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1. Introduction

1.1 Problem definition

Resource management in densely populated and technologically
developed countries is faced with changing conditions, tending towards
increased complexity. Some examples of these trends are:

e increasing scarcity of resources and hence increased need for
efficient production;

e increasing number of objectives, such as those referring to
ecological and environmental values and the quality of the
landscape;

e increasing number of actors in the decision process;
e increasing rate of change of technological innovations.

The tendency towards increased complexity is clearly present in
spatial planning in the Netherlands. Urbanisation and economic
development have led to a reduced quality of the ecological status and
landscape and to an intensified agricultural landuse. As a result, conflicts of
interest between socio—economic, environmental, ecological and
agricultural values have become more pronounced. Public authorities and
stakeholders try to protect and enforce a wide range of values and
interests that are present in different types of land use, often seeking
opportunities to avoid conflicts with other objectives.

Groundwater protection zones are maintained by provincial authorities
to ensure safe drinking water production, but are an obstacle for further
urbanisation, development of industry, infrastructure and agriculture.
Agriculture is limited by many regulations, in particular if urban or nature
areas are nearby. Space, unpolluted groundwater, natural vegetation and
clean air have become scarce and therefore changes of land use have
become complex, time consuming operations, where every expected
benefit of change may come with costs for a wide range of other values.

The presence of multiple objectives combined with the spatial
heterogeneity of landuse, geographical and hydrological conditions result in
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a highly complex system of relations. Scenarios that correspond to optimal
fulfilment of objectives cannot be identified effectively by the ‘unarmed’
human mind. As a result, the risk of choosing suboptimal scenarios has
become more pronounced. Choosing suboptimal solutions to spatial
planning problems implies that costs are higher than necessary. These
higher costs are not restricted to economic values but concern a wide
range of values; environmental, ecological or other.

1.2 Hypothesis

At least a part of the solution of the problem described in the previous
section can be found in using better tools and techniques in spatial
planning. The use of advanced numerical techniques for processing
detailed spatial information is required for efficient spatial planning and
resource management. The use of decision support systems that are based
on scientific models and apply efficient optimisation techniques can
compensate for the increased levels of complexity in present day decision
making. More specific, application of heuristic optimisation techniques to
complex spatial environmental problems with multiple objectives can
improve the identification of (near) Pareto-efficient solutions and thus
contribute to better, more efficient decision making.

1.3 Objectives

The main objective of this thesis is to assess whether the use of
heuristic optimisation techniques can lead to better decision making in
complex environmental problems.

Particular goals of this thesis are:

e to investigate if and how heuristic optimisation techniques, in
particular genetic algorithms, can be applied successfully to a
suite of complex optimisation problems in the environmental
and hydrologic fields;

e to investigate how results of heuristic optimisation techniques
can be validated more effectively;



e to investigate how optimisation problems with multiple
objectives can be handled effectively.

1.4 Structure of the thesis

This thesis is structured in three parts, A, B and C.

Part A contains an overview of optimisation techniques and decision
support systems in the context of environmental problems as an
introduction to the subject of this thesis (Chapter 2).

Part B (Chapter 3 to 6) consists of four case studies, each focussed on
a specific optimisation problem in the field of environmental assessment
and decision making.

Chapter 3 deals with the multiple objective parameter optimisation for
calibration of a groundwater model by means of a genetic algorithm.
Calibration of numerical models of groundwater flow and transport is a
complex optimisation problem, due to the large number of parameters
involved and the presence of nonlinear relations within many groundwater
models. Identification of a unique best parameter set is a problem as many
parameters are correlated. A genetic algorithm is applied for model
calibration by formulating the parameter estimation question as a multiple
objective optimisation problem. The selected objectives are minimal
residuals (1) and minimal differences between initial and final parameter
settings (2).

A case study on multiple objective optimisation of regional drinking
water production with a genetic algorithm is described in Chapter 4. A
genetic algorithm (GA) is applied as to master the combinatorial
explosiveness and multiple objectivity of the optimisation problem. The
performance of the GA is partially validated by applying it to a hypothetical
and simplified type of problem that enables comparison of the results with
those of an alternative optimisation procedure.

In Chapter 5, the use of a GA for multiple objective optimisation of
land use is demonstrated. A genetic algorithm is applied to identify the
optimal spatial allocation of nature and agriculture. Nature suffers from
nitrogen deposition from agriculture, while agriculture is limited by
regulations if it is located nearby nature areas. The performance of GA is
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partially validated by applying it to a hypothetical and simplified type of
problem. The discussion is focussed on the required properties of
optimisation problems that make it suitable to be solved with GA’s. The
application of more than two objectives is investigated. Various ways to
validate optimisation results are discussed.

In Chapter 6 a new general framework for the prioritisation of
groundwater quality prediction studies is presented. Prioritisation is viewed
as optimisation over time. Prediction studies are comprised of design and
update of groundwater quality monitoring systems and predictive modelling
studies. Decision variables that express the uncertainty of predictions are
introduced and the performance of various strategies is investigated by
means of a sequential game approach. The study illustrates how decision
makers can use advanced optimisation techniques to benefit from recent
developments in numerical modelling, automated data acquisition and
quantification of the uncertainty of modelling results. It is shown that apart
from optimal scenarios, within an experimental game setup optimal
strategies can be identified as well. It is shown that effective prioritisation
of prediction studies requires techniques that enable assessment of
expected uncertainty reduction due to additional research.

Finally, Part C (Chapter 7) contains the synthesis of this study. The
main results of the research are summarized and discussed and general
conclusions are drawn.



PART A: THEORY






2. Multiple objective optimisation and decision

support in spatial environmental problems

2.1 Concepts and terminology

In this section a number of terms and concepts that are used
frequently in this thesis and in the literature on optimisation will be
described briefly.

2.1.1 Optimisation problems

In mathematics, optimisation is the discipline that is concerned with
finding maxima and minima of functions that are usually subject to
constraints. There are quite a few descriptions of the concept “problem”.
The word originates from the Greek expression “Pro Ballo”, that can be
translated into English as “before/forward throwing”. It can be seen as an
“inner conflict”, an “inner discrepancy” that demands to be solved or
eliminated. Mintzberg et al. [1976] provides a description of problem
solving with three major phases of decision-making: identification (of the
problem), development (of alternative solutions) and selection (of the best
solution). Within this framework, the contents of this thesis is focussed
particularly on development and selection.

Spatial optimisation problems are a subdivision of optimisation
problems, with at least one property that represents a degree of freedom in
the spatial dimension, i.e. a choice of location.

2.1.2 Spaces

Quite a number of concepts in optimisation theory are coupled to the
word “space”: decision space, search space, impact space and solution
space. The term “space” derives from the fact that each variable is seen
as a vector in one dimension. All variables/vectors span a n—dimensional
space in which all possible combinations of variables ly. These spaces
refer to choices and consequences; choices reside at the domain side,
consequences of choices on the range side. Decision space, which is also
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called search space or parameter space refers to the domain side of a
problem. /mpact space, also called solution space, refers to the range side
of a problem. The number of dimensions of parameter space corresponds
to the number of decision variables. The number of dimensions at the
range-side of the problem corresponds to the number of indicators (see
next section).

2.1.3 Objective categories, criteria, indicators and objective functions

Objective categories express the general objectives of an optimisation
problem. Each objective category may be expressed by one or more
criteria. The term ‘objective category is no standard term in optimisation
theory. It is used in this thesis to express the difference between a
general, usually ‘lumped’ value and specific, operational instances of such a
value. For instance, the objective category “environmental quality” may
consist of the criteria rarity, biodiversity, presence of pollutants and the
aesthetic value of the landscape. For every criterion one or more
indicators can be determined as to express (semi) quantitatively in which
degree a certain objective is fulfilled. An objective function describes the
relation between one or more properties of solutions and indicator(s).
Typically, in a simulation—optimisation approach, indicators are the output
of impact (simulation) models. For instance, the criterion rarity could be
measured by the number of species in a particular scenario that occurs on
the ITUCN red list of threatened species as an indicator. Biodiversity as a
criterion could be expressed as the average number of species per hectare
as an indicator.

2.1.4 Impact model

An impact model is a dose-response model that can be used to
simulate scenarios and thus enable an assessment of the consequences of
decisions. An impact model may for instance predict changes of species
abundance, atmospheric deposition or groundwater quality as a result of
particular decisions. The indicator values are the final output of impact
models that are used for the optimisation.



2.1.5 Complex optimisation problems

In this section a number of properties of optimisation problems will be
described that make them complex, i.e. difficult to solve. There are five
basic properties of impact models that determine the complexity in
environmental and spatial optimisation problems:

e nonlinearity;

e discontinuity;

e interdependency;
e feed back loops;

e combinatorial explosiveness.

Nonlinearity of dose-response relations plays an important role in
many physical, chemical and biological processes. The nonlinear relation
between physical or chemical conditions and plant species abundance is an
important issue in many environmental optimisation studies. Typically,
there is a clock—-shaped nonlinear optimum curve, which results in a
variable sensitivity of plant species abundance as a function of changes in
physical chemical conditions (see Figure 2-1).



Optimum

probability of occurrence of
plant species X

property of physical/chemical environment (e.g. pH)

Figure 2-1 Example of a nonlinear dose-response relation optimum
curve

Discontinuity is like nonlinearity a property that makes it difficult to
solve optimisation problems. It occurs in many processes and consists of
sudden leaps in impact functions, or sub—domains where no feasible
solution exists. An example of discontinuity in biological processes is
mortality of species; in technical processes it may be related to the
maximum capacity of a transport pipe or groundwater pump.

Interdependency in optimisation problems refers to the phenomenon
that many processes depend on more than one single variable and that the
influence of these variables on a particular impact cannot be superposed.
The response of one variable depends on the value of another variable.
This feature is illustrated in Figure 2-2, where three curves describe the
relation between pH of the soil and probability of occurrence of a
hypothetical plant species for three different groundwater regimes. It is
shown that there is interdependency between the groundwater regime and
the pH with respect to the probability of occurrence of plant species. The
importance of pH to the probability of occurrence depends on the
groundwater regime in a nonlinear way.
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probability of occurrence of plant
species X

.--

property of physical/chemical environment (e.g. pH)

Groundwater regime A === Groundwater regime B

= = Groundwater regime C

Figure 2-2 Example of interdependency: Conceptual optimum curves
of wetland plants as a function of pH and groundwater
regime.

Feedback systems [Stear, 1987] occur in many types of processes,
and make it difficult to predict system behaviour. Small differences
between the initial state of systems eventually may lead to large
differences. Similarly, small errors in the description of the feed back
relation may result in large errors in the predicted state because deviations
accumulate. An example of a feedback system is the interaction between
the transport capacity of a road network and the spatial distribution of
population density. The transport capacity of a road network has an
influence on the places where people decide to live. The resulting spatial
distribution of residential areas influences the further development of road
networks.

Combinatorial explosiveness is the term that describes the exponential
increase of possible scenarios in systems with many degrees of freedom. It
occurs for instance in network systems, such as regional drinking water
production systems or in other spatially interrelated systems such as
landuse allocation problems. The temporal dimension may also invoke
combinatorial explosiveness, like in a game of checkers. An example of an

11



optimisation problem with a time—based combinatorial explosiveness is
presented in Chapter 6. An example of ‘spatially based’ combinatorial
explosiveness is discussed in Chapter 4. The latter concerns different
scenarios to meet the required regional drinking water production. More
concretely, in a regional drinking water supply system of N wells of equal
capacity, interconnected by a transport system of unlimited capacity, the
total number of configurations is given by:

R= SN 2-1)
Where:

R the total number of combinations

N the number of wells

the number of discharge rate steps per well

2.1.6 Multiple objectives

Many real world optimisation problems have conflicting objectives.
Indicators of the fulfilment of different objectives generally cannot be
converted objectively to a common scale. Ecological quality for instance,
cannot be expressed objectively in economic terms. Therefore, it is not
possible to identify a single objective optimum. The problem of
incommensurable objectives, also known as the ‘problem of apples and
pears’, implies that (inter) subjective valuation is necessary to identify the
optimum solution of a problem with multiple, conflicting objectives.

