
MovR as a Benchmark for Geo-Distributed Databases
Performance Evaluation and Insights

Wilhelm Marcu

Supervisors: Asterios Katsifodimos, Oto Mráz, George Christodoulou, Kyriakos Psarakis

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 19, 2025

Name of the student: Wilhelm Marcu
Final project course: CSE3000 Research Project
Thesis committee: Asterios Katsifodimos, Oto Mráz, George Christodoulou, Kyriakos Psarakis, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Distributed systems are vital for handling large-
scale data and rely on geo-distributed databases to
ensure low latency and high availability. Tradi-
tional benchmarks, such as TPC-C and YCSB-T,
are not designed to handle the complexities of geo-
distributed environments and do not allow for con-
figuration of multi-home transaction ratios or dy-
namic data access patterns. To fill this gap, we im-
plement a benchmark based on the MovR workload
and assess its performance on the Detock, Janus,
SLOG, and Calvin geo-distributed database sys-
tems. Key insights revealed through experiments
are that network conditions act as a major bottle-
neck and high concurrency leads to unsustainable
latency spikes which severely limits scalability.

1 Introduction
Distributed systems have become the standard solution for
handling the large-scale data requirements of modern appli-
cations [5]. Unlike centralised systems, distributed systems
are able to scale horizontally and are more reliable due to
higher fault tolerance. In the context of data management,
such systems need to use geo-distributed databases to ensure
low latency and high availability for end users, whilst also
complying with data regulations across different geographic
regions [13]. Designing efficient geo-distributed databases is
more challenging than single-region databases due to addi-
tional considerations such as optimising data locality, coor-
dinating distributed transactions, and managing high-latency
communication between regions.

To assess the performance of these more sophisticated
database systems, benchmarks are used to test the system un-
der different workloads and scenarios. Two well-known, in-
dustry standard benchmarks are TPC-C [17] and YCSB-T [3]
but these are limited in scope since they were not developed
for a geo-distributed setting. More specifically, these bench-
marks lack mechanisms to control the ratio of distributed
transactions or the number of nodes involved, which signifi-
cantly impacts performance in distributed systems [14]. Ad-
ditional limitations include the lack of support for adaptive
hot data splitting, storage movement for load balancing, and
elasticity mechanisms to handle contention-heavy or skewed
workloads [14]. To combat these shortcomings, there is a
need to create a new tunable benchmark that covers the addi-
tional complexities of geo-distributed environments.

This paper aims to aid this endeavour by experimentally
examining the strengths, weaknesses, and blind spots of the
MovR [2] benchmark across various geo-distributed database
systems. More specifically, we evaluate MovR in Detock
[12], Janus [11], SLOG [15], and Calvin [16]. The goal is
to answer the following research question: how effective is
the MovR benchmark for evaluating the performance charac-
teristics of geo-distributed databases in terms of throughput,
latency, bytes transferred, and resource demands? The main
contributions of this work are:

• An implementation of a benchmark focusing on the
MovR workload (Section 3)

Figure 1: MovR schema

• Deployment and execution of the benchmark on four
database systems under six scenarios (Section 4)

• Insights into the performance of the benchmark (Section
5)

The remainder of this paper is structured as follows: Sec-
tion 2 provides background on the MovR benchmark and the
database systems used to run it. Section 3 describes the im-
plementation details of MovR. Section 4 outlines the experi-
mental setup and results while Section 5 interprets these re-
sults and discusses ways to expand upon this work. Finally,
Section 6 presents the main findings and Section 7 addresses
the responsible research principles used during the study.

2 Background
2.1 MovR Workload
Traditional benchmarking techniques often focus on a sin-
gle workload type such as Online Transaction Processing
(OLTP) in the case of TPC-C, or key-value operations in
the case of YCSB-T. Unlike these two benchmarks, MovR
[2] takes a hybrid approach using a workload featuring
both OLTP and time-series components, blending short-lived,
ACID-compliant transactions with high-volume, append-
heavy writes. MovR models a vehicle sharing service con-
sisting of six tables as can be seen in Figure 1.

