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Abstract

Pre-operational site comparison studies for Wave Energy Converters (WECs) typically do not account for
potential dependencies between site selection criteria. This study addressed this gap by developing a novel
copula-based site comparison framework that evaluated the trade-off between extreme loads and power pro-
duction while incorporating their dependency. The results showed that dependencies may exist between these
criteria and that accounting for them could improve conventional site comparison approaches. Additionally,
the study was extended to an operational context, enabling operators to anticipate future operational periods
with relatively high or low probabilities of failure.

The study began with a literature review to identify common site selection criteria, such as power production
and wave energy variability, as well as site selection trade-offs like extreme loads and fatigue. Building on
these insights, the focus was narrowed to a framework modeling the relationship between annual power
production (Ep) and annual peak heave load (F},). Subsequently, the framework was applied to three WEC
deployment sites in France, Portugal, and Ireland using thirty years of wave data from the ECHOWAVE
hindcast dataset. This data was fed into a power production model to calculate Ey and a load model
to estimate F),, yielding thirty annual observed (Fj, Ey) pairs per site. At each site, parametric bivariate
copulas were fitted to the (Fj, Ep) data to model their dependence and were then used to simulate 108
(Fp, Ep) samples per location. Probabilistic approaches were applied to compare sites based on the Ey—F),
trade-off, with F}, interpreted as probability of failure for a critical component resistance of f; = 3500 kN.

The results provided evidence of statistically significant Eo—F), dependencies in Portugal (r = —0.34) and
Ireland (r = 0.28), while independence could not be rejected for France (r = —0.10). The opposite signs
indicated that higher power production does not always correspond to higher extreme loads, providing
an opportunity to use this distinction to improve conventional site comparison approaches. Probabilistic
analysis of the simulated samples showed that France exhibited a much higher yearly probability of failure
(Pyearly, f ~ 14%) compared to Portugal and Ireland (Pyearly,r = 3%), with Portugal showing higher average
annual power production (Ey ~ 2098 MWh) compared to Ireland (Eg ~ 1752 MWh). France was therefore
left out of the subsequent analysis. Focusing on the remaining two sites, high power production in Ireland
corresponded with a higher probability that F}, exceeds fr, whereas in Portugal it corresponded with a lower
probability. This difference reflected the opposite correlations between Ey and F), in the two sites, with the
negative correlation in Portugal offering potential benefits for project profitability. Finally, the operational
analysis for Ireland revealed a statistically significant dependence between the first six months of production
(E1) and F,. This indicates that the yearly probability of F), exceeding f; varies annually and can be
estimated from the observed E; values, supporting more proactive maintenance scheduling.

The copula-based site comparison framework was used to estimate expected annual power production Fy and
yearly probability of failure Pyeary, f, positioning it as a potential alternative to conventional pre-operational
site comparison approaches focused on power production and extreme loads. In addition, the results suggested
that F,~Fy dependence can be opposing across sites, as high power production did not necessarily coincide
with higher extreme loads, which could have consequences for project profitability. Because this insight is not
captured by conventional site-comparison approaches, incorporating Fj,~Fq dependence could improve these
conventional approaches. Finally, the operational application showed that modeling the E;—F), dependency
could support more effective maintenance scheduling.
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1 Introduction

The urgent need to lower carbon emissions and ultimately fighting climate change is what is driving the
global energy transition. Fossil fuels, which now account for the majority of the world’s power production
(Energy Institute, KPMG, and Kearney, 2024), are a major contributor to greenhouse gas emissions, which
raise temperatures, cause extreme weather, endanger human health, cause species extinction, and increase
drought (United Nations, 2025).

Azam et al. (2021) estimated that the global energy demand will have risen with 11.6 times by 2050 compared
to 1950 and The UN Environment Program shows that globally, we are on track to produce more than double
the amount of coal, oil and gas by 2030 than we can burn if we are to limit global warming by 1.5°C (United
Nations Environment Programme (UNEP) and Partners, 2019). The need for renewable energy sources
to protect our environment is thus more important than ever. In 2023 the EU set a goal for reducing
the net greenhouse gas emissions by at least 55% by 2030 (European Commission, n.d.) and with 90% by
2040 (European Commission, 2024). Achieving these ambitious targets will require a fundamental shift to
renewable energy solutions.

The European Commission’s main target is to reach 300 GW of offshore wind and 40 GW of ocean energy
capacity by 2050 as part of the European Green Deal (Norton Rose Fulbright, 2020). To meet these objectives,
nearly €800 billion will be needed between now and 2050, covering investments across all offshore energy
solutions (European Parliament, 2020). Ocean energy is an attractive solution because it is a largely untapped
renewable ocean energy resource, it offers a reliable and renewable source of energy reducing fossil fuel
dependence. The Intergovernmental Panel on Climate Change (IPCC) estimates that the annual global
wave energy potential is approximately 29,500 TWh/yr, of which the wave energy potential off the coasts of
Eastern and Western Europe is about 2,800 TWh/yr (Intergovernmental Panel on Climate Change, 2012).
This is comparable to Europe’s total electricity consumption in 2023, recorded at 2,697 TWh /year (Ember,
2024). According to (Cruz, 2007; Mustapa et al., 2017; Wahyudie et al., 2017; Mork et al., 2010), between
10% and 20% of the total energy potential can be subtracted, which is a substantial amount compared to
the global energy demand.

The €800 billion investment in ocean energy will ultimately increase the installed capacity of wave energy,
resulting in a wide range of environmental, economic, and social benefits. These are: (i) the European
Commission estimates that ocean energy could generate up to €53 billion per year in global market value,
(ii) it is projected to create 400,000 jobs by 2050, (iii) it has limited environmental impact, and (iv) it
contributes to the decarbonization of Europe’s industries and citizens living in coastal regions (Ocean Energy
Europe, 2020). In addition to these advantages, wave energy also offers several technical benefits, as it is
more predictable and less volatile than wind and solar power (Energy Club TU Delft, 2025). One of the
major challenges in integrating renewable energy into the grid is short-term forecasting, as it helps manage
fluctuations in supply and demand (Reikard et al., 2015). Wave energy converters can produce energy up to
90% of the time, wind and solar on the other hand are only capable of producing energy 20-30% of the time
(Barua and Rasel, 2024). Due to its high predictability and low volatility, integrating wave energy with solar
and wind can enhance the stability of the overall energy supply and ultimately balance Europe’s electricity
grid (Ocean Energy Europe, 2020).

Despite wave energy’s benefits its commercial utilization remains very limited (Aderinto and Li, 2018; Barua
and Rasel, 2024). This is due to several technical and non-technical challenges (Guo and Ringwood, 2021),
including high operational expenditures, as wave energy converters require significant installation, opera-
tional, and maintenance costs, making them financially demanding. Additionally, extreme sea conditions
induce a high risk of failure and device loss, leading to an unattractive investment landscape for potential
stakeholders. While these are among the key challenges facing the sector, additional barriers exist. However,
considering the scope of this research, further challenges are not discussed.

Further analyzing the cause of these financial challenges, Coe et al. (2021) highlights that an increase in



average annual power production can lead to higher operational and maintenance costs due to the need to
counteract increased fatigue levels. Besides cost challenges, power production efficiency is equally impor-
tant. Different locations present varying conditions, resulting in differences in power production and overall
operating efficiency (Coe et al., 2018).

To improve the global commercialization of wave energy, financial challenges must be addressed. Improved
site comparison can play a key role in balancing low operational expenditures with high annual power
production, ultimately enhancing commercial viability. This research aims to develop and apply a copula-
based framework used to support pre-operational site comparison, considering trade-offs between device
performance and factors that could ultimately effect costs of wave energy projects. As Coe et al. (2021)
insightfully states: "As a wise engineer once said, ‘there is no free lunch.” Every benefit comes with some
finite cost. The balancing of these finite benefits and costs is, perhaps, the essence of engineering design.
The benefit of capturing the most powerful ocean waves may not be worth the cost."

Wave energy performance studies and resource studies are conducted to analyze the specific conditions at
each potential site and to compare them to ultimately find the most suitable site. These site comparison
studies typically assume independence between selection criteria, neglecting the relationship between criteria
may lead to overlooking factors that could have influenced site comparison assessment if they were taken
into account.

To address this gap, this study aims to explore the potential added value of taking the relationship between
site selection criteria into account. In order to achieve this, Copulas, mathematical models for the dependence
between variables, offer a flexible and promising approach to better assess the key criteria for each location.
While Copula models have been applied in various ocean engineering studies, their application to WEC site
comparison remains largely unexplored, this presents a unique opportunity to explore its potential.

This research is structured in two main parts. The first part is the literature study, where the copula-based
framework is developed to support pre-operational site comparison for a device inspired by the CorPower
C4 (CorPower Ocean, 2025), based on a trade-off between power performance and manageable loads while
taking their dependency into account. The second part applies the developed framework to three locations
to demonstrate how it could improve or replace conventional pre-operational site-comparison assessments.
These objectives lead to the following two research questions:

1. Literature Study: What copula-based framework can be developed to support pre-operational site
comparison for a device inspired by the CorPower C4, based on a trade-off between energy performance
and manageable loads?

2. Main Thesis: How could the developed copula-based framework be used to improve or replace con-
ventional pre-operational site comparison assessments?



2 Literature Study

In order to construct a copula-based framework that supports pre-operational site comparison and ultimately
addresses the literature study objective, the literature study is organized into five research areas. Subsec-
tion 2.1 addresses general site selection criteria, where resource and WEC-specific performance studies are
analyzed to build a thorough understanding of all criteria relevant to the pre-operational site comparison.
Subsection 2.2 investigates site selection trade-offs relevant to the commercial viability of wave energy con-
verter projects, particularly those associated with operational and extreme loads. Subsection 2.3 narrows
down the site selection criteria and trade-offs discussed in Subsections 2.1 and 2.2, ultimately presenting
the final framework. Finally, Subsection 2.4 presents the motivation behind the final framework, whereas
Subsection 2.5 describes the device characteristics and the kind of dataset utilized in this research.

2.1 General Site Selection Criteria

The most widely recognized criteria for determining site suitability can be categorized into three main
criteria: (i) wave energy resource, (ii) power production, and (iii) extreme events, depicted in Figure 1.
In literature, each of these criteria is assessed using different methodologies. Wave energy resource refers
to the availability and consistency of wave energy at a given location, which is typically quantified using
energy flux and pre-production metrics such as the coefficient of variation (CoV). Power production focuses
on efficiency and how much power is ultimately produced by a WEC, for which post-production metrics
are often applied. Extreme events are generally assessed using the return period wave, which represents the
wave height statistically expected to be exceeded once within a specified return period, such as 50 years.
This subsection reviews the three general site selection criteria, highlighting their importance and the ways
in which they are applied across different studies.

GENERAL SITE SELECTION CRITERIA

EXTREME
EVENTS

WAVE ENERGY
RESOURCE

POWER
PRODUCTION

* Post-Production Metrics
* Power Output

* Pre-Production Metrics

* Energy Flux * Extreme Return Wave

Figure 1: General site selection criteria identified from WEC studies

2.1.1 Wave Energy Resource

Site selection criteria focused on the wave energy resource evaluate the available wave energy without focusing
on any specific device. The wave resource is often described as wave flux or wave energy density (kW /m),
it tells how much energy is available for extraction. Besides wave power density, wave variability is a major
factor in resource assessments, incident wave conditions at any site are highly variable, fluctuations occur
within an individual wave cycle all the way up to seasonal and annual changes (Orszaghova et al., 2022). In
literature, wave variability at the resource level is often quantified using pre-production metrics. The reason
that variability is an important factor is that variability has a large influence on the overall performance of
a WEC. Multiple studies, such as Coe et al. (2021) and Reguero et al. (2015), focus on identifying suitable
locations for WEC deployment through resource assessments that highlight areas with high wave energy
potential and low seasonal or inter-annual variability. While wave energy flux and pre-production metrics
provide a valuable initial assessment, it does not indicate WEC performance. Given that this study focuses
on a particular device, resource-level assessments are of lesser importance.



2.1.2 Power Production

Site selection criteria focused on power production and are often expressed in the literature in the form of
post-production metrics or power output. Some studies calculate power output or its variability directly like
Orszaghova et al. (2022), while others use normalized metrics to enable comparison of different devices across
sites (Lavidas, 2020; Choupin et al., 2022; Lavidas, 2020; Lavidas et al., 2021; Bozzi et al., 2014). From these
studies, two main approaches to assessing the power output and variability of a WEC can be distinguished:
one focuses on comparing multiple WECs across multiple sites using normalized post-production metrics or
indices, while the other concentrates on a single WEC at a limited number of locations, where power output
and variability are evaluated more directly without necessarily relying on post-production metrics.

2.1.3 Extreme Events

Extreme events in wave energy occur when wave height (and associated wave period) exceed a established
threshold, often due to storms or seasonal variations. There is a number of technical issues when deploying a
WEC but the resistance to extreme wave loads is within the most challenging ones (Vannucchi and Cappietti,
2016). These events lead to heavy structural loads on the WEC, increasing the probability of failure (Santo
et al., 2020) and ultimately leading to higher maintenance costs, downtime or loss of device (Aderinto and
Li, 2018). Due to the significant challenges associated with extreme sea conditions, they are often considered
when determining site suitability. For this reason, extreme events are categorized as a "general site selection
criteria" in this research. However, they can also present a trade-off: A WEC may produce stable and
efficient power output at a site but be exposed to severe extremes, which will demand more robust mooring
systems. This increases capital expenditures and can ultimately reduce the project’s economic viability. Due
to this overlap between general site selection criteria and site selection trade-offs, the approaches used to
assess extreme events at each site will be further discussed in the Section 2.2.

2.2 Site Selection Trade-Offs

Subsection 2.1 highlighted the various approaches used to assess site suitability for WEC deployment. Once
a specific design is chosen, the focus typically shifts to WEC-specific performance studies, focusing on
power production, efficiency and production stability, which are three key criteria for evaluating device
performance. However, beyond these primary criteria, structural risks should also be considered. While
high-energy sea states offer greater power potential, they often come with (i) increased structural loads,
(ii) higher degradation rates, (iii) and exposure to extreme environmental conditions (Thies et al., 2014).
These factors can lead to accelerated fatigue, increased maintenance costs, potential operational downtime
and loss of device, ultimately impacting the long-term viability of the project (Ferri et al., 2014). To ensure
a balanced and cost-effective deployment, it is essential to evaluate trade-offs between device performance
and other factors associated with structural risks. Multiple studies focused on trade-offs in offshore floating
wind (OFW) and wave energy were reviewed. These studies ultimately served as inspiration for developing
a overview of all potential site selection trade-offs in wave energy. Floating wind studies were analyzed, as
offshore wind benefits from a more mature industry, standardized designs leading to extensive studies on
degradation and extreme conditions. In contrast, wave energy converters are still in the pre-commercial
phase, with diverse designs and fewer deployments. The following Subsections 2.2.1 and 2.2.2 provide an
overview of the main site selection trade-offs discussed in these studies.

2.2.1 OFW and WEC Studies

In short, OFW studies (Zhao and Dong, 2023; Winterstein et al., 1993; Yuan et al., 2024; Li and Zhang,
2020b) emphasize fatigue and extreme load calculations as key criteria for assessing site suitability and struc-



tural risks. WEC studies address similar issues, though within a less mature and more diverse technological
landscape. For example, Shahroozi et al. (2022) determined the design loads for mooring line forces based on
extreme conditions. Likewise, Katsidoniotaki et al. (2020) focuses on a point-absorber that is moored to the
seabed with a single mooring line. After determining the design load, a reliability assessment is conducted,
aiming to quantify the probability of failure for a critical component under extreme conditions. Beyond
survivability, operational conditions were addressed by Abaei et al. (2025), who developed a performance
evaluation framework combining power output and structural reliability. Similarly, Paduano et al. (2024)
proposed a standardized design approach using high-fidelity models, considering both peak loading under
extreme conditions and damage accumulation under operational conditions, while also emphasizing trade-offs
between energy performance and structural reliability. Paduano et al. (2024) seeks to develop a standard-
ized design approach using high-fidelity models, considering both operational and extreme conditions. For
extreme conditions, the focus is on assessing peak loading, while for operational conditions, the authors
perform an actual damage calculation.