2.2 Valuation

Multiple objective optimisation needs to be based on valuation of
impact categories. The valuation of impacts can be done by two different
approaches:

e explicit approach, in which the impacts are all converted to a
common scale;

12



e implicit approach, in which the valuation of impacts is
expressed indirectly by formulation of constraints.

According to the explicit approach, impacts are translated into a
common, often monetary scale. Conversion of damage to natural vegetation
according to an explicit approach could for instance consist of valuations
that are based on replacement costs. In that case the economic costs
involved in creating a similar natural vegetation elsewhere would be the
basis for valuation of the impact. This approach is being criticized for its
inability to reflect all relevant aspects in a meaningful way [Nijkamp,
1979]. However, there are objective categories on which stakeholders
have managed to agree on a translation of impacts into monetary terms.
Explicit valuation on a basis of ‘willingness to pay’ of individuals offers
good possibilities to differentiate between various kinds of environmental
capital and services, particularly if the valuers are well informed. Over the
last decade a considerable number of authors have applied explicit
valuation by assessing ‘how changes in the quantity or quality of various
types of natural capital and ecosystem services may have an impact on
human welfare’ [Costanza et al., 1997].

Alternatively, an /mplicit approach for value attribution could result in
formulation of constraints of the type: "the maximal drawdown induced by
pumping may not exceed X cm in area Y". The latter approach offers a
better possibility to formulate absolute boundaries to which solutions
should comply than translation into monetary terms as in the explicit
approach. On the other hand such a rigid valuation can seriously hamper
the finding of compromises. Both explicit and implicit approaches may be
combined within optimisation.

Ecological impact models generally lack a comprehensive analysis of
values that are represented in particular plant species and vegetation
types. Witte et al. [1993] based the value of an ecotype group on its
national and international rarity. Many other approaches to valuation of
ecological entities have been proposed and/or applied. Valuation of (semi)
natural vegetation and other types of environmental resources on a
quantitative basis is an issue of continuing development [e.g. Costanza et
al., 1997, Lazo et al., 1992, Whitehead et al., 1991]. Progress towards a
consistent valuation system is hampered by the complexity of our global
ecosystem, that makes it hard to determine the exact importance of
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particular kinds of environmental capital and services. Besides, the entire
range of possible decisions (i.e. compromises) for a problem is often poorly
known and the environmental impacts of decisions are frequently
insufficiently clear. Examples of inconsistent attribution of values can be
observed in the investments that are made for the conservation of nature:
in some cases large amounts of money are spend to save relatively few
phreatophytes where at a similar project nothing was spent for protecting
wetland vegetation and yet the net benefit of these investments could have
been much higher.

Optimisation approaches and decision support systems such as
presented in this paper can facilitate the identification of possible
compromises and make the corresponding impacts better known. The
weight or value that is attributed to impacts by decision makers can thus
become more transparent. This could contribute to the development of a
more consistent valuation system and thus it could help to allocate
investments for the conservation of environmental values where they are
needed most.

2.3 Pareto fronts

Decision makers often prefer to inspect the total collection of feasible
and rational solutions before deciding on valuation of objectives. If decision
makers cannot agree a priori on an either explicit or implicit valuation of
objectives, then the interdependence between conflicting objectives can be
evaluated by means of Pareto fronts (trade-off curves).

Already in the beginning of the 20" century the political economist
Pareto studied optimisation problems [Pareto, 1906]. He introduced the
terms inferior and noninferior solutions. A choice between different
noninferior solutions is impossible without valuation, but inferior solutions
can be rejected without valuation. The term noninferior is equivalent to
Pareto efficient or nondominated. 1t is a relative property: the solution is
noninferior if there is no other solution that performed better for one
objective without performing worse for any other objective.
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An example of Pareto—efficiency:

If a person needs to buy tea, he can choose to buy expensive tea of
relatively good quality, but he can also choose to buy a relatively cheap tea
of a lesser quality. A choice between these two options cannot be made on
rational grounds, as quality of tea cannot be expressed in financial terms
without subjective valuation. However, if there exists a third option, to
choose a tea that is even more expensive than the good quality tea but of a
lesser quality, then this option can be discarded on rational grounds,
without valuation. No rational person would ever choose to buy this
expensive tea of relatively poor quality, provided that only price and
quality are relevant properties. The first two options are called Pareto-
efficient, Pareto—optimal or noninferior solutions, the third option is called
‘inferior’ or ‘dominated’, because it can be rejected without valuation.

The complete set of noninferior solutions is called Pareto front. The
decision—making can be facilitated by discarding all inferior solutions. Only
nondominated solutions are to be evaluated by decision makers. If there is
an optimisation problem with two conflicting objectives, then the Pareto
efficient solutions jointly represent the Pareto front if the indicator values
of the solutions are visualised graphically in a chart.

Pareto fronts can be used as reference information for decision
makers as they mark how the best solution depends on valuations of
incommensurable objectives. The value of the Pareto approach for multiple
objective optimisation lies in “providing a set of alternative options for
system improvements rather a single prescriptive solution” [Azapagic,
1999]. Pareto fronts can be used to show how economic cost and
environmental damage are interrelated for Pareto efficient solutions. If a
particular budget X is available for alleviation of environmental damage,
then the solution that corresponds to optimal allocation of this budget can
be identified at the Pareto front (Figure 2-3). The slope of the curve
indicates the marginal reduction of environmental damage as a function of
economic investments.
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Figure 2-3 Example of a Pareto front of two conflicting objectives

Solution A is Pareto-efficient (noninferior) because there is no other
solution with both lower economic costs and less environmental costs.
Solution B implies similar economic costs as solution A, but the ecological
costs are higher. Solution C implies similar ecological costs as solution A,
but the economic costs are much higher. The feasibility of solution A
implies that solutions B and C can be rejected on rational grounds.

2.4 Overview of optimisation techniques
The following sections contain a concise description of the principal

optimisation techniques that are suitable for solving complex spatial
optimisation problems.

2.4.1 Mathematical programming

A mathematical programming problem is an optimisation problem that
can be formulated as:
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Maximise f(x): x in X, g(x) <=0, h(x) =0 (2-2)

Where X indicates a domain that delimits the search space of the
variables that are to be optimised. The relations g(x) <= 0 en h(x) = 0 are
constraints and f is the objective function. The functions f,g and h need to
be explicit mathematical functions.

There are various methods and techniques to solve problems of the
type that was formulated are above, of which linear programming (LP) is
the most popular. Linear programming is suitable for a specific class of
mathematical problems where the objective function and the constraints
are linear. There is a wide range of optimisation problems that can be
formulated as a linear function, or that can be approximated by a linear
function. Generally, linear programming is a fast technique, even if the
number of variables is quite large. The method was developed in the 1940s
by G.B. Dantzig, who developed the so-called simplex method [G. B.
Dantzig, 1963] and by J. von Neumann, who presented it in the same period
his theorem of duality [Neumann and Morgenstern, 1944]. In 1984 N.
Karmarkar introduced the so-—called interior-point method that in many
cases could locate optima much faster than the simplex method
[Karmarkar, 1984]. This search technique does not follow the corner
points like the simplex method, but follows interior points within the search
space. Essential to both methods is the solution of systems of linear
equations where techniques are applied that originally were developed by
Lagrange, Gauss and Cholesky, back in the 18th and 19th century. In 1975
the Russian mathematician L. Kantorovich and the American economist T.
Koopmans received the Nobel Prize for economy for their contribution to
the “Optimal Resource Allocation Theory”, in which linear programming
plays a key role. At present, in many enterprises this technique is used as
a standard tool, for instance for the optimal allocation of resources. There
is a large spectrum of commercial software in which this technique is
applied.

Linear programming has proved itself as a very powerful tool for
modelling and solving a wide range of real-world problems. However,
many optimisation problems cannot be linearised and therefore linear
programming is Inappropriate. An important group of these problems are
intrinsically discrete, so-called mixed integer problems. MILP (mixed
integer linear programming) problems occur in many practical situations
and are many techniques suitable for solving these problems. The
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computational costs of solving MILP problems are much higher than of
solving ordinary LP problems, particularly if the number of integer
variables is high.

Quadratic programming (QP) can be used if the objective function is of
a quadratic form. There are many examples of this type of optimisation
problems and many techniques to solve them too, provided that the object
function has a convex shape. However, solving quadratic optimisation
problems is much more demanding in computational terms than solving
linear optimisation problems.

Nonlinear programming (NLP) refers to a group of optimisation
problems with nonlinear, non—convex objective functions. Some of these
problems can be solved by approximative solution techniques. Although
there are many examples of these kind of optimisation problems, it is
generally uncertain whether they can be solved by NLP, if the number of
variables is large.

If mathematical optimisation techniques are unsuitable, heuristic
optimisation techniques are appropriate. Two major techniques are
discussed here: genetic algorithms and simulated annealing.

2.4.2 Genetic algorithms

Over the last decades genetic algorithms have been applied
successfully to optimisations problems [e.g. Cieniawski et al., 1995; Deb &
Kalyanmony, 1999]. The development of genetic algorithms was inspired
by the genetic processes of biological organisms. The concept of natural
selection by survival of the fittest as stated by Charles Darwin in 7he
Origin of Species plays a major role. Application of the principles of
selection and mutation in computer programs was first proposed by Holland
[1975].

18



Three principles of evolutionary theory are also essential in genetic
algorithms:

e survival of the fittest;
e incomplete inheritance of properties;

e variation among individuals.

The first principle results in not only survival, but also reproduction of
the fittest. The consequence of the second principle is that children—
solutions resemble their parents—solutions but are not identical to them.
The third principle enables a continuous exploration of alternative
solutions.

GA's work with a 'population' of possible solutions to a problem. The
'fitness' of each member of the population is calculated and the properties
(genes) of those who perform best are mixed with other solutions, leading
to new members of the population. The 'cross—-over' process has been
implemented in many different varieties according to the specific character
of optimisation problems. The reproduction cycle is repeated until there is
convergence, in the sense that no further improvement of solutions occurs.
The procedure of the optimisation is presented in Figure 2-4.
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Figure 2-4 Flow chart of an optimisation procedure with a genetic
algorithm

Typically two new solutions are reproduced by two existing solutions.
There exists a large variety of reproduction techniques, that is the way
new solutions are constructed out of existing solutions. Arithmetic
crossover consists of calculation of a weighted average of numerical values
that represent the various properties of the parent solutions. Single point
and multi point crossover consist of random heritage of a particular part of
the genes of both parents.

Many different crossover techniques have been applied in GA’s.
Comparative studies indicate that there is no large difference of final
results or speed between them [Beasley et al., 1993]. Eshelman et al.
[1989] performed an extensive comparison of different crossover
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operators and analysed them both theoretically and empirically but no
overall winner emerged; speed differences did not exceed 20%.

