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ABSTRACT
Many applications make extensive use of various forms of compres-
sion techniques for storing and communicating data. As decompres-
sion is highly regular and repetitive, it is a suitable candidate for ac-
celeration. Examples are offloading (de)compression to a dedicated
circuit on a heterogeneous System-on-Chip, or attaching FPGAs or
ASICs directly to storage so they can perform these tasks on-the-fly
and transparently to the application. ASIC or FPGA implementa-
tions will usually result in higher energy-efficiency compared to
CPUs. Various ASIC and FPGA accelerators have been developed,
but they typically target a single algorithm. However, supporting
different compression algorithms could be desirable in many sit-
uations. For example, the Apache Parquet file format popular in
Big Data analytics supports using different compression standards,
even between blocks in a single file. This calls for a more flexible
software based co-processor approach. To this end, we propose a
compiler-supported Application-Specific Instruction-set Processor
(ASIP) design that is able to decompress a range of lossless com-
pression standard without FPGA reconfiguration. We perform a
case study of searching a compressed database dump of the entire
English Wikipedia.
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1 INTRODUCTION
Data compression schemes have been in use since the dawn of
the digital age, with the Lempel-Ziv papers [23, 24] serving as a
basis for many variants of the popular sliding window compres-
sion algorithm. Data compression can considerably increase the
efficiency of storage, hence it is a common step to perform before
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committing data to persistent storage. Therefore, some processors
contain dedicated circuitry (ASIC) for certain algorithms, further in-
creasing (energy) efficiency and decreasing associated performance
penalties.

The challenge of these implementations is that they require
considerable design effort, and are usually fixed to supporting a
single standard (for example, gzip). However, new standards for
data compression are actively being developed, and most large
technology firms have their own variant to suit their particular
needs. For example, recently Google developed Brotli and Snappy,
Facebook created zstd, all of which are based on the LZ77 core
algorithm. Additionally, Big Data formats such as parquet support
multiple compression standards, which can even change between
different sections of a single file. Clearly, these types of data sources
are very difficult to offload to fixed function accelerators to perform
the compression.

In this paper, we aim to address this issue by introducing an
application-specific instruction-set processor (ASIP), based on the
Transport-triggered architecture (TTA) [8], that is optimized to ef-
ficiently decompress a wide range of current and predictably also
future lossless compression standards. The presented prototype of
the ASIP developed using the TTA-based Co-design Environment
(TCE) [9] (also known as OpenASIP) supports the Snappy and LZ4
compression standards.

While in this paper only the FPGA-based implementation was
evaluated, the goal of the proposed design is to provide energy-
efficient on-the-fly decompression of data while providing control
logic support for software based switching of the compression stan-
dards, thus being potentially useful also for ASIC based realization.

2 BACKGROUND AND RELATEDWORK
This section briefly discusses the fields related to this work, along
with the challenges we aim to address.

2.1 Compression
Overall, compression standards fall into one of the two main cat-
egories: lossy and lossless. When using lossless compression, the
decompressed output is identical to the original data. Lossy com-
pression results in some form of information loss, usually because
a lower fidelity was deemed adequate for the application (for ex-
ample, MP3). The design proposed in this paper targets a particular
family of lossless compression standards.

Data is (losslessly) compressible when there is redundancy, that
is multiple occurrences of the same (sequence of) values are found.
A mathematical discourse on this topic is beyond the scope of this
paper, but can be found in information theory papers such as the

14

https://doi.org/10.1145/3456172.3456218
https://doi.org/10.1145/3456172.3456218
https://doi.org/10.1145/3456172.3456218


ICCDE 2021, January 15–17, 2021, Phuket, Thailand Hoozemans, Tervo, et al.

well-known work of Shannon [16]. Many compression standards
use similar strategies to find patterns in the data that have occurred
before. This way, the pattern can be replaced by a reference to
the earlier data (the reference being smaller than the pattern itself,
thereby reducing the required storage space). Some standards, such
as for example Brotli [4], use a pre-defined dictionary containing
patterns that are often used in the targeted application domain.
Often the compression algorithm keeps track of a sliding window
of data, as proposed in the paper introducing the LZ77 algorithm
[23].