The schema’s main table is users which experiences fre-
quent reads but infrequent writes and updates. The vehi-
cles table tracks vehicle ownership and sees frequent reads
and updates since it contains fields for status and current lo-
cation. The core of the workload is the rides table which
records ride details and undergoes frequent reads, writes, and
updates as ride data evolves. The vehicle location histories

Table 1: Transaction Profile

Transaction Mix MH/MP Operation Intensity

Read Write Update

View Vehicles 30% no high - -
Add User 5% no - low -
Add Vehicle 5% yes low low -
Start Ride 15% yes high high low
Track Location 30% no - high -
End Ride 15% yes - - high

An overview of MovR transactions. From left to right: the chance
of a transaction being generated in the workload (Mix), whether the

transaction is able to involve multiple cities (MH/MP), and the
operation intensity of the transaction.

table stores time-series location data during rides and is write-
heavy. The last two tables manage business logic involv-
ing discount codes. Globally available codes are stored in
the promo codes table whereas the user promo codes table
tracks codes applied by each user.

The workflow consists of six transaction types which are
presented in Table 1. In order to construct a workload
from this workflow, we assign a probability for each trans-
action to occur and sample at random to determine the next
transaction produced by the workload. We derived these
weights based on reasoned estimates to reflect plausible real-
world behaviour and usage patterns. While prior work such
as Caerus [8] simplifies MovR, using only the Start Ride
transaction, this approach preserves fidelity to the original
workload design and maintains realistic proportions. Con-
sequently, only 35% of the transactions generated are able to
be multi-partition or multi-home because only Add Vehicle,
Start Ride, and End Ride can potentially access data across
multiple cities.

2.2 Related Work
Research on geo-distributed transaction processing has pro-
duced a variety of database systems each with different trade-
offs. Calvin [16] orders all transactions via a Paxos-based
sequencer and replicates transactions to all replicas. This
guarantees strict serializability with no throughput loss, but
incurs two wide-area network (WAN) round-trips per transac-
tion. Notably, few geo-distributed databases support strictly
serializable transactions in practice because implementations
typically impose severe constraints on transaction scope or
latency [4]. While deterministic protocols like Calvin avoid
runtime coordination, Harding et al. demonstrate they suffer
from scheduling bottlenecks and reconnaissance overheads
when dealing with dynamic data [7].

To improve upon this drawback, SLOG [15] takes a dif-
ferent approach by distinguishing between single-region and
multi-region transactions. In SLOG, a home replica locally
commits single-region transactions immediately, while multi-
region transactions are broken into log fragments that are syn-
chronised globally. This design yields dramatically lower tail
latencies under locality but does not benefit workloads with

heavy multi-home transactions. More recent work further re-
duces coordination such as Caerus [8] which merges partial
orders from each region so that any transaction can commit
after a single WAN round-trip. Another example is Detock
[12] which sidesteps the global log entirely by employing
a decentralised graph-based deadlock resolution algorithm.
Similarly, Janus [11] uses dependency graphs to avoid global
coordination but addresses a different problem: it combines
transaction ordering and replica agreement into a single pro-
tocol but restricts transactions to one-shot stored procedures
which limits its applicability for interactive workloads. Hard-
ing et al. remark that these graph based deadlock detection
schemes suffer from ”substantial network communication”
overheads. [7].

The evaluation of distributed database systems requires
benchmarks that capture the unique characteristics of geo-
distribution. TPC-C and YCSB-T, which have already been
discussed, neglect WAN-specific latency, synchronisation
costs, and multi-region access patterns. Specialised bench-
marks have emerged to address these gaps. GeoYCSB [9]
makes use of spatial queries and data distribution across re-
gions, but its focus on NoSQL limits applicability to transac-
tional systems. Other examples include SmallBank [1] which
is designed to evaluate systems with serializable snapshot
isolation, and PeakBench [18] which models high-intensity
workloads under high contention. In a comprehensive re-
view of available transactional benchmarks, Qu et al. find
that few benchmarks provide control over the ”ratio of dis-
tributed transactions and the number of spanning nodes” and
that none model storage movement [14].

3 Benchmark Implementation
We build our implementation on top of the existing Detock
codebase 1 because Detock supports pluggable storage lay-
ers and already re-implements Calvin, SLOG, and Janus [12].
This creates a level playing field for comparing the systems
fairly under identical conditions. The benchmark implemen-
tation is designed to offer flexible options for controlling the
MovR workload. At its core, the NextTransaction function
selects the next transaction to perform at random based on
a configurable weighted distribution. Each transaction has
its own corresponding generator which populates a Proto-
col Buffers object with the required data. These objects are
subsequently processed by the execution layer which handles
low-level storage interactions.