2.2.2 Site Selection Trade-Offs Categorization

Figure 2 presents the site selection trade-offs identified in both WEC and OFW studies, categorized as
operational or extreme conditions. Since both conditions are important, their combination could offers a
comprehensive approach to site assessment. For extreme conditions, the focus is on survivability, evaluating
whether the peak force in the selected critical component exceeds the resistance of the system. Additionally,
if the system’s resistance and extreme load distribution can be determined, its reliability can be assessed.
In contrast, for operational conditions, the emphasis shifts toward fatigue, examining the long-term effects
of cyclic loading on a critical component. For each of these areas, a specific critical component is selected.
Across studies (Tom, 2022; Guo et al., 2022; Abaei et al., 2025), the following components are labeled as
"critical": (i) Mooring lines/fairleads/connections, responsible for station-keeping and resisting cyclic wave
loads, (ii) PTO system, which converts wave energy into usable power and is subject to mechanical stresses,
(iii) the hull of the buoy that must withstand hydrodynamic forces and environmental exposure.

SITE SELECTION TRADE-OFFS

EXTREME CONDITIONS (Hs, Tp) OPERATIONAL CONDITIONS (Hs, Tp)

CRITICAL COMPONENT CRITICAL COMPONENT

EXTREME LOADS SYSTEM RESPONSE OPERATIONAL LOADS

FATIGUE

Figure 2: Site Selection Trade-offs identified from WEC and OFW studies

In summary, site comparison requires balancing between power production and structural risks under both
operational and extreme conditions. Which of the site selection trade-offs in Figure 2 are evaluated in the final
copula-based site comparison framework of this study depends on the level of detail required, computational
costs, time constraints, and resource availability, which are discussed further in the following Subsection 2.3.
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2.3 Final Copula-Based Site Comparison Framework

Figure 3 shows the final copula-based site comparison framework. The framework addresses the trade-off
between power production and extreme loads. The left side of the framework focuses on the calculation of the
annual peak heave load F), exerted on the braking system in extreme conditions, while the right side focuses
on the calculation of the annual power production Ej over that same period. The fitted copula models the
dependence between [}, and Fy, and it enables the simulation of samples in which each sample represents a
pair of F}, and Ep. From these simulated samples, probabilistic approaches can be utilized to compare sites
based on a trade-off between power production and extreme loads.

SITE COMPARISON FRAMEWORK

OPERATIONAL CONDITIONS
F(Hs N Te)

POWER MATRIX

Figure 3: Final copula-based site comparison framework

The following subsections provide an initial overview of the steps within the final framework. Subsection 2.3.1
introduces the approach for determining Ejy, while Subsection 2.3.2 explains the approach for determining
F,. A more detailed explanation of these steps is provided in Sections 3 and 4.

2.3.1 Annual Power Production

The sea states corresponding to operational conditions are established using methods consistently utilized
in wave energy studies (Carballo and Iglesias, 2012; Nicolas Guillou, 2018; Orszaghova et al., 2022). This
approach produces a scatter diagram represented by the function F (HSM NTe, j), which describes how
frequently (or what fraction of time) different combinations of significant wave height Hy, ; and energy period
T, ; occur based on empirical (Hg,T,) time series extracted from the dataset. Only wave heights that fall
within the operational boundaries are considered as operational conditions. The expected power production
of the WEC is then determined using the power matrix. This matrix uses the operational conditions defined
by the wave scatter diagram F'(Hs, ; NTe, ;) as input to compute the expected power production for a chosen
time step AT'. In this study, an existing power matrix for a CorPower C4-inspired wave energy converter is

used.
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2.3.2 Annual Peak Heave Load

The univariate distributions of sea states for extreme conditions are first characterized applying Extreme
Value Analysis for both wave height Hy and period T, being Hy the dominant variable. Using the Peak
Over Threshold method, the highest values of Hy values are selected from the wave height time series. The
concomitant 7T}, value is sampled from the wave period time series; this is, the value of T}, that occurs at the
same time as the extreme Hg. This yields the highest observed wave height and wave period pairs (Hy, T)).
The extreme values of wave height H and period 7}, will be input for the load model, in this model the peak
heave load F), associated with the estimated extreme wave will be determined.

2.4 Copula-Based Site Comparison Framework Motivation

This Subsection combines the insights from Sections 2.1 and 2.2, which respectively examined (i) general site
selection criteria and (ii) site selection trade-offs. Ultimately, explaining why certain general site selection
criteria or trade-offs are within (or not) the framework depicted in Figure 3. The options considered for
general site selection criteria are illustrated in Figure 1, while those related to site selection trade-offs are
shown in Figure 2. Throughout this Subsection the general site selection criteria and trade-offs are evaluated
according to the four topics listed below, if a general criteria or trade-off does not meet one of these topics,
it is excluded from the framework. The topics are ranked from one to four based on importance. It is worth
noting that flexibility ranks second because the framework should be flexible to adapt to changes in scope. If
time allows, it should be possible to easily extend, but it must also be possible to cut back if certain aspects
turn out to be unfeasible. This adaptability is essential for maintaining progress under uncertain or evolving
conditions. Furthermore, computational feasibility is the third criteria because on one hand, modeling tools
and resources such as BEM-based toolboxes for WECs are available. On the other hand, if time-domain
results are needed, the simulations can take too long to be practical. Finally, uncertainty is ranked lowest,
as this study aims to demonstrate the framework in practice and show its added value. Due to the limited
time, this required simplifications in the F}, calculations.

1. Relevance to Research Objective: Does the parameter support the objective of this study?

2. Flexibility: Will including this parameter allow the framework to be adapted or expanded later (e.g.,
to include fatigue analysis or extreme scenarios)?

3. Computational Feasibility: Can the parameter be modeled with available tools, data and time?

4. Uncertainty: How robust is the parameter to variability or uncertainty in environmental data or model
assumptions?

Subsection 2.4.1 explains the motivation behind the inclusion or exclusion of site selection criteria and
trade-offs in the final framework. The selected critical component is presented in Subsection 2.4.2, while
Subsections 2.4.3 and 2.4.4 describe how operational and extreme sea states are modeled and applied as
inputs for calculating Fj, and FEj.

2.4.1 Extreme Loads vs Power Production

General site selection criteria depicted in Figure 1 came down to three assessment areas being (i) wave
energy resource, (ii) power production, (iii) extreme events. Extreme events are considered both as part
of these general site selection criteria and within the trade-offs. The first step is to determine which of
these general site selection criteria should be included in the final framework. As described in Subsection
2.1.1, pre-production metrics and energy flux provide valuable insights focused on the wave energy resource
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for broad site screening. However, they are not device-specific and do not capture how a particular WEC
performs. Given that this study’s objective is to evaluate WEC performance, the final framework will focus
on power production rather than the wave energy resource.

When evaluating the relevance of each site selection trade-off shown in Figure 2, operational conditions
are important within the scope of this research, as the power production of the WEC takes place under
these conditions. However, calculating loads in operational conditions may be too computational intensive
intensive as it would require many time-domain simulations. Extreme conditions, on the other hand, are less
time consuming to evaluate and represent one of the main barriers to the commercialization of wave energy.
They are therefore highly relevant for assessing suitable deployment locations and are directly linked to the
research objective of this study. Therefore, focusing on extreme loads provides a practical way forward, as
it balances computational feasibility with the need for meaningful insights, requiring calculations for only a
single extreme wave within a given period, such as monthly or yearly. Modeling the copula between extreme
loads on the critical component and the associated power production offers the opportunity to analyze
dependencies that might not be immediately apparent.

2.4.2 Braking System as Critical Component

The critical components of a WEC include the PTO system, the mooring lines, the hull, and the braking
system. In OFW applications, the mooring system is typically the primary component of interest due to
the large restoring forces it must induce. However, in WECs, the restoring forces required are significantly
lower, making the mooring system less critical from a design perspective. Additionally, calculating the loads
in mooring lines is computationally intensive, which makes them less practical to focus on in the analysis.
Furthermore, a review of the literature did not identify the hull as a commonly cited critical component for
WEC fatigue or failure. Notably, the PTO is subject to long-term degradation under operational conditions,
and its braking mechanism must be capable of withstanding substantial loads during extreme events. Multiple
researchers (Abaei et al., 2025; Guo et al., 2022; Ferri et al., 2014) consistently emphasize the significance
of accurately understanding and modeling the fatigue behavior and reliability of PTO systems. According
to the authors, it is essential for the commercial feasibility of WECs. This consensus justifies selecting the
PTO as a critical component. However, since the final framework focuses on extreme loads, the PTO is not
directly subjected to these conditions, as survival mode is typically activated. In survival mode, the braking
system absorbs the extreme loads and protects the PTO. For this reason, the braking system is selected as
the critical component on which Fj, is applied.

2.4.3 Operational Sea State Estimation

For the power production, the scatter function describes the operational sea state used as input for the
power matrix to calculate Ey. Each bin of the scatter plot represents the occurrence frequency of specific sea
states defined by Hs and T,. The power matrix corresponds to these bins, providing power output values
that can be multiplied by the bin frequencies to calculate Ey. This is necessary because the power matrix
consists specific bin intervals of Hy; and T, but the available data often does not match these intervals. As
a result, direct calculation of Ey from the wave data requires interpolation. However, interpolation methods
can introduce significant inaccuracies in the estimates. It is therefore more practical to use the scatter plot,
which bins the data to match the power matrix intervals.

2.4.4 Extremes Sea State Estimation

There are two options for modeling extreme sea states: (i) bivariate, and (ii) univariate approach. Option
(i) is a bivariate approach. In this option, a joint distribution of (H,,T),) is estimated and used as input
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to construct the environmental contours. From these contours, extreme sea states for a given return period
are estimated. Option (ii) is a univariate approach. In this case, H; is determined using the peak over
threshold (POT) method, and the concomitant T}, is sampled based on the timing of the extreme H,. From
literature no clear conclusion is drawn which method is most accurate in determining maximum wave height
H,. However the bivariate approach is widely used in offshore engineering because both the maximum peak
period T, and wave height H, are needed in pairs. If both of these maximum values were estimated using
the POT method the maximum wave height Hg will not match the wave period 7),. However, when the
wave height Hj is estimated using the POT method and its concomitant wave period 7}, is sampled, accurate
results are obtained. In this way the POT method can still be used to estimate pairs of extreme wave height
and period. Because of its simplicity and maintained accuracy due to sampling the concomitant 7T}, this
method will be utilized in the final framework.

2.5 Device and Wave Data
2.5.1 Device Description

A point absorber inspired by the CorPower C4 serves as the device of interest for applying the copula-based
site comparison framework. The device moves up and down with the waves, the PTO system transforms
this movement into power. It operates for wave heights between 0.5m and 10.5m. Despite the existence
of numerous WEC designs, commercial success has yet to be achieved. This is primarily due to two costly
challenges: efficiency and survivability (Aderinto and Li, 2019; Zhou et al., 2024). A key feature the core
power C4 has is its capability of adapting its response in varying sea conditions (Hals et al., 2016). The
system’s survivability is improved by its detune storm protection state. When large waves occur, the internal
pressure within the system increases, preventing the buoy from moving excessively with the waves. This
mechanism is comparable to how a wind turbine pitches its blades in high wind speeds. In terms of efficiency,
the buoy captures energy as it ascends with the waves. As it rises, energy is stored in internal springs, which
then generate a returning force as the buoy moves downward. This design allows the device to capture
energy throughout the entire wave cycle, rather than just during the upstroke (Marinis, 2023/2024). When
the waves become too large for the system to operate, the WEC activates a braking mechanism that restricts
the buoy’s vertical motion. This protects the PTO system from potential damage. The pre-tension mooring
system allows the buoy to pull itself towards the ocean floor in order to keep moving in phase with the waves,
maximizing efficiency.

2.5.2 Wave data and Location

In this research, the ECHOWAVE hindcast (Alday and Lavidas, 2024) is used to obtain wave data for input
into the framework. This dataset was developed using WAVEWATCH III (Tolman, 1989). The hindcast is
designed to provide reliable sea state characterizations for wave energy applications and is available along the
entire European Atlantic coast. It has a spatial resolution of approximately 2.3 km and covers a duration of
30 years. The dataset is long-lasting, uniform, and gap-free, making them suitable for the chosen framework.
The framework will be applied to conduct assessments at three sites, located in Portugal, Ireland, and France.
The specific coordinates of each site are presented in Table 1.

Location Longitude (°) Latitude (°)

France -8.38 47.50
Portugal -13.75 39.75
Ireland -9.61 52.78

Table 1: Site location and associated coordinates
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2.6 Literature Study Summary

This literature study reviewed general site selection criteria and trade-offs used in WEC site comparison
studies. The final copula-based framework for pre-operational site comparison was developed by narrowing
the focus to Fy and Fj, and modeling their relationship with a copula. Ejp is a main driver of wave energy
project success, while Fj, affect commercial viability, as they can cause heavy structural loading, higher
maintenance costs, downtime, or even device loss. Operational loads and fatigue are also important, but
their computational intensiveness places them outside the practical scope of this study. By focusing on
extreme conditions, the framework balances computational feasibility with meaningful insights. The braking
system was selected as the critical component due to its role in survival mode under extreme events, and the
application of copulas introduces a novel way of capturing dependencies between Ey and F), that conventional
site comparison approaches cannot reproduce. In the following sections, the framework is applied to three
sites to explore how this novel approach can improve or replace conventional site comparison approaches.
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3 Power Production

This research demonstrates the practical application of the copula-based site comparison framework, which
assesses site suitability by analyzing the dependency between annual power production Ey and peak heave
loads F),. As indicated in Figure 4 this section focuses solely on the Fy. Subsection 3.1 describes the
methodology for determining Ey. Subsection 3.2 elaborates on the computations and presents the associated
results.

SITE COMPARISON FRAMEWORK
TIME SERIES
(Hs, Te)

CONCOMITANT OPERATIONAL CONDITIONS

Tp F(Hs N Te)

LOAD MODEL POWER MATRIX

ANNUAL PEAK HEAVE LOAD (Fp) ANNUAL POWER PRODUCTION (Eo)

\

Figure 4: Copula-based site comparison framework, Section 3 focuses on the right-hand “Powery Production”
branch (in red) which feeds Ep into the copula model.

3.1 Methodology

Equation 1 gives the formulation to estimate the energy produced by a WEC, relying on the scatter function
F(Hs, ; NTe, ;) which represents the probability of occurrence of each sea state combination (Hg,T.). The
WEC power matrix PM; ; represents equivalent power curves by mapping the energy output across various
wave heights and energy periods. Each bin of the power matrix defines the energy output of the WEC for a
certain sea-state combination (Hg,T:). Multiplying those terms by the time step AT yields the total energy
produced over a given period. In this subsection the methodology used for constructing the joint probability
scatter function and the corresponding power matrix is outlined.

NTe NMHg

Ey=> Y F(H,,NT.,) PM;;-AT (1)
i=1 j=1

3.1.1 Power Matrix

This research builds on the PM developed by Alday et al. (2023). The PM describes the power production
of the Corpower-inspired WEC for each sea-state bin. How the power production values for each bin were
determined by Alday et al. (2023) is explained in Appendix G.
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3.1.2 Power Matrix Reduction

In Section 4, extreme sea states are identified and used as input for the load model, which ultimately calculates
F,. This load model calculates F), under a "survival mode" scenario, meaning the WEC is not operating
and is kept fixed in the water to protect its PTO system. To obtain at least one F), per year, the WEC
must enter survival mode at least once annually. However, with the PM cut-off wave height set at 10.5 m,
the WEC does not enter survival mode at some locations, making the framework inapplicable. To allow the
framework to compare a wider range of locations, the PM cut-off wave height is reduced so that the device
stops operating at lower wave heights. The capacity factor, shown in Equation 2, quantifies how efficiently
the WEC operates over time. Here Py is the WEC rated capacity and Ej is its power production. The
C4-inspired CorPower wave energy converter has a rated capacity of 400 kW. To determine an appropriate
new cut-off wave height, 30-year average capacity factors are calculated for different cut-off values to assess
the impact of this reduction on the expected power production of the WEC. Table 2 indicates the 30-yr
average capacity factors at France, Ireland, and Portugal for different cut-off wave heights.

Eo
F= 2
¢ P,- AT @)
CFp, >105 CFh,>s CFp,>7 CFh,>6
Capacity Factor France(%) 61.3 60.7 59.6 57.2
Capacity Factor Ireland(%) 52.1 51.8 51.2 49.8
Capacity Factor Portugal(%) 61.4 61.3 60.9 59.8

Table 2: Average 30-yr capacity factor for reduced power matrices in France, Ireland and Portugal.

