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The Monin–Obukhov similarity theory (MOST) is a cornerstone of atmospheric science
for describing turbulence in stable boundary layers. Extending MOST to stably stratified
turbulent channel flows, however, is non-trivial due to confinement by solid walls. In this
study, we investigate the applicability of MOST in closed channels and identify where
and to what extent the theory remains valid. A key finding is that the ratio of the half-
channel height to the Obukhov length serves as a governing parameter for identifying
distinct flow regions and determining their corresponding mean velocity scaling. Hence,
we propose a relation to estimate this ratio directly from the governing input parameters:
the friction Reynolds and friction Richardson numbers (Reτ and Riτ ). The framework is
tested against a series of direct numerical simulations across a range of Reτ and Riτ . The
reconstructed velocity profiles enable accurate prediction of the skin-friction coefficient
crucial for quantifying pressure losses in stratified flows in engineering applications.

Key words: stratified turbulence, channel flow

1. Introduction
Stratified turbulent flows are prevalent in environmental and engineering systems.
Examples include atmospheric currents that affect pollutant dispersion, nutrient transport
in oceans and fluid flows in energy conversion systems. In the case of stably stratified flows,
where a lighter fluid overlies a heavier fluid, gravity acts to preserve the stratification, while
turbulence promotes mixing of layers. The resulting flow behaviour is governed locally by
the relative dominance of these competing mechanisms (Brethouwer et al. 2007; Zonta
& Soldati 2018). Accurately predicting these flows is crucial in weather forecasting and
determining key design parameters for engineering applications, such as the friction factor
and the Nusselt number.

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1025 A44-1
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Figure 1. (a) Mean velocity profiles and (b) mean temperature profiles for friction Richardson numbers Riτ =
�ρgh/ρ0u2

τ = 0, 60, 240, 720, represented with increasing darkness. Instantaneous contours at the mid-
spanwise plane illustrate flow structures for neutral (Riτ = 0) and stratified (Riτ = 720) cases. All profiles and
contours correspond to a friction Reynolds number Reτ = ρ0uτ h/μ0 = 550. In these governing parameters, uτ

is the friction velocity, ρ0 and μ0 denote the density and dynamic viscosity of the fluid, h is the half-channel
height, g is the gravitational acceleration (pointing in the negative z direction) and �ρ is the imposed density
difference across walls.

In wall-bounded turbulent flows, the presence of stable stratification leads to a
reduction in both the skin-friction coefficient and the Nusselt number, as shown by
Fukui, Nakajima & Ueda (1983). This reduction arises from the suppression of turbulent
momentum and heat transport by buoyancy forces, especially away from the wall where
shear is weak (Garg et al. 2000; Armenio & Sarkar 2002). Figure 1 illustrates this in
instantaneous streamwise velocity and temperature contours for stratified and neutral
(unstratified) channel flows. While velocity/temperature variations associated with near-
wall flow structures can be observed in both cases, turbulent fluctuations can be severely
damped in the outer region of the stratified channel due to buoyancy. As a result, the mean
velocity and temperature gradients steepen near the channel centre; see the profiles near
z/h = 1 (h is the half-channel height) in figure 1. Indeed, density gradients in the bulk can
give rise to laminar internal gravity waves (IGWs) that interact with the turbulent regions
of the flow (Iida, Kasagi & Nagano 2002), as visible in the contours of the stratified case
in figure 1. Buoyancy effects suppress turbulence over a larger fraction of the channel
compared with the atmospheric boundary layer (ABL), since turbulent shear linearly
decreases from the wall, even leading to flow laminarisation at the centreline (Armenio
& Sarkar 2002; Moestam & Davidson 2005; Garcia-Villalba & Del Alamo 2011). The
underlying mechanism for the suppression of turbulent fluxes is the restriction of turbulent
kinetic energy (TKE) redistribution across the channel height. Here, vertical turbulent
mixing against a gravitational potential gradient results in the conversion of TKE into
potential energy. This energy exchange can result in irreversible mixing of the density
field, leading to TKE dissipation (Caulfield 2021).

Stably stratified wall-bounded turbulent flows have been extensively studied in the
context of stable ABLs to describe the modulation of turbulent fluxes near the land
surface. The most established framework used to predict the mean flow in this context
is the Monin–Obukhov similarity theory (MOST), based on the seminal work of Monin &
Obukhov (1954). In MOST, mean velocity gradients (du/dz) in the overlap region of
a fully developed turbulent boundary layer subjected to stratification are related to the
wall-normal distance (z) and the Obukhov length scale (L) (Obukhov 1971) as
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κz

uτ

du

dz
= φ

( z

L

)
; with L = − u3

τ

κ (g/θ0) qw

, (1.1)

where qw is the surface heat flux, g/θ0 is the buoyancy parameter and κ is the von
Kármán constant. In this context, L estimates the height above which buoyancy starts
to quench turbulent mixing, because buoyancy destruction of turbulence overwhelms
shear production. The similarity function φ encapsulates the effect of stratification and
is typically determined from atmospheric field data.

Subsequently, Nieuwstadt (1984) reasoned that the dynamics of stratified turbulence is
better characterised by local rather than surface quantities, and introduced a scale based
on local momentum and heat fluxes, τ(z) and q(z). This results in a local Obukhov length
scale

Λ(z) = − (τ (z)/ρ0)
3/2

κ (g/θ0) q(z)
, (1.2)

that extended the validity of MOST from the surface layer to the entire boundary
layer (Nieuwstadt 1984; Holtslag & Nieuwstadt 1986; Sorbjan 1986). Although several
refinements have been proposed over the years (Salesky, Katul & Chamecki 2013; Grachev
et al. 2015; Li, Salesky & Banerjee 2016; Stiperski & Calaf 2023), the core principles of
MOST remain remarkably valid. In striking contrast, its validity for describing internal
wall flows remains largely unexplored.