Multi-home and multi-partition transactions are generated
probabilistically independent based on arguments passed to
the workload generator. Transactions such as AddVehicle,
StartRide, and EndRide, may span multiple regions or parti-
tions when their generators sample remote cities. These cities
are tracked using a three-dimensional array city index. At
the top level, cities are grouped by their assigned partitions.
Within each partition, cities are further subdivided by their
associated regions. Finally, each region contains a list of spe-
cific cities belonging to it. This structure is populated when
the workload is initialised and cities are evenly allocated us-
ing a deterministic modulo-based mapping scheme. Table

1https://github.com/umd-dslam/Detock

https://github.com/umd-dslam/Detock

Table 2: City Distribution

Region 0 Region 1

Partition 0 city 0, city 4 city 2, city 6
Partition 1 city 1, city 5 city 3, city 7

Example city mapping with eight cities distributed over two
partitions and two regions

2 demonstrates this mapping scheme by showing how eight
cities are distributed over two partitions and two regions. The
reason we chose this partitioning strategy is because all of
the tables in the schema, except for promo codes, have com-
posite keys which include the city attribute. In the case of
promo codes which is a global table, each node in the system
can safely maintain its own replica without significantly af-
fecting performance because write and update operations for
this table are not performed by the benchmark.

Skewed access patterns are implemented using Zipfian dis-
tributions which are initialised using a skew factor supplied
as an argument to the workload. Transaction generators
use these Zipfian distributions when generating local record
IDs, where high skew values increase contention for popular
records. Based on this local ID and the city index, a global 64-
bit integer ID is constructed where the first 16 bits identify the
city and the remaining 48 bits identify the local record. This
scheme allows transactions to span multiple partitions and re-
gions while also maintaining the desired hotspot behaviour.

In geo-distributed applications, access patterns can be used
to uncover workload characteristics which can be exploited
for performance gains [6]. Typically, access patterns exhibit
predictable temporal shifts across regions since user activity
tends to follow daytime peaks in local time-zones. These fluc-
tuations are important to consider because database systems
must dynamically rebalance the load to prevent regional over-
load during local peaks. Resource utilisation efficiency also
depends on anticipating these access patterns which is benefi-
cial for reducing costs. This sun-tracking phenomenon, simi-
lar to how sunflowers follow the sun, necessitates benchmarks
that model cyclical workload rotations to simulate realistic
hotspots.

To capture these time-dependent access patterns, our
benchmark implementation supports an adjustable sunflower
scenario. This feature is implemented by creating a weighted
distribution used to decide the home region for each trans-
action, similar to how the transaction type is decided. These
weights are updated before each transaction based on the time
elapsed since the start of the workload. Fine-tuning of this
behaviour can be achieved using three configurable parame-
ters: sunflower max sets the peak traffic percentage for the
hotspot region, sunflower falloff determines how sharply de-
mand exponentially decays in neighbouring regions, and sun-
flower cycles defines how many times the hotspot completes
a full rotation across all regions. The weight wi for region i
is computed as follows:

1. Compute the cyclic position of the ”sun”:

s =

(
telapsed
tduration

· c ·N
)

mod N (1)

where telapsed is the time since workload start, tduration
is the total workload duration, c is sunflower cycles, and
N is the number of regions.

2. For each region i ∈ [0, N − 1], calculate the wrapped
distance to the sun:

di = min(|s− i|, N − |s− i|) (2)

where s is the position of the sun, i is the region index,
and N is the number of regions.

3. Compute unnormalised weight:

w′
i = m · (1− f)di (3)

where m is sunflower max, f is sunflower falloff, d is
distance to the sun, and i is the region index.

4. Normalise weights to sum to 100%:

wi =
w′

i∑N−1
j=0 w′

j

· 100 (4)

where w′ is the unnormalised weight, i is the region in-
dex, and N is the number of regions.

4 Benchmark Performance Evaluation
4.1 Experimental Setup
We deployed the MovR workload on the Detock, Janus,
SLOG and Calvin systems using Docker containers on a four-
node cluster. Each node ran Ubuntu 22.04.5 and featured
two AMD EPYC 7H12 64-Core Processors (128 cores, 256
threads, simultaneous multithreading enabled) with 503 GiB
DDR4 RAM and a 446.6 GB primary SSD. The nodes com-
municated via 10 Gbps Ethernet using MTU 9000 jumbo
frames.

The cluster followed a two-region setup, each with two par-
titions, a single replica, and a client from the opposite region.
The default network latency between each cluster node is pre-
sented in Table 3. We configured the MovR workload with
1,000 simulated cities using 5 millisecond sequencer batches
(synchronised) and a 2,000 microsecond timestamp buffer.
Other system parameters included three worker threads per
node and two log managers. Before executing the work-
load, we pre-loaded the tables with the following number of
records: 10,000 users, 5,000 vehicles, 30,000 rides, 50,000
histories, 1,000 promo codes, and 20,000 user promo codes.

