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Preface

Welcome to my master thesis! Here I will present the outcomes of my research for the traffic influence on
pavement performance, and based on the knowledge, a simulation software to forecast whether the perfor-
mance indicators meet the maintenance requirements timely will be developed. Before presenting the find-
ings from the research I would like to share the journey I have gone through in the last few months.

When I was looking for a graduation project, Building Information Modeling (BIM) was my first interest.
After a preliminary investigation, I found out the real challenge of BIM application was not a technology
problem, but about the low willingness of the engineers to learn the new software. Commonly, the selection of
technology is inertial. Only if the new technology saves much time and costs, people will have the preference
to use it. Thus, it seems the solution to improve the BIM application is making a more efficient software.
But there is a dilemma. The more advanced the computer program is, the bigger gap between the old and
new systems there is, and the more learning difficulties the technicians have. Based on the surveys and my
consideration of self professional backgrounds, the topic was abandoned.

Inspired by the core idea of BIM, I believe the data aggregation platform can avoid the needless reduplicative
work of the later phase in a system development life cycle, and it is beneficial for the stakeholders to make
the optimal decisions with the data transparency. Accordingly, I was coming up with the other question: Can
the information integration of the design, the construction and the operation achieve a better maintenance?
Because I studied structural engineering and mechanics in 4-year bachelor, structural design and construc-
tion are the familiar fields to me. With the 2-year master education of transport planning in Delft University
of Technology (TU Delft), I believe that I am capable to do the case.

The first and most important step is to find the data. I contacted Prof. Hans van Lint, who is the chair of Delft
Integrated Traffic and Travel Laboratory (DiTTlab). After hearing my topic, he was very willing to support
and permitted me to access all the data DiTTlab had. Not only that, but Hans also introduced me to Prof.
Sandra Erkens, the chair of pavement engineering department in TU Delft. Step by step, the idea landed on
the multidisciplinary research, which is relevant to pavement performance, traffic data, and maintenance
management.

After the determination of which direction my thesis would go to, I showed the pilot proposal to my daily
supervisor, Dr. Kumar Anupam. Via him, the idea was presented to Rijkswaterstaat, the executive agency of
Ministry of Infrastructure and Water Management in the Netherlands (RWS) and gained their data support
of the annual measurement of roughness, rutting, and skid index in the long term, as well as the intensities
of various vehicle types. At that point, all the preparation had completed and the project was ready to carry
out.

Before starting the thesis, I had the basic knowledge of statistics and programming. I got the government
policy of road management in the Netherlands and had the training to analyze the big data set. So I am
so thankful for this opportunity. This project is by far, the most challenge I have ever done. I have tried
to meet the practical expectations from RWS, and the academic requirements from TU Delft. During this
project I have learned so much about data analysis, pavement performance, and road management. Besides,
I also learned so much about myself, I have been struggling a lot with understanding the survival model,
and the code bugs in Matlab and Python, and got to knew that facing your own strengths, weaknesses and
uncertainties is also an important part of growing.

I wish you a pleasant reading journey here!

Zili Wang

February 15, 2020
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Executive summary

This report presents the outcomes of a graduation
project, completed with the intent to obtain a master
degree in Civil Engineering with Integral Design and
Management (IDM) annotation issued by TU Delft.

Problem as given
The graduation project is finished in RWS. The main
objective is to figure out the transportation influence
on the pavement performance and simulate the road
surface performance progression in the service life.

Problem as taken
The importance of taking the challenges is under-
pinned by the following facts. A good prediction
of pavement performance progression has been ex-
pected for a long term. In addition, an ideal road
management system requires the real-time assess-
ment of pavement condition. There are many root
causes of the status quo that the expectation and the
system have not been achieved yet. One of them is
about the monitoring system. An all-time monitor-
ing provides more timely and precise evaluation of
pavement performance. However, in the reality, the
measurement is carried out once a year because of
the budget and also because it is time-costly. Accord-
ingly, this thesis presents the novelty that using the
real-time traffic data as the indirect way of monitor-
ing the road. The data is collected 24/7 automati-
cally, and the flows can be perfectly forecast by the
transport flow modeling. The idea is based on the
assumption that the transportation has the essential
influence on the road performance. Although it is in
line with the common sense, the correlation needs to
be supported by data. Therefore, the main research
question is defined as: What are the effects of traffic
flow characteristics on pavement response and perfor-
mance in a quantitative way?

Approach
The research focuses on the collaboration between
traffic engineering, pavement engineering and road
management, in the road operation and mainte-
nance phase. A design-based research approach is
used to develop the simulation software for road per-
formance applied to Pavement Maintenance Infor-
mation System (IVON). It works out the assessment of
whether the road condition meets the maintenance
requirement at any determined time according to the
data of the influencing factors. The core code of the

software is the performance model. Multiple models
are used during the research project to figure out the
effects of the influencing factors, especially the traf-
fic flows, on the roadway performance progression.
There are several data sources. Performance data is
obtained by the annual measurement of IVON, as
the same database as the modal split. Minute-traffic
data is accessed from DiTTlab. Four steps are defined
to find the best applicable performance model to the
case. Firstly, the raw data is processed and aggregated
to the yearly matrices in Matlab. Secondly, the cor-
relation analysis is done for reducing the dimensions
of the matrices. Thirdly, the regression models, the
survival model and the decision tree classifier model
derived from the literature all apply. Lastly, according
to the goodness of fitting or the prediction accuracy,
the best applicable model is chosen and it is used in
the simulation software. The establishment of the
software has four phases: building an interface, data
preparation, coding the performance model; and the
output visualisation.

Findings
The findings of this research are used to evaluate the
existing situation and to improve the road manage-
ment. All the findings are based on the observation
of A15 from 2015 to 2018. Of most sections, the road
roughness and the rutting were under fluctuation.
The findings of the phases for modelling the perfor-
mance model are elaborated as follows. The correla-
tion analysis shows the weak linear correspondence
between the test performance indicators and traffic
intensities. Different forms of the performance mod-
els explain the effects of the influencing factors in the
different ways. The linear regression models indicate
that the important factors that affected the test pave-
ment performance indicators were their initial val-
ues, traffic volumes and climate, and various vehicle
types had different magnitudes of the effects on the
road performance. The survival model shows traf-
fic flow significantly decreased the expected survival
time and the survival probability of pavement con-
cerning roughness or rutting. Decision tree model
predicts whether a section met the maintenance re-
quirements by its characteristics and the traffic situ-
ation, and the prediction results are comparable with
the actual situation. The three performance models
provide the feasible ways of quantifying the influ-
ence of traffic factors. But since the results are all
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data-sensitive, the quantities of the effects of traffic
factors on road performance computed in the study
describe the scenario of A15, but not address a gen-
eral conclusion. The findings verify the assumption
that the transportation has the essential influence on
the road performance as the problem as taken elab-
orates. Thus, it is feasible to simulate the pavement
performance by the properties of the road and the
traffic situations.

Application
The practical application of the findings is to set up
the simulation software as a plug-in of IVON sys-
tem. It is to real-time emulate whether a roadway

meets the maintenance requirements and sends the
alarm to the road management organisation when it
does. Decision Tree Classifier (DTC) is the core algo-
rithm. The data input includes two parts. One from
the IVON dataset contains the last measurements
of roughness, rutting, the construction times, the
surface material types, the locations, the directions,
and the modal splits. The other provided by DiTTlab
includes the minute-traffic flows on per 100-meter
section. The output of the software is the simulation
result of whether the section needs maintenance.
The test result of using the historical data from 2015
to 2017 to predict the situation in 2018 is more than
88% identical to the reality.
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I
Discover

Discover phase starts the research project. The phase is a “phase of divergent though” to see problems from
a wide perspective. The phase aims to identify the research problem that occurred during the road operation
and maintenance phase and estimate the chance to improve road management by introducing the traffic
data to the present system.

There are two chapters in Discover phase. Chapter 1 gives the introduction of the problem, the goal, and the
questions, the scope, and the scientific relevance of the research, as well as the report structure. Apart from
these, IVON system, as the context of the project, is included in the chapter. Chapter 2 explores the problem
by reviewing the previous literature.

1





1
Introduction

This research is a graduation project for the master degree of Civil Engineering in TU Delft, performed for
RWS in Rotterdam, the Netherlands. The content of this research project is described in this chapter. Firstly,
the problem that will be researched is introduced in Section 1.1, followed by the goal and the questions of
the research including the main research question and the sub questions in Section 1.2. Section 1.3 describes
the scope of the project. The scientific relevance and the report structure are elaborated on in Section 1.4
and Section 1.5 respectively. The context of the project is the present road management system RWS is using,
which described in Section 1.6. The chapter ends with the short summary of the chapter and the answers to
the sub question 1 to 3.

1.1. Problem introduction

Many studies have found that pavement conditions significantly influence traffic safety. 16% of traffic crashes
are due to roadway environmental factors (NHTSA, 2008). Pavement roughness or present serviceability rat-
ing has a large impact on crash rates (Al-Masaeid, 1997). The pavement factors of International Roughness
Index (IRI), pavement rutting, and pavement condition rating significantly influence the frequency of crashes
(Abdel-Aty, Devarasetty, & Pande, 2009). Therefore, it is significant for a good pavement management system
to have the accurate and timely assessment of pavement state. In reality, most pavement distress is detected
by inspection, and only a few important roads or bridges are monitored by sensors. In the Netherlands, the
detection of pavement poor performance is dependent on the field measurement (Rijkswaterstaat, 2017b).
The pavement performance assessment on the basis of observations is very labour-intensive and it is difficult
to observe the damages in time together, especially internal failures of the materials. The recent developing
sensor-based structural health monitoring system with the characteristics of sensitivity, timeliness, and ac-
curacy is being applied to more and more infrastructure projects (Farrar & Worden, 2006). However, the
technical challenges like the limited life spans of sensors or the large expense of the operation of the whole
system, impede the wider application of the technology. With respect to the difficulties together with the
availability of the current technologies for a road health evaluation, this thesis proposes a new method to
simulate in-service pavement performance based on the real-time traffic data. It is an innovation that the
real-time traffic data is taken as the predictor variables for roadway damage simulation.

The current pavement performance assessment of RWS relies on the measurement of the materials proper-
ties and the defects (Rijkswaterstaat, 2017b). But the pavement health simulation of the project is driven by
the real-time traffic data and looks into the external factors and their potential causes. As the output of the
24-hour vehicle loop detectors, traffic data captures the live transportation situation. The research proposal is
to further employ the traffic data for simulating road performance during its service life. Compared with the
traditional manual inspection, the pavement health simulation based on traffic data is timely and efficient,
because the data collection is real-time, 24/7 and automated. In addition, the new way of roadway health
monitoring can have better predictability for road health development compared with the existing system.
Road damages are observable only after the deterioration has occurred in the present, but by estimating the
future transit intensity based on the current data, the new method is expected to predict the pavement condi-
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4 1. Introduction

tion development by the prediction of the traffic flow. With the advantage over the recent road performance
assessments, the traffic data-driven simulation has a bright prospect for the timely, automated, and predic-
tive pavement health evaluation system. Stakeholders, like the Ministry of Transport and Infrastructure, RWS
and other maintenance organisations, can all benefit from the technology application if it is able to reduce
a great cost of manual patrols for damage detection, provide potential distress alarm for maintenance, and
simulate the pavement performance for asset management.

1.2. Research goal and questions

With respect to academics, the thesis aims at contributing to the existing body of knowledge on the perfor-
mance models. In the industry level, the research objective is to improve the road management system by
setting up the real-time assessment for monitoring the pavement condition. The real-time assessment is
based on the data-driven model, and expected to be easily utilized by engineers of road operation and main-
tenance field.

To be able to set up the real-time assessment of pavement condition, the real-time traffic data is consid-
ered as the indirect way of monitoring the road. The idea will be feasible only if the transportation has the
nonnegligible influence on the road performance progression. Although it is in line with common sense, the
correlation needs to be supported by data. Therefore, the main research question is defined as follows.

Main question

What are the effects of traffic flow characteristics on pavement response and performance in a quan-
titative way?

In order to answer the main research question, seven sub research questions are formulated:

Sub questions

Discover:
SQ 1. What are the roles of pavement performance and traffic in the current road management
system? What kinds of pavement performance indices and traffic characteristics are important in
this system?
SQ 2. What can cause pavement deterioration? Which causes are related to or determined by the
traffic characteristics?
Define:
SQ 3. What performance models are feasible to perform in this case and can achieve the research
goal?
SQ 4. Which pavement deterioration, its potential causes and traffic characteristics can be captured
in the current data collection system? Which can not?
Develop:
SQ 5a. How to apply the regression models?
SQ 5b. How to apply the survival model?
SQ 5c. How to apply the decision tree classifier model?
SQ 6a. What are the results of the regression models by the test data?
SQ 6b. What are the results of the survival model by the test data?
SQ 6c. What are the results of the decision tree classifier models by the test data?
Deliver:
SQ 7. How to apply the findings of the quantitative effects of the traffic characteristics to improve the
road management field?

1.3. Research scope

The thesis project is two-folded:
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• From an academic perspective, on the one hand, this research aims at contributing to the existing body
of knowledge on the performance models, that quantify the effects of the influencing factors on road
deterioration. On the other hand, the application of the models to simulating the pavement perfor-
mance progression will be evaluated.

• In the industry level, this thesis aims at setting up a practical tool for real-time evaluating the pave-
ment conditions, which helps to solve the problem that the relatively long measurement intervals of
pavement performance may cause.

The influence of the factors on road performance
The research aim is to study the effects of the influencing factors on the pavement performance by the data
analysis only. The statistical methods are applied to see the closeness of the correlation between the vari-
ables. The pavement performance is considered as the response variable, and the influencing factors are the
independent variables. The main focus of the factors is traffic-associated.

The technical feasibility of the service-life pavement performance simulation
The project examines the technical feasibility of simulating road performance by three principles. The first
is, there should be a strong correlation between the influencing factors with the road surface performance
analyzed by data. The second is the performance model should be perfectly applied to the case, which is
assessed by the goodness of fitting or prediction accuracy in the test. The third is that it should be possible to
link the traffic data to the measurement results on the same road section.

The establishment of the simulation software
Developed in Python, the simulation software is to provide the engineers in the road operation and mainte-
nance field with the useful and reliable simulation results of the Dutch highway performance in the real time.
It has been designed by the report with three functions. The first is that it can read the after-processing data
originating the historical performance data in IVON and real-time traffic data from DiTTlab. The second is
that it gives the visualisation of the decision tree, which is the core algorithm of the simulation. The third is
that it shows the simulation results which makes the statement as the investigated road section has (not) met
the maintenance requirements concerning the performance indicator yet.

1.4. Scientific relevance

Not much research has been conducted on the interface between traffic engineering and pavement engineer-
ing. This thesis project with the multidisciplinary topic explores the correlation between the two tracks and
finds the cooperation valuable in the road operation and maintenance field.

It should be noticed that the road maintenance strategy is relevant to the case. RWS has made the great
achievement of the road management system for all classes of the roadways in the Netherlands (Rijkswater-
staat, 2006). The system includes the criteria of road construction and repair, the service standards of the ur-
ban and regional infrastructure, the code of conduct of the inspection and the measurement, the damage as-
sessments, the maintenance requirements in the Design, Build, Finance and Maintain Contract (DBFM), the
standard process of the road maintenance decision, and the other subsystems. Accordingly, the thesis applies
the current system and the predefined criteria when it requires the knowledge of road maintenance.

As stated before, the core of the report is data analysis. With the development of machine learning, data
analysis is filled up with tools. Some complex relations between the variables are hard to define clearly by
the classic statistics, but that may be discovered by the advanced data analysis tool. This case is expected
to benefit for the development of the machine learning. The project explores the practical application of
the algorithm in the field of the road maintenance decision and it develops the technology by adding one
practical case of the service-life pavement performance simulation.

1.5. Report structure

This research is based on the design-based research approach. The design approach is used to get a full
understanding of the complex problems and to come up with solutions that tackle these problems. “Design
is a creative approach to problem solving with the power to tackle complex and pressing social issues. It is
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people-centred, getting straight to the heart of an issue to encourage new perspectives and generate powerful
ideas.” (Design Council, 2003). There are many design models, such as the service design thinking model, the
product innovation process model and so on. This report chooses the double diamond model developed
by the UK Design Council because it defines the process clearly and it can be easily and flexibly applied
(Design Council, 2005). The double diamond is divided into 4 phases: 1) Discover the context, (2) Define the
current situation, (3) Develop the desired situation, and (4) Deliver the outcome of this research. The report
is organised based on the process of the design approach. In Fig. 1.1, an overview is shown as well as the
connection between the chapters. The elaboration on each phase is given as follows.

Discover phase
In this phase, at first a problem is formulated clearly, and then the context in which the research takes place
is elaborated on. There are two key points when formulating the problem. One is that it should be valuable,
and the other is that it should be feasible. On the foundation of the literature overview of the field, a valuable
problem is formulated. With the application of the design-thinking method, the feasible research approach is
proposed. Then the investigation of IVON, the currently-used road management system in the Netherlands,
is carried out to understand the context in which the research takes place.

Define phase
Define phase for determining the focus of the study area is a convergent process as the design-thinking
method indicates (Design Council, 2005). The phase is based on the investigation in Discover phase, that
presents the pavement performance is evaluated in various aspects in IVON, and there are many factors con-
sidered in the road operation and maintenance. The phase starts with the formulation of the model frame-
work of the pavement performance, the performance models, and the potential influencing factors. But actu-
ally there are many variables in the framework does not included in the current database. It means that only
the data is available, the analysis of the effects in the quantitative way can be achieved further. Therefore,
the focus is narrowed to study the variables that can be gained from the current data collect set. Correlation
analysis, the classic statistical method to quantify the strength of the relation between two variables is car-
ried out. After that, this phase will end with the focus on the rather strong correlation between the pavement
performance indicators and the influencing factors as the correlation analysis shows.

Develop phase
In the phase, the quantitative approach is applied to provide the answer to the main research question, and
the different models are used to come up with ideas about the pavement performance progression simula-
tion. According to the literature reviews of the performance models in Discover phase and the methodology
definition in Define phase, the regression models, the probabilistic model, and the classification models are
chosen. This phase inputs the test data in the multiple forms of the regression models, the survival model,
and the decision tree classifier. At last, the model results are presented for the selected case study.

Deliver phase
The final phase is the practical application of the findings of the research. As Develop phase proposes, several
performance models can be used to set up the simulation software. Thus Deliver phase begins with the
selection of the best applicable model for the simulation of this case. The selection result is the synthetical
consideration with the assessment by the goodness of fitting or the prediction accuracy of the test results and
RWS requirement of user-friendliness. After then, the simulation software is designed and built. The phase
ends with the overall of the thesis, the conclusions, and some recommendations.

1.6. Practical context: IVON system

The thesis addresses the problem in the road management field. So it is necessary to understand the cur-
rent used road management system, as the practical context of the problem. One of the main tasks of Major
Projects and Maintenance Department in Rijkswaterstaat (GPO) is consultancy in the field of construction,
management and maintenance of road structures. The department prefers the fast, simple and cheap solu-
tion to implement one of the primary tasks of RWS, the management and maintenance of the national road
network. The task requires the quality level of the roads (the freeways, the distributor roads, and the access
roads), the time estimate of when the maintenance is needed, the maintenance implementation plan and
the costs. To take on it, the quality of the national roads network is evaluated annually through Multi-year
Pavement Maintenance Planning System (MJPV). The whole system is elaborated in the document by Rijk-
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Introduction
Chapter 1
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Chapter 8
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Chapter  9

Conclusions and 
recommendation

Chapter 10

I
Discover
The aim of the discover phase is to address
the research problem and explore the context
of in which problems occur. In this phase
IVON system is described and the present
knowledge of the field. It provides an
overview of the involved factors during the
road operation and maintenance process. At
the end of the discover phase the valuable and
feasible problem is shown that occurs in the
road operation and maintenance phase.

II
Define
The define phase aims to determine the focus
of the study area and the research approach.
In this phase it is analyzed what the factors
and pavement performance are applicable to
study under the current conditions and in what
way the collaboration between the factors and
pavement performance can be analyzed. At
the end of the phase, the selection results of
the variables and the performance models are
defined that will be used in the next phase.

III
Develop
The objective of the develop phase is to test
the performance models for the simulation in
the next stage. In the phase, various widely-
used performance models are applied to the
case study. The different ways of describing
the influence of the factors on the road as the
model results indicate are the critical answers
to the main research question.

IV
Deliver
In the deliver phase, the evaluation of the
technical feasibility of the simulation is given
as well as the selection results of the best
applicable performance model to the case.
The implementation phase of the simulation
software is designed. The deliver phase ends
with the conclusion of the overall project and
some recommendations.

Figure 1.1: Report structure
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swaterstaat (2006). This planning is also used in the context of the road management cycle in Fig. 1.2 in
the long term, and the performance indicators recorded in Center Database of DWW in RWS (WINFRABASE)
determine the service of the national road network as the primary service evaluation reports annually.

Road management 
regime

Primary evaluation

Reality test

Management contract

Quarterly report

Management plan/ 
Realization plan

Implementation plan

Actor: BON

Actor: OBR/ PXQ

Actors: IHP, REF, doc.

Figure 1.2: Road management cycle

MJPV sets up the strategic plan for the task, and IVON as framed in Fig. 1.3 provides the tactical plan. The
framework starts with the data records in WINFRABASE and the preconditions that are translated into knowl-
edge tables. WINFRABASE contains the following data supplied to IVON:

• Road structure: details of the paving (construction year and material type). The data is collected via the
road data inventory procedure. It is updated sometimes by the video images captured by Automatic
Road Analyzer (ARAN) or the visual inspections of the counselors.

• Road network: the locations in National Triangle Coordinates in the Netherlands (RD Coordinates), the
directions, the lengths and the widths of the roads, and the districts the roads are situated at.

• Quality: the measurement data for the damage characteristics, including the rut depth and the longi-
tudinal flatness, collected by the ARAN and the skid index captured by Civil Engineering Department
in Rijkswaterstaat (DWW).

In addition to the input from WINFRABASE, as described above, IVON also uses:

• Data from the visual inspections by the consultants. These are initially copied from the previous MJPV.

• Knowledge tables: the maintenance guidelines, damage assessment and the interventions levels for the
pavement maintenance, the assumption of the average damage development (with the consideration
of climate, traffic, etc.), and the advice on the major maintenance on asphalt pavement.

IVON is a software package developed by DWW, which is a part of the production line ARAN-WINFRABASE-
IVON. The consultants support for the whole process of the long-term plan. As Fig. 1.3 shows, IVON has two
key elements: paving technical planning and implementation planning. In Fig. 1.4, paving technical planning
consists of eight modules and implementation planning has two modules. The detailed introduction of the
two elements is given as follows.
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IVON

Road structure

Road network

Quality: performance indicators

WINFRABASE

Paving technical planning

Rules for optimization

Implementation planning

Implementation

Visual inspections

Basic principles and preconditions

Adjustments from advisors if necessary

Figure 1.3: IVON system framework

Paving technical planning
With the input data and the basic principles and preconditions described above, IVON program creates the
paving technical planning. 8 modules in total has been developed to make the plan in Fig. 1.4. The technical
planning is divided into two phases. One covers the lifetime from the construction to the fifth year, and the
other is made for the period from the sixth year until the tenth. In the first five-year plan, it is according to
all kinds of relevant information, such as the damage characteristics, the characteristics of materials, traffic
(in particular trucks), climate, and so on. The paving technical planning is finally determined by the advisors
from DWW based on their professional knowledge. As for the road sections operated longer than five years,
the technical plannings are based on the measured damage characteristics and the road quality as recorded.
As a result, the paving technical planning provides where and when the maintenance is required on the road
network.

Intervention 
year

Course
formulation

Planning
year

Damage
characteristics

Network/lane 
size

Maintenance
scale

Measures Costs
Implementa-
tion year

Reports

Paving technical planning Implementation planning

Figure 1.4: IVON program

Implementation planning
Based on the paving technical planning, the implementation planning is made. IVON uses the rules for op-
timization, which implies that the account has been taken into: the current states of the pavements, the
intervention levels, the project costs, and the probability of the pavement performance progression to the
worse result in the following years. The planning finalizes the maintenance plan of year one and two, and
it does not allow any adjustments once the maintenance decision has been made up. Besides, it indicates
the required compartment lengths of the new paving materials, like Zeer Open Asphalt Concrete (ZOAB), and
calculates the costs.

Damage assessment
Damage assessment concerning rutting and roughness in the article by Rijkswaterstaat (2017b) is set up by



10 1. Introduction

the comprehensive considerations of the influence of the damage on serviceability and the maintenance
costs. The intervention levels of the skid resistance is presented in another article by Rijkswaterstaat (2017a).
The severity of pavement damage is classified into four classes in Tab. 1.1. Class I is the good performance.
Class II should be paid attention but still acceptable. Class III is the intervention level, and Class IV is so infe-
rior that the road section can not provide the safe service and the maintenance action should be taken.

Table 1.1: Damage assessment

Performance index
Class

I II III IV
Rut depth (mm) <10 10 ∼17 18 ∼23 >23
IRI (m/km) <2.6 2.6 ∼3.4 3.5 ∼4.0 >4.0
SI >0.04 0.03 ∼0.04 -0.03 ∼0.02 <-0.03
AS >0.04 0.00 ∼0.04 -0.06 ∼-0.01 <-0.06

1.7. Conclusion
The chapter states the research problem, the goal, the research questions, the scope and the scientific rel-
evance and the report structure of the project. It gives an overview of the road management of IVON and
the roles of the pavement performance and the influencing factors in the road operation and maintenance
phase. Below the sub research will be answered.

Sub question 1

What are the roles of pavement performance and traffic in the current road management system?
What kinds of pavement performance indices and traffic characteristics are important in this system?

Pavement performance is the core evaluation of the road service quality, and it is the elementary in-
put to make up the paving technical planning. The performance indices are the decisive factors of
whether the road is in need of repair or not.
Rut depth, IRI or Half-car Roughness Index (HRI), and Skid Index (SI) or Actual Skid Resistance Score
(AS) are taken into account as three kinds of pavement performance indices in the current system.
They describe the road performance, an abstract concept, in terms of three aspects: the tracks, the
longitudinal flatness, and the skid resistance respectively. The road maintenance decision is made
up when any index develops up to the intervention level. The intervention level of the rut depth is
above 17 mm. As for the roughness, when IRI is larger than 2.6 m/km, it is the warning level, and if it
develops above 3.4 m/km, the repair should be planned. About the skid resistance, the intervention
level of SI and AS are below 0.03 and 0 respectively.
As for the traffic, it plays the role as a factor in the paving technical planing in the road management
system. The essential goal of road management is to provide good service to transportation. Any re-
straint of free traffic flow caused by the road management (in most cases, the road construction) is
computed as the vehicle loss hours, transferred in the form of money, and counted in the cost of the
planning. As for the influence of the traffic on the road maintenance decision, traffic, more specifi-
cally, the number of trucks, is considered as the consultancy information, while the core indicators in
the current road management system are the measurements of the distress.

The next chapter will introduce the relevant literature. Based on the existing knowledge, the model framework
will be established in the next phase.



2
Literature Review

The chapter gives a theoretical review of existing knowledge about pavement performance and its causes
during the service life from an academic perspective. Theories described in this chapter will be used as a lens
to look at the effects of the traffic and other factors on the road performance in the operation and mainte-
nance phase. Section 2.1 provides an overview of the pavement performance. Section 2.2 is to study what
can cause the pavement deterioration. Section 2.3 focuses on the traffic causes. Section 2.4 introduces the
performance models that are most used in the researches. Section 2.5 concludes what has been found in the
literature.

2.1. Pavement performance

Pavement performance is a widely-used technical item, but previous articles defined it in different ways. Cary
(1960) first presented the pavement performance concept and defined it as “serviceability history”. After that,
the concept of performance was enriched. The discussion about the definitions of pavement performance is
not the focus of the study, but helps to build up the technical context. The thesis refers the work of Huang
(1993) to get an overview of the item. Pavement performance can be evaluated with the respective of:

• Distresses. Various defects develop in the pavement under the combined impacts of traffic loading and
environmental conditions, which affect the functionality negatively. According to the distress iden-
tification manual of Long-Term Pavement Performance Program published by the Federal Highway
Administration of the United States (LTPP) (J. S. Miller, Bellinger, et al., 2014), the deterioration for
pavements with asphalt concrete surfaces can be categorized into 5 categories: cracking, patching and
potholes, surface deformation, surface defects, and miscellaneous distresses.

• Serviceability. It is the ability of a specific section to serve traffic in its conditions. Present Serviceability
Index (PSI) and IRI are used to determine the serviceability. PSI developed at the American Association
of State Highway and Transportation Officials (AASHTO) Road Test is based on pavement roughness as
well as distress conditions, and IRI is determined only by the road profile.

• Skid resistance. Adequate skid resistance highly dependent on the surface friction guarantees no loss
of control and skid accident in normally expected situations when the pavement is wet.

• Structural capacity. As an important index of design and structural condition evaluation, structural
capacity is commonly assessed by deflection measurements during the service life.

2.2. Causes of pavement deterioration

The cause of the defects is not simplex. Many reasons or combination of reasons that contribute to failures of
bituminous pavements has been recognized as traffic, environmental factors, structural failures, design, and
construction quality. The environment factors mainly contain moisture and frost, and the structural failures
are the deficiencies of subgrades, joints, road shoulders, or layers (Adlinge & Gupta, 2013). Based on the desk

11
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research, the distress and the causes are elaborated respectively and the results are simplified as shown in
Tab. 2.1.

• Fatigue cracking is primarily caused by the accumulation of damage imparted by the traffic load. Ob-
served in LTPP fatigue cracking data, it has the feature that no significant cracks appear for several
years, but then occur and propagate to a significant level in a short time. To analyze the effects, Average
Equivalent Single Axle Loads (ESAL) and traffic levels categorized by Asphalt Institute (1996) are used.
Observations of LTPP fatigue cracking data revealed that most cracking in the wheel path followed this
pattern: no significant cracks appear for several years; then cracks appear and soon propagate to a sig-
nificant level. Some typical fatigue cracking development patterns is the cracking area with the unit of
the square meter.

• Longitudinal cracking is caused from the perspective of mechanics by the lack of restraints at the mid-
slab edge or at the slab corner. In reality, it can occur when a truck is driven along with the slab (Heath,
Roesler, & Harvey, 2003).

• Transverse cracking was found that transverse cracking could occur under either environmental load-
ing or combined environmental and traffic loading. The findings illustrated here are based on the test
that the slab thickness is 200 mm (Heath et al., 2003). For the environmental loading situation, trans-
verse cracking would only occur if the slab is fairly long and the shrinkage gradient is high: bottom-up
cracking under edge loading with no shrinkage gradient and a positive temperature gradient; top-down
cracking of a long slab with a medium or high shrinkage gradient (0.35 me/mm in the research) and a
negative temperature gradient.

• Slippage cracking, theoretically, is the consequence of ineffective adhesion due to poor quality viscous
coatings and/or inadequate rates of application. Other factors include the low asphalt content and the
high aging rate, which reduce the effectiveness of the binder (Chen, 2009).

• Rutting, can increase under the traffic load. Some studies have shown typical truck tire pressures to be
approximately 120 psi. The amount of Voids in Total Mix (VTM) is likely the most important physical
property of asphalt mixtures that relates to rutting. Once rutting starts, VTM may lower underneath
and actually gets worse with the additional traffic. The various layers in the pavement will also have
variations in the amount of VTM. Low VTM near the surface of the pavement can result in serious
rutting problems (Brown & Cross, 1989). Besides, some study predicts rutting by repeating load trial
compression test.

• Corrugations & Shoving, the forms of plastic movement typified by ripples or an abrupt wave across
the pavement surface, usually occur at places where vehicles accelerate or decelerate (Adlinge & Gupta,
2013).

• Potholing & Patching, are related to the load-associated foundation breakdown (Adlinge & Gupta, 2013).

• Ravelling, is categorized into three levels: low, moderate and high. The correlation factors of ravel-
ling with material or construction properties respectively are 0.986, 0.926, and 0.976, which has been
studied by Artificial Neural Networks (ANN) (Miradi, 2004).

• Polishing, caused by inadequate resistance, aggregates particularly in areas of heavy traffic movements
or where high stresses are developed between surface and tyres (Sorum, Guite, & Martina, 2014).

Additionally, skid resistance, as the important aspect of the pavement performance, is closely related to traffic
safety. It is a common fact that the lower the skid resistance value, the higher the percentage of the traffic ac-
cidents. Skid resistance is generally quantified by the friction measurement such as the coefficient of friction
or skid number. There are four main factors (Huang, 1993):

• The vehicle: friction demands vary greatly, dependent on the speed of a vehicle as well as its safety
system.

• The weather: especially wet pavements and the thickness of water film affects the available friction.

• The driver: the skill of the operators affects the potential for loss of control or skidding.

• The roadway: some distresses on the pavements have an influence on the skid resistance, like bleeding,
polishing, smooth macrotexture, rutting, and inadequate cross slope.



2.2. Causes of pavement deterioration 13

Ta
b

le
2.

1:
Pa

ve
m

en
td

is
tr

es
s

an
d

it
s

ca
u

se
s

D
is

tr
es

s
ty

p
e

C
la

ss
ifi

ca
ti

o
n

C
au

se
s

Tr
af

fi
c

M
o

is
tu

re
Fr

o
st

St
ru

ct
u

re
D

es
ig

n
C

o
n

st
ru

ct
io

n
Fa

ti
gu

e
cr

ac
ki

n
g

R
ep

ea
te

d
tr

af
fi

c
lo

ad
p

Lo
n

gi
tu

d
in

al
cr

ac
ki

n
g

Lo
ad

-i
n

d
u

ce
d

,f
ro

st
h

ea
vi

n
g

o
r

jo
in

tf
ai

lu
re

s
p

p
p

p

Tr
an

sv
er

se
cr

ac
ki

n
g

Lo
ad

-i
n

d
u

ce
d

,f
ro

st
h

ea
vi

n
g

o
r

jo
in

tf
ai

lu
re

s
p

p
p

p

B
lo

ck
cr

ac
ki

n
g

La
ck

o
fc

o
m

p
ac

ti
o

n
d

u
ri

n
g

co
n

st
ru

ct
io

n
p

Sl
ip

p
ag

e
cr

ac
ki

n
g

H
o

ri
zo

n
ta

lf
o

rc
e

fr
o

m
tr

af
fi

c,
p

o
o

r
b

o
n

d
in

g
b

et
w

ee
n

th
e

su
rf

ac
e

an
d

th
e

la
ye

r
b

el
ow

o
r

la
ck

o
ft

h
e

ta
ck

co
at

p
p

p

R
efl

ec
ti

ve
cr

ac
ki

n
g

Pa
ve

m
en

ti
s

ov
er

la
id

w
it

h
h

o
tm

ix
as

p
h

al
tc

o
n

cr
et

e
an

d
cr

ac
ks

re
fl

ec
t

u
p

th
ro

u
gh

th
e

n
ew

su
rf

ac
e

p
C

ra
ck

in
g

E
d

ge
cr

ac
ki

n
g

La
ck

o
fs

u
p

p
o

rt
o

ft
h

e
sh

o
u

ld
er

d
u

e
to

w
ea

k
m

at
er

ia
lo

r
ex

ce
ss

m
o

is
tu

re
p

p

R
u

tt
in

g
A

ve
ry

n
ar

ro
w

ru
ti

s
u

su
al

ly
a

su
rf

ac
e

fa
il

u
re

,w
h

il
e

a
w

id
e

o
n

e
is

in
d

ic
at

iv
e

o
fa

su
b

gr
ad

e
fa

il
u

re
.I

n
ad

eq
u

at
e

co
m

p
ac

ti
o

n
ca

n
le

ad
to

ru
tt

in
g

p
p

C
o

rr
u

ga
ti

o
n

Ve
h

ic
le

s
ac

ce
le

ra
te

o
r

d
ec

el
er

at
e

to
o

m
u

ch
.T

o
o

m
u

ch
fi

n
e

ag
gr

eg
at

e,
o

r
ro

u
n

d
ed

/s
m

o
o

th
te

xt
u

re
d

co
ar

se
ag

gr
eg

at
e.

p
p

Sh
ov

in
g

Ve
h

ic
le

s
ac

ce
le

ra
te

o
r

d
ec

el
er

at
e

to
o

m
u

ch
.T

o
o

m
u

ch
fi

n
e

ag
gr

eg
at

e,
o

r
ro

u
n

d
ed

/s
m

o
o

th
te

xt
u

re
d

co
ar

se
ag

gr
eg

at
e.

p
p

D
ep

re
ss

io
n

Lo
ca

li
ze

d
co

n
so

li
d

at
io

n
o

r
m

ov
em

en
to

ft
h

e
su

p
p

o
rt

in
g

la
ye

rs
b

en
ea

th
th

e
su

rf
ac

e
co

u
rs

e
d

u
e

to
in

st
ab

ili
ty

p
p

p
Su

rf
ac

e
d

ef
o

rm
at

io
n

Sw
el

l

Fr
o

st
h

ea
vi

n
g

(s
u

b
gr

ad
es

w
it

h
h

ig
h

ly
p

la
st

ic
cl

ay
s

ca
n

sw
el

li
n

a
m

an
n

er
si

m
il

ar
to

fr
o

st
h

ea
ve

s
b

u
tu

su
al

ly
in

w
ar

m
er

m
o

n
th

s)
o

r
b

y
m

o
is

tu
re

(a
n

ex
p

an
si

o
n

o
ft

h
e

su
p

p
o

rt
in

g
la

ye
rs

b
en

ea
th

th
e

su
rf

ac
e

co
u

rs
e

o
r

th
e

su
b

gr
ad

e)

p
p

Po
th

o
le

s
T

h
e

p
av

em
en

td
is

in
te

gr
at

es
u

n
d

er
tr

af
fi

c
lo

ad
in

g,
d

u
e

to
in

ad
eq

u
at

e
st

re
n

gt
h

in
o

n
e

o
r

m
o

re
la

ye
rs

,u
su

al
ly

ac
co

m
p

an
ie

d
b

y
th

e
p

re
se

n
ce

o
fw

at
er

p
p

p

D
is

in
te

gr
at

io
n

Pa
tc

h
es

T
h

e
p

av
em

en
td

is
in

te
gr

at
es

u
n

d
er

tr
af

fi
c

lo
ad

in
g,

d
u

e
to

in
ad

eq
u

at
e

st
re

n
gt

h
in

o
n

e
o

r
m

o
re

la
ye

rs
,u

su
al

ly
ac

co
m

p
an

ie
d

b
y

th
e

p
re

se
n

ce
o

fw
at

er

p
p

p

R
av

el
lin

g
R

av
el

lin
g

ca
n

b
e

ac
ce

le
ra

te
d

b
y

tr
af

fi
c

an
d

fr
ee

zi
n

g
w

ea
th

er
.