Several detailed numerical studies have investigated the interaction between turbulence
and stratification (see Zonta & Soldati 2018, for a review). Nieuwstadt (2005) performed
the first direct numerical simulation (DNS) of open-channel flow driven by a constant
pressure gradient, with stable stratification maintained by extracting heat from the lower
wall. Building on these simulations, van de Wiel, Moene & Jonker (2012) and Donda
et al. (2015) demonstrated that MOST can be applied to derive mean velocity profiles
in open-channel flows. Differentially heated, closed turbulent channel flows with stable
stratification have been studied since the early works by Garg et al. (2000) and Armenio &
Sarkar (2002). Here, as we have seen, strong density gradients form near the channel
centre, promoting the formation of IGWs (Iida et al. 2002). Garcia-Villalba & Del Alamo
(2011) provided a detailed spectral analysis of these flows, demonstrating that the outer
layer flow structures scale with Λ. More recently, Zonta, Sichani & Soldati (2022)
proposed empirical correlations for predicting the friction coefficient and Nusselt number
in stably stratified channel flows. Despite these advances, the applicability of MOST to
describe the mean flow has not been explored.

The goal of this study is to address this gap and the following key question: How can
MOST be extended to describe the mean flow of a stably stratified turbulent channel? In
this work, we evaluate the validity of MOST in closed channels to trace the full mean
velocity profile. To this end, we characterise the different flow regions considering the
dominant balance between buoyancy and shear effects, and applying the corresponding
local scalings. This involves not only deriving velocity scaling laws in the different regions,
but also delineating the corresponding boundaries. Finally, we integrate the reconstructed
mean velocity profile to estimate the skin-friction coefficient in stably stratified
channel flow.

2. Computational campaign
We perform DNSs of stably stratified turbulent channel flows to develop a framework
for describing their mean velocity profile, which is subsequently validated using the

1025 A44-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
97

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10972


S. Kotturshettar, P. Costa and R. Pecnik

simulation data. The Navier–Stokes equations are solved in the low-Mach-number
regime (Majda & Sethian 1985; Cook & Riley 1996), with a prescribed temperature
difference of 1 %. This set-up ensures minimal variation in thermodynamic properties,
enabling a reasonable comparison with cases in the literature that use the Oberbeck–
Boussinesq approximation (see, e.g. Garcia-Villalba & Del Alamo 2011). The governing
equations are

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (2.1)

ρ
∂ui

∂t
+ ρu j

∂ui

∂x j
= − ∂p

∂xi
+ ∂τij

∂x j
+ ρgi + fiδi,1, (2.2)

ρC p
∂T

∂t
+ ρC pu j

∂T

∂x j
= ∂

∂x j

(
λ

∂T

∂x j

)
+ dp0

dt
, (2.3)

where τij = μ(∂ui/∂x j + ∂u j/∂xi − 2/3 ∂uk/∂xk δi, j ). Here, p0 denotes the spatially
invariant thermodynamic pressure, while p represents the hydrodynamic pressure. The
walls are maintained at fixed temperatures to enforce stable stratification. The arithmetic
mean of the wall temperatures is chosen as the reference temperature at which the reference
thermodynamic properties such as thermal conductivity (λ), heat capacity (C p), dynamic
viscosity (μ) and density (ρ) are evaluated. The density is related to temperature (T ) via
the ideal gas law (ρ = p0/RT ), where R is the universal gas constant. The gravitational
acceleration vector gi acts vertically downward, and f1 represents the constant pressure
difference driving the flow along the streamwise direction. Periodic boundary conditions
are imposed in the streamwise and spanwise directions, while the no-slip condition is
enforced at the walls. The equations were solved on staggered Cartesian grids, with
velocities at cell faces and scalars at the cell centres. The convective and diffusive terms
were discretised in space using a second-order, finite volume scheme (Costa 2018), and
advanced in time using Wray’s low-storage third-order Runge–Kutta method, with implicit
treatment for wall-normal diffusion.

This set-up is characterised by a friction Reynolds number Reτ = ρ0uτ h/μ0, and a
friction Richardson number, Riτ = �ρgh/ρ0u2

τ (Garg et al. 2000); ρ0 and μ0 denote the
fluid density and dynamic viscosity at a reference temperature θ0, h is the half-channel
height and �ρ the bottom-to-top wall density difference. The DNSs were performed
at Reτ = 395 and 550. Additionally, the data at Reτ = 1000 were obtained from Zonta
et al. (2022). For each Reτ , a range of Riτ was explored (0 � Riτ � 900), at fixed Prandtl
number Pr = 0.71. Figure 2 summarises the cases.

All simulations were conducted in a domain of dimensions, Lx × L y × Lz = 6πh ×
2πh × 2h, in the streamwise, spanwise and wall-normal directions, respectively. At Reτ =
395, nine different Riτ were simulated using a grid of Nx × Ny × Nz = 1024 × 512 × 300
points. On the other hand, eight different Riτ were simulated at Reτ = 550 using a grid of
Nx × Ny × Nz = 1536 × 768 × 480 points. Uniform grid spacing was used in the periodic
directions, while wall-normal grid stretching was applied to resolve the Kolmogorov
length scale near the wall. Previous studies (e.g. Garcia-Villalba & Del Alamo (2011))
have indicated that increasing stratification does not affect the smallest turbulent scales, so
grid resolution requirements remain unchanged with increasing Riτ . Simulations at higher
Riτ were initialised using steady-state fields from the preceding lower Riτ case, following
the strategy employed in earlier studies. Grid details of cases at Reτ = 1000 are available
in Zonta et al. (2022).
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Figure 2. Summary of the parameter space sampled in the DNS database, with data at Reτ = 1000 from
Zonta et al. (2022). Data for each case will be presented consistently with these marker colours.