We ran the experiments on each system multiple times,
each time focusing on a specific scenario under which to test
the workload. In total, six scenarios were considered:

• Baseline: measures system performance under varying
proportions of multi-home transactions.

• Skew: evaluates resilience to non-uniform access patters
by progressively concentrating requests on hot records.

• Scalability: Tests how throughput changes as the num-
ber of clients increase.

Table 3: Average round-trip time (RTT) between cluster nodes (ms)

R0P0 R0P1 R1P0

R0P1 0.143 – –
R1P0 0.151 0.169 –
R1P1 0.097 0.110 0.092

R0P1 indicates the node in region 0 and partition 1. The values are
calculated as the average of bidirectional measurements taken over

10 pings.

• Network: Assesses performance under controlled net-
work latency injections between nodes.

• Packet Loss: measures fault tolerance on an unreliable
network with increasing packet drop rates.

• Sunflower: models dynamic workload hotspots accord-
ing to time-zone patterns.

For each scenario tested, 2,000,000 transactions were gen-
erated using closed-loop clients, meaning that clients waited
for a response from the previous transaction before sending a
new one. For all the scenarios, the probability of multi-home
and multi-partition transactions was set to 50% except for the
baseline scenario, where the multi-home percentage was the
independent variable. Since only 35% of the transactions are
eligible to be multi-home or multi-partition, the actual per-
centage generated by the workload is 17.5%. To help focus
the research, we devised following sub-questions to match
each scenario:

1. How does throughput and latency vary with increas-
ing proportions of multi-home transactions in the MovR
workload under normal operating conditions?

2. How does varying the access skew impact throughput
when running the MovR workload?

3. How does commit rate and latency scale with increasing
client load when running the MovR workload?

4. How does end-to-end transaction latency change when
artificial network delay is introduced during the MovR
workload?

5. How does progressive packet loss affect commit rate
when running the MovR workload?

6. How does introducing temporal region hotspots affect
the performance of the MovR workload?

We collected the following metrics during the experiment:

• Throughput (transactions/second): measures sustained
processing capacity.

• Latency (milliseconds): quantifies system responsive-
ness at p50, p90, and p95 percentiles.

• Bytes transferred (megabytes): measures inter-region
traffic volume via per-server packet counters.

• Cost ($): estimated monetary cost based on resource
utilisation patterns and computation, network and stor-
age overheads.

The total hourly cost Ctotal is calculated as:

Ctotal = CVM +

(
Cdata

T

)
· 3600 (5)

where:

• CVM is the hourly cost of all four virtual machines, esti-
mated by scaling down the average per-hour price of an
AWS m4.2xlarge instance.

• Cdata is the total data transfer cost during the experiment,
using a symmetric, uniform rate of $0.02 per gigabyte
transferred between regions.

• T is the experiment duration in seconds.

4.2 Results
Baseline and Skew Scenarios
The experimental results for each scenario can be seen in Fig-
ure 2. In the baseline scenario (Figure 2a), SLOG demon-
strates the highest throughput, maintaining approximately
60,000 txn/s across all multi-home percentages. Detock also
has a high initial throughput but steadily declines as more
multi-home transactions are generated. Calvin’s throughput
remains relatively stable at around 45,000 txn/s while Janus
shows the lowest throughput, hovering around 25,000 txn/s.

In terms of latency, Detock, SLOG, and Calvin generally
maintain sub-200 millisecond latencies at both the 50th and
90th percentiles. In contrast, Janus has a significantly higher
latency of nearly 600 milliseconds at the 90th percentile,
which is almost triple compared to the other systems. When
measuring at the 95th percentile, Calvin experiences signif-
icant spikes, even at low multi-home percentages, whereas
other systems have comparably lower and more stable laten-
cies.

The bytes transferred and cost metrics are affected by the
throughput and so generally follow the same pattern for all
scenarios. However, in the baseline scenario, Calvin and
Detock have similar throughput for high percentages of multi-
home transactions yet Calvin operates at 25% lower cost.
SLOG’s approach of distinguishing between single-region
and multi-region transactions likely contributes to its consis-
tently low latency and high throughput. Likewise, Detock’s
decentralised deadlock resolution mechanism also appears to
be effective in maintaining high performance under the MovR
workload, albeit under higher cost than Calvin.