So
m

e
ra

ve
lli

n
g

in
ch

ip
se

al
s

is
d

u
e

to
im

p
ro

p
er

co
n

st
ru

ct
io

n
te

ch
n

iq
u

e
p

p
p

B
le

ed
in

g
Im

p
ro

p
er

ly
-a

p
p

li
ed

se
al

co
at

.E
xc

es
si

ve
ly

h
ig

h
as

p
h

al
tc

em
en

tc
o

n
te

n
t

in
th

e
m

ix
w

it
h

to
o

lo
w

vi
sc

o
si

ty
(t

o
o

fl
ow

ab
le

),
to

o
h

ea
vy

a
p

ri
m

e
o

r
ta

ck
co

at

p
p

Su
rf

ac
e

d
ef

ec
t

Po
lis

h
in

g
Tr

af
fi

c
p



14 2. Literature Review

2.3. Transport factors

Pavement performance evaluation is a complex question that includes distress, serviceability, skid resistance,
and structural capacity (Huang, 1993). Theoretically, these features are the reflections of both internal and
external factors. The internal factors relate to the pavement quality resulting from the material production
and overlay construction, while the external factors mainly contain the temperature, rainfalls, and traffic flow
in the service life (Zhang, Lepech, Keoleian, Qian, & Li, 2009).

Traffic, as one of the main exterior influence on roadways during service life, especially affect pavements by
heavy vehicles (Adlinge & Gupta, 2013). A number of researchers have focused on the failure mechanism of
road surfaces generated by repeating load, trucks and overloaded vehicles. Most empirical distress models
use several parameters to represent the mixed traffic, such as ESAL and truck percentage. However, the thesis
takes into account a variety of behaviors of all kinds of vehicles captured by real-time traffic data, and aims
to figure out the pavement deterioration model that predicts future pavement condition on the basis of the
transport impacts.

Accordingly, the study divides the relative damaging effects into traffic- and non-traffic associated attribu-
tions. Both significantly affect the deterioration initiation and progression, but they are influential variously
on the different distress modes. It is complicated to identify the individual effects of the factors or their own
attribution in a quantitative way because of the interactions and the combined effects. The traditional ap-
proach combines the real world factors of mixed traffic and long-term environmental impacts and use a
fourth-power law to compare (Paterson, 1987).

Traffic, as the heterogeneous mixture of many factors, varies from road to road, over time with the flow growth
and changes, and across countries. It can cause the pavement fatigue and failures, and has the trifling influ-
ence on the scale of roadway profile. Accordingly, the most relevant road performance indicators to transport
factors are distress, serviceability, and skid resistance.

Essentially, the traffic-associated cause of pavement deterioration is the dynamic load which generates the
road failure mechanisms. It can be assessed by three aspects: the vehicle composition, the loading configu-
ration and the whole intensities (Gillespie, 1993). There are many pieces of researches about the load effects
on the road structure, especially the heavy and overloaded vehicles. Different forms of pavement distress,
fatigue, and permanent deformation are contributed significantly by heavy vehicles (Gillespie, 1993). The
axle load above the maximum legal limit causes significant damage on a pavement, increasing the construc-
tion and rehabilitation cost (Pais, Amorim, & Minhoto, 2013). In Section 2.2, the defects are elaborated about
how they are caused by transportation characteristics respectively according to the literature. The simple
correlations between pavement performance and transport are listed in Tab. 2.2.

2.4. Performance models

The approach to predict the pavement performance has developed among ages. The regression model was
in the first stage. The damage function, as the first performance model on the basis of AASHTO road test data
used simple linear regression to predict a specific distress occurrence in the function of loading. The input
was the equivalent standard 18-kip axle load applied up to the time and damage at the same time. Estimated
by the regression analysis, two parameters were calculated, which varied from the deterioration types. The
one was the equivalent standard axle load which required to produce the damage levels defined as failure,
and the other represented the increasing rate of damage. The function had the limitation that it was not
precise for all distress modes and only for the specific climate condition and one subgrade. Thus, later on
the predictive models based on the regression analysis for all kinds of deterioration being the functions of a
variety of factors were presented to a wider range of conditions.

Generally, there are two forms of the regression models. One form deriving from Transport and Road Research
Laboratory (TRRL) road costs study in Kenya believed the relationship between the influencing factors and
the deterioration was linear fitting (Parsley & Robinson, 1982). The other supposed the regression should
be non-linear (Paterson, 1987). The model assumes that the increment of unevenness was related to the
value of the original roughness and the external effects on the road during that period of time. According to
the Brazilian database, the model was formulated and gave the quantitative relation between the roughness
variance and the structural and time-related environmental mechanisms, as well as the effects of surface
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Table 2.2: Pavement deterioration and its traffic-relevant causes

Distress Classification Causes
Repeated
traffic

Edge
traffic

Lane
change

Heavy
vehicle

Speed
change

Fatigue
cracking

Repeated traffic load
p

Longitudinal
cracking

Edge load
p

Transverse
cracking

Edge load
p

Cracking
Slippage
cracking

Horizontal force from
traffic

p

Rutting
Increasing truck tire
pressure, axle load
and volume of traffic

p

Surface
deformation

Corrugations,
shoving

Vehicles accelerate or
decelerate

p p

Disintegration
Potholes,
patches

Overloaded traffic
p

Ravelling
Traffic and freezing
weather

p
Surface
defects Polishing Heavy traffic

p

distress such as cracking, patching, and potholing.

The second stage of developing the performance model introduced the statistical procedure in order to over-
come the common difficulties in the development of distress models from the empirical data, and proposed
the duration modeling (Paterson, 1987). The widely-cited paper used failure-time theory and maximum like-
lihood estimation methods to include censored data and the prevent biased parameter estimates. Failure
time, as the response variable, was modeled via a Weibull distribution. An example application to Brazilian
pavement condition gave the quantitative result of the effects of weather and its variability on pavement dete-
rioration. Later on, one research improved the probabilistic duration modeling techniques with the adoption
of the Weibull distribution to rate hazard function (Prozzi & Madanat, 2000). The method is successfully
applied by undertaking the European database of construction, traffic and climate data in oeder to predict
the duration of the crack initiation (Loizos & Karlaftis, 2005). In addition, the survival model, a method of
statistics for analyzing the expected duration of time until one or more events happen, have been applied to
many pieces of researches. It was firstly used in pavement performance modeling about survival curves of
highways in the 1930s (Winfrey, 1969), although they relied more on empirical methods than statistical proce-
dures. Highway Design and Maintenance Standard Study (HDM) initiated by the World Bank, employed the
methodology to predict the initiation of fatigue cracking in the HDM-III model. American Association of State
Highway Officials (AASHO) road test data were reanalyzed using survival analysis and the result indicated that
the survival model is more appealing than the original AASHO formulations (Prozzi & Madanat, 2000). Most
recently, researchers also attempted to employ survival models to predict in the pavement fatigue perfor-
mance from laboratory fatigue test results (Tsai, Harvey, & Monismith, 2003), and fatigue cracking of flexible
pavements based on long-term pavement performance data (Wang, Mahboub, & Hancher, 2005).

With the development of machine learning, the classification model is the new approach to establish the cor-
responding relations between the damaging factors and the road performance. Decision tree, a good solver
of decision-making cases, can give the maintenance decision with regard to any performance indicators and,
the importance ranking of the attributions as well as their critical values as a result. In addition, ANN, another
machine learning classification model, can work out the interconnection between various factors and have
been applied to predict non-linear interactions between various variables in complex concrete performance
(Miradi, 2004).
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2.5. Conclusion
The chapter finds the existing knowledge of the pavement performance, the performance indices, the po-
tential causing factors, and their correlations, and the performance models. In this review the sub research
question 2 will be answered as follows.

Sub question 2

What can cause the pavement deterioration? Which causes are related to or determined by the traffic
characteristics?

Many factors can cause the pavement deterioration. Design and construction determine the origi-
nal pavement surface characteristics. Traffic and climate mainly affect its performance in the service
time. The structure defines the base, and the damage in it can be transmitted to the surface and ob-
served. Time is a special influencing factor, and the process of aging is essentially through oxidation.
It is hard to clarify that the dual and multiple factors result in the additive effects, or positive cycling,
or negative cycling. Because in the reality, they always exist in the meantime.
Traffic, itself is an important factor of the pavement performance. The effect of traffic on the pave-
ment performance essentially is because of dynamic load. Mechanically, there are five forms of the
dynamic load that can have an influence (particularly, negative) on the road performance progres-
sion : the repeated load, the load on the edges of the slabs, the load in the transverse direction, the
overload, and the varying load. Macroscopically, the five forms are related to the total intensities, the
tracks of the vehicles, lane changing, the truck percentage, and the driving behavior of acceleration or
deceleration. Generally, traffic is one of the influencing factors during the service life, but it is hard to
clarify how important the traffic factor during the service years because the pavement performance is
always an integrated consequence by all kinds of the factors. In fact, due to the slight uncontrollable
variables in the construction process, every road section is unique. Therefore, even if there is a rank-
ing of all factors according to the impact on the road performance progression, the sorting result may
vary because each road segment has the different features.

The next phase will dive deeper into the methodology, the data availability and the correlation between pave-
ment performance and influencing factors.



II
Define

In the previous phase, the research problem as well as the practical and academic context of the study is
addressed. Road performance can be indicated by multiple pavement performance indices during the in-
service process. There are many influencing factors of pavement performance theoretically.

Define phase is a convergent process, which starts with the methodology definition, including the model
framework, the data correlation analysis method and the pre-defined performance models. In the model
framework on the basis of the existing knowledge, not all the pavement performance indicators and the po-
tential influencing factors are accessible in the present data collection system. Thus the entire field is con-
centrated on the study area by two following steps. Firstly filtering out the factors that the database does not
have, and secondly focusing on the strong correspondence between the influencing factors and the pavement
performance indices found by the correlation analysis. The findings will be used to set up the performance
models in the next phase.

17





3
Methodology

This chapter elaborates on the methods used in Define phase and Develop phase. Define phase is to address
the methodology, the input data, and the correlation of the variables. It starts with the establishment of the
model framework of all the relevant variables, and focuses on the variables of which the data is accessible.
The model framework is proposed in Section 3.1. The study variables in the research require either the values
that can be accessed directly from the database provided by RWS or are able to be computed by the raw
measurement data in Chapter 4. After then, the correlation analysis is applied in Chapter 5 to figure out
the strength of the relation in a quantitative way between the variables, including the correlation between
the performance indices, the correlation between the performance indices and the factors, as well as the
correlation between the factors. It is important to do the analysis because of some principles of setting up the
mathematics model. One principle is that the independent variables should be independent enough, that
means the factors which has the strong relation found by the correlation analysis should not be considered
at the same time in one model. The other principle is that in order to achieve the good fitting results, the
regression models take the factors which are data dependent on the road performance into account. The
functions for the correlation analysis are elaborated on Section 3.2.

As for the methods used in Develop phase, according to the previous study introduced in Section 2.4, three
kinds of models are chosen because they are well applied, which are the regression models, the probabilistic
model, and the classification model. However, because not all the variables in the pre-defined models are
accessible in the study, some adjustments are made when applying the models. The elaboration on the pre-
defined regression models, the survival model, and the decision tree model respectively is in Section 3.3,
Section 3.4 and Section 3.5 respectively. The model adjustments to the case study are introduced in Chapter
6, Chapter 7 and Chapter 8 of Develop phase. The chapter answers the sub question in the end, which is what
performance models are feasible to perform in this case and can achieve the research goal.

3.1. Model framework

The findings of Discover phase presented the pavement performance, the causes of the road damage, espe-
cially the traffic-relevant factors, and the performance models. Accordingly, the model framework contains
all the aspects of the pavement performance, the performance indices, the potential causing factors, and
their correlations in the various performance models, as Fig. 3.1 illustrates. It should be noticed that not all
the data is available, for example, the road structure stiffness is not in the database, but it may be relevant to
the pavement performance. For the further quantitative analysis, only the factors which were obtained from
the database will be studied.

3.2. Correlation analysis

The research defines an independent variable in the way that a change in any other quantities does not cause
a change in the independent variable. The definition of the dependent variable is that the variable changes
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Figure 3.1: The model framework
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as any independent variable changes. Taking the dependent variables as the independent variables is a in-
credible mistake when determining the relationship between the physical items, and vice versa. To avoid it,
the study uses the three correlation analysis methods to analyze the linear correlations as well as the rank
correlations between the variables, deriving the dependence and independence between the variables, of
which the correlation coefficients are Pearson’s linear correlation coefficient (r hoP ), Kendall’s tau coefficient
(r hoK ), and Spearman’s rho (r hoS ). The three are most-applied correlation coefficients, aiming to find the
correlation of the variables in the different ways (Lee Rodgers & Nicewander, 1988).

Pearson’s linear correlation coefficient is to study if there is a linear correlation between two data sets. It is
formulated by the column Xa and the average Xa in matrix X , and the other column Yb and its average Yb in
matrix Y as equation 3.1 by Mathworks (2006b). r hoP ranges from -1 to 1. A value of -1 indicates a perfect
negative correlation, while a value of 1 indicates a perfect positive correlation. If r hoP is 0, it means no linear
correlation between Xa and Yb .

r hoP =
∑n

i=1(Xa,i −Xa)(Yb,i −Yb)√∑n
i=1(Xa,i−Xa )2 ∑n

i=1(Yb,i−Yb )2
(3.1)

Kendall’s tau coefficient (r hoK ) is the coefficient of rank correlation. It is based on counting the number of
the pairs of Xa and Yb that are concordant. The concordance is defined as the difference value of Xa,i and Xa, j

has the same sign as the difference value of Ya,i and Ya, j . The formulation of r hoK by Mathworks (2006b) is
equation 3.2. It ranges from -1 to 1. If r hoK is -1, it indicates the ranking of Xa is the reverse of the ranking of
Yb . If it is 1, it means the rankings of two variables are the same. The value of 0 means no correlation between
them.

r hoK =
2
∑n−1

i=1

∑n
j=i+1 ξ

∗(Xa,i , Xa, j ,Yb,i ,Yb, j )

n(n −1)

ξ∗(Xa,i , Xa, j ,Yb,i ,Yb, j ) =


1 i f (Xa,i −Xa, j )(Yb,i −Yb, j ) > 0
0 i f (Xa,i −Xa, j )(Yb,i −Yb, j ) = 0
−1 i f (Xa,i −Xa, j )(Yb,i −Yb, j ) < 0

(3.2)

Spearman’s rho (r hoS ) is the coefficient of rank correlation, which is equivalent to r hoP applied to the ranking
of two variables, Xa and Yb (Mathworks, 2006b). When the rankings are distinct, r hoS is formulated as equa-
tion 3.3. In the equation, d is the difference in the rankings of two variables. The range of r hoS is between -1
and 1. The larger the absolute value is, the more relevant the two variables are.

r hoS = 1− 6
∑

d 2

n(n2 −1)
(3.3)

3.3. Regression models
The pre-defined regression models have two forms: linear regression and non-linear regression. The most
application form varies in the different case studies. Derived from TRRL road cost study in Kenya, the lin-
ear regression models of roughness and rutting are formulated in Eq. 3.4 and Eq. 3.5 (Hodges, Rolt, and
Jones, 1975; Parsley and Robinson, 1982). The functions assume the association between the increment of
roughness or the rut depth (∆I RI or ∆RU T ) and the cumulative traffic load (N Et ) is linear. α and β are the
coefficients of the roughness increment and the rut depth increment respectively to be estimated. u and w
are constants standing for the other influence. Besides, the literature also provides the models of other per-
formance indicators, such as cracking, ravelling, and potholing. The study only has the performance data of
roughness and rutting, and the relevant models are focused.

∆I RI =αN Et +u (3.4)

∆RU T =βN Et +w (3.5)

The non-linear regression models of the roughness have the cumulative model as Eq. 3.6 and the increment
model which function is Eq. 3.7 (Paterson, 1987). The cumulative model assumes the exponential relation
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between the age of the road section (T ) and IRI, and the coefficient is attributed to the initial roughness after
the construction or the repaving and traffic load (I RI0 and N Et ). The coefficient of T and N Et (n and α)
should be estimated by the regression. The increment model supposes the different variables contribute to
the roughness increment in various ways. The increments of rutting, cracking, patching, potholing and time
(∆RU T , ∆C R, ∆PAT , ∆POT , and t ) are related to the roughness increment (∆I RI ) as the linear fitting. The
age of the road section (T ) has the natural exponential relation with ∆I RI , and the increment of traffic load
(∆N Et ) is taken in the coefficient.

I RI = (I RI0 +αN Et )enT (3.6)

∆I RI =α∆N Et enT +ω1∆RU T +ω2∆C R +ω3∆PAT +ω4∆POT +γI RI t (3.7)

The non-linear regression model of the rut depth has the functions as Eq. 3.8 (Paterson, 1987). The model
assumes the rut depth (RU T ) is the function of the cumulative traffic load (N Et ) and the age (T ) with the
mathematical form in Eq. 3.8. β, x, x and w indicate the coefficient, the exponent of the variable of age and
the error term respectively. The form of the cumulative model is exponential, and in Paterson’s research it is
has the shape in which x and y have the values between 0 and 1.

RU T =βT x N E y
t +w (3.8)

To compare the applicability of different models, all the pre-defined regression models elaborated on above
will be applied, expect the linear functions in Eq. 3.4 and Eq. 3.5. Because according to the correlation
analysis in Chapter 5, the linear relation between the pavement performance variables of ∆I RI and ∆RU T
(in the dataset named as IRI_VAR and RUT_VAR) and the traffic variables (N Et , in the dataset, named as
I_AL) is not obvious. r hoP analysed by the data of ∆I RI and N Et in the case is 0.01, and it is -0.02 by the
data of ∆RU T and N Et . The coefficient indicates how well if the correlation is described as linear, and the
closer the absolute value is to 1, the closer two variables are linearly correlated. Therefore, the pre-defined
linear regression model will not be achieved. In addition, to get a more accurate result, some changes will be
devised when applying the pre-defined regression models. The traffic variable in the model is ESAL (or the
increment of ESAL), which is a common solution to represent the mixed traffic. With the data support in the
study, the traffic load is categorised into various vehicle types. Rather than using one variable to represent
the traffic influence, the study regards several variables meaning the different kinds of vehicles as the traffic
factors. The model application will be in Chapter 6.

3.4. Survival model
Survival model, is also named as accelerated life model or accelerated failure time model. Its function as-
sumes that all predictor variables can affect the lifetime of the pavement. It is a widely-applied time-related
model. It is able to predict the expected survival time (Ts ) of the roadways with a certain material paving
layer on the surface under the conditions which are determined by traffic-associated and non-traffic associ-
ated factors ( f ). The function is as Eq. 3.9. The model assumes that a survival-time (Ts0) probability of the
pavement covered by the specific material on the surface layer is a certain distribution. The survival time
of a particular road section is effected by the specific situation in which it is located. The gap between the
actual survival time and the baseline survival-time probability distribution is caused by the influence factors
( f ), and the quantitative influence of external factors evaluated in the coefficients (λ) can be described in
the exponential model (Wang et al., 2005; Kartsonaki, 2016; Ebrahimi, Wallbaum, Svensson, and Gryteselv,
2019).

l n
Ts

Ts0
=∑

fiλi (3.9)

The process of applying the survival analysis shown in Fig. 3.2 contains 5 steps: (1) selecting the performance
indicators; (2) defining the threshold values of the performance indicators; (3) modelling the survivor func-
tion; (4) estimating how the expected survival time depends on traffic characteristics; (5) calibration In Fig.
3.2, the green boxes represent the input, and the dark-blue ones are the models. Both the light blue and grey
modules are the results, but the grey cubes give the values and the other shows other calculations. The first
step for modeling the survival analysis replies on the pavement conditions of A15 that are evaluated by the
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Figure 3.2: Methodology of survival model

annual measurement on the outer and median lanes. Secondly, it has been observed that the pavement dete-
rioration would not appear for a long period, but once it occurs, it will develop dramatically in a short time, es-
pecially cracking (Wang et al., 2005). Therefore, the reasonable thresholds of the indicators are required, and
they can make the resurfacing decisions standardized. The research divides the life-span into two stages: one
is the normal stage with the acceptable tiny road roughness and rutting; the other is the failure-development
stage when the condition decreases quickly. To find the thresholds, there are two applicable methods. The
first one is employed by data analysis. Primarily, diagram the condition data and its corresponding change
of next year, when the fluctuation of the line suddenly increases, it means there is a big probability of deteri-
orating to the next stage. The critical position can be determined by setting up several discrete ranges from
continuous condition data and treating each range as a condition state, and then examining the transition
probability of staying at the current state and the probability of deteriorating to one unit, two units until the
maximum value difference of the indicators between the year and the next year. If the probability of staying
at a certain condition state is low, it means pavement condition is unstable; and it would be appropriate to
resurface the exiting pavement before its condition deteriorates to the next stage. Since it is possible that the
same value of the roughness or the rut depth in different road sections have the different change in the next
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year, the study applies the median fitting to show the performance progression along the time. The second
method to figure out the critical values is dependent on the empirical knowledge. The information is given in
Section 1.6 as the damage assessment set up by RWS according to the comprehensive considerations of the
impact of road roughness on serviceability and maintenance costs. The third step of setting up the survivor
function is run in Matlab. With the uncertainty of the distribution of the survive time, all the classic distribu-
tions used in the previous literature will be tried, including normal distribution, Weibull distribution, logistic
distribution, gamma distribution, log-logistic distribution, and lognormal distribution. The best-fitting form
is selected by the maximum log likelihood. After defining the survivor function, the model then estimates
how the expected failure time depends on traffic characteristics and other factors. It is a classic exponen-
tial regression approach, and r-squared and p-value are used to evaluate how goodness of fitting the model
is. The last step of the modelling is the calibration for the censored data problem. There is the difficulty
of unobserved failure events in a typical set of pavement condition data, because data collection surveys are
typical for the limited duration. A few pavements have been already reached a serious unevenness on the first
survey, most are not observed the failure events during the whole survey. If only the unevenness initiation
events observed during the survey were included in a statistical analysis, important information about the
stochastic and mechanistic properties of the phenomenon coming from the "before" and "after" events may
be excluded, and thus cause a bias in the model. The most common solution to the censored data problem
is introducing the maximum likelihood estimator, which is not applicable to the study because the censored
data is made up of about 90 % of all the test data. The details will be discussed in Chapter 7.

3.5. Decision tree classifier

Decision tree classifier is a classic and fast classification model (Kaur & Garg, 2014). The classic machine
learning algorithm has a big advantage that it can be easily interpreted as the natural "if..., then..., else..."
structure compared to other machine learning methods, and it will be applied to the study. The method-
ology has been successfully used in multiple diverse areas, due to its capability to break down the complex
decision-making process into the multistage simple decisions. It is a predictive model that represents a map-
ping between the object properties and the object values. The graphical method for intuitive use is the key of
the analysis, and the output is a tree structure in which each internal node represents a test on an attribute,
each branch represents a test output, and each leaf node represents a category. It is a kind of supervisory
learning which requires the input of a bunch of samples, each of which has a set of attributes and a category.
The categories should be determined in advance. Then by the learning process, a classifier has been set up
by the segmentation of the source database and the data test. The process is to trim the tree recursively and
when no further segmentation or a separate class can be applied to a branch, the recursion process is com-
pleted. The tree-shape output is able to predict the correct classification by the new attributes (Safavian &
Landgrebe, 1991).

The approach of the model application in the study is shown in Fig. 3.3 The study sets up the model in
Python with Scikit-learn package. There are two phases regarding the framework of the methodology in Fig.
3.3, the training phase and the predicting phase. The training phase as the first modeling application step
has the input of the training data, the labels, and the categories. Based on these inputs, the learning method
is trained and the tree structure is set up that will be used in the next phase, the predicting phase. Apart from
the learning model formulated by the training process, the test data, as well as the labels are inputted to the
second phase. The categories are the prediction results.

There are several requirements of the input data and information for the model:

• Both the training data and the test data are real numbers. Either continuous values or discrete values
are acceptable.

• If a label is a category variable, it must be transferred as the discrete variables. For example, the
data on SURFACE_LAYER of A15 is Special Pavement Surface Layer (COMBID),Close Asphalt Concrete
(DAB) , Emulsion Asphalt Concrete (EAB), Open Asphalt Concrete (OAB), Special Asphalt Concrete
(SMA) , ZOAB, New Zeer Open Asphalt Concrete (ZOAB+), Double-layer Zeer Open Asphalt Concrete
(ZOABTW), or Zeer Open Emulsion Asphalt Concrete (ZOEAB). It can only be taken account in the
model by the variables of SURFACE_COMBID, SURFACE_DAB, SURFACE_EAB, SURFACE_OAB, SUR-
FACE_SMA, SURFACE_ZOAB, SURFACE_ZOAB+, SURFACE_ZOAB+, and SURFACE_ZOEAB with the bi-
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nary values of 1 or 0. 1 indicates the surface material of the road section is the type, while 0 means
not.

• If a label is a date variable, the model automatically recognizes it as a digital form. Based on the com-
mon setting of the computer system, the date of 1st January, 1900 in the digital form is 1, the date of
2nd January, 1900 in the digital form is 2, and etc.

The learning method plays a key role in the model. The machine learning algorithm of the decision tree in the
study has the functional forms that are not necessarily determined beforehand. The method can efficiently
deal with large, complicated datasets without imposing a complicated parametric structure. Gini index is
used as the splitting criterion. It indicates how good a split is by calculating the mix of classes in the two
separated groups that can be created by the specific split. It favors large partitions of data. The worst split
results in the gini index of 0.5 and the best gives the value of 0. Minimizing the index leads to the best split on
each branch. The formula is 1 minus the quadratic sum of all the probabilities (pi ) of each class i in the given
branch. The probabilities of a class in the branches are computed by the number of training samples (S) out
of all that falls in the branch.

g i ni = 1−
S∑

i=1
p2

i (3.10)

3.6. Conclusion

The chapter defines the research methodology, which contains the model framework, the correlation anal-
ysis, and the performance models. The three kinds of performance models are all applicable to predict the
pavement performance in theory. They can quantify the effects of various influence factors, in particular, the
transport variables, on the road performance in different ways. This chapter finds the answer to sub question
3 as the following elaborates.

The thesis is on the foundation of the model framework proposed in the chapter. The correlation analysis,
the regression models, the survival model, and the decision tree classifier defined in the chapter will all be
applied in the remaining part of the research.
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Sub question 3

What performance models are feasible to perform in this case and can achieve the research goal?

There are many types of data analysis models for road performance, which can be roughly divided into
three categories: regression models, probability models, and classification models. Previous studies
of the performance models have applied various forms of the three kinds of models. Each kind has
the different assumption on the effects of traffic on road performance. The regression models assume
that traffic load are the cause of the pavement performance progression, meaning the amount of traf-
fic per unit can lead to a certain degree of the change in the road roughness or rutting. The probability
models suppose that traffic flow is the reason for reducing the service life of the road, indicating the
amount of traffic per unit can increase the likelihood that the road meets the maintenance require-
ments in advance. The classification models suggest that the relationship between traffic volumes
and road performance may be in the form of transitions. That is to say, the traffic volume may affect
the road characteristics only when it reaches a remarkable level or a critical value. In order to get a
comprehensive and objective study result, the research selects at least one model in each category to
quantify the effects of traffic flow on roughness and rutting. Based on the data that can be obtained
in the study, five regression models are selected (three of which are predictive models of roughness,
and two are for rutting), the survival model representing the probability model, and decision tree
classifier, a classic classification model, as the research models.
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Data Input

Chapter 3 defined the methodology and the model framework of the thesis. The framework as Fig.3.1 illus-
trates is used as a lens to look at the collaboration between the factors quantitatively during the service life
of roadways. This chapter prepares data for the quantitative analysis of the relation between the pavement
performance and the factors. Section 4.1 gives the introduction of the supportive database from RWS and
DiTTlab. Various categories of data from the database of RWS and DiTTlab will be introduced in Section
4.2. The dependent and independent variables will be defined and formulated in Section 4.3. The chapter
addresses the research question: SQ 4. Which pavement deterioration, its potential causes and traffic charac-
teristics can be captured in the current data collection system? Which can not? The answer will be provided
in Section 4.4.

4.1. Data source

Since 1987, Dutch Study Center for Road Construction (SCW) has established the visual inspection system
for road performance evaluation (Stichting Studie Centrum Wegenbouw, 1987). The survey records were
transferred to and joined in WINFRABASE. The joint database is expected to include the data of IRI, rut depth,
SI, cracking, and ravelling every year (Rijkswaterstaat, 2006). But it is still under the construction. The current
database contains the annual measurements of IRI and rut depth per 100 meters of all the highways in the
Netherlands since 2009, except IRI in 2010. It also includes the yearly records of SI per 100 meter sections of
all the Dutch freeways since 2012, expect the year 2016. As for ravelling and cracking, they were measured by
3D laser triangulation. The model for calculating the raveling values is being established, and for now only the
raw data is accessible. The progress of cracking is that same as the raveling (Rijkswaterstaat, 2017b).

INWEVA stands for Intensities Wegvakken (Intensities of road sections, in English). Traffic intensity is mea-
sured on approximately 3,000 road sections. The other road sections are estimated on the basis of the traffic
model. The intensities are measured on all lanes of the national road network in the Netherlands, including
the on-ramps and off-ramps, the multiple lanes and the interchanges. The data gives the annual average traf-
fic flow per road section of three vehicle classes. The vehicle classification in Database of Traffic Intensities of
National Road Network in the Netherlands (INWEVA) is in Tab. 4.1. It is further divided into the weekdays, the
weekends and the rush hours. Furthermore, the data is subdivided into morning, evening and night periods.
The files are put into the different folders, listed in Tab. 4.2 (Rijkswaterstaat, 2012).

Table 4.1: Vehicle classification in INWEVA system (Rijkswaterstaat, 2012)

Classification Description Definition
L1 Passenger cars Length less than 5.6 m
L2 Light trucks Length between 5.6m and 12.2m
L3 Heavy trucks Length longer than 12.2m

27
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Table 4.2: Table of content in INWEVA system (Rijkswaterstaat, 2012)

Folder Content File format
A Traffic intensities .xlsx; Gis
B Traffic intensities .pdf
C Various checks of the the traffic model results .doc
D Results of the samples .xlsx
E Methods and results of the independent testing .doc; .xlsx
F Updates of the road section numbers .xlsx
G Records of the processing and the response from the various departments in RWS .doc
H Traffic intensity visualisation web
I Regional flags .png
J Quality reports and methodology description .doc

The other data source is DiTTlab. The research laboratory founded by TU Delft and CGI is set up for the
transport data analysis and traffic simulation. With the support of DiTTlab, the following data that is relevant
to the study is accessible:

• Speeds and flow from the loop detectors per minute on every 100-meter section of most of the high-
ways, the distributor roads, and the access roads in the Netherlands since 25th July, 2016. They have
being updated continuously.

• Average acceleration or deceleration, vehicle loss hours, and travel time derived from the data of speeds
and flow

• The heated maps of the road segments derived from the data of speeds and flow

• Data from the dynamic speed limit system

• The network graph underneath with properties, like the number of lanes, RD Coordinates, etc.

• Weather data collected by all the weather stations in the Netherlands, including the temperature, the
wind, and the precipitation every minute since 1st January, 2015. They have been updating continu-
ously.

• Reports of the incidents and the accidents

4.2. Raw data

Aimed at the evaluation of the service quality, the measurement of the pavement performance is carried out
once per year on average. The results have been recorded in WINFRABASE since 2009. It consists of rut depth,
longitudinal flatness, and skid resistance. The article by Rijkswaterstaat (2017b) determines the measurement
methods of the three performance indicators, and they are described respectively below.

Rut depth is the relative height difference between the central sensor and the sensors on both sides. The
measurement is according to Dutch norm NEN-EN 13036-8: 2008 until 2018. It defines the rut depth as the
average lane depth per 100-meter section. The measurement method firstly surveys the depth of a segment
length of 2000 mm. The lane depth must be determined per lane between the length markings. Then, an
average value per hectare track is determined per lane. The highest value is picked between both the sets.
The indicator has the unit of mm.

Longitudinal flatness is indicated as IRI. According to Dutch norm NEN-EN 13036-5, it is the roughness index
over 100 meters. The longitudinal flatness must be determined in the left and right driving lanes. An average
value per hectare section is determined per lane, and the average value of all lanes is the indicator value of
the hectare meter expressed in m/km. The change from IRI to HRI took place in 2017. The main difference is
the averaging length.

SI is the assessment of the skid resistance of a road pavement surface by the measurement of the sideway-
force coefficient. This is calculated per hectare on the basis of a weighted average of skid resistance. It is



4.2. Raw data 29

Figure 4.1: Map of A15 and weather stations

expressed as the difference from the standard value. For example, SI as 0.03 means the weighted average skid
resistance is 0.03 higher than the norm value. SI is used in MJPV. There is an exception of the skid resistance
measurement presented in Rijkswaterstaat (2017a). When the road maintenance is written in DBFM, the skid
resistance is assessed by AS. It is calculated per hectare based on the average of two measurements taken
immediately after each other. It is expressed as the difference with the norm values. Generally, SI is used in
the most situations in a more cost-effective way, and AS can be equivalent assumed as SI. It should be noticed
that the measurement method had the change in year 2016 and it was proved that the results did not meet
the experts’ expectation thus in year 2017, it was changed back.

Some facts of the performance indicators should be noticed. Rut depth were measured according to Dutch
norm NEN-EN 13036-8: 2008 until 2018, and from the year of 2019 on, the measurement method is adjusted
to apply for European norm. Before 2018, RWS estimated the longitudinal flatness of the roads by IRI, but
from 2018 on, it uses HRI. For skid resistance, the distress model is not used in the maintenance planning
system, and the engineers have found that the measurements are inaccurate partly. Therefore, considering
the comparability and accuracy of the data, data of IRI from 2009 to 2018, and data of rut depth from 2009 to
2017 can be considered to use.

Besides the performance indicators, WINFRABASE includes the information of the road structure and the
road network, as explained in Section 1.6. It also has the data from INWEVA system. It provides the traffic
intensities since 2012 and updates annually. This study will use the data of the construction date, the surface
layer materials, and the average annual traffic intensities of the road segments from the database.

Accordingly, the traffic and climate factors in the framework in 3.2 will be considered in the study. INWEVA
gives the yearly-based traffic data, while DiTTlab provides the minute-based data. Due to the annual mea-
surements of the pavement performance indicators, the yearly-based traffic data is used for figuring out the
quantitative effects of the transportation on the road performance. In order to set up the real-time simula-
tion of the pavement performance progression, the minute-based data is applicable. The climate data used
in the study comes from the database of DiTTlab. To conclude, the available data and the unavailable data
are distinguished in Fig. 4.2.

A prime criterion for selecting the test sections used in the thesis is the availability of sufficient historical dis-
tress data. The secondary is meeting both the academic interest and the practical interest of RWS. A15 (high-
way from Oostvoorne to Bemmel), with a total length of 140.2 km, including 75 segments listed in Appendix
A, is selected in the project as the test roadway. The road network is shown in Fig. 4.1. The performance
data in the past 10 years, the traffic data from the year 2012 on, and the climate data since 2015 from four
weather stations near to A15 will be tested in the study. For all test sections, five types of data were collected:
construction data, performance data, time data, traffic data, and climate data as listed in Tab. 4.3.
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Table 4.3: The input data

Data category Label Description

Construction

ROAD Road name
DIRECTION Road direction
LANE Surveyed lane
FROM_KM Location of the start of the road segment
TO_KM Location of the end of the road segment
CONSTR_DATE Construction date
SURFACE_LAYER Surface layer material

Performance
IRI_VALUE IRI by the survey
RUT_VALUE Rutting by the survey

Time
DATE_IRI Date of the survey of IRI
DATE_RUT Date of the survey of rutting

Traffic

I_AL_Y Average daily intensities of all the lanes in the survey year

I_L1_Y
Average daily intensities of passenger cars on all the lanes
in the survey year

I_L2_Y
Average daily intensities of light trucks on all the lanes
in the survey year

I_L3_Y
Average daily intensities of heavy trucks on all the lanes
in the survey year

Climate

STATION Weather station
TEMP Temperature at the survey time
PRECIPITATION Precipitation at the survey time
T_STA Start time of the climate survey
T_END End time of the climate survey

4.3. Data process

The data gained from the databases cannot be inputted directly to the data analysis because of four problems.
Firstly, The measurement data for each year was independently recorded in different tables. Therefore, it
lacks the links. Secondly, the raw data set does not cover all the variables in the performance models, and
some variables should be the derivatives thereof. Thirdly, the scales of various data types are different. There
are three scales in the data sets, which are the regions, the big road sections, and the small sections. Four
weather stations along the way divide A15 into four regions in Appendix D. The big road sections are defined
as the roadways between the adjacent ramps, and the freeways have 75 in total, as listed in Appendix A. The
small sections are defined as the 100-meter length, and there are 1402 small sections on A15. Weather data
is recorded per region and traffic data is per big section, while construction, performance and time data is
recorded per small road sections. Fourthly, some data on the road performance, the traffic, and the climate
is missing. To solve the problems and get the values of the variables, the four steps of proceeding data are
as follows. Due to the big size of the data, all the data processing is run by Matlab. Some sample codes are
written in Appendix B, Appendix C, and Appendix E.