3. Suitability of MOST for pressure-driven channels
While MOST was originally formulated for the ABL, we investigate its suitability in
capturing the effects of stratification in turbulent channel flow. The applicability is
assessed by examining the dependence of normalised velocity gradients on the wall-based
(z/L) and local (z/Λ) stability parameters, as introduced in (1.1) and (1.2).

The function φ, commonly referred to as the stability correction function, is typically
obtained empirically by fitting experimental data. The linear relations proposed by Webb
(1970), Businger & Yaglom (1971)and Dyer (1974) provide a good fit for observations
within the dry ABL, particularly under weak stratification. However, the functional form
is not universal, with these studies reporting slightly different slopes for the linear
relation, typically ranging between 4.5 and 5.5. Moreover, several alternative formulations
for φ have also been proposed, including higher-order functions that reduce to a linear
form under weak stratification but approach a constant value under strong stratification
(Beljaars & Holtslag 1991; Chenge & Brutsaert 2005). Through their linear behaviour
under weak and nonlinear corrections under strong stratification, these formulations
recover the well-known ‘z-less’ region observed in the ABL (Nieuwstadt 1984). However,
this region has not been observed in channel flows (Armenio & Sarkar 2002; Garcia-
Villalba & Del Alamo 2011; Zonta & Soldati 2018).

In turbulent channel flows, the mean velocity (and, thus, its gradient) has been reported
to increase with stratification. This is attributed to the reduction in turbulent shear stress
under stable stratification. To represent this behaviour, we adopt the linear formulation
proposed by Businger & Yaglom (1971), which captures the monotonic increase in velocity
gradients with increasing stability. Figure 3 presents the dimensionless velocity gradients,
(κz/uτ du/dz), obtained from DNSs across a range of stratification levels as a function of
the stability parameter: z/L in panel (a), and z/Λ in panel (b). The figure also shows the
Businger relation 1 + 4.7ζ , where ζ is the stability parameter. Clearly, the local scaling
captures the variation in velocity gradients more consistently than the wall-based scaling,
particularly in representing the increase in gradient magnitude. Interestingly, although the
Businger relation has been primarily validated within the ‘constant-flux’ layer, we find
that it captures the velocity gradients reasonably well as long as turbulent shear remains the
dominant mechanism and stratification effects are relatively weak (z/Λ < 1). For z/Λ > 1,
deviations from the linear relation become evident, with the Businger relation tending to
overestimate the velocity gradients (see short dash-dotted lines in figure 3).

To improve the similarity hypothesis, in the context of ABL, Yokoyama, Gamo &
Yamamoto (1979) proposed using ‘z’-dependent surface parameters (e.g. uτ (z) = uτ (1 −
z/h)γ ) that reliably estimate local fluxes. This method was subsequently adopted by
Sorbjan (1986) and more recently by Gryning et al. (2007) and Shen et al. (2025). The
exponent γ is determined empirically and varies across different studies. Following a
similar approach, we apply a correction of the form (1 − z/h)γ to the Businger relation,
with γ = 1/2. As shown in figure 3(b), the corrected relation captures the trend of the
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Figure 3. The dimensionless velocity gradients, (κz du+/dz), obtained from DNSs across a range of
stratification levels as a function of z/L in panel (a) and z/Λ in panel (b). Increasing shades of blue correspond
to Riτ = 60, 240, 720 at Reτ = 550, the green line corresponds to Riτ = 720 at Reτ = 395 and the red one to
Riτ = 600 at Reτ = 1000. These gradients are compared against the Businger relation, 1 + 4.7 ζ , where ζ is
the stability parameter.

velocity gradients reasonably well for z/Λ > 1, particularly in high Riτ cases, where this
region is more distinct. Furthermore, the value of γ = 1/2 also aids analytical derivation
through simplification of equations which will be discussed in the following sections.

In the region where z/Λ > 1, note that the current approach is equivalent to using a local
friction velocity, uτ (z) = uτ (1 − z/h)1/2, to normalise the velocity in (1.1) (κz du+/dz),
while maintaining the linear Businger relation. However, for the remainder of the article,
we interpret this factor as a correction to the Businger relation rather than as an estimation
of the local friction velocity, and use a mixing length model that consistently accounts for
these variations.

4. Heat and momentum flux balance
Following Donda et al. (2015), Λ can be expressed in terms of the wall-normal coordinate
using the heat and momentum flux distributions. For pressure-driven turbulent channel
flows, with walls at fixed temperatures, the mean total heat flux (q) is constant across the
channel, while the total shear stress (τ ) varies linearly

q(z) = α
dθ

dz
− w′θ ′ = qw, (4.1a)

τ(z) = μ
du

dz
− ρ0u′w′ = τw

(
1 − z

h

)
, (4.1b)
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where α is the thermal diffusivity, and the subscript ‘w’ denotes wall values. Substituting
(4.1a) and (4.1b) into the definition of Λ (1.2) yields

Λ(z) = L
(

1 − z

h

)3/2
, (4.2)

with L the Obukhov length scale as given in (1.1). Approximating the turbulent flux in
(4.1b) using the mixing length, we can write the stress balance in the well-known form

ν
du

dz
+ �2

m

∣∣∣∣du

dz

∣∣∣∣ du

dz
= u2

τ

(
1 − z

h

)
, (4.3)

where uτ = √
τw/ρ0 and ν = μ/ρ0. This classical zero-equation model forms the basis for

the proposed scaling laws. The mean velocity profile is naturally obtained by integrating
(4.3) across the channel.