For the hypothetical case studies in this paper we achieved best
results with arithmetical and uniform crossover techniques. Arithmetical
crossover was implemented as described in Michalewicz [1996]; genetic
information of offspring is then determined according to:

U: ul1],..uln] 2-3)
Viv[1],..vn] (2-4)
X:x[1],..x[n] (2-5)
Y:y[1],.y[n] (2-6)
x[1],.x[n] = cl*ul+c2+vl,.., clxulnl+ c2#v[n] 2-7)
y[1],..y[n] = c2+ul+cl#vl,., c2+uln]+ cl*v[n] (2-8)
Subject to:
cl,c2 >=0 2-9)
cl+c2=1 (2-10)
Where:
uv chromosomes of existent (parent) solutions
v genes of parent solutions
XY chromosomes of new solutions (offspring)
cl, c2 crossover constants (-)

Uniform crossover results theoretically in the most effective
exploration of the search space and combines well with the ‘hill climbing’
character of arithmetical crossover that is effective in finding local optima.
In uniform crossover, offspring are constructed by random inheritance of
genes from either parent U or V. A reproduction results in two new
solutions, of which solution Y is attributed the inverse genetic information
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of X, i.e. where X possesses a gene of U, Y is attributed the gene of V and
vice versa.

Similar to the biological principles in evolution theory, mutation is
applied as a supplementary principle. In evolution theory, mutation is a
factor that prevents genetic drift, the tendency in a population to become
genetically homogeneous. Similarly, mutation is applied in genetic
algorithms as to avoid premature convergence by assuring sufficient
variation within the population of solutions. However, a mutation probability
that is too high limits the possibilities to inherit successful properties of
parent solutions. Hence, there is a trade-off between variation and
inheritance. As yet, there are no generally applicable methods to determine
the optimal probability of mutation for specific optimisation problems.

Genetic algorithms are particularly suitable for multiple objective
optimisation (MOO) because the presence of a population of solutions
implies that there exists a collection of solutions [Goldberg, 1989]. Genetic
algorithms have been applied to a wide range of optimisation problems and
are viewed as a last resort for particularly difficult optimisation problems.

2.4.3 Simulated Annealing

The development of simulated annealing was inspired by the physical
process of annealing, i.e. the cooling of metals. The first component of the
optimisation procedure consists of the construction of alternative solutions
from existing solutions according to a Metropolis Monte Carlo scheme
[Metropolis et al., 1953]. The second component controls the selection of
alternative solutions according to a Boltzmann acceptance criterion. Unlike
the traditional Monte Carlo simulation, alternative solutions are constructed
by modifying existing solutions. The degree of modification is large in the
initial stages of the optimisation and is gradually reduced. The temperature
of the physical annealing process is analogous to this degree of
modification. The ‘cooling scheme’ refers to the gradual reduction of the
‘temperature’ and varies among different simulated annealing approaches.
The existing solution is replaced by an alternative solution if the difference
between the alternative solution and the current solution is within ranges
that are defined by a criterion based on the Boltzman probability factor.
The ranges vary along the optimisation as a function of ‘temperature’.
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( E(current)—E (new) j
_ kT

P= 2-11)
Where:
P Boltzman probability factor
E (current)  current ‘energy level' (i.e. values of the objective
function)
E (new) alternative ‘energy level’
k Boltzmann constant
T temperature

The alternative solution is always accepted if it has a better
performance than the current solution. If it leads to a worse performance, it
will only be accepted if a randomly generated number (between O and 1) is
less than or equal to the Boltzmann probability factor.

Simulated annealing has been applied successfully to many, generally
combinatorial optimisation problems [Azencott, 1992].

2.4.4 Classification of techniques

One of the possible classifications of optimisation techniques divides
the available techniques in two groups: heuristic versus ‘classical’ , or local
versus global. Within both groups there are methods that can be applied to
complex spatial optimisation problems. The principal global optimisation
methods consist of linear and nonlinear programming techniques, whereas
genetic algorithms and simulated annealing belong to the most prominent
heuristic techniques.

The heuristic methods possess a typical iterative approach where the
search consists of a sequential evaluation of alternative solutions. Global
optimisation techniques typically consist of formulating and then solving a
set of equations that refers to all possible solutions. The specific
advantages and disadvantages of the two groups are presented in Table
2-1.
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Table 2-1  Differences between Jlocal and global optimisation

techniques
A. Heuristic (local) techniques B. ‘ Classical’ (global) techniques
No guaranty that the found Often better guaranties that a found
solution is the global optimum. optimum is global.
Tuning1 required for complex Requires generally no tuning.
problems.
The optimisation requires less The optimisation requires generally
preparation than for B. more preparation than for A.

Operates ‘outside’ impact models. | Either operates “within” impact
models (strictly analytical), or
operates on the outside, by

extrapolation.
Constraints can easily be Constraints cannot always be easily
incorporated in the procedure. incorporated in the procedure.
Paralellization can be Paralellization cannot be implemented
implemented relatively easily. easily.
Availability of a large collection Availability of a large collection of
of possible solutions is inherent possible solutions is not inherent to
to the techniques. the techniques.
Interdependency can be treated Interdependency cannot be treated
relatively well. easily.
Discontinuity can be treated Discontinuity cannot be treated
relatively well. easily.

' The term tuning refers to adaptation of optimisation codes to case

specific needs.
24



2.5 Game theory and experimental game models

Over the past 50 years, game theory has provided successful
techniques for finding optimal strategies in situations where there is
uncertainty about the result of decisions. It was pioneered by Von
Neumann and Morgenstern who in 1944 published their book “Theory of
Games and Economic Behaviour”. It has been applied to many subjects in
economic and political sciences.

The work of von Neumann and Morgenstern demonstrated that game
theory can be applied to decision processes in which the results depend on
the strategies of two or more persons with conflicting objectives. Not much
later it became accepted that, even if there is no interaction between
persons involved, many optimisation problems can be viewed as games too
[Wald, 1950]. Uncertainty with regard to physical, chemical or biological
processes can be treated similarly, to some extent, as in human processes
in economic problems. In this case, the decision maker plays against
‘nature’ in stead of human players. Nature is then viewed as a player who,
unlike in games with human players, is not necessarily focussed at
maximisation of profits or of losses for it's opponents, but nevertheless is a
player whose actions are uncertain.

A further development in game theory are experimental game models.
In this branch of game theory, simulations are carried out with numerical
models on computers. The earliest published article on an informal
economic game experiment was by Chamberlain [1948]. The use of these
games 1s now generally accepted in many research areas. Experimental
games can be a powerful instrument for the structuring of decision
problems and for developing creative decision options. The underlying
processes are simulated, their uncertainty is quantified in statistical terms
by using both hard data and more soft information and thus it becomes
possible to estimate the outcomes of various strategies.

2.6 Decision support systems

There are many definitions of Decision support systems (DSS)
available. A representative example is the following:
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Decision Support Systems (DSS) are a specific class of computerized
information systems that supports business and organizational decision—
making activities. A properly designed DSS is an interactive software-
based system intended to help decision makers compile useful information
from raw data, documents, personal knowledge, and/or business models to
identify and solve problems and make decisions.” [Anonymus, 2005].

The development of decision support systems is closely connected to
that of computers. From the 1960’s onwards the computational power of
computers came available to universities and companies, and since the
1980’s personal computers became available to individuals. Parallel to this
development, decision support systems were developed and used.

According to Sprague and Watson [1979], around 1970 business
journals started to publish articles on management decision systems,
strategic planning systems and decision support systems. The first
International Conference on Decision Support Systems was held in Atlanta,
Georgia in 1981.

If many different objectives and corresponding indicators are involved,
it i1s convenient that some kind of interactive interface between the
decision makers and the results of the optimisation calculations is
available, where results of alternative solutions can be presented in a
coordinated way. If there are different actors involved in a decision
process, coordination and interactivity becomes even more useful.

Decision support systems can facilitate the identification of possible
compromises and make the corresponding impacts better known. The
weight or value that is attributed to impacts by decision makers can thus
be made more transparent. This could contribute to the development of a
more consistent valuation system and thus it could help to allocate
investments for the conservation of environmental values where they are
needed most.

2.7 Optimisation of spatial allocation problems

Optimisation of spatial allocation problems has not been studied
extensively for a long period of time, but over the last two decades, the
number of publications in scientific journals has increased significantly.
Many complex spatial allocation problems are related to finding optimal
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landuse configurations, as occur in timber harvesting, agricultural
production [Mayer et al., 2001], grazing management plans [Horton, 19961,
crop rotation [Parsons, 1998] and ecological modelling [Haberlandt et al.,
2002]. The spatial dimension introduces often a large search space due to
the high degree of combinatorial freedom. In some cases the temporal
dimension is involved too, such as in crop rotation or in ecological
modelling where succession of vegetation types is included.

Mayer et al. [2001] have published on the optimisation of agricultural
production on farm level. The authors applied and compared a number of
techniques. They conclude that simulated annealing and genetic algorithms
are the most appropriate techniques to solve these complex spatial
allocation problems with a large search space and nonlinear and
discontinuous system properties. Mayer et al. [2001] consider hill
climbing, direct search algorithms, the Nelder—Mead simplex methods and
the tabu search metastrategy inappropriate for the task of these types of
model optimisation. They state that the remaining two general families of
optimisation methods, viz. simulated annealing and evolutionary algorithms
have proven valuable in this field. Simulated annealing has been used
successfully to identify the economic optima of a range of agricultural
systems. However, the rates of convergence have been problematic for
some problems, which then leads to excessive runtimes for achieving the
global optimum. A number of comparisons between optimisation algorithms
were conducted on mathematical test functions, with varying results. In
general, Mayer et al. [2001] consider modern heuristic optimisation
methods like simulated annealing and evolutionary algorithms to belong to
the most powerful techniques, although other methods can perform well on
specific types of problems. The mathematical test problems are different
from the optimisation of management strategies in simulation models, which
makes it difficult to analyse the effectiveness of the various techniques.
Complex simulation models form one of the more difficult classes of
optimisation problems They are typically of higher dimensionality, as each
individual management option to be optimised contributes an extra
dimension to the search-space. The impact space (response surface) that
i1s generated by simulation models can be nonlinear and include
discontinuities. In the cases that were investigated by Mayer et al. these
nonlinear and discontinuous properties occur when the agricultural systems
are pushed ‘too far’ (e.g. overstocking) and biologically (near) unfeasible
parts of the search space are entered. The complexity of ecological and
biological system models usually implies the presence of nonlinear,
discontinuous and interdependent system properties, whereas classical
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engineering optimisation problems typically can be described with a limited
number of differential equations that can be solved by linear and nonlinear
programming. However, this complexity also makes it rather difficult to
compare different ecological and biological optimisation problems. Mayer et
al., 1991, 1996] showed that the simplex method performed better than
gradient methods on a dairy farm model, but found both to be inferior to
genetic algorithms and simulated annealing.

Seppelt and Voinov published in Ecological Modelling [2002] about
spatial optimisation in environmental modelling. They tried to identify the
optimal distribution of land use for the best ecosystem management and
developed a genetic algorithm that was coupled with a GIS. Both the
mathematical formulation and the techniques that were used vary widely in
the aforementioned studies, which makes it difficult to determine general
criteria for the choice of the most suitable optimisation technique.

Seppelt [2000] considers two aspects that play a role in the
complexity of spatial optimisation problems:

e model complexity;

e spatial complexity.