Table 2 shows that lowering the PM cut-off wave height from 10.5m to 6m results in an annual loss of
expected power production ranging from approximately 2% to 4%, depending on the location. This minor
loss justifies the adjustment, as its significantly increases the likelihood of capturing at least one survival
mode event per year. Additionally, the braking system of the WEC is protected in this way, as stopping
the WEC from operation at 6 m instead of 10.5 m greatly reduces the forces induced on this system while
only a small portion of expected power production is lost. Besides the PM reduction being necessary for the
framework to be applicable across an increased number of sites, it may also extend the lifetime of the critical
components of the braking system while maintaining acceptable power output.

3.1.3 Scatter Function

In order to determine Ep, the scatter function shown in Equation 3 is utilized. Here, ¢;; represents the
number of hours whose (Hg, T,) pair falls into the bin defined by the i, wave height interval and jy, energy
period interval. N is the total number of valid hours in that year. In other words, F(Hy;, T, ;) represents
how often that particular sea state occurs. For each location, the annual scatter function is determined and
at a later stage it is multiplied with the PM to yield Ejy.

) = (3)

F(H,, . NT,
( N

Si,j €ij

3.2 Computation and results

To compute Ej for thirty years, a computational model is constructed. For each of the years a joint probability
scatter function is computed which is multiplied with the PM and the timestep. Ultimately, Ey for each
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year from 1992 through 2021 is estimated. The individual steps of the computational model are detailed in
Subsection 3.2.1, and the resulting outputs are presented in Subsection 3.2.2.

3.2.1 computational model

1. Wave data extraction: In this research, the ECHOWAVE hindcast dataset (Alday and Lavidas, 2024)
is used. Via the Metocean-API (Metocean API Contributors, 2025) hourly time series of significant wave
height Hs and peak frequency f, are extracted for thirty years.

2. Estimation of T,: The energy period is estimated with use of the calibration coefficient «, such that
T. = oaTy,a = 0.90. In Literature o is chosen based on spectral shape assumptions. This choice
reflects a JONSWAP spectrum with v = 3.3, representative of fetch-limited mid-Atlantic conditions.
This estimations remains a widely used approximation for preliminary analyses. As Example, Table 3
shows a small slice of the 1995 time series for the first location. It includes all relevant variables needed
to construct the scatter plots in step 4.

Date Time Hy (m) T,=1/f,(s) Te=0.9% T, (s)

1995-01-01 00:00  4.602 13.33 11.99
1995-01-01 01:00  4.510 13.33 11.99
1995-01-01 02:00  4.398 13.16 11.84
1995-12-31 23:00  7.420 11.24 10.11

Table 3: Example of extracted hourly wave data for 1995 at Portugal.

3. Scatter function: For each of the 30 years of data, a two-dimensional histogram of (Hg,T,) is con-
structed. To ensure direct compatibility with the PM, the histogram’s bin edges for H; and T, are
aligned with those of the PM. Specifically, Hy is divided into 29 bins of width 0.5 m and T, is divided
into 22 bins of width 1 sec. For each of the bins in the histogram the scatter function is defined as the
fraction of hours spend in each bin, as shown in Equation 4. These fraction of hours spend at each bin
must sum to one across all bins, which is stated in Equation 5.

Ci
F(HSi,j mTei,j) = ]ZVJ (4)
29 22

ZZF(HS’L,j N Tei,j) =1 (5)

i=1 j—1

4. Scatter plots: To illustrate the frequency of occurrence of each sea state, two representative scatter
plot heatmaps are shown in Figure 5. Each heatmap shows the frequency of occurrence of each sea
state pair (Hs,T.) in the year 1996 and 1997. The horizontal axis shows T (0-21s in 1s steps), and the
vertical axis shows Hg (0-14m in 0.5m steps). Darker red cells indicate higher frequency of occurrence
(more hours spent in a sea state bin).
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Scatter Plot of H; and T, 1996

Significant wave height H. {m)

2.

5. Power production calculation: Equation 6 shows how FEj is computed. For each sea-state bin
(Hs,i,Te,;), the scatter function F'(H,;, T, ;) is multiplied by the corresponding PM (H,;,T¢ j), which
represents the device’s power output for that sea state. Summing these products over all 29x22 bins
yields the device’s long term average power. Multiplying that average by the total operating time

At = 24hr « N (where N is the number of operational days in a year) gives FEj.

calculation for each year from 1992 to 2021 produces thirty values of Ej.

3.2.2 Results

The Ey and CF for France are shown in Table 4 as an example, the results for all three locations are shown
in Appendix A.1. The capacity factor (see Equation 2) is included as a sanity check for the annual power
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Figure 5: Scatter plots of the location in Portugal for the year 1996 and 1997
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Repeating this

Year | Eo (MWh) | CF (%) | Year | E, (MWh) | CF (%) | Year | Ey (MWh) | CF (%)
1992 | 2266.6 64.5 2002 | 2149.3 61.3 2012 | 20574 58.6
1993 | 2018.8 57.6 2003 | 1963.2 56.0 2013 | 2055.6 58.7
1994 | 1992.4 56.9 2004 | 19509 55.5 2014 | 1930.0 55.1
1995 | 1862.7 53.2 2005 | 1877.5 53.6 2015 | 2215.0 63.2
1996 | 1944.5 55.3 2006 | 19319 55.1 2016 | 2047.8 58.3
1997 | 1928.2 55.0 2007 | 1807.6 51.6 2017 | 1960.7 56.0
1998 | 1967.8 56.2 2008 | 2174.3 61.9 2018 | 2120.3 60.5
1999 | 2052.7 58.6 2009 | 1965.6 56.1 2019 | 2016.3 57.5
2000 | 2010.0 97.2 2010 | 1866.5 593.3 2020 | 2017.1 97.4
2001 | 19179 54.7 2011 | 2209.9 63.1 2021 | 19194 54.8

Table 4: Annual power production and CF for France
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4 Load Model

As indicated in Figure 6, this section focuses on computing the annual peak heave loads F}, on the Corpower
C4 inspired WEC. A Python script is constructed that combines Capytaine Boundary Element Method
(BEM) (Ancellin and Dias, 2019; Babarit and Delhommeau, 2015) outputs with Morison’s drag and inertia
terms. This hybrid approach yields the maximum heave load on the converter for each annual extreme
sea state. This section begins with a description of the modeling approach for the WEC under extreme
scenarios (see Subsection 4.1), followed by the annual extreme sea states used as input (see Subsection
4.2), and concludes with the methodology (see Subsection 4.3) and the computational steps and results (see
Subsection 4.4).

SITE COMPARISON FRAMEWORK

TIME SERIES
(Hs, Te)

CONCOMITANT OPERATIONAL CONDITIONS
Tp F(Hs N Te)

POWER MATRIX

Figure 6: Copula-based site comparison framework, Section 4 focuses on the left-hand “Load Model” branch
(in red) which feeds F}, into the copula model.

4.1 Modeling Approach

The load model branch in Figure 6 computes F,, on the WEC when it is in survival mode. In the Corpower-
C4 inspired design, “survival mode” means the significant wave height Hg exceeds 10.5 m. At that point,
the device locks out all PTO motion and the entire body remains fixed in the water, protecting the PTO.
The body is held stationary until conditions ease and H falls below the threshold again. For these extreme
conditions, when the device is in survival mode, the heave loads that the braking system must endure are
calculated. Figure 7 shows the simplified modeling scenario: a vertical cylinder of diameter D and draft d
with the same mass and dimensions as the C4 device, placed in an infinite-depth ocean (h = o0). A regular
wave with crest amplitude a and wavelength A travels in positive z direction. Under these fixed-body,
deep-water, regular-incoming-wave assumptions, F), is calculated.

By using a regular incoming wave with a single frequency w and amplitude a, it ensures that when the
Capytaine BEM solver (Ancellin and Dias, 2019; Babarit and Delhommeau, 2015) uses this as input it
returns hydrodynamic coefficients and an excitation force amplitude for that single frequency w. If an
irregular sea state was used as input (a spectrum of many frequencies w;), the BEM solver would give
coefficients and amplitudes for each of the frequencies w; embedded in the irregular sea state. Copula can
only model dependencies between scalar values. Therefore, all those frequency specific results would then
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have to collapse into a single extreme force via spectral integration, which is computationally intensive.
Because this study is focuses on comparing sites rather than designing a device, a single frequency regular
wave provides a consistent and computationally efficient approach for estimating F), across different locations.

h=inf

Figure 7: Modeling approach

4.2 Extreme Sea States

From the ECHOWAVE data set, the highest occurred annual significant wave heights H and their concomi-
tant wave period T, are selected. Table 5 presents the extreme sea states for France as an example, while
the extreme sea state data for all other locations is shown in Appendix B.1. For each of these sea states, a
F, is calculated. The methodology used for this calculation is discussed in the following Subsection 4.3.

Year | Ho(m) | Tp(s) Year | Hy(m) | Tp(s) Year | Hy(m) | Tp(s)
1992 8.33 17.86 2002 11.06 19.61 2012 9.86 16.39
1993 10.02 17.86 2003 9.15 20.83 2013 9.66 12.66
1994 13.75 17.86 2004 10.48 14.29 2014 16.77 18.87
1995 11.39 13.89 2005 10.57 13.70 2015 10.19 16.95
1996 11.40 18.18 2006 9.66 16.67 2016 13.42 21.28
1997 10.01 13.70 2007 14.32 18.18 2017 13.23 18.87
1998 12.18 16.67 2008 14.75 19.23 2018 10.37 17.86
1999 10.50 12.82 2009 10.10 16.39 2019 10.17 20.00
2000 9.67 13.89 2010 11.72 17.86 2020 11.51 16.13
2001 9.15 17.86 2011 10.53 21.74 2021 11.33 17.54

Table 5: Annual maximum significant wave height and concomitant peak period France

4.3 Methodology

This subsection outlines the methodologies used for computing F}, on the WEC by proceeding through three
steps: first, defining the device geometry and surface mesh, second, applying a Boundary Element Model
(BEM) to compute frequency dependent hydrodynamic coefficients and wave excitation amplitude, and third,
using Morison’s equation to evaluate inertial and drag contributions.
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4.3.1 Geometry and Mesh Size

The body used for the load model is simplified and modeled as a cylinder with diameter D = 9m, draft
d = 6m and height H = 12m. The mean sea level is set at z = 0, and the cylinder’s axis lies at x = 0, y = 0.
The device mass is 70000kg. Figure 8 depicts the body and its defining geometries.

MSL

A J

Figure 8: Simulation model of body

To select an appropriate surface discretization, a mesh convergence study was conducted in Capytaine (An-
cellin and Dias, 2019; Babarit and Delhommeau, 2015). Each mesh is defined by (nf,n¢,ny), where nys
denotes panels on each circular face, n. panels around the circumference, and n, panels along the height.
The mesh (nf,n¢,ny) is refined until the heave-added-mass coefficient As3 changed by less than 1%. Table
6 shows that for a meshing of (6,192,108) the added mass converges to 210.0 * 103kg. This mesh size will
be used for all subsequent F}, calculations.

mesh size (nf, nc, 1) (2,16, 9) | (4, 64, 36) | (4, 128, 72) | (6, 192, 108) | (3, 256, 144)
added mass Az (10° kg) | 215.5 212.0 209.9 210.0 210.4
relative change (%) — 1.6% 1.0 % 0.05% 0.2%

Table 6: Mesh convergence for added mass coefficient Ass.

4.3.2 Boundary Element Method

The boundary element method is a fast, automated way to obtain frequency-dependent hydrodynamic coeffi-
cients for the body defined in 4.3.1. The linear potential flow BEM solver solves a surface integral equation for
the fluid potential under both radiation and diffraction boundary conditions. The model returns the added
mass, radiation coefficients, and excitation force amplitude. For the modeling approach in this research, only
the added mass and excitation amplitude are extracted and used from the BEM solver; for further reasoning
on this, see Subsection 4.4.1, where all steps to determine the extreme heave load are explained.
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4.3.3 Morison’s Equation

Morison’s equation 7 is used to compute the hydrodynamic load on a slender body when the dimension is
small compared to the wave length. The equations takes viscous drag and inertia into account and it assumes
the incident wave is not effected by the presence of the device due to its small dimension (Subbulakshmi
et al., 2022).

Fit)= pCuVU() + 5pCad|U()|U() ()

inertia / added-mass drag

where:

p is the fluid density,

C, is the added-mass coefficient,

V is the displaced volume (or per-unit-length area),

Cy is the drag coefficient,
e A is the reference area,

o U(t) is the fluid velocity relative to the body.

4.4 Computation and Results

The load model computes F}, on the fixed body. These F}, values are referred to as the extra load on top
of the equilibrium state induced by the incoming regular extreme wave. The model assumes that at the
equilibrium position, any imbalance between the buoyant force and the structure’s weight is compensated by
the pre-tensioning system. When the wave crest arrives, the model only considers the extra forces on top of
the equilibrium state. Because in equilibrium position Fyeight + Fhouyancy + Fmooring = 0, they are ignored
in the model. Under this assumption and with the body held in a fixed position. radiation damping and
PTO forces vanish. Therefore, F}, reduces to Equation 8. Here F,,. is the wave excitation force, Fy.q, and
Fipertia are the Morison drag and inertia terms in Equation 7.

Fp = Fexc + Fdrag + Finertia (8)
~N ——
BEM Morison’s

A computational model is constructed to compute F), each extreme sea state shown in Appendix B.1. The
following Subsection 4.4.1 discusses its specific steps.

4.4.1 Computational Model

To compute F},, a computational model consisting of several steps is constructed. This subsection outlines
those steps and their corresponding justification. The core of the model utilzies the Capytaine BEM solver
(Ancellin and Dias, 2019; Babarit and Delhommeau, 2015) to solve the linear potential flow diffraction
problem, providing the complex wave excitation amplitude added mass in heave direction.
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1. Geometry and Mesh: A vertical cylinder mesh with associated diameter, length and draft is defined.
The cylinder is positioned in its equilibrium position by setting the bottom at z = —draft and its top
at z = —draft + length. The geometric midpoint of the cylinder lies at z = @ — draft relative to
the mean sea level (z = 0).

2. Wave Parameters: In this simplified model a regular wave with a single frequency w and wave height
H; is used as an input. Although BEM can be run over a range of wave frequencies w to build a full
excitation spectrum, in this research the copula based analysis requires only a single scalar value for
F, for each of the extreme sea states. By selecting a single frequency as input, one wave excitation
amplitude and one added-mass value for that specific frequency w can be obtained.

3. BEM Solver: A floating body object is created by combining the surface mesh with its degrees of
freedom, here only a single heave DOF is assigned. Capytaine (Ancellin and Dias, 2019; Babarit and
Delhommeau, 2015) then computes and returns the frequency-dependent hydrodynamic coefficients:
added mass Asz, radiation damping Bss, diffraction force, Froude-Krilov force and total excitation
force. For the survival mode scenario only the added mass and the excitation force influence the extra
hydrodynamic load on the fixed structure under a passing wave. These contributors can be described
and derived as follows:

e Wave Excitation Force: The wave excitation force consists of the Froude-Krilov and diffraction
force. The Froude-Krylov force represents the pressure on the body from the undisturbed incident
wave. the pressure is derived from the the velocity potential of the wave, it is integrated over wetted
surface of the body which gives the Froude-Krylov force. The diffraction force is the wave pressure
resulting from waves diffracting off the surface of the hull, the pressure is found by solving the
linear diffraction problem and integrating those diffracted wave pressures over the wetted surface
(Alves, 2016). For the frequency w of a regular incoming extreme wave, the BEM solver combines
the diffraction and Froude-Krylov force and returns a single complex excitation force amplitude
ﬁexc(w) for a frequency w in heave direction.

e Added Mass: The added mass As3 represents the effective mass of fluid that "sticks" to the
cylinder when it moves in the vertical direction. In the BEM solver, this coefficient is obtained
by prescribing a unit heave oscillation of the body and integrating the resulting pressure field to
find the inertia force, giving Ass as the heave-heave added mass. In the survival mode the cylinder
itself is fixed, but the water still accelerates vertically under the passing wave. Therefore Asjs is
used to convert that fluid acceleration into the inertia force on the stationary structure defined
with Equation 9. Here u(t) is the fluid acceleration and Ass(w) is the added mass for the frequency
w of a regular incoming extreme wave.