Step 1: Integrate the data sets from the different tables
As stated above, the tables of data are independent. The key of the solution is to find the corresponding
label in the different tables. Both the databases from RWS and DiTTlab use the same location labels of RD
Coordinates, and accordingly, the tables are integrated. One sample of the Matlab code of integrating the
annual measurements of IRI from the different tables and plotting the progression is in Appendix B.

Step 2: Unify the unit of data of all the categories as per 100 meters
The problem of the different scales of the data will be solved by unifying the scale as the small road section,
which is 100-meter long. The program starts with the original table of the road performance data which is
per small section, and then creates the new columns and fills in the traffic intensities and climate data. It is
obvious that a large number of small sections have the same traffic and climate data, when they are located
in the same big road sections and the same regions.

Step 3: Fill in the missing data
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Missing data is hard to avoid due to some instability in the collection system. In the databases, the perfor-
mance, traffic, and climate data are missing to the different extents. Instead of focusing on the improvement
of the data collection, the study solves the problem by filling some data in the blank cells according to some
assumptions. The assumptions are made regarding the causes and the features of the missing data. The data
of the roughness and the rut depth is missing mostly because the road was under construction during the
measurement time. Thus, it is acceptable to leave the cells blank. The minute traffic data is supposed to
include the traffic flow of all the 100-meter sections on A15 from the first minute on 25th July, 2016 which
was the start time of data collection system to the last minute on 14th October, 2019 which is defined as the
end time of the project. But due to some instability of the loop detectors, some data in the early collecting
time was not accessed. To fill in the blank cells, the thesis assumes the traffic flow on the section where the
traffic data is missing is the same as the flow on the nearest section. So if the traffic data on some sections is
missing, it is filled in the values of the nearest section. Additionally, the weather data is expected to contain
wind speeds, the temperature and the precipitation of every minute at the 4 weather stations from 1st Jan-
uary, 2015 which was the first date of the climate data collection system, to the last minute of 14th October,
2019 as the end time of the project. However, in fact, there are two occasions of the weather data missing.
One is where the system did not work during the period from 1st August, 2015 to 31st December, 2015. The
other is where some data is missing in the whole collecting period. The research has the assumption that the
weather trend in the non-measurement time is the same as the measurement time. For example, the total
time of the measurement in 2016 by the Cabauw station was 140.8 hours. Among them, there were 2.6 hours
when the temperature was above 25 °C, 129.1 hours between 0 °C and 25 °C, and 9.1 hours below 0 °C. The
rest 8619.2 hours were not measured. According to the assumption, the total duration when the temperature
was above 25 °C is calculated as 2.6 * (140.8 + 8619.2) / 140.8 = 161.8 in Appendix E. The formulations of the
other variables in the climate categories are applied to the same idea.

Step 4: Formulate the variables with the input data
The variables are selected by two criteria in the study: they should be included in the performance models in
Section 2.4; they should be gotten or derived from the raw data in Tab. 4.3. Accordingly, the selection results
are listed in Tab. 4.4. The formulations of all the variables are very simple, and based on general knowledge,
in Tab. 4.5. However, there is difficulty in the calculations. The main challenge occurs when computing the
cumulative intensities. Due to the different construction times of the road sections, the calculations of the
starting year vary. To resolve the problem, this study initially divides the whole service lives into years, and
then uses the average annual daily traffic intensities of every year times the service duration of that year and
sum all up to the cumulative traffic intensities. A sample of coding the cumulative intensities is in Appendix
C.

As a consequence, the complete set of data {construction, distress, time, traffic, and climate} is suitable for
analysis. The ability to formulate this (time duration) variable was primarily due to the existence of a signif-
icant panel data set; when a pavement provides the bad service regarding roughness or rutting during the
period of observation, it is assumed that it met the maintenance requirements at the measurement time.
When the pavement section stays good until the end of the observation period, it is considered as right-
censored ; similarly, when the pavement section has a high value of IRI or the rut depth at the first measure-
ment, it means the bad condition exists before the initiation of the observation period, and it is considered as
left-censored. Explanatory variables are external factors that are assumed to influence the performance and
deterioration of the pavements; the data on explanatory variables were divided into four data groups: con-
struction, time, traffic, and climate. Dependent variables are the performance indicators of the sections, and
the data on the dependent variables are in the performance group in Tab. 4.4. Additionally, the input data is
so big, especially some sections last more lane 10 years, the traffic and weather data contain the records of
every minute in years. To improve the calculation efficiency, Matlab is used and the formulations are coded.
All the variables are treated as the matrices in the program. However, the first step of reading the raw data
from excel tables is the most time-consuming part in the total program. The solution to the problem is code
a file that can read the excel tables and store in the format of mat (a kind of Matlab data). By this, it only
requires reading the excel file once, and afterwards, if inputting the data, the program can call the mat file,
which is much quick than reading the excel file. But due to the data process is not the key of the study, the
report does not provide a excel-mat transforming code.
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4.4. Conclusion
To conclude, the chapter investigates the data availability and sets up the feasible analytical framework for the
study in Fig. 4.2. The formulas and the computation process of the variables including multiple Matlab codes
play the key role in the chapter. The results will be used in the following parts, such as the correlation analysis
in Chapter 5, the regression model application in Chapter 6, the survival model application in Chapter 7, and
the decision tree model application in Chapter 8. Additionally, the answer to the sub question 4 is found and
will be elaborated as follows.

Sub question 4

Which pavement deterioration, its potential causes and traffic characteristics can be captured in the
current data collection system? Which can not?

As for the pavement deterioration, data of IRI and the rut depth is accessible from the databases of
WINFRABASE. The measurement of skid index is not all accurate, so it is not chosen to study in the
research. Cracking and raveling were measured by the 3D laser measurement tools, and in the sys-
tem only the outputs of the tools were recorded. The raw data requires an additional data-processing
program to compute the performance indices to study. Other performance indicators are not even
measured.
Regarding the influencing factors, surface materials, the total service time of the road sections, traffic
intensities of three vehicle classes, temperature and precipitation are all available, but design, sub-
grade types, and construction are not.
The traffic data collection system, which the study has the access to, known as INWEVA, contains
the annual daily average traffic flow on every road section in the whole national road network in the
Netherlands of three vehicle classes, the annual average traffic intensities of any vehicle type during
the morning, evening or night period, the annual traffic intensities of any vehicle type during the
weekdays, weekends or rush hours, and the percentage of heavy load traffic. In addition to the traffic
intensities, WINFRABASE captures the relevant information of the locations in RD Coordinates and
the directions of the traffic flow. The other data source from DiTTlab provides traffic speeds and traffic
flow per minute on every 100-meter section of most roadways in the Netherlands, average accelera-
tion or deceleration, vehicle loss hours, travel time of a route, traffic controls, roadway maps, and
numbers of lanes.

The report will continue with the correlation analysis which will describe the correlations between the road
performance and the factors. Those will be indicated as three correlation coefficients that has been defined
before. That will be the end of Define phase.
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Table 4.4: List of variables

Variable category Label Description
Construction variables ROAD Road name

DIRECTION Road direction
LANE Surveyed lane
FROM_KM Location of the start of the road segment
TO_KM Location of the end of the road segment
CONSTR_DATE Construction date
SURFACE_LAYER Surface layer material

Performance variables IRI_VALUE_0 IRI at the last survey
RUT_VALUE_0 Rutting at the last survey
IRI_VALUE IRI at the this survey
RUT_VALUE Rutting at the this survey
IRI_VAR Variance of IRI between the last survey and this one
RUT_VAR Variance of rutting between the last survey and this one
IRI_CLASS Class of IRI. 1 and 2 are acceptable; 3 and 4 are bad
RUT_CLASS Class of rutting. 1 and 2 are acceptable; 3 and 4 are bad

Time variables AGE_IRI
Time between the construction and the survey of
roughness

AGE_RUT
Time between the construction and the survey of
rutting

DATE_IRI_0 Date of the last survey of IRI
DATE_RUT_0 Date of the last survey of rutting
T_IRI Duration between this survey of IRI and the last one
T_RUT Duration between this survey of rutting and the last one
DATE_IRI Date of this survey of IRI
DATE_RUT Date of this survey of rutting

Traffic variables I_AL Total intensities from the first service day until the survey

I_L1
Total number of passenger cars from the first service day
until the survey

I_L2
Total number of light trucks from the first service day
until the survey

I_L3
Total number of heavy truck from the first service day
until the survey

I_AL_INC Number of vehicles from the last survey until the survey

I_L1_INC
Number of passenger cars from the last survey until
the survey

I_L2_INC
Number of light trucks from the last survey until
the survey

I_L3_INC
Number of heavy trucks from the last survey until
the survey

Climate variables T_TEMP_25
Total time of the survey year when the temperature
above 25°C, and the unit is hour

T_TEMP_0
Total time of the survey year when the temperature
between 0°C and 25°C, and the unit is hour

T_TEMP_0_below
Total time of the survey year when the temperature
below 0°C, and the unit is hour

T_PRECIPITATION Total time of rains in the survey year, and the unit is hour

Discrete variables R_IRI_2015
Whether IRI meets the maintenance requirement for
the first time in the 2015 survey. 1 is yes; 0 is no.

R_IRI_2016
Whether IRI meets the maintenance requirement for
the first time in the 2016 survey. 1 is yes; 0 is no.

R_IRI_2017
Whether IRI meets the maintenance requirement for
the first time in the 2017 survey. 1 is yes; 0 is no.

R_IRI_2018
Whether IRI meets the maintenance requirement for
the first time in the 2018 survey. 1 is yes; 0 is no.

R_RUT_2015
Whether rutting meets the maintenance requirement for
the first time in the 2015 survey. 1 is yes; 0 is no.

( To be continued)
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Variable category Label Description

Discrete variables R_RUT_2016
Whether rutting meets the maintenance requirement for
the first time in the 2016 survey. 1 is yes; 0 is no.

R_RUT_2017
Whether rutting meets the maintenance requirement for
the first time in the 2017 survey. 1 is yes; 0 is no.

R_RUT_2018
Whether rutting meets the maintenance requirement for
the first time in the 2018 survey. 1 is yes; 0 is no.

SURFACE_COMBID
Whether the surface layer material is COMBID or not.
1 is yes; 0 is no.

SURFACE_DAB
Whether the surface layer material is DAB or not.
1 is yes; 0 is no.

SURFACE_EAB
Whether the surface layer material is EAB or not.
1 is yes; 0 is no.

SURFACE_OAB
Whether the surface layer material is OAB or not.
1 is yes; 0 is no.

SURFACE_SMA
Whether the surface layer material is SMA or not.
1 is yes; 0 is no.

SURFACE_ZOAB
Whether the surface layer material is ZOAB or not.
1 is yes; 0 is no.

SURFACE_ZOAB+
Whether the surface layer material is ZOAB+ or not.
1 is yes; 0 is no.

SURFACE_ZOABTW
Whether the surface layer material is ZOABTW or not.
1 is yes; 0 is no.

SURFACE_ZOEAB
Whether the surface layer material is ZOEAB or not.
1 is yes; 0 is no.

Table 4.5: Formulations of the variables

Variable category Label Formulation
Construction variables ROAD Raw data

DIRECTION Raw data
LANE Raw data
FROM_KM Raw data
TO_KM Raw data
CONSTR_DATE Raw data
SURFACE_LAYER Raw data

Performance variables IRI_VALUE_0 Raw data
RUT_VALUE_0 Raw data
IRI_VALUE Raw data
RUT_VALUE Raw data
IRI_VAR IRI_VALUE - IRI_VALUE_0
RUT_VAR RUT_VALUE - RUT_VALUE_0
IRI_CLASS Derivation from IRI_VALUE, and the damage assessment
RUT_CLASS Derivation from RUT_VALUE, and the damage assessment

Time variables AGE_IRI DATE_IRI - CONSTR_DATE
AGE_RUT DATE_RUT - CONSTR_DATE
DATE_IRI_0 Raw data
DATE_RUT_0 Raw data
T_IRI DATE_IRI - DATE_IRI_0
T_RUT DATE_RUT - DATE_RUT_0
DATE_IRI Raw data
DATE_RUT Raw data

Traffic variables I_AL
AGE∑

1
I _AL_Y

( To be continued)
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Variable category Label Formulation

Traffic variables I_L1
AGE∑

1
I _L1_Y

I_L2
AGE∑

1
I _L2_Y

I_L3
AGE∑

1
I _L3_Y

I_AL_INC
T∑
1

I _AL_Y

I_L1_INC
T∑
1

I _L1_Y

I_L2_INC
T∑
1

I _L2_Y

I_L3_INC
T∑
1

I _L3_Y

Climate variables T_TEMP_25 Derivation from TEMP, and T_STA or T_END
T_TEMP_0 Derivation from TEMP, and T_STA or T_END
T_TEMP_0_below Derivation from TEMP, and T_STA or T_END
T_PRECIPITATION Derivation from PRECIPITATION, and T_STA or T_END

Discrete variables R_IRI_2015 Derivation from IRI_VALUE, and the damage assessment
R_IRI_2016 Derivation from IRI_VALUE, and the damage assessment
R_IRI_2017 Derivation from IRI_VALUE, and the damage assessment
R_IRI_2018 Derivation from IRI_VALUE, and the damage assessment
R_RUT_2015 Derivation from RUT_VALUE, and the damage assessment
R_RUT_2016 Derivation from RUT_VALUE, and the damage assessment
R_RUT_2017 Derivation from RUT_VALUE, and the damage assessment
R_RUT_2018 Derivation from RUT_VALUE, and the damage assessment
SURFACE_COMBID Derivation from SURFACE_LAYER
SURFACE_DAB Derivation from SURFACE_LAYER
SURFACE_EAB Derivation from SURFACE_LAYER
SURFACE_OAB Derivation from SURFACE_LAYER
SURFACE_SMA Derivation from SURFACE_LAYER
SURFACE_ZOAB Derivation from SURFACE_LAYER
SURFACE_ZOAB+ Derivation from SURFACE_LAYER
SURFACE_ZOABTW Derivation from SURFACE_LAYER
SURFACE_ZOEAB Derivation from SURFACE_LAYER



5
Correlation Analysis

Chapter 4 focuses on the availability of data and the computation of the variables. This chapter explores the
strength of the relations between all the variables, including the road performance, the traffic, climate, and
time factors. The statistics methods elaborated in Section 3.2 are used to analyse, and the values of Pearson’s
linear correlation coefficient, Kendall’s tau coefficient and Spearman’s rho describe the remarkableness of
correlation between two testing variables. This correlation analysis has the result of how related the traffic
variables that are captured in the current data collection system are to the pavement deterioration progres-
sion.

Before applying three correlation analytic methods formulated in Section 3.2, it is crucial to understand what
types of data the methods can be analyzed. Among the three correlation analysis methods, Pearson’s linear
correlation coefficient has the most critical rules for the test data. Because r hoP is the ratio of the covariance
to the standard deviation, the denominator cannot be 0, which means that the two variables have the con-
tinuous values. Spearman’s method is based on the sorting position of the original data, which loosen the
requirement for the input data that should have different values. If there is an abnormal number (extremely
large or small) in the data, because r hoS reveals the rank correlation, its impact is far less in r hoS than in
r hoP . The data that Kendall’s method can analyze is the categorical variable that has the orders. In order to
simplify the process of the correlation analysis, the study satisfies the strictest data requirements of the three
correlation analysis and input the data table for the three correlation analysis, which is the analysis variables
have continuous and various values. Thus the variables that do not have the features listed in Tab. 4.4 are
not inputted for the correlation analysis, including all the construction variables (ROAD, DIRECTION, LANE,
FROM_KM, TO_KM, CONSTR_DATE, and SURFACE_LAYER), 4 time variables (DATE_IRI_0, DATE_RUT_0,
DATE_IRI, DATE_RUT), all the discrete variables, and IRI_CLASS and RUT_CLASS. The correlation analy-
sis applies all the performance variables (IRI_VALUE, RUT_VALUE, IRI_VAR, and RUT_VAR, IRI_VALUE_0,
RUT_VALUE_0), the four time variables (AGE_IRI, AGE_RUT, T_IRI, T_RUT), the traffic variables (I_AL, I_L1,
I_L2, I_L3, I_AL_INC, I_L1_INC, I_L2_INC, I_L3_INC), and the climate variables (T_TEMP_25, T_TEMP_0,
T_TEMP_0_below, T_PRECIPITATION).

It should be noticed that the time variables are the special factors. Theoretically, if the external factors, like
traffic and climate can be all excluded, the effects of the time itself on the road performance is the process of
oxidation, and as long as the new asphalt is laid down, the material is exposed to oxygen inevitably and the
oxidation is beginning until the end of the lifespan of road sections. Although it is likely to result in the brittle
asphalt, with significant loss of elasticity, bringing about a significant increase in the probability of failure,
under the natural conditions (typically air is composed of 21% by volume of oxygen), it takes a very long
time to cause changes in material properties (Asphalt Institute, 2003). Therefore, in the study, if the strong
correlations between the time variables and the road performance are found, it does not indicate that the time
itself is related to the development of the pavement performance, but means the combination of all the time-
related variables both captured in the database, like the cumulative traffic intensities and the cumulative time
of the specific weather conditions, and non-measured factors correlate with the road performance. Besides,
in the survival model, the time variables are the dependent ones, which are defined as the duration from
the construction time or the last repaving time until the road segments meet the maintenance requirements
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regarding the performance indices, in other words, the lifespans of the road sections. The meaning of the
lifetime differs from the time variables input in the correlation analysis in this chapter. In the test data, about
90% on A15 road segments have the good service capability, and the time variables (AGE_IRI and AGE_RUT)
counts the first operation day until the measurement date of the specific performance indicators (IRI and the
rut depth in the study).

Formulated in Chapter 3.2, three correlation analytic methods are coded in Matlab in Appendix F. The chap-
ter focuses on the dependence and independence of the variables, deriving from three correlation coeffi-
cients. It is necessary to clarify the correlation coefficients only indicate the correlation between the two
variables in all current historical data for the A15 segments. The three correlation coefficients used in the
report can only indicate the linear correlation and the rank correlation between the variables. So even if the
three correlation coefficients are nearly 0, it does not mean that the two variables are absolutely irrelevant,
but indicate the weak linear or rank correlations of two variables. The thesis cannot exclude the possibility
that there are some other correlations between the two variables. Based on three correlation coefficients, it is
able to determine the non-independence of variables. In statistics, the concept of irrelevance is less critical
than independence. It is uncertain two variables are independent if three correlation coefficients of them
are small, but it is definite that a big value of any correlation coefficient among the three indicates the non-
independence.

In addition, this study cannot exclude the possibility that the data correlation cannot be observed on other
roadways or rare data is incorrectly recorded in the database. In particular, there might be some occasions
that the records were not updated during the construction time but afterwards, resulting a lag and inaccuracy
in the database. The situation can result in the records of a fresh performance with all kinds of the factors in
the rather long service time, like heavy cumulative traffic intensities. If it is the case, the actual correlations
of transportation intensities and the road performance are most likely closer than the results of the data
analysis.

5.1. Dependence of the variables

The section focuses on the linear correlation and the rank correlation between variables. It explores the de-
pendence between the variables to some extent. The results of Pearson’s linear correlation coefficients in Tab.
5.1 indicate how closeness to a line the correlation between two variables is. The closer the absolute value is
to 1, the closer the two variables are to linear correlation. According to the results, the variable that has the
strongest linear correlation with the roughness is the values of unevenness in the previous year (r hoP = 0.78).
That is to say, approximately, if a road section in the first year has the high value of the surface unevenness,
it will have a high one in the second year too, and if a low value, it will be about a small number as well. This
can lead to a finding that the annual variance of roughness is a small amount. But that does not mean that
the amount of variation is negligible, because even a tiny increase of the roughness of a road section which
originally is close to the critical value can meet the maintenance requirement concerning the roughness. The
development of the rut depth has a similar result, that is, the rut depth in the second year is near the first-year
value. The evidence is that the linear correlation coefficient computed by the variables of RUT_VALUE and
RUT_VALUE_0 is 0.68 that is close to 1. In addition, in the correlation analysis of A15 data, the roughness
and the rut depth are a little bit linearly correlated and the coefficient is positive meaning a road section with
a deep rut and a large unevenness at the same time. It is easy to understand by the definition of roughness
and rutting. Road roughness is the comprehensive indicator, and a large rut depth certainly affect the profile
flatness. The result supports the form of Paterson’s performance model for roughness which considers all
kinds of the distress as the independent variables, including cracking, rutting, patching, and potholing (Pa-
terson, 1987). Only from the linear correlation coefficient computed by the data of A15, the linear correlation
between traffic cumulative volumes of the various vehicle types and IRI is weak, and as well as the climate
factors and IRI, which are the variables of the cumulative time when the temperature is above 25 °C, the cu-
mulative time when the temperature is between 0 °C and 25 °C, and the duration when the temperature is
below 0 °C in the study. The linear correlations between the roughness and other variables are not obvious by
the analysis, where the absolute values of the coefficients are below 0.1.

Compared to the linear correlation of traffic flow and the roughness on A15, the linear relationship between
traffic flow and the rutting of the roadway is a bit more obvious. r hoP formulated by IRI and the cumulative
numbers of passenger vehicles, light trucks, and heavy trucks are 0.11, 0.13 and 0.14 respectively, while the
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coefficients by the rut depth and the traffic flow of the three categories are 0.18, 0.23 and 0.25 respectively.
It is worth noting that in the three types of vehicles, the linear correlation coefficient of the numbers of the
heavy trucks and the rutting is the largest, the same as the roughness. It is not to say that the heavy trucks
have a greater impact on the development of the rut depth or the surface unevenness than the other vehicle
types, but indicates that the number of heavy trucks is more linearly related to the rut depth or the roughness
compared with the number of the other vehicle types.

Besides, according to the analysis of the correlation between the temperature variables and the rutting data
on A15, the characteristics of linearity is a little more apparent compared to the relation between the temper-
ature variables and the roughness. The absolute values of r hoP between the temperature variables and the
rutting have the range from 0.31 to 0.38, while the coefficients of the temperature variables and IRI have the
absolute values between 0.15 to 0.19.

The variances of IRI are most linearly related to the corresponding time (r hoP = 0.49) and the total service
time of the road segment (r hoP = 0.3). This does not mean that the time itself is related to the development
of the pavement performance, but indicates the combination of all the time-related variables both captured
in the database and non-measured factors has a correlation with the road performance. The most linearly-
related variable of the variance of the rut depth is the rut depth in the last measurement (r hoP = 0.46) by
the data analysis of A15. In summary, the closeness of the linear correlations between the dependent and
independent variables are shown in Fig. 5.1. The wider the lines in the figure, the more close the relations
between the two variables linked are to the linear form.

Dependent variables

• IRI_VALUE
• RUT_VALUE
• IRI_VAR
• RUT_VAR

Independent variables
Time
• AGE_IRI
• AGE_RUT
• T_IRI
• T_RUT

Deterioration
• IRI_VALUE_0
• RUT_VALUE_0

Traffic
• I_AL
• I_L1
• I_L2
• I_L3
• I_AL_INC
• I_L1_INC
• I_L2_INC
• I_L3_INC

Climate
• T_TEMP_25
• T_TEMP_0
• T_TEMP_0_below
• T_PRECIPITATION

Figure 5.1: Closeness of the linear correlation between the variables analyzed by A15 data

When all the input data are the continuous variables, the analytic results of Kendall’s tau coefficient and
Spearman’s rho are basically similar, because both are to work out the ordinal association between the test
two quantities. The more the coefficients approach 1, the more similarity of the orderings of the data that is
ranked in each of the quantities. In contrast, the closer the coefficient is to -1, the closer the rank correlation
of the two variables is to fully inverse. If the ranking is completely independent, the coefficients will be 0.
According to the results of Kendall’s tau coefficient in Tab. 5.2 and Spearman’s rho in Tab. 5.3, the rank
correlation of the input variables is found. The closest the ranking of the data to the variable of IRI of this year
is the IRI data in the last measurement of all A15 segments (r hoK = 0.58 and r hoS = 0.75). In other words,
based on the historical data, the ordering of a road segment concerning its roughness among all the A15
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sections does not have a big change in the measurement and the following one. The time intervals between
twice measurement are approximately one year in the study. There is the similar situation with regard to
the rut depth. The order of the rut depth of a certain pavement section in all A15 sections is close to that in
the second year Another finding is that in the historical data of the A15, the weather condition (in the study,
represented by the four variables: the cumulative time over 25 °C throughout the year, the cumulative time
between 0 and 25 °C throughout the year, and the cumulative time below 0 °C , as well as the total rain time
throughout the year, has the rank correlation with the rut depth to some extent. The total time when the
temperature between 0 and 25 °C is negatively associated with the rut depth by their respective rankings. The
absolute values of Kendall’s tau coefficients between the four weather variables and the rut depth range from
0.23 to 0.31, while those of Spearman’s rhos are between 0.28 to 0.37. As for the rank correlation between
the traffic intensities of three classes and the pavement performance (IRI and rutting in the research), the
correlation analysis of A15 data finds the stronger ordinal association between them and the rutting than that
of the traffic intensities and the roughness. Although among the three vehicle categories (passenger vehicles,
light trucks, and heavy trucks), the largest correlation coefficients are computed by the variables of the rut
depth and the total number of the light trucks (r hoK = 0.20 and r hoS =0.27), the coefficients of the traffic flow
of three vehicle classes and the rut depth are very close.

Additionally, a common question is whether the values of the correlation coefficient computed respectively
by two different variables and the same variable indicate which variable affects the variable more. For exam-
ple, if the correlation coefficient between variable A and variable B is 0.7 and that of variable A and variable C
is 0.3, does it mean that variable B has a greater influence on variable A than C? The answer is not necessarily.
Because, firstly, the correlation coefficient describes the correlation of the data on the two test variables, nei-
ther the cause and effect of the variables nor the amount of the change of one variable caused by the change of
the other one. Secondly, the correlation coefficient is to indicate the strength of a kind of association between
variables. It is likely that a strong correlation between the two variables of the other form, but the correlation
coefficient applied in the study is very low. For instance, x and y have a strong relationship as xy=1, but the
linear correlation coefficient is low. The comparison of the correlation coefficients by one variable and the
different variables can indicate that, according to the input data of the study, the correlation between variable
A and variable B is greater than that of variable A and variable C.

5.2. Independence of the variables

Apart from the linear correlations and the rank correlations between the input variables, the chapter focuses
on the independence between the variables. As stated in Chapter 2, the pavement performance indicators
and the influencing factors are formed in a complex and complicated situation. They can be (in)dependent
or (un)correlated from each other. It should be critical to consider the (in)dependence of the variables when
setting up the performance model, especially in the linear form. Since Pearson’s linear correlation coefficient,
Kendall’s tau coefficient, and Spearman’s rho can only indicate the linear correlations and the rank correla-
tions, so the other forms of the association cannot be derived from in the chapter, and the small values of
three correlation coefficients of two test variables do not mean that the two variables are absolutely irrele-
vant, but only show the weak correlation in the linear form or by ordering. But according to the results of
r hoP , r hoK , and r hoS , it is able to determine the non-independence between the variables. If any correla-
tion coefficient of two variables have the value close to or equal to 1, the non-independence between them
is definite. Therefore, there are 7 non-independent pair of the variables which at least one of the absolute
value of r hoP , r hoK , and r hoS is above 0.98 as follows. In the performance modelling application in Develop
phase, the variables of those pairs will not show in one model at the same time.

• AGE_IRI & AGE_RUT

• T_IRI & T_RUT

• I_AL & I_L1

• I_AL_INC & I_L1_INC

• T_TEMP_25 & T_TEMP_0

• T_TEMP_25 & T_TEMP_0_below
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• T_TEMP_0 & T_TEMP_0_below

The analytic results of non-independence in the last paragraph make sense. The non-independence of the
time variables, the pair of AGE_IRI and AGE_RUT, and the pair of T_IRI and T_RUT, is due to the fact that
the measurements of the unevenness and the rut depth of a road section on A15 usually was carried out on
the same day. According to the historical data of A15, only a very few measurements of the performance
characteristics in some years on some sections were taken on different dates. Thus, the data on the time
variables formulated by the measurement time of the roughness is almost identical with that derived from
the measurement time of the rut depth on the same pavement segment. In Develop phase, the application
of the performance models concerning the roughness uses data of AGE_IRI and T_IRI as the independent
variables, and the predictive models for the rut depth have the time-associated independent variables as
AGE_RUT and T_RUT.

As for the traffic variables, AL (the sum of all the vehicle classes) and L1 (the passenger vehicles) has high
dependence. In fact, by the definition, these two equations are always true: (1) I_AL = I_L1 + I_L2 + I_L3;
(2) I_AL_INC = I_L1_INC + I_L2_INC + I_L3_INC. That is to say, those traffic variables in the equations are
dependent. The passenger cars are the majority of the vehicles so that among the correlation coefficients of
the various traffic variables, the pairs of I_AL and I_L1 and I_AL_INC and I_L1_INC have the highest values.
Accordingly, in the model application, either the total traffic intensities (I_AL) or the total traffic intensity
increments (I_AL_INC) is used, or the total numbers of the three vehicle types (I_L1, I_L2, and I_L3) or the
increment numbers of the three vehicle types (I_L1_INC, I_L2_INC, and I_L3_INC) are used. Because one of
the study goal is to figure out the effects of the various vehicles on the road performance, the research applies
the variables of each class of the vehicles in Chapter 6, Chapter 7, and Chapter 8 rather than the sum.

The non-independence has been observed between the climate variables as well. By the definition, there is
an equation of these variables: T_TEMP_25 + T_TEMP_0 + T_TEMP_0_below = T, where T is the constant
representing 365 or 366 days. So it is definite that the variables are dependent. It is worth noting that the rank
correlations of the three weather variables are 1 or -1, meaning any location of A15 has the same position in
the ranking of all the locations on A15 with regards to the high-temperature time (above 25 °C) as in the rank-
ing of the low-temperature time (below 0 °C) among all places on the roadway. The rankings are just inverse
of the one concerning the normal-temperature time (between 0 and 25 °C) Out of the sheer coincidence, the
study only considers data from four weather stations near A15. In other words, only four data of a weather
variable are sorted, and the number of so-called "all the locations on A15" as phrased before is only four. Al-
though the test road section where has higher temperature also has lower temperature, it is because the size
of the study regions. Supposing the study looks at the weather in the past decades all over the Netherlands by
inputting the data of a large number of the weather stations throughout the country, the calculation results of
r hoK or r hoS must be not equal to 1 or -1, and the coincidence can be avoided. In summary, the coincidence
occurs mainly due to the limited inputting weather data.

According to the literature study in Chapter 2, the effects of the influence factors are not simple. For example,
only the factor of time has little impact on the road performance. But once in hot conditions and under the
slow-moving heavy load for hours, the asphalt tends to behave like viscous liquid, while in cold climates with
rapid loading for a while, the material has a tendency to behave as elastic solids (Asphalt Institute, 2003).
Since the main focus of the study is to figure out the influence of the transport flow on the pavement per-
formance, one reasonable solution is comparing the road performance of various sections where have the
identical conditions except the traffic flow. The solution has some feasible issues because at first, the study
cannot capture all kinds of factors. As stated in Chapter 4, the design, the construction, and the upgrade are
not recorded in the database that supports the research, and the climate data is accessible of every region but
the difference between the specific locations in a region is assumed as none. Secondly, if selecting the road
sections that have all the other variables captured in the current data collection system but different traffic
flow, there are very few comparable road segments in this way. The root reason is as for A15 basically only the
adjacent parts are constructed on the same date, and the traffic flow are the same if there is no ramp between
them. That is to say, once the construction time is the controlling variable, it is highly possible to have the
same value of the traffic flow and the research on the influence of the traffic intensities cannot achieve. In
summary, although the experiment method of controlling variables is a common way of studying the effects
of a single variable on a dependent variable, its effectiveness is limited under the study conditions.
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5.3. Conclusion
To conclude, the chapter computes three common correlation coefficients, and shows the linear and rank
correlations between the variables that have the continuous data in the collection system in numbers. The
dependence and independence of the variables are derived from the coefficients, and the analytic results will
be used to set up the performance models in the next phase.

According to the correlation analysis, the traffic variables that are captured in the data collection system relate
to the pavement deterioration progression. Derived from Pearson’s linear correlation coefficient, based on
A15 data from 2015 to 2018, the analysis results show that the traffic flow and the road roughness are slightly-
weak linear correlated, and the traffic flow and the rut depth are weak linear correlated. The range of Pearson’s
linear correlation coefficients between the variables of traffic flow and the roughness is from 0.11 to 0.14,
while the coefficients of every kind of the traffic-flow variables and the rut depth are between 0.18 and 0.25.
According to Kendall’s tau coefficients and Spearman’s rhos, the data analysis of A15 data from 2015 to 2018
indicates that the traffic flow and the road roughness have slightly-weak rank correlation, and the traffic flow
and the rutting have weak rank correlation. The range of Spearman’s rhos computed by the variables of the
traffic flow and the road roughness is 0.15 to 0.17, and the range of Kendall’s tau coefficients of the traffic flow
and the road roughness is 0.10 to 0.11. The range of Spearman’s rhos of the variables of the traffic flow and
the rut depth is 0.23 to 0.27, and Kendall’s tau coefficients of the traffic flow and the rut depth have the range
of 0.17 to 0.20. The study does not test other forms of data association, except linear correlation and rank
correlation. So it cannot exclude the possibility that transport flow is strongly related to road roughness and
rutting in other kinds of relation. The test data only contains A15 data from 2015 to 2018, so the results are not
accountable for the relation of the transport flow and the road roughness or the rutting on other roadways
during other observation time. Besides, there might be occasions that the records were not updated during
the construction time but afterwards, resulting a lag and inaccuracy in the database. The situation can result
in the records of a fresh performance with all kinds of the factors in the rather long service time, like heavy
cumulative traffic intensities. If it is the case, the actual correlation of the transportation intensities and the
road performance is most likely closer than the results the data analysis finds.

The chapter is the end of Define phase. The report will continue with the modelling application for predicting
the pavement performance by the factors that can be captured in the current data collection system in the
next phase.
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III
Develop

According to the previous part, three kinds of well-applied models are chosen, which are the regression mod-
els, the survival model, and the decision tree classifier model. And the variables both dependent and inde-
pendent are defined and computed from the test data.

In this phase, the performance models are applied to quantify the effects of various influencing factors ac-
cording to the test data. However, not all the variables in the pre-defined models are accessible in the study,
as stated in Chapter 4. Therefore, some assumptions are made in the study. The results of the model appli-
cation will be used in Deliver phase to design a simulation tool for improving road management. The model
application is based on the methodology of the pre-defined performance models. And this phase applied the
models to the case study of A15. It consists the model application of three kinds of models. The main research
question can be answered mainly by the study of this phase.
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6
Regression Models

The chapter is the modeling application of the regression models, that has been defined in Chapter 3. The
application uses the collected data of the entire roadways of A15 during years from 2015 to 2018, and the
results indicate the effects of the transport flow on the road performance quantitatively in terms of the re-
gression forms. The linear regression models for predicting roughness and rutting in Section 6.1, and the
non-linear results are put in Section 6.2. At last, two sub-questions are answered concerning the regression
models, which are how to apply the regression models, and what are the results of the regression models by
the test data.

6.1. Linear regression models

The section focuses on two linear regression models: one for the road roughness, and the other about the
rutting, defined in Chapter 3.3. To avoid the comprehensive confusion that the interspersed introduction
may bring, the two models will be elaborated separately. The roughness-relevant one takes the first place
and the linear regression model of rutting follows. The elaboration on each model contains the setting of the
model, the application of the model and the model results, and they will be explained in this order.

According to Chapter 3.3, the linear regression model of the roughness is in the form that the change of IRI in
a period is the function of the cumulative traffic load passing on the road section during the same duration.
There are two problems when applying the pre-defined model in the study. At first, the load is not an avail-
able variable by the database. Secondly, the linear associations between the roughness increment and the
transport flow are weak according to Pearson’s linear correlation coefficients in Tab. 5.1. ESAL, a cumulative
traffic load summary statistic, represents a mixed traffic stream determined by the different axle load and the
axle configurations. It is an equivalent number of 80 kN single axle load summed over the period. The idea of
the equivalent computation is actually to simplify the causing of a variety of vehicle classes, and it assumes
that every one unit of load of any vehicle kind has the same effects on the road roughness progression.

With the data support of the numbers of the different vehicle classes that are categorised by the vehicle
lengths, the project is able to study the effects of various vehicle classes on road damage. Therefore, the
cumulative numbers of the different vehicle categories are taken as the independent variables in the linear
regression models. In this way, the assumption of the original model can be tested. Additionally, the relation-
ship between the roughness increment and the transport flow is the weak similarity to the linear association,
but the relationship between the roughness in the prediction year and the original roughness is most close
to a line (r hoP =0.78). To get a better fitting of the regression model, the linear regression model takes the
roughness as the dependent variable and the original roughness as the independent variable. In the original
model as Eq. 3.4, there is only the single independent variable (N Et ). The adjusted model has multiple in-
dependent variables (the original road roughness and the traffic flow), with different units and magnitudes.
If using the raw data with a variety of units and different ranges of the values for regression analysis, it may
overestimate the indexes which have large quantities and relatively reduce the influence of the indicators the
values of which are small. Therefore, in order to ensure the reliability of the results, the original indicator
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data needs to be normalized. The data normalization is a process to scale the data down to a small specific
interval, and the converted data is commonly a dimensionless pure value (Dutka & Hanson, 1989). It is of-
ten used for removing the unit and making the various physical quantities comparable. At present, there are
various methods for data normalization, such as linear methods (extreme value method, standard deviation
method), polyline method (tri-fold method), and curve method (semi-normal distribution). The most typ-
ical one is min-max normalization, that is, the data is uniformly mapped to the interval between 0 and 1.
The data normalization function is that for the new data sequence (the dimensionless quantity) y1, y2, etc.
is the ratio of the difference between the original data sequence x1, x2, etc. and the minimum value and the
difference between the maximum value and the minimum one. The data normalization of the study applies
the method. Thus, the applicable linear regression model the study uses is as Eq. 6.1. In the model, IRI and
I RI0 are the dimensionless quantities computed according to the field measurement of a year and the year
before respectively. I_L1, I_L2, and I_L3 are the dimensionless quantities computed by the cumulative traffic
flow of the passenger vehicles, the light trucks, and the heavy trucks respectively. α1, α2, α3, and α4 are the
estimated parameters in the regression model. u is the constant value. Although in terms of the concept of
the model, it indicates without any influence factors (I RI0, I_L1, I_L2, I_L3 all equal 0 ), IRI is identical to u.
However, it conflicts with the condition that I RI0 is 0. Thus, u in the model represents all the effects of the
other factors that are not taken into account in the model.