Model complexity is a function of the type and the number of mainly
biological and physical processes involved, whereas the spatial complexity
is determined by the size of the study area, the grid cell size and the
number of spatially interacting processes. The optimisation problem that
Seppelt studied concerns the allocation of 7 different types of land use in a
watershed: “Our goal is to find out what is the optimum land use pattern
and what should be the strategy of fertilizer application to reduce nutrient
outflow out of the watershed and increase yield”. The problem was
analysed with a spatially distributed model, simulating various biological,
hydrochemical and agronomical processes. The objective function
contained both economic and ecological criteria, where weights were
applied as to merge these criteria in a single objective function. The
complexity of the process models involved proved too high to allow an
integrated regional optimisation. Therefore, the authors tried to extend the
results of a local optimisation to a regional domain through bivariate
correlation analysis. However, absence of strong correlations between
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local spatial properties and local optimal solutions inhibited successful
upscaling of local optimal solutions to a regional scale.

Haberlandt et al. [2002] tried, like to Seppelt and Voinov, to upscale
the results of process—based models from a local scale to a regional scale
as to reduce the cost of the calculations. They used a numerical model to
simulate nitrate leaching from agricultural areas. The results of the process
model were taught to a fuzzy rule system per soil class. Simulated
annealing was used for the selection of the best system of a fuzzy rules.
The authors reported that the upscaling technique worked satisfactory and
that the differences between the fuzzy rule system and the original process
model were small. Average correlation coefficients between the two
models varied between 0.78 and 0.94.

Brookes [2001] applied a genetic algorithm for optimal landuse
configuration. He defined the optimisation problem of allocation of spatial
functions to an area as an optimal patch design problem. The optimisation
problem consisted of the allocation of two land use functions in Nepal,
namely agriculture and carpet industry and concerned multiple objectives.
He introduced a set of specific spatial concepts such as patch size, shape,
connectivity, composition and configuration for the spatial properties of
ecological and physical processes such as erosion, sedimentation and
runoff. He also developed specific spatial genetic operators such as creep,
sum and average. Brookes concludes that the GA technique worked
satisfactory but that the use of specific spatial operators was essential.

Zander and Kichele [1999] investigated optimal land use
configurations for sustainable development. The authors stress that
sustainability is a lumped concept, consisting of multiple objectives that are
partially conflicting. Due to the lack of objectivity in the concept of
sustainability they conclude that the best way to determine optimal land
use configurations requires participation of stakeholders in the optimisation
process. Negotiation, interactive game approaches and decision support
modelling are viewed by the authors as the appropriate techniques to
identify the optimal solutions. Sustainability is interpreted as consisting of
basic economic and ecological components. The optimisation problem is
solved by application of linear programming techniques. Application of
different weights to the components of the objective function enables the
construction of a trade off curve. The optimal solution is located at the
point of intersection between the trade off curve and an indifference curve,
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that reflects a stakeholder's preferences. The optimisation problem is
approached as a pricing problem in classic economic theory, where the
point of contact between the two curves represents market equilibrium.
Different stakeholders have different indifference curves and therefore
need to negotiate in order to agree on a mutually accepted compromise.

2.8 Optimisation for water management

Many studies have been dedicated to the use of optimisation models to
solve the increasing complexity of water management problems. Linear
programming [Aguado et al. 1974, Molz and Bell 1977, El Magnouni et al.
19941, nonlinear programming [Gorelick et al. 1979, 1984; McKinney et al.
1992], dynamic programming [Makinde-Odusola and Marino, 1989;
Andricevic 19901, goal programming [Rajabi 1999] and genetic algorithms
[McKinney et al., 1994; Cieniawski et al. 1995] have been used as
optimisation techniques. Linear programming is an efficient technique for
problems that can be linearized but becomes inaccurate and inappropriate
for pronounced nonlinear and interdependent optimisation problems.
Nonlinear programming techniques cannot handle interdependency either
and can be unpractical due to the problematic determination of gradients if
impact relations are highly nonlinear [McKinney, 1994]. Rajabi et al.
[1999] applied a modified goal programming (GP) technique to a multiple
criteria water supply planning problem, for the first time with
interdependency between and within impact relations. A disadvantage of
GP is that it requires valuation of criteria before final solutions can be
presented. Decision makers need therefore to decide on valuations while
the impact of these valuations on the final solution is unclear. Dynamic
programming (DP) was developed for the optimisation of sequential
decision processes. This technique for multistage problem solving may be
applied to problems that can be described as a nested set of sub—problems.
Pronounced interdependency among impact relations combined with a large
search space makes DP infeasible. Optimisation by genetic algorithms (GA)
i1s one of the few techniques that are capable of handling the highly
nonlinear, interdependent and non—convex type of problems that often
occurs in groundwater management. GA’s have been applied successfully
to a wide range of problems, but applications to water management
problems are relatively scarce as yet. McKinney et al.[1994] illustrated
how GA could be applied successfully to single-objective optimisation of
well field development and aquifer remediation design. Cieniawski et
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al.[1995] applied GA to a two-objective (independent) groundwater
monitoring optimisation problem and compared the GA technique with
simulated annealing. Optimal groundwater remediation strategies were
determined using this approach [Kuo et al., 1992].

2.9 Conclusions

From the previous sections it can be concluded that heuristic
optimisation techniques and particularly genetic algorithms have been used
successfully to solve a wide variety of spatial optimisation problems. The
complexity of the models that are used follows from the complexity of
environmental processes that are simulated. It tends to be further
increased by a distributed representation of the spatial and temporal
dimensions and thus frequently leads to nonlinear, interdependent and
combinatorial explosive optimisation problems. Generally, every objective
needs to be assessed by a separate, often complex model. As a result,
appropriate optimisation techniques need to be used in a modular way “on
the outside” of the models, as it is generally not feasible to reduce this
class of optimisation problems to a limited set of partial differential
equations. Heuristic optimisation techniques such as simulated annealing
and genetic algorithms allow such a modular approach. Therefore, they can
be viewed as ‘last resort’ techniques that may be able to tackle a problem
where classical global optimisation techniques fail. In some cases, authors
report that GA and SA were used successfully, but there are also quite
some studies where tuning of algorithms and use of additional techniques
were necessary. Examples of these adaptations are the design of specific
crossover procedures [Brookes, 2001] and reduction of the computational
costs by gradually increasing the level of detail of impact models
[Haberlandt et al., 2002, Seppelt and Voinov 2002].

In spite of the substantial success of heuristic optimisation techniques
there are a number of issues that are unsolved and require more attention:

1. It is unclear how the complexity of an optimisation problem can
be assessed on beforehand as to determine whether it can be
solved with GA’s
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2. Directly related to the issue mentioned here above and even
more important is the unsolved question how to determine
whether solutions that are found with heuristic techniques are
true global optima

3. A third issue that deserves more attention is related to the
valuation of objectives. It is unclear how two and more
objectives can be handled effectively and unbiased in a multiple
objective setting.

These issues will be investigated in the next chapters of this thesis.



PART B: CASE STUDIES
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3. Multiple objective parameter optimisation of a
groundwater model by means of a genetic

algorithm?

3.1 Abstract

The parameter optimisation (calibration) of a groundwater model is
approached as a multiple objective optimisation problem with two separate
objective functions. The first objective function concerns minimum
difference between simulation results and observations, the second
objective concerns minimum deviation from initial estimates of the
parameter values. A trade-off curve of Pareto—efficient solutions is
constructed by computing multiple model runs for a genetic algorithm
linked to Modflow. The genetic algorithm provided a stable and flexible
technique for the parameter optimisation. Forms of “circumstantial
validation” are applied to confirm the hypothesis that the identified
solutions are global optima. Inspection of the relation between both
objective functions in the trade—off curve enables a better understanding of
the search space and a better founded choice for a final calibrated model.

Key words: groundwater; optimisation; parameter estimation;
calibration; genetic algorithm; evolutionary programming

3.2 Introduction

Numerical groundwater models are useful instruments for assessing
the impact of changes in the hydrological system on groundwater levels,
flow patterns and chemical composition of the groundwater. However, the

 Adapted from: Proceedings of the FEM_Modflow conference of 2004
in Karlovy Vary, Czech Republic.
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calibration of groundwater models is a difficult task. Three major problems
exist:

Parameter value uncertainty. The extent to which parameter values
can be modified from initial estimates to achieve maximum “model fit” is
unclear.

Combinatorial explosiveness. The number of combinations of possible
geohydrologic model properties or parameter values is enormous. Finding
the combinations of parameter values that lead to best model fit is a
complex task.

Identification problem. Uncertainties in parameter values and
correlations between parameters result in the identification problem:
different combinations of parameter values can result in similar model
performance. But, the impact of simulated changes in the hydrologic
system may differ significantly between different calibrated models with
similar residuals and it is unclear which set of calibrated parameters give
the best assessment of the impact of changes in the system.

3.2.1 Parameter value uncertainty

As model schematisation is never perfect and reference data used for
calibration to some extent are also uncertain, parameter values should not
be changed unlimitedly during the calibration process. Geostatistical
techniques such as kriging have been developed in order to estimate
probability density distributions of spatially distributed model variables and
offer a theoretical solution to the question which relation exists between
probability and distributed parameter value estimates. Uncertainty can thus
be estimated and the modeller can determine the likeliness of different sets
of parameter values, provided that interdependency among model
parameters should be absent or known. However, kriging and many other
statistical techniques are not very suitable to take spatial discontinuities of
geohydrologic variables into account. Differences among sub-areas that
are caused by the variety of geophysical processes that shaped the
present geohydrologic properties imply different properties of the
presupposed statistical models. The obstacle of parameter uncertainty in
model calibration can be reduced by the aforementioned techniques, but
remains a serious problem in practice.
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3.2.2 Combinatorial explosiveness

Present day numerical groundwater models may contain more than 1
million cells and in many of these cells more than 3 static parameter values
may be allocated. If the model is meant to simulate non-stationary
processes the search space is even larger. Fortunately the number of likely
combinations is strongly reduced by spatial correlation of distributed model
parameters, but still it is unfeasible to assess all likely parameter
configurations by exhaustive exploration, i.e. running the model for all
these realisations. Zoning of spatially distributed parameters is a practical
way to reduce the number of combinations and is effectively facilitated in
recent releases of Modflow. However, defining zones implies simplification,
which may reduce the reliability and accuracy of model results.

3.2.3 Identification problem

The identification problem is that more than one single solution of the
parameter optimisation problem yields a best fit. If small differences in
“model fit” exist among different configurations of model parameters then
these are usually insignificant in relation to the precision of the input data.
However, the results of scenario simulations may differ significantly. The
best way to reduce the size of the identification problem is the introduction
of more reference data and objective functions. For instance, adding water
balance criteria to hydraulic head criteria may reduce the problem.
However, ending up with sets of parameter values that are equally likely is
often inevitable. The degree to which these solutions differ is strongly
related to the number and precision of empirical data available.

Parameter optimisation techniques can be used to find optimal
solutions, provided that the search space is reduced to a feasible size. Both
classical “analytical” and heuristic techniques have been used for
“automatic calibration” of groundwater models. The first group consists of
linear and nonlinear programming techniques, the latter of Monte Carlo,
simulated annealing and evolutionary programming (genetic algorithms).

Many hydrologists have carried out repetitive model runs while
applying stochastic variation of parameter values according to uniform or
other probability distributions as to quantify the range of possible model
results and thus be able to assess model precision. The Monte Carlo
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approach is a great improvement on manual calibration techniques that
were applied in the early days of Modflow, but the disadvantage of the
method is that it demands much computer time, particularly for complex
problems with many uncertain parameters that are a typical for present—
day distributed models. Dettinger and Wilson [1981] applied the first-order
second moment method to assess model output uncertainty as a function of
input uncertainty and model sensitivity. The uncertainty that is associated
with the probability distribution that is assumed for model parameters
remains problematic. Doherty [2002] and Hill [1992] have developed very
useful software in which nonlinear optimisation techniques are applied for
parameter optimisation of Modflow and other models. These nonlinear
parameter optimisation techniques are less expensive in terms of CPU time
than Monte Carlo techniques. However, they are not particularly suitable
for multiple objective optimisation problems and may sometimes become
numerically unstable when applied to complex models. To avoid these
problems, Zheng [1997] used a genetic algorithm, for single objective
parameter estimation of Modflow models. In this paper I extend Zheng's
approach to provide a practical technique for applying a genetic algorithm
to model calibration where the parameter optimisation is approached as a
multiple objective optimisation problem.