Enertia(t) = A33(W) u(t) (9)

4. Wave Kinematics: To compute inertial and drag forces, a deep water regular wave is assumed. Under
these conditions the fluid motion can be defined by Airy’s linear wave theory (Airy, 1841). For a regular
wave characterized by amplitude a, angular frequency w, and wave number k. The velocity potential can
be described with Equation 10. The vertical and orbital velocity can then be described with equation
11 and 12 (Krogstad and Arntsen, 2010).

d(x,2,t) = 89 gz sin(kx - wt), (10)
w
u(z, z,t) = % = awer? sin(kz — wt) (11)
. du 2 kz
w(x, z,t) = 5r = aw'e cos(kz — wt) (12)
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5. Peak Heave Load Computation: The wave excitation term in Equation 8 dominates F},. Therefore,
the peak load occurs when the wave crest passes directly over the cylinder, maximizing the wave exci-
tation force. At that instant, the inertia and drag terms in Morison’s equation (dependent on orbital
velocity and acceleration) must be evaluated. Under the assumptions of deep water and regular waves,

the surface elevation is given by Equation 13, where k = %2.

n(z,t) = a cos(kz — wt) (13)

The surface elevation reaches its peak when cos(kx — wt) = 1. Then the velocity u(x, z,t) = 0 (drag
vanishes) and acceleration u(z, z,t) = —aw?e**. With these kinematics defined for the instant where
the wave crest passes directly over the cylinder, the final expression for the maximum heave load is
described with Equation 14. Because Ayqve << D, the fluid acceleration is uniform along the draft
so a single value for the acceleration is used to compute the inertia force. The BEM solver returns a
complex excitation force amplitude ﬁexc. To obtain its peak magnitude, the absolute value |ﬁexc| is
taken. Finally, because |ﬁexc(w)| is given per meter of wave elevation, multiplying by the maximum
crest amplitude a yields the maximum excitation force.

- Hmax
E,= |Fexc‘ *

—_——

Excitation Force

+ As3(w) * aw? e (14)

Inertia Force

4.4.2 Results

The load model uses the extreme sea states as input to estimate the associated [, on the Corpower C4
inspired wave energy converter. Table 7 depicts the extreme sea states and the associated Fj, for France, the
results for the other locations are shown in Appendix B.2.

Year | Hy(m)| T,(s) | Fp(kN)| Year | Hs(m)| Tp(s) | Fp(kN)| Year | Hg(m)| Tp(s) | Fp(kN)
1992 | 8.33 17.86 | 2265 2002 | 11.06 | 19.61 | 3093 2012 9.86 16.39 | 2599
1993 | 10.02 | 16.39 | 2641 2003 9.15 20.83 | 2599 2013 | 9.66 12.66 | 2226
1994 | 13.75 | 17.86 | 3738 2004 | 10.48 | 14.29 | 2595 2014 | 16.77 | 18.87 | 4639
1995| 11.39 | 13.89 | 2778 2005 | 10.57 | 13.70 | 2558 2015| 10.19 | 16.95 | 2720
1996 | 11.4 18.18 | 3118 2006 | 9.66 16.67 | 2563 2016 | 13.42 | 21.28 | 3831
1997 | 10.01 | 13.70 | 2422 2007 | 14.32 | 18.18 | 3916 2017 | 13.23 | 18.87 | 3660
1998 | 12.18 | 16.67 | 3231 2008 | 14.75 | 19.23 | 4103 2018 | 10.37 | 17.86 | 2820
1999 | 10.5 12.82 | 2440 2009 | 10.10 | 16.39 | 2662 2019 | 10.17 | 20.00 | 2859
2000 | 9.67 13.89 | 2358 2010| 11.72 | 17.86 | 3187 2020| 11.51 | 16.13 | 3014
2001 | 9.15 17.86 | 2488 2011 10.53 | 21.74 | 3021 2021 | 11.33 | 17.54 | 3062

Table 7: Extreme sea states and the associated Fj, for France
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5 Probabilistic Modeling

In the previous Sections 3 and 4, the computations and results of the annual power production Ey and peak
heave load F}, pairs at three different sites are presented. This section focuses on modeling the dependency
between the two variables for each of the sites using copulas. Subsection 5.1 describes the marginal fitting
process, while Subsection 5.2 outlines the data preparation required for fitting a copula in Subsection 5.3.
The results are later used in Section 6 to assess trade-offs between sites, possibly impacting site suitability.
Throughout this section example plots are provided only for Ireland, the plots for France and Portugal are
presented in the Appendix.

5.1 Marginal Parametric Distribution Fitting

In order to infer values of the random variables with unseen probabilities within the observations, parametric
marginals for Ey and F), are determined. This is essential because the copula must assess values beyond
historical observations. Relying on an empirical distribution would restrict all simulated pairs to the past
range. Parametric fits enable the estimation of extreme scenarios that have not been observed within the
available historical data. This subsection covers the selection and fitting of the parametric distributions.
First, empirical histograms for each margin are constructed. Then, candidate distributions are selected
by visual inspection. Finally, each candidate is fitted via maximum loglikelihood and the best model is
chosen using goodness-of-fit tests. These tests consist of (i) the visual fit to log-scale exceedance plots, (ii)
examination of QQ-plots, and (iii) the Kolmogorov—Smirnov (KS) test.

5.1.1 Candidate Distributions

For each location Fy and F), are binned into density histograms. For each bin i, containing k; of the n
observations and having width Ax, the bin height is calculated as:

k;
fi= nAx’ 1)

These histograms reveals a indication of the skewness and tail behavior of each margin. Based on those
visual cues, candidate distributions are selected for each variable (Wilks, 2011) and then fitted by maximum
loglikelihood estimation. Below is an example for Ireland, where the motivation for the selection of each
candidate distribution is discussed and the fitted distributions are shown. The motivation and fits for all
locations can be found in Appendix C. The analytical expressions for each of these fitted distributions are
provided in Appendix F.

e Candidate distribution selection example Ireland: The F}, histogram shown on the left in Figure
9, peaks near 2600-2800 kN and seems to show a light negative skew towards 3400 kN. Gamma and
Log-Normal address a light postive skew, the Normal provides a symmetric baseline, and GEV and
GumbelMin model a fatter lower tail. The Ey histogram, shown on the right in Figure 9, centers around
1700-1800 MWh and exhibits a light negative skew. To model the moderate asymmetry, Normal,
Gamma, and Log-Normal fits are applied, while GumbelMin captures the slightly heavier left tail.
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Figure 9: Ey (right) and F, (left) histograms and fitted parametric distributions for Ireland

5.1.2 Goodness-of-Fit Assessment

From the candidate distributions, the best fitting distribution must be selected for each variable at each
location. To assess how well each distribution fits the data, (i) the visual fit to the log-scale exceedance plots
is checked, (ii) QQ-plots are examined, and (iii) Kolmogorov—Smirnov tests are applied. QQ-plots indicate
how closely predictions of a variable match the actual value. Based on how closely the predicted values follow
the 45° line it can be determined visually which distribution is the best model. The Kolmogorov—Smirnov
test provides a numerical measure of fit by quantifying roughly the maximum vertical distance D,, between
the empirical CDF F),(z) and fitted parametric CDF Fy(z) as indicated in Equation 16. Here sup, is the
supremum of the set of distances, which can be interpreted as the largest absolute difference between the
two distribution functions across all values of the random variable X. Once D,, is computed, the associated
p-value is obtained under the null hypothesis that the sample comes from Fy. A large p-value indicates that
an observed discrepancy of size D,, is plausible by chance, whereas a small p-value leads to rejection of the
fitted model.

D, = sgp‘Fn(m) — F9($)| (16)

The goodness-of-fit process for the Ey and F), distributions of Ireland is presented below as an example. The
goodness-of-fit measures for Portugal and France are analyzed in a similar manner but are not discussed in
detail in this Subsection. The results of the goodness-of-fit measures for all locations are shown in Appendix

D.

e Goodness-of-fit example Ireland: Figure 10 depicts the QQ-plot (bottom row) and the log-scale
exceedance plots (top row) for Ey (left column) and F), (right column). The log-scale exceedance plots
shows that the fitted Gamma, LogNorm, and Normal distributions best fit the empirical data, while
GumbelMin underestimates the upper tail of Fy. For Fj,, Gamma, LogNormal, and Normal are also
reasonable fits, while GEV and GumbelMin underestimate the upper tail. The QQ-plots indicate that
the Normal distribution best represents the empirical data for Ey, while F},, multiple distributions show
similar results. The KS test shows that for the Normal distribution fitted to Fy, the p-value is highest
and D,, is smallest compared to the other candidates. Based on results of the KS values, QQ-plot, and
the log-scale exceedance plots, the Normal distribution is chosen as most suitable fit for Ey in Ireland.
For F, the most suitable distributions based on the KS test are the Normal, GEV, and GumbelMin
distributions. However, since GumbelMin and GEV tend to underestimate the upper tail of the peak
heave load, these two are excluded, and the Normal distribution is chosen as the most suitable fit for
the F}, distribution in Ireland.
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Figure 10: log-scale exceedance plots (top row) and QQ plots (bottom row) for Ey (left column) and Fp
(right column)

Table 8 summarizes the chosen distribution by location and variable, along with its KS p-value.

Each

margins best fitting distribution is chosen as in the Ireland example where (i) D,, and p-value are compared,
(ii) QQ-plots are analyzed, and (iii) the visual fit to log-scale exceedance plots is checked.

Location | Variable Distribution p-value Parameter Notation | Value
Location UGM 1954.89
France Ey GumbelMax (ugnr, Bemr) 0.95 Scalo Bens 9T 51

Location HGM 2715.34

France F, GumbelMax (uaar, Bear) 0.81 Scalo Bonr R
Shape §GEV 0.4368
Portugal Ey GEV (¢cEv, LGEV,0GEV) 0.99 Location UGEV 2070.20
Scale OGEV 104.18

Mean UN 2462.78

Portugal Fp Normal (o, p) 0.68 Standard deviation oN 545.84
Mean UN 1751.99

Ireland Eo Normal (o, in) 083 I Standard deviation | on 159.08
Mean UN 2691.98

Ireland Fp Normal (o, uv) 0.82 Standard deviation ON 418.35

Table 8: Fitted parametric distributions
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5.2 Data Preparation

In order to fit a copula the data must be prepared. This is done because copulas can only operate on vari-
ables whose marginal distributions have been mapped to uniform scale [0,1]. This standardization removes
differences in units, scale, and distribution shape, leaving only the pure dependence structure between the
variables. This subsection first lays the foundation before mapping the data to uniform space. This founda-
tion consists of defining the variable notation and presenting the raw data in their original units, scales and
marginal distributions. Once this background has been established, each of the annual observations (Ey, F})
is transformed to uniform scale using a empirical CDF (ECDF).

5.2.1 Raw Data

Figure 11 shows the joint behavior of Fy and F}, in their original space for Ireland. The top-left and bottom-
right figures show each of the margin histograms fitted with its parametric distribution. The top-right and
bottom-left figures present the scatterplots (Ey, Fip) and (Fp, Ep) respectively. Each pair represents one of
the years from 1992 until 2021 yielding thirty data points in total.
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Figure 11: Scatter matrix of untransformed (Ey, F},) pairs for Ireland

5.2.2 Variable Definition

For the remaining of this section the following notation holds for the annual power production Ey and
maximum heave load F), in year ¢ (with ¢ = 1 for 1992 and ¢ = 30 for 2021):
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Xi = Eo,i, Yi=Fp;

5.2.3 Empirical Cumulative Distribution Function

Before a copula can be fitted, the marginals in the scatter matrix shown in Figure 11 must be converted to
uniform scale to isolate the dependence. Instead of imposing a specific parametric form, which might result
in modeling mismatches, the empirical cumulative distribution function (ECDF) is calculated. Equations
17 and 18 define the ECDF of the samples X1,..., X, and Yi,...,Y,. Evaluating these functions at the
observed data points (X;,Y;) yields rank-based pseudo-observations, depicted in Equation 19. These lie in a
set of 1/n,2/n...,1 with a sample size n = 30.

Fx(e) = —= Y {Xi<a} (1)
i=1
Fr(y) = —5 > i<y} (15)
=1
u; = Fx(x), vi=Fy(y), i=1,...,n. (19)

For Ireland, Figure 12 presents the scatter plot with margins in original units (left plot), and the rank-based
pseudo-observation scatter plot with uniform margins (right plot). Here each observation (u;, v;) is obtained
by applying the ECDF to the annual power production Ep; and peak heave load Fj, ;, mapping them into
the unit interval [0, 1] via Equation 17 and 18.

4500 ' Ji .
L]
L]
& 4000 » ‘
é 0.8 . R
S L]
= 3500 . . f
& . ° * .
._lo o® o 0.6 °
2 3000 - M
% * r ©e . T . —_— s . ¢ :
= L] . L4 °
g 2500 . o | o 0.4 . .
& ° * *
— ® e . ¢ .
s . 0
Z 2000 o
< ’ * 02
L]
1500 . .
} } ; } } 0.0 ! } ! }
1200 1400 1600 1800 2000 2200 0.0 0.2 0.4 0.6 0.8 1.0
Annual Power Production Ey (MWh) u;

Figure 12: Ireland example transformation of marginals from original to uniform space

5.3 Copula Fitting

Five candidate copula families are fitted to the (u;,v;) pairs for each of the three locations. For each
family, the dependence parameters are estimated via maximum loglikelihood estimator (see Section 5.3.1),
and the quality of fit is assessed via Cramér—von Mises, Akaike Information Criterion, and quadrant semi-
correlations (see Section 5.3.2). By comparing these goodness-of-fit measures, the copula family that best
captures the joint dependence at each location is selected (see Section 5.3.3). The five copulas families to be
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fitted are shown in Figure 13. These families consist of both archimedian and elliptical families that should
capture most bivariate dependence patterns. Fitting these five families covers models with and without tail
dependence.

COPULA FAMILY CANDIDATES

ELLIPTICAL ARCHIMEDIAN

Gaussian Student-t Gumbel

Figure 13: Copula family candidates

5.3.1 Fitting Copula Parameters

Pyvinecopulib (pyvinecopulib, 2019) is an open source Python package developed for the use of bivariate
copulas and vine-copulas. One of the functions in this package automatically fits and selects the most
suitable bivariate copula family based on Akaike Information Criterion. Utilizing this package will be the
starting point, yielding a library of candidate bivariate copula models with their associated parameters.
Pyvinecopulib uses the pseudo observations (u;, v;) as input (see Subsection 5.2.3) and returns the fitted
parameters of the candidate copula families, these results are shown in Table 9. The first and second columns
indicate the copula family and its parameter notation respectively. The remaining columns report the values
of each copula parameter for the five copula families and three locations. A goodness-of-fit assessment is
utilized in Subsection 5.3.2, where the most suitable copula model for each location from Table 9 is selected.

Copula Family Parameters France Portugal Ireland
Gaussian Coa(u, v; pga) Cya(u,v; —0.21) Cga(u, v; —0.42) Coa(u,v;0.24)
Student-t Cist(u,v; pst, Vst) | Cst(u,v;—0.11,4.00) | Cst(u, v; —0.41,50) | Cg(u,v;0.28,8.70)

Clayton Ca(u,v;0.) Ca(u,v;1.8-107%) | Cu(u,v;1.8-1079) Ce(u,v;0.42)
Frank Cre(u,v;04y) C(u,v; —0.67) C(u,v; —2.20) Ct(u, v;1.80)
Gumbel Cau(u, v;04y) Cgu(u, v;1.00) Cgu(u, v;1.00) Cgu(u, v;1.20)

Table 9: Fitted copula families

5.3.2 Goodness-of-Fit Assessment

The five fitted copula families are compared for each location to identify the model that best captures the
observed joint behavior. In this subsection, three goodness-of-fit measures are utilized: (i) the Cramér—von
Mises statistic, (ii) Akaike Information Criterion (AIC) and (iii) the quadrant semi-correlations. Each method
is briefly described, followed by the corresponding results.