Figure 2b shows the results of the skew scenario and
throughput follows the same pattern observed in the base-
line scenario, with SLOG performing the best, followed by
Detock, Calvin, and then Janus. An unexpected result for this
scenario is that the skew factor seems to have little impact on
throughput, and consequently, on bytes transferred and cost
as well. Calvin still displays large latency spikes at the 95th

percentile and Janus still has abnormally high latency com-
pared to the other systems. Janus consistently underperforms
in throughput and latency across both baseline and skew sce-
narios. A possible explanation for this is that Janus uses Two-
Phase Commit for cross-partition transactions which incurs a
large overhead due to synchronous coordination.

(a) Baseline scenario

(b) Skew scenario

(c) Scalability scenario

(d) Network scenario

(e) Packet loss scenario

(f) Sunflower scenario

Figure 2: Complete experimental results for each scenario

Scalability and Network Scenarios
The results for the scalability scenario (Figure 2c) show that
the throughput for SLOG and Detock peaks at 103 and 104

clients respectively. Calvin is able to maintain a steady
throughput of 40,000 txn/s after reaching 103 clients up until
106 clients. Janus on the other hand, despite having higher
initial throughput for a low number of clients, peaks at only
102 clients. Janus failed to complete the scalability test within
a reasonable time frame after scaling to 104 clients, forcing
us to terminate the experiment prematurely. With regard to
latency, it is only noticeable after 102 clients and only starts
to grow drastically after 104 clients. Latency scales the best
for SLOG, followed by Detock and then Calvin.

Moving on to the network scenario, the results presented
in Figure 2d show that the throughput for all systems rapidly
degrades as the extra delay increases, dropping significantly
even with small delays. Calvin appears to maintain the high-
est throughput in this scenario but all systems behave simi-
larly after the delay exceeds 500 milliseconds, with through-
put approaching 0. Latency increases at different rates for
each system, with Detock and SLOG having the best perfor-
mance initially. Calvin and Janus have higher initial latency,
but after 250 milliseconds of extra delay, Calvin manages to
stabilise to an almost constant latency of 20,000 milliseconds
and even outperforms Detock and SLOG when the extra de-
lay is greater than 600 milliseconds. Unlike Calvin, Janus is
unable to stabilise and continues to grow sharply after 250
milliseconds, yielding the worst latency performance.

Packet Loss and Sunflower Scenarios
Figure 2e shows how the systems perform on unreliable net-
works where packet loss may occur. Even at low packet
loss percentages, the throughput for all systems drops sharply
reaching 10,000 txn/s at a packet loss percentage of 5%.
Detock and SLOG do not appear to be affected by packet
losses smaller than 1% but Calvin is able to maintain superior
throughput for packet losses greater than 2%. In terms of la-
tency, Detock, SLOG, and Janus have near identical latency at
the 90th percentile, with only Calvin underperforming. When
considering the 95th percentile, SLOG has the worst latency
scaling.

Lastly, the results for the sunflower scenario can be seen
in Figure 2f which mostly indicate stable throughput for all
systems. The exception to this trend is SLOG which has a no-
ticeable drop off from 0.8 to 1.0 sunflower falloff. Regarding
latency, Calvin displays a large increase for sunflower falloff
values of 0.4 and 0.6 while other systems are able to maintain
lower and more consistent latencies. SLOG is equipped with
dynamic data remastering capabilities which allows it to effi-
ciently deal with these shifting hotspots. Moreover, SLOG is
able to remap data to new home regions which explains why
it is able to maintain the lowest latency compared to other
systems. Calvin’s static global ordering would likely struggle
to adapt efficiently to these hotspots which might explain the
high latency observed in this scenario.

4.3 Latency Decomposition
In order to further investigate the results from our experi-
ments, we decompose the latency into the various compo-

Figure 3: Latency heat-maps across various system components

nents responsible for it. The latency for each of these compo-
nents is visualised using heat-maps as shown in Figure 3.

The heat-maps present four distinct transaction categories:
all transactions (top), single-partition single-home trans-
actions (second), multi-partition single-home transactions
(third), and multi-partition multi-home transactions (bottom).
Each row represents a different database system, and the
columns show the percentage of time spent in various system
components during transaction processing.