3.3 Methods

Over the past 20 years, genetic algorithms have been applied
successfully to multi-objective optimisation problems [e.g. Cieniawski et
al. 1995]. The development of genetic algorithms was inspired by the
genetic processes of biological species. The concept of natural selection
by survival of the fittest as stated by Charles Darwin in The Origin of
Species plays a major role. At present, evolutionary programs have been
applied successfully to a wide range of problems. GA's work with a
'population' of possible solutions to a problem. The 'fitness' of each
member of the population is calculated and the properties (genes) of those
who perform best are mixed with other solutions, leading to new members
of the population. The reproduction cycle is repeated until there is
convergence, in the sense that no further improvement of solutions occurs.

Here the method has been applied to the calibration of a numerical
groundwater model. All parameters were allocated a calibration range,
consisting of a parameter—specific minimum and maximum value. These
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range limits can be chosen on a basis of expert judgement, but also
determined with a geostatistical or any other technique. The initial
estimates of parameter values are located in the centre of the calibration
ranges.

Two objective functions were defined for the calibration, both resulting
in a fitness score:

1. Minimum differences among simulated and averages of
observed hydraulic heads
2. Minimum deviation from initial estimates of parameter values
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Where:

0 objective function

p weighted difference between observed and simulated
head

n number of reference heads
weight factor 1; number of available annual averages of
head at a particular location

m weight factor 2; distance to the focus of interest of the
model

1) the relative deviation of initial estimate

k number of calibration parameters
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reference head

S

@, simulated head

\% parameter value

V. initial estimate of parameter value
V ax maximal allowed parameter value
Voo minimal allowed parameter value

The second objective function is defined in such a way that
configurations of parameter values become progressively more undesirable
when they differ more from initial estimates, thus reflecting the
presupposition that increasing deviation from initial estimates yields
progressively increasingly improbable solutions. By taking both objective
functions in account the identification problem is reduced in a pragmatic
way.

3.4 Results

The optimisation was applied to a Modflow 2000 model of an area of
about 100 km® near Hilversum, in the centre of The Netherlands. The
hydrogeology of the area is strongly influenced during the Saalien glacial
period and consists of sand and clay layers with highly heterogeneous
hydraulic conductivities. The model consists of 7 layers and about half a
million cells. It represents a subsoil of 200 m thickness in total. Zoning of
recharge, based on landuse, and of hydraulic conductivity, based on the
geological map, resulted in 120 parameters to be optimised. The initial and
final stage of the optimisation process are presented in Figure 3—-1 and
Figure 3-2.
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Figure 3—1 Solution fitnesses at the initial state of the optimisation

The initial fitnesses of the solutions with respect to the objective
functions show still traces of a random character (Figure 3-1). By the end
of the optimisation significantly better solutions are identified and a distinct
Pareto front (trade off curve) can be recognised (Figure 3-2). The shape of
the Pareto front (Pareto—efficient solutions) shows that both objectives are
conflicting in the near—optimal impact space: increased deviation from
initial estimates of parameter values (objective function 2) result in a better
fitness for the first objective. The upper end of the Pareto front is located
near a value of 0.2 for objective function 2. Further deviation of initial
estimates of parameter values does not lead to a better model fit (lower
value for objective function 1), since the upper side of the Pareto front
ends here. Increasing the calibration ranges of parameters will not result in
a better performance with respect to objective 1, unless the parameter
values of the solution at the upper end of the Pareto front represent the
minimum or maximum of the initially estimated range. As this was not the
case, it can be assumed that further improvement of the model’s “fit”
(objective 1) can only be achieved by a reformulation of the model concept
or the parameter definitions.
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Figure 3-2 Solution fitnesses at the final stage of the optimisation

3.5 Validation

Whether or not better solutions exist remains in principle uncertain.

However, inspection of optimised (i.e. calibrated) parameter values offers
some degree of validation (circumstantial validation). Three examples are
mentioned here:
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Calibrated values of insensitive parameters should be equal to
the initially expected value V; in Pareto efficient solutions.
Adding a ‘dummy’, insensitive parameter for this type of
circumstantial validation is therefore considered good practice.
It enables checking whether the GA has operated correctly.

The lower extreme end of the Pareto front should have a
(near) zero value for objective function 2. It follows directly
from the definition of objective function 2 that the global
minimum equals O if all parameter values Vequal V;.

Differences between simulated and observed piezometric heads
should be consistent with differences between initially
expected and optimised parameter values. In the parameter set



that corresponds to the Pareto—efficient solution with the best
model fit (objective 1), a reduction of the difference between
expected and optimised parameter values should not result in
an improvement of the result of objective function 1. If this is
not the case, the GA is not working as it should or convergence
is not yet achieved.

3.5.1 Dummy model test

A fourth form of circumstantial validation consists of ‘dummy model
tests’. The procedure for the ‘dummy model test’ consists of four steps:

1. Generate a random realisation of parameter values (D;). The
parameter values are constructed in such a way that initially
estimated (parameter specific) ranges are not exceeded.

2. Calculate piezometric heads (DH;) with the groundwater model
realisation D;, at locations that correspond to the locations
where data of observed heads are available.

3. Optimise parameter values with the genetic algorithm where
DH; are used as reference heads.

4, Check whether the optimisation results in a (near) zero value
for objective function 1 for the solution that corresponds to the
upper end of the Pareto front.
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Figure 3-3 Solution fitnesses at the final stage of the dummy model
test

The ‘dummy model test’ results indeed in a near-zero value of
objective function 1 for the solution that corresponds to the upper end of
the Pareto front (Figure 3-3). It implies that for this example the GA
indeed identified a parameter configuration with an almost perfect model
fit. The results with respect to objective 1 (model “fit”) of the dummy
model test (Figure 3-5) are better than those of the non—-dummy
calculations (Figure 3-4) because the dummy reference heads were
calculated in stead of based on “real world” observations. Therefore,
scale—-induced errors, conceptual model errors, and errors in reference
data are left out of the dummy model performance. Since the
groundwatermodel represents an area with highly heterogeneous
geohydrologic properties and in some parts thick unsaturated zones, scale—
induced errors and conceptual model errors are expected to be of
substantial magnitude. The representativity of the assessment of the
magnitude of these errors can be improved by carrying out a sequence of
dummy model tests, in stead of a single calculation, as is done in this
study. However, the circumstantial validation of the performance of the GA
is the principal purpose of the dummy model test in this thesis and is
considered sufficiently reliable.
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The differences between piezometric heads that were calculated with
the optimised parameter values (D, and the “true” dummy model
parameter values (D;) for the solution that corresponds with the best result
for objective 1 are very small (Figure 3-5). The remaining differences are
thought to be mainly a result of the optimisation approach, where solutions
with many parameters that differ /Ztt/e from initially expected values are
preferred above few parameters that differ a /ot from expected values.

»H

n

observed piezometric heads (m)

i
no

simulated piezometric heads (m)

\ ¢ heads at reference locations —x=y\

Figure 3—4 Differences between observed and simulated heads of the
calibrated model

45



dummy observed piezometric heads (m)

i
N

simulated piezometric heads (m)

[_e heads at reference locations — x=y

Figure 3-5 Differences between dummy-observed and simulated
heads in the dummy model test

The differences between initially constructed dummy parameter values
(D)) and finally optimised values of the dummy model (D,) are not an
indicator of the reliability of the optimisation approach because the Dj
dummy parameter values were generated randomly within the specified
ranges, whereas the optimised values are aimed at minimum differences
from initial estimates. Substantial differences between D; and D, can
therefore be expected and are rather an indicator of the magnitude of the
identification problem than of the performance of the optimisation
approach. In Figure 3-6 is shown that there are considerable differences in
parameter values although the dummy model fit (Figure 3-5) is very good.
The differences between parameter values D; and D, in Figure 3-6 are
calculated with the parameter values represented relative to the calibration
ranges, according to equation 3-5:

VoV (3-5)
8= -
Vmax _Vmin
Where:
2 normalised expression of I , relative to the

corresponding calibration range V. — Viin
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A value of 0.5 of g

corresponds therefore to the centre of the

calibration range (initial estimate). The corresponding average of absolute
differences between D; and D, in this dummy model test is 26%.
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Figure 3-6

20 40 60 80
Parameters

100 120

Normalised differences between D; and D, in the dummy
model test

Special dummy mode! test

A special version of the dummy model test consists of the construction
of a parameter set D; where every parameter value corresponds to the

initially expected value Vi

In that case the GA optimisation should

eventually result in one single Pareto-efficient solution with (near) zero
values for both objective functions (Figure 3-7). The results of the special
dummy model test indicates that the GA is working properly. However, no
information about the magnitude of scale-related and conceptual model
errors and of the identification problem then becomes available.
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Figure 3-7 Solution fitnesses at the final stage of the special dummy
model test

3.6 Conclusions and discussion

The GA demonstrated to be a stable and flexible technique for
calibration of the model. 120 model parameters could be optimised in a
single optimisation run, resulting in final solutions in which parameter
values show a minimum deviation from the corresponding initial estimates,
proportional to the estimated uncertainties as expressed in the size of the
range between minimum and maximum parameter values.

Analysis of the shape of the Pareto front in relation to the
corresponding parameter configurations enables a better understanding of
the model and a better founded choice of a particular solution as calibrated
model than with a single objective or lumped objective optimisation
approach.

Circumstantial validation can be achieved by four different approaches,
of which the ‘dummy model test’ can also produce information about the
magnitude of the identification problem and of model errors that stem from
scale—related, conceptual and observation errors, particularly if the dummy
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model test is carried out multiple times, with different D; ‘s. The results
suggest that the identification problem is of considerable magnitude,
probably due to highly correlated model parameters. The magnitude of
errors due tot the ensemble of conceptual model errors, scale—-induced
errors and errors in reference data is substantial and is the principal cause
of differences in model fit as displayed in Figure 3-4 and Figure 3-5.
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4. Multiple objective optimisation of drinking water

production using a genetic algorithm®

4.1 Abstract

Finding a production configuration that allows economically efficient
drinking water production at minimal environmental cost is often a complex
task. A systematic trade off among the costs and benefits of possible
solutions is required for determining the optimal production configuration.
Such a trade-off involves the handling of interdependent and nonlinear
relations for drawdown-related objective categories like damage to
wetland vegetation, agricultural yield depression, reduction of river base—
flow rates and soil subsidence. We developed a method for multiple
objective optimisation of drinking water production by combining Busacker
and Gowen's ‘Minimum Cost Flow' procedure for optimal use of the
transport network with a genetic algorithm (GA) for optimisation of other
impacts. The performance of the GA was compared to analytically
determined solutions of a series of hypothetical case studies. Pareto-—
optimality and uniqueness of solutions proved to be effective fitness
criteria for identifying trade—off curves with the GA.