The compression window provides a boundary on both the mem-
ory consumption and the runtime of the algorithm, and represents
a trade-off between possibly better compression ratios and mem-
ory/time requirements. A larger window provides the algorithm
with more historical data to find duplicates, but this means that
more memory is needed for this buffer (both for the compressor and
decompressor) and the compressor needs more time to compare all
the patterns. While some standards allow the user to specify the
window size (e.g., Brotli), many have a fixed size (e.g., gzip with 32
kiB).

The compressed data contains symbols that can either be a pat-
tern of actual values (data that is not in the sliding window) often
called a literal, or a reference to an earlier pattern. Symbols need
to encode their length, so that the decompressor knows when a
new symbol is starting. These ’headers’ (encoding whether this
symbol is a literal or a reference, and the length) are the reason why
compressed files can sometimes be slightly larger than the original
data.

Figure 1: Encoding of different symbol types in the Snappy
compression standard [11].

2.2 Compression ASICs
Several existing designs and patents exist that aim to accelerate
(de)compression workloads on CPUs [1, 15], or that aim to perform
compression on-the-fly when swapping pages to main memory [20].
Fixed function ASICs have the potential of providing the best pos-
sible energy-efficiency and performance, but are usually targeting
a specific compression standard their lack of flexibility means the

designs cannot be updated for new standards nor utilized in ap-
plication cases where multiple compression formats are used in a
dynamic manner.

2.3 Compression on FPGA
Various designs have been proposed that implement various com-
pression standards in FPGA fabrics. Examples for lossy compres-
sion are FFT accelerators and IP cores for media codecs such as
JPEG/MPEG or MP3. The compression standards targeted by our
proposed design is lossless. In this domain, a multitude of FPGA-
based designs are discussed in academic literature [2, 14, 22]. Addi-
tionally, several commercial IP cores accelerating GZip/ZLIB are
available [7].

These designs are becoming increasingly relevant with upcom-
ing general availability of hardware platforms that combine non-
volatile memory and FPGAs on a single board. On these platforms,
(de)compression can be performed on-the-fly while accessing stor-
age. In addition to freeing compute cycles on the CPU, the FPGA is
able to perform these tasks considerably more energy-efficiently
and with low-latency. Combined with the complete transparency,
these solutions can quickly become very cost-effective for many
types of workloads.

As an example, Xilinx includes gzip IP cores in their Vitis library
that can be easily included in user designs. Another use of these
(de)compression cores in FPGA logic is to increase the effective
bandwidth between host memory and accelerator card if the data
is found to be highly compressible. This may alleviate the bottle-
neck that often results from the PCIe link bandwidths which have
traditionally been (relatively) limited.

2.4 Compression in Big Data Analytics
Modern Big Data storage formats such as Apache Parquet [5] offer
flexibility in employing various compression techniques. In addi-
tion to general algorithms, parquet can use encodings that are more
effective for the type of data being stored; examples include dic-
tionary encoding for datasets that often contains the same values,
and delta encoding for storing datapoints that have relatively small
differences between them. This flexibility makes supporting the
standard more difficult when implementing an FPGA circuit. In
addition, parquet supports using different compression algorithms
for different blocks of data within a single file. This means that
an FPGA circuit needs to either support several standards, result-
ing in logic under-utilization, or make excessive use of (partial)
reconfigurations. Swapping in different accelerators based on the
compression type used in the current block is difficult, because
the granularity can be relatively small and in order to sustain the
desired high throughput, multiple compression cores will likely be
active concurrently.