I RI =α1I RI0 +α2I _L1+α3I _L2+α4I _L3+u (6.1)

After setting up the model as Eq. 6.1, the application runs in Matlab. To focus on the effects of the traffic
factors, the climate is considered as the control variable. The program code, shown in Appendix G, contains
the min-max normalization and the regression. The values of all the parameters are estimated by the regress
module in Matlab, as well as the goodness of fitting.

The estimation of all the multiple linear regression coefficients and the indicators of the goodness of the
fitting are shown in Tab. 6.1. R-square has a range between 0.55 and 0.76, and the p-value of 0.0000 with the
default significance level of 0.05. Because the value of r-square is relatively close to 1, and the p-value is less
than the default significance level of 0.05, the goodness of fitting is acceptable. Fig. 6.1 gives the result of the
fitting intuitively by drawing the two independent variables and the road roughness. Since all the nodes are
near to the regression plane, the fitting result is rather good.

Table 6.1: Regression results of the linear regression model of roughness based on A15 data (No. test data in Climate scenario 1 = 1604;
No. test data in Climate scenario 2 = 2524; No. test data in Climate scenario 3 = 1200; No. test data in Climate scenario 4 = 5964)

Estimation of parameters Goodness of fitting

α1 α2 α3 α4 u R2 p-value
(significance level=0.95)

Climate scenario 1 0.9397 0.0464 -0.0120 -0.0966 0.0904 0.76 <0.0001
Climate scenario 2 0.7713 -0.4210 0.1013 0.2861 0.0224 0.70 <0.0001
Climate scenario 3 0.8482 0.8640 -0.5137 -0.3992 -0.0472 0.67 <0.0001
Climate scenario 4 0.7336 -0.3774 0.0882 0.3512 0.0727 0.55 <0.0001

According to the model result in Tab. 6.1, among the four independent variables considered in the regression
model, the most significant influence on the dependent variable is the initial value of the road roughness,
because the coefficient of the variable is always the largest under the different weather conditions, expect
climate scenario 3. Even as for climate scenario, the coefficient is the second larger that is close to the largest
value. The significance of the traffic flow’ effects on the road roughness is verified, especially under climate
scenario 2, 3 and 4. According to the signs of the parameters of the traffic flow, the way that a certain vehi-
cle type affects the road roughness, either negative or positive, is not always certain. Under some weather
conditions, with the number of a vehicle class increases, the pavement roughness increases, but under some
weather conditions, the road roughness decreased by the reduction of the traffic flow of the vehicle type.
Based on the model results, it is observed that the development direction in which the trucks (both heavy
and light) influence on the surface flatness is always the same, and it contrary to the cause by the passen-
ger cars. Three possible explanations for the model results are: (1) the development direction of the road
roughness affected by the traffic flow is different under the various weather conditions (2) compared with
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the traffic flow, the climate factor on the road roughness is more decisive (3) the linear form is not desirable
for capturing the effect of traffic flow on the road unevenness. The values of the parameters are dependent
on the test data. Based on the model results, the coefficient of I RI0 is not only the largest but much larger
than the other parameters in every scenario, indicating that the variable is the decision variable among the
independent variables of the model. There is no observation that the coefficients of the three traffic flow have
a determined sequence of magnitudes in every scenario. So the model does not find which vehicle type has
the greatest impact on road flatness and which less. In summary, according to the fitting indexes, the model
can be used to predict the unevenness of the road, but it cannot be used to study the impact of various traffic
flow on road roughness.

Figure 6.1: Graphical representation of the linear regression model of roughness on A15

The other linear regression model is to predict the rut depth. The setting of the pre-defined model in Chapter
3.3 assumes the linear relationship between the increment of the rutting and the cumulative traffic load (N Et )
over the same period. However, there are two problems to apply the identical model to the study. One is that
the project aims to figure out the effects of various vehicle categories, where the pre-defined model ignores
the difference of effects caused by the amount of load of the various vehicle types. The other is that based
on A15 data and the computation result of Pearson’s linear correlation coefficients, the relationship between
the change of the rutting and the traffic flow are not close to a line. In other words, the pre-defined linear
regression model of the rutting will not result in a good fitting, if applied. Similar to the adjustment of the
linear regression model of the road roughness as stated above, the setting of the model takes the rut depth
(RUT) as the dependent variables, and the initial rutting (RU T0), traffic flow of three vehicle types (passenger
cars I_1, light trucks I_2, and heavy trucks I_3) as the independent variables. Due to the different units and
the magnitudes of the variables, the normalization process is required and min-max normalization (Dutka &
Hanson, 1989) is applied. The setting of the regression model is as Eq. 6.2, where the variables (RUT, RU T0,
I_1, I_2, and I_3)are the unitfree items, β1, β2, β3, or β4 is the estimated parameter of each variable in the
regression model, and w is the constant value, indicating the effects of the other factors. It should be noticed
that w does not equal to the start value of the rutting. Because the initial value of the rut depth of a section is
taken as a variable (RU T0) in the model.

RU T =β1RU T0 +β2I _L1+β3I _L2+β4I _L3+w (6.2)

The model is solved in Matlab by the code in Appendix G. There computation process contains four parts
orderly. At first, reading the data from the excel file, which is the result of the data processing in Chapter 4.
Secondly, define the variables, both dependent ones and independent ones. Thirdly, formulate the depen-
dent and independent variables by the min-max normalization method. At last, run the regression module
of Matlab and estimate the parameters and the statics of the goodness of fitting.

The regression results in the different weather scenarios are shown in Tab. 6.2. The coefficients of the vari-
ables indicate the relationship between the factors and the rut depth, and the sign of each coefficient indi-
cates the direction of the relationship between a predictor variable and the response variable. A positive sign
indicates that as the predictor variable increases, the response variable also increases, while a negative sign
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indicates that as the predictor variable increases, the response variable decreases. Therefore, according to
the data analysis of A15 data from 2015 to 2018, the high values of the original rutting makes the progression
of the rutting towards deeper, but the effects of the traffic flow vary from the different climate conditions.
According to the literature study in Chapter 2 as well as the common sense, vehicles regardless of passenger
cars, light trucks, and heavy trucks are the causes of the rutting development. This was confirmed by the
correlation analysis in Chapter 5. In the results of the multivariate linear model, most of the parameters of
the traffic flow are estimated as the positive values under all kinds of weather conditions. But there are two
values that are negative. It does not indicate that the traffic flow are beneficial to the road rutting under a
certain weather condition, but it is very likely because of the extreme values in the data. The signs of the
constant values are always positive, indicating there is a big possibility that some factors which are not taken
into account in the model have a negative influence on the rutting progression.

Table 6.2: Regression results of the linear regression model of rutting based on A15 data (No. test data in Climate scenario 1 = 1622; No.
test data in Climate scenario 2 = 2524; No. test data in Climate scenario 3 = 1200; No. test data in Climate scenario 4 = 5964)

Estimation of parameters Goodness of fitting

β1 β2 β3 β4 w R2 p-value
(significance level=0.95)

Climate scenario 1 0.4710 0.3906 0.0247 0.2949 0.1444 0.30 <0.0001
Climate scenario 2 0.6053 0.0232 0.7502 -0.0223 0.1017 0.52 <0.0001
Climate scenario 3 1.373 1.6132 0.6324 0.3370 0.0616 0.65 <0.0001
Climate scenario 4 0.5116 -0.2721 0.1818 0.5687 0.1342 0.38 <0.0001

The coefficient value signifies how much the mean of the dependent variable changes given a one-unit shift
in the independent variable while holding other variables in the model constant. This property of holding the
other variables constant is crucial because it allows assessing the effect of each variable in isolation from the
others. According to the model result, the mean response value that determined by the min-max normaliza-
tion of A15 data on the rut depth increases by the original rutting increases. But the certain sequence of the
magnitude of the traffic flow on A15 is not observed under various weather conditions. The constant values
are significant since the response variables have the range between 0 and 1, meaning the factors that are not
considered in the model have the nonnegligible influence on the road rut depth.

The goodness of fitting of the model is indicated by r-square and p-value. The values of r-square are rather
low, and the p-values of 0.0000 are less than the default significance level of 0.05. Since the good fitting result
requires both r-square is close to 1 and the p-value is less than the default significance level, the fitting of
the model is not very good. The visual representation of the model is drawn in Fig. 6.2. All the nodes are
separated around the regression plane. There is a series of nodes which has the basically same cumulative
flow of the heavy vehicles and the similar value of the rutting depth, but their initial value of the rutting vary,
which makes the fitting not very ideal.

Figure 6.2: Graphical representation of the linear regression model of rutting on A15
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To summarize, the model is not a good predictive model for the rut depth, because the fitting is rather bad,
and some significant influence factors might be not captured in the model. To some extent, it confirms the
undesired effects of the traffic flow on the rut depth, but it does not result in a certain ranking regarding the
influence of the different vehicle types on the rutting progression based on A15 data.

6.2. Non-linear regression models

The performance models proposed by the previous papers not only are the linear functions, but also have the
non-linear forms. The section contains 3 non-linear regression models defined in Section 3.3, two of which
are for predicting the road roughness as Eq. 3.6 and Eq. 3.7 indicate, and one is about the rutting defined as
Eq. 3.8. To illustrate every non-linear model clearly, the section elaborates 4 models one by one in the order
in which the formulas appear in Section 3.3.

The first non-linear regression model of the road roughness assumes the influence factors of the road rough-
ness are the initial road roughness, the cumulative traffic loading, and time, and the relationship between the
response variable and the predictor variables is the exponential function in which the time variable occurs
as an exponent, and the initial road roughness and the cumulative traffic loading make up the multiplier.
There are two key assumptions of the model. Firstly, the road roughness progression is hypothesized that the
variation is small at the start stage, but the roughness increases sharply in the late stage. The rate of growth is
determined by the initial value of IRI, the cumulative traffic flow, and the coefficient of the time variable that
is estimated by regression. Secondly, the variables of the traffic flow and time are independent. In the case of
A15, the fluctuation of the road unevenness has been observed by the data analysis of the test data from 2015
to 2018 as Fig 6.3 illustrates. That’s to say, the test data in the case does not meet the first key assumption. As
for the second one, according to the correlation analysis in Chapter 5, the correlation coefficients between
the cumulative total traffic flow and the ages of the road sections does indicate the high dependence accord-
ing to the rank correlations (r hoK =0.76 and r hoS =0.90). Since the test data of the study does not satisfy the
key assumptions the non-linear model sets, the model is not applicable to the case study.

Figure 6.3: IRI progression on A15 from 2015 to 2018
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The second non-linear regression model of the road roughness is the function of the change of IRI that com-
puted by the increment of the traffic flow, the change of various performance indexes, including the cracking,
rutting, patching, and potholing, and the value of IRI over the same period on a road section. There are two
difficulties in applying the pre-defined model. First of all, the data of cracking, patching, and potholing are
not included in the database that the thesis uses. Secondly, as defined in Eq. 3.7, the traffic variable in the pre-
defined model is the design parameter of the traffic volumes (commonly as ESAL). The computation of ESAL
is based on the principle that the mixed traffic would cause the same road damage as the repeating standard
axle load does, meaning the model assumes the effects of an amount of load of various vehicle types have no
difference regarding the road roughness. The hypothesis is set up due to a lack of real measurement data on
each vehicle category. But the data is available in this research. Accordingly, to solve the problems of applying
the pre-defined model, the report proposes the adjusted one as Eq. 6.3 shows, which excludes the items in
the original model that formulated by the cracking, patching, and potholing, and used the increments of the
traffic flow of different vehicle types as the traffic variables (∆I _L1,∆I _L2,∆I _L3). T is the service time of the
road section. ∆RU T and IRI are the increments of the rut depth and the road roughness. α1, α2, α3 indicates
the effects of the various vehicle types on the change of the road roughness (∆I RI ) during the period (t ). The
four parameters as well as n, ω1, and γ can be estimated by regression.

∆I RI = (α1∆I _L1+α2∆I _L2+α3∆I _L3)enT +ω1∆RU T +γI RI t (6.3)

It is primarily estimated that the model application to this case probably results in a bad fitting. There are
two reasons. Firstly, the model assumes that the amount of change in road roughness is equal to the sum
of all kinds of items, which are determined by the predictor variables respectively. The one related to the
traffic flow is in the natural exponential function, in which the use time of the roadway is considered as the
exponent and the coefficients are made up of the traffic flow and the estimated parameters. According to the
feature of an exponential function, the increment of the response variable will increase by the increase of the
predictor variable as the exponent. In this case, it means the change of road roughness has been increasing
as the service time of the roadway goes by. However, the kind of development is not observed in the test data,
as Fig. 6.3 illustrates. Secondly, because the three types of distress data are not available, the exclusion of the
variables may make the model inapplicable.

Considering the negative expectation of the model application result, the case study applies preliminary test-
ing by inputting A15 data from 2016 to 2017 under the climate scenario 1. The min-max data normalization
(Dutka & Hanson, 1989)is applied. The non-linear function cannot be solved by the “curve fitting tools” in
Matlab, because it is not one of the forms that are initially installed in the program. The solution for the cal-
culation is converting the regression problem to the optimization problem. To achieve a good fitting, maxi-
mizing r-square is set as the objective. The constraint is that n is positive. The parameters are computed in
the “optimization tool” in Matlab.

The model application result of the preliminary testing is as Eq. 6.4. The R-square of 0.1756, much less than
1, indicates that the model fits poorly, as expected. The model result does not include the items determined
by the traffic flow and the use time, is most likely because the correlation of the roughness and the service
time is not in the form of exponential. In summary, the nonlinear model is not suitable for this case.

∆I RI = 0.0011∆RU T +0.0096I RI0t (6.4)

The third non-linear regression model is for predicting the rut depth. It assumes that the rut depth is the
exponential function of the cumulative traffic load and the service time of a roadway. There are two problems
of applying the pre-defined model to the study. The one is that the original model takes ESAL as the traffic
variable which hypothesizes the same effects of various vehicle types on the rut depth as long as the amount
of the load is identical. In the research, the data that contains the total number of each vehicle category,
is able to simulate the traffic conditions more similar to reality. Thus, the model in the study is taking the
percentages of three vehicle types (the passenger cars, the light trucks, and the heavy trucks) as the traffic
variables (p1, p2, and p3), each of which have a parameter (β1, β2, or β3), that indicates the influence of each
vehicle type on the rut depth. The formula of the model is in Eq. 6.5. The other parameters and variables in
the model have the same meanings as the pre-defined one, where T , the age of a road section, is the base and
its exponent is x, and the cumulative total traffic volume (I_Al) as the base has the exponent of y .

RU T = (β1p1 +β2p2 +β3p3)T x I _ALy (6.5)
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The other problem is the dependence of the two predictor variables, the cumulative traffic flow and the ser-
vice time. According to the correlation analysis in Chapter 5, the linear correlation coefficients of the traffic
flow and the total service time range from 0.24 to 0.26, but the rank correlation coefficients, especially Spear-
man’s rho, have the high values of between 0.88 and 0.91, since the maximum is 1. The results make sense
because as for a road section, the longer it is in the operation stage, the larger the cumulative traffic flow it has,
but the sections out of a number of the pavements which have the long service duration do not necessarily
have the higher total traffic volumes. Due to the rather weak linear correlation and the strong rank correlation
between the variables, they are not independent to some extent by the test data.

l g RU T = l g (β1p1 +β2p2 +β3p3)+xl g T + yl g I _AL (6.6)

In order to confirm if the correlation of the variables of I_AL and T does influence the model result, the log-
arithm method is used to convert the model to a multivariate function as Eq. 6.6 shows. The independent
variables in a multivariate linear fitting model must be linearly independent, otherwise, in terms of the good-
ness of fitting, the model is always ideal. The predictor variables of the logarithms of I_AL and T in the model
are drawn in Fig. 6.4. It confirms the clear linear correlation between the two variables. That’s to say, even if
the model results in good fitting, it is likely because the independent variables are dependent. Therefore, the
non-linear regression model is not applicable to the case study.

Figure 6.4: Logarithms of the variables of I_AL and T

In the section, the three nonlinear models are all predicted to be unsuitable for the study case. The prediction
is derived from that the measurement data on A15 does not support the key assumptions of the models. In
particular, as for the first and third regression models elaborated above, it is very clear that the measurement
data the case uses is against the key assumptions the models set. Therefore, the model application result is
not displayed in the report. About the second nonlinear model, although it is assessed that the regression
would not result to be ideal, the study provides the results of the model application of the experimental data
to prove the prediction. Actually, in the study process, the test data was first applied to the model, and it
resulted in the non-logical outcomes. Then the reason was derived, which was the case data did not meet
the key assumptions of the models. However, it should have been figured out in the pilot assessment of the
applicability of the models. So as to a clear elaboration that conforms to the general thinking habits, the
section is organised as firstly giving the prediction of the applicability followed by the proof, which inverses
the actual model application process.

6.3. Conclusion

The chapter is to apply the regression models for predicting pavement performance of A15. In the last chap-
ter, five models (3 for roughness and 2 for rutting) have been defined with the predictor variable of the cumu-
lative traffic load based on previous studies. Due to one research goal of studying the influence of different ve-
hicle types on road performance, on the foundation of the pre-defined regression models, the study replaces
the total traffic flow with the sum of the cumulative traffic volumes of each vehicle type, and run the model
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application. The outcome is that the two multivariate linear regression models have better fitting results for
the A15 highway based on the measurement data from 2015 to 2018, but the three nonlinear regression mod-
els are not suitable for the case study. The reasons for the inapplicability contain that the road roughness
progression on A15 during the four study years does not meet the model hypothesis; several independent
variables in the model have no measurement data; and some independent variables in the model are not
independent on basis of A15 data. The two linear models in this study result in good fitting mainly because
the roughness and rutting in the predictive year are strongly correlated to the original values in the A15 data,
especially the roughness. It requires further study to clarify whether considering the traffic flow of various
vehicle categories can achieve the better prediction. In summary, according to the model results, the linear
models proposed in the study can predict the road roughness and the rut depth on A15, and different vehicle
types have various effects on road performance development under different weather conditions.

Apart from the model application results of the regression models, the chapter finds the answer to sub ques-
tion 5a and 6a as elaborated in the following.

Sub question 5a

How to apply the regression models?

The application of the regression model in the study is made up of 4 steps. At first, a new model is
established by replacing the total amount of traffic with the sum of the traffic volumes of the different
types of vehicles in the pre-defined models. Secondly, it is to assess the applicability of the models,
according to the features of A15 data. Thirdly, the test data is input in the models and the regression
coefficients are computed, in which the different physical quantities are converted to the dimension-
less quantities by min-max normalization. At last, the effects of the factors on the road performance
are analyzed according to the model results.
In the application process of each model, not all the steps are completed. The application of two
non-linear models (one for unevenness and one for rut depth) does not proceed when they are deter-
mined that the test data does not support the key model assumptions. The other non-linear model
of the increment of the road roughness results in a poor fitting by using the test data that meets the
pilot assessment. Thus, it is unable to provide the analysis results of the effects of the factors. In the
study, the two linear models have the complete model application process, and the model results to
some extent quantify the effects of the traffic flow as well as the other influencing factors on the road
performance characteristics.

Sub question 6a

What are the results of the regression models by the test data?

The study finds two regression models that are applicable to A15 road performance progression pre-
diction. The models are in the linear forms as Eq. 6.1 and Eq. 6.2 define. According to the application
results of A15 data from 2015 to 2018, the important factors that affect the road roughness are the
initial roughness of the road and the traffic flow. The cumulative number of each vehicle type has
different effects on road roughness under varied weather conditions. Even if under a certain climate
condition, it is inconclusive that the traffic has the positive or negative effects on the road roughness.
The development direction of road roughness to good or to bad may be jointly determined by the traf-
fic flow of the mixed traffic and the weather conditions. The traffic volumes of an individual vehicle
type cannot be determined to be beneficial or detrimental for a roadway with regards to the rough-
ness. It is worth noting that, according to the results of the A15 data analysis, the impact of trucks
(both the light type and the heavy type) on the development direction of pavement roughness is con-
sistent under any kind of weather condition, and that is contrary to the effects of the passenger cars.
However, whether the finding suggests a certain pattern or it is a coincidence caused by the limited
test data requires further research to clarify.
(To be continued in next page)
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Sub question 6a

What are the results of the regression models by the test data?

(The answer continues here)
According to the results of the linear roughness model of the rut depth of A15, the initial value of the
rut depth and the traffic flow of the three kinds of vehicle types have an important influence on the
road rut depth. The pattern in the test data has been found that the increase of the traffic volumes
of any type of vehicles will make the rut depth increase, under all kinds of climate scenarios. But the
quantities of the effects of various vehicle categories on the rutting vary from the different climate
scenarios. Among the four weather situations in the study, the most significant traffic-flow factors of
the rut depth can be the number of the passenger cars (for climate scenario 1 and 3), the number of
the light trucks (for climate scenario 2), or the number of the heavy trucks (for climate scenario 4).
One explanation is that the truck is supposed to have a large impact on the rut depth of the pavement
due to its heavy load, but the passenger cars may have a large impact due to the accumulation of the
numbers. Under various weather conditions, the share of each vehicle category on the A15 sections
may lead to the ranking of the influence of various vehicle types on the rut depth, which requires to
be confirmed by further study.
The goodness of fitting in the two linear fitting models proposed in this project are both acceptable.
However, the three non-linear regression models in the study do not result in the ideal outcomes. The
main reason for the inapplicability of each non-linear models is respectively: (1) the road roughness
progression on A15 during the four study years does not meet the model hypothesis; (2) several in-
dependent variables in the model have no measurement data; (3) some independent variables in the
model are not independent on the basis of A15 data.

The thesis will continue to apply the methodology defined in the chapter. The model applications of the
survival model and the decision tree classifier will be in the remaining content of Develop phase.





7
Survival Model

This chapter applied the survival model to estimate the traffic impacts on the initiation of bad roughness and
rutting. The model has been defined in Section 3.4. The test data for the application contains the entire A15
data from 2015 to 2018 provided by the database as Chapter 4 introduces. The outcome gives the effects of the
traffic volumes of the different vehicle categories on the survival time of the roadway concerning the pave-
ment performance. As stated in Section 3.4, the process of applying the survival analysis contains five steps:
(1) selecting the performance indicators; (2) defining the threshold values of the performance indicators; (3)
modelling the survivor function; (4) estimating how the expected failure time depends on traffic character-
istics; and (5) calibration. Each step becomes a section of the chapter. The last section is to summarize the
findings of the chapter and provides the answer to SQ. 5b how to apply the survival model and SQ. 6b what
are the results of the survival model by the test data.

7.1. Step 1: selecting the performance indicators

Pavement conditions of A15 sections are evaluated by distress, roughness, and skid resistance measured on
the outer and median lanes. The research initially selected cracking and raveling as the candidate perfor-
mance indicators. Because the two are mainly concerned in real cases, and the previous research confirms
the applicability of the survival model for predicting the cracking (Loizos & Karlaftis, 2005). However, limited
by the accessibility of data, the two variables have no values in the database the study uses. Therefore, the
two performance indicators are not selected. As stated in Section 3.4, the previous study applied the survival
model to predict the occurrence of the bad condition points of the pavements (Wang et al., 2005). Condition
Points (CD) is a comprehensive performance indicator determined by cracking, subgrade failure, raveling,
swell and patches. However, it is actually a biased procedure of setting up the weights for every performance
indicator.

The research selects roughness and rutting as the performance indicators, because in an academic view, there
is a lack of the survival model application regarding the performance indicators, and in a practical view, the
database via IVON provided by RWS provides more complete data of roughness and rutting and also they are
two important indexes to assess the roadway performance indicators.

7.2. Step 2: defining the threshold values of the performance indicators

It has been observed that pavement deterioration, like the initiation of the cracking, would not appear for a
long period, but once it occurs, it will develop dramatically in a short time (Wang et al., 2005). As for road
roughness, it may fluctuate all the way. It is observed in many A15 sections that the more uneven the road
is, the greater fluctuation in IRI annually as Fig. 6.3 shows. The progression of the rutting is a process that is
affected by traffic loading, pavement strength, climate and drainage condition (Alaswadko & Hassan, 2018).
The development of rutting can be divided into three phases in Fig. 7.1 (Freeme, 1983). Initial densification
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or bedding-in phase is that the densification occurs on the newly constructed pavement after it is opened
to traffic. Its degree depends on the level of compaction during construction and the applied traffic load.
In the second stage, gradual or stable rate of deformation phase, the deformation rate constantly increases
with traffic. This rate depends on several factors such as traffic loads, pavement strength and environment.
The accelerating deformation phase as the final one has the rapid increasing deformation rate depending on
traffic loading, pavement strength and environment.

Figure 7.1: Phases of rutting progression (Freeme,1983)

Accordingly, the study assumes the threshold of the pavement deterioration where road sections with the
values of the deterioration index below the threshold and above the threshold have the different development
regarding the the distress. Thus the life-span of a road section is divided into two stages in the research: one
is the normal stage where pavement is in the good condition with the acceptable unevenness and rutting; the
other is the failure-development stage when the condition is bad and it potentially develops towards worse
direction rapidly. The estimation of the thresholds of the performance indicators is not only required, but
also the values are of great significance in the resurfacing decisions.

To estimate the thresholds, there are two applicable methods. The first one is employed by data analysis. In
previous study, the critical value concerning CD was defined by diagramming CD as the x axle and the annual
increment of CD as the y axle (Wang et al., 2005). When the fluctuation of the polyline suddenly increased,
there was a big deteriorating to the next stage. The study applies basically the same procedure to find the
thresholds of the rut depth and the road roughness on A15. The only slight change is selecting the medium
as the annual change of the certain value of the performance indicator. Because, in the big data set, the road
sections which have the same values of the performance indicators may have the different change of the next
year. The median, a value that is not easily affected by extreme values and can represent a medium level of
value, is used as an indicator of the annual growth.

The progression of road roughness of A15 in two districts are respectively in Fig. 7.2a and Fig. 7.2b. The com-
putation code in Matlab is in Appendix H. Most of the unevenness of the test road sections are basically above
0.5 m/km, but there are some points with the value of 0 m/km, which are the cases of lack in measurement
data. As Fig. 7.2a and Fig. 7.2b illustrate, when the value of IRI is relatively small, the median annual change
swings around 0 m/km. When IRI reaches a high value, the annual change becomes considerable. In the
diagrams, there are some discrete points and discrete polylines in the area of high-values of IRI, indicating
that no test data fell in the intervals. According to the data analysis on A15, the road roughness fluctuates
when the roadway has a slight unevenness. Of the pavement in WNZZ district, after the road roughness ap-
proaches 2.3 m/km, the annual variation of the unevenness on the roadway becomes remarkable. As for in
ONZ district, the critical number is about 1.9 m/km.

The same method of determining the threshold of rutting on A15 is programmed in Matlab. Limited by the
length of the report, the code is not displayed in the report. Fig. 7.3a and Fig. 7.3b diagram the progression of
rutting of A15 in two districts respectively. It is noticed that there is a piece of line unconnected to the contin-
uous polyline in Fig. 7.3b. It is because that there is no test data belonging to the intervals of 12 mm to 13 mm
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(a) ZOAB road roughness progression from 2015 to 2018 of
A15 in WNZZ district (No. test data = 2556)

(b) ZOAB road roughness progression from 2015 to 2018 of
A15 in ONZ district (No. test data = 1372)

Figure 7.2: ZOAB road roughness progression from 2015 to 2018 of A15

of the rut depth. According to the data analysis of ZOAB sections on A15 in the two districts, when the rutting
is slight but not at the initial densification phase, the median annual change is relatively small, and when the
rutting is deep, the median annual change becomes considerable. In WNZZ district, after the roadway has a
rut depth above 10 mm, the annual variation of the rutting on the roadway becomes remarkable. The critical
value in ONZ district is about 10 mm, as observed. Based on the analysis results, most of the measurement
data of rutting is in the initial densification phase or the gradual deterioration phase. The lack of data on the
rapid deterioration phase may cause some decreasing slopes in Fig. 7.3a and Fig. 7.3b, which are not in line
with knowledge.

(a) ZOAB road rutting progression from 2015 to 2018 of A15
in WNZZ district (No. test data = 2556)

(b) ZOAB road rutting progression from 2015 to 2018 of A15
in ONZ district (No. test data = 1372)

Figure 7.3: ZOAB road rutting progression from 2015 to 2018 of A15

The second method is dependent on empirical knowledge to figure out the threshold values of the perfor-
mance indicators . As stated in Section 1.6, RWS established up the damage assessment by the comprehensive
considerations of the impact of road roughness on serviceability and maintenance costs. The good condition
of a pavement regarding IRI is below 2.6 m/km, and the intervention level is above 3.4 m/km. As for rutting,
the critical values respectively are 10 mm and 17 mm.

The thresholds of the rut depth found by the two methods are identical, while those of the road roughness
are similar. The development of the pavement deterioration in the different regions on A15 has the simi-
lar shape. It means that the roughness and the rutting of ZOAB road sections in the different regions have
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commonalities.

In terms of being practical, the second method should be selected. However, A15 performance from 2015
to 2018 was mostly in good condition. There is few data in the failure-development stage if defined by the
damage assessment. Tab. 7.1 gives the data proportions of multiple classes. The following study process may
be impacted due to the insufficient data. Accordingly, the study uses the results of the first method to define
the threshold. As for the rutting, the two methods result in the same outcomes, which makes it no necessary
to compare or select the method concerning the rutting in the study.

Table 7.1: Data distribution of the different damage assessments of IRI

Stage
I II

Data analysis of A15 IRI<2.3 m/km IRI ≥ 2.3 m/km
Data distribution 98.12% 1.88%
Damage assessment of RWS IRI<2.6 m/km IRI ≥ 2.6 m/km
Data distribution 98.78% 1.22%

7.3. Step 3: modelling the survivor function
According to the results in the last section, a road section with the value of IRI above 2.3 m/km or the value
of the rut depth larger than 10 mm is considered as the poor condition. The period from its construction
date to the survey date of the poor condition is defined as the survival time. Based on A15 data from 2015 to
2018, the distribution of the survival time of ZOAB sections regarding roughness and rutting is diagrammed
respectively in Fig. 7.4a and Fig. 7.4b. The computation code in Matlab is shown in Appendix I.

(a) ZOAB road survival-time distribution concerning IRI
based on A15 data from 2015 to 2018 (No. test data = 3928,

No. observation data = 99)

(b) ZOAB road survival-time distribution concerning rutting
based on A15 data from 2015 to 2018 (No. test data = 3928,

No. observation data = 150)

Figure 7.4: ZOAB road survival-time distributions based on A15 data from 2015 to 2018

The distribution of the survival time concerning IRI based on the input data of A15 indicates that most of
the ZOAB road sections which fail during the observation period are between 2 and 10 years. To further
study what form the test data is distributed in, multiple classic distribution functions are tested, including
normal distribution, Weibull distribution, logistic distribution, gamma distribution, log-logistic distribution
and lognormal distribution. The goodness of fitting of the distribution is evaluated by the log-likelihood, as
the classic statistics method. The maximum log-likelihood indicates the best-fitting distribution. The mean,
the variance, and the log-likelihood of every distribution are given in Tab. 7.2. The best fitting function, in
this case, is Weibull distribution according to the likelihood ratio test. The fit of the Weibull functional form,
diagramed in Fig. 7.5a, suggests that the probability of the critical road roughness occurring during the next
period is higher when it has not done so up to approximately 12 years, with the maximum probability of
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roughness at 6.11 years, and then becomes low from 16 years and on. It should be noticed that the numbers
are derived from the mathematical analysis, but because there is few data about 16 or more years, it requires
critical consideration when applying the numbers.

Table 7.2: Distribution functions of ZOAB road survival time concerning IRI based on A15 data from 2015 to 2018 (No. test data = 3928,
No. observation data = 99)

Distribution Mean Variance Log-likelihood
Normal 6.15 10.06 -254.23
Weibull 6.11 10.57 -253.30
Logistics 6.00 11.28 -256.52
Gamma 6.15 14.37 -258.65
Log-logistic 7.01 49.99 -263.72
Lognormal 6.90 42.03 -277.22

According to the measurement data of the rut depth of ZOAB pavements on A15 from 2015 to 2018, there
were two peaks of the failure event occurrence. One is at the service time of about three years and the other
is approximately 11 years. In particular, there is an extreme failure peak at around the 11th year. The most
widely-used functional forms for the survival models are used, including normal distribution, Weibull dis-
tribution, logistic distribution, gamma distribution, log-logistic distribution and lognormal distribution, and
the likelihood ratio test was used to compare the goodness of fitting of the different functional forms, as the
same method as the study of the distribution of the survival time regarding IRI above. The results of the
mean, the variance, and the log-likelihood of every distribution are listed in Tab. 7.3. The likelihood ratio
test indicates that the normal form is the most appropriate for the test data. The normal distribution indi-
cates that ZOAB sections of A15 have the highest probability of failure concerning the significant rutting in
8.09 years. Although the normal distribution is the best fitting distribution of the case study with regards to
the log-likelihood, the gap between the raw data and the normal distribution is large, as Fig. 7.5b illustrates.
The main reason is that the original data has two peak points, but whether the normal distribution or other
probability distribution forms used in the study has the feature of the only one peak. In general, the good-
ness of fitting of the distribution functions of ZOAB road survival time concerning rutting based on A15 data
from 2015 to 2018 is not ideal. Actually, the difficulty has been proposed in the previous study that the model
results are tightly correlated to the availability and nature of the data and it is difficult to find the appropriate
fit, a simple distribution, in a particular case sometimes (Ebrahimi et al., 2019).

In summary, this step finds the survival-time distribution of the ZOAB road on A15 based on the data from
2015 to 2018. The one concerning surface roughness is in the form of Weibull distribution with the expected
survival time of 6.11 years. As for the rut depth, the normal distribution is found as the appropriate distribu-
tion to the case, and its mean value of the survival time is 8.09 with the unit of years. In the dataset that the
study uses, the majority of ZOAB sections were in good conditions and only 1.88% (in Tab. 7.1) met the main-
tenance requirements related to the performance indicators the research selected. That is to say, the survivor
functions the step models are determined by a small amount of data.The problem will be further discussed
and the solution will be proposed in Section 7.5.

Table 7.3: Distribution functions of ZOAB road survival time concerning rutting based on A15 data from 2015 to 2018 (No. test data =
3928, No. observation data = 150)

Distribution Mean Variance Log-likelihood
Normal 8.09 15.96 -420.10
Weibull 7.97 17.84 -427.72
Logistics 8.44 17.89 -423.32
Gamma 8.09 28.96 -440.60
Log-logistic 10.26 234.36 -456.33
Lognormal 9.50 109.75 -473.18
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(a) Best-fitting distribution of ZOAB road survival time
concerning IRI based on A15 data from 2015 to 2018 (No.

test data = 3928, No. observation data = 99)

(b) Best-fitting distribution of ZOAB road survival time
concerning rutting based on A15 data from 2015 to 2018

(No. test data = 3928, No. observation data = 150)

Figure 7.5: Best-fitting distributions of ZOAB road survival time based on A15 data from 2015 to 2018

7.4. Step 4: estimating how the expected survival time depends on traffic
characteristics

The survival model defined in Eq.3.9 is an accelerated life model, which assumes the effect of covariates on
the survival time is multiplicative. There are two quantities of the predictor variables in the function. One
is the baseline survival-time distribution (Ts0) that has been defined in the last step, and the other one is
the exponential sum of f λ, where f is a matrix of covariates and λ is a vector of regression coefficients
measuring the impact of covariates. The way of estimating how the expected survival time depends on traffic
characteristics in the previous literature is taking the traffic volumes as one column of the covariate matrix
(Ebrahimi et al., 2019), or taking ESAL and/or the traffic levels in the covariate matrix (Wang et al., 2005; Loizos
and Karlaftis, 2005). In the study, the effects of the three vehicle categories (passenger cars, light trucks, and
heavy trucks) are focused. Because the three variables have some dependence according to the correlation
analysis in Chapter 5. In the application, the predictor variable of f is one of the cumulative numbers of the
three type of traffic flow. The test data is divided into WNZZ and ONZ district, where are respectively located
in the coverage of Rotterdam weather station and Herwijnen weather station. In this way, the climate factors
are controlled.

To estimate how the expected failure time depends on the multiple traffic characteristics, the cox proportional
hazards model (Kartsonaki, 2016) is utilized. Because the traffic intensities as the predictor variables in the
study are the time-dependent covariates, it is necessary to convert survival data to the counting process form
at first (Mathworks, 2006a). The method is executing the code that converts the survival time (Ts ) to a time
interval (Tstr , Tst p ]. The estimation results of the coefficients are listed in Tab. 7.4. Coefficients with the
negative values indicate that the existence of the corresponding variables reduce the expected road survival
time. The ratio of the time reduction is defined by the hazard ratio, which is the exponential of the coefficient
in the survival model. Standard errors, z-values and p-values describe the characteristics of the coefficient
estimates. When the p-value is greater than 0.05, the null hypothesis cannot be rejected. It means that the
difference between the samples selected out of the population is caused by the sampling error. In this case, it
happens due to the small population data.