1. Cramer Von Misses is goodness-of-fit measure that uses the empirical copula C),(u,v) as a benchmark,
shown in Equation 20. The empirical copula is constructed from the data’s pseudo-observations, it
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describes the proportion of observations falling in rectangle [0,u] and [0,v]. The empirical copula serves
as a nonparametric benchmark for the Cramér—von Mises (CvM) goodness-of-fit measure, which assesses
how closely the fitted parametric copula Cy(u,v) models the observed dependence structure. Equation
21 shows the CvM statistic Sy, for the sample (u;,v;). A smaller S, indicates that the parametric
copula closely follows the empirical copula, whereas a larger S, signals a poorer overall fit. However,
Sy, alone does not reveal which regions of the unit square (tail or near center) contribute most to the

discrepancies.
n

Cr(u,v) = 7141—1 1H{w <wu, v, <v} (20)
i=1
Sp = nZ[Cn(ui,vi) — Cg(ui,vi)]Q. (21)

1=1

. Akaike Information Criterion (AIC) (Akaike, 1973) is a model selection measure, shown in Equa-
tion 22. Here k is the number of estimated parameters in the model and L is the maximized likelihood.
The information criterion combines the maximum log-likelihood with penalizing the number of param-
eters involved, balancing fit against complexity. The model with the lowest AIC is expected to best
approximate the observed data.

AIC = 2k — 2In(I) (22)

. Quadrant semi-correlation assesses the correlation between two variables within each region of their
joint distribution. Within each quadrant only the data in that region is used to compute the Pearson’s
correlation coefficient p between U and V' shown in Equation 24. Here U and V are the standard normal
transforms of the original pseudo observations v and v defined by Equation 23. The pseudo observations
are mapped to standard normal space to create a symmetric distribution centered at zero. This plane
is divided into four quadrants: NE (high-high), NW (low-high), SW (low-low), and SE (high-low). For
each quadrant, the correlation coefficient p is calculated on the transformed observed data and then on
samples simulated from each of the five candidate copula families. By comparing these quadrant semi-
correlations it can be determined which copula family most closely matches the dependence structure
of the observed data.

U=&Yu) and V =2"1(v) (23)
. Cov(U, V) (24)
oy oy

The semi-correlation values for Portugal are shown in Figure 28 in Appendix E.4. The results from the
empirical data (30 pseudo-observations) differ significantly from those derived from simulated samples
of the fitted parametric copulas. The small sample size could cause overestimation or instability in these
quadrant correlations and lead to a mismatch with the simulated values. Therefore, in this research
the semi-correlation values will no longer be used for copula model comparison. However the quadrant
semi-correlations derived from the observed data do indicate that there is no significant tail dependence,
hinting that models such as Frank and Gaussian could be a suitable option.

. Spearman’s rank correlation coefficient r (Spearman, 1904) is a non-parametric measure of the
strength and direction of a monotonic relationship between two variables, as shown in Equation 25.
Here u and v are the normalized ranks of the two variables. Cov(u,v) denotes the covariance between
u and v and o, and o, represent their standard deviations.

. Cov(u,v) (25)

Oy Oy
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The value for r ranges from —1 to +1, where +1 or —1 imply an exact positive or negative monotonic
relationship and 0 no correlation. The p-value indicates the likelihood that uncorrelated variables
produce a r at least as extreme as the one computed from the data set. This p-value indicates whether
a statistically significant dependency exists between the variables at each site. A significance level of
a = 0.15 is chosen as a threshold for declaring a dependency between variables statistically significant.
This relatively high threshold is justified by the nature of the study and the limitations of the data.
The datasets used have a relatively small sample size of n=30, which limits the statistical significance
and increases the risk of failing to detect true dependencies. This could result in high p-values even
when dependence is present. Since the study focuses on copula utilization, missing dependency and
therefore not modeling a copula hinders meaningful comparison of results and limits the ability to assess
the capabilities of the framework. On the other hand, incorrectly assuming dependence and modeling a
copula where there is none carries little consequence to the goal of this research.

5.3.3 Final Copula Selection

In this subsection the final copula selection and the associated motivation is explained. The candidate families
with their associated parameters shown in Table 9 are compared based on the goodness-of-fit measures
explained in Subsection 5.3.2. The goodness-of-fit results for each location are presented in Tables 28, 29,
and 30 in Appendix E.1. Prior to model selection, Spearman’s rank correlation coefficient r and its p-value
are computed.

France

For France, Fy and F), are showing signs that there is no dependency between these two variables. Spearman’s
r is —0.1003, indicating a weak negative correlation with a p-value of 0.598. This implies a high probability
that an uncorrelated dataset could exhibit similar or more extreme dependency, meaning there is no statisti-
cally significant dependency between the two variables in France. Table 28 shows the goodness-of-fit results
for the different parametric copula families, including the zero parameter independence copula as a baseline.
Notably, none of the non-independence families outperforms the independence copula. Clayton and Gumbel
match the S, at 0.527 but have AIC = 2.00, while Gaussian incurs a higher S, despite marginal AIC gains.
Together with the non significant Spearman’s r test, it can be assumed the use of an independence copula
to model the joint distribution for France.

Portugal

For Portugal the annual heave load F}, and the annual power production Ey do show a dependency pattern.
Spearman’s r indicates a weak negative correlation with r = —0.3437 and a p-value of 0.0629. The low p-
value indicates a statistically significant dependency Table 29 shows that the Gaussian copula has the lowest
AIC (-2.071) but the Frank copula yields the best global fit to the empirical copula (S, = 0.481). Both
Franks and Gaussian cannot be statistically rejected. The Frank copula is chosen to model the dependence
because this study prioritizes the Cramér—von Mises statistic, which directly measures the fit to the empirical
copula. In contrast, AIC relies on likelihood offering a more indirect assessment.

Ireland

Ireland shows a positive weak dependence, with Spearman’s » = 0.279 and a p-value of 0.1226. Because
this p-value falls below our threshold of o = 0.15, the dependency between these two variables is considered
statistically significant in this study. As shown in Table 30, the Frank copula has both the lowest S,, and the
lowest AIC, making it the most suitable model for modeling the dependency between variables for Ireland.
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6 Results Analysis

After fitting marginal distributions to each of the variables Fy and F}, and selecting a copula family for
France, Portugal, and Ireland, models are simulated from which results are extracted that can be used either
for pre-operational site comparison or operational applications. Figure 14 illustrates the structure of this
section and shows how each subsection is applied to either the operational or pre-operational phases of the
project. First, Subsection 6.1 explains which models are used for the result analysis. Subsection 6.2 describes
what results are extracted from the models and how they can be applied in pre-operational site comparison.
Finally, Subsection 6.3 focuses on how the models could be used during the operational phase of a wave
energy project.

6.1 UTILIZED MODELS
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Figure 14: Structure Analysis of Results

6.1 Utilized Models

To analyze the dependence between Ey and F, simulated models are established where 10 samples are
simulated for each location. The samples are simulated in uniform space based on the selected copula
(see Subsection 5.3.3). The samples are then mapped back to their original space using the corresponding
fitted distributions (see Subsection 5.1). Figure 15 shows the simulated models for each location where each
sample within a model represents a pair of annual power production Ey and peak heave load F),. The red
line indicates the ultimate limit state (ULS) threshold, which is further explained in Subsection 6.1.1.
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Figure 15: Utilized Models
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6.1.1 Ultimate Limit State Threshold

To analyze the probabilities of failure associated to each location in the following Subsections, the focus lies
on the maximum resistance of the device and the likelihood of a load exceeding this resistance. Therefore,
the peak heave loads that a device experiences at a location are translated to yearly probabilities of failure
Pyearty,r for the ultimate limit state (ULS). The yearly probability of failure is the likelihood that a peak
heave load exceeds a threshold for which the WEC will most likely fail. For this research, the ULS threshold
is set to 3500 kN. This value is not based on a specific device’s maximum resistance but on most extreme
wave events observed. The 3500 kN threshold sits just above the three highest loads observed in Portugal
and Ireland corresponding to roughly 12 m waves. Although 3500 kN is not based on the actual resistance
of the Corpower inspired wave energy converter, it serves the goal of this research, which is to illustrate how
a copula-based framework can be applied.

6.1.2 Yearly Probability of Failure

The target probability of failure Pyearly, f is chosen to lie around 1-3 %. The Corpower inspired device has a
20 year design life (DL), so with Pyearty,f = 1-3 % the design lifetime probability of failure Py pr, is 18-45 %
(see Equation 26), which could be considered an exemptible risk for such a device. Literature offers no clear
guideline on acceptable WEC failure rates because designs vary widely. Therefore, the 1-3 % target zone is
an exemplary choice rather than a reflection of an existing offshore renewable design code.

DL
Prpr =1~ (1 — Pfyeany) (26)

6.2 Site Comparison

This Subsection focuses on extracting results from the simulated models shown in Figure 15 and analyzing
them such that it enables site-to-site comparison. The goal is to present results that can either replace
traditional site comparison methods or provide an additional layer of information. Subsection 6.2.1 presents
straightforward averaged results that give a broad overview of the different locations, while Subsection 6.2.2
explores in more depth the use case of the modeled dependency between Fy and F).

6.2.1 Trade-Off Overview

To start the analysis of site comparison, the averaged annual power production Ey and yearly probability
of failure Pyearly,r for the three different locations are compared to each other. This comparison provides a
summarizing overview of the conditions at each of the sites, providing the starting point for the analysis.
For each of the simulated models in Figure 15, the average annual power production Ey and the yearly
probability of failure Pyearly,s are calculated with equations 27. Here, E; is the annual power production of
sample i, Np,j is the number of samples in which the device fails, and IV is the total number of simulated
yearly samples.

Ey =

Ntai
Z Ez Pyearly,f = ]i?l (27)

Figure 16 shows the results derived from the simulations and Equation 27 for Portugal, Ireland, and France.
The conclusion can immediately be drawn that extreme conditions in France are so severe that the yearly

35



probability of failure is 14% which is equal to a 95% chance the device will fail during its design life of 20
years. In contrast, both Ireland and Portugal show significantly lower probabilities of failure, with yearly
values around 3% and design lifetime probabilities of failure below 45%. Portugal offers the highest average
power production and a much lower failure probability than France, making it the most favorable site overall
according to this comparison, balancing annual power production and probability of failure.

0.16

Location
0.14] @ France -
B Portugal

0.12 1 A Ireland

0.08 1

P f. yearly

0.06 1

0.041 Location | Avg. Power (MWh) | P¢vearly | PepL

A L) France 2007.8 0.141 | 0.95
Portugal 2097.5 0.029 | 0.44
Treland 1752.1 0.027 | 0.42

0.02 A

0.00 T T T T
1400 1600 1800 2000 2200 2400

Annual Power Production Eo (MWh)

Figure 16: Averaged annual power production and yearly probability of failure

These results do not necessarily provide an additional layer of information that traditional site assessment
methods cannot reproduce. However, they do provide insight on what it means for the device to be placed
at a location, rather than solely focusing on the most extreme return wave. By framing extreme wave risk
in terms of probabilistic failure, this approach could offer a more intuitive understanding of site suitability
and risk.

In the upcoming subsections, France will be left out of the results analysis because its wave climate is far
too extreme. Moreover, these subsections focus on demonstrating the added value of assuming dependence
between F), and Ejp. Since France was modeled with an independent copula, its results were uninformative
for showing the benefits of the copula approach and therefore did not contribute to the analysis.

6.2.2 Downtime Timing

In Section 2.1 of the literature study, the general site selection criteria used in site comparison studies are
analyzed. These studies mostly focus on the wave resource, extreme conditions, and power production.
Independence is assumed between these criteria, so each of them is analyzed separately from the others, or
their outcomes are combined into a single index (see Subsection ?7?). In site comparison studies, none analyze
extreme wave conditions and power production together assuming dependence. As a result, it prevents the
assessment of how these variables co-occur in a given year and may overlook valuable information. The
current framework addresses this gap by using copulas to model the dependence between annual peak heave
loads caused by the most severe waves and the corresponding power production for the same year. The
results from Subsection 5.3 indicate signs of dependency between these variables, enabling assessment of
how this dependence varies across sites. This subsection explores how such differences affect the probability
of failure across varying annual power production scenarios, providing an additional layer of information
compared to traditional methods that assume independence.

Extreme conditions lead to heavy structural loads on the WEC (Fp in this study), increasing the probability
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of failure (Santo et al., 2020) and ultimately leading to higher maintenance costs or downtime (Aderinto
and Li, 2018). During operations, downtime resulting from failure can have a significant influence on the
overall economic impact. If failure occurs in a low yield year, little revenue is lost. However, if it happens
during a high yield year, the most valuable production days or months could be lost, maximizing economic
impact. This highlights the importance of failure timing, with more ’convenient’ failures occurring in less
productive years potentially reducing power production losses. To evaluate this timing aspect, the two
probabilistic approaches noted below are considered. Both probabilities are derived empirically from the
simulated models shown in Figure 15. Although these probabilities could also be obtained analytically, this
approach was not pursued for simplicity. To ensure the empirical results were accurate enough, a comparison
was made with analytical results for the conditional probability of failure. The analytical results showed
good agreement with those derived empirically from the simulations, suggesting that a sample size of 108 is
likely sufficient to yield reasonably accurate results.

1. Conditional Probability of failure: The conditional yearly failure probability shown in Equation
28 indicates the probability that the peak heave load Fj, exceeds the failure threshold ff, given that
the annual power production Ejy falls within a specific energy bin e, with a width of 25 MWh. This
conditional probability is calculated as the ratio of nyp, the number of samples within the energy bin
ep where I, > fr, to ny, the total number of samples in that bin. In other words, it isolates how risky a
particular annual power production scenario is by answering: “If the device produces approximately Ejy
MWh in a given year, what is the chance it experiences a failure?”

P(Fy > fr| By =) =1 (28)
2. Joint Probability of failure: The joint probability shown in Equation 29 indicates the probability
that the annual power production falls within an power production bin and that the device fails. In
contrast to the previous conditional probability, it also accounts for how frequently each bin occurs.
Bins that occur more often but have a lower conditional failure probability may still have the highest
joint probability due to their frequency. This joint probability of failure is calculated by multiplying
the conditional probability of failure with the probability that annual power production falls within the
bin P(Ey = ep), where each bin has a width of 25 MWh. In other words, it answers the question:
“What is the overall probability that my device operates in a year with approximately e, MWh of power
production and experiences a failure?”

P(FpifﬂE():eb):P(Fpif|E0:6b)'P(E():6b) (29)

It is important to note that both approaches can be valuable, but they differ in how they can be used and
the types of questions they could answer. The remainder of this subsection discusses each approach and its
application.

Conditional Probability of Failure

Figure 17 shows the relationship between the conditional probability of failure, P(F, > f; | Eo = ep), and
the annual power production scenario for both Portugal and Ireland, while France is not included. The
colored markers represent the probability of the annual power production occurrence, P(Fy = ep), indicating
how likely it is that the annual power production will fall within a given bin. These plots are based on
the simulated samples in Figure 15, where annual power production is divided into 25 MWh bins. The
conditional probability of failure for each bin is calculated using Equation 28, and the bin occurrence is
estimated as t, with n; being the total number of samples in a bin and n the total number of simulated
samples. Note that the sum of the probability of occurrence P(Ey = ep) across all bins for each location
equals one. Due to Ireland’s more variable annual power production, the distribution spans more bins, each
therefore with a lower probability of occurrence.
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Figure 17: Relationship between conditional probability of failure on the annual energy production

Figure 17 clearly illustrates how the relationship between annual power production and the conditional
probability of failure differs between the two locations. For Ireland, the dependence between Ey and F,
is positive, meaning years with higher power production also tend to have higher loads. As a result, the
conditional probability of failure increases with increasing power production. In contrast, Portugal shows a
negative dependence, where higher production years are associated with lower peak loads, leading to a lower
probability of failure. These observations are consistent with the Spearman’s rank correlation coefficient
from the observed data (r = —0.3437 for Portugal, r = 0.279 for Ireland). The fitted copulas capture this
behavior by reproducing the observed dependence. For Portugal they assign lower joint probabilities to high
Ey - F, combinations, while for Ireland they assign higher probabilities to these combinations.

Taking the timing of downtime into account, as discussed earlier in this subsection, this negative correlation
is more desirable. It indicates that the probability of failure, and thus the risk of downtime, is minimized
during the most productive years, reducing the potential loss of valuable operational time. In contrast, a
positive correlation means that probability of failure is higher when operating time is most valuable. This
increases the potential economic impact of downtime, as more production could be lost when the system is
non-operational. Based on this dependency difference, Ireland becomes less favorable compared to Portugal.