As the supported compression standards are, algorithmically
speaking, quite similar, it seems plausible that a middle ground
between optimized circuitry and flexibility is the most optimal
design space.
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2.5 Application-Specific Instruction-set
Processors

A middle ground between optimized circuitry targeting a specific
application on one side, and providing the flexibility to target a cer-
tain range of applications in an application domain by still allowing
programmability, can be created by an ASIP design. ASIPs can be
extended with special instructions and have other customizable
aspects that can be tuned for a certain application or an application
domain. Special instructions with different granularities can be
used to accelerate functions that are common within the applica-
tions in the targeted domain. Furthermore, ASIPs have the benefit
of excluding features that are not required by the application do-
main, improving the area and energy efficiency of the design in
comparison to general purpose processors (GPP). When comparing
to fixed function accelerators with streamlined pipeline or state ma-
chine based control logic, ASIPs include some additional overheads
due to the instruction-set controlled logic circuitry required by the
software-based flexibility. This includes the fetch and decode logic
as well as the instruction memory needed to store the instructions
of the executed program. However, an essential practical benefit of
ASIPs is that they can be implemented both as ASICs on new chip
designs and as soft cores in FPGAs with both platforms benefiting
from the additional software-based flexibility.

On the other hand, a fully customized fixed function accelerator
design requires large design and implementation effort whereas
an ASIP only requires a relatively small addition of logic for the
customized instructions, and the design process is toolset assisted.
Examples of ASIP design and programming tools are Synopsys ASIP
designer [18], Cadence Tensilica [6] and the TCE tools [9]) which
were used for the design in this paper. The toolsets contain "base
processors" which are design examples that can be extended and
customized, and thus serve as quick starting points for new designs.
The base processors contain functionality for e.g., in/output and
debugging and are fully compiler programmable, helping making
the design and debug cycles shorter compared tomanual RTL design
flows. In the recent years, high-level synthesis tools have appeared
to help in the RTL design effort, however they still suffer from
vendor-specific descriptions and thus steep learning curve and
poor design effort reuse across different vendors.

In the end, as long as the majority of the workload can make use
of the specialized instructions and other processor customizations,
an ASIP can provide an excellent design point between software
running on GPP and a fixed function accelerator. ASIPs have been
traditionally popular in for example baseband communication, as
for example mobile phones need to support several generations of
wireless communication standards (2G, 3G, etc.), with little work
published for the data compression application domain. A softcore
ASIP design for data compression specifically for vision systems is
presented in [17].

3 PROPOSED DESIGN
The design of the proposed ASIP was done using the open source
TCE toolset also known as OpenASIP [19]. A leading insight for the
design was to identify the common ground between the considered
lossless decompression algorithms to be in the need to keep a slid-
ing window of buffered data, and output either literal data from the

Figure 2: Internal logic of the custom function unit for
stream operations.

input stream or data from the original buffer. This common ground
between algorithms is a good target for hardware acceleration, and
was done using specialized operations that can execute concur-
rently with the rest of the processor datapath. We implemented
these operations as an RTL component that operates as a custom
functional unit in the TTA processor. The input and output streams
are connected directly to this unit.

3.1 Application-Specific Functional Unit
The ASIP contains a set of custom operations including reading
symbols from the input stream into the processor, performing the
transfer of literal data from the input stream to the output stream,
or copying data to the output stream from an internal lookback
buffer. These are all contained in one functional unit, the basic
internal structure of which can be seen in Fig. 2.

The input stream is buffered with a simple byte-oriented shift
register, keeping at least four bytes ready as long as the input
stream does not stall. From this buffer, up to four bytes can be read
into an internal register of the processor or into the output stream
by custom operations. Any data written to the output stream is
also written to a circular lookback buffer organized in 4 banks,
configured to a total of 32 kilobytes. This lookback buffer is used
to read data for references up to 32 kilobytes behind the head of
the stream. The banked memory allows for reads and writes of
up to four bytes to be aligned to any byte address. The custom
function unit exposes these capabilities to the processor through
the four operations listed in Table 1: reading 1-4 bytes of header data,
transferring an N-byte literal from the input stream to the output
stream, copying N bytes from an offset in the lookback memory,
and signalling the last byte of the transfer, i.e., compression frame.
This last operation will cause the functional unit to assert the last
signal to the downstream consumer attached to its output.

3.2 Programmability
The decoding of the symbol headers is done using the base instruc-
tion set that supports common arithmetic and logical functions
such as shifts as well as AND/OR. This instruction set it supported
by the LLVM-based C-compiler included in the TCE toolchain, so
that the decoding of the symbol headers is fully programmable. The
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Figure 3: Design of the ASIP decompression processor. The design has a special function unit Stream_fu, three parallel
arithmetic-logic units, and a load-store unit. All of them are supported with a simple 2r+1w register file, thanks to the TTA
programming model.