4.2 Introduction

Regional drinking water systems in densely populated areas typically
consist of a network of transport pipes by which multiple sources and sinks
are interconnected. The sources consist of production sites that pump
either groundwater or surface water, the sinks are locations where
drinking water is used. Generally these systems have spare capacity

3 Adapted from Vink C. and P.P. Schot, 2002 Multiple-objective
optimisation of drinking water production strategies using a genetic
algorithm, Water Resources Research Vol. 38, NO 9.
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available in order to respond to fluctuations of demand and also as an
insurance to technical failure of system components. The presence of
spare capacity implies the existence of a ‘decision space’ since there are
different combinations of pumping rates by which the total required
production within a specific planning period can be met. A need to
formulate appropriate strategies for the allocation of production rates to
the available production units therefore exists. Different strategies result in
different economic and environmental efficiency. Both types of efficiency
may vary considerably among strategies due to the sensitivity and spatial
variability of the factors that determine impact categories. Optimisation of
water management strategies is complex as some impact relations are
nonlinear and interdependent. Interdependency and nonlinearity of impact
relations often occurs if the impact of a category depends on a lowering of
the groundwater level due to groundwater withdrawal. Damage to wetland
vegetation, agricultural yield depression, reduction of river base-flow rates
and drawdown-induced soil subsidence are examples of these categories.
Nonlinearity exists in the relation between pumping rate and drawdown,
but also in the way plants and soil react to desiccation. Interdependency of
discharge—impact relations occurs when zones of influence of wells
overlap. Then, groundwater drawdown at a particular site may be caused
by more than just one well.

Before the eighties, defining optimal production configurations was
relatively simple, as nonlinear and interdependent impact relations usually
play a less important role within the set of objectives that were relevant to
planning and management of drinking water production. Strategies were
mainly determined by trade—offs between economic costs and benefits of
which the major components could be generalized to linear functions of
discharge rates [Stoner et al.,, 1979, 1981]. Then, optimal production
configurations could be determined by applying linear programming
techniques to economic functions of production and transport of drinking
water [e.g. Schaffers, 1984]. From the eighties onward the linearization of
impact relations became less appropriate as some environmental impact
categories became more important. In the Netherlands, particularly the
impact of groundwater withdrawal on the lowering of phreatic groundwater
levels in wetland areas and the subsequent decline of groundwater-—
dependent vegetation (phreatophytes) gained importance [Grootjans, 1985,
Braat et al. 1987, Runhaar 1996]. Effective evaluation of drinking water
production strategies with respect to both economic and environmental
categories requires integrated consideration of all impacts. Intensified
exploitation of a remote well may result in a reduction of damage to
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wetlands, but at the same time it can invoke a steep increase in the use of
the (fossil) energy that is needed for transportation of the water. Clearly, it
should be avoided that a change of production configuration would indeed
reduce the total damage to phreatophytes, but also would cause such a
strong increase of other environmental burdens that the net environmental
benefit is sub-optimal. Rational production configurations can only be
determined if there is a comprehensive valuation of environmental
categories. The weight of the relevant objective categories has to be
determined by stakeholders and decision makers. Once the impact
categories have been valuated, the optimal strategy can be determined. An
integrated evaluation of drinking water production strategies based on
quantitative valuation of all relevant categories has been rare, in spite of
the clear need for it in a rational society.

In this chapter we present a method for the use of GA for multiple
objective optimisation of multiple well drinking water production with
interdependent and nonlinear impact relations. In the next section the
structure of the model is described, followed by a discussion of the
optimisation method in section 4. In section 5 the optimisation procedure is
applied to a slightly simplified (not interdependent) and hypothetical
problem, thus allowing comparison of the results with an alternative
solution technique. Section 6 contains the discussion and conclusions.

4.3 Model setup

The optimisation method was implemented in a GIS-based decision
support system in order to handle all spatial relations efficiently and to
offer decision makers an adequate access to the methodology. The support
system represents a model for regional drinking water supply in which the
various impacts of strategies are quantified by category (Figure 4-1).

The optimisation problem can be defined according to:

Minimise ( 1C(i=1)..1C(i=m)) @-1)
IC() = f(i, PC) 4-2)
PC = QU=D)..Q(=n) 4-3)
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With these constraints:

Where:

Q@) = Dy 4-4)

Q) <=qmax() 4-5)

IC(J) subject to CT (k) 4-6)

ICa) impact of category i (expressed as cost, burden or
damage)

m number of impact categories

n number of wells

f(G,PC)  impact function of category i

PC production configuration ( a spatial distribution of
discharge rates over the available wells)

QU) discharge rate of well j (L. T

D, total demand (L°. T

Qax) maximal allowable discharge rate of well j (L°.T™)

CTk) constraint & (user—defined constraints like drawdown in

area X may not exceed Y cm)

The impact categories that we defined are:

The impacts are quantified by economic and coupled geohydrologic
and environmental modelling. The models vary in complexity from simple
linear relations such as those for pumping costs, to complex nonlinear
impact models, such as the model for ecological damage to wetlands by
groundwater drawdown. Production configurations are optimised by
applying a genetic algorithm. Efficient use of the transport network does
not follow directly from an optimal distribution of pumping rates over the
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e economic costs;

e pumping cost;

e purification cost;

e transport cost;

e agricultural yield reduction due to groundwater drawdown;

e ecological damage to wetland vegetation due to groundwater

drawdown;
e energy consumption;
e use of strategic groundwater reserves.



available wells. Optimal use of a directed flow network of limited capacity
and pipe—specific transport costs has been studied by many authors [see
e.g. Papadimitriou and Steiglitz, 1985]. We solved this secondary
optimisation problem by applying a ‘min—cost-flow’ type algorithm that was
based on the work of Busacker and Gowen [1961].

Production configuration

— | PUumping cost

Pumping and purification
i cost rmodel T
—— Purification cost
¥
L { Transport optimisation Transport ¢ ost
model

Energy cost

—.\» Groundwater model [——— drawdown

4

Vegetation impact model F Yeagetation impact

Agricultural yield model  —*— viald impact

Figure 4-1 Modular structure of the decision support system
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4.4 Optimisation methods

Until recently, the nature of the impact relations that are involved in
regional drinking water production rendered it in practice unfeasible to
optimise both economic and environmental objectives according to the
approaches that were sketched in the previous section. Many optimisation
techniques are inappropriate because of nonlinearity and interdependency
in some impact relations.

In theory, the number of possible strategies and corresponding
production configurations is infinite due to the continuous nature of flow.
However, if differences in production configurations are sufficiently small,
they will not result in significant differences of impacts. Discretization of
discharge rates into a suitable step size may therefore be introduced in
order to reduce the extent of the search space. Then the problem becomes
combinatorial. The theoretical number of possible production configurations
that represent feasible combinations of well discharges is defined by a
function in which the spatial distribution of the demand, the number of
wells, the discretization of discharge rates (step size), the spare capacity
of the wells and the capacities of the transport pipes form the principal
variables. The total number of possible configurations depends therefore
on case-specific constraints and varies widely, due to the exponential
explosiveness of the combinatorial problem. For a system of N wells of
equal capacity that are interconnected by a transport system of unlimited
capacity, the total number of combinations is defined by

R= SN 4-7)
Where:

R total number of combinations;
N number of wells;
S number of discharge rate steps per well.

The number of feasible combinations is restricted by the constraint:

>Q) = Dy (4-8)
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Where:

QW) discharge rate of well 7/

The number of feasible combinations depends on the spare capacity of
the regional system. There are already one billion feasible combinations for
a hypothetical system of 15 wells with 10 discharge rate steps per well, a
spare capacity of 30% and a nonlimiting flow network. As it may take
typically 1 minute to calculate the various impacts of a single production
configuration, it would require almost 2 million years calculating all feasible
combinations. Generally, the number of feasible solutions is by far too large
to handle with computer—-based ‘brute force’ techniques such as an
exhaustive evaluation of alternatives or a Monte Carlo approach. Often this
is even so when capacity constraints from the transport system strongly
reduce the number of feasible solutions.

Apart from analytical, exhaustive or Monte Carlo approaches, heuristic
approaches are sometimes applied to combinatorial explosive problems
with multiple criteria. Purao et al. [1999] discuss how the search space
can be explored by generating efficient solutions within local regions by
means of heuristic approaches. ‘Exchange search’ is one of their principal
heuristic techniques. It consists of the exchange of one or more of the
values of variables in a non-dominated realization by minimal or maximal
extremes, as perceived by decision makers. Thus, the boundaries of the
local search space can be identified. The nonlinearity and
interdependencies that exist in the vegetation impact functions limit the
feasibility of this approach for multiple objective optimisation of drinking
water supply. As the approach requires valuation a priori, decision makers
need to make on beforehand statements about satisfycing levels, or about
which relaxations they are prepared to make for the various objective
functions. This need for prior information about the preference structure
limits the practical use of this approach [White, 1985; Purao et al., 1999].
Rajabi et al. [1999] were successful in handling interdependencies by
means of their modified goal programming technique but this method also
requires decision makers to identify reasonable goals on each criterion
before final solutions can be presented. Decision makers thus miss the
great advantage of having access to Pareto fronts and the possible analysis
of the ‘exchange rates’ between objectives before choosing. For the type
of application that is discussed in this paper, Pareto fronts can be used to
show how economic cost and environmental damage are interrelated for
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optimal solutions. If a particular budget X is available for alleviation of
environmental damage, then the solution that corresponds to optimal
allocation of this budget can be identified at the Pareto front (Figure 4-2).
The slope of the curve indicates the marginal reduction of environmental
damage as a function of economic investments.
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Figure 4-2 Pareto front of two conflicting impact categories

4.5 Genetic algorithm

To overcome the limitations of the approaches that were described
here above, we applied a genetic algorithm. This technique is suitable for
single objective optimisation, but it is also convenient for multiple objective
optimisation by means of Pareto fronts, as many non-dominated solutions
can be identified in a single optimisation run.

Over the last few years evolutionary algorithms have been applied
successfully to multi-objective optimisations problems [e.g. Cieniawski et
al. 1995; Deb & Kalyanmony, 1999]. The development of genetic
algorithms was inspired by the genetic processes of biological organisms.
The concept of natural selection by survival of the fittest as stated by
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Charles Darwin in 7he Origin of Species plays a major role. Application of
the principles of selection and mutation in computer programs was first
proposed by Holland [1975]. Application of GA's for multi-objective
optimisation was outlined in Goldberg [1989]. At present, evolution
programs have been applied successfully to a wide range of problems [e.g.
Grefenstette 1990]. GA's work with a 'population' of possible solutions to a
problem. The 'fitness' of each member of the population is calculated and
the properties (genes) of those who perform best are mixed with other
solutions, leading to new members of the population. The 'cross-over'
process has been implemented in many different varieties according to the
specific character of particular optimisation problems. The reproduction
cycle is repeated until there is convergence, in the sense that no further
improvement of solutions occurs (Figure 4-3).
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Figure 4-3 Flowchart of optimisation approach

4.5.1 Coding & Genes

Each member of the population is allocated a chromosome that
represents the distribution of discharge rates over the available wells.
Every gene of the chromosome represents a discharge rate of an available
well. The total number of genes is therefore equal to the total number of
wells and the ensemble represents a production configuration. The sum of
all discharge rates is equal to a user defined demand. Discharge rates of
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individual wells are being modified during the optimisation, but the sum of
all discharges should remain equal to the total demand (equation 4). The
number of configurations that comply with this constraint is only a small
part of all possible combinations. Therefore we increased the probability of
valid reproduction by representing the discharge rate of a well indirectly
according to:

D
Q(]) = g(]) ' Qmax( i K L 4-9)
! z[g(]).Qmax(j)]
Where:
g value of gene j (0 <=g¢ <=.1> (-)
Qy) discharge rate of well j (L°. T
Quax () capacity of well j (maximal allowable discharge) (L°. T~
1
)
D, total demand (L*.T™")

After this transformation it 1is still possible that unfeasible
configurations will be generated, but only by violation of equation 5, the
well capacity constraint. The probability of this event is much smaller than
violation of equation 4 without transformation. The frequent occurrence of
non—-valid production configurations thus no longer hampers the
optimisation. If a non-valid chromosome has been generated randomly
chosen genes are modified with random values between O and 1 until a
valid configuration is formed.