Across all transaction types, the server, forwarder, se-
quencer, multi-home orderer, and scheduler components con-
sume minimal processing time, typically less than 3% for all
systems. Differences start to emerge when examining the log
manager component. Calvin demonstrates a notable depen-
dency on log management, spending 15.3% of its time in
this component for all transactions. This behaviour becomes
even more pronounced for multi-partition transactions, where
Calvin allocates 36.3% of its processing time to log manage-
ment. In contrast, Detock, SLOG, and Janus show minimal
log manager utilisation across all transaction types, with per-
centages consistently below 1%.

The lock manager is a significant bottleneck for several
systems, particularly Janus, which dedicates an extraordi-
nary 97.8% of its processing time to lock management for
all transactions. This aligns with the costly Two-Phase Com-

mit protocol which Janus uses. Detock and SLOG exhibit
more moderate but still significant lock manager utilisation,
spending 42.7% and 42.6% respectively for all transactions.
On the other hand, Calvin demonstrates minimal lock man-
ager utilisation across all transaction types, with percentages
consistently below 1%. The worker component is yet another
bottleneck but only for multi-partition or multi-home trans-
actions, where actual data processing and coordination work
intensifies.

The ”Other” category shown on the heat-maps accounts for
substantial portions of processing time across all systems, re-
vealing significant latency components not captured explic-
itly. Calvin shows the highest ”Other” utilisation at 78.7% for
all transactions while Detock and SLOG spend nearly half of
their processing time outside of these measured components.
This high percentage might be correlated with the large la-
tency spikes associated with Calvin across multiple scenarios.
Possible sources for this unaccounted for latency may include
network communication overhead or garbage collection but
deeper probing is required to pinpoint the exact cause.

5 Discussion
5.1 Performance Bottlenecks
The experimental results provide insights into the perfor-
mance characteristics of Detock, Janus, SLOG, and Calvin
under the MovR workload. While all systems initially show
increased throughput with more clients, the sharp rise in la-
tency at higher client counts suggest that coordination over-
heads in distributed systems eventually become a bottleneck.
Detock, despite its decentralised deadlock resolution, does
not appear to benefit latency when a large number of clients
are involved. This might indicate that Detock has a differ-
ent bottleneck such as overhead from increased complexity
in graph construction or topological ordering. On the other
hand, Janus’ lower initial throughput and higher latency, com-
bined with its optimisation for one-shot transactions, might
mean it hits its scaling limits earlier, leading to a drastic per-
formance drop as client count increases.

Another key observation is that even marginal increases
in network delay or packet loss lead to significant degrada-
tion in throughput and a sharp increase in latency across all
systems. Calvin’s performance is susceptible to network de-
lays because every transaction, even single-home ones, needs
to make two WAN round-trips for its Paxos-based global or-
dering scheme. Similarly, SLOG needs to globally synchro-
nise log fragments for multi-home transactions which is heav-
ily impacted by network unreliability. Detock, while resolv-
ing deadlocks in a decentralised manner, still relies on inter-
region communication which makes it vulnerable to network
degradation.

Interestingly, SLOG demonstrates consistently superior
performance compared to Detock across most scenarios,
which differs from the original findings presented by
Detock’s authors [12]. Possible explanations for this perfor-
mance difference can be attributed to several factors specific
to the MovR workload characteristics. SLOG’s architecture
is particularly well-suited for workloads with strong locality
patterns, as MovR exhibits with its city-based data partition-

ing. Furthermore, the MovR transaction mix used only al-
lows at most 35% multi-home transactions which aligns well
with SLOG’s design philosophy of optimising single-region
transactions while maintaining coordination capabilities for
distributed operations. Additionally, SLOG’s dynamic data
remastering allows it to efficiently adapt to the temporal ac-
cess patterns simulated by the sunflower scenario, explaining
its superior performance in that specific test case.

5.2 Benchmark Effectiveness
Overall, the MovR benchmark is able to expose some of
the strengths and weaknesses of different geo-distributed
database systems across multiple performance dimensions,
particularly in revealing the impact of network conditions
and client concurrency. The benchmark reveals the perfor-
mance differences between various system architectural de-
signs through the unique performance profiles obtained for
each scenario.

The benchmark contributes to the broader field of dis-
tributed systems and geo-distributed databases in several im-
portant ways. As identified by Qu et al., existing benchmarks
lack mechanisms to control distributed transaction ratios and
multi-region spanning characteristics [14]. This point is ad-
dressed directly through the benchmark’s configuration op-
tions and scenario coverage. Furthermore, the revelation that
SLOG outperforms Detock under MovR’s workload char-
acteristics, contrary to findings in the original paper [12],
demonstrates that system performance is highly dependent
on application patterns, business logic, and locality charac-
teristics. This finding has significant implications for system
selection in practice, indicating that architectural advantages
are not universal but rather context-dependent.