Table 1: Operations supported by the custom Stream_fu functional unit.

operation returns parameter 1 parameter 2
READ_HEADER 1 - 4 bytes from input stream nr. bytes to read –
BYPASS – nr. of bytes to bypass –
COPY – nr. of bytes to copy offset in bytes

architecture has three parallel arithmetic logic units (ALUs) that
support basic C operators. The ALUs are kept quite basic – each
takes up under 100 LUTs in the final design.

TTA is an “exposed datapath architecture” [12] which allows
software-based register file bypassing, where values can be denoted
by the compiler to not be written to or read from the register file,
and instead transferred directly from function unit to function unit.
This model allows for a simple register file, with only two read ports
and one write port, to serve three ALUs and the custom function
unit whereas in a standard VLIW design it would have required a
large number of register file ports, typically ending up in the critical
path of the design [13].

We have implemented both the Snappy and LZ4 algorithms on
the processor, and the performance of the processor for the common
cases of these standards are listed in Table 2. An LZ4 symbol always
has a literal and copy component, so it is more difficult to determine
the exact latency (some cycles contain operations used for both).

Table 2: Decoding latency for the Snappy and LZ4 compres-
sion standards. These numbers are for the case where the ar-
guments do not need additional bytes (Snappy; literal length
< 60 or copywith 1-byte offset). The other cases requiremore
cycles to decode, but can also result in longer sequences to
output (during which the processor can continue decoding
following headers).

Snappy literal Snappy copy LZ4 sequence (literal and copy)
14 cycles 17 cycles 28 cycles

3.3 Design Considerations
The processor is fully compiler-programmable, which means it is in
principle able to decode any current and future compression stan-
dard based on the LZ77 sliding window principle. Additionally, the
custom functional unit could be implemented using any interface
width, and with any buffer size. However, the following practical
limitations should be considered:

3.3.1 Buffer size. The design must have a buffer size that can ac-
commodate the target compression standards. Any standard that
requires support for a buffer that is larger than what is present
will not be supported. conversely, buffer capacity will go to waste
when decompressing standards that only require a smaller buffer.
In a multi-core design it could be possible to share buffers between
adjacent instances, combining multiple buffers into one, but this
will render the donor instances unable to operate, thereby reducing
the throughput. In addition, such an arrangement could negatively
affect the cycle time because of the required additional connections
and multiplexers.

3.3.2 Interface width. In this paper, we have chosen an interface
of four bytes per cycle for the custom functional unit. This is the
upper limit of the design in terms of throughput. For example, in an
FPGA prototype with a target operating frequency of 200 MHz, this
design has a theoretical maximum throughput of 4 × 200 MHz =
800 MBytes/s. However, the actual throughput is highly dependent
on the properties of the compressed data stream. When the input
consists of many small sequences of literals and copies, close to the
interface width, the actual throughput will quickly be limited by
the speed in which the processor is able to decode the headers.

Designswith small interfacewidthswill not deliver high through-
put per stream, but can be useful in cases where multiple sources
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of data can be processed in parallel. Wider designs can deliver high
performance for a single stream, but will need to decode multiple
headers per cycle.

3.3.3 Speculative header decoding. As can be seen in Figure 1, the
length of a symbol header is variable. This means that the location
of a new symbol depends on the length of its predecessor. Therefore,
if multiple headers need to be decoded per cycle, speculation is
required [10]. This means that for every new busword of input data,
the processor should decode each byte as if it were the start of a
symbol. As soon as the length of the previous symbol is known, the
proper new symbol can be selected. Although these techniques can
in principle be programmed in software (for example leveraging
SIMD instructions supported by TCE), it must be noted that hard-
ware circuits are more suitable for this because of their pipelined
nature. Studying the practical implications of this is an interesting
topic for future work, but outside the scope of this paper.