According to the survival analysis results of A15 ZOAB data from 2015 to 2018, three types of vehicles all have
a negative influence on road health determined by IRI, but the degrees of their influence are different. The
intensities of the passenger cars shorten the mean of the survival time by 4.33% based on WNZZ data and by
4.05% derived from the data in ONZ district. The effects of the volumes of the light trucks on A15 in the WNZZ
and ONZ districts during the observation year is to decrease the expected survival time of IRI by 52.08% and
29.69% respectively. The impact of light trucks on ZOAB road survival time defined by IRI is significantly
different in the two regions. According to the high value of p-value that is above 0.05, there is less significance
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Table 7.4: Estimation results for ZOAB road roughness on A15 (No. test data in WNZZ = 2556; No. test data in ONZ =1372)

Variable Coeffcient
Hazard

ratio
Standard

error
z-value

p-value
(significance level=0.95)

(WNZZ district)
I_L1 -0.0443 0.9567 0.0085 -5.2006 <0.0001
I_L2 -0.7357 0.4792 0.1660 -4.4318 <0.0001
I_L3 -0.5084 0.6015 0.1467 -3.4656 <0.0001

(ONZ district)
I_L1 -0.0413 0.9595 0.0200 -2.0603 0.0395
I_L2 -0.3522 0.7031 0.1928 -1.8264 0.0678
I_L3 -0.4693 0.6254 0.2095 -2.2407 0.0250

Table 7.5: Estimation results for ZOAB road rutting on A15 (No. test data in WNZZ = 2556; No. test data in ONZ =1372)

Variable Coeffcient
Hazard

ratio
Standard

error
z-value

p-value
(significance level=0.95)

(WNZZ district)
I_L1 -0.0325 0.9680 0.0057 -5.7227 <0.0001
I_L2 -0.3667 0.6930 0.0596 -6.1529 <0.0001
I_L3 -0.2776 0.7576 0.0477 -5.8163 <0.0001

(ONZ district)
I_L1 -0.0926 0.9156 0.0438 -2.1131 0.0346
I_L2 -1.5288 0.2168 0.7321 -2.0881 0.0368
I_L3 -1.4397 0.2370 0.7320 -1.9669 0.0492

in the statistical test based on the ONZ data so that it cannot be rejected that the null hypothesis is valid. So
the result is invalid. As for the influence of the heavy-truck flow on the survival time analysed in the case,
they reduced the life expectancy of ZOAB roads in the WNZZ area by 39.85%, compared to 37.46% in the ONZ
area. Apparently, the impacts of trucks (both light and heavy) on the expected survival time regarding IRI are
significantly considerable.

The same method is employed to estimate how the expected survival time concerning the rut depth depends
on the intensities of the three vehicle categories. In the study, the road section is defined as "fail" when the
rut depth on it was measured above 10 mm. The critical number is defined in Section 7.2. The estimation
results are in Tab. 7.5. All types of vehicles have an negative influence on the ZOAB pavement survival time
determined by the rut depth. The intensity of each vehicle category affects the expected survival time regard-
ing the rutting in a different scale. The traffic flow of the passenger cars decrease the mean of the survival
time by 3.2% in the WNZZ district and 8.44% in the ONZ district. The effects of the light trucks on the road
health are significantly indicated by the hazard ratios. The class shortens the expected survival time by 30.7%
and 78.32% according to the data analysis of WNZZ and ONZ data respectively. As for the heavy trucks, the
estimation results indicate that the number of the vehicle class reduces the expected survival time of ZOAB
pavements of A15 by 24.24% in the WNZZ region, and the number of 76.3%. Comparing the estimation re-
sults calculated by the data in the WNZZ district and the data in the ONZ area, the influence of any vehicle
type on the expected survival life duration of the ZOAB pavements derived from the WNZZ region is greater
than that of ONZ. Especially, the two types of trucks shorten the pavement life expectancy in the ONZ area by
an extremely large proportion, which is nearly 4/5. The finding is not comparable with the existing literature
as well as common sense. Apparently, the traffic impact on the ONZ sections is significantly overestimated.
The reasonable explanation for this is due to less observation data. For the same reason, the thesis can not
confirm or reject the likelihood that the traffic impact on the survival time estimation in the WNZZ area has
also been overestimated.

Although the hazard ratios for the survival time of ZOAB concerning roughness and rutting that associated
with the trucks are larger than that of passenger cars, it is not a critical conclusion that the impacts of the
trucks on ZOAB road life expectation is greater than that of passenger cars. Because the survival model de-
fined in this study has a single predictor variable. The computation of the coefficient is based on the assump-
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tion that only the variable influences the survival time distribution, while the other potential influencing
factors have none effects. That is to say, the study of the impact of the passenger car flow on the ZOAB road
survival time is according to the hypothesis that the impact of light truck traffic on the survival time concern-
ing the roughness and the rut depth of the ZOAB pavements is 0, and neither does the heavy trucks. The way
of studying the effect of multiple variables on the expected survival time is the stratified model. The model
has the same function as Eq. 3.9, where f is a matrix containing k columns, where the k columns correspond
to the predictor variables using the name-value pair argument. The unstratified model is applicable to the
study, rather than the stratified form, because the three traffic variables are not independent.

It is noticed that the tests on the WNZZ district are valid but some on the ONZ district are not, according to
the p-values. The main reason is that from the observation year of 2015 to 2018, there is few sections with
the IRI value higher than 2.3 m/km (as defined in Section 7.2) on On A15 from 2015 to 2018. The number of
observations in the WNZZ district is 39, but only 8 data in the ONZ district. As for the rutting, 48 ZOAB sections
had the measurement data of the rut depth above 10 mm, the threshold value. Only 12 in the ONZ area were
observed as "fail" determined by the rutting from 2015 to 2018. The consequences of a lack of observation
data are (1) some p-values are close to or even larger than the significance default level, indicating the null
hypothesis is not rejected; (2) it is likely that the effects of the traffic characteristics on the expected survival
time are overestimated; (3) the limited observation data results in a right censoring problem. The solution to
the problem is discussed in the next section.

7.5. Step 5: calibration

Censored data problem in the survival analysis has been observed in both the previous studies (Paterson,
1987; Ebrahimi et al., 2019) and the model application steps of this case above. It is caused by the limited
survey time, and it indicates no observation of the failure events in the measured sample(s). There are three
common types of censored data problem (R. Miller & Halpern, 1982):

• Left censoring, means the failure event occurred before the observation starts.

• Interval censoring, indicates the failure event happened in an interval during the whole survey dura-
tion, but the specific time of the occurrence of the event can not be determined

• Right censoring, means the failure event will happen after the observation ends.

In this case, the three types of censored data problem are involved. The survey time is from 2015 to 2018, and
the measured objects are all the A15 sections whose surface coating material is ZOAB. Among these subjects,
a small number of roadways were observed that the failure event happened in the first measurement in the
year of 2015. The failure event was defined as the road roughness is above 2.3 m/km, or the rut depth is above
10 mm, as Section 7.2 finds. The actual failure time was earlier than the beginning of the observation. The
data is left censored. Besides, the road performance (roughness and rut depth, in this case) is measured once
a year. When the road was observed to meet the failure criteria for the first time in the measurement of 2016,
2017, or 2018, the real failure time was at some point between the last measurement and the measurement in
which the failure event was observed. This part of the data has the interval censoring problem. As of the last
measurement in 2018, more than 90% of the ZOAB sections on A15 did not meet the failure criteria specified
in this report (IRI> 2.3m/km, rut depth>10 mm). The failure time of these sections cannot be estimated,
which caused a considerable right censoring problem for the study.

The solution to the left censoring problem is converting the survival time data to the survival interval, which is
defined by two variables, Tstr and Tst p . It indicates the failure event happened on the road section between
the start time (Tstr ) and the end time (Tst p ). As for left-censored data, Tstr is 0, and Tst p is the duration
between the construction time and the survey date of 2015. The method has been employed in the model
application above.

Similar to the processing of dealing with left-censored data, the interval censoring problem can be solved by
converting the data of the survival time to the interval of the survival time too. The indicators of the survival
interval, Tstr and Tst p , are the number of days between the construction date and the last measurement ,
and that between the construction date and the survey when the failure event was observed respectively. The
processing way has been used in the model application above.
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(a) Survivor function of ZOAB pavements concerning IRI
based on A15 data from 2015 to 2018 (Rijkswaterstaat, 2019)

(b) Survivor function of ZOAB pavements based on the long
term measurement of the roadways in the Netherlands

Figure 7.6: Survivor functions of ZOAB pavements

The solution to the right censoring problem is adding a column of the binary variable that indicates whether
the road section meets the failure criteria as defined in the case study to the matrix f . The value of 1 of the
variable means the road performance of roughness or rutting reached the threshold level by the measurement
in 2018, which was the end of the observation in the case. The value of 0 of the variable describes the road
section stayed good until the survey in 2018. The method is the common solution to the right censoring prob-
lem, but it is not applicable to this research. Because, as observed in the test data, 90% are right-censored.
That is to say, it is not possible to find the survivor function by the large number of right-censored data. The
other solution is extending the observation time, and studying the larger amount of the population. The
comparison of the survivor function of this study based on A15 ZOAB data from 2015 to 2018 and that of all
ZOAB roadways in the Netherlands measured in a long term by MJPV (Rijkswaterstaat, 2019) are illustrated in
Fig. 7.6. It is a derivation from this comparison that because of the right censoring problem, the case study
significantly underestimates the expectation for the road survival time. The road survival time based on a
large amount of data is expected to be 12.09 years, and about 10% of the ZOAB sections still maintain good
performance within 30 years (Rijkswaterstaat, 2019). By the limited research time, the project does not apply
the data of a longer term and more test roadways. But it is confirmed that bigger observation data can help
to solve the right censoring problem, and makes the model results closer to reality.

7.6. Conclusion

The chapter applies the survival model to the case study of ZOAB pavement on A15 from the measurement of
2015 to 2018. The survival of a road section is defined as its performance concerning the road roughness and
the rut depth stays good. The survival time, as the response variable of the model, is the duration from the
construction time or the last repaving to the measurement date, when the bad performance is observed. By
the data analysis, the three types of vehicles all have a negative influence on road health, and the influence
is quantified as by how much the volumes of the vehicle class on A15 in the WNZZ or ONZ district during
the observation years decreased the expected survival time. However, due to the censored data problem, the
impacts of the traffic factors must be overestimated, and the solution to that is to extend the observation time
or the test area. This chapter finds the answers to sub question 5b and 6b elaborated as follows.
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Sub question 5b

How to apply the survival model?

The application of the survival model contains 5 steps: (1) selecting the performance indicators; (2)
defining the threshold values of the performance indicators; (3) modelling the survivor function; (4)
estimating how the expected failure time depends on traffic characteristics; and (5) calibration. The
first two steps are to define the failure event of the pavements. The selection criterion of the perfor-
mance indicators are at first, there is the measurement data of the performance indicator, and its pro-
gression at the stage before reaching the critical level and afterwards must be a discernible difference.
To define the thresholds, both data analysis and empirical knowledge are considered. The outcomes
from data analysis are generally more critical than the empirical knowledge. This study applied the
the thresholds deriving from the data analysis because then there is more poor-performance data to
analyze. After defining the failure event, the next step is modelling the survivor function, followed by
the estimation of how the expected survival time depending on the traffic characteristics. Because of
the censored data problem, especially left censoring and interval censoring in the case, the survival
time is not the exact time point, but a survival interval. The interval is determined by the start time
(Tstr ) and the end time (Tst p ), when the failure event occurs in the period. The survivor functions are
computed by the " Survivor function" module in Matlab, and the best fitting function of the distri-
bution is found according to the max log-likelihood method. The estimation of the influence of the
traffic characteristics on the expected survival time is by the coz proportional hazards model. Because
the cumulative numbers of the three types of vehicle categories are taken as the predictor variables in
the model, they are time-dependent. To correctly compute the coefficients, it is necessary to convert
the survival data to the counting process form at first. It is the same method as processing the left or
interval censored data, that is completed in the last step. The reliability of the estimation results is
analyzed by the p-values. If the p-value is larger than the significant default level (in the study, 5%),
the null hypothesis can not be rejected and the estimation of the coefficient makes less sense. The
last step of the model application is to calibrate the case study with the findings in the previous study
and the observation in reality.

Sub question 6b

What are the results of the survival model by the test data?

The study selects IRI and the rut depth as the indicators of road performance. According to the anal-
ysis of the measurement data of the A15 ZOAB sections from 2015 to 2018, when IRI of pavement is
small, the annual unevenness change fluctuates around 0 m/km. When the critical value is reached,
the median value of the annual change is considerable. The threshold value is 2.3 m/km in the WNZZ
area and 1.9 m/km in the ONZ area. As for the development of rutting, according to the analysis of
the same dataset, its annual median growth at the minimum level (the rut depth is approximately 1
mm) is considerable. After that, as the rut depth increases, the annual growth rate was flat. Up to a
critical value of 10 mm, the annual increment becomes significant. Accordingly, the research defines
the failure event of pavement as road roughness is greater than 2.3 m/km or the rut depth is larger
than 10 mm. Hence, the survival time refers to the duration from the construction time or the time
of the last maintenance to the observation of the failure event. With the processing of the survival
time, the survivor function is modelled. The expected survival time of ZOAB sections concerning the
roughness is 6.11 years, or 8.09 years regarding the rut depth. The best-fitting distribution of the sur-
vival time related to roughness is Weibull distribution, which indicates the probability of the critical
situation occurring during the next period is higher when it serves less than 12 years approximately,
and becomes low from the 16th year on.
(To be continued in next page)
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Sub question 6b

What are the results of the survival model by the test data?

(The answer continues here)
The best fitting distribution of the survival time concerning the rutting is normal distribution ac-
cording to the log-likelihood. But the gap between the raw data and the fitted normal distribution is
considerable. That is to say, the study does not find the appropriate fit to the test data. Even though,
the study still applies the findings of Weibull distribution and normal distribution to estimate how
the expected survival time depends on traffic flow. The analysis results show the intensities of three
vehicle categories have a negative influence on road health. The influence of each vehicle class in
the different districts vary. The intensities of the passenger cars shorten the expected survival time
of the roughness by 4.33% and 4.05% in two regions, and regarding the rut depth it is decreased by
3.2%, and 8.44% respectively. The effects of the number of the light trucks reduce the mean of the
survival time of roughness by 52.08% and 29.69% in the WNZZ and ONZ district, and of rutting by
30.7% and 78.32% respectively. The heavy trucks decrease the life expectancy of the ZOAB pavements
by 39.85% and 37.46% about the road roughness in the two areas, and as for the rutting in the WNZZ
and ONZ district, the numbers are 24.24% and 76.3% respectively. Because the survival analysis in the
report assumes that with the controlling variables of the climate conditions, the failure of the pave-
ment performance is totally dependent on the traffic flow of any one vehicle class, the analysis results
significantly overestimate the impact of traffic factors on road health. Besides, in the raw data, less
than 10% was observed the occurrence of the failure event. The solution to calibrate the analysis is to
include more observation data and consider more influence factors. The study finds the outcomes of
the survival model are very data sensitive.

Apart from the regression model and the survival model, the classification model is also defined to study the
effects of the traffic characteristics on road performance. The model application of the decision tree classifier
is in the next chapter. It is the last part of Develop phase.
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Decision Tree Classifier

In this chapter, the DTC algorithm is applied for predicting the future road performance and the prediction
results are evaluated by using the historical data of the entire A15 from 2015 to 2018. As defined in Section 8,
the model is made up of two phases: the training phase and the predicting phase. Accordingly, the chapter is
organised in the way that Section 8.1 presents the training phase, and Section 8.2 shows the predicting phase.
The end of the chapter is the conclusions and the answers to two sub questions of SQ. 5c how to apply the
decision-tree classifier model and SQ. 6c what are the results of the decision-tree classifier model by the test
data, in Section 8.3.

8.1. Training phase

According to the model framework as illustrated in Fig. 3.3, the input data of the machine learning contains
two sets. One is to run the model, and the other is to test the accuracy of the model. Thus, it is necessary
to process the historical data to the individual tables. From a complete data set, part of the data is used to
build the model, and the remaining is used to train the model. There is no definition of the split share of
the data. To get a good model, in general, the number of the data to run the model is larger than that for
testing the model. In the case, the measurement data of 2015, 2016 and 2017 is for the establishment of the
decision-tree model, while the measurement data of 2018 are to test it. The data used for the case study is
originated from IVON of RWS, which consists of 8484 rows and 29 columns whereby every row represents
information of a 100-meter road section and the columns provide the measurement results of the section. All
of the information is retrieved from the database of IVON system and saved as excel format.

DTC algorithm is programmed in Python with the support of "Scikit-learn" module. The code of DTC is in
Appendix. J. The program of the training phase is made up of five parts. The first one is calling the rele-
vant modules the model uses, including pandas, numpy, sklearn, matplotlib, seaborn, graphaviz, pydotplus,
io, scipy, and IPython. Among these, the library of pandas and numpy are the basic ones in Python. The
library of sklearn is the core of building up the decision tree. The others are all related to plotting the out-
comes. The second is loading the two data tables that have been prepared. The data format in the study is
in the excel table. But for Python, the other forms of data, like txt, json are also readable. The sklearn mod-
ule in Python requires no missing values of all the cells in the input tables, thus the study excludes those
rows which have missing data and 92.5% data is used. The third is giving the label of each column of the
data. The model will then use the label as the name of the variable, and output the decision criteria as a
label is greater or smaller than a value. In the study, the predictor variables of the model contain the service
time of the pavement (AGE_IRI, AGE_RUT), the material of the surface (SURFACE_COMBID, SURFACE_DAB,
SURFACE_EAB, SURFACE_OAB, SURFACE_SMA, SURFACE_ZOAB, SURFACE_ZOAB+, SURFACE_ZOABTW,
SURFACE_ZOEAB), the initial value of the performance indicator (IRI_VALUE_0, RUT_VALUE_0), the cumu-
lative traffic flow (I_L1, I_L2, and I_L3]), and the climate data (T_TEMP_25, T_TEMP_0, T_TEMP_0_below,
T_TPERCIPITATION). The response variables are the classification of IRI (R_IRI) and the rut depth (R_RUT).
If the road roughness or rutting meets the maintenance requirement defined by RWS as Tab. 1.1 indicates, the
variable has the value of 1; otherwise, 0. The fourth module in the model application is to call DTC function
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Table 8.1: Confusion matrix of DTC prediction of A15 roughness in 2018

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2695 56
Actual: 1 11 24

(a) Minimum sample split=10

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2685 66
Actual: 1 7 28

(b) Minimum sample split=20

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2685 66
Actual: 1 7 28

(c) Minimum sample split=30

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2723 28
Actual: 1 8 27

(d) Minimum sample split=40

installed in the module of sklearn. The last is plotting the decision tree as well as the prediction accuracy that
computed according to the comparison of the prediction results by DTC and the real measurement.

The establishment of DTC is according to the minimum sample split, which is the number of minimum sam-
ples required on the node to decide of node whether to continue splitting process or stop on that node. The
decrease in minimum samples split increases the risk of overfitting. The lower minimum samples split makes
the tree grow to be more fit for the train data. The minimum value of the minimum sample split is the num-
ber of the smallest class in the sample. It is significant to estimate the appropriate minimum sample split.
Apart from the minimum sample split, in the algorithm of DTC, the random state is required to define. Set-
ting the random state to a certain number ensures that the permutation of features used in building the trees
will always be the same. It does not matter which number is chosen as the random state. Fixing the ran-
dom state is useful as it facilitates in reproducing the experiments with the same results. In the study, the
candidate minimum sample splits are 10, 20, 30, and 40, and the setting of the random state is 0. The out-
comes of four trained decision tree models of the road roughness on A15 run by the different settings of the
minimum sample splits are illustrated in Fig 8.1, Fig. 8.2, Fig. 8.3, and Fig. 8.4 respectively. Decision tree
models with different minimum samples split have different tree shapes. When the minimum number of
samples required for a split is lower, the resulting decision tree is deeper, because more splits, more branches
are needed.

To determine the appropriate minimum sample split, the evaluation of how accurately the DTCs derived
from the different settings of minimum sample splits can predict the testing data are compared. There are
two kinds of accuracy to be explored in order to evaluate the accuracy of the predictions made by the model:
the overall accuracy rate and the class accuracy number. The overall accuracy rate is the ratio of the correct
number of the prediction of the class and the total number of the prediction results. The class accuracy num-
ber is based on the quantity of the correct prediction among the test data from a specific class. The problem
investigated in this research is a binary classification problem with the two classes ”0” and ”1”. The value of 0
of the target variable indicates the road section has not met the maintenance requirement regarding to road
roughness at the determined prediction time, and the other class with the value of 1 is that the road section
has met the interval level concerning the surface roughness. There are two kinds of correction of the model
prediction, as well as two types of errors. Two types of correct predictions are that roads that shall not meet
the maintenance requirements in 2018 by the prediction of DTC did not meet the maintenance requirements
based on the actual measurements in 2018, and the road that shall meet the maintenance requirements in
2018 predicted by DTC did meet the maintenance requirements according to the actual measurement in 2018.
There are two scenarios of the prediction mistakes. One is that the prediction of DTC gives the result that the
pavement section shall meet the maintenance requirements in 2018, but the measurement data of the road
performance indicated the good condition. The other is that DTC predicts that the road section shall not
meet the maintenance requirements in 2018, but the actual measurement does not support the prediction.
In the case, it is more significant that the road section shall be intervened but judged as good by the model.
Thus, the key indexes to evaluate the model prediction accuracy and determine the appropriate value of the
minimum sample split are the overall accuracy rate and the class accuracy number of the class of "1" that is
mistakenly predicted as "0". The model prediction accuracy of the different settings of the minimum sample
split about the road roughness according to A15 data from 2015 to 2018 is listed in Tab. 8.1.

According to the comparison of the prediction results of the training models and the actual measurement
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Table 8.2: Confusion matrix of DTC prediction of A15 rut depth in 2018

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2448 286
Actual: 1 8 45

(a) Minimum sample split=10

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2410 324
Actual: 1 4 49

(b) Minimum sample split=20

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2413 321
Actual: 1 3 50

(c) Minimum sample split=30

N = 2786 Prediction: 0 Prediction: 1

Actual: 0 2484 250
Actual: 1 3 50

(d) Minimum sample split=40

data of 2018, the overall accuracy rates derived from the different settings of the minimum sample split are
all above 97%, which indicates a rather high model prediction accuracy. It confirms that DTC is an applicable
model to predict the road performance of the case. Based on the class accuracy number in Tab. 8.1, the
setting of the minimum sample split as 20 or 30 results in the minimum errors of recognizing the class "1"
to the class "0", meaning the least ignorance of the bad conditions. Compared the decision tree modelled by
setting 30 as the minimum sample split in Fig. 8.3, the outcome derived by setting 20 as the minimum sample
split Fig. 8.2 illustrates have more branches to classify the class "0" into smaller categories, which is not the
concern of the study. Therefore, the appropriate setting of the parameter of this case is 30. Accordingly, the
predicting phase will use DTC with the setting of the minimum sample split as 30. The overall accuracy rate
of the model regarding the road roughness is 97.4%.

The same methodology is applied to find the appropriate setting of the parameter in DTC models to predict
the rut depth. The candidate settings are 10, 20, 30, and 40. The random state is always set as 0. Each input
results in the different decision trees, as Fig. 8.5, Fig. 8.6, Fig. 8.7, and Fig. 8.8 respectively. Similar to the
model results about the road roughness, the decision trees have a slight variance between the shapes with
the different minimum samples split. When the minimum number of samples required for a split is lower,
the resulting decision tree is deeper, and vice verse. The overall accuracy rates and the class accuracy numbers
as elaborated above are computed as Tab. 8.2 shows.

The general prediction of DTC model on the road rutting is more than 88% accurate in the case study. The
majority of errors are mistakenly predicting the actual class of "0" as the class of "1". Among 2787 prediction
results, not larger than 8 road sections are wrongly assessed as the good condition when the real situation is
opposite, under 4 testing sets of the minimum sample split. Although there is about 10% pavement staying
good but is judged to be in need of repair by the model, it might lead to a more cautious measurement strategy.
The focus of the study is on the prediction results of the class of "1".

The appropriate value of the minimum sample split is determined according to the overall accuracy rate and
the class accuracy number of the class of "1" that is mistakenly predicted as "0". Based on the computation
results in Tab.8.2, there are the similar overall accuracy results for the four settings, and either the setting of
the minimum sample split as 30 or 40 has the least errors of mistaking the class "1" into the class "0". Since the
setting of 40 has the high overall accuracy rate, the study finds it is the appropriate setting of the parameter.
Accordingly, the DTC model to predict the rutting in the case study is illustrated in Fig. 8.8, and the predicting
phase will use it. The overall accuracy rate of the model regarding the road rutting is 90.9%.

8.2. Predicting phase

According to the outcomes of the training phase in the last section, the DTC models trained by the measure-
ment data of 2015, 2016 and 2017 for predicting the road roughness and the rutting in 2018 have been found.
The appropriate settings of the minimum sample split has been determined (30 for modeling the roughness,
40 for modeling the rutting). In the prediction phase, the measurement data of 2015, 2016, 2017 and 2018 is
applied as the training data to establish the DTC model, and the data on the period from the measurement
survey of 2018 (mostly on the date of May 15th, 2018) to January 1st, 2019 is used as the test data. Based on
the training model and the test data, the prediction of the road performance at the date of January 1st, 2019
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is given as the consequence. The list of the pavement which meets the maintenance requirement according
to the prediction will be delivered to RWS for getting noticed in the next measurement.

The general program process of the predicting phase contains 5 parts. The first one is calling 10 Python mod-
ules the model uses, including pandas, numpy, sklearn, matplotlib, seaborn, graphaviz, pydotplus,io, scipy,
and IPython, where sklearn is the core of building up the decision tree. The second is loading the two data
tables that have been prepared. In this study, the measurement data of 2015, 2016, 2017 and 2018 are applied
as the training data to establish the DTC model, and the data on the period from the measurement survey
of 2018 to January 1st, 2019 is used as the test data. The third is to name each column of the data. In the
case, the training data and the test data in the predicting phase have the different contents. The training data
contains the predictor variables including the service time of the pavement (AGE_IRI, AGE_RUT), the ma-
terial of the surface (SURFACE_COMBID, SURFACE_DAB, SURFACE_EAB, SURFACE_OAB, SURFACE_SMA,
SURFACE_ZOAB, SURFACE_ZOAB+, SURFACE_ZOABTW, SURFACE_ZOEAB), the initial value of the perfor-
mance indicator (IRI_VALUE_0, RUT_VALUE_0), the cumulative traffic flow (I_L1, I_L2, and I_L3]), and the
climate data (T_TEMP_25, T_TEMP_0, T_TEMP_0_below, T_TPERCIPITATION), and the response variables
that are the classification of IRI (R_IRI) and the rut depth (R_RUT). But the test data only include the predictor
variables, and the response variables are the prediction outcomes. If the road roughness or rutting meets the
maintenance requirement defined by RWS (IRI > 2.6 m/km, the rut depth > 10 mm), the response variable
has the value of 1; otherwise, 0. The fourth part in the model application is to establish DTC by the setting of
the minimum sample split determined in the training phase and DTC function of the module of sklearn. The
last is outputting the road sections which would meet the maintenance requirement by the model prediction
as well as its characteristics.

The illustration of the model of road roughness is in Fig. 8.9 The common features of the failed road sections
are inducted into three condition sets as follows.

Condition set I

• The value of IRI in the last survey is not more than 2.135 m/km.

• The cumulative traffic volumes of the heavy trucks are more than 73622230 vehicles.

Condition set II

• The value of IRI in the last survey is larger than 2.135 m/km, but not more than 2.435 m/km.

• The cumulative time when the temperature is over 25 °C at the location of the year does not exceed
194.767 hours.

• The total service time of the pavement is longer than 19.64 years.

Condition set III

• The value of IRI in the last survey is above 2.58 m/km.

• The cumulative rainy time at the location of the year is not longer than 1638.178 hours.

• The cumulative traffic volumes of the heavy trucks are more than 43825 vehicles.

• The total service time of the pavement is longer than 5.69 years, or less than 3.65 years.

According to the prediction by DTC established in the case study, up to January 1st, 2019, there were 66 road
sections on A15 that met the conditions, where 1 road section in the condition set 1, 0 in the condition set
2, and 65 in the condition set 3. These road sections as well as their characteristics are listed in Appendix K.
From the model results, it can be derived that the initial value of IRI is an important criterion to classify the
road performance class regarding the road roughness. The effects of the traffic factors found by the model
are that when the measurement of the road section in the previous year was less than 2.135, the road sections
with the very high cumulative intensities of the heavy trucks were supposed to be in a bad condition regarding
the roughness in the next year. When the unevenness value measured in the previous year was close to the
intervention level, even with a slight value of the cumulative number of the heavy vehicles, the road section
can be predicted to fail by the model found in the case study. The findings are based on the training data
of A15 from 2015 to 2018. The report can not confirm if the same finding shall be achieved by the other
input data set. For example, the decision trees on the dependent of A15 from 2015 to 2017 do not show the
importance of the traffic intensities of the heavy trucks to the classification of the road roughness, but the
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volumes of the light trucks and the passenger cars play some roles, as Fig. 8.1, Fig. 8.2, Fig. 8.3, and Fig. 8.4
illustrate. In addition, the high temperature (over 25 ° C), rain, and the total service time are also selected as
the classification conditions in the different condition sets according to the case study.

The DTC of the road rut depth is modelled with the same input of the training data and the test data. The
setting of the minimum sample split is 40, as the finding of the training phase above. The random state is set
as 0. The model results are drawn in Fig. 8.10, and the pavement which is predicted to meet the maintenance
requirement concerning the rut depth (in the study, the rut depth is above 10 mm) is included in Appendix.
K. The outcome is delivered to RWS so that these road sections will get plenty of attention in the next mea-
surement. The features of the road sections which met the maintenance requirements are categorised into
12 condition sets in the following.

Condition set I

• The surface material can be ZOAB, ZOAB+, COMBID, DAB, EAB, OAB, or SMA.

• The value of the rut depth in the last survey is not more than 7.075 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year exceeds 215.635
hours.

• The total service time of the pavement is not longer than 1.78 years.

Condition set II

• The surface material can be ZOAB, ZOAB+, COMBID, DAB, EAB, OAB, or SMA.

• The value of the rut depth in the last survey is between 6.035 mm and 7.075 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year does not exceed
215.635 hours, but longer than 162.033 hours.

• The cumulative traffic volumes of the light trucks are not less than 4279932 vehicles, but the cumulative
number of the passenger cars is not bigger than 53343516.

Condition set III

• The surface material can be ZOAB, ZOAB+, COMBID, DAB, EAB, OAB, or SMA.

• The value of the rut depth in the last survey is between 7.075 mm and 9.025 mm.

• The cumulative traffic volumes of the light trucks are more than 39399850 vehicles.

Condition set IV

• The surface material type is DAB.

• The value of the rut depth in the last survey is between 7.09 mm and 9.025 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year exceeds 192.218
hours.

• The cumulative traffic volumes of the light trucks do not exceed 39399850 vehicles.

• The total service time of the pavement is longer than 8.69 years.

Condition set V

• The surface material type is ZOABTW.

• The value of the rut depth in the last survey is not larger than 9.025 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year exceeds 191.255
hours.

• The total service time of the pavement is longer than 3.02 years.

Condition set VI

• The surface material type is ZOEAB.
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• The value of the rut depth in the last survey is not larger than 9.025 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is longer than
194.767 hours.

Condition set VII

• The value of the rut depth in the last survey is larger than 9.91 mm, but not reach 10.06 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is between 131.375
hours and 194.767 hours.

Condition set VIII

• The value of the rut depth in the last survey exceeds 10.06 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is not more than
162.033 hours, and the cumulative rainy time at the location of the year is longer than 1842.258 hours.

• The total service time of the pavement does not exceed 4.83 years.

Condition set IX

• The surface material can be ZOAB, ZOAB+, COMBID, EAB, OAB, SMA, ZOABTW, or ZOEAB.

• The value of the rut depth in the last survey exceeds 9.025 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is more than 194.767
hours.

Condition set X

• The value of the rut depth in the last survey exceeds 10.06 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is not more than
194.767 hours, and the cumulative time when the temperature is below 0 °C at the location of the year
is less than 535.271 hours.

• The total service time of the pavement exceeds 4.83 years.

Condition set XI

• The surface material type is SMA.

• The value of the rut depth in the last survey exceeds 10.06 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is not more than
194.767 hours. But the cumulative time when the temperature is below 0 °C at the location of the year
is more than 535.271 hours.

• The cumulative traffic volumes of the heavy trucks do not exceed 28024675 vehicles.

• The total service time of the pavement exceeds 4.83 years.

Condition set XII

• The surface material can be ZOAB, ZOAB+, COMBID, DAB, EAB, OAB, ZOABTW, or ZOEAB.

• The value of the rut depth in the last survey exceeds 10.06 mm.

• The cumulative time when the temperature is over 25 °C at the location of the year is not more than
194.767 hours. But the cumulative time when the temperature is below 0 °C at the location of the year
is more than 535.271 hours.

• The cumulative traffic volumes of the light trucks and the heavy trucks do not exceed 8351482, and
28024675 vehicles respectively. But the traffic flow of the passenger cars are more than the number of
49586086.

• The total service time of the pavement exceeds 4.83 years.
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The model predicts 259 road sections would meet the maintenance requirement concerning rutting on Jan-
uary 1st, 2019, the majority of which is in the condition set IX. There are 0, 9, 2, 0, 33, 29, 17, 1, 101, 50, 1, and
16 road sections in the condition set from 1 to 12 respectively as assessed to fail by the model, which are listed
in Appendix K. The significant classification factors of the rutting are, the material, the initial value of the rut-
ting at the last measurement, the hot and freezing weather, the traffic intensities, and the whole serving time.
As for the effects of the traffic-associated influencing factors, among 12 condition sets listed above, 5 of them
have the traffic flow as one of the decision criteria, which are the condition set II, III, IV, XI and XII. In the
various condition sets, the critical values of traffic flow are different. In the five condition sets that select the
traffic flow as part of the decision criterion, the critical values of traffic flow have a range between 4 million
and 50 million, which are considerable numbers.

8.3. Conclusion

The chapter applies the DTC model to predict which A15 sections would meet the maintenance requirements
concerning the road performance about the roughness and the rutting on January 1, 2019. The input data for
training the model is the measurement data from 2015 to 2018, in the case. To estimate the appropriate setting
of the key parameter for establishing the model, the minimum sample split, the training phase is executed at
first. It determines the setting of the parameter by the prediction accuracy, that is computed according to the
prediction result of the road performance in 2018 by the model based on the measurement data of 2015, 2016
and 2017 and the actual observation of A15 performance in 2018. The appropriate setting of the minimum
sample split meets two criteria. One is that the overall accuracy rate is high, and the other is the class error
number, especially the actual class of 1 that is mistakenly predicted as 0, is less. Accordingly, the appropriate
settings of the parameters to predict the road roughness class and the rutting class are 30, and 40 respectively.
The DTC modelled by the appropriate setting of the minimum sample split and the measurement data of A15
from 2015 to 2018 indicates the common features of all A15 sections which have the severe roughness or the
rut depth where the maintenance requirements are reached. The features are classified into 15 sets. The sig-
nificant classification factors of the roughness are the initial value of the roughness at the last measurement,
the hot and rainy weather, the traffic intensities, and the whole serving time. As for the rutting, they contain
the material, the initial value of the rutting at the last measurement, the hot and freezing weather, the traffic
intensities, and the whole serving time. By the prediction of the model, 66 road sections of A15 would meet
the intervention level of roughness (IRI > 2.6 m/km) on January 1, 2019, and 259 road sections of A15 would
meet the intervention level of rutting (rut depth > 10 mm) at that date. In addition, this chapter finds the
answers to sub question 5c and 6c in the following.

Sub question 5c

How to apply the decision tree classifier model?

The model application of the decision tree classifier contains 2 phases, the training phase and the
prediction phase. The training phase is to test the feasibility of the model for the case study, in which
the appropriate setting of the key parameter to establish the model and the prediction accuracy of the
model are estimated. The program of the training phase consists of 5 parts. Firstly, the code calls the
relevant modules the DTC model requires, including pandas, numpy, sklearn, matplotlib, seaborn,
graphaviz, pydotplus,io, scipy, and IPython. Then, two data tables are loaded, the training data and
the test data. The input data in the study is in the form of the excel tables. It should be noticed that
the sklearn module in Python requires no missing values of all the cells in the input tables, thus the
rows which have missing data are excluded in advance. In the case study, the training data contains
all the measurement data of 2015, 2016, and 2017, while the test data includes the measurement data
of 2018. Both of the datasets have the predictor variables are the response variables. The predictor
variables defined in the research contains the service time of the pavement, the material of the sur-
face, the measurement value of the performance indicators at the last survey, the cumulative traffic
flow of three vehicle classes, and the climate data. The response variables are the classification of road
performance and the rut depth, which have the value of 1 if the road roughness or rutting meets the
maintenance requirement; otherwise, 0.
(To be continued in next page)
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Sub question 5c

How to apply the decision tree classifier model?

(The answer continues here)
The third part of the model application of the training phase is assigning the labels to each
column of the data, including AGE_IRI, AGE_RUT for the service time of the pavement; SUR-
FACE_COMBID, SURFACE_DAB,SURFACE_EAB, SURFACE_OAB, SURFACE_SMA, SURFACE_ZOAB,
SURFACE_ZOAB+, SURFACE_ZOABTW, SURFACE_ZOEAB for the surface material; IRI_VALUE_0 and
RUT_VALUE_0 indicating the measurement value of the performance indicators at the last survey;
I_L1, I_L2, and I_L3 for the cumulative traffic flow of passenger cars, light trucks and heavy trucks
respectively; T_TEMP_25, T_TEMP_0, T_TEMP_0_below,T_TPERCIPITATION describing the climate
occasions; and R_IRI and R_RUT for the classification of IRI and the rut depth. The fourth part in the
training phase program is modeling the DTC with the different settings of the minimum sample split,
which determines how detailed the decision tree classifies the data. At last, the visualisation of DTC
as well as the prediction accuracy computed by the comparison of the prediction results of 2018 and
the actual measurement data in the year.
The predicting phase follows, which aims to predict the classification of the road performance of the
pavement on the determined date. The estimation of the minimum sample splits in the training phase
is the input for the prediction phase. The program of this phase consists of 5 parts, where the first and
the third modules are identical to the ones in the training phase, but there are some differences in
the other three parts. In the second step of the program of the predicting phase, the training data
and the test data are still loaded, but they contain different variables. The training data table has
both the predictor variables and the response variables as defined as the same in the training phase,
but the test table has the predictor variables only, while the response variables are the outputs of the
model. The fourth module in the predicting phase applies the DTC with the settings of the minimum
sample split determined by the training phase. The last part is to output all the road sections on A15
which would meet the maintenance requirements regarding the road roughness and the rutting by
the model prediction at a determined time.