The mixing length (�m) is governed by the relative influence of buoyancy forces and
turbulent shear. It is defined by scaling its value for pressure-driven turbulent channel
flows in the neutral limit (�N

m ), with the stability function φ that accounts for effects of
stable stratification

�m = �N
m

φ
, (4.4)

with φ being a function of z/Λ (recall the discussion in § 2). For �N
m , we adopt the mixing

length reported by Pirozzoli (2014) for channel flows

�N
m = κz

(
1 − z

h

)1/2
. (4.5)

Note that, in (4.4), �N
m does not depend on the strength of stratification, and (4.5) is

used across the entire channel. In contrast, the function φ accounts for stratification, and
the stability correction should be used depending on the value of z/Λ, as discussed in
§ 2. Hence, based on the local balance between viscous and turbulent stresses, and the
competing influence of buoyancy and shear, (4.3) can be simplified locally to identify
distinct flow regions, as discussed in the next section.

5. Proposed mean velocity scaling
Figure 4 shows the typical distribution of viscous and turbulent shear stresses in a
pressure-driven turbulent channel flow. Our analysis highlights five characteristic regions,
as illustrated in figure 4(a), based on the distribution of the local stability parameter
(z/Λ) and the relative magnitudes of viscous and turbulent stresses. For convenience of
reporting, the regions are hereafter given descriptive names.

Closest to the wall, the classical viscous sublayer (I) (and the buffer layer) is unaffected
by buoyancy forces as the strong shear dominates the stratification effects in this region.
This is followed by a shear-dominated sublayer (II), where turbulent stresses dominate with
minimal stratification effects. Further away from the wall, buoyancy effectively suppresses
the larger eddies while the turbulent stresses are still much greater than the viscous
stresses – a region termed here as the stratified outer region (III). Beyond lies the turbulent-
viscous transition layer (IV), where viscous and turbulent stresses become comparable.
Finally, from the channel centre, turbulence may vanish and lead to a laminar region,
forming a viscous core layer (V) governed by viscous stresses. We now derive the mean
velocity profile in these regions, excluding the well-established u+ = z+ scaling in the
viscous sublayer.
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Figure 4. (a) Schematic illustrating the distinct regions in a stably stratified turbulent channel flow, classified
based on the influence of stratification (quantified by z/Λ) and the relative contributions of viscous stress
(τv) and turbulent stress (τt ) to the total stress (τ ). The identified regions are: viscous sublayer (I), shear-
dominated sublayer (II), stratified outer region (III), turbulent-viscous transition layer (IV) and viscous core
(V). The illustration corresponds to the case with Riτ = 720 at Reτ = 550. (b) Stress profiles for various cases.
Blue curves: Reτ = 550, Riτ = 0, 60, 240, 720 (increasing darkness). Green: Reτ = 395, Riτ = 720. Red:
Reτ = 1000, Riτ = 600 (Zonta et al. 2022). (c) Close-up of the profiles close in the near-wall region to illustrate
the slow rise of turbulent stresses with increasing stratification. (d) Close-up near the centre of the channel,
highlighting the drop-off of turbulent stresses to zero.

5.1. Shear-dominated sublayer (II) – classical MOST
Following the viscous sublayer, viscous stresses rapidly decrease while turbulent stresses
increase, reaching a peak at approximately z+ ≈ 30 wall units (seen in figure 4c). In the
shear-dominated sublayer, the local stability parameter z/Λ is less than one, indicating that
turbulent shear dominates over buoyancy effects. This is typically classified as the ‘surface
layer’ in the ABL context, where the turbulent fluxes remain approximately constant and
the classical MOST is applicable. In this region, (4.3) simplifies to

�m
du

dz
= uτ

(
1 − z

h

)1/2
. (5.1)

The mixing length in the shear-dominated sublayer (II), denoted as �II
m , follows the

formulation in (4.4). In this region, the effect of stable stratification is incorporated through
the stability function represented by the linear Businger relation, φ = 1 + 4.7ζ , where
ζ = z/Λ corresponds to the local stability parameter (recall figure 3 and the discussion
thereabout). Hence, the mixing length is given by

�II
m = �N

m

φ
= �N

m

1 + 4.7 ζ
= κz

1 + 4.7 ζ

(
1 − z

h

)1/2
; ζ = z

Λ
. (5.2)

Figure 5 presents a comparison between the mixing length measured from DNS data,
(−u′w′)1/2/(du/dz), and the expression given by (5.2). A good agreement is observed
in the region where turbulent shear dominates (i.e. z/Λ < 1, see the fine dashed lines).
The expression begins to deviate from the DNS profile when buoyancy effects become
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/
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III
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Figure 5. Comparison of the mixing length obtained from DNS (�DNS
m = (−u′w′)1/2/(du/dz), solid lines) with

the mixing lengths used in this study. The short dashed lines correspond to the mixing length expression for the
shear-dominated sublayer, �II

m (5.2), while the long-dashed lines correspond to the mixing length formulation
in the stratified outer region, �III

m (5.6). Line colours indicate different cases: green for Reτ = 395, Riτ = 720;
blue for Reτ = 550, Riτ = 720; and red for Reτ = 1000, Riτ = 600.

prominent, indicating a transition to a different regime where an alternative mixing length
formulation is required.