4 EVALUATION
In order to evaluate the performance of our proposed design in
practice, we implemented a multi-softcore FPGA realization of the
ASIP design. The evaluation platform was a dual-socket server
with two Xeon Silver 4114 CPUs clocked at a base frequency of
2.2 GHz and a turbo frequency of max 3.0 GHz. The TDP of this
processor setup is 85 watts. The machine has 8 DDR4 DIMMs of 16
GB each, running at 2666 MHz. Power measurements of the CPUs
was performed using Intel Running Average Power Limit (RAPL)
through the Linux powercap interface [21]. These include the power
consumption of both full CPU sockets, but exclude DRAM power
consumption. The FPGA platform used is a Xilinx Alveo U200
accelerator card, connected via PCIe gen3 x16. Power measurement
of the FPGA is performed by monitoring the vccint voltage and
current as reported by the Xilinx xbutil utility. These also include
the power consumption of the full FPGA chip, but exclude the power
consumption of the FPGA board’s DRAM and other peripherals.

4.1 Case study: Wikipedia Search
As a case study to evaluate a real-world big data-like application of
the design, we created software and FPGA implementations of a
search program that scans through the entire English Wikipedia
database dump (without index) to find and count occurrences of a
given expression. Articles smaller than 64 bytes were filtered out
of the dataset, as these articles are often uncompressible (they are
mostly stubs and links to other articles). The raw dataset is 29 GB
of text, stored in records that each contains the article title and
the contents compressed using either LZ4 or Snappy (randomly
selected). These records are evenly distributed across 15 chunks
of 1.1 GB each for a total of 16 GB of input data. When starting
the application, these chunks are distributed over 3 different banks
of on-board DRAM memory. Each DRAM bank is connected to
a super logic region (SLR) through individual memory controllers.
Five kernels are assigned to each SLR, to distribute the logic uti-
lization evenly over the FPGA. A kernel contains 3 instances of the
processor for a total of 45 softcores, each connected to a simple
string matching engine.

The throughput of the design in comparison with the CPU im-
plementation is depicted in Figure 4. The 45-core FPGA prototype

Figure 4: Throughput of the proposed design versus a dual-
socket Xeon Silver 4114 system with varying number of
threads.

Figure 5: Power consumption and power efficiency.

reaches a throughput of 2.3 GB/s which is not enough to keep up
with the full dual-socket CPU system achieving 6.5 GB/s. How-
ever, in terms of power efficiency, depicted in Figure 5, it already
provides a clear advantage even through the Xeon CPUs used in
the reference system are already rather energy-efficient at 86 Watt
TDP. The CPU cores, when fully loaded with our test application,
measure a power draw of approximately 65 Watts each. In contrast,
the FPGA draws approximately 18 Watts of power when the design
is active.

The resource utilization of the FPGA prototype is depicted in
Table 3. A single instance of the processor consumes a very small
amount of resources, so that in principle more than 100 cores could
be instantiated on our FPGA platform. However, because the Alveo
shell already consumes a significant amount of resources, the num-
ber of processors that could fit on the chip is more limited in our
use case prototype.

5 CONCLUSION
In this work, we proposed an ASIP design that is fully compiler
programmable. We demonstrate the programmability by showing
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Table 3: FPGA resource utilization of a single instance of the ASIP and the full wiki search design on the Alveo U200. The
Alveo shell (listed as platform resources) already consumes a significant portion of the available resources.

single ASIP instance 45-core design (user resources) 45-core design (platform resources)
Clock frequency (MHz) 220 177 177
LUTs 4237 (0.36%) 468,092 (40%) 321,965 (27%)
Registers 1178 (0.05%) 525,100 (22%) 429,358 (18%)
BRAMs 17 (0.79%) 767 (35%) 766 (35%)
URAMs 0 0 0

that the design is able to decode both LZ4 and Snappy. To evaluate
the performance, we implemented an FPGA realization of the de-
sign and integrated it into a multi-core Big Data application. This
prototype using a single FPGA can not keep up with the throughput
of a dual-socket CPU system, but already provides considerably
improved energy efficiency. An ASIC implementation will increase
this advantage even more and should provide more throughput, but
we must note that the performance will stay limited by the symbol
decoding latency. Mitigating this latency by using parallel decod-
ing and introducing speculation is an interesting future research
direction.
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