Sub question 6c

What are the results of the decision tree classifier model by the test data?

The prediction of the road performance of A15 up to January 1, 2019 by the DTC model shows that
66 road sections of A15 would meet the intervention level of roughness (IRI > 2.6 m/km) and 259
road sections of A15 would meet the intervention level of rutting (rut depth > 10 mm) at that date.
It indicates the common features of A15 sections where the severe roughness or the rut depth were
observed during the years from 2015 to 2018. The common features are classified into 15 condition
sets. The significant classification factors of the roughness are the initial value of the roughness at the
last measurement, the hot and rainy weather, the traffic intensities, and the whole serving time. As
for the rutting, they contain the material, the initial value of the rutting at the last measurement, the
hot and freezing weather, the traffic intensities, and the whole serving time.
Comparing the DTC predicting results of the road performance in 2018 and the actual measurement
data in the year, 97.6% of the A15 sections’ road roughness class are predicted correctly with the setting
of 10 as the minimum sample split, and the overall prediction accuracy are 97.4%, 97.4%, and 98.7%
when setting the minimum sample split as 20, 30 and 40 respectively. In the study, the road roughness
class is either 1 where IRI of the road section is measured above 2.6 m/km or 0 where the value of IRI of
the pavement is not more than the critical number. As for the prediction of the rutting, 89.5%, 88.2%,
88.4% and 90.9% of the A15 sections’ road rutting class are predicted correctly with the settings of
10, 20, 30 and 40 as the minimum sample split respectively. The rutting class of 1 indicates the road
section meets the maintenance requirement concerning the rut depth (bigger than 10 mm, defined
by RWS); while 0 means good condition with regards to rutting.
(To be continued in next page)
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Sub question 6c

What are the results of the decision tree classifier model by the test data?

(The answer continues here)
The high prediction accuracy confirms the feasibility of the DTC model to the project. In addition,
according to the class accuracy number, the appropriate setting of the parameters to predict the road
roughness class and the rutting is 30, and 40 respectively of the case.
DTC model confirms the important influence of the traffic intensities on the road performance
(roughness and rutting), since the traffic flow is selected as one of the conditions to predict whether
the road will meet the maintenance requirements in multiple decision trees. Among three condition
sets to classify the road performance, two have the traffic flow as the decision criteria, while about the
rutting, 5 out of 12 condition sets select the total traffic volumes as the classification criteria. The way
that DTC model quantifies the effects of the traffic intensities on the road performance is transitional.
That is to say, the model assumes only when the traffic flow reaches a certain value, it has an impact
on the road performance.
In the case study, when the measurement of the road roughness in the previous year was less than
2.135 m/km, the road sections with the cumulative intensities of the heavy trucks above 73622230
vehicles were predicted to be in bad condition regarding the roughness in the next year. When the
unevenness value measured in the previous year was close to the intervention level, even with a slight
value of the cumulative number of the heavy vehicles that are more than 43825 vehicles, the road
section would be predicted to fail. As for the effects of the traffic factors on the road rutting the model
finds, the critical numbers of the traffic intensities in the multiple decision trees are different, that
vary from 4 million to 50 million. Moreover, in the multiple decision trees the study runs, the types
of traffic flow (passenger cars, light trucks, and heavy trucks) selected as the conditions for predicting
whether roads meet maintenance requirements are different. Therefore, the critical level of the traffic
volumes of each vehicle class are very sample-data sensitive, and can change when inputting the
different period of the measurement data and the minimum sample split.

The chapter is the end of Develop phase, which focuses on the case study of the decision tree classifier model.
The model application and results of the regression models and the survival analysis in the front part of De-
velop phase as well as DTC in this chapter will be compared in the following, Deliver phase. The most appli-
cable model among the three will be applied to design a simulation tool in the next part of the thesis.
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IV
Deliver

In Develop phase, the different models quantify the effects of traffic flows on road performance from various
perspectives. All the three kinds of the performance models contribute to the road management field and
help well understand the influence of the traffic characteristics on the road performance. However, it may
not be enough to improve the field by quantifying these effects. It is also necessary to think about how these
findings can be applied in the actual process, and how the research can improve the existing road manage-
ment system in some way.

In order to enable the road management system to evaluate the road performance in the real time, the idea
of establishing a simulation software is proposed in this phase. It is to predict the pavement performance
based on the real-time traffic flows as well as its other characteristics of the roadway from the historical mea-
surement data set. The design of the simulation software is elaborated in Chapter 9. The thesis ends with the
conclusions and recommendations in Chapter 10.
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Simulation Software

In Develop phase, the effects of traffic flow on road performance are qualifies by different models from var-
ious perspectives. The regression model quantifies the increment of the performance indicators caused by
every vehicle. The survival model describes the decrease ratio of the expected survival time and probability
by the effects of traffic flow. The decision tree classifier indicates to what extent of the traffic intensities makes
the pavement approaches to the intervention level regarding its poor performance. Although the three kinds
of performance models contribute to the road management field and help to well understand the influence
of the traffic characteristics on the road performance, it may not be enough to improve the field by quanti-
fying these effects only. It is important to figure out how these findings can be applied in the actual process,
and how the research can improve the existing road management system. This chapter proposes the idea
of establishing a traffic data-driven simulation software in order to enable the road management system to
evaluate the road performance in the real time. The design contains two steps. At first, select the applica-
ble performance model for setting up the simulation software. Then, design the development process of the
software. The two parts will be elaborated on in Section 9.1 and Section 9.2 respectively. The chapter will end
with the conclusion and the answer to the sub question 7 about how to apply the findings of the quantitative
effects of the traffic characteristics to improve the road management field, in Section 9.3.

9.1. Model selection for simulation

The master graduation project applied three kinds of performance models to quantify the effects of the influ-
encing factors on road performance, especially the traffic-associated factors. To set up the traffic data-driven
simulation software, it is significant to select the applicable model for simulation. The selection criteria con-
tain:

• The performance model confirms that the traffic characteristics have an apparent influence on road
performance.

• The performance model can indicate the effects of the traffic characteristics in a quantitative way.

• To employ the simulation results to practical use well, the outputs of the performance model should be
easily understood for the engineers in the road management field.

The candidate performance models are the regression models, the survival model, and the decision tree clas-
sifier, which were defined in Chapter 3 and applied to the case study of A15 from the observation data of 2015,
2016, 2017, and 2018 in Chapter 6, Chapter 7, and Chapter 8 respectively. The applicability of each perfor-
mance model to the simulation software concerning the selection criteria will be discussed in the following
paragraphs.

Regression models assume that each vehicle has an influence on road performance. The effects of traffic flow
on road performance are the cumulative effects of the multiple vehicles. For a linear regression model, the
effect of any vehicle on road performance is always the same. The non-linear model describes the impact of a
single vehicle on road performance vary from the total amount of traffic. According to the application of the
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regression model in Chapter 6, the model results confirm that the traffic characteristics have the influence
on road performance. But compared with the influence of the original performance state, the effects of the
traffic flow are not considerable. Therefore, the model is not applicable to simulate the road performance by
the traffic factors.

The survival model, defined in the research, assumes that the decrease in the survival probability of a certain
surface material type of roadways under the certain weather conditions is caused by the traffic flow. The
survival time of the pavement is determined by the road performance and the damage assessment criteria.
According to the model application to the A15 ZOAB section in Chapter 7, the model confirms the obvious
effects of the traffic flow on the expected survival lifetime of the road, and the model is able to quantify the
influence. However, there are two problems when applying the model to simulate road performance. The
first is that more than 90% of the roads did not fail during the observation period. In other words, there was a
large number of the right-censored data. Hence, the definition of the survival time distribution is not critical.
The other problem is that the research used the data analysis method to assess the condition of the road
sections . The analysis results are close to the damage assessment standard, but are not identical. In terms of
the road managers or the engineers, the results are a bit off the practice.

The decision tree classifier model assumes that the effects of traffic flow on road performance is transitional.
In other words, if the traffic flow is within the interval, the road performance will stay rather the same. The
pavement behaves rather differently only when the traffic flow are up to various levels. The model application
in Chapter 8 confirms the effects of traffic flow on road performance, and it gives the specific values for the
levels. The DTC figures out the common characteristics of the bad-behavior roads that meet the maintenance
requirements according to the historical data. If the investigated roadway has these characteristics also, the
model predicts that the road will meet maintenance requirements. The output of the model is whether or not
a target road segment meets maintenance requirements, which is easily understandable and practical for the
road managers or the engineers.

In summary, according to the model comparison and the selection criteria stated above, the most appropriate
performance model among the three candidates for setting up the simulation software is DTC model, in this
study. It should be cleared stated that the model selection results are based on the case study of A15 from
2015 to 2018. There is a possibility that the other models can be well suited for the simulation in the other
case study. The chapter will continue to design the simulation software by applying the model.

9.2. Design of the simulation software

The propose of the simulation software is to provide the engineers in the road operation and maintenance
field with the useful and reliable simulation results of the Dutch highway performance in the real time. To
realize the aim, user journey, the well-applied design criteria in the industry design field are used (Howard,
2014). The core of the design method can be elaborated in three aspects:

• The main tasks can be achieved by the simulation software as the potential users want.

• The potential users are capable of understanding the simulation software, particularly how to use and
what the output means.

• The potential users will use the function of the simulation software.

According to the design criteria of user journey, the functionality of the simulation software is defined in the
study. The core functions contain:

• The software is capable to give the damage assessment (roughness, rutting) of every 100-meter section
on a highway in the Netherlands from the last measurement time until a determined time point. The
time point can be any moment between the last survey date until the day when using the simulation
software.

• The software is capable to alarm the users when some pavement is predicted to meet the maintenance
requirement. The location and the characteristics of the bad-performance roadway can be reported by
the program.

To realize the core functions, the three specific functions are required as follows.
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• The simulation software can read the after-processing data originating the historical performance data
in IVON and real-time traffic data from DiTTlab.

• The program is able to plot the visualisation of the core algorithm of the simulation. The algorithm the
software uses in the study is the DTC model.

• The software can show the simulation results which make the statement as the investigated road sec-
tion has (not) met the maintenance requirements concerning the performance indicator yet, as well as
a list of the road section which will be in the intervention level by the software prediction.

Accordingly, the establishment of the simulation software is designed into four phases. The first phase is
building the interface of the software. The second development phase of the simulation software is proceed-
ing the data sets for the simulation. The third development phase of the simulation software is coding the
simulation model. The last one is returning the simulation results to the interface. The details of each phase
will be elaborated in the following paragraphs in order.

Phase I: building the interface of the software
The interface is to set the input parameters and to plot of output clearly. The inputs of the program contain
the selection of a specific roadway to predict the road performance, the determination of the prediction time
point, the selection of the road performance indicator (in the study, which is either the roughness or the rut
depth), the selection of the performance model (DTC model in the case). The outputs of the program have the
simulation results and the visualisation of the simulation model. The simulation results are whether there are
the road sections meeting the maintenance requirements on the target pavement and the list of these road
sections with its predictor characteristics and the locations. The visualisation is in the shape of the decision
tree. The design of the interface of the software is drawn in Fig. 9.1.

Figure 9.1: Design of the interface of the simulation software

Phase II: proceeding the data sets for the simulation
As selected in Section 9.1, DTC requires two data sets to run, the training data set and the test data set.



96 9. Simulation Software

The training data contains the predictor variables and the response variables, but the test data only in-
clude the predictor variables, and the response variables are the prediction outcomes. The study defines
the predictor variables as the service time of the pavement (AGE_IRI, AGE_RUT), the surface material of the
road section (SURFACE_COMBID, SURFACE_DAB, SURFACE_EAB, SURFACE_OAB, SURFACE_SMA, SUR-
FACE_ZOAB, SURFACE_ZOAB+, SURFACE_ZOABTW, SURFACE_ZOEAB), the measurement of the perfor-
mance indicator in the last survey (IRI_VALUE_0, RUT_VALUE_0), and the cumulative traffic flow (I_L1, I_L2,
and I_L3), and the response variables as the classification of IRI (R_IRI) and the rut depth (R_RUT). The raw
data for proceeding the training data sets includes the measurement data of 2015, 2016, 2017 and 2018. The
data for making the test data set originates the measurement data of 2018 and the minute-based traffic in-
tensities from the last survey date until the determined prediction time provided by DiTTlab. It is necessary
to compute the cumulative traffic flow of the three vehicle classes (I_L1, I_L2, and I_L3) in the test data set.
The formula of the variable of I_L1 is the sum of the value of I_L1 in the training data set of the year 2018
and the product of the percentage of the passenger cars by the 2018 measurement and the aggregation of the
minute-based total traffic intensities during the period the last survey date until the determined prediction
time. The computation equations of I_L2, and I_L3 are similar. The difference is applying I_L2 and I_L3 in
the training data set of the year 2018 and the percentages of the light trucks and the heavy trucks by the 2018
measurement instead.

Phase III: coding the simulation model
The simulation model selected in the study is DTC. The program contains five modules. The first one is
calling 10 Python modules, including pandas, numpy, sklearn, matplotlib, seaborn, graphaviz, pydotplus,io,
scipy, and IPython, where sklearn is the core of building up the decision tree. The library of pandas and
numpy are the basic ones in Python, and the others are to plot the outcomes. The second is loading the two
data tables that have been prepared in the phase II. Then the third module is naming the variables, including
the predictor variables and the response variables. The names of the variables should be identical to the
labels of the variables in the input excel table. The fourth is the core part of the simulation model, which is
to establish DTC with the certain setting of the minimum sample split. The core algorithm originates from
DTC code in sklearn Python module. In the software, the setting of the minimum sample split is free to alter
by the users. At last, it is to output the road sections which would meet the maintenance requirement by
the model prediction as well as its characteristics. The results are the condition sets for classifying the road
sections whether would meet the maintenance requirements or not. There is one necessary step to program
the condition sets to the condition statements. In the simulation model, the maintenance requirements are
set as two conditions, that are IRI is more than 2.6 m/km, and the rut depth is above 10 mm. It is according
to damage assessment defined by RWS (Rijkswaterstaat, 2017a). The "Run" button designed in the interface
is the execute order of running the simulation model.

Phase IV: returning the simulation results to the interface
The last phase is to plot the simulation results on the interface of the simulation software. The simulation
results are the image of the DTC and the selection results of the road sections whether would meet the main-
tenance requirements or not. The image can be read and plot directly in the window of the "Predictive model
visualization" in the interface. The selection results of the sections are displayed by the IDs. Then the tool
calls the rows of the selected IDs in the test data set and aggregates them to a new table. The locations in
the new table are listed in the window of the "Simulation result" in the interface. The report of the charac-
teristics of the selected road sections are shown in the Python IDLE window, which includes the roadways,
the directions, the locations, the total in-service time, the surface materials, the cumulative traffic volumes
of the four categories (all the vehicles, the passenger cars, the light trucks, and the heavy trucks), and the last
measurements of the performance indicators.

9.3. Conclusion

The chapter provides the design of the simulation software. It applies the findings of the research to practical
use. DTC model is selected as the appropriate algorithm for the simulation. The functions of the software are
defined according to the industry design thinking of user journey. To realize the main and specific functions
defined, the establishment of the simulation software is designed into four phases. The chapter is able to
answer the sub question 7 as follows.
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Sub question 7

How to apply the findings of the quantitative effects of the traffic characteristics to improve the road
management field?

Based on the knowledge of the existing road management system, IVON, as introduced in Section
1.6, the current system for road health assessment is based on the annual field measurements. In
order to enable the road management system to evaluate the road performance in the real time, the
thesis proposes to establish a simulation software that can predict the pavement performance based
on the real-time traffic flow data and the historical measurement data of the road. The DTC model
is chosen as the core algorithm of the software. The implementation of setting up the program is
designed in four phases: (1) building the interface of the software; (2) proceeding the data sets for
the simulation; (3) coding the simulation model; (4) returning the simulation results to the interface.
The simulation software can help the present road management system by predicting the road health
in the real time, alarming the road managers when the road segment is in poor serviceability, and
providing the assistance estimation of the target pavement for the next measurement.





10
Conclusions and recommendations

To be able to give an answer to the main research question, first the results are interpreted. This chapter
will critically reflect on the research project and put the results it into context. In Section 10.1, the overall
project is discussed. Section 10.2 uses the results from this research to answer the main research question.
Section 10.3 describes the application of a new method in the road management process and in Section 10.4,
the findings from this research are shortly compared to existing literature. The thesis ends with Section 10.5,
which elaborates on the limitation of the study and offers future researches the recommendations.

10.1. Overall project

The thesis focuses on the interaction between traffic engineering and pavement engineering during road
management phase of a series of in-service pavement. The proposed tool focuses on the real time road health
assessment for the road managers which are remotely located away from the field. To realise the tool, the idea
of taking the traffic characteristics as the predictor variables to predict the road performance is proposed, be-
cause the data collection of the traffic flow in the present system is in the real time, 24/7, automatically cap-
tured by the detector loops. The feasibility of the establishment of such a tool depends on whether the traffic
characteristics have the effects on pavement performance and in what way the influence can be quantified.
Thus, the explorative research presents a case study of A15 in the Netherlands, to figure out and quantify the
effects of the traffic flow on the pavement performance. The time domain covered in this research is from
2015 until 2018. Three performance models are performed. According to the model results of the case study,
it is confirmed that the traffic characteristics have an influence on road performance, particularly, the traffic
flow contributes to the pavement which performs badly. Various performance models indicate the quan-
titative effects of the traffic characteristics on the pavement performance in different ways. The regression
model quantifies the increment of the performance indicators caused by every vehicle. The survival model
describes the decrease ratio of the expected survival time and probability by the effects of traffic flow. The
decision tree classifier illustrates to what extent of the traffic intensities make the pavement approach to the
intervention level regarding its poor performance. Accordingly, the thesis confirms the feasibility of setting up
a simulation tool for predicting road performance by capturing the influence of the traffic flow. The specific
establishment process has been designed.

10.2. Main research question

With the interpretation of the overall results of the project, it is able to provide the answers to the research
questions as the thesis defined. In the previous part of the report, the sub research questions are already
answered. In this section, the main research question will be discussed.

The main research question is defined from the purpose of improving the road management system. The
project is a process of discovering the "user’s need", proposing the potential solutions, examining the fea-
sibility, and conducting the application. The design thinking, a four-stage project approach is perfect for
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conducting the process. This report shows the complete process by using the design thinking as the main
project approach with the combination with a set of methods to solve the research problem.

The thesis explores the main question by the qualitative and quantitative research approaches. At the begin-
ning of the research project, the correlation between the traffic factors and pavement performance was un-
clear, so a qualitative approach was used to explore the problem to come up with an approach to handle the
problem afterwards. Quantitative research is a proper follow-up after qualitative research. In the qualitative
research, the literature study is included, which focuses on the failure mechanism of road surfaces generated
by all kinds of factors, especially the traffic-associated causes. Correlation analysis, a statistical method fol-
lows to study the strength of the relationship between two, numerically measured, continuous variables. The
presence of a correlation is not sufficient to infer the presence of a causal relationship, and thus the report
considers both the literature study and the correlation analysis to imply the role of transportation in the cau-
sation of road deterioration. To quantify the effects of the traffic characteristics on pavement performance,
as the main research question asks, the three kinds of performance models are applied to the case study of
A15. The time domain covered in this research is from 2015 until 2018. The model results direct to the answer
to the main research question. The answer is elaborated in the following.

Main question

What are the effects of traffic flow characteristics on pavement response and performance in a quan-
titative way?

This thesis studied the effects of traffic flow characteristics on pavement performance by the regres-
sion models, survival model, and decision tree classifier. The regression models assumes that traffic
flow affects the development of pavement performance. That is to say, as time goes by a road serves
more and more traffic, and the performance indicators (distress, skid, roughness, and others) are as-
sumed to change towards the bad condition accordingly. The survival model considers that traffic
flow affected the expected lifetime of the roadways and the survival probability. The classification
model is to find the critical value of traffic intensities that made the road ineffective. The following
three paragraphs respectively will explain the results of applying the regression model, the survival
model, and the classification model on A15, and the quantitative influence of three types of traffic
intensities on road roughness and rutting of the three models. The results are derived from the ob-
servation data of the entire A15 road from 2015 to 2018. In addition, pavement performance is the
response to the combined influence of the multiple influencing factors. The traffic-associated factors
are the study focus, but the other non-traffic associated influencing factors are also considered in an
appropriate manner in the application of each model in this study.
The linear regression model on A15 verifies the traffic flow’ effects on the road roughness under some
climate scenarios. But it can not conclude that a certain vehicle type always makes road surface more
rough or smooth. According to the model results, the tendency how the vehicle class affects the road
roughness is also influenced by the climate condition. The linear regression model shows the de-
velopment directions influenced by the trucks (both heavy and light) of the surface roughness were
always the same, which were contrary to the pavement development direction affected by the passen-
ger cars. More data is needed to validate this finding. The linear regression model on A15 confirms
that the vehicles regardless of passenger cars, light trucks, and heavy trucks have the significant influ-
ence on the rutting development in a negative way. But the quantities of the effects of the traffic flow
on the rut depth vary from the different climate conditions. According to the model result, the deci-
sive predictor variables of the models are the initial value of the road roughness and rutting. Taking
these variables in the multivariate regression model makes a good fitting. In contrast, the influence
of the traffic flow is not considerable.
According to the survival analysis results of A15 ZOAB data from 2015 to 2018, three types of vehicles
all had a negative influence on road health determined by IRI, but the degrees of their influence were
different. The intensities of the passenger cars shortened the expected survival time of the ZOAB road
roughness by 4.33% and 4.05% in two regions of A15, and regarding the rut depth the expected survival
time of the ZOAB pavement decreased by 3.2%, and 8.44% respectively.
(To be continued in the next page)
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Main question

What are the effects of traffic flow characteristics on pavement response and performance quantita-
tively?

(The answer continues here)
The effects of the number of the light trucks reduced the mean of the survival time of ZOAB road
roughness by 52.08% and 29.69% in the WNZZ and ONZ district, and of rutting by 30.7% and 78.32%
respectively. The heavy trucks decreased the life expectancy of the ZOAB pavements by 39.85% and
37.46% about the road roughness in the two areas, and as for the rutting in the WNZZ and ONZ district,
the numbers are 24.24% and 76.3% respectively. However, the analysis results significantly overesti-
mate the impact of traffic factors on road health. Since only the data on A15 from 2015 to 2018 was
used, fewer observation data indicates that the road section failed. Besides, the survival analysis in
the study assumes that with the controlling variables of the climate conditions, the failure event oc-
curring on the pavement is totally dependent on the traffic flow of any one vehicle class. The hazard
ratios are pretty data sensitive, and the research does not quantify the influence of the traffic inten-
sities on road performance correctly, but it confirms the feasibility of applying the survival model to
study the transport influence instead.
The model application of the decision tree classifier confirms that the initial values of IRI and rutting
are the important criteria to classify the roadways regarding road roughness and rutting respectively.
The traffic flow, the climate conditions, and the service time are selected as the classification criteria
regarding the pavement roughness, and the traffic flow, the climate conditions, the surface materials,
and the service time are the classification criteria concerning the pavement rutting. The quantitative
effects of the traffic factors found by the model are that when the measurement of the road roughness
of the section in the previous year was less than 2.135 m/km, the very high cumulative intensities of
the heavy trucks (above 73622230 vehicles) made it to be the bad condition class. When the uneven-
ness value measured in the previous year was close to the intervention level (2.6 m/km), even with
a slight value of the cumulative number of the heavy vehicles, the road section would be predicted
to fail by the model based on the training data of A15 from 2015 to 2018. The model results did not
indicate the importance of the heavy trucks on road roughness, because the variables selected as the
decision conditions are sensitive to the input data. When inputting the data of A15 from 2015 to 2017
the decision trees did not select the traffic intensities of the heavy trucks as the decision condition, but
the volumes of the light trucks and passenger cars played some roles instead. Thus the DTC model
confirms the importance of the traffic flow on road roughness, but not specify the vehicle class. As
for the effects of the traffic factors on the rutting, among 12 condition sets into which the failed road-
ways are categorised, 5 of them have the traffic flow as the decision criterion, and the critical values
of traffic flow have the range between 4 million and 50 million, which are the considerable numbers.
The critical level defined by DTC model of the traffic volumes of each vehicle class are very sample-
data sensitive, and can change when inputting the different period of the measurement data and the
minimum sample split.

10.3. DTC method applied in road management field

The thesis finds the DTC model is the appropriate method to improve the current road management field.
The study innovatively proposes to use the DTC model to predict the road performance based on the traffic
and other influencing factors, thereby providing a technical perspective for the road maintenance decision
strategy. As far as the author knows, it is the first time to apply the algorithm to the field. Additionally, the the-
sis designs the specific implement phases of establishing the simulation software on the basis of the model.
It paves the way for the practical application of the model for improving the road management field.

10.4. Findings of the research compared to the existing literature

In literature, the correlation between the traffic influence factors and pavement performance has been dis-
cussed already. But these researches focus more on the ESAL and the truck percentage. Due to the lack of
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measurement data the traffic flow of various vehicle types, most literature use the damage equivalent load
method to generally estimate the impact of mix traffic on road performance (Paterson, 1987; Loizos and Kar-
laftis, 2005; Wang et al., 2005; Adlinge and Gupta, 2013). The research based on the measurement data of the
number of the passenger cars, the light trucks, and the heavy trucks on A15 finds that the vehicle types have
the different effects on road performance. The prediction of the pavement performance can be more realistic
by taking into account the traffic flow of each vehicle type as the individual predictor variable.

The progression of road roughness and rutting by the local observations may be different from the empiri-
cal knowledge described in the literature. The regression models of road roughness proposed in the book by
Paterson (1987) assumes the continuous increase in IRI, and the article by Freeme (1983) indicates the three
development phases where the rut depth grows in different speeds. However the road performance progres-
sion (IRI and the rut depth) is in fluctuation, based on the observation data of A15 from 2015 to 2018. This
explains why the non-linear models as defined in the previous studies that use the service time as the pre-
dictor variables does not achieve a good fitting result in this case study. Besides, the articles by Hodges et al.
(1975) and Parsley and Robinson (1982) proposed the linear relationship between the changes of IRI and the
rut depth and traffic volumes, but the kind of correlation has not been observed in the test data.

10.5. Limitations and suggestions for further research
In the study process, the following limitations have been found. Some of the limitations even have a signif-
icant consequence on the research results. This section elaborates on the limitations, the potential conse-
quences caused by these, and the possible solutions to solve the problems. It is desirable that future studies
can consider the limitations as well as the suggestions of the study.

Limited by the test data of A15 from 2015 to 2018, this study cannot conclude that the data correlation be-
tween the influencing factors and the pavement performance found in this research must be observed on
other roadways in other countries. To truly find the general law of the relationship between the influencing
factors and the road performance, a large number of the empirical data, including various types of roads
(highways, distributor roads, access roads, and so on), in the different regions during a long term observation
is required.

This study is based on full trust in the accuracy of the collected data. However, according to the general
experience, it is almost impossible to obtain 100% accurate measurement data, especially the estimation of
the pavement performance involved the human factor (Stichting Studie Centrum Wegenbouw, 1987). Rare
data is incorrectly recorded in the database. In particular, there might be occasions that the records were
not updated during the construction time but afterwards, resulting a lag and inaccuracy in the database. The
situation can result in the records of a fresh performance with all kinds of the factors in the rather long service
time, like a heavy cumulative traffic intensities. If it is the case, the actual correlations of transportation
intensities and the road performance are most likely closer than the results of the data analysis.

Although the method of the control variables is a common method for studying the effects of univariate on
a dependent variable, the applicability of the method is limited in the case study, due to lack of the plenty of
the sample. However, the approach can be applied to studies of road performance in the laboratory, or when
considering roads throughout the Netherlands.

The consideration of the climate factors in the study is limited by the way of collecting and processing weather
data. The database supporting the research located one weather station in one region, and did the irregular
surveys of the temperature and the precipitation in the area. To infer the weather situation during a time
period at a location, the study assumes that the probability of high temperature, low temperature, and rains in
the time interval of the non-measurement time is consistent with that in the measurement time. If the future
research aims to confirm the effect of the weather condition on the pavement performance, it is necessary to
access the weather data in the real time at a smaller region, or look into a much wider test area.

The censoring problem is a significant problem in the survival model, especially the right-censored data.
In the test data, 90% of the sections do not approach the end of the lifetime, which makes it impossible to
find the accurate survivor function or the distribution of the survival time in the study. The best and easiest
solution is extending the observation time, and studying the larger amount of the population.
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A
A15 sections

Table A.1: Road sections of A15

ROAD SECTION_ID FROM_KM FROM_DISTRICT TO_KM TO_DISTRICT
15 131278005 25.0 Knooppunt Slufter 25.7 Oostvoorne
15 132277006 25.7 Oostvoorne 26.3 Oostvoorne
15 133278005 26.3 Oostvoorne 27.0 Havens 6200-7000
15 134279018 27.0 Havens 6200-7000 27.8 Havens 6200-7000
15 135279002 27.8 Havens 6200-7000 29.5 Havens 5700-6200
15 138278005 29.5 Havens 5700-6200 30.7 Havens 5700-6200
15 139278020 30.7 Havens 5700-6200 32.2 Havens 5500-5700
15 143275040 32.2 Havens 5500-5700 32.7 Havens 5500-5700
15 146272002 34.8 Brielle 36.2 Brielle
15 148270035 36.2 Brielle 38.0 Brielle
15 152270016 38.0 Brielle 39.0 Rozenburg-Centrum
15 154267004 40.1 Rozenburg-Centrum 42.4 Havens 4100-5200
15 154269043 39.0 Rozenburg-Centrum 40.1 Rozenburg-Centrum
15 156263010 42.4 Havens 4100-5200 43.4 Havens 4100-5200
15 158263004 43.4 Havens 4100-5200 44.2 Botlekbrug
15 160263016 44.2 Botlekbrug 45.7 Spijkenisse
15 165263013 45.7 Spijkenisse 47.6 A15
15 166264048 47.6 A15 48.8 A15
15 169264011 48.8 A15 49.8 A15
15 170264046 49.8 A15 50.5 Pernis
15 171264013 50.5 Pernis 51.7 Beneluxweg
15 174264017 51.7 Beneluxweg 54.0 Rotterdam-Heijplaat
15 184261028 57.2 A15 58.2 A15
15 186262001 58.2 A15 60.5 A15
15 191261054 60.5 A15 61.0 Kp Vaanplein
15 192261052 61.0 Kp Vaanplein 61.8 A15
15 193262014 61.8 A15 62.6 Kp Ridderkerk-Noord
15 195262055 62.6 Kp Ridderkerk-Noord 63.1 Kp Ridderkerk-Noord
15 196263022 63.1 Kp Ridderkerk-Noord 64.0 Kp Ridderkerk-Noord
15 197263010 64.0 Kp Ridderkerk-Noord 64.7 Kp Ridderkerk-Noord
15 198262010 64.7 Kp Ridderkerk-Noord 65.9 Kp Ridderkerk-Zuid
15 200260030 65.9 Kp Ridderkerk-Zuid 70.6 Kp Ridderkerk-Zuid
15 202260014 70.6 Kp Ridderkerk-Zuid 71.5 Hendrik Ido Ambacht

( To be continued)
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ROAD SECTION_ID FROM_KM FROM_DISTRICT TO_KM TO_DISTRICT
15 204260038 71.5 Hendrik Ido Ambacht 72.6 Hendrik Ido Ambacht
15 208260004 72.6 Hendrik Ido Ambacht 75.4 Alblasserdam
15 211259011 75.4 Alblasserdam 76.0 Alblasserdam
15 212258039 76.0 Alblasserdam 78.0 Papendrecht
15 216256032 78.0 Papendrecht 79.0 Papendrecht
15 220254014 79.0 Papendrecht 80.4 Sliedrecht-West
15 220254012 80.4 Sliedrecht-West 80.8 Sliedrecht-West
15 222254032 80.8 Sliedrecht-West 84.6 Sliedrecht-Oost
15 228252106 84.6 Sliedrecht-Oost 85.4 Sliedrecht-Oost
15 230252024 85.4 Sliedrecht-Oost 87.7 Hardinxveld-Giessendam
15 234252045 87.7 Hardinxveld-Giessendam 88.3 Hardinxveld-Giessendam
15 247256014 94.5 Kp Gorinchem 96.9 Kp Gorinchem
15 251257009 96.9 Kp Gorinchem 99.5 Arkel
15 257256043 99.5 Arkel 99.8 Arkel
15 269256035 105.3 Leerdam 106.0 Leerdam
15 286258013 114.3 Kp Deil 116.6 Kp Deil
15 290259005 116.6 Kp Deil 118.7 Meteren
15 294260006 118.7 Meteren 119.0 Meteren
15 299260007 121.1 Geldermalsen 121.8 Geldermalsen
15 302261006 121.8 Geldermalsen 123.8 Wadenoijen
15 304263015 123.8 Wadenoijen 124.2 Wadenoijen
15 304263016 124.2 Wadenoijen 126.9 Tiel-West
15 309267058 126.9 Tiel-West 127.1 Tiel-West
15 309267067 127.1 Tiel-West 130.4 Tiel
15 315269029 130.4 Tiel 131.2 Tiel
15 316269032 131.2 Tiel 134.4 Echteld
15 322271010 134.4 Echteld 134.8 Echteld
15 323272021 134.8 Echteld 141.0 Ochten
15 335273068 141.0 Ochten 141.7 Ochten
15 344274007 145.5 Dodewaard 146.1 Dodewaard
15 356272040 151.5 Andelst 152.1 Andelst
15 357272008 152.1 Andelst 153.8 Kp Valburg
15 360272016 153.8 Kp Valburg 154.5 Kp Valburg
15 361271014 154.5 Kp Valburg 155.1 Kp Valburg
15 362270007 155.1 Kp Valburg 156.1 Kp Valburg
15 364269006 156.1 Kp Valburg 159.5 Elst
15 370267008 159.5 Elst 160.1 Elst
15 372268012 160.1 Elst 161.5 Kp Ressen
15 375268024 161.5 Kp Ressen 161.9 Kp Ressen
15 375268025 161.9 Kp Ressen 162.1 Kp Ressen
15 376268024 162.1 Kp Ressen 162.6 Kp Ressen
15 381269017 162.6 Kp Ressen 165.2 Van Elkweg



B
Pavement performance data process

Matlab code

The following gives the example code of integrating the annual measurements of IRI in Matlab. With the
similar idea, the integration of the data of the other performance indicators, the traffic data, and the climate
data can be programmed. Limited by the length of the report, the other codes are not displaced here.

1 clear a l l
2 % Road : A15
3 % Surface l a y e r : Zoab
4 % Direction : L
5 % D i s t r i c t : WZNN
6

7 %% Data input : Location , IRI
8 %Input locat ions from e x c e l t a b l e s
9 From_km_2015 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’D2: D350 ’ ) ;

10 From_km_2016 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’D2: D350 ’ ) ;
11 From_km_2017 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’D2: D350 ’ ) ;
12 From_km_2018 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’D2: D350 ’ ) ;
13 %Input IRI from e x c e l t a b l e s
14 IRI_2015 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’O2: O350 ’ ) ;
15 IRI_2016 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’O2: O350 ’ ) ;
16 IRI_2017 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’O2: O350 ’ ) ;
17 IRI_2018 = xlsread ( ’E : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’O2: O350 ’ ) ;
18

19 %% 4−year measuremnts integration
20 I R I _ D i f f = zeros (350 ,3) ; %IRI variance during 1 year
21 N_IRI_2015 = length ( IRI_2015 ) ; % Number of IRI data in 2015
22 N_IRI_2016 = length ( IRI_2016 ) ; % Number of IRI data in 2016
23 N_IRI_2017 = length ( IRI_2017 ) ; % Number of IRI data in 2017
24 N_IRI_2018 = length ( IRI_2018 ) ; % Number of IRI data in 2018
25

26 %Plot IRI variance in 2016
27 for i =1: N_IRI_2016
28 n = 1 ; %row
29 % find IRI of the same s e c t i o n in the d i f f e r e n t measurement year
30 while From_km_2015(n) ~= From_km_2016( i ) && n < N_IRI_2015
31 n = n +1;
32 end
33 i f From_km_2015(n) == From_km_2016( i )
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34 I R I _ D i f f ( i , 1 ) = IRI_2016 ( i )− IRI_2015 (n) ; % IRI variance in 2016
35 x_2015 ( i ) = IRI_2015 (n) ;
36 y_2015 ( i ) = I R I _ D i f f ( i , 1 ) ;
37 end
38 end
39 subplot ( 1 , 3 , 1 ) , s c a t t e r ( x_2015 , y_2015 )
40 t i t l e ( ’ IRI variance in 2016 ’ )
41 xlabel ( ’ IRI value in 2015 ’ )
42 ylabel ( ’ IRI variance during 1 year ’ )
43 axis ( [ 0 4.5 −1.5 2 . 5 ] )
44

45 %Plot IRI variance in 2017
46 for i =1: N_IRI_2017
47 n = 1 ; %row
48 % find IRI of the same s e c t i o n in the d i f f e r e n t measurement year
49 while From_km_2016(n) ~= From_km_2017( i ) && n < N_IRI_2016
50 n = n +1;
51 end
52 i f From_km_2016(n) == From_km_2017( i )
53 I R I _ D i f f ( i , 2 ) = IRI_2017 ( i )− IRI_2016 (n) ;% IRI variance in 2017
54 x_2016 ( i ) = IRI_2016 (n) ;
55 y_2016 ( i ) = I R I _ D i f f ( i , 2 ) ;
56 end
57 end
58 subplot ( 1 , 3 , 2 ) , s c a t t e r ( x_2016 , y_2016 )
59 t i t l e ( ’ IRI variance in 2017 ’ )
60 xlabel ( ’ IRI value in 2016 ’ )
61 ylabel ( ’ IRI variance during 1 year ’ )
62 axis ( [ 0 4.5 −1.5 2 . 5 ] )
63

64 %Plot IRI variance in 2018
65 for i =1: N_IRI_2018
66 n = 1 ; %row
67 % find IRI of the same s e c t i o n in the d i f f e r e n t measurement year
68 while From_km_2017(n) ~= From_km_2018( i ) && n < N_IRI_2017
69 n = n+1;
70 end
71 i f From_km_2017(n) == From_km_2018( i )
72 I R I _ D i f f ( i , 3 ) = IRI_2018 ( i )− IRI_2017 (n) ;% IRI variance in 2018
73 x_2017 ( i ) = IRI_2017 (n) ;
74 y_2017 ( i ) = I R I _ D i f f ( i , 3 ) ;
75 end
76 end
77 subplot ( 1 , 3 , 3 ) , s c a t t e r ( x_2017 , y_2017 )
78 t i t l e ( ’ IRI variance in 2018 ’ )
79 xlabel ( ’ IRI value in 2017 ’ )
80 ylabel ( ’ IRI variance during 1 year ’ )
81 axis ( [ 0 4.5 −1.5 2 . 5 ] )



C
Traffic data process Matlab code

The following gives the example code of calculating the variables of I_AL, I_L1, I_L2, and I_L3 in Matlab. With
the similar idea, all the variables in the traffic category are computed, but the codes are not shown due to the
report length limit.