The difference in the relationship between the conditional probability of failure and the annual power produc-
tion between locations can be directly analyzed to answer the question: “If the device produces approximately
E, MWh, what is the chance it experiences a failure?” This perspective reveals how failure risk shifts with
production scenarios, offering insight into the timing of failures. As a result, it adds an additional layer of
information beyond traditional methods. However, in this analysis the frequency of bin occurrence is not
taken into account. From Figure 17, the frequency of bin occurrence at both the higher and lower energy
levels is relatively low. Therefore, it might be that Portugal has a lower probability of failure for higher
energy levels, but if these levels are less likely to occur, the argument of positive dependence may not be
that interesting due to the low likelihood of ending up in these higher production years. This limitation is
addressed in the following approach, where the joint probability of failure is analyzed.

Joint Probability of Failure

Figure 18 shows the relationship between the joint probability of failure P(F},, > ffNEy = ep), which combines
the bin occurrence P(Ey = e;) with the conditional probability of failure P(F, > ff|Eo = ep) (See Equation
29), and the annual power production. The approach answers the question: “What is the probability that
my device operates in a year with approximately e, MWh of power production and experiences failure?”.
The height of the curves differ because the number of bins varies per location: more bins result in a lower
probability of occurrence P(Ey = ep) per bin, therefore a lower joint probability of failure. By summing the
joint probabilities across all bins at each location, the resulting value corresponds to the yearly probability
of failure shown in Figure 16.
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Figure 18: Relationship between the joint probability of failure and the annual power production

The joint probability as shown in Figure 18 provides more information compared to the conditional probabil-
ity shown in Figure 17, as it also accounts for the frequency of each power production scenario. For example,
higher production bins in Ireland may have a high conditional probability of failure, while their probability
of occurrence is rather low, resulting in a very low joint probability of failure. This raises the question
of how strongly the dependency differences observed in Figure 17 should influence site assessment. While
positive dependence may appear unfavorable, the actual chance of simultaneously producing high power and
experiencing failure remains very low.

Therefore, only relying on the conditional probability of failure may risk misinterpretation of where the true
risk lies if the bin occurrence P(Ey = ;) is not considered. Applying the joint probability in site comparison
provides a deeper understanding of where failure is most likely to occur. Like the conditional probability, the
joint probabilities allow locations to be compared in terms of where failures would have the least economic
impact if they occur, but now also considering the frequency of each power production scenario.

The general method for site comparison regarding extreme conditions is discussed in Subsection 2.4.4 of the
literature study. This approach typically derives extreme sea scenarios using environmental contours based
on the joint distribution of wave height and period. The contour represents sea states associated with a
chosen return period, such as 50 years. Sea states along the contour are often used to assess whether the
device is likely to withstand the forces induced by these extreme conditions. In other words, general methods
mainly focus on the most extreme sea states. For Ireland, the data suggest a positive correlation between FEy
and Fp, meaning there is a general tendency for higher power production years to be associated with higher
loads. This suggests that for Ireland, the extreme return wave calculated with the environmental contour
method could be associated with the higher power production values shown in Figure 18. However, this plot
indicates that the higher contributions to the joint probability of failure are not always located in the tail
(highest loads), as their frequency also plays a role.

While the contour approach concentrates on rare, extreme sea states, the joint probability highlights that
significant joint probability of failure could arise from less severe extremes loads that occur more frequently.
Therefore, Figure 18 not only indicates the power production scenarios where failure is most likely but also
shows that these scenarios do not necessarily correspond to the most extreme waves.
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6.3 Maintenance and Planning

The previous results provide an additional layer of information for pre-operational site comparison. While
pre-operational site comparison is the main scope of this research, two additional dependence models can
be applied during operation to estimate the probability of failure for that operational year. The first model,
described in Subsection 6.3.1, represents the relationship between the power production in the first and last
six months (E; — E3). The second model, described in Subsection 6.3.2, represents the relationship between
the first six months of power production and the annual peak heave loads (E; - F},). While both models
share the same application, each use a different approach.

6.3.1 F; - E3 Dependency Model

This subsection extends the use of conditional failure probability, shown in Figure 17, to the operational phase
of a WEC project. As discussed in subsection 6.2.2, the conditional probability of failure P(F), > f|Eq = es)
provides insights into the probability of failure for each e;. In this subsection, the focus is on estimating the
annual power production range in which an operating WEC is likely to end up at the end of the year, based
on the observed power production during the first six months E;. Once the annual power production range
is known in which Ej is most likely to end up, the conditional probability of failure P(F, > ff | Ey = ep)
for that operating year can be evaluated, as it depends on Ejy. First, the E; - Fo dependency model used in
this estimation is described, and second, the probabilities used for estimating the annual power production
range and their application are discussed.

Model

For thirty years of wave data, the observed E; and FEs are determined. The dependency between these
two variables is modeled using the same copula modeling approach explained in Section 5. In Ireland,
the goodness-of-fit criteria favor a dependent copula, but Spearman’s test lacks statistical significance (p-
value=0.18), so any assumed dependence should be interpreted with caution. In Portugal, independence
cannot be rejected (p-value=0.77). Therefore, Ireland is used here as the reference case for the remainder
of this Subsection. For Ireland, the marginal distributions of £ and FEs are each modeled with a normal
distribution, parameter estimates (p, o) are given in Appendix D.5. Tawn copula is utilized to model the
Ey — E5 dependency. The goodness-of-fit results for the marginal distributions and copula families are
provided in Appendix D.4 and E.2.
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Figure 19: Dependence modeling approach Fy - F»

From this model, N6 pairs of Ey, Ey are simulated. Figure 19 shows the approach and the final model that
is utilized. If during operation e; is known, this model can be used to estimate the likelihood of exceeding a
total annual power production value for that year (Ep). This step is explained in more detail in the remainder
of this subsection.
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Conditional Annual power Production Exceedance Probability

If during operation Ej is known, the model shown in Figure 19 can be used to estimate the likelihood of
exceeding a fixed eg value for that year. This probability is referred to as the conditional annual power
production exceedance probability, expressed in Equation 30.

P(E12 > e | By =e1), Eip=FE1 + E» (30)

The conditional annual power production exceedance probability answers the question: "What is the prob-
ability that, given e; power is produced in the first six months, the total annual power production Fi o will
exceed a fixed annual power production eg?" Figure 20 shows the results of these probabilities, where each
line corresponds to a different range of values of e;.
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Figure 20: The conditional annual power production exceedance probability for different values of E;

Knowing the conditional annual power production exceedance probabilities shown in Figure 20 in combination
with the conditional failure probabilities shown in Figure 17 could have an useful practical applications in
both operational planning and maintenance strategies for a Corpower C4 inspired wave energy converter.
An application of the approach is illustrated in the example that follows.

A CorPower C4 inspired device is operating in Ireland. For this location, the conditional probability of
failure P(F, > ff | Eo = ep) is known to have a positive dependency with Ey (see Figure 17). After the
first six months of operation, it is measured that e; =~ 1010 MWh. Figure 20 indicates that for e; ~ 1010
MWW, the probability of exceeding an annual power production ey ~ 1900 MWh is around 52% (P(E; 2 >
1900 | B4 =~ 1010) ~ 0.52). Since there is a positive dependence between Ej and the conditional probability
of failure for Ireland, the conditional probability of failure increases as more energy is produced. Figure
17 quantifies this dependence, showing that if Fy > 1900MWh, the conditional probability of failure will
be at least 4% (P(F, > fr | Eo =~ 1900) ~ 0.04). In other words, during operation it becomes feasible
to estimate the probability of failure for that specific operating year. This example demonstrates a case
where the probability of failure is on the high side. However, situations could also arise where the estimated
conditional probability of failure is on the low side. Understanding the possible range of the conditional
probability of failure could enable proactive adjustments in the following areas:
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1. Risk Informed Maintenance Scheduling: Suppose it is estimated that there is a relatively high
risk of exceeding 3500kN in the second half of the operational year. Operators can plan additional
inspections during this period, as the likelihood of encountering a high load event during storms is
increased. Conversely, if the risk is low, maintenance activities can be reduced.

2. Resource Preparation: Operators can adjust spare parts inventory based on the forecasted risk for
the remaining months. This approach avoids overstocking, which wastes capital, and understocking,
which can lead to increased downtime when failures occur and parts are unavailable.

The forecast of the conditional probability of failure is limited by uncertainty in predicting the final annual
power production Ej. In Ireland, for example, operators might set a guideline to schedule extra inspections
when there is roughly a 50% chance of ending up in a high-FEjy range, where failure risk is higher. However,
this also means there is still about a 50% chance of ending up in a low-FEy range, where the extra inspections
may not be needed. To avoid this additional step of estimating Fjy, the next subsection focuses on directly
modeling the relationship between half-year power production E; and annual peak heave loads Fj,.

6.3.2 FE; - F, Dependency Model

To address the limitations of the previous power production dependency model, this subsection focuses on
modeling the direct relationship between 7 and F),. By leaving F» out of the analysis, this approach allows
the yearly probability of failure to be calculated solely based on the first six months of power production,
yielding a single probability of failure for that year.

Model

For thirty years of wave data, the observed F; and F), are used as input for each of the two locations. The
dependency between these two variables is modeled using the same copula modeling approach explained
in Section 5. Ireland showed a p-value of 0.086 and a Spearman correlation of 0.308. The corresponding
goodness-of-fit tests, including the CvM statistic and AIC, also indicate that some copula models perform
reasonably well for Ireland. Portugal showed a p-value of 0.207 and a Spearman correlation of -0.237. The
larger p-value and the poor performance in the goodness-of-fit tests suggest that the data do not provide
strong evidence for dependence, making any assumption of dependence less reliable. Therefore this Subsection
only focuses on Ireland. The goodness-of-fit results for all fitted copula families are presented in Appendix
E.3.

A Gaussian copula is chosen to model the dependence between Ey and F), for Ireland. Figure 21 shows the
approach and the final model, where N® pairs of (F, F,) are simulated. The model clearly reveals a positive
dependence between power production and peak heave loads, consistent with previous results for Ireland.
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Figure 21: Dependence modeling approach Fq - F),
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Conditional Probability of Failure

Figure 22 shows the relationship between the conditional probability of failure, P(F, > fy | E1 = e1), and
the power production of the first six months of an operational year in Ireland. This probability is calculated
using Equation 31, where ny; is the number of samples in an e; energy bin (bin width 20 MWh) with

F, > f¢, and ny is the total number of samples in that bin.
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Figure 22: Relationship between E; and the conditional failure probability for f; = 3500kN

These results can be applied in the same way as those obtained from the power production dependency
model discussed in Subsection 6.3.1. However, Figure 22 allows the yearly probability of failure to be
directly determined from the first six months of power production, without the need to estimate Ey. This
direct relationship provides a clearer assessment probability of failure, which could offer valuable support for

maintenance scheduling and resource preparation during operation.
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7 Conclusion

This study focused on developing a novel copula-based framework to evaluate the trade-off between extreme
loads and power production while accounting for their dependency, with the aim of laying the groundwork for
improving, and potentially replacing, pre-operational site comparison approaches. The proposed framework
was also extended with an operational application enabling operators to anticipate periods with a high or
low probability of failure. For analysis of the results the probabilities of failure were computed by assuming
a maximum heave resistance of f;r — 3500 kN, with any exceedance leading to ULS and downtime as a
consequence.

For each location, the Fj, — Ey dependence was modeled using parametric bivariate copulas. No significant
dependence was found for France (r = —0.100), while Portugal showed a weak negative (r = —0.344) and
Ireland a weak positive (r = 0.279) dependence. These differences in the sign of the correlation suggested
that higher Ey does not necessarily correspond to higher Fj,. A Frank copula was used for Portugal and
Ireland to simulate 10 (Ey, F,,) pairs per site, forming the basis for different site comparison approaches.

The average annual power production Ep, the yearly probability of failure Pyearly,f, and the associated
design life (DL = 20 years) probability of failure Ppp,; were calculated from the simulated pairs to
provide an overview of the trade-offs between locations. France exhibited the highest probability of
failure(Pyearty,f = 14%, Ppr,f = 95%), making it an undesirable deployment site. Portugal and Ireland
showed significantly lower Pyearty s &~ 3% (Ppr, s &~ 44%), with Portugal offering significantly higher Fy than
Ireland, which made it the most favorable location when balancing Ey with Pyearty, r- France was excluded
from the subsequent dependence analysis due to minimal F),~Ey correlation and more extreme conditions
than Ireland and Portugal.

The analysis of the conditional probability of failure P(F, > f; | Ey = ep) showed that, for Ireland,
this probability increased during high-production years due to the positive Fj,~Ejy dependence, potentially
worsening economic impacts when downtime occurs in these high-production periods. In contrast, Portugal
showed lower P(F, > f; | Eo = ep) in high-production years due to negative Fj,~Ey dependence. This
relationship may result in downtime that is potentially less disruptive to the overall profitability of the
project. This finding emphasized that Portugal not only offered a more favorable balance between E; and
Pyearty, r, but also benefited from the negative F,—FEy dependence.

The previous analysis based on P(F, > f; | Ey = ep) did not account for the probability of occurrence
of a given annual power production P(FEy = ep), as it is conditioned on e,. To address this, the joint
probability of failure P(F, > f; N Ey = e,) was analyzed. For both locations the largest contributions
to P(F, > frN Eg = e,) come from the most frequently occurring Ey rather than from the tails of Ey
where P(Ey = ep) is the lowest. For Ireland, although high P(F, > fr | Ey = e) is correlated to high Ey,
these high Ej scenarios occur less frequently, limiting their overall contribution to P(F, > fr N Eg = e3).
In Portugal, the opposite holds. This indicates that, despite differences in dependence patterns shown in
P(F, > f; | Eo = e), the primary contributors to P(F), > f; N Ey = e) arise from moderate production
years, rather than from tails of Ej, as they are more frequent.

For the E1—FE> dependency model, only Ireland showed a weak positive correlation (r = 0.241) and Tawn
copula was used to model the dependence. The model proved useful for estimating Ey from early-year
production F; and linking it to conditional failure probabilities. For example, when e; =~ 1063 MWh, there
is roughly 90% probability that Ey > 1800, which corresponds to P(F), > fr | Eo ~ 1800) ~ 3%. Considering
the positive Eo—F), correlation in Ireland, this implies a 90% likelihood that P(F, > f¢ | Eo = ep) > 3% in
that operational year.

For the E1-F), dependency model Ireland showed a positive correlation (r = 0.308) and was modeled using a
Gaussian copula, while Portugal showed no statistically significant correlations and was excluded (p = 0.207).
The model simulated 10° (Ej, F})) pairs and allowed the estimation of P(F, > ff | By = e1) directly from
F, without having to estimate Fy. For Ireland, the results indicate that FE; is positively correlated with
P(F, > fr | E1 = e1), offering valuable guidance for proactive maintenance and resource planning directly
based on Fj.
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8 Discussion

This study proposed a copula-based framework focused on key site comparison criteria that could replace and
provide an additional layer of insights compared to conventional pre-operational site comparison assessments.
The framework enabled the simulation of samples of key variables (Ey, F},) for candidate deployment sites
taking the dependence between them into account. From these simulated samples three main insights were
extracted.

First, the overall trade-off results provided a clear overview of Ej versus Pyearly, , enabling the reduction
of favorable candidate sites. These results could potentially replace conventional methods by summarizing
the primary trade-offs between locations. Second, P(F), > f¢ | Ey = ep) introduced an additional layer
of insight not captured by conventional approaches. It highlighted how the relationship between FEjy and
F), can influence the desirability of a site by revealing the potential economic impact of downtime. Third,
P(F, > ff N Ey = ep) clarified how much emphasis should be placed on the P(F), > f; | Ey = e;) insights
when comparing sites. P(F), > fr | Ey = e;) demonstrated that downtime may be more disruptive to project
profitability at sites with positive F},—Ey dependence compared to those with negative dependence. However,
P(F, > fr N Ey = ep) shows that failures rarely occur at high Ey values, implying that the timing effects
suggested by P(F), > fr | Eo = e5) may be less critical in site comparisons.