Substituting the mixing length expression from (5.2) into (5.1) yields the
velocitygradient for this region

du+

dz+ = 1
κz+

(
1 + 4.7

z

Λ

)
, (5.3)

which we have shown in figure 3 (see short dash-dotted lines, z/Λ < 1).
Further, upon substituting Λ from (4.2) in (5.3) and integrating, we obtain the velocity

profile

u+ = 1
κ

ln(z+) + 4.7
κ

2h

L

(
1 − z

h

)−1/2 + C1, (5.4)

where C1 is the integration constant, obtained by matching (5.4) to the viscous sublayer
profile. In neutral conditions, this matching typically occurs at approximately z+ ≈ 11
where the viscous and turbulent stresses intersect. With increasing Riτ , this point shifts
farther away from the wall, as the rate at which turbulent stresses rise is reduced,
indicating deeper penetration of buoyancy effects in the near-wall region. This is evident in
figure 4(c), where the blue curves (Reτ = 550) show that the darker shades, representing
stronger stratification, rise progressively more slowly. Furthermore, for the same Riτ =
720, the case at Reτ = 395 (green) shows an even slower rise compared with Reτ = 550.
This is because the stronger shear tends to resist the suppression of turbulence by buoyancy
forces at higher values of Reτ . The constant used in the present work is described in
Appendix A.

Interestingly, the half-channel height, h, appears in (5.4), indicating the influence of an
outer length scale on the mean velocity profile near the wall. In the neutral limit (L →
∞), however, this dependence vanishes, and the classical logarithmic law is recovered.
With the introduction of stratification, a new length scale Λ emerges, determined by the
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local stress distribution. This distribution is constrained by the stress boundary conditions
at the wall and at the channel centreline, thereby introducing a dependence on h in the
formulation.

The shear-dominated sublayer extends from z+ ≈ 30 to where stratification effects
become prominent relative to the turbulent shear. This transition point can be determined
analytically by identifying the location where z/Λ ≈ 1. Substituting Λ = z into (4.2)
yields

( zt

h

)3 +
(

h2

L2 − 3
) ( zt

h

)2 + 3
( zt

h

)
− 1 = 0, (5.5)

whose real root gives the normalised transition location, zt/h.
For neutral flows, the transition point (zt ) is located at the channel centreline, indicating

the absence of buoyancy effects and the dominance of shear throughout the channel.
Consequently, the mixing length given by (5.2) is applied up to the channel centre. This
assumes a logarithmic law of the wall across the remainder of the neutral velocity profile,
which is a reasonable approximation given the relatively weak wake contribution observed
in channel flows. With increasing stratification, the transition point shifts closer to the wall,
marking the onset of the stratified outer region.

5.2. Stratified outer region (III)
This region begins approximately at the transition point (z = zt ), beyond which turbulent
stresses keep decreasing while still dominating the stress budget (figure 4). Yet, the
influence of buoyancy forces becomes increasingly significant (z/Λ > 1), with large
eddying motion being more effectively suppressed. In this region, (5.1) remains valid since
turbulent stresses remain much larger than viscous stresses.

However, the mixing length in this region (�III
m ) differs from that in the shear-dominated

sublayer, as stratification effects become significant (z/Λ > 1). In this case, �N
m is

normalised using the Businger relation that is corrected by a factor (1 − z/h)1/2. As
discussed in § 2, similar corrections with varying exponents have been used in previous
studies (e.g. Yokoyama et al. (1979), Sorbjan (1986)) to extend (1.1) across the ABL. Here,
the correction is applied directly to the Businger relation and is motivated by the trends
observed in figure 3. Thus,

�III
m = �N

m

1 + 4.7ζ

(
1 − z

h

)−1/2 = κz

1 + 4.7ζ
. (5.6)

This mixing length model is also depicted in figure 5 (long dashed lines), agreeing well
with the DNS data. The formulation in (5.6) reasonably captures the DNS trend in the
region dominated by buoyancy effects.

Substituting (5.6) in (5.1) gives the velocity gradient in the stratified outer region

du+

dz
= 1

κz

(
1 + 4.7

z

Λ

) (
1 − z

h

)1/2
, (5.7)

which, after substituting the definition of Λ from (4.2) and integrating, yields the velocity
profile

u+ = 1
κ

ln
z

h
− 4.7

κ

h

L
ln
(

1 − z

h

)
+ 2

κ

√
1 − z

h
− 2

κ
ln
(

1 +
√

1 − z

h

)
+ C2, (5.8)
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with C2, being an integration constant. Note that a similar expression was derived for
open-channel flows by van de Wiel et al. (2012), Donda et al. (2015) in the context of ABL.

Furthermore, we observe that C2 approximately corresponds to the centreline velocity
of neutral flows at a given Reτ , i.e. C2 ≈ 1/κ ln Reτ + 5.2. This can be reconciled by
noting that, in neutral limit (L → ∞), the shear-dominated sublayer extends up to the
centreline. Consequently, the stratified outer region reduces to a single point at z = h. In
this limit, (5.8) yields the centreline velocity of the neutral flow. Note also that, in this
case, the buoyancy-related term in (5.8) vanishes, and in the overlap region (0 � z � h)
the expression also recovers the classical velocity defect law (Pope 2000), demonstrating
the consistency of the approach.

The profile described by (5.8) results from integrating only the turbulent stress
contribution (5.1). However, farther from the walls, turbulent stresses gradually become
comparable to viscous stresses, and the latter must also be taken into account (see also
figure 4). Based on observations across a wide range of cases, this transition typically
occurs at a location where z/Λ ≈ 8. This location also marks the upper bound beyond
which z/Λ ceases to be a relevant parameter, as the turbulent momentum flux is no longer
accurately represented by the total stress in the definition of Λ. Beyond this, (5.1) is
no longer valid, marking the onset of the transition layer. Within the turbulent–viscous
transition layer, the viscous and turbulent diffusion play comparable roles. Due to the
limited extent of this region, a simple linear blending of the adjacent layers provides
a reasonable estimate of the flow velocity here. While this blending approach is not
explicitly discussed in the main text, its implementation and resulting composite profile
are illustrated in Appendix D and also the accompanying Jupyter notebook.

