n+1dζ
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and in particular,

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ.

Theorem A.6. Let C be a path and U an open set. Let f(z, ζ) be a function defined for
z ∈ U and ζ ∈ C. Suppose that f(z, ζ) is continuous in ζ ∈ C and analytic in z ∈ U and
that the derivative df

dz (z, ζ) is continuous in ζ ∈ C. Then∫
C
f(z, ζ)dζ

is analytic in U and
d

dz

∫
C
f(z, ζ)dζ =

∫
C

d

dz
f(z, ζ)dζ.

Theorem A.7 (Liouville). Every entire function (i.e. an analytic function f : C → C)
which is bounded is constant.

Theorem A.8 (Maximum modulus principle). Let D be a bounded domain and let f be
analytic on D and continuous on the closure of D. Then

(i) |f | attains its maximum on the boundary of D,

(ii) f is constant if f attains a maximum in U .

Definition A.9 (Harmonic function). A function u : U → R is called harmonic if it
has continuous partial derivatives of first and second order in U and satisfies the Laplace
equation

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0.

Theorem A.10. The real and imaginary part of an analytic function defined on an open
set are harmonic.

Theorem A.11 (Maximum modulus principle for harmonic functions). Let U be a bounded
domain and let u be harmonic on U and continuous on the closure of U . Then

(i) u attains its maximum on the boundary of U ,

(ii) u is constant if u attains a maximum in U .

Theorem A.12 (Residue theorem). Let C be a simple closed positively orientated path.
Suppose that f is analytic on C and in its interior, except for finitely many points
z1, z2, . . . , zn inside C. Then ∫

C
f(z)dz = 2πi

n∑
i=1

Res(f ; zi),

where Res(f ; zi) is the residue of f at zi.

Lemma A.13 (Shrinking path lemma). Assume that f is a continuous, complex valued
function on BR(z0). For 0 < ε ≤ R, let Cε be a circle with positive orientation. Then

lim
ε↓0

∫
Cε

f(z)

z − z0
dz = 2πif(z0).
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Corollary A.14. Assume that f is analytic in a deleted neighborhood of z0 with a simple
pole at z0. Let ε > 0 and let Cε be a semicircle with positive orientation. Then

lim
ε↓0

∫
Cε

f(z)dz = πiRes(f ; z0).

Convergence

Definition A.15 (Uniform convergence). A sequence of functions f0, f1, f2, ... with fn :
D → C for all n ∈ N converges uniformly to the limit f : D → C if for every ε > 0 there
exists an N ∈ N such that |f(z)− fn(z)| < ε for all n ≥ N and all z ∈ D.

Uniform convergence might not hold on the whole domain, but only on a subset: the
sequence fn converges locally uniformly to f if for every a ∈ D there exists a neighborhood
U of a such that fn|U ∩D is uniformly convergent.

Theorem A.16. Let f0, f1, f2, ... : D → C with D ⊂ C open be analytic functions that
converge locally uniformly to the limit f : D → C. Then, f is analytic and the sequence
of derivatives (f ′n) converges locally uniformly to f ′.

This theorem can be rewritten for series of functions, namely a series of functions
f0 + f1 + f2 + · · · with fn : D → C for all n ∈ N with D ⊂ C converges (locally) uniformly
if the sequence of partial sums Sn := f0 + f1 + ... + fn converges (locally) uniformly. If
this holds, then by the above theorem limn→∞ Sn =

∑∞
n=1 fn =: f is analytic.

A stronger notion than absolute and uniform convergence is normal convergence.

Definition A.17. A series of functions
∑∞

n=0 fn with

fn : D → C, D ∈ C, n ∈ N

converges normally in D if for each point a ∈ D there is a neighborhood U and a sequence
(Mn)n≥0 of nonnegative real numbers such that

(i) |fn(z)| ≤Mn for all z ∈ U ∩D and all n ∈ N,

(ii)
∑∞

n=0Mn converges.

Normal convergence is precisely the condition for the Weierstrass M -test. So normal
convergence implies absolute and (local) uniform convergence. Hence, in the above the-
orem the condition of local uniform convergence can be replaced by normal convergence.
For series of functions this gives:

Theorem A.18. Let f0 + f1 + f2 + · · · with fn : D → C for all n ∈ N a normally
convergent series of analytic functions on D ⊂ C open. Then, the limit function f is also
analytic and f ′ = f ′0 + f ′1 + f ′2 + · · · .

Power Series and Identity Theorem

Theorem A.19 (Power series expansion). Let f be analytic on an open subset D ⊂ C.
Assume that for some R > 0 the disk BR(z0) lies inside D. Then

f(z) =

∞∑
n=0

an
(
z − z0

)n
with an =

f (n)(z0)

n!
, n = 0, 1, 2, . . .

for all z ∈ BR(z0).
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Theorem A.20 (Identity theorem for analytic functions). Let f, g : D → C be two
analytic functions with D 6= ∅ a domain. Then, f = g if and only if the set {z ∈ D :
f(z) = g(z)} has an accumulation point in D.