These three insights obtained from the copula-based framework served the main purpose of this study by
demonstrating that the framework could replace or improve conventional pre-operational site comparison
assessments. Besides these three insights, the main conclusion drawn form the probabilistic modeling is that
higher Ey does not necessarily correspond to higher F),. In other words, favorable power production does
not always mean an increased probability of ULS failure. This implies that some sites may experience high
operational waves with low extreme waves, whereas others may experience lower operational waves alongside
higher extreme waves.

Building on these insights, two additional models were explored to improve operational decision-making:
the F1—E3 and E1-F), dependency models. The F - Eo dependency model is limited by the uncertainty in
predicting Fy, primarily due to the weak correlation observed between Fj and Es for Ireland (p-value = 0.18).
Even with a stronger dependence, uncertainty might remain in estimating Ey based on a observed F; value.
To overcome this limitation, the dependence model between F; and F}, was explored, which demonstrated a
statistically significant and positive dependence (p-value = 0.086, r = 0.308) for Ireland, offering a direct way
to estimate P(F, > fy | E1 = e1) earlier in the operational year enabling operators to adjust maintenance
scheduling.

In conventional site comparison assessments, power production is calculated in a similar manner, typically by
combining historical sea states with the WEC’s power matrix. In contrast, extreme conditions are typically
derived from environmental contours based on the joint distribution of wave height and period. This approach
is widely used in OFW studies (Li et al., 2017; Li et al., 2019; Li and Zhang, 2020a; Lee et al., 2023; Zhao and
Dong, 2023) but also in WEC studies (Edwards and Coe, 2018; Canning et al., 2017; Coe et al., 2018). These
contours represent sea states associated with a chosen return period, such as 50 years. Sea states along the
contour are used to assess whether the device can withstand the most extreme conditions, focusing mainly on
the resource rather than on the probability of failure of a device. Additionally, conventional methods treat
power production and extreme return wave scenarios as two independent variables. In cases where these
conventional site comparison methods yield similar expected power production and extreme load conditions
between sites, they may fail to distinguish which site is more desirable. The copula-based framework showed
differences in dependency, offering additional insights that may not always be critical to project profitability
but can become decisive when other key factors are similar.

An additional insight from P(F, > f; N Eg = ep) is that failures are most likely at mid-range Ey levels.
For Portugal and Ireland, these failures are linked to mid-range F}, values rather than extreme [}, values,
reflecting the site-specific Ey—F), relationships. This suggests that focusing only on extreme loads or waves,
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as in conventional methods do, may overlook less extreme scenarios that carry a higher P(F, > ffNEy = ep).
While this does not imply a direct shortcoming of the environmental contour method, it highlights the value
of comparing both approaches on similar sites in future research. A more detailed comparison could provide
insights into how and why their outcomes differ.

This study showed the potential of the copula-based framework. To achieve this within the limited time, sim-
plifications and assumptions were made in the calculation of F}, values used as input for the copula modeling.
The load model used a simplified geometry, single-frequency regular waves, linear hydrodynamics, fixed-body
assumptions, and neglected pre-tensioning forces. These simplifications introduce potential inaccuracies in
the estimation of F},. While higher-fidelity methods such as time-domain simulations or Computational Fluid
Dynamics (CFD) could provide a more realistic representation of loading conditions, their application in this
framework is restricted. Generating a sufficiently large dataset to model the dependency between variables
would require a large number of simulations, which would require substantial computational time. Instead,
future research could focus on more feasible alternatives. For example, hybrid modeling approaches may be
adopted, where simplified models are validated against CFD simulations. Another direction could be the use
of surrogate models, which can drastically reduce computational costs. Katsidoniotaki et al. (2025) mention
the impracticality of extracting statistical load-based information from CFD models and develop a surrogate
model as a more efficient alternative, enabling accurate estimation of extreme mooring loads on a WEC with
significantly reduced computational cost.

Besides the limitations of the load model, the power production model relied on the power matrix (PM) to
estimate power production Ey. The power output for each sea-state bin in the PM was determined by Alday
et al. (2023), where several simplifications were made: assuming heave-only motion, neglecting interactions
with the wave spring components and the pre-tensioning system, applying suboptimal PTO damping, and
assuming deep-water conditions. These assumptions may introduce inaccuracies in the power production
estimates. Besides the limitations of the load and power model, the limited sample size of thirty observed
(Fp, Ey) pairs introduced several limitations within the framework. These limitations are further discussed
in the following paragraphs.

A relatively small sample size of thirty observed annual (H, T},) pairs was used to capture infrequent extreme
sea states for calculating Fj,. Since the H, values in these observations needed to fall below the Corpower-
inspired cutoff wave height, the PM was reduced from 10.5 meters to 6 meters, ensuring that survival mode
was triggered annually for each observation. While this adjustment had a relatively small effect on Ejy, it also
introduced potential benefits by reducing braking forces through earlier WEC shutdown. However, it raises
concerns that the analysis relies on loads that would not typically occur in most operational years. This lack
of representativeness may limit how well the results reflect the real operational conditions of the actual device.
Additionally, the relatively small sample size resulted in limited statistical significance, which increases the
risk of either failing to detect an existing dependency or falsely detecting a dependency between variables.
Furthermore, the limited dataset may reduce the accuracy of the fitted parametric marginal distributions.
These marginal distributions are critical for mapping simulated samples from the uniform space back to their
original scale. If the marginals are inaccurate, they may introduce over- or underestimation of F,, Fy, E1,
or Fs in the final simulated samples. The last limitation of the relatively small sample size relates to the
framework’s ability to account for relevant extreme conditions. By considering only the single most extreme
scenario annually, the framework may automatically neglect other events that are nearly as severe as the
annual maximum wave. Although these events are slightly less extreme, they may still have the potential
to induce failure. Ignoring such scenarios may limits the framework’s ability to fully capture the range of
extreme loads that should be evaluated.

Although multiple significant extreme events may occur in a given year, the current framework allows only
one of them to be paired with Ey. A practical alternative to capture a wider range of extreme loads is to use
a single metric that accounts for both the number and magnitude of exceedances. This still enables pairing
with Fy at the annual level. Anderson (1994) introduces such a exceedance based metric.
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The other previously mentioned limitations could potentially be addressed by reconsidering the choice of
critical component. The braking system protects the PTO and is only loaded in extreme conditions when
the device is in survival mode. This limited the framework’s flexibility. While extreme loads remain relevant,
considering a critical component that is loaded during both operational and extreme conditions with a same
type of load could resolve the main limitations. It would remove the need to manipulate the PM, pair loads
representative of realistic annual conditions and enable a daily or hourly sample size, improving statistical
significance and allowing a wider range of extreme loads to be captured per year. However, if the desire is to
keep the braking system as the component of interest, the device used in the framework could be changed
to one with a lower cutoff wave height. In this way, the PM may not have to be manipulated, and loads
can be paired that are representative of realistic annual conditions. However, the analysis would still rely on
relatively infrequent sea states, restricting sample size leading to the earlier mentioned associated limitations.

The final main limitation of this study is the assumption regarding the structural impact of the estimated
failure load fy. It was assumed that reaching fy > 3500 kN would cause ULS failure and lead to significant
downtime. This was necessary, as a detailed analysis of structural consequences was beyond the scope of this
study. Future research could focus more on the consequences of different values of f; on a system. This would
allow failures to be classified into multiple types, beyond just ULS. For example, the SLS (Serviceability
Limit State) associated with ff could be analyzed, where the device would require maintenance but not
necessarily experience downtime. ULS (Ultimate Limit State), in contrast, concerns more severe failures. If
multiple failure modes linked to specific f; thresholds are known, it becomes feasible to extract corresponding
probabilities of failure for each mode from the same simulated models. This would refine the analysis by
providing insights into the probability of failure for multiple distinct failure modes beyond just ULS, each
with different consequences for the economic viability of a project.

A limitation of the operational Ei1-FE> and FEq1-F), dependency models is that they estimate a low ULS
failure probability across a broad time window. This could restricts their effectiveness in guiding timely
maintenance decisions. If failure probabilities were available at a higher temporal resolution, maintenance
scheduling could be more effectively targeted. Additionally, focusing on more frequent loads would offer
more reliable indicators, reducing the risk of unnecessary maintenance. For example, if weekly pairs were
modeled and one week of power production indicated a 70% probability of SLS failure in the following week,
scheduling maintenance would be more justified than in a scenario where there is only a 7% likelihood of
ULS failure occurring at some point over the next six months.

47



A  Power Model Results

A.1 Annual Power Production Values

Year | Ey (MWh) | CF (%) | Year | Ey (MWL) | CF (%) | Year | Ey (MWL) | CF (%)
1992 | 2266.6 64.5 2002 | 2149.3 61.3 2012 | 20574 58.6
1993 | 2018.8 57.6 2003 | 1963.2 56.0 2013 | 2055.6 58.7
1994 | 19924 56.9 2004 | 19509 55.5 2014 | 1930.0 55.1
1995 | 1862.7 53.2 2005 | 1877.5 53.6 2015 | 2215.0 63.2
1996 | 1944.5 55.3 2006 | 19319 55.1 2016 | 2047.8 58.3
1997 | 1928.2 55.0 2007 | 1807.6 51.6 2017 | 1960.7 56.0
1998 | 1967.8 56.2 2008 | 2174.3 61.9 2018 | 2120.3 60.5
1999 | 2052.7 58.6 2009 | 1965.6 56.1 2019 | 2016.3 57.5
2000 | 2010.0 57.2 2010 | 1866.5 53.3 2020 | 2017.1 57.4
2001 | 1917.9 54.7 2011 | 2209.9 63.1 2021 | 19194 54.8
Table 10: Annual power production and CF for France
Year | Eg (MWh) | CF (%) | Year | E, (MWh) | CF (%) | Year | Eo (MWh) | CF (%)
1992 | 2171.3 61.8 2002 | 2256.8 64.4 2012 | 2068.7 58.9
1993 | 2186.2 62.4 2003 | 1960.5 55.9 2013 | 2269.7 64.8
1994 | 21014 60.0 2004 | 2103.6 59.9 2014 | 2046.5 58.4
1995 | 2166.2 61.8 2005 | 1966.9 56.1 2015 | 22534 64.3
1996 | 2038.0 58.0 2006 | 2044.2 58.3 2016 | 2151.6 61.2
1997 | 2071.2 59.1 2007 | 1881.6 53.7 2017 | 1903.9 54.3
1998 | 1981.1 56.5 2008 | 2110.8 60.1 2018 | 2191.5 62.5
1999 | 2106.7 60.1 2009 | 2062.2 58.9 2019 | 2151.5 61.4
2000 | 2129.8 60.6 2010 | 2111.7 60.3 2020 | 2205.5 62.8
2001 | 2020.3 57.7 2011 | 2181.2 62.2 2021 | 2026.0 57.8
Table 11: Annual power production and CF for Portugal
Year | Eo (MWh) | CF (%) | Year | E, (MWh) | CF (%) | Year | Eo (MWh) | CF (%)
1990 | 1903.5 54.3 2000 | 1757.2 50.0 2010 | 1291.6 36.9
1991 | 1779.3 50.8 2001 | 1607.7 45.9 2011 | 2060.1 58.8
1992 | 2103.0 59.9 2002 | 1830.6 52.2 2012 | 1657.2 47.2
1993 | 1721.3 49.1 2003 | 1662.9 47.5 2013 | 1711.7 48.9
1994 | 1807.9 51.6 2004 | 1750.5 49.8 2014 | 1850.7 52.8
1995 | 1591.0 45.4 2005 | 1495.8 42.7 2015 | 1896.7 54.1
1996 | 1543.6 43.9 2006 | 1657.7 47.3 2016 | 1820.1 51.8
1997 | 16194 46.4 2007 | 1605.8 45.8 2017 | 1841.3 52.5
1998 | 1809.7 51.6 2008 | 1869.9 53.2 2018 | 1932.1 55.1
1999 | 1862.3 53.1 2009 | 1808.8 51.6 2019 | 1754.7 50.1

Table 12: Annual power production and CF for Ireland
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B Load Model Results

B.1 Extreme Sea States

Year | Hi(m) | Tp(s) Year | Hy(m) | Tp(s) Year | Hy(m) | Tp(s)
1992 8.33 17.86 2002 11.06 19.61 2012 9.86 16.39
1993 10.02 17.86 2003 9.15 20.83 2013 9.66 12.66
1994 13.75 17.86 2004 10.48 14.29 2014 16.77 18.87
1995 11.39 13.89 2005 10.57 13.70 2015 10.19 16.95
1996 11.40 18.18 2006 9.66 16.67 2016 13.42 21.28
1997 10.01 13.70 2007 14.32 18.18 2017 13.23 18.87
1998 12.18 16.67 2008 14.75 19.23 2018 10.37 17.86
1999 10.50 12.82 2009 10.10 16.39 2019 10.17 20.00
2000 9.67 13.89 2010 11.72 17.86 2020 11.51 16.13
2001 9.15 17.86 2011 10.53 21.74 2021 11.33 17.54

Table 13: Annual maximum significant wave height and concomitant peak period France

Year | Hy(m) | Tp(s) Year | Hy(m) | Tp(s) Year | Hy(m) | Tp(s)
1992 8.26 15.87 2002 10.47 19.61 2012 6.26 16.39
1993 7.81 12.82 2003 11.40 18.18 2013 8.08 16.39
1994 8.92 14.93 2004 7.26 12.35 2014 11.43 22.73
1995 7.42 11.24 2005 8.43 20.00 2015 6.78 13.70
1996 10.67 19.23 2006 8.02 13.70 2016 7.76 20.00
1997 10.23 20.00 2007 8.58 19.23 2017 10.93 19.23
1998 12.10 20.41 2008 11.77 18.18 2018 10.73 16.39
1999 10.35 20.00 2009 8.68 15.15 2019 10.97 20.41
2000 7.38 17.86 2010 9.77 18.52 2020 8.16 14.49
2001 9.41 18.87 2011 10.59 16.39 2021 7.54 20.00

Table 14: Annual maximum significant wave height and concomitant peak period Portugal

Year | Hg(m) | Tp(s) Year | Hy(m) | T,(s) Year | Hg(m) | Tp(s)
1990 11.02 17.45 2000 9.81 15.86 2010 10.15 15.86
1991 12.45 19.19 2001 8.86 17.45 2011 9.02 15.86
1992 8.15 13.19 2002 11.93 17.45 2012 8.15 15.86
1993 12.45 17.45 2003 7.93 19.19 2013 10.82 17.45
1994 10.93 19.19 2004 8.43 15.86 2014 11.81 19.19
1995 9.36 17.45 2005 10.35 19.19 2015 11.45 19.19
1996 9.06 14.27 2006 10.16 15.86 2016 10.90 19.19
1997 8.46 17.45 2007 10.73 17.45 2017 8.80 15.86
1998 11.66 17.45 2008 10.98 17.45 2018 10.32 17.45
1999 9.76 15.86 2009 10.32 17.45 2019 10.62 17.45

Table 15: Annual maximum significant wave height and concomitant peak period Ireland
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B.2 Peak Heave loads