5.3. Viscous core (V)
Finally, towards the centre of the channel, stratification may become so influential that the
eddies are fully suppressed, turbulence ceases to exist and the local flow is laminar. Since
only viscous stresses contribute to the momentum balance in this region, (4.3) simplifies
and can be integrated, with the centreline velocity (u+

cl ) appearing as the constant of
integration

h

Reτ

du+

dz
= 1 − z

h
, u+

cl − u+ = Reτ

2

(
1 − z

h

)2
. (5.9)

The distance from the centreline where the viscous and turbulent stresses become
comparable can be estimated as the location up to which the mean velocity follows a
parabolic profile. A reasonable estimate for this distance, from the channel centre, is where
h/Reτ ∼ 2�m

√
τ/τw (see Appendix B). This point (zl

V) marks the beginning of the viscous
core, which extends up to the centreline. If the flow is strongly stratified, then the turbulent
stresses vanish earlier, as can be seen in figure 4(d). The estimated distance is given as

1 − zl
V
h

= 1√
ReL

√
4.7
2κ

, (5.10)

where ReL = uτ L/ν is the friction Reynolds number based on the Obukhov length
scale.

5.4. Important parameterisations for predicting the mean velocity profile
The velocity profiles ((5.4), (5.8), (5.9)) depend on the governing input parameters Reτ

and Riτ . Yet, an important parameter naturally emerging throughout the analysis is a
Richardson number based on wall fluxes, Riw = h/L (recall 1.1). Hence, to obtain a closed
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0.63

Riτ/�Reτ

– Riτ

100

(a) (b)

Figure 6. (a) The proposed scaling to estimate a priori the parameter Riw = h/L . (b) Parametrisation of the
deviation of the centreline velocity from the neutral case at same Reτ . Increasing darkness of the marker colours
denotes increasing Richardson numbers. The symbols and colours are as indicated in figure 2.

form of the velocity profiles, Riw must be estimated a priori. To this end, we derive a
relation (see Appendix C) for it in terms of Reτ and Riτ , relying on the Nusselt number
scaling proposed by Zonta et al. (2022) that was obtained for a range of cases (either
simulated at Pr = 0.71 or rescaled accordingly). The proposed scaling is given by

Riw = h

L
= κ (g/θ0) qw

u3
τ /h

∼
(

Riτ√
Reτ

)2/3

. (5.11)

Figure 6(a) shows the agreement of this scaling for the different cases considered in this
study. Additionally, the viscous core solution requires a closure for stratification effects
on the centreline velocity, u+

cl . This is done by modelling its deviation from the neutral
case at the same Reτ , given by u+

cl,N ≈ 1/κ ln Reτ + 5.2. With stratification, turbulence
suppression near the centreline leads to an increased u+

cl that we found to be well
captured by

�u+
cl = u+

cl − u+
cl,N = Ri0.63

τ Re−0.12
τ , (5.12)

as shown in figure 6(b). Indeed, �u+
cl increases with Riτ as expected due to stronger

stratification effects, and depends weakly on Reτ , as most of its influence is already
accountedfor in u+

cl,N .
These parametric relations and ((5.4), (5.8), (5.9)) are the ingredients needed for

reconstructing the mean velocity profile across the entire channel height. In the following
section, we compare the predictions against our DNS dataset to evaluate the applicability
of MOST in this confined flow configuration.

6. Assessment of the proposed scaling with DNS
Figure 7 compares the composite mean velocity profile predicted by the proposed approach
against DNS results across several Reτ and Riτ cases. The profiles, plotted in linear
coordinates from the wall to the channel centreline, provide a global assessment of the
model performance. The individual contributions from ((5.4), (5.8), (5.9)) are shown
as dashed lines, with the highlighted segments indicating the region over which each
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Figure 7. The composite mean velocity profiles obtained from the proposed formulation (dashed lines) are
compared with DNS data (solid lines). The markers indicate the boundaries of the different regions, as
defined in figure 4. Results are shown for Reτ = 395 (greens), Reτ = 550 (blues) and Reτ = 1000 (reds). The
implementation of the mean velocity profile reconstruction and the estimation of the skin-friction coefficient
can be found in this notebook.

expression is valid. The symbols are used to distinguish the different flow regions
discussed earlier.

In addition to this overall comparison, figure 8 offers a closer picture of the predicted and
DNS velocity profiles, focusing on the different flow regions. To examine the influence of
stratification, results are presented for flows with Riτ = 0, 60, 240 and 720 at Reτ = 550
(shown in increasingly darker shades of blue). Moreover, to compare the Reynolds number
effects, results for flows with Riτ = 720 are presented at Reτ = 395, 550 (green, dark
blue). Since the case at Riτ = 720 was unavailable for Reτ = 1000, the result of the closest
available Riτ = 600 is shown in dark red.

In the shear-dominated sublayer (II), it can be observed that (5.4) accurately predicts the
mean velocity profile with discrepancies appearing only for strongly stratified flows; for
instance, Riτ = 720 at Reτ = 395 (figure 8a). This is due to insufficient scale separation
in the flow, particularly at the imposed stratification. When Reτ is not sufficiently large
and stratification is strong, the smallest eddies in the flow are not small enough to remain
unaffected by buoyancy. As a result, a substantial portion of the turbulence spectrum is
suppressed. The estimated extent of the shear-dominated sublayer (zt ) is indicated for
different cases with �. If z+

t < 150, then the buoyancy effects are perceived too close
to the wall, disrupting the near-wall region of the flow and thus violating the assumption
of a logarithmic velocity profile in this region.