4.5.2 Reproduction and mutation

Reproduction operators determine the genetic information of new
solutions. Offspring are generated by combining genetic information of the
‘fittest’ 5 solutions with randomly chosen solutions from the population.
Two offspring are generated per couple. Each reproduction cycle the
newly constructed offspring replace the 10 least fit members of the
population. We achieved best results with arithmetical and uniform
crossover techniques. The size of the population of possible solutions
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remains constant as solutions with the lowest fitness are being replaced by
new offspring. The reproduction cycle is repeated until there is no further
improvement of fitness. The typical size of the populations varies between
50 - 500 solutions. For the current hypothetical case, the optimisation
performed best at a mutation probability of p=0.05 per gene.

4.5.3 Fitness

The fitness score of a solution corresponds to the weighted sum of its
relevant impacts and expresses the degree in which a solution is desirable.
If all impacts can be expressed in a common scale by weighted conversion,
the problem is reduced to a single objective optimisation. Otherwise, if
there are impact categories of which the ‘weight’ for conversion into a
common scale cannot be agreed on a priori, Pareto fronts of non-
dominated solutions have to be determined. In the first case, fitness in the
GA corresponds to the lumped impact score. In the second case there are
multiple impact classes that should be attributed a fitness score in an
unbiased manner for the selection of solutions for ‘reproduction’. Then it is
undesirable that the optimisation converges to one single solution. Several
authors reported difficulties in formulating unbiased and yet effective
selection criteria that maintain diversity in the collection of solutions
[Beasley et al., 1993]. We achieved good results by selecting reproductive
solutions based on two properties:

e Pareto-optimality;
e exclusiveness.

Pareto—-optimality is a Boolean property that is true for solution A if
there is no other solution that has a higher score for any fitness category,
while scores at other fitness categories are not inferior to those of solution
A (see 2.3). Pareto-optimality is a relative property; during the calculation
the Pareto front gradually moves towards the final shape that divides
between feasible and unfeasible solutions at minimal cost. Solutions that
are initially non—-dominated therefore can become inferior by the creation
of other, more efficient solutions. ‘Exclusiveness’ of solutions is defined as
a fitness criterion in order to maintain variation in the population of
solutions and thus to prevent premature convergence at one single location
of the Pareto—front. The exclusiveness of a solution is expressed by the
relative ‘distance’ of the set of impacts of the solution to other solutions.
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‘Distance’ is calculated analogous to geometric distance in a n—-dimensional
space, where the coordinates are expressed in normalized (relative) units
of the various impact categories. Total fitness is calculated by ranking the
scores that are calculated according to the two aforementioned components
of fitness in such a manner that Pareto—optimal solutions are never lower
in rank than dominated solutions, with ‘exclusiveness’ as a secondary
sorting criterion. A concise description of the principal notions in genetic
algorithms and the specific meaning of these notions for the current
application is presented in Table 4-1.

Table 4-1  Concise description of the principal notions in genetic
algorithms

Concept General description Specific description for the

current case

Population A set of solutions; the total Particular distributions of
number of solutions is discharge rates over the
constant. Solutions that are available wells.
less desirable than others
are being replaced by more
competitive ones during the
optimisation process
(Survival of the fittest) .

Chromosome Information that defines the The number of genes
properties of a solution. Each | corresponds to the number
property is represented in a of wells.
gene.

Gene The value or condition of a Each gene is a variable that
particular property of a refers to a particular well.
solution. It contains a scalar value

that represents the pumping
rate of that well.

Crossover Sets of rules that define how 50% of the offspring is
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Concept General description Specific description for the

current case

techniques new solutions (offspring) are constructed by arithmetic
constructed by application of crossover, 50% is
the rules to existent constructed by uniform
solutions. Crossover.

Reproduction The construction of the Every reproduction cycle
genetic information of new 10 new solutions are
solutions (individuals) by constructed from 5 existent
using information of existent solutions.
solutions.

Offspring New solutions, constructed Every reproduction cycle
by mixing the properties of 10 least—fit solutions are
existent solutions by means replaced by new offspring.
of crossover techniques.

Mutation A stochastic process that The value of 5% of all
may result in modification of newly constructed genes is
the content of genes that are determined by mutation as
being constructed. a random number

(0<=g<=1).

Fitness The degree in which a The rank of a solution in

solution is desirable. the population with respect
to pareto optimality and the
degree of uniqueness of its
impacts.
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4.6 Procedure validation

A hypothetical case study was constructed in order to investigate the
feasibility of our approach. The case study consists of imaginary supply
systems of 4 — 48 interconnected wells. For each well we defined two
highly nonlinear impact functions. The impact functions for the wells were
constructed so as to imitate ecological impact and lumped economic costs,
both as a function of discharge rate. The impact functions were
constructed by generating (pseudo) random numbers for each well,
according to the following algorithm (in pseudo programming language):

Algorithm Generate_impact_functions

For each impact category i
begin
For each well w
begin
Generate a random factor f
For each discharge rate step q
begin
Generate a random number n (0-10)
impact(i,w,q) = impact(i,w,q—1) + n*f
end
end
end

The impact functions represent a similar nonlinearity and
capriciousness in the relation between discharge rate and impacts as may
occur in the real world. We simplified the problem by leaving
interdependency of a well's impact functions out of the hypothetical case
with the purpose to make it possible to validate the results as generated by
the GA technique, by determining the optimal solutions also by means of a
discrete ‘buildup’ approach. The buildup approach consists of stepwise
allocation of capacity to wells, using minimal average costs as criterion.
The required total discharge rate was defined as 70% of the total capacity.
The performance of the GA and Monte Carlo approaches was assessed by
comparing the results with the optimal solutions that were identified by the
‘buildup’ procedure. In Figure 4-4, the performance of GA and Monte Carlo
is displayed for single-objective optimisation. All GA versions performed
significantly better than the Monte Carlo approach. The number of possible

65



solutions in the hypothetical case of 48 wells, interconnected by a flow
network of infinite capacity, is clearly so large that state—-of-the-art
personal computers lack the ‘brute calculation force’ for effective
optimisation by means of (pseudo) random generation of solutions. The
best solution found by Monte Carlo simulations differed 140% with the
analytical solution after an equal calculation time. However, the difference
of the best solution found by the GA and the analytically determined
optimum was only 3% after 5 minutes calculation time on a 200 MHz
Pentium computer.
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Cost of best solution

1500 \ \ \
0 200 400 600 800

CPU time(sec)

= o= N\onte Carlo === Genetic Algorithm

Figure 4-4 Performance of GA and Monte Carlo techniques for a
single-objective optimisation of a hypothetical drinking
water system with 48 wells.

For multiple objective optimisation, we assumed two impact
categories that are not translatable into a common scale. Figure 4-5 shows
the performance of the GA approach as compared to Monte Carlo for
multiple objective optimisation. The population size was set to a stationary
size of 220 solutions. Smaller sizes of the population resulted in Pareto
fronts of which sections were insufficiently explored.

66



Some differences in performance among crossover techniques were
observed. However, adding calculation time could compensate for the
difference in efficiency of the various crossover techniques. We achieved
the fastest approximation of the analytically determined optima with a
mixed ‘arithmetical’ and ‘uniform’ crossover technique. Both crossover
techniques were attributed equal probability for controlling a reproduction.
The Pareto fronts that were found by means of GA required 100 - 100,000
generations in order to reach convergence. The number of required
generations increased with the number of available wells and hence the
size of the search space. Pareto-optimal solutions could be identified
efficiently. Results at the ends of the Pareto front differed less than 5%
with the corresponding analytical solutions when the maximum number of
generations was set to 100,000. In real world situations the search space
of comparable systems is often smaller than of the hypothetical cases we
investigated, due to constraints from especially the transport network. It is
therefore expected that optimisation by means of GA also will be
sufficiently efficient for large systems of more than 48 wells.

impact category B
-t N N
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o o o
o o o
L
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= analytical solution s GA (uniform-arithmetic) + Monte Carlo

Figure 4-5 GA and Monte Carlo results for two-objective
optimisation of a hypothetical drinking water system with
48 wells.
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The lack of proof of whether the global optimum or ‘true’ Pareto
front is found is a serious limitation for the applicability of GA in
optimisation problems. Different values for parameters like population size
and mutation probability may strongly influence the performance of GA’s.
The evolutionary approach offers in itself no verification for the possibility
that essential parts of the search space have not been explored effectively.
GA should therefore only be used in cases where at least ‘circumstantial’
validation 1s possible. Application of the method to realistic cases showed
that the type of optimisation problem that is discussed in this paper
generally can be partially validated by inspection of the wells discharge—
impact functions. The most efficient wells at maximum capacity with
respect to a particular objective category often can be identified by
comparing impact scores among wells. Criteria for the partial validation of
the results can be based upon the analytically derived conclusion that
these wells should be engaged at maximal capacity in the optimal solution
that corresponds best to that particular objective category.

4.7 Application example

In the previous section the performance of the GA optimisation method
was assessed by applying it to an abstract, two-objective, nonlinear and
non-interdependent mathematical optimisation problem. In this section we
describe the application of the method to a more practical optimisation
problem with more than two objectives. The problem concerns an example
based upon an existing area in which many realistic features of regional
drinking water are represented. The study illustrates how the GA method
can be applied in practice to regional drinking water production issues.

It is assumed that representatives of a drinking water company and
provincial authorities jointly have to decide on how discharge rates are to
be distributed over the available wells in a particular region. They agree on
the models by which the various impact categories are quantified and on
the total required production rate. The problem to be solved is the
distribution of discharge rates over the available wells in such a manner
that the total of weighted adverse impacts and costs is minimal.
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Figure 4-6 Case area

The case area is located in the South of The Netherlands (Figure 4-6)
where Drinking Water Company WML is in charge of drinking water supply.
The essential characteristics of the area are a plausible representation of
drinking water supply systems in The Netherlands. Some data are fictive
as not all required information was readily available. The locations of urban
zones and areas with (semi) natural vegetations were derived from a digital
land use map (courtesy Alterra, Wageningen). The required data on annual
demand rates of drinking water was derived from population data within the
case area. The unit costs of production, purification and transport are
fictitious.

The system consists of 10 production wells, interconnected by a
transport network. Some of the wells pump deep groundwater that
recharged several hundreds of years ago. Other wells pump water out of
relatively shallow aquifers, of which the groundwater is not older than 50
years.
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The suitability of the deep old groundwater for drinking water
production is excellent, but extensive use would result in depletion of
strategic groundwater reserves. The shallow groundwater is of relatively
poor quality due to agricultural production and consequently requires more
extensive purification than the deep groundwater. One of the wells is
located near the shores of the River Meuse and pumps very recently
infiltrated surface water. This water requires extensive purification but the
pumping invokes very little drawdown and therefore no damage to wetland
vegetation is caused. At several locations in the region there are wetlands
with valuable groundwater—-dependent vegetation. The damage to the
wetlands due to groundwater withdrawal varies among the available wells.