Year | Hy(m)| Tp(s) | Fp(kN) | Year | Hy(m)| Tp(s) | Fp(kN) | Year | Hy(m)| Tp(s) | Fp(kN)
1992 | 8.33 17.86 | 2265 2002 | 11.06 | 19.61 | 3093 2012 9.86 16.39 | 2599
1993 | 10.02 | 16.39 | 2641 2003 | 9.15 20.83 | 2599 2013 | 9.66 12.66 | 2226
1994 | 13.75 | 17.86 | 3738 2004 | 10.48 | 14.29 | 2595 2014 | 16.77 | 18.87 | 4639
1995| 11.39 | 13.89 | 2778 2005 | 10.57 | 13.70 | 2558 2015 | 10.19 | 16.95 | 2720
1996 | 114 18.18 | 3118 2006 | 9.66 16.67 | 2563 2016 | 13.42 | 21.28 | 3831
1997 10.01 | 13.70 | 2422 2007 | 14.32 | 18.18 | 3916 2017 | 13.23 | 18.87 | 3660
1998 | 12.18 | 16.67 | 3231 2008 | 14.75 | 19.23 | 4103 2018 10.37 | 17.86 | 2820
1999 10.5 12.82 | 2440 2009 | 10.10 | 16.39 | 2662 2019 | 10.17 | 20.00 | 2859
2000 | 9.67 13.89 | 2358 2010 11.72 | 17.86 | 3187 2020 | 11.51 | 16.13 | 3014
2001 | 9.15 17.86 | 2488 2011 10.53 | 21.74 | 3021 2021 | 11.33 | 17.54 | 3062
Table 16: Annual peak heave load France
Year | Hy(m) | T,(s) | Fp(kN) | Year | Hs(m)| T(s) | Fp(kN) | Year| Hy(m) | Tp(s) | Fp(kN)
1992 | 8.26 15.87 | 2148 2002 | 10.47 | 19.61 | 2927 2012 | 6.26 16.39 | 1650
1993 | 7.81 12.82 | 1816 2003 | 11.40 | 18.18 | 3118 2013 | 8.08 16.39 | 2129
1994 | 8.92 14.93 | 2257 2004 | 7.26 12.35 | 1644 2014 | 11.43 | 22.73 | 3311
1995 | 7.42 11.24 | 1563 2005 | 8.43 20.00 | 2369 2015 6.78 13.70 | 1641
1996 | 10.67 | 19.23 | 2968 2006 | 8.02 13.70 | 1941 2016 | 7.76 20.00 | 2182
1997 | 10.23 | 20.00 | 2876 2007 | 8.58 19.23 | 2387 2017 10.93 | 19.23 | 3041
1998 | 12.10 | 20.41 | 3420 2008 | 11.77 | 18.18 | 3218 2018 | 10.73 | 16.39 | 2829
1999 | 10.35 | 20.00 | 2910 2009 | 8.68 15.15 | 2211 2019 10.92 | 2041 | 3087
2000 | 7.38 17.86 | 2006 2010 9.77 18.52 | 2688 2020 | 8.16 14.49 | 2035
2001 | 9.41 18.87 | 2602 2011 10.59 | 16.39 | 2791 2021 | 7.54 20.00 | 2120
Table 17: Annual peak heave load Portugal
Year | Hy(m) | T,(s) | Fp(kN) | Year | Hy(m)| Tp(s) | Fp(kN) | Year| Hy(m) | T,(s) | Fp(kN)
1990 | 11.02 | 17.45 | 2971 2000 | 9.81 15.86 | 2551 2010 10.15 | 15.86 | 2639
1991 | 1245 | 19.19 | 3461 2001 | 8.86 17.45 | 1894 2011 | 9.02 15.86 | 2346
1992 8.15 13.19 | 1921 2002 | 11.93 | 1745 | 3217 2012 8.15 15.86 | 2121
1993 | 1245 | 17.45 | 3358 2003 | 7.93 19.19 | 2203 2013 | 10.82 | 17.45 | 2918
1994 | 10.93 | 19.19 | 3093 2004 | 8.43 15.86 | 2191 2014 | 11.81 | 19.19 | 3282
1995 | 9.36 17.45 | 2526 2005 | 10.34 | 19.19 | 2875 2015 | 11.45 | 19.19 | 3184
1996 | 9.06 14.27 | 2253 2006 | 10.16 | 15.86 | 2642 2016 | 10.90 | 19.19 | 3033
1997 | 8.46 15.86 | 2200 2007 | 10.73 | 17.45 | 2894 2017 | 8.80 15.86 | 2288
1998 | 11.66 | 17.45 | 3145 2008 | 10.98 | 17.45 | 2962 2018 10.32 | 17.45 | 2783
1999 | 9.76 15.86 | 2537 2009 | 10.32 | 17.45 | 2783 2019 10.62 | 17.45 | 2876

Table 18: Annual peak heave load Ireland
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C Fitted Marginal Distributions Per Location

e Ireland: The annual peak heave load histogram shown on the left in Figure 23, peaks near 2600-2800
kN and seems to show a light negative skew towards 3400 kN. Gamma and Log-Normal address the light
negative skew, the Normal provides a symmetric baseline, and GEV and GumbelMin model the more
extreme lower load behavior. The annual powerproduction histogram shown on the right in Figure 23,
centers around 1700-1800 MWh and exhibits a light negative skew. To model the moderate asymmetry,
Normal, Gamma, and Log-Normal fits are applied, while GumbelMin captures the slightly heavier left
tail.
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Figure 23: Histograms and fitted parametric distributions for Ireland

Portugal: The annual peak heave load histogram shown on the left in Figure 24, peaks near 1600-2250
kN and seems to show a light positive skew towards 3400 kN. Gamma and Log-Normal address the
light positive skew, the Normal provides a symmetric baseline, and Gumbel Max models the extreme
high-load behavior. The annual power production shown on the right in Figure 24, centers around
2000-2200 MWh with a mild left skew, suggesting Normal, Gamma and Log-Normal fits for the bulk
and moderate asymmetry, while Gumbel Min and GEV capture the slightly heavier left tail.
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Figure 24: Histograms and fitted parametric distributions for Portugal

France: The annual peak heave load histogram shown on the left in Figure 25 peaks near 2000 kN-3000
kN, with a clear right hand tail stretching out past 4500 kN. Gamma and Log-Normal both possess that
same moderate positive skew and so hug the body of the distribution. The Normal provides a simple
symmetric baseline for comparison, while Gumbel Max presents a more asymmetric behavior in the
extreme upper-tail capturing the behavior of the variable better than the other three distributions. The
annual power production histogram shown on the right in Figure 25, peaks near between 1800 MWh-
2100 MWh with a milder right skew. Again, Gamma and Log-Normal reproduce that slight asymmetry,
the Normal gives a midpoint reference, and Gumbel Max is applied to model slightly more asymmetric
behavior compared to the other distributions.
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Figure 25: Histograms and fitted parametric distributions for France
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D Marginal Distribution GoF Results

D.1 QQ plots
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Figure 26: QQ plots for the variables E, (left column) and F}, (right column), for France (top row), Portugal
(mid row), and Ireland (bottom row)
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D.2 Log-scale exceedance plots
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Figure 27: log-scale exceedance plots for the variables Ey (left column) and F), (right column), for France
(top row), Portugal (mid row), and Ireland (bottom row)
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D.3 GoF KS Results for Variables F, and F,

Distribution | Variable | D, | p-value
Gamma Ey 0.133 0.62
Log Norm Ey 0.130 0.64
normal Ey 0.137 0.58
Gumbel Max Ey 0.090 0.95

Table 19: Ey Goodness-of-fit results France

Distribution | Variable | D, | p-value
Gamma Ey 0.089 0.95
Log Norm Ey 0.092 0.94
normal Ey 0.083 0.97
Gumbel Min Ey 0.105 0.86
GEV Ey 0.075 0.99

Table 21: Ey Goodness-of-fit results Portugal

Distribution | Variable | D, | p-value
Gamma, Ey 0.114 0.76
Log Norm Ey 0.117 0.73
normal Ey 0.106 0.83
Gumbel Min Ey 0.115 0.75

Table 23: Ey Goodness-of-fit results Ireland

Distribution | Variable | D, | p-value
Gamma, F, 0.130 0.64
Log Norm E, 0.127 0.68
normal £, 0.145 0.51
Gumbel Max E, 0.112 0.81

Table 20: F,, Goodness-of-fit results France

Distribution | Variable | D, | p-value
Gamma, F, 0.139 0.56
Log Norm F, 0.144 0.51
normal E, 0.126 0.68
Gumbel Max E, 0.144 0.52

Table 22: F,, Goodness-of-fit results Portugal

Distribution | Variable | D, | p-value
Gamma F, 0.119 0.71
Log Norm E, 0.125 0.65
normal E, 0.107 0.82
GEV F, 0.082 0.97
Gumbel Min E, 0.089 0.94

D.4 GoF KS Results for Variables F; and F,

Distribution | Variable | D, | p-value
Gamma, Eq 0.127 0.640
Log Norm Ey 0.135 | 0.560
normal Eq 0.109 0.801
Gumbel Max FE; 0.158 0.362

Table 25: E; Goodness-of-fit results Ireland

Table 24: F, Goodness of fit results Ireland

Distribution | Variable | D,, | p-value
Gamma Es 0.092 0.928
Log Norm Es 0.098 | 0.893
normal Es 0.081 0.974
Gumbel Max FEs 0.141 0.505

Table 26: E5 Goodness-of-fit results Ireland

D.5 Parameter Estimates Marginal Distributions for Variables F, and FE,

Location | Variable Distribution | p-value Parameter Notation | Value
Mean N 898.5

Ireland Ey Normal (o, un) 0.80 Standard deviation ON 105.6
Mean UN 853.5

Ireland 2 Normal (o, un) 0.97 Standard deviation ON 92.3

Table 27: Fitted parametric distributions F; and FEs
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E Copula Families GoF Results

E.1 CvM and AIC for £ - F, Copula

Copula Family Parameters Sn AIC
Gaussian Cgalu,v; —0.21) 1.434 1.115
Student-t Cyt(u,v;—0.11,4.00) 0.842 2.913
Clayton Cea(u,v;1.8-1079) 0.527 2.000
Frank C(u,v; —0.67) 0.959 1.686
Gumbel Cgu(u,v;1.00) 0.527 2.000
Independence - 0.527 0.0

Table 28: Goodness-of-fit Fy - F,, Copula Results - France

Copula Family Parameters Sn AIC
Gaussian Cga(u, v; —0.42) 0.695 -2.071
Student-t Cist(u,v; —0.41,50.0) 0.668 0.090
Clayton Ce(u,v;1.8-1079) 0.556 2.000
Frank Ct (u, v; —2.20) 0.481 -1.484
Gumbel Cgu(u,v;1.00) 0.556 2.000
Independence - 0.556 0.0

Table 29: Goodness-of-fit Ey - F}, Copula Results - Portugal

Copula Family Parameters Sh AIC
Gaussian Coa(u,v;0.24) 0.862 0.745
Student-t Cst(u,v;0.28,8.70) 0.723 2.481
Clayton Ca(u,v;0.42) 0.723 0.085
Frank Ct (u,v;1.80) 0.603 -0.467
Gumbel Cgu(u,v;1.20) 0.998 1.088
Independence - 2.311 0.0

Table 30: Goodness-of-fit Fy - F}, Copula Results - Ireland
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E.2 CvM and AIC for F, - E, Copula

Copula Family Parameters Sn AIC
Gaussian Cga(u, v;0.33) 0.478 -0.510
Student-t Cst(u,v;0.28,2.2) 0.497 -0.581
Clayton Cei(u,v;0.46) 0.509 -0.421
Frank Cq(u,v;1.7) 0.578 -0.047
Gumbel Cou(u,v;1.3) 0.501 -1.580
Tawn Cou(t,v,w;0.3,0.6,7) | 0.411 -3.499
Independence - 2.906 0.0

Table 31:

Goodness-of-fit £y - Fo Copula Results - Ireland

E.3 CvM and AIC for £, - F, Copula

Copula Family Parameters Shn AIC
Gaussian Cga(u, v;0.35) 0.258 -0.959
Student-t Cst(u,v;0.35,8.9) 0.258 0.807
Clayton Ce(u,v;0.49) 0.409 -0.575
Frank Ci(u,v;2.1) 0.281 -1.193
Gumbel Cou(u,v;1.3) 0.360 -0.733
Independence - 2.123 0.0
Table 32: Goodness-of-fit Fq - F, Copula Results - Ireland

Copula Family Parameters Sn AIC
Gaussian Cga(u,v; —0.24) 0.883 0.792
Student-t Cst(u,v; —0.25,50) 0.893 2.812
Clayton Ca(u,v;1.8-1079) 0.544 2.00
Frank Cg(u,v; —1.5) 0.890 0.385
Gumbel Cou(u,v;1) 0.544 2.00
Independence - 2.123 0.0

Table 33: Goodness-of-fit F - F,, Copula Results - Portugal
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E.4 Quadrant Semi-Correlations Portugal
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Figure 28: Semi-correlations Portugal
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F Marginal Distributions Candidates - PDF Equations

¢ Gamma:
f(@yo,p, B) = ;(l‘ — ) lexp (-2
Y Y 9 /Ba F(a) 5
— « represents the shape parameter

— u represents the the location parameter

— [ represents the scale parameter

e Lognorm:

1
f(zso,p,8) = mexp

— o represents the shape parameter
— u represents the the location parameter

— [ represents the scale parameter

Normal:

f(xsp, o) = 12 eXp<—(x_M)2)

g s

— u represents the mean

— o represents the standard deviation

i, 8) = g exp <_x—ﬁu> e <_exp (‘T))

— w represents the location parameter

o GumbelMax:

— [ represents the scale parameter

fasp, B) = ;exp <xgﬂ) exp (_eXp (;cgﬂ))

— u represents the location parameter

GumbelMin:

— [ represents the scale parameter

B —1/6—1 _ -1/
f(ﬂﬁ;&u,a):i(1+€~x0“> eXp<—<1+f~$0M> )

— £ represents the shape parameter

e GEV:

— w represents the location parameter

— [ represents scale parameter
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G Power Matrix

This research builds on the power matrix developed by Alday et al. (2023). To determine power production
for each sea-state bin in the power matrix, Alday et al. (2023) (i) formulates the linear heave equation
of motion and extracts frequency-dependent hydrodynamic coefficients using a Boundary Element Method
(BEM) solver, (ii) solves for the heave response amplitude operator (RAO) s(w) and computes the heave
response spectrum S, (w), (iii) derives the significant heave amplitude z,; /3 and the zero-crossing period 75,
and (iv) calculates the mean absorbed power P for each (Hg,T,) bin. This subsection provides an overview
of these steps and the key assumptions involved.

1. The Corpower C4 wave energy converter is modeled in the frequency domain, considering only heave
motion. To define the system’s heave response, the following linearized relation is constructed:

[—wz(md + mq) +iw (bg + bpro + by) + ¢ s(w) = Fe(w) (32)
Where:

e my is the dry mass of the device,

e m, is the added mass,

e b, is the radiation damping

e bpro is the damping of the power take off system,
e b, is the viscous damping

e ¢, is the hydrostatic stiffness,

o s(w) is the Response Amplitude Operator (RAO),

e [, (w) is the wave excitation force

The equation of motion is linearized, meaning that all nonlinear contributions are neglected. The fre-
quency dependent hydrodynamic coefficients b, (w), mq(w) and excitations force F(w) are obtained from
a Boundary Element Method solver (BEM) under deep water assumptions. The hydrostatic stiffness ¢y,
is based on the device’s geometry. Finally, the damping of the power take off system bpro is chosen to
maximize power absorption by matching the total system impedance (sub optimal PTO damping law).

2. With all terms in the equation of motion defined, the RAO s(w) can be determined. Which represents
the amplitude response for each frequency. For each sea state bin (H,,T)), the input spectrum Se¢(w)
(measured hindcast spectrum or a JONSWAP fit) is combined with the RAO to define the heave response
spectrum, depicted in Equation 33. With the heave response spectrum the zeroth and second moment
are determined, noted in Equation 34 and 35.

S.(w) = |s(@)]* Se(w) . (33)
o, = /O 8. (w) dw, (34)
Mo, = /Ooo w? S, (w) dw. (35)

3. The zeroth and second oment yield the significant heave amplitude z,, s = 2/Moz, and the zero-crossing

period 1o, = 27 , /2—‘;.
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4. Each sea-state bin (Hg,T)) is associated with corresponding wave spectrum and heave spectrum re-
sponse. The mean absorbed power for each bin is calculated using Equation 36, where w, = 27 /T5,.

P = % wg bpTo 221/3 (36)

It is important to recognize that the power matrix is based on several simplifying assumptions about wave
climate and device dynamics. These may limit the absolute accuracy of the Corpower C4 inspired power
production estimates. However, the matrix still produces consistent power production values that are suitable
for comparing different sites rather than for exact power production estimates.

1. Heave only motion: Assuming only heave motions simplifies the hydrodynamics. Neglecting surge,
pitch and coupling effects can under or over estimate the device’s dynamic response.

2. Neglected interactions: The wave spring component, pre-tensioning mechanism and the moorings
are not included in the formulation of the equation of motion. Ignoring these forces can alter the RAO
and response spectra.

3. Deep water conditions: BEM derived added mass, damping and excitation forces under deep water
conditions may not hold in shallower sites.

4. Wave climate: When hindcast spectral data was unavailable, a JONSWAP spectrum v = 3.3 was used
as a substitute.

5. Sub optimal PTO damping: The frequency-dependent PTO damping bpro(w) is chosen to match
the device’s intrinsic impedance for maximum mean power absorption.

6. Unidirectional waves: Directional spreading is neglected, all wave energy is assumed to propagate
along a single direction.
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