1 clear a l l
2 %% Calculate Cumulative I n t e n s i t i e s unti l IRI measurement time (2017)
3

4 %% Data input
5 I_2011_2018 = xlsread ( ’F : \RWSA15\I_AL . x l s x ’ , ’ I_L_2011−2018 ’ ) ; % flow table on

d i r e c t i o n L or R
6 IRI_2017_ONZ = xlsread ( ’F : \RWSA15\I_AL . x l s x ’ , ’ 2017_L ’ ) ; % IRI table on d i r e c t i o n L

or R
7 Direction = ’L ’ ; % Input Direction i s L or R
8

9 %% Calculate Cumulative I n t e n s i t i e s from year 2010 to year 2011
10 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
11 % table )
12 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
13 i f Direction == ’L ’
14 TO_KM_IRI_2011 = I_2011_2018 ( : , 5 8 ) ; % The unit i s km
15 else
16 TO_KM_IRI_2011 = I_2011_2018 ( : , 5 6 ) ;
17 end
18 I_AL_2011 = I_2011_2018 ( : , 5 9 ) ;
19 I_L1_2011 = I_2011_2018 ( : , 6 0 ) ;
20 I_L2_2011 = I_2011_2018 ( : , 6 1 ) ;
21 I_L3_2011 = I_2011_2018 ( : , 6 2 ) ;
22

23 Num_TO_KM_I = length (TO_KM_I) ;
24 Num_TO_KM_IRI_2011 = length ( TO_KM_IRI_2011 ) ;
25

26 I_AL_2011_v ( : ,Num_TO_KM_I ) = 0 ;
27 I_L1_2011_v ( : ,Num_TO_KM_I ) = 0 ;
28 I_L2_2011_v ( : ,Num_TO_KM_I ) = 0 ;
29 I_L3_2011_v ( : ,Num_TO_KM_I ) = 0 ;
30

31 for i =1:Num_TO_KM_I
32 n = 1 ;
33 while TO_KM_I( i ) > TO_KM_IRI_2011 (n)
34 n = n + 1 ;
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35 end
36 i f n == 1
37 I_AL_2011_v ( i ) = I_AL_2011 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
38 I_L1_2011_v ( i ) = I_L1_2011 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
39 I_L2_2011_v ( i ) = I_L2_2011 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
40 I_L3_2011_v ( i ) = I_L3_2011 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
41 else
42 I_AL_2011_v ( i ) = I_AL_2011 (n−1) ;
43 I_L1_2011_v ( i ) = I_L1_2011 (n−1) ;
44 I_L2_2011_v ( i ) = I_L2_2011 (n−1) ;
45 I_L3_2011_v ( i ) = I_L3_2011 (n−1) ;
46 end
47 end
48 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
49 for i =1:Num_TO_KM_I
50 i f I_AL_2011_v ( i ) ==0
51 I_AL_2011_v ( i ) = I_AL_2011_v ( i −1) ;
52 end
53 i f I_L1_2011_v ( i ) ==0
54 I_L1_2011_v ( i ) = I_L1_2011_v ( i −1) ;
55 end
56 i f I_L2_2011_v ( i ) ==0
57 I_L2_2011_v ( i ) = I_L2_2011_v ( i −1) ;
58 end
59 i f I_L3_2011_v ( i ) ==0
60 I_L3_2011_v ( i ) = I_L3_2011_v ( i −1) ;
61 end
62 end
63

64 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
65 Duration_2011 = IRI_2017_ONZ ( : , 1 0 ) ;
66 I_AL ( : , 1 ) = Duration_2011 . * I_AL_2011_v ’ ;
67 I_L1 ( : , 1 ) = Duration_2011 . * I_L1_2011_v ’ ;
68 I_L2 ( : , 1 ) = Duration_2011 . * I_L2_2011_v ’ ;
69 I_L3 ( : , 1 ) = Duration_2011 . * I_L3_2011_v ’ ;
70

71 %% Calculate Cumulative I n t e n s i t i e s from year 2011 to year 2012
72 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
73 % table )
74 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
75 i f Direction == ’L ’
76 TO_KM_IRI_2012 = I_2011_2018 ( : , 5 0 ) /1000; % Translate the unit of meter in

o r i g i n a l table to km
77 else
78 TO_KM_IRI_2012 = I_2011_2018 ( : , 4 9 ) /1000;
79 end
80 I_AL_2012 = I_2011_2018 ( : , 5 1 ) ;
81 I_L1_2012 = I_2011_2018 ( : , 5 2 ) ;
82 I_L2_2012 = I_2011_2018 ( : , 5 3 ) ;
83 I_L3_2012 = I_2011_2018 ( : , 5 4 ) ;
84

85 Num_TO_KM_I = length (TO_KM_I) ;



111

86 Num_TO_KM_IRI_2012 = length ( TO_KM_IRI_2012 ) ;
87

88 I_AL_2012_v ( : ,Num_TO_KM_I ) = 0 ;
89 I_L1_2012_v ( : ,Num_TO_KM_I ) = 0 ;
90 I_L2_2012_v ( : ,Num_TO_KM_I ) = 0 ;
91 I_L3_2012_v ( : ,Num_TO_KM_I ) = 0 ;
92

93 for i =1:Num_TO_KM_I
94 n = 1 ;
95 while TO_KM_I( i ) > TO_KM_IRI_2012 (n)
96 n = n + 1 ;
97 end
98 i f n == 1
99 I_AL_2012_v ( i ) = I_AL_2012 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
100 I_L1_2012_v ( i ) = I_L1_2012 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
101 I_L2_2012_v ( i ) = I_L2_2012 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
102 I_L3_2012_v ( i ) = I_L3_2012 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
103 else
104 I_AL_2012_v ( i ) = I_AL_2012 (n−1) ;
105 I_L1_2012_v ( i ) = I_L1_2012 (n−1) ;
106 I_L2_2012_v ( i ) = I_L2_2012 (n−1) ;
107 I_L3_2012_v ( i ) = I_L3_2012 (n−1) ;
108 end
109 end
110 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
111 for i =1:Num_TO_KM_I
112 i f I_AL_2012_v ( i ) ==0
113 I_AL_2012_v ( i ) = I_AL_2012_v ( i −1) ;
114 end
115 i f I_L1_2012_v ( i ) ==0
116 I_L1_2012_v ( i ) = I_L1_2012_v ( i −1) ;
117 end
118 i f I_L2_2012_v ( i ) ==0
119 I_L2_2012_v ( i ) = I_L2_2012_v ( i −1) ;
120 end
121 i f I_L3_2012_v ( i ) ==0
122 I_L3_2012_v ( i ) = I_L3_2012_v ( i −1) ;
123 end
124 end
125

126 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
127 Duration_2012 = IRI_2017_ONZ ( : , 1 2 ) ;
128 I_AL ( : , 2 ) = Duration_2012 . * I_AL_2012_v ’ ;
129 I_L1 ( : , 2 ) = Duration_2012 . * I_L1_2012_v ’ ;
130 I_L2 ( : , 2 ) = Duration_2012 . * I_L2_2012_v ’ ;
131 I_L3 ( : , 2 ) = Duration_2012 . * I_L3_2012_v ’ ;
132 %% Calculate Cumulative I n t e n s i t i e s from year 2012 to year 2013
133 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
134 % table )
135 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
136 i f Direction == ’L ’
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137 TO_KM_IRI_2013 = I_2011_2018 ( : , 4 2 ) /1000; % Translate the unit of meter in
o r i g i n a l table to km

138 else
139 TO_KM_IRI_2013 = I_2011_2018 ( : , 4 1 ) /1000;
140 end
141 I_AL_2013 = I_2011_2018 ( : , 4 3 ) ;
142 I_L1_2013 = I_2011_2018 ( : , 4 4 ) ;
143 I_L2_2013 = I_2011_2018 ( : , 4 5 ) ;
144 I_L3_2013 = I_2011_2018 ( : , 4 6 ) ;
145

146 Num_TO_KM_I = length (TO_KM_I) ;
147 Num_TO_KM_IRI_2013 = length ( TO_KM_IRI_2013 ) ;
148

149 I_AL_2013_v ( : ,Num_TO_KM_I ) = 0 ;
150 I_L1_2013_v ( : ,Num_TO_KM_I ) = 0 ;
151 I_L2_2013_v ( : ,Num_TO_KM_I ) = 0 ;
152 I_L3_2013_v ( : ,Num_TO_KM_I ) = 0 ;
153

154 for i =1:Num_TO_KM_I
155 n = 1 ;
156 while TO_KM_I( i ) > TO_KM_IRI_2013 (n)
157 n = n + 1 ;
158 end
159 i f n == 1
160 I_AL_2013_v ( i ) = I_AL_2013 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
161 I_L1_2013_v ( i ) = I_L1_2013 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
162 I_L2_2013_v ( i ) = I_L2_2013 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
163 I_L3_2013_v ( i ) = I_L3_2013 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
164 else
165 I_AL_2013_v ( i ) = I_AL_2013 (n−1) ;
166 I_L1_2013_v ( i ) = I_L1_2013 (n−1) ;
167 I_L2_2013_v ( i ) = I_L2_2013 (n−1) ;
168 I_L3_2013_v ( i ) = I_L3_2013 (n−1) ;
169 end
170 end
171 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
172 for i =1:Num_TO_KM_I
173 i f I_AL_2013_v ( i ) ==0
174 I_AL_2013_v ( i ) = I_AL_2013_v ( i −1) ;
175 end
176 i f I_L1_2013_v ( i ) ==0
177 I_L1_2013_v ( i ) = I_L1_2013_v ( i −1) ;
178 end
179 i f I_L2_2013_v ( i ) ==0
180 I_L2_2013_v ( i ) = I_L2_2013_v ( i −1) ;
181 end
182 i f I_L3_2013_v ( i ) ==0
183 I_L3_2013_v ( i ) = I_L3_2013_v ( i −1) ;
184 end
185 end
186

187 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
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188 Duration_2013 = IRI_2017_ONZ ( : , 1 4 ) ;
189 I_AL ( : , 3 ) = Duration_2013 . * I_AL_2013_v ’ ;
190 I_L1 ( : , 3 ) = Duration_2013 . * I_L1_2013_v ’ ;
191 I_L2 ( : , 3 ) = Duration_2013 . * I_L2_2013_v ’ ;
192 I_L3 ( : , 3 ) = Duration_2013 . * I_L3_2013_v ’ ;
193

194 %% Calculate Cumulative I n t e n s i t i e s from year 2013 to year 2014
195 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
196 % table )
197 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
198 i f Direction == ’L ’
199 TO_KM_IRI_2014 = I_2011_2018 ( : , 3 4 ) /1000; % Translate the unit of meter in

o r i g i n a l table to km
200 else
201 TO_KM_IRI_2014 = I_2011_2018 ( : , 3 3 ) /1000;
202 end
203 I_AL_2014 = I_2011_2018 ( : , 3 5 ) ;
204 I_L1_2014 = I_2011_2018 ( : , 3 6 ) ;
205 I_L2_2014 = I_2011_2018 ( : , 3 7 ) ;
206 I_L3_2014 = I_2011_2018 ( : , 3 8 ) ;
207

208 Num_TO_KM_I = length (TO_KM_I) ;
209 Num_TO_KM_IRI_2014 = length ( TO_KM_IRI_2014 ) ;
210

211 I_AL_2014_v ( : ,Num_TO_KM_I ) = 0 ;
212 I_L1_2014_v ( : ,Num_TO_KM_I ) = 0 ;
213 I_L2_2014_v ( : ,Num_TO_KM_I ) = 0 ;
214 I_L3_2014_v ( : ,Num_TO_KM_I ) = 0 ;
215

216 for i =1:Num_TO_KM_I
217 n = 1 ;
218 while TO_KM_I( i ) > TO_KM_IRI_2014 (n)
219 n = n + 1 ;
220 end
221 i f n == 1
222 I_AL_2014_v ( i ) = I_AL_2014 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
223 I_L1_2014_v ( i ) = I_L1_2014 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
224 I_L2_2014_v ( i ) = I_L2_2014 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
225 I_L3_2014_v ( i ) = I_L3_2014 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
226 else
227 I_AL_2014_v ( i ) = I_AL_2014 (n−1) ;
228 I_L1_2014_v ( i ) = I_L1_2014 (n−1) ;
229 I_L2_2014_v ( i ) = I_L2_2014 (n−1) ;
230 I_L3_2014_v ( i ) = I_L3_2014 (n−1) ;
231 end
232 end
233

234 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
235 for i =1:Num_TO_KM_I
236 i f I_AL_2014_v ( i ) ==0
237 I_AL_2014_v ( i ) = I_AL_2014_v ( i −1) ;
238 end
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239 i f I_L1_2014_v ( i ) ==0
240 I_L1_2014_v ( i ) = I_L1_2014_v ( i −1) ;
241 end
242 i f I_L2_2014_v ( i ) ==0
243 I_L2_2014_v ( i ) = I_L2_2014_v ( i −1) ;
244 end
245 i f I_L3_2014_v ( i ) ==0
246 I_L3_2014_v ( i ) = I_L3_2014_v ( i −1) ;
247 end
248 end
249

250 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
251 Duration_2014 = IRI_2017_ONZ ( : , 1 6 ) ;
252 I_AL ( : , 4 ) = Duration_2014 . * I_AL_2014_v ’ ;
253 I_L1 ( : , 4 ) = Duration_2014 . * I_L1_2014_v ’ ;
254 I_L2 ( : , 4 ) = Duration_2014 . * I_L2_2014_v ’ ;
255 I_L3 ( : , 4 ) = Duration_2014 . * I_L3_2014_v ’ ;
256

257 %% Calculate Cumulative I n t e n s i t i e s from year 2014 to year 2015
258 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
259 % table )
260 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
261 i f Direction == ’L ’
262 TO_KM_IRI_2015 = I_2011_2018 ( : , 2 6 ) /1000; % Translate the unit of meter in

o r i g i n a l table to km
263 else
264 TO_KM_IRI_2015 = I_2011_2018 ( : , 2 5 ) /1000;
265 end
266 I_AL_2015 = I_2011_2018 ( : , 2 7 ) ;
267 I_L1_2015 = I_2011_2018 ( : , 2 8 ) ;
268 I_L2_2015 = I_2011_2018 ( : , 2 9 ) ;
269 I_L3_2015 = I_2011_2018 ( : , 3 0 ) ;
270

271 Num_TO_KM_I = length (TO_KM_I) ;
272 Num_TO_KM_IRI_2015 = length ( TO_KM_IRI_2015 ) ;
273

274 I_AL_2015_v ( : ,Num_TO_KM_I ) = 0 ;
275 I_L1_2015_v ( : ,Num_TO_KM_I ) = 0 ;
276 I_L2_2015_v ( : ,Num_TO_KM_I ) = 0 ;
277 I_L3_2015_v ( : ,Num_TO_KM_I ) = 0 ;
278

279 for i =1:Num_TO_KM_I
280 n = 1 ;
281 while TO_KM_I( i ) > TO_KM_IRI_2015 (n)
282 n = n + 1 ;
283 end
284 i f n == 1
285 I_AL_2015_v ( i ) = I_AL_2015 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
286 I_L1_2015_v ( i ) = I_L1_2015 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
287 I_L2_2015_v ( i ) = I_L2_2015 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
288 I_L3_2015_v ( i ) = I_L3_2015 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
289 else
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290 I_AL_2015_v ( i ) = I_AL_2015 (n−1) ;
291 I_L1_2015_v ( i ) = I_L1_2015 (n−1) ;
292 I_L2_2015_v ( i ) = I_L2_2015 (n−1) ;
293 I_L3_2015_v ( i ) = I_L3_2015 (n−1) ;
294 end
295 end
296

297 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
298 for i =1:Num_TO_KM_I
299 i f I_AL_2015_v ( i ) ==0
300 I_AL_2015_v ( i ) = I_AL_2015_v ( i −1) ;
301 end
302 i f I_L1_2015_v ( i ) ==0
303 I_L1_2015_v ( i ) = I_L1_2015_v ( i −1) ;
304 end
305 i f I_L2_2015_v ( i ) ==0
306 I_L2_2015_v ( i ) = I_L2_2015_v ( i −1) ;
307 end
308 i f I_L3_2015_v ( i ) ==0
309 I_L3_2015_v ( i ) = I_L3_2015_v ( i −1) ;
310 end
311 end
312

313 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
314 Duration_2015 = IRI_2017_ONZ ( : , 1 8 ) ;
315 I_AL ( : , 5 ) = Duration_2015 . * I_AL_2015_v ’ ;
316 I_L1 ( : , 5 ) = Duration_2015 . * I_L1_2015_v ’ ;
317 I_L2 ( : , 5 ) = Duration_2015 . * I_L2_2015_v ’ ;
318 I_L3 ( : , 5 ) = Duration_2015 . * I_L3_2015_v ’ ;
319

320 %% Calculate Cumulative I n t e n s i t i e s from year 2015 to year 2016
321 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
322 % table )
323 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
324 i f Direction == ’L ’
325 TO_KM_IRI_2016 = I_2011_2018 ( : , 1 8 ) /1000; % Translate the unit of meter in

o r i g i n a l table to km
326 else
327 TO_KM_IRI_2016 = I_2011_2018 ( : , 1 7 ) /1000;
328 end
329 I_AL_2016 = I_2011_2018 ( : , 1 9 ) ;
330 I_L1_2016 = I_2011_2018 ( : , 2 0 ) ;
331 I_L2_2016 = I_2011_2018 ( : , 2 1 ) ;
332 I_L3_2016 = I_2011_2018 ( : , 2 2 ) ;
333

334 Num_TO_KM_I = length (TO_KM_I) ;
335 Num_TO_KM_IRI_2016 = length ( TO_KM_IRI_2016 ) ;
336

337 I_AL_2016_v ( : ,Num_TO_KM_I ) = 0 ;
338 I_L1_2016_v ( : ,Num_TO_KM_I ) = 0 ;
339 I_L2_2016_v ( : ,Num_TO_KM_I ) = 0 ;
340 I_L3_2016_v ( : ,Num_TO_KM_I ) = 0 ;
341

342 for i =1:Num_TO_KM_I
343 n = 1 ;
344 while TO_KM_I( i ) > TO_KM_IRI_2016 (n)
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345 n = n + 1 ;
346 end
347 i f n == 1
348 I_AL_2016_v ( i ) = I_AL_2016 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
349 I_L1_2016_v ( i ) = I_L1_2016 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
350 I_L2_2016_v ( i ) = I_L2_2016 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
351 I_L3_2016_v ( i ) = I_L3_2016 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
352 else
353 I_AL_2016_v ( i ) = I_AL_2016 (n−1) ;
354 I_L1_2016_v ( i ) = I_L1_2016 (n−1) ;
355 I_L2_2016_v ( i ) = I_L2_2016 (n−1) ;
356 I_L3_2016_v ( i ) = I_L3_2016 (n−1) ;
357 end
358 end
359

360 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
361 for i =1:Num_TO_KM_I
362 i f I_AL_2016_v ( i ) ==0
363 I_AL_2016_v ( i ) = I_AL_2016_v ( i −1) ;
364 end
365 i f I_L1_2016_v ( i ) ==0
366 I_L1_2016_v ( i ) = I_L1_2016_v ( i −1) ;
367 end
368 i f I_L2_2016_v ( i ) ==0
369 I_L2_2016_v ( i ) = I_L2_2016_v ( i −1) ;
370 end
371 i f I_L3_2016_v ( i ) ==0
372 I_L3_2016_v ( i ) = I_L3_2016_v ( i −1) ;
373 end
374 end
375

376 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
377 Duration_2016 = IRI_2017_ONZ ( : , 2 0 ) ;
378 I_AL ( : , 6 ) = Duration_2016 . * I_AL_2016_v ’ ;
379 I_L1 ( : , 6 ) = Duration_2016 . * I_L1_2016_v ’ ;
380 I_L2 ( : , 6 ) = Duration_2016 . * I_L2_2016_v ’ ;
381 I_L3 ( : , 6 ) = Duration_2016 . * I_L3_2016_v ’ ;
382

383 %% Calculate Cumulative I n t e n s i t i e s from year 2016 to the measurement in 2017
384 % F i r s t l y , find the same l a b l e of s e c t i o n of 2 t a b l e s ( flow table and IRI
385 % table )
386 TO_KM_I = IRI_2017_ONZ ( : , 4 ) ;
387 TO_KM_IRI_2017 = I_2011_2018 ( : , 9 ) /1000; % Translate the unit of meter in o r i g i n a l

table to km
388 I_AL_2017 = I_2011_2018 ( : , 1 1 ) ;
389 I_L1_2017 = I_2011_2018 ( : , 1 2 ) ;
390 I_L2_2017 = I_2011_2018 ( : , 1 3 ) ;
391 I_L3_2017 = I_2011_2018 ( : , 1 4 ) ;
392

393 Num_TO_KM_I = length (TO_KM_I) ;
394 Num_TO_KM_IRI_2017 = length ( TO_KM_IRI_2017 ) ;
395
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396 for i =1:Num_TO_KM_I
397 n = 1 ;
398 while TO_KM_I( i ) > TO_KM_IRI_2017 (n)
399 n = n + 1 ;
400 end
401 i f n == 1
402 I_AL_2017_v ( i ) = I_AL_2017 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
403 I_L1_2017_v ( i ) = I_L1_2017 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
404 I_L2_2017_v ( i ) = I_L2_2017 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
405 I_L3_2017_v ( i ) = I_L3_2017 (n) ;% i f lack t r a f f i c data at the s t a r t

section , f i l l in the t r a f f i c data of the f i r s t −recorded s e c t i o n
406 else
407 I_AL_2017_v ( i ) = I_AL_2017 (n−1) ;
408 I_L1_2017_v ( i ) = I_L1_2017 (n−1) ;
409 I_L2_2017_v ( i ) = I_L2_2017 (n−1) ;
410 I_L3_2017_v ( i ) = I_L3_2017 (n−1) ;
411 end
412 end
413

414 % f i l l the s e c t i o n s which lack of data with the data of the nearest s e c t i o n
415 for i =1:Num_TO_KM_I
416 i f I_AL_2017_v ( i ) ==0
417 I_AL_2017_v ( i ) = I_AL_2017_v ( i −1) ;
418 end
419 i f I_L1_2017_v ( i ) ==0
420 I_L1_2017_v ( i ) = I_L1_2017_v ( i −1) ;
421 end
422 i f I_L2_2017_v ( i ) ==0
423 I_L2_2017_v ( i ) = I_L2_2017_v ( i −1) ;
424 end
425 i f I_L3_2017_v ( i ) ==0
426 I_L3_2017_v ( i ) = I_L3_2017_v ( i −1) ;
427 end
428 end
429

430 % Secondly , cumulative i n t e n s i t i e s = days * daily flows ( veh / day )
431 Duration_2017 = IRI_2017_ONZ ( : , 2 2 ) ;
432 I_AL ( : , 7 ) = Duration_2017 . * I_AL_2017_v ’ ;
433 I_L1 ( : , 7 ) = Duration_2017 . * I_L1_2017_v ’ ;
434 I_L2 ( : , 7 ) = Duration_2017 . * I_L2_2017_v ’ ;
435 I_L3 ( : , 7 ) = Duration_2017 . * I_L3_2017_v ’ ;
436

437 %% Calculate the cumulative i n t e n s i t i e s from the construction year to the
measurement time in 2017

438 I_RESULT ( : , 1 ) = sum ( I_AL , 2 ) ;
439 I_RESULT ( : , 2 ) = sum ( I_L1 , 2 ) ;
440 I_RESULT ( : , 3 ) = sum ( I_L2 , 2 ) ;
441 I_RESULT ( : , 4 ) = sum ( I_L3 , 2 ) ;





D
Weather stations

The chapter gives the locations of the weather stations which are near to A15, as well as the coverage.

Table D.1: Coverage of the weather stations

ID Location_RD Coverage_RD Station Coverage on A15

348 ’(4.927 51.972)’

’MULTIPOLYGON(((
5.07560967468475 51.9907448165024,
4.96041049114294 51.7704516409576,
4.69243473985064 51.7664718030671,
4.6822057149527 52.057096451638,
4.6826736127016 52.0584530782472,
4.97139065273025 52.1927196652515,
5.07560967468475 51.9907448165024)))’

’CABAUW’ 80km-95km

356 ’(5.145 51.858)’

’MULTIPOLYGON(((
5.07560967468475 51.9907448165024,
5.27046965949741 51.9650842423707,
5.46655547246543 51.8720876619557,
5.42074128699955 51.744218218939,
5.19653888626825 51.5978336417625,
4.96041049114294 51.7704516409576,
5.07560967468475 51.9907448165024)))’

HERWIJNEN’ 95km-165km

344 ’(4.444 51.955)’

’MULTIPOLYGON(((
4.29212439666521 52.0424159719175,
4.6822057149527 52.057096451638,
4.69243473985064 51.7664718030671,
4.6094382903389 51.6616003203507,
4.25479372927343 51.7280524570395,
4.29212439666521 52.0424159719175)))’

’ROTTERDAM’ 45km-80km

330 ’(4.124 51.993)’

’MULTIPOLYGON(((
4.2921243966652 52.0424159719175,
4.25479372927344 51.7280524570395,
4.15001926586039 51.6847969446213,
3.59679253655277 51.9697205820329,
3.56046 52.0045365154265,
3.56046 52.9851426382979,
3.97522677559842 52.5871430302236,
4.28909551886793 52.0488216391509,
4.2921243966652 52.0424159719175)))’

’HOEK VAN
HOLLAND’

25km-45km
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Weather data process Matlab code

All the variables in the climate category are computed by the following codes. The results of the variables of
T_TEMP_25, T_TEMP_0, T_TEMP_0_below, and T_PRECIPITATION are in Tab. E.1.

1 clear a l l
2

3 %% Load weather raw data
4 load ( ’ r e s u l t . mat ’ )
5

6 %% Input StationID
7 %StationID = 348 ,Weather s t a t i o n CABAUW , Coverage 95km−165km
8 %StationID = 356 ,Weather s t a t i o n HERWIJNEN’ , Coverage 80km−95km
9 %StationID = 344 ,Weather s t a t i o n ’ROTTERDAM’ , Coverage 45km−80km

10 %StationID = 330 ,Weather s t a t i o n ’HOEK VAN HOLLAND’ , Coverage 25km−45km
11 StationID = 330;% Input StationID
12 %% Find the weather data of the weather s t a t i o n which StationID i s inputted above
13 f =find ( table2array ( r e s u l t ( : , 1 ) ) ==StationID ) ;
14

15 %% Get the measurement year in the d i g i t a l ( double ) form from the measurement time in
t e x t form

16 Time_Weather_ca = table2array ( r e s u l t ( : , 7 ) ) ; % Transfer table to category
17 Time_Weather_text = char ( Time_Weather_ca ) ;% Transfer table to t e x t
18 Year_Weather_text =[ Time_Weather_text ( : , 1 ) , Time_Weather_text ( : , 2 ) , Time_Weather_text

( : , 3 ) , Time_Weather_text ( : , 4 ) ] ; % Get year as t e x t form
19 Year_Weather_num = str2num ( Year_Weather_text ) ; % Transfer year in t e x t form to year

in d i g i t a l form
20

21 %% Caculate the number of data in every year
22 % Caculate the number of data in year 2015
23 Year_Weather_num_2015 = Year_Weather_num − 2014;
24 for n =1: length ( Year_Weather_num )
25 i f Year_Weather_num_2015 (n) > 1 | | Year_Weather_num_2015 (n) <0
26 Year_Weather_num_2015 (n) = 0 ;
27 end
28 end
29 Num_Data_2015 = sum( Year_Weather_num_2015 ) ;
30

31 % Caculate the number of data in year 2016
32 Year_Weather_num_2016 = Year_Weather_num −2015;
33 for n =1: length ( Year_Weather_num )
34 i f Year_Weather_num_2016 (n) >1 | | Year_Weather_num_2016 (n) <0
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35 Year_Weather_num_2016 (n) = 0 ;
36 end
37 end
38 Num_Data_2016 = sum( Year_Weather_num_2016 ) ;
39 % Caculate the number of data in year 2017
40 Year_Weather_num_2017 = Year_Weather_num −2016;
41 for n =1: length ( Year_Weather_num )
42 i f Year_Weather_num_2017 (n) >1 | | Year_Weather_num_2017 (n) <0
43 Year_Weather_num_2017 (n) = 0 ;
44 end
45 end
46 Num_Data_2017 = sum( Year_Weather_num_2017 ) ;
47 % Caculate the number of data in year 2018
48 Year_Weather_num_2018 = Year_Weather_num −2017;
49 for n =1: length ( Year_Weather_num )
50 i f Year_Weather_num_2018 (n) >1 | | Year_Weather_num_2018 (n) <0
51 Year_Weather_num_2018 (n) = 0 ;
52 end
53 end
54 Num_Data_2018 = sum( Year_Weather_num_2018 ) ;
55

56 %% Caculate the t o t a l time of temperature >25 , 0−25, and <0
57 % in year 2015 , 2016 , 2017 , 2018
58 TEMP = table2array ( r e s u l t ( : , 1 0 ) ) ;% Transfer table to matrix
59 T_TEMP_25_2015 = 0 ; % T_TEMP_25_2015 i s the t o t a l time of temperature ( >25) in 2015
60 T_TEMP_0_2015 = 0 ; % the t o t a l time of temperature (0−25) in 2015
61 T_TEMP_0_below_2015 = 0 ;% the t o t a l time of temperature ( <0) in 2015
62

63 T_TEMP_25_2016 = 0 ; % T_TEMP_25_2016 i s the t o t a l time of temperature ( >25) in 2016
64 T_TEMP_0_2016 = 0 ; % the t o t a l time of temperature (0−25) in 2016
65 T_TEMP_0_below_2016 = 0 ;% the t o t a l time of temperature ( <0) in 2016
66

67 T_TEMP_25_2017 = 0 ; % T_TEMP_25_2017 i s the t o t a l time of temperature ( >25) in 2017
68 T_TEMP_0_2017 = 0 ; % the t o t a l time of temperature (0−25) in 2017
69 T_TEMP_0_below_2017 = 0 ;% the t o t a l time of temperature ( <0) in 2017
70

71 T_TEMP_25_2018 = 0 ; % T_TEMP_25_2018 i s the t o t a l time of temperature ( >25) in 2018
72 T_TEMP_0_2018 = 0 ; % the t o t a l time of temperature (0−25) in 2018
73 T_TEMP_0_below_2018 = 0 ;% the t o t a l time of temperature ( <0) in 2018
74

75 %% Caculate the t o t a l time of rains
76 % in year 2015 , 2016 , 2017 , 2018
77 PERCIPITATION = table2array ( r e s u l t ( : , 1 1 ) ) ;% Transfer table to matrix
78 T_PERCIPITATION_2015 = 0 ;
79 T_PERCIPITATION_2016 = 0 ;
80 T_PERCIPITATION_2017 = 0 ;
81 T_PERCIPITATION_2018 = 0 ;
82

83 %% Calculate the t o t a l time of the s p e c f i c weather occasions
84 % Calculate the t o t a l time of the s p e c f i c weather occasions in 2015
85 % The s e l e c t e d weather s t a t i o n
86 for i = 1 : length ( f ) % S e l e c t data of the weather s t a t i o n which StationID i s input
87 i f f ( i ) >=1 &&f ( i ) <= Num_Data_2015 %weather occasions in 2015
88 n = f ( i ) ;
89 i f TEMP(n) > 25 % Calculate the t o t a l time of TEMP>25 in 2015
90 T_TEMP_25_2015 = T_TEMP_25_2015 + 1 ;
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91 end
92 i f TEMP(n) >= 0 && TEMP(n) <= 25 % Calculate the t o t a l time of 0<TEMP<25 in

2015
93 T_TEMP_0_2015 = T_TEMP_0_2015 + 1 ;
94 end
95 i f TEMP(n) <0 % Calculate the t o t a l time of TEMP<0 in 2015
96 T_TEMP_0_below_2015 = T_TEMP_0_below_2015 + 1 ;
97 end
98 i f PERCIPITATION(n) >0 % Calculate the t o t a l time of rains in 2015
99 T_PERCIPITATION_2015 = T_PERCIPITATION_2015 +1;

100 end
101 end
102 end
103

104 T_TEMP_25_2015 = T_TEMP_25_2015/60; % Transfer the unit of min to hours
105 T_TEMP_0_2015 = T_TEMP_0_2015/60;% Transfer the unit of min to hours
106 T_TEMP_0_below_2015 = T_TEMP_0_below_2015/60;% Transfer the unit of min to hours
107 T_PERCIPITATION_2015 = T_PERCIPITATION_2015/60; % Transfer the unit of min to hours
108 %Some data i s missing
109 %Here assumes the temperature trend i s the same in the meausrement time as
110 %the inmeasurement time
111 s = 5*365*24*60/Num_Data_2015 ; % r e s u l t f i l e contains 5 weather s t a t i o n s
112 T_TEMP_25_2015 = T_TEMP_25_2015* s ;
113 T_TEMP_0_2015 = T_TEMP_0_2015* s ;
114 T_TEMP_0_below_2015 = T_TEMP_0_below_2015* s ;
115 T_PERCIPITATION_2015 = T_PERCIPITATION_2015* s ;
116 %% Calculate the t o t a l time of the s p e c f i c weather occasions in 2016
117 % The s e l e c t e d weather s t a t i o n
118 for i = 1 : length ( f ) % S e l e c t data of the weather s t a t i o n which StationID i s input
119 i f f ( i ) >=Num_Data_2015+1 &&f ( i ) <= Num_Data_2015+Num_Data_2016 %weather

occasions in 2016
120 n = f ( i ) ;
121 i f TEMP(n) > 25 % Calculate the t o t a l time of TEMP>25 in 2016
122 T_TEMP_25_2016 = T_TEMP_25_2016 + 1 ;
123 end
124 i f TEMP(n) >= 0 && TEMP(n) <= 25 % Calculate the t o t a l time of 0<TEMP<25 in

2016
125 T_TEMP_0_2016 = T_TEMP_0_2016 + 1 ;
126 end
127 i f TEMP(n) <0 % Calculate the t o t a l time of TEMP<0 in 2016
128 T_TEMP_0_below_2016 = T_TEMP_0_below_2016 + 1 ;
129 end
130 i f PERCIPITATION(n) >0 % Calculate the t o t a l time of rains in 2016
131 T_PERCIPITATION_2016 = T_PERCIPITATION_2016 +1;
132 end
133 end
134 end
135

136 T_TEMP_25_2016 = T_TEMP_25_2016/60; % Transfer the unit of min to hours
137 T_TEMP_0_2016 = T_TEMP_0_2016/60;% Transfer the unit of min to hours
138 T_TEMP_0_below_2016 = T_TEMP_0_below_2016/60;% Transfer the unit of min to hours
139 T_PERCIPITATION_2016 = T_PERCIPITATION_2016/60;% Transfer the unit of min to hours
140 %Some data i s missing
141 %Here assumes the temperature trend i s the same in the meausrement time as
142 %the inmeasurement time
143 s = 5*365*24*60/Num_Data_2016 ; % r e s u l t f i l e contains 5 weather s t a t i o n s
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144 T_TEMP_25_2016 = T_TEMP_25_2016* s ;
145 T_TEMP_0_2016 = T_TEMP_0_2016* s ;
146 T_TEMP_0_below_2016 = T_TEMP_0_below_2016* s ;
147 T_PERCIPITATION_2016 = T_PERCIPITATION_2016* s ;
148

149 %% Calculate the t o t a l time of the s p e c f i c weather occasions in 2017
150 % The s e l e c t e d weather s t a t i o n
151 for i = 1 : length ( f ) % S e l e c t data of the weather s t a t i o n which StationID i s input
152 i f f ( i ) >=Num_Data_2016+1 &&f ( i ) <= Num_Data_2016+Num_Data_2017 %weather

occasions in 2017
153 n = f ( i ) ;
154 i f TEMP(n) > 25 % Calculate the t o t a l time of TEMP>25 in 2017
155 T_TEMP_25_2017 = T_TEMP_25_2017 + 1 ;
156 end
157 i f TEMP(n) >= 0 && TEMP(n) <= 25 % Calculate the t o t a l time of 0<TEMP<25 in

2017
158 T_TEMP_0_2017 = T_TEMP_0_2017 + 1 ;
159 end
160 i f TEMP(n) <0 % Calculate the t o t a l time of TEMP<0 in 2017
161 T_TEMP_0_below_2017 = T_TEMP_0_below_2017 + 1 ;
162 end
163 i f PERCIPITATION(n) >0 % Calculate the t o t a l time of rains in 2017
164 T_PERCIPITATION_2017 = T_PERCIPITATION_2017 +1;
165 end
166 end
167 end
168

169 T_TEMP_25_2017 = T_TEMP_25_2017/60; % Transfer the unit of min to hours
170 T_TEMP_0_2017 = T_TEMP_0_2017/60;% Transfer the unit of min to hours
171 T_TEMP_0_below_2017 = T_TEMP_0_below_2017/60;% Transfer the unit of min to hours
172 T_PERCIPITATION_2017 = T_PERCIPITATION_2017/60;% Transfer the unit of min to hours
173 %Some data i s missing
174 %Here assumes the temperature trend i s the same in the meausrement time as
175 %the inmeasurement time
176 s = 5*365*24*60/Num_Data_2017 ; % r e s u l t f i l e contains 5 weather s t a t i o n s
177 T_TEMP_25_2017 = T_TEMP_25_2017* s ;
178 T_TEMP_0_2017 = T_TEMP_0_2017* s ;
179 T_TEMP_0_below_2017 = T_TEMP_0_below_2017* s ;
180 T_PERCIPITATION_2017 = T_PERCIPITATION_2017* s ;
181

182 %% Calculate the t o t a l time of the s p e c f i c weather occasions in 2018
183 % The s e l e c t e d weather s t a t i o n
184 for i = 1 : length ( f ) % S e l e c t data of the weather s t a t i o n which StationID i s input
185 i f f ( i ) >=Num_Data_2017+1 &&f ( i ) <= Num_Data_2017+Num_Data_2018 %weather

occasions in 2018
186 n = f ( i ) ;
187 i f TEMP(n) > 25 % Calculate the t o t a l time of TEMP>25 in 2018
188 T_TEMP_25_2018 = T_TEMP_25_2018 + 1 ;
189 end
190 i f TEMP(n) >= 0 && TEMP(n) <= 25 % Calculate the t o t a l time of 0<TEMP<25 in

2018
191 T_TEMP_0_2018 = T_TEMP_0_2018 + 1 ;
192 end
193 i f TEMP(n) <0 % Calculate the t o t a l time of TEMP<0 in 2018
194 T_TEMP_0_below_2018 = T_TEMP_0_below_2018 + 1 ;
195 end
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196 i f PERCIPITATION(n) >0 % Calculate the t o t a l time of rains in 2018
197 T_PERCIPITATION_2018 = T_PERCIPITATION_2018 +1;
198 end
199 end
200 end
201

202 T_TEMP_25_2018 = T_TEMP_25_2018/60; % Transfer the unit of min to hours
203 T_TEMP_0_2018 = T_TEMP_0_2018/60;% Transfer the unit of min to hours
204 T_TEMP_0_below_2018 = T_TEMP_0_below_2018/60;% Transfer the unit of min to hours
205 T_PERCIPITATION_2018 = T_PERCIPITATION_2018/60;% Transfer the unit of min to hours
206 %Some data i s missing
207 %Here assumes the temperature trend i s the same in the meausrement time as
208 %the inmeasurement time
209 s = 5*365*24*60/Num_Data_2018 ; % r e s u l t f i l e contains 5 weather s t a t i o n s
210 T_TEMP_25_2018 = T_TEMP_25_2018* s ;
211 T_TEMP_0_2018 = T_TEMP_0_2018* s ;
212 T_TEMP_0_below_2018 = T_TEMP_0_below_2018* s ;
213 T_PERCIPITATION_2018 = T_PERCIPITATION_2018* s ;
214

215 %% Print r e s u l t s
216 T_TEMP = [ T_TEMP_25_2015 T_TEMP_0_2015 T_TEMP_0_below_2015 T_PERCIPITATION_2015
217 T_TEMP_25_2016 T_TEMP_0_2016 T_TEMP_0_below_2016 T_PERCIPITATION_2016
218 T_TEMP_25_2017 T_TEMP_0_2017 T_TEMP_0_below_2017 T_PERCIPITATION_2017
219 T_TEMP_25_2018 T_TEMP_0_2018 T_TEMP_0_below_2018 T_PERCIPITATION_2018 ] ;

Table E.1: Calculation results of the weather variables

348 ’CABAUW’
Year T_TEMP_25 (h) T_TEMP_0 (h) T_TEMP_0_below (h) T_PERCIPITATION (h)
2015 40.32220944 8278.149597 441.5281933 1542.324511
2016 126.3606182 8197.39439 434.2392673 1817.186033
2017 196.773743 8000.432961 556.6759777 1415.139665
2018 159.59682 8028.54912 565.8432709 1459.170926

356 HERWIJNEN’
Year T_TEMP_25 (h) T_TEMP_0 (h) T_TEMP_0_below (h) T_PERCIPITATION (h)
2015 42.33831991 8251.940161 465.721519 929.4269275
2016 164.4693761 8129.199771 466.3308529 1129.222667
2017 234.4972067 7921.927374 599.4972067 1080.726257
2018 192.7597956 7953.932425 609.3696763 1107.850653

344 ’ROTTERDAM’
Year T_TEMP_25 (h) T_TEMP_0 (h) T_TEMP_0_below (h) T_PERCIPITATION (h)
2015 40.32220944 8397.100115 322.5776755 1554.421174
2016 136.3892387 8288.654837 333.9530624 1867.329136
2017 191.6759777 8066.703911 496.5223464 1356.005587
2018 152.3424191 8097.9841 504.6990346 1402.172061

330 ’HOEK VAN HOLLAND’
Year T_TEMP_25 (h) T_TEMP_0 (h) T_TEMP_0_below (h) T_PERCIPITATION (h)
2015 42.33831991 8522.098964 195.5627158 792.3314154
2016 120.3434459 8475.187178 159.4550658 1245.554665
2017 154.972067 8267.555866 327.2765363 1256.089385
2018 133.6882453 8283.489495 332.6660988 1306.828507





F
Correlation coefficient Matlab code

The following gives the Matlab code of computing the correlation coefficients of Pearson’s linear correlation
coefficient, Kendall’s tau coefficient, and Spearman’s rho.