Despite its strengths, the MovR benchmark has some lim-
itations which reduces its effectiveness as a general, all-
purpose benchmark for geo-distributed databases. The most
significant limitation is the benchmark’s inability to gener-
ate sufficient stress in the baseline and skew scenarios. This
suggests that the current 35% ceiling for multi-home transac-
tions may be insufficient to expose meaningful performance
differences, and the skewing strategy requires refinement to
generate more pronounced hot records. Moreover, the bench-
mark’s focus on a single application domain (ride-sharing)
limits its applicability to other application types such as so-
cial media, e-commerce, or financial services. Lastly, since
the benchmark performs short, one-time experiments, it can-
not capture gradual performance trends or degradation which
may emerge over time in applications with constant uptime.

5.3 Future Work
For future work, several directions can be taken to expand
the research further. As a first step, latency decomposition
should be explored at a deeper level to reduce the high per-
centages of unaccounted processing times. An additional im-
provement is to add more geo-distributed systems to provide
a more complete and diverse overview of data management
strategies. Another way to improve this work is to add sup-
port for additional scenarios such as simulating a region fail-
ure to test recovery speed or simulating traffic bursts to test
handling of many sudden requests.

A different avenue worth exploring is running the experi-
ments again using clients which send at a constant rate rather
than closed-loop clients which wait for a response before
sending a new request. This is useful for stress testing each
system to obtain results in a more realistic setting. Altering
the transaction mix percentages could also be experimented
with to test if the results are consistent across different trans-
action proportions. Lastly, alternative partitioning strategies
could also be considered, such as partitioning by ID rather
than city, to see if this significantly affects performance for
some systems or scenarios.

6 Conclusion
This research leveraged the MovR workload to conduct a
performance evaluation of four geo-distributed database sys-
tems: Detock, Janus, SLOG, and Calvin. Our experimental
approach considered six different scenarios - baseline, skew,
scalability, network, packet loss, and sunflower - and we col-
lected metrics for throughput, latency, bytes transferred and
cost.

Our results reveal two main insights into the performance
of geo-distributed databases. The first is that network unre-
liability acts as a major performance bottleneck. The sce-
narios demonstrated that even marginal increases in network
delay or packet loss lead to a drastic decrease in through-
put and a sharp increase in latency across all evaluated sys-
tems. This highlights that network conditions, rather than
internal database mechanics, are a significant bottleneck in
geo-distributed environments. The second key insight is scal-
ability limits and latency spikes when dealing with high con-
currency. While all systems initially scaled quite well, all
of them experience a dramatic performance drop in latency
when dealing with 10,000 concurrent clients. This indicates
that there is a fundamental challenge in maintaining low la-
tency and consistent throughput for a large number of clients.

7 Responsible Research
This work adheres to the principles of responsible research
outlined by the Netherlands Code of Conduct for Research
Integrity [10]. In order to ensure reproducibility and replica-
bility, we have documented our experimental setup in detail in
Section 4, including hardware specifications, software config-
urations, and workload parameters. Furthermore, the source
code 2 for the benchmark implementation is freely available
to promote reuse and independent review. The raw data and
analysis scripts are also included to facilitate reproduction of
the results. We have also provided detailed instructions 3 for
how to run the code and the associated scripts.

The benchmarking involved intensive experiments which
put a heavy load on both system resources and network ac-
tivity. Since this research was conducted in parallel with
other benchmarking efforts, there was a possibility that ex-
periments could interfere with one another. To mitigate this

2https://github.com/delftdata/Detock/tree/movr2
3https://github.com/delftdata/Detock/blob/movr2/examples/

movr/README.md

risk, we made sure that all experiments were performed us-
ing containers with unique port mappings. As an additional
precaution, we also scheduled our experiments to run sequen-
tially in order to avoid network congestion which would in-
terfere with latency and byte transfer results.

We acknowledge that the MovR workload might not repre-
sent all geo-distributed application patterns. To mitigate this,
we tested multiple scenarios and have been transparent about
the limitations of the benchmark in Section 5. While bench-
marking studies are fundamental for system development, we
recognise that our results could be used to unfairly promote
or criticise certain systems. We have strived for objectivity by
testing under controlled conditions but we acknowledge that
an alternative experimental approach might yield different re-
sults.