In the stratified outer region (III), predictions with (5.8), with C2 ≈ 1/κ ln Reτ + 5.2,
agree well with all the cases except for the case at Reτ = 395 (figure 8b), for the same
reason as described above. While the equation effectively reproduces the general shape of
the velocity profile, we observe a shift for low Reτ cases. The point marked with � (zu

III)
in figure 8(b) indicates the end of the stratified outer region and the onset of the turbulent-
viscous transition layer, where the influence of viscous stresses becomes comparable to
that of turbulent stresses. Finally, figure 8(c) also confirms the agreement of the parabolic
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Figure 8. Mean streamwise velocity profiles in stably stratified turbulent channel flows. The solid lines
correspond to DNS data which are compared against (a) (5.4) in the shear-dominated sublayer, (b) (5.8) in
the stratified outer region and (c) (5.9) in the viscous core. The predictions are indicated with dashed lines.
Blue curves: Reτ = 550, Riτ = 0, 60, 240, 720 (increasing darkness). Green: Reτ = 395, Riτ = 720. Red:
Reτ = 1000, Riτ = 600. Symbols , and indicate the bounds of different regions. (d) Comparison of skin-
friction coefficient, C f , predicted by the proposed approach (coloured dashed lines) with DNS data (symbols)
as a function of Riτ . The grey dashed line indicates the C f ∼ Ri−1/3

τ scaling shown in Zonta et al. (2022). The
inset shows the percentage error (ε) between the model and DNSs at different Riτ across all cases considered.
The shaded region indicates a ±2 % error band. The implementation of the mean velocity profile reconstruction
and the estimation of the skin-friction coefficient can be found in this notebook.

velocity profile with DNS data in the viscous core (V). The velocity profile in this region
follows a parabolic form parametrised solely by Reτ . Hence, a distinct parabolic curve is
obtained for each Reτ = 395, 550, 1000. The extent to which the DNS profiles follow
the parabolic form, measured from the channel centre, increases with stratification. This is
evident for Riτ = 0, 60, 240, 720 (increasing shades of blue) at Reτ = 550. Specifically,
the Riτ = 720 case follows the parabolic profile over a larger portion of the core compared
with Riτ = 60 and 240, while Riτ = 0 does not exhibit this behaviour in the centre. The
boundary marking the approximate location beyond which the velocity profiles begin to
diverge from the parabola is indicated by the symbol . We observe that, for Riτ = 720
at Reτ = 395, 550 and Riτ = 600 at Reτ = 1000, this is estimated reasonably well.
However, at lower Riτ values, corresponding to Reτ = 550, this boundary is estimated
to be at a slightly larger distance from the channel centre than the actual location where
the velocity profiles begin to diverge from the parabola. Nevertheless, this difference is
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visually exaggerated due to the logarithmic horizontal axis, and the estimate is acceptable
for practical purposes.

The mean velocity profile obtained from the proposed approach can be integrated
to obtain bulk velocity (ub), and consequently estimate the skin-friction coefficient
(C f = 2τw/ρu2

b = 2/u+
b

2). Figure 8(d) compares these estimates with values obtained
from DNS, with the scaling C f ∼ Ri−1/3

τ reported by Zonta et al. (2022) also shown
for reference. While this relation may hold in a narrower parameter range, it tends to
deviate from DNS results over the wider parameter space explored in this study. Integrating
the velocity profile obtained from the proposed approach yields consistently accurate
results, illustrating the robustness of the present framework. The relative errors, defined
as ε = (CDNS

f − C f )/CDNS
f , are generally within a 2 % margin, with the exception of the

high Riτ cases at the lowest Reτ = 395, where deviations up to 4 % are observed. This
slightly larger error is, once more, an expected consequence of the lack of scale separation
in these cases.

7. Conclusion
In this work, we have leveraged a framework derived for atmospheric science – MOST –
and adopted it to describe the mean velocity in a stably stratified turbulent internal
(channel) flow. The linear Businger relation is employed as the stability correction function
to characterise the effect of stable stratification on the mean velocity profile. Based on the
relative contributions of viscous and turbulent stresses and the local stability parameter
(z/Λ), distinct flow regions were identified. The classical viscous sublayer is followed
by a shear-dominated sublayer, where the mean flow is properly characterised by wall
values and stratification effects are minimal. This is followed by a stratified outer region
extending from z ≈ Λ(z) to z ≈ 8Λ(z). Turbulent stresses then become comparable to
the viscous stresses in the turbulent-viscous transition layer. Finally, the flow becomes
laminar in the viscous core, whose onset was estimated to scale inversely with (Re−1/2

L ).
In the analysis, the wall Richardson number, Riw = h/L , and deviation from the neutral
centreline velocity, �u+

cl , emerge as important parameters. Accordingly, we have proposed
parametric relations to estimate them that enable an accurate reconstruction of the mean
velocity profile for a wide range of governing parameters Reτ and Riτ . Our findings
highlight MOST’s robustness by demonstrating that a theory originally developed and
validated for atmospheric flows at scales of ∼100 m effectively extends to stably stratified
turbulence in internal flows, applicable in systems at scales orders of magnitude smaller
(e.g. ∼0.01 m). The framework effectively captures stratification effects despite relying
on empirical, non-universal stability correction functions. Crucially, the reconstructed
profiles enable a reliable estimation of the skin-friction coefficient, with errors generally
within 3 %. This provides a framework for quantifying pressure losses, offering practical
value for modelling and designing flow systems in engineering applications where
stratification is important.
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Appendix A. Velocity profile in shear-dominated sublayer
In this section, we elaborate on the shear-dominated sublayer (introduced in § 5.1 in the
main text), with particular focus on estimating the constant of integration in the velocity
profile expression.