Corollary A.21 (Uniqueness of the analytic continuation). Let D ⊂ C be a domain,
M ⊂ D be a subset with at least one accumulation point in D and let f : M → C. If there
exists an analytic function f̃ : D → C with f̃(z) = f(z) for all z ∈ D, then f̃ is unique
with this property.
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Infinite Products

An infinite product of factors an can be defined in terms of the complex logarithm, so that
the infinite product becomes an infinite series:

∞∏
n=1

an := exp

∞∑
n=1

Log(an)

with
Log(z) = log |z|+ iArg(z) defined on C− = C \ (−∞, 0].

First of all, it is assumed that the factors of the product converge to 1 (just as the sequence
of terms for a convergent series go to 0). Note that the sequence (bn)∞n=1 with bi = ai − 1
converges to zero. Hence, there exists an N ∈ N such that |bn| < 1 for all n ≥ N . So in
order to avoid the branch cut of the logarithm, define

∞∏
n=1

an :=
N−1∏
n=1

an · exp
∞∑
n=N

Log(1 + bn)

because 1 + bn ∈ C− for n ≥ N . Now, the infinite product of an is absolutely convergent
if the corresponding series

∑∞
n=1 Log(1 + bn) is absolutely convergent. The power series

of Log(1 + z) for |z| < 1 is given by

Log(1 + z) = −
∞∑
n=1

(−1)n
zn

n
.

For z ∈ C and |z| small enough (for example |z| ≤ 1
2) the following inequalities hold:

∣∣|Log(1 + z)| − |z|
∣∣ ≤ ∣∣Log(1 + z)− z

∣∣ =

∣∣∣∣∣
∞∑
n=2

(−1)n
zn

n

∣∣∣∣∣ ≤
∞∑
n=2

∣∣∣∣znn
∣∣∣∣

≤ |z|
2

2

∞∑
n=0

|z|n ≤ |z|2 ≤ 1

2
|z|

using in the second to last step that according to the geometric series
∑∞

n=0 |z|n ≤ 2 for
|z| ≤ 1

2 . This gives
|z|
2
≤
∣∣Log(1 + z)

∣∣ ≤ 3

2
|z|.

If
∑∞

n=1 |bn| converges, then there exists an N ∈ N such that |bn| < 1
2 for all n ≥ N . This

implies
|bn|
2
≤
∣∣Log(1 + bn)

∣∣ ≤ 3

2
|bn|. (B.1)
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Hence,
∑∞

n=1Log(1 + bn) converges. Conversely, if
∑∞

n=1Log(1 + bn) converges, then
equation (B.1) also applies, thus

∑∞
n=1 |bn| converges.

To conclude, the infinite product
∏∞
n=1 an converges absolutely if and only if the infinite

series
∑∞

n=1 bn =
∑∞

n=1(an − 1) converges absolutely.

Remark B.1. The value of the convergent infinite product is zero if and only if at least
one of the factors is zero.

For series there were theorems about when the sum is analytic provided that all terms
of the series are analytic (theorem A.16 and A.18). A similar result holds for products.

Theorem B.2. Let (fn)∞n=1 a sequence of analytic functions with fn : D → C such that∑∞
n=1 fn converges normally. Then, f(z) :=

∏∞
n=1(1+fn(z)) converges normally and f(z)

is analytic. Also, if z ∈ D and 1 + fn(z) 6= 0 for all n ∈ N, then

f ′(z)

f(z)
=

∞∑
n=1

f ′n(z)

1 + fn(z)
,

where the series converges normally.
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Big-O and Little-o Notation

To analyse the behavior of a function when its argument tends to infinity without con-
cerning to much about the precise details, the Landau notation will be used. Let f (real
or complex valued) and g (real valued) be functions defined on an interval [x0,∞). Then

f(x) = O
(
g(x)

)
as x→∞,

if there exists an M > 0 and x1 > x0 such that |f(x)| ≤ M |g(x)| for all x ≥ x1. Usually,
just f(x) = O

(
g(x)

)
is written and x→∞ behind it is omitted. Some properties are

(i) f(x) = O(1) implies that f is bounded for x ≥ x1,

(ii) f(x)O
(
g(x)

)
= O

(
f(x)g(x)

)
,

(iii) O
(
|k|g(x)

)
= O

(
g(x)

)
with k 6= 0,

(iv) f(x) = O
(
g(x)

)
implies that kf(x) = O

(
g(x)

)
for k ∈ R.

If f1 = O(g1) and f2 = O(g2), then

(v) f1f2 = O(g1g2),

(vi) f1 + f2 = O
(

max{g1, g2}
)

The notation f(x) = o
(
g(x)

)
is used if for every ε > 0 there exists an x(ε) ≥ x0 such that

|f(x)| ≤ ε|g(x)| for all x ≥ x(ε). This is equivalent to

lim
x→∞

f(x)

g(x)
= 0.

Some properties are

(i) f(x) = o(1) implies that limx→∞ f(x) = 0,

(ii) f = o(g) implies that f = O(g),

(iii) f(x) = o
(
g(x)

)
implies that kf(x) = o

(
g(x)

)
for k 6= 0,

(iv) f = o(g) and g = o(h) implies that f = o(h).

If f1 = o(g1) and f2 = o(g2), then

(v) f1f2 = o(g1g2).
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