References
[1] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Se-

rializable Isolation for Snapshot Databases. ACM Trans.
Database Syst., 34(4):20:1–20:42, December 2009.

[2] Cockroach Labs. MovR. https://www.cockroachlabs.
com/docs/stable/movr, 2025. Accessed: 2025-04-21.

[3] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Rohm. YCSB+T: Benchmarking web-scale transac-
tional databases . In 2014 IEEE 30th International
Conference on Data Engineering Workshops (ICDEW),
pages 223–230, Los Alamitos, CA, USA, April 2014.
IEEE Computer Society.

[4] Tamer Eldeeb, Philip A Bernstein, Asaf Cidon, and Jun-
feng Yang. Chablis: Fast and General Transactions in
Geo-Distributed Systems. 2024.

[5] Tamer Z. Emara, Thanh Trinh, and Joshua Zhexue
Huang. Geographically distributed data management
to support large-scale data analysis. Scientific Reports,
13(1):17783, October 2023. Publisher: Nature Publish-
ing Group.

[6] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee,
Scott Foggo, and Anil Pacaci. Apollo: Learning Query
Correlations for Predictive Caching in Geo-Distributed
Systems. 2018.

[7] Rachael Harding, Dana Van Aken, Andrew Pavlo, and
Michael Stonebraker. An evaluation of distributed con-
currency control. Proceedings of the VLDB Endowment,
10(5):553–564, January 2017.

[8] Joshua Hildred, Michael Abebe, and Khuzaima Daud-
jee. Caerus: Low-Latency Distributed Transactions for
Geo-Replicated Systems. Proceedings of the VLDB En-
dowment, 17(3):469–482, November 2023.

[9] Suneuy Kim, Yvonne Hoang, Tsz Ting Yu, and Yu-
vraj Singh Kanwar. GeoYCSB: A Benchmark Frame-
work for the Performance and Scalability Evaluation
of Geospatial NoSQL Databases. Big Data Research,
31:100368, February 2023.

[10] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit, 2018.

https://github.com/delftdata/Detock/tree/movr2
https://github.com/delftdata/Detock/blob/movr2/examples/movr/README.md
https://github.com/delftdata/Detock/blob/movr2/examples/movr/README.md
https://www.cockroachlabs.com/docs/stable/movr
https://www.cockroachlabs.com/docs/stable/movr

[11] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating concurrency control and consensus
for commits under conflicts. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 517–532, USA, 2016.
USENIX Association.

[12] Cuong D. T. Nguyen, Johann K. Miller, and Daniel J.
Abadi. Detock: High performance multi-region transac-
tions at scale. Proceedings of the ACM on Management
of Data, 1(2), June 2023.

[13] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
SIGCOMM Comput. Commun. Rev., 45(4):421–434,
August 2015.

[14] Luyi Qu, Qingshuai Wang, Ting Chen, Keqiang Li,
Rong Zhang, Xuan Zhou, Quanqing Xu, Zhifeng Yang,
Chuanhui Yang, Weining Qian, and Aoying Zhou. Are
current benchmarks adequate to evaluate distributed
transactional databases? BenchCouncil Transactions on
Benchmarks, Standards and Evaluations, 2(1):100031,
March 2022.

[15] Kun Ren, Dennis Li, and Daniel J. Abadi. SLOG: seri-
alizable, low-latency, geo-replicated transactions. Pro-
ceedings of the VLDB Endowment, 12(11):1747–1761,
July 2019.

[16] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12, Scottsdale Arizona USA, May 2012.
ACM.

[17] Transaction Processing Performance Council. TPC
Benchmark C Standard Specification, Revision 5.11.
Technical report, Transaction Processing Performance
Council, February 2010. Accessed: 2025-04-21.

[18] Chunxi Zhang, Yuming Li, Rong Zhang, Weining Qian,
and Aoying Zhou. Benchmarking for Transaction Pro-
cessing Database Systems in Big Data Era. In Chen
Zheng and Jianfeng Zhan, editors, Benchmarking, Mea-
suring, and Optimizing, pages 147–158, Cham, 2019.
Springer International Publishing.

	Introduction
	Background
	MovR Workload
	Related Work

	Benchmark Implementation
	Benchmark Performance Evaluation
	Experimental Setup
	Results
	Baseline and Skew Scenarios
	Scalability and Network Scenarios
	Packet Loss and Sunflower Scenarios

	Latency Decomposition

	Discussion
	Performance Bottlenecks
	Benchmark Effectiveness
	Future Work

	Conclusion
	Responsible Research