In the shear-dominated sublayer, the total stress is dominated by turbulent shear stress,
which can be approximated by the wall shear stress. This forms the basis for deriving the
mean velocity profile in this region, as outlined below

�m
du

dz
= uτ

(
1 − z

h

)1/2
, (A1)

where �m in region II is formulated using �N
m (4.5), and the Businger relation as

�II
m = �N

m

φ
= �N

m

1 + 4.7 ζ
= κz

1 + 4.7 ζ

(
1 − z

h

)1/2
; ζ = z

Λ
. (A2)

We also know that

Λ = L
(

1 − z

h

)3/2
. (A3)

Using (A3) and integrating the gradient yields the velocity profile in the shear-dominated
sublayer

u+ = 1
κ

ln z+ + 4.7
κ

2h

L

(
1 − z

h

)−1/2 + C0, (A4)

where C0 is a constant. As indicated in the main text, the constant is determined by
matching the profiles between the viscous and shear-dominated sublayers. For instance,
if the linear profile, u+ = z+, is matched with (A4) at z+ = z+

M then the constant C0 is
given as

C0 = z+
M − 1

κ
ln(z+

M ) − 4.7
κ

2h

L
− 4.7

κ

h

L

z+
M

Reτ

, (A5)

where the position z+
M is defined as

z+
M = 11.1 + Cz max

(
0,

Riτ
Reτ

− 0.5
)

, (A6)

with Cz = 2 used in the present work.
In neutral flows, the matching occurs at z+

M = 11.1. For stably stratified flows, the
constant C0 is determined at z+

M = 11.1 for Riτ /Reτ < 0.5, beyond which the intersection
point was observed to scale linearly with stratification strength. The value of 0.5 is based
on observations. The slope, Cz , may depend on Reτ , but precise determination of the
function would require a significantly larger dataset. While other functional forms of z+

M
could also be used to fit the data, the primary focus here is on the conceptual framework
and formulation rather than a detailed empirical fit.

Appendix B. Extent of the viscous core
This section provides additional details on the estimation of the transition point zl

V
discussed in § 5.3 (Viscous core (V)) of the main manuscript.
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The mean shear can be evaluated as the root of the quadratic streamwise momentum
balance equation

du+

dz
= 2τ/τw

h

Reτ

+
√

h2

Re2
τ

+ 4l2
m

τ

τw

. (B1)

In the viscous core, turbulent stresses vanish, and viscous diffusion is the only mechanism
of momentum transport, implying that 4l2

mτ/τw = 0, in the above equation. However,
moving away from the channel centreline, viscous stresses gradually give in to turbulent
stresses. The location where these two contributions become comparable marks the point
at which turbulent stresses start to dominate the flow dynamics

h

Reτ

∼ 2lm

√
τ

τw

where, lm = κz
(

1 + 4.7
z

Λ

)−1
. (B2)

In the limit, z → h, Λ → 0, therefore

lm ∼ κΛ

4.7
∼ κL

4.7

(
1 − z

h

)3/2
. (B3)

Using this in (B2)
h

Reτ

∼ 2
κL

4.7

(
1 − z

h

)2
. (B4)

The wall-normal distance that marks the extent of the viscous core is denoted by zl
V

1 − zl
V
h

∼
√

4.7
2κ

√
h

L

√
1

Reτ

. (B5)

Appendix C. Parametrisation of wall Richardson number (Riw = h/L)
This section outlines the step-by-step derivation of the parametric relation used in the main
text to express the Obukhov length scale in terms of Reτ and Riτ ((5.11) in the main text).
Consider the definition of the Obukhov length scale

L = u3
τ

κ(g/θ0)qw

; where, qw = α
dθ

dz

∣∣∣∣∣
w

= ν

Pr

dθ

dz

∣∣∣∣∣
w

(C1)

=⇒ h

L
= h

κ(g/θ0)qw

u3
τ

= κ h
g

θ0

1
u3

τ

ν

Pr

dθ

dz

∣∣∣∣∣
w

, (C2)

where Pr is the Prandtl number of the flow. Multiplying and dividing by h and �ρ/ρ0, and
grouping terms corresponding to Reτ and Riτ

h

L
∼ h

θ0

ρ0

�ρ

�ρgh

ρ0u2
τ

ν

uτ h

1
Pr

dθ

dz

∣∣∣∣∣
w

. (C3)

We also use the ideal gas relation, �ρ/ρ0 = �θ/θ0

h

L
∼ 1

Pr

Riτ
Reτ

h

�θ

dθ

dz

∣∣∣∣∣
w

. (C4)
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From Zonta et al. (2022)

Nu ∼
(

Re2
τ

Riτ

)1/3

; where, Nu = 2qwh

λ�θ
∼ h

�θ

dθ

dz

∣∣∣∣∣
w

. (C5)

Substituting this in the h/L relation (note that Riw = h/L is termed a Richardson
number because it can be expressed in a conventional form that denotes the relative
importance of turbulence destruction by buoyancy forces and turbulence production)

Riw = κ (g/θ0) qw

u3
τ /h

= h

L
∼ 1

Pr

(
Riτ√
Reτ

)2/3

. (C6)

It is important to note that, although the Prandtl number (Pr) appears in this analysis,
its explicit role in the derivation of Zonta et al.’s relation remains unclear. In this study,
all of the results are presented for constant Pr = 0.71. Moreover, the applicability of
MOST across a broad range of Pr values has not been thoroughly examined and requires
a dedicated investigation beyond the scope of this work.

Appendix D. Composite mean velocity profile
The mean velocity profiles in the viscous sublayer, shear-dominated sublayer, stratified
outer region and the viscous core are described in ((5.4), (5.8), (5.9)), respectively. To
obtain the composite mean velocity profile across the entire channel, the velocity in
the turbulent–viscous transition layer must be determined. This is achieved by smoothly
blending the velocity profiles from the adjacent regions. If uIII and uV denote the predicted
velocities in regions III and V, then the velocity profile in region IV is

uIV = γ uIII + (1 − γ ) uV; where, γ = zl
V − z

zl
V − zu

III
. (D1)

Here, zu
III and zl

V are the upper and lower bounds of regions III and V, respectively.
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