1 clear a l l
2 %% At f i r s t , load Correlation . x l s x to table
3 Matrix = xlsread ( ’F : \RWSA15\ Correlation . x l s x ’ , ’ Process ’ ) ; % data input
4 %% Pearson ’ s c o r r e l a t i o n c o e f f i e n t
5 Size = s i z e ( Matrix ) ;
6 for n = 1 : Size ( 2 )
7 for i = 1 : Size ( 2 )
8 rhop (n , i ) = corr ( Matrix ( : , n) , Matrix ( : , i ) , ’Type ’ , ’ Pearson ’ , ’Rows ’ , ’ pairwise ’ ) ;
9 end

10 end
11 %% Kendall c o r r e l a t i o n c o e f f i e n t
12 Size = s i z e ( Matrix ) ;
13 for n = 1 : Size ( 2 )
14 for i = 1 : Size ( 2 )
15 rhok (n , i ) = corr ( Matrix ( : , n) , Matrix ( : , i ) , ’Type ’ , ’ Kendall ’ , ’Rows ’ , ’ pairwise ’ ) ;
16 end
17 end
18 %% Spearman c o r r e l a t i o n c o e f f i e n t
19 Size = s i z e ( Matrix ) ;
20 for n = 1 : Size ( 2 )
21 for i = 1 : Size ( 2 )
22 rhos (n , i ) = corr ( Matrix ( : , n) , Matrix ( : , i ) , ’Type ’ , ’Spearman ’ , ’Rows ’ , ’ pairwise ’ ) ;
23 end
24 end
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G
Regression model Matlab code

The chapter gives the Matlab code to estimate all the parameters in the regression models defined in Chapter
6. Besides, it provides the code for computing R-square statistic, the F-statistic, its p-value, and the estimate
of the error variance, that indicate the goodness of fitting.

1 clear a l l
2 %% Regression model f o r predict ing roughness , rutt ing
3

4 %% Data input
5 R = xlsread ( ’o : \RWSA15\RegressionModel . x l s x ’ , ’ Sheet 1 ’ ) ; % read the e x c e l table
6

7 %% Model 1 : I R I _ t = n IRI_o + m NE_t
8 R_t = R( : , 1 5 ) ;%R_ { t } =& predicted roughness at time t (mm/km Bump I n t e r g r a t o r

t r a i l e r )
9 R_o = R ( : , 3 ) ;%R_ { o } =& i n i t i a l roughness at time t = 0 , constant f o r given range of

modified s t r u c t u r a l number
10 NE_t_AL = R ( : , 7 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
11 NE_t_L1 = R ( : , 8 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
12 NE_t_L2 = R ( : , 9 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
13 NE_t_L3 = R( : , 1 0 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
14 X = [ ones ( s i z e ( R_t ) ) R_o NE_t_L1 NE_t_L2 NE_t_L3 ] ;
15 [ b , bint , r , r int , s t a t s ] = regress ( R_t , X) ;
16 %Plot the data and the model .
17 x1 = R_o ;
18 x2 = NE_t_L3 ;
19 y = R_t ;
20 i = 1 : 2 0 : length ( x1 ) ;
21 sz = 10;
22 s ca tt e r 3 ( x1 ( i ) , x2 ( i ) , y ( i ) , sz , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerFaceColor ’ , [ 0 166/255

214/255])
23 hold on
24 x 1 f i t = x1 ( i ) ;
25 x 2 f i t = x2 ( i ) ;
26 [ X1FIT , X2FIT ] = meshgrid ( x 1 f i t , x 2 f i t ) ;
27 YFIT = b( 1 ) + b( 2 ) *X1FIT + b( 5 ) *X2FIT ;
28 mesh( X1FIT , X2FIT , YFIT )
29 xlabel ( ’ I n i t i a l IRI (m/km) ’ )
30 ylabel ( ’ Cumulative flows of heavy trucks (10^6) ’ )
31 zlabel ( ’ IRI (m/km) ’ )
32 axis ( [ 0 2.5 0 15 0 2 . 5 ] )
33 view (40 ,10)
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34 grid on
35 hold o f f
36

37 %% Model 2 : RUT_t = n RUT_o + m NE_t
38 R_t = R( : , 1 6 ) ;%R_ { t } =& predicted rutt ing at time t (mm/km Bump I n t e r g r a t o r t r a i l e r )
39 R_o = R ( : , 4 ) ;%R_ { o } =& i n i t i a l rutt ing at time t = 0 , constant f o r given range of

modified s t r u c t u r a l number
40 NE_t_AL = R ( : , 7 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
41 NE_t_L1 = R ( : , 8 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
42 NE_t_L2 = R ( : , 9 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
43 NE_t_L3 = R( : , 1 0 ) /1000000;% cumulative t r a f f i c at time t , million veh ;
44 X = [ ones ( s i z e ( R_t ) ) R_o NE_t_L1 NE_t_L2 NE_t_L3 ] ;
45 [ b , bint , r , r int , s t a t s ] = regress ( R_t , X) ;
46 %Plot the data and the model .
47 x1 = R_o ;
48 x2 = NE_t_L3 ;
49 y = R_t ;
50 i = 1 : 2 0 : length ( x1 ) ;
51 sz = 10;
52 s ca t te r 3 ( x1 ( i ) , x2 ( i ) , y ( i ) , sz , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerFaceColor ’ , [ 0 166/255

214/255])
53 hold on
54 x 1 f i t = x1 ( i ) ;
55 x 2 f i t = x2 ( i ) ;
56 [ X1FIT , X2FIT ] = meshgrid ( x 1 f i t , x 2 f i t ) ;
57 YFIT = b( 1 ) + b( 2 ) *X1FIT + b( 5 ) *X2FIT ;
58 mesh( X1FIT , X2FIT , YFIT )
59 xlabel ( ’ I n i t i a l RUT (mM) ’ )
60 ylabel ( ’ Cumulative flows of heavy trucks (10^6) ’ )
61 zlabel ( ’RUT (mm) ’ )
62 axis ( [ 0 17 0 17 0 17])
63 view (40 ,10)
64 grid on
65 hold o f f
66

67 %% Model 3 : Exponential model of Roughness progression : R_t = ( R_o + m NE_t ) e ^{ nt }
68 t = R ( : , 1 ) /365; % t i s Age of road s e c t i o n
69 y = log ( R_t . / R_o) ;
70 x1 = NE_t_AL . / R_o ;
71 x2 = t ;
72 x ( : , 1 ) = x1 ;
73 x ( : , 2 ) = x2 ;
74 sz =1;
75 s c a t t e r ( R_t , t , sz , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerFaceColor ’ , ’ k ’ )
76 hold on
77 xlabel ( ’Age ( years ) ’ )
78 ylabel ( ’ IRI (m/km) ’ )
79 axis ( [ 0 3.5 0 30])
80 %view (50 ,10)
81 grid on
82 hold o f f
83

84 %% Model 4 : Regression model of Roughness increment : R_var = m NE_L1_var * exp ( nt } +
m2 NE_L2_var * exp ( nt }+ m3 NE_L3_var * exp ( nt } a RUT_var + n R_o t_var

85 R_var = R( : , 1 7 ) ;
86 NE_L1_var =R( : , 1 2 ) /1000000;
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87 NE_L2_var =R( : , 1 3 ) /1000000;
88 NE_L3_var =R( : , 1 4 ) /1000000;
89 t = R ( : , 1 ) /365;
90 RUT_var = R( : , 1 8 ) ;
91 t_var = R ( : , 6 ) /365;
92 X = [ ones ( s i z e ( R_var ) ) NE_L1_var . * exp ( t ) NE_L2_var . * exp ( t ) NE_L3_var . * exp ( t ) RUT_var

R_o . * t_var ] ;
93 [ b , bint , r , r int , s t a t s ] = regress ( R_var , X) ;
94

95 %% Model 5 : Non−l in ear r e g r e s s i o n model of rutt ing : RUT = m( NE_L1 + NE_L2+ NE_L3
) T^x +w

96 R_t = R( : , 1 6 ) ;%R_ { t } =& predicted rutt ing at time t (mm/km Bump I n t e r g r a t o r t r a i l e r )
97 LN_RUT = log ( R_t ) ;
98 LN_NE = log ( NE_t_L1+NE_t_L2+NE_t_L3 ) ;
99 y = LN_RUT−LN_NE;

100 t = R ( : , 1 ) /365;
101 for n = 1 : length ( t ) %% To c a l c u l a t e ln ( t ) , t >=0
102 i f t (n) <0
103 t (n) = 0.0000001;
104 end
105 end
106 LN_t = log ( t ) ;
107 sz = 10;
108 %X = [ ones ( s i z e ( y ) ) LN_t ] ;
109 %[ b , bint , r , r int , s t a t s ] = r e g r e s s ( y , X) ;
110 %Plot the regreesion function and the points
111 x1 = −5:0.001:5;
112 y1 = −0.8894*x1−0.6486; % The r e g r e s s i o n function has been found
113 plot ( LN_t , y , ’ k . ’ , x1 , y1 , ’ MarkerFaceColor ’ , [ 0 0.4470 0.7410])
114 xlabel ( ’ Logrithm of age ’ )
115 ylabel ( ’ ln (RUT) − ln ( I AL) ’ )
116 axis ([−4 4 −4 4 ] )
117

118 %% Model 6 : Non−l in ear r e g r e s s i o n model of rutt ing : RUT = mln ( ( NE_L1 + NE_L2+
NE_L3) T^x ) +w

119 R_t = R( : , 1 6 ) ;%R_ { t } =& predicted rutt ing at time t (mm/km Bump I n t e r g r a t o r t r a i l e r )
120 LN_RUT = log ( R_t ) ;
121 LN_NE = log ( NE_t_L1+NE_t_L2+NE_t_L3 ) ;
122 y = R_t− LN_NE;
123 t = R ( : , 1 ) /365;
124 for n = 1 : length ( t ) %% To c a l c u l a t e ln ( t ) , t >=0
125 i f t (n) <0
126 t (n) = 0.0000001;
127 end
128 end
129 LN_t = log ( t ) ;
130 X = [ ones ( s i z e ( y ) ) LN_t ] ;
131 [ b , bint , r , r int , s t a t s ] = regress ( y , X) ;
132 %Plot the regreesion function and the points
133 x1 = −5:0.001:5;
134 y1 = −0.6326*x1 +3.689; % The r e g r e s s i o n function has been found
135 plot ( LN_t , y , ’ k . ’ , x1 , y1 , ’ MarkerFaceColor ’ , [ 0 0.4470 0.7410])
136 xlabel ( ’ Logrithm of age ’ )
137 ylabel ( ’RUT − ln ( I AL) ’ )
138 axis ([−4 4 −1 20])





H
Matlab code for defining the thresholds of

the performance indicators

The chapter gives the sample Matlab code of computing the threshold values of the performance indicators,
that is the second step of the survival model. The following code is to formulate the critical value of the road
roughness on A15 in the WNZZ district region based on the data from 2015 to 2018. The concept can also
use for the computation of the threshold values of the other performance indexes, like the rutting, in other
roadways. In the study, The critical levels of roughness in ONZ district and rutting in WNZZ and ONZ districts
are also studied. But limited by the length of the thesis, the code is not included.

1 clear a l l
2 %% Data input
3 %I R I _ c l a s s i f i c a t i o n
4 %Zoab_IRI_1HRL_WNZZ
5 From_km_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’D2: D350 ’ ) ;
6 IRI_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’O2: O350 ’ ) ;
7 From_km_2016_1HRL= xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’D2: D350 ’ ) ;
8 IRI_2016_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’O2: O350 ’ ) ;
9 From_km_2017_1HRL= xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’D2: D350 ’ ) ;

10 IRI_2017_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’O2: O350 ’ ) ;
11 From_km_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’D2: D350 ’ ) ;
12 IRI_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’O2: O350 ’ ) ;
13 %Zoab_IRI_1HRR_WNZZ
14 From_km_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’D2: D350 ’ ) ;
15 IRI_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’O2: O350 ’ ) ;
16 From_km_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’D2: D350 ’ ) ;
17 IRI_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’O2: O350 ’ ) ;
18 From_km_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’D2: D350 ’ ) ;
19 IRI_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’O2: O350 ’ ) ;
20 From_km_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’D2: D350 ’ ) ;
21 IRI_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’O2: O350 ’ ) ;
22

23 I R I _ D i f f = zeros (350 ,3) ; %IRI variance during 1 year
24 N_IRI_2015 = length ( IRI_2015_1HRL ) ; % Number of IRI data in 2015
25 N_IRI_2016 = length ( IRI_2016_1HRL ) ; % Number of IRI data in 2016
26 N_IRI_2017 = length ( IRI_2017_1HRL ) ; % Number of IRI data in 2017
27 N_IRI_2018 = length ( IRI_2018_1HRL ) ; % Number of IRI data in 2018
28 %% IRI variance in 2016
29 %Zoab_IRI_1HRL_WNZZ
30 for i =1: N_IRI_2016
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31 n = 1 ; %row
32 while From_km_2015_1HRL(n) ~= From_km_2016_1HRL( i ) && n < N_IRI_2015
33 n = n +1;
34 end
35 i f From_km_2015_1HRL(n) == From_km_2016_1HRL( i )
36 I R I _ D i f f ( i , 1 ) = IRI_2016_1HRL ( i )− IRI_2015_1HRL (n) ;
37 x_2015_1HRL ( i ) = IRI_2015_1HRL (n) ;
38 y_2015_1HRL ( i ) = I R I _ D i f f ( i , 1 ) ;
39 end
40 end
41 %% IRI variance in 2017
42 %Zoab_IRI_1HRL_WNZZ
43 for i =1: N_IRI_2017
44 n = 1 ; %row
45 while From_km_2016_1HRL(n) ~= From_km_2017_1HRL( i ) && n <= N_IRI_2016
46 n = n +1;
47 end
48 i f From_km_2016_1HRL(n) == From_km_2017_1HRL( i )
49 I R I _ D i f f ( i , 2 ) = IRI_2017_1HRL ( i )− IRI_2016_1HRL (n) ;
50 x_2016_1HRL ( i ) = IRI_2016_1HRL (n) ;
51 y_2016_1HRL ( i ) = I R I _ D i f f ( i , 2 ) ;
52 end
53 end
54 %% IRI variance in 2018
55 %Zoab_IRI_1HRL_WNZZ
56 for i =1: N_IRI_2018
57 n = 1 ; %row
58 while From_km_2017_1HRL(n) ~= From_km_2018_1HRL( i ) && n < N_IRI_2017
59 n = n+1;
60 end
61 i f From_km_2017_1HRL(n) == From_km_2018_1HRL( i )
62 I R I _ D i f f ( i , 3 ) = IRI_2018_1HRL ( i )− IRI_2017_1HRL (n) ;
63 x_2017_1HRL ( i ) = IRI_2017_1HRL (n) ;
64 y_2017_1HRL ( i ) = I R I _ D i f f ( i , 3 ) ;
65 end
66 end
67

68 %% Zoab_IRI_1HRR
69 %I R I _ c l a s s i f i c a t i o n
70 I R I _ D i f f = zeros (350 ,3) ; %IRI variance during 1 year
71 N_IRI_2015 = length ( IRI_2015_1HRR ) ; % Number of IRI data in 2015
72 N_IRI_2016 = length ( IRI_2016_1HRR ) ; % Number of IRI data in 2016
73 N_IRI_2017 = length ( IRI_2017_1HRR ) ; % Number of IRI data in 2017
74 N_IRI_2018 = length ( IRI_2018_1HRR ) ; % Number of IRI data in 2018
75 %% IRI variance in 2016
76 % Zoab_IRI_1HRR
77 for i =1: N_IRI_2016
78 n = 1 ; %row
79 while From_km_2015_1HRR(n) ~= From_km_2016_1HRR( i ) && n < N_IRI_2015
80 n = n +1;
81 end
82 i f From_km_2015_1HRR(n) == From_km_2016_1HRR( i )
83 I R I _ D i f f ( i , 1 ) = IRI_2016_1HRR ( i )− IRI_2015_1HRR (n) ;
84 x_2015_1HRR ( i ) = IRI_2015_1HRR (n) ;
85 y_2015_1HRR ( i ) = I R I _ D i f f ( i , 1 ) ;
86 end
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87 end
88 %% IRI variance in 2017
89 % Zoab_IRI_1HRR
90 for i =1: N_IRI_2017
91 n = 1 ; %row
92 while From_km_2016_1HRR(n) ~= From_km_2017_1HRR( i ) && n < N_IRI_2016
93 n = n +1;
94 end
95 i f From_km_2016_1HRR(n) == From_km_2017_1HRR( i )
96 I R I _ D i f f ( i , 2 ) = IRI_2017_1HRR ( i )− IRI_2016_1HRR (n) ;
97 x_2016_1HRR ( i ) = IRI_2016_1HRR (n) ;
98 y_2016_1HRR ( i ) = I R I _ D i f f ( i , 2 ) ;
99 end

100 end
101 %% IRI variance in 2018
102 % Zoab_IRI_1HRR
103 for i =1: N_IRI_2018
104 n = 1 ; %row
105 while From_km_2017_1HRR(n) ~= From_km_2018_1HRR( i ) && n < N_IRI_2017
106 n = n+1;
107 end
108 i f From_km_2017_1HRR(n) == From_km_2018_1HRR( i )
109 I R I _ D i f f ( i , 3 ) = IRI_2018_1HRR ( i )− IRI_2017_1HRR (n) ;
110 x_2017_1HRR ( i ) = IRI_2017_1HRR (n) ;
111 y_2017_1HRR ( i ) = I R I _ D i f f ( i , 3 ) ;
112 end
113 end
114 x =[x_2015_1HRL , x_2016_1HRL , x_2017_1HRL , x_2015_1HRR , x_2016_1HRR , x_2017_1HRR ] ;
115 y =[y_2015_1HRL , y_2016_1HRL , y_2017_1HRL , y_2015_1HRR , y_2016_1HRR , y_2017_1HRR ] ;
116

117 subplot ( 1 , 2 , 1 ) , s c a t t e r ( x , y )
118 t i t l e ( ’ IRI variance 2015−2018 ’ )
119 xlabel ( ’ IRI value 2015−2018 ’ )
120 ylabel ( ’ IRI variance during next year ’ )
121 axis ( [ 0 4 −2 1 . 5 ] )
122

123 %% Median of IRI variance in next year
124 i n t e r v a l = ( 0 : 0 . 1 : 4 . 5 ) ; %I n t e r v a l s of IRI
125 for i = 1 : length ( i n t e r v a l )
126 a = find ( x>= i n t e r v a l ( i )&x< i n t e r v a l ( i ) +0.1) ;
127 Median( i ) = median( y ( a ) , ’ omitnan ’ ) ;%Median of IRI variance in next year
128

129 end
130 subplot ( 1 , 2 , 2 ) , plot ( i nt er v al , Median , ’ k−* ’ , ’ MarkerIndices ’ , 1 : 1 : length ( y ) )
131 t i t l e ( ’Median f i l t e r i n g of IRI variance 2015−2018 ’ )
132 xlabel ( ’ IRI (m/km) ’ )
133 ylabel ( ’Median of IRI annual variance ’ )
134 axis ( [ 0 4 −2 2 ] )
135 hold on
136 grid on
137 hold o f f
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Survival model Matlab code

The chapter gives the Matlab code to define the distribution of the survival time on A15. The following code
is able to compute the probability density of the time to failure regarding IRI. And the model is also applied
to the rut depth, with the input of the measurmenrt data of rutting and the definition of the critical value (in
the study, it is 10 mm as Chapter 7.2).

1 clear a l l
2 %% Actual zoab IRI f a i l u r e observation
3 % ONZ DISTRICT
4 IRI_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’O2: O220 ’ ) ;
5 Time_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’T2 : T220 ’ ) ;
6 IRI_2016_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’O2: O220 ’ ) ;
7 Time_2016_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’T2 : T220 ’ ) ;
8 IRI_2017_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’O2: O220 ’ ) ;
9 Time_2017_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’T2 : T220 ’ ) ;

10 IRI_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’O2: O220 ’ ) ;
11 Time_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’T2 : T220 ’ ) ;
12

13 IRI_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’O2: O220 ’ ) ;
14 Time_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’T2 : T220 ’ ) ;
15 IRI_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’O2: O220 ’ ) ;
16 Time_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’T2 : T220 ’ ) ;
17 IRI_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’O2: O220 ’ ) ;
18 Time_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’T2 : T220 ’ ) ;
19 IRI_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’O2: O220 ’ ) ;
20 Time_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_ONZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’T2 : T220 ’ ) ;
21

22 IRI_CRI = 2 . 3 ; % Define IRI c r i t i c a l value
23

24 N_IRI_2015 = length ( IRI_2015_1HRL ) ; % Number of IRI data in 2015
25 n = 0 ;% No. of IRI l a r g e r than c r i t i c a l
26 for i =1: N_IRI_2015
27 i f IRI_2015_1HRL ( i ) >= IRI_CRI && Time_2015_1HRL ( i ) >=0
28 n = n + 1 ;
29 FT_ONZ(n) = Time_2015_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

30 end
31 end
32 N_IRI_2015 = length ( IRI_2015_1HRR ) ; % Number of IRI data in 2015
33 for i =1: N_IRI_2015
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34 i f IRI_2015_1HRR ( i ) >= IRI_CRI && Time_2015_1HRR( i ) >=0
35 n = n + 1 ;
36 FT_ONZ(n) = Time_2015_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

37 end
38 end
39 N_IRI_2016 = length ( IRI_2016_1HRL ) ; % Number of IRI data in 2016
40 for i =1: N_IRI_2016
41 i f IRI_2016_1HRL ( i ) >= IRI_CRI && Time_2016_1HRL ( i ) >=0
42 n = n +1;
43 FT_ONZ(n) = Time_2016_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

44 end
45 end
46 N_IRI_2016 = length ( IRI_2016_1HRR ) ; % Number of IRI data in 2016
47 for i =1: N_IRI_2016
48 i f IRI_2016_1HRR ( i ) >= IRI_CRI && Time_2016_1HRR( i ) >=0
49 n = n +1;
50 FT_ONZ(n) = Time_2016_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

51 end
52 end
53 N_IRI_2017 = length ( IRI_2017_1HRL ) ; % Number of IRI data in 2017
54 for i =1: N_IRI_2017
55 i f IRI_2017_1HRL ( i ) >= IRI_CRI && Time_2017_1HRL ( i ) >=0
56 n = n +1;
57 FT_ONZ(n) = Time_2017_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

58 end
59 end
60 N_IRI_2017 = length ( IRI_2017_1HRR ) ; % Number of IRI data in 2017
61 for i =1: N_IRI_2017
62 i f IRI_2017_1HRR ( i ) >= IRI_CRI && Time_2017_1HRR( i ) >=0
63 n = n +1;
64 FT_ONZ(n) = Time_2017_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

65 end
66 end
67 N_IRI_2018 = length ( IRI_2018_1HRL ) ; % Number of IRI data in 2018
68 for i =1: N_IRI_2018
69 i f IRI_2018_1HRL ( i ) >= IRI_CRI && Time_2018_1HRL ( i ) >=0
70 n = n +1;
71 FT_ONZ(n) = Time_2018_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

72 end
73 end
74 N_IRI_2018 = length ( IRI_2018_1HRR ) ; % Number of IRI data in 2018
75 for i =1: N_IRI_2018
76 i f IRI_2018_1HRR ( i ) >= IRI_CRI && Time_2018_1HRR( i ) >=0
77 n = n +1;
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78 FT_ONZ(n) = Time_2018_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the
duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

79 end
80 end
81

82 for i =1:n
83 FT_ONZ( i ) = FT_ONZ( i ) /365; %Transfer the f a i l u r e time from days to years
84 end
85

86 %% Actual zoab IRI f a i l u r e observation
87 % WNZZ DISTRICT
88 IRI_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’O2: O350 ’ ) ;
89 Time_2015_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRL ’ , ’T2 : T350 ’ ) ;
90 IRI_2016_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’O2: O350 ’ ) ;
91 Time_2016_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRL ’ , ’T2 : T350 ’ ) ;
92 IRI_2017_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’O2: O350 ’ ) ;
93 Time_2017_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRL ’ , ’T2 : T350 ’ ) ;
94 IRI_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’O2: O350 ’ ) ;
95 Time_2018_1HRL = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRL ’ , ’T2 : T350 ’ ) ;
96

97 IRI_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’O2: O350 ’ ) ;
98 Time_2015_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2015_1HRR ’ , ’T2 : T350 ’ ) ;
99 IRI_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’O2: O350 ’ ) ;

100 Time_2016_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2016_1HRR ’ , ’T2 : T350 ’ ) ;
101 IRI_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’O2: O350 ’ ) ;
102 Time_2017_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2017_1HRR ’ , ’T2 : T350 ’ ) ;
103 IRI_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’O2: O350 ’ ) ;
104 Time_2018_1HRR = xlsread ( ’ f : \RWSA15\Zoab_WNZZ_IRI . x l s x ’ , ’ 2018_1HRR ’ , ’T2 : T350 ’ ) ;
105

106 IRI_CRI = 2 . 3 ; % Define IRI c r i t i c a l value
107

108 N_IRI_2015 = length ( IRI_2015_1HRL ) ; % Number of IRI data in 2015
109 n = 0 ;% No. of IRI l a r g e r than c r i t i c a l
110 for i =1: N_IRI_2015
111 i f IRI_2015_1HRL ( i ) >= IRI_CRI && Time_2015_1HRL ( i ) >=0
112 n = n + 1 ;
113 FT_WNZZ(n) = Time_2015_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

114 end
115 end
116 N_IRI_2015 = length ( IRI_2015_1HRR ) ; % Number of IRI data in 2015
117 for i =1: N_IRI_2015
118 i f IRI_2015_1HRR ( i ) >= IRI_CRI && Time_2015_1HRR( i ) >=0
119 n = n + 1 ;
120 FT_WNZZ(n) = Time_2015_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

121 end
122 end
123 N_IRI_2016 = length ( IRI_2016_1HRL ) ; % Number of IRI data in 2016
124 for i =1: N_IRI_2016
125 i f IRI_2016_1HRL ( i ) >= IRI_CRI && Time_2016_1HRL ( i ) >=0
126 n = n +1;
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127 FT_WNZZ(n) = Time_2016_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the
duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

128 end
129 end
130 N_IRI_2016 = length ( IRI_2016_1HRR ) ; % Number of IRI data in 2016
131 for i =1: N_IRI_2016
132 i f IRI_2016_1HRR ( i ) >= IRI_CRI && Time_2016_1HRR( i ) >=0
133 n = n +1;
134 FT_WNZZ(n) = Time_2016_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

135 end
136 end
137 N_IRI_2017 = length ( IRI_2017_1HRL ) ; % Number of IRI data in 2017
138 for i =1: N_IRI_2017
139 i f IRI_2017_1HRL ( i ) >= IRI_CRI && Time_2017_1HRL ( i ) >=0
140 n = n +1;
141 FT_WNZZ(n) = Time_2017_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

142 end
143 end
144 N_IRI_2017 = length ( IRI_2017_1HRR ) ; % Number of IRI data in 2017
145 for i =1: N_IRI_2017
146 i f IRI_2017_1HRR ( i ) >= IRI_CRI && Time_2017_1HRR( i ) >=0
147 n = n +1;
148 FT_WNZZ(n) = Time_2017_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

149 end
150 end
151 N_IRI_2018 = length ( IRI_2018_1HRL ) ; % Number of IRI data in 2018
152 for i =1: N_IRI_2018
153 i f IRI_2018_1HRL ( i ) >= IRI_CRI && Time_2018_1HRL ( i ) >=0
154 n = n +1;
155 FT_WNZZ(n) = Time_2018_1HRL ( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

156 end
157 end
158 N_IRI_2018 = length ( IRI_2018_1HRR ) ; % Number of IRI data in 2018
159 for i =1: N_IRI_2018
160 i f IRI_2018_1HRR ( i ) >= IRI_CRI && Time_2018_1HRR( i ) >=0
161 n = n +1;
162 FT_WNZZ(n) = Time_2018_1HRR( i ) ; % FT i s the f a i l u r e time , which i s the

duration between the construction year and the observation date of the
c r i t i c a l s i t u at i on

163 end
164 end
165

166 for i =1:n
167 FT_WNZZ( i ) = FT_WNZZ( i ) /365; %Transfer the f a i l u r e time from days to years
168 end
169

170 %% Diagram Density d i s t r i b u t i o n of survival time
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171 % T = Servival time
172 for i = 1 : length (FT_WNZZ)
173 T( 1 , i ) = FT_WNZZ( i ) ;
174 end
175

176 for i = length (FT_WNZZ) +1: length (FT_WNZZ) +length (FT_ONZ)
177 T( 1 , i ) = FT_ONZ( i−length (FT_WNZZ) ) ;
178 end
179 % Plot the distrobution
180 binWidth = 2 ;
181 l a s t V a l = c e i l (max(T) ) ;
182 binEdges = 0 : binWidth : l a s t V a l +1;
183 h = histogram (T , binEdges , ’ Normalization ’ , ’ pdf ’ , ’ FaceColor ’ , [ . 9 . 9 . 9 ] ) ;
184 xlabel ( ’Time to f a i l u r e ( years ) ’ ) ;
185 ylabel ( ’ Probabi l i ty Density ’ ) ;
186 ylim ( [ 0 0 . 2 ] ) ;





J
DTC model Python code

The chapter gives the Python code to model DTC defined in Section 3.5. The code is to classify the pavement
regarding the road roughness. The similar program is used to categorise the road section concerning the
rutting. Limited by the length of the report, the code concerning the rutting does not display.

1 import pandas as pd
2 import numpy as np
3 from sklearn . tree import DecisionTreeClassif ier , export_graphviz
4 from sklearn import tree
5 from sklearn . model_selection import t r a i n _ t e s t _ s p l i t
6 from sklearn . metrics import accuracy_score
7 from sklearn . metrics import c l a s s i f i c a t i o n _ r e p o r t
8 from sklearn . metrics import confusion_matrix
9 from matplotlib import pyplot as p l t

10 import seaborn as sns
11 import graphviz
12 import pydotplus
13 import io
14 from scipy import misc
15 from IPython . display import display
16

17 # load dataset
18 df = pd . read_excel ( ’DTC. x l s x ’ , sheet_name = ’ Train_IRI ’ )
19 d f _ t e s t = pd . read_excel ( ’DTC. x l s x ’ , sheet_name = ’ Test_IRI ’ )
20 df . shape
21

22 # t a r g e t vector
23 d f _ t e s t . head ( )
24 d f _ t e s t . shape
25 t r a i n = df
26 t e s t = d f _ t e s t
27

28 features = [ ’ AGE_IRI ’ , ’SURFACE_COMBID ’ ,
29 ’SURFACE_DAB ’ , ’SURFACE_EAB ’ , ’SURFACE_OAB ’ , ’SURFACE_SMA ’ , ’SURFACE_ZOAB ’ , ’

SURFACE_ZOAB+ ’ , ’SURFACE_ZOABTW ’ , ’SURFACE_ZOEAB ’ ,
30 ’ IRI_VALUE_0 ’ ,
31 ’ I_L1 ’ , ’ I_L2 ’ , ’ I_L3 ’ , ’T_TEMP_25 ’ , ’T_TEMP_0 ’ , ’T_TEMP_0_below ’ , ’

T_PERCIPITATION ’ ]
32

33 # Decision t r e e
34 c = DecisionTreeClassi f ier ( min_samples_split =100 ,random_state = 0)
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35

36 x_train = t r a i n [ features ]
37 y_train = t r a i n [ "IRI_CLASS" ]
38 x _ t e s t = t e s t [ features ]
39 y _ t e s t = t e s t [ "IRI_CLASS" ]
40

41 dt = c . f i t ( x_train , y_train )
42 def show_tree ( tree , features , path ) :
43 f = io . StringIO ( )
44 export_graphviz ( tree , o u t _ f i l e = f , feature_names = features , class_names = ’ 01 ’ )
45 pydotplus . graph_from_dot_data ( f . getvalue ( ) ) . write_png ( path )
46 img = misc . imread ( path )
47 p l t . rcParams [ " f i g u r e . f i g s i z e " ] = (20 ,20)
48 p l t . imshow(img)
49

50 show_tree ( dt , features , ’ roughness100 . png ’ )



K
Prediction results of decision tree classifier

model

The chapter gives the prediction result of A15 by DTC model. The training data of the model is the mea-
surement data of A15 from 2015 to 2018. And the outputs are the lists of the A15 road sections which are
predicted to meet the maintenance requirement concerning road roughness or rutting on January 1st, 2019
in the following tables.
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148 K. Prediction results of decision tree classifier model
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150 K. Prediction results of decision tree classifier model
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152 K. Prediction results of decision tree classifier model
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