4.8 Optimisation objectives

Two groups of objectives were defined. The first group concerns a
selection of objectives that are perceived relevant in present day drinking
water supply in the Netherlands:

1. minimal total economic costs;
2. minimal damage to groundwater—dependent vegetation.
3. minimal use of deep groundwater

The second group is defined in order to enable additional validation
possibilities of the results of the optimisation by analytical inspection:

4. minimal purification costs
5. minimal transport costs

Properties of solutions that comply maximally with these objectives
can be formulated on beforehand by inspecting the relevant discharge rate
—impact relations:

The production configuration according to the objective of minimal
purification costs should operate the wells that pump deep groundwater at
maximal capacity because deep groundwater requires only minor
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purification. The deep wells are therefore very cost— effective with
respect to purification costs, as compared to all other sources.

The production configuration with minimal transport cost should
operate wells near urban zones at maximum capacity if the demand of that
urban centre exceeds its capacity.

The production configuration with minimal use of groundwater should
operate the wells that pump surface water at maximum capacity.

If the best solutions for the aforementioned ‘objectives for validation’
comply with the properties that were defined on beforehand by analytical
inspection of the discharge — rate impact relations, it can reasonably be
assumed that all solutions that were identified by the GA are (near)
optimal. Thus we can obtain strong circumstantial evidence that the results
are valid. All solutions therefore have been determined during a single
optimisation run in order to maximize the reliability of the wvalidation
method. This implies that we carried out the optimisation for 5 objectives
simultaneously.

4.8.1 Impact models

The impact models should provide a quantitative criterion for the
objectives that were defined previously. There are three essential impact
models. The first is the economic cost model, in which pumping cost and
purification cost are well-specific and a linear function of discharge rate.
Minimal transport costs were determined by applying Busacker and
Gowen’s MinCostFlow algorithm [1961] to a network with pipe-specific
capacities and cost functions. The second is the hydrologic impact model,
in which spatial distribution of drawdown is well-specific and a function of
discharge rate and aquifer properties. In this study we applied Theis’s
equation [e.g. Todd, 1980]. The third model is the vegetation impact
model, in which the adverse impact of drawdown to vegetation was
assessed by a conceptual nonlinear impact model, using a distributed
approach of drawdown, and fictitious, location—specific data on
vulnerability to drawdown and value of vegetation.
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4.9 Validation

The human mind can easily identify optimal solutions that correspond
to extreme valuations of a single objective category, but it is not very well
equipped to find optimal solutions that correspond to more shaded value
schemes. The GA optimisation method is an effective technique to find the
best solutions in real-world optimisation problems with conflicting
objectives, as compromises are then typically the most satisfying solutions.
The solutions with minimum ecological damage, as identified by GA and
analytical inspection respectively, consist of the production configuration in
Table 4-2. Discharge — impact relations for vegetation damage are
displayed in Figure 4-7 and Figure 4-8.

Table 4-2  Optimal production configurations according to GA and
analytical inspection for minimal vegetation damage

Wells Discharge Discharge
rate GA rate
(m3/a) analytical
(m3/a)
1 0 0
2 4154570 5990116
3 0 0
4 0 0
5 0 0
6 5935101 5307242
7 2546000 2704842
8 980989 0
9 0 0
10 385540 0
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The optimal solutions according to GA as compared to analytical
inspection show significant differences in terms of discharge rate with
respect to all wells, but the difference between the total ecological impact
of both solutions is less than 0.05 % of the feasible range of ecological
impacts and therefore insignificant. The wells 8 and 10 invoke similar
vegetation damage as wells 2, 6 and 7 at low discharge rates (Figure 4-8).

The solutions with minimum use of deep groundwater as identified by
GA and analytical inspection respectively consist of a production
configuration as specified in Table 4-3:

Table 4-3  Optimal production configurations according to GA and
analytical inspection for minimal use of deep groundwater

Wells Use of deep Discharge Discharge
groundwater rate GA rate analytical

1 y 0 0

2 n 5690500 any
3 y 0 0

4 n 4732100 any
5 y 0 0

6 n 2515800 any
7 n 162287.4 any
8 n 400238.4 any
9 n 0 any
10 n 0 any

Both solutions show zero discharge rates for the wells that pump deep
groundwater and the results as found by means of the GA are consequently
validated.

The solutions with minimum purification cost as identified by the GA
and analytical inspection respectively consist of a production configuration
as stated in Table 4-4.
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Table 4-4  Optimal production configurations according to GA and
analytical inspection for minimal purification cost

Wells Minimal discharge discharge
purification rate GA rate
cost analytical
1 y 4222886 any
2 n 0 0
3 y 4111757 any
4 n 0 0
5 y 5667557 any
6 n 0 0
7 n 0 0
8 n 0 0
9 n 0 0
10 n 0 0

Both solutions only show non-zero discharge rates for the wells that
do pump deep groundwater as these are lowest in purification
requirements. The results as found by means of the GA are consequently
“circumstantially” validated.
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Figure 4-9 Discharge — Furification cost functions

4.10 Pareto—efficient solutions

The Pareto surface of feasible solutions with respect to impact
categories ‘total cost’ and ‘vegetation damage’ is shown in Figure 4-10.
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Figure 4-10 Total cost and vegetation damage of PFareto-efficient
solutions

The typical asymptotic shape in the Pareto surface indicates that total
production costs and damage to vegetation are conflicting objectives in the
current case. Pareto—efficient solutions are not located exclusively along a
spatial boundary of the solution space as the optimisation was carried out
for more than two objectives. The wells that cause less damage to
vegetation are to some extent located at a large distance from the urban
zones where the water is needed. Pumping large discharges at these sites
results therefore in higher transportation costs. Wells that located near the
shores of the River Meuse cause negligible damage to vegetation as
virtually no drawdown is invoked by pumping, but operational costs of
these wells are high due to the purification requirements of the pumped
water.
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Figure 4-11 Total cost and use of deep groundwater of Pareto-
efficient solutions

The objectives minimal total cost and minimal use of deep groundwater
are to some extent conflicting as the deep groundwater is cheap because it
requires no significant purification. However, solutions with all production
allocated to deep wells do not show minimal costs due to the costs of
transportation to remote sections of the case area.
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Figure 4-12 Vegetation damage and use of deep groundwater of
Pareto-efficient solutions

The objectives minimal vegetation damage and minimal use of deep
groundwater are positively correlated because groundwater withdrawal at
the deep wells affects the vegetation in wetlands. There are solutions with
both minimal vegetation damage and minimal use of deep groundwater.
Solutions that use surface wells at full capacity satisfy both objectives.
However, the economic costs of these solutions are extremely high.

Decision makers have access to detailed information on promising
pareto—efficient solutions. The graphical presentation of Pareto fronts and
Pareto surfaces can help to understand the characteristics of the decision
space.

4.11 Calculation time requirements

Using GA as an optimisation technique for regional drinking water
supply requires calculation times that are for many problems still
considerable. It may typically require 1-5 minutes on a 200 MHz PC for a
complete impact calculation of a production configuration. Thousands of
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these calculations may be necessary for the determination of a Pareto
front. However, there are good possibilities for use of parallel computers
with GA, if computation times become too long. In order to reduce the
required calculation time we defined three levels of detail for impact
calculations. The ‘noisiness’ of the impact functions was gradually reduced
during the optimisation process. Initially, impact functions were expressed
as independent functions of wells discharge rates. According to the
principle of superposition, the drawdown at a location caused by the
discharge of several wells is equal to the sum of the drawdowns caused by
each well individually. Although the principal does not hold in conditions
that include the presence of phreatic aquifers, rivers and ditches, it is
assumed during the first stage of the impact calculations that drawdown
and drawdown-induced impacts of different wells are independent and can
be superposed. In reality this is not the case as both the relation between
pumping rate and drawdown as well as the relation between drawdown and
ecological damage often possesses interdependent, nonlinear and therefore
non-superposable characteristics. Once the improvement of the fitness of
generated solutions stagnates and near—-optimal solutions for the initial
fitness function have been found, the objective function is replaced by a
less noisy alternative. The superposition principle in the relation between
drawdown and damage to agricultural yield or vegetation is then no longer
assumed, but for calculation of total drawdown the superposition principle
is still assumed to be correct. At the third stage, drawdown at locations
that are within the area of influence of more than one well is no longer
assumed to be superposable. For each solution a digital drawdown map is
generated by a numerical groundwater model. The drawdown map is input
to the ecological and agricultural impact models. By applying different
levels of precision in the objective function we achieved a significant
reduction of the required calculation time to 5 — 100 hours, depending on
the number of available wells. Response times that allow immediate inter—
activity remain therefore out of reach. We could achieve an acceptable
level of flexibility of the decision support system to decision makers by
storing the key properties of many non-dominated solutions on disk.
Detailed impact calculations and generation of digital maps for a particular
solution can be carried out on demand and require typically less than 5
minutes.
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4.12 Discussion & conclusions

According to the results of the hypothetical case study we conclude
that the GA can be an effective tool for multi-objective optimisation of
regional drinking water supply. We achieved best results by applying
arithmetical and uniform crossover techniques jointly. Pareto—optimality
and uniqueness of solutions proved to be effective fitness criteria for
identifying Pareto fronts. These fitness criteria are unbiased and suitable
for any number of objective categories. Validation of results that were
generated by GA is needed, since not all values for GA parameters like
population size and mutation probability yielded adequate results. We
constructed a hypothetical case study that does not contain interdependent
discharge—impact relations in order to enable validation of the results by
another method. The optimisation by means of GA does not require the
formulation of an aggregated impact function that is typical for analytical
optimisation methods and consequently there seems no ground to suppose
that interdependency among discharge—impact relations could impede its
effectiveness. “Circumstantial validation” is often feasible in multi-
objective optimisation problems because solutions that correspond to
maximal or minimal impacts with respect to a single objective category are
relatively easy to identify. Circumstantial validation forms a check of the
results but it offers no proof.

The proposed optimisation methodology enables a rational and
consistent evaluation of production configurations. By using the method
implemented in a spatial decision support system “decision makers may
become active participants in a regional planning analysis, rather than
selectors among a few, preplanned alternatives” [Jones, 1998]. A truly
optimal production strategy cannot be defined without taking in account all
other potential environmental consequences of decisions made at policy,
planning and programmatic levels. In that sense it requires a policy
framework where there is a sufficient level of transparency and where all
relevant stakeholders are involved in an ‘open, participatory process’
[Partidario, 1996]. The valuation of non—economic impact categories
inevitably requires communication, negotiation and sometimes even
confrontation between decision makers and stakeholders. The definition of
formal and explicit objectives, valuations and quantification methods with
respect to environmental issues is therefore desirable.
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5. Multiple objective optimisation of landuse

allocation problems with genetic algorithms

5.1 Abstract

Spatial planning in densely populated regions has become increasingly
complex over the past decades due to the increasing scarcity of space and
the increased number of objectives and preconditions to be taken in
account. Simultaneously, there has been a substantial development in
information technology. As a result, computers, numerical models and
measuring techniques confront decision makers and planners with an
overwhelming abundance of data. Yet, spatial planners generally have not
been able to benefit fully of these developments due to the lack of suitable
optimisation techniques. Consequently, plans and scenarios are generally
formulated without the use of optimisation techniques, which makes these
plans and scenarios most likely sub-optimal. We developed a genetic
algorithm for spatial multiple objective optimisation problems and applied it
to case studies on landuse allocation (LUA). The technique enables the
identification of unbiased near-optimal solutions by using the concept of
Pareto efficiency.

5.2 Introduction

A number of developments have resulted in a substantial increase of
the complexity of spatial planning. The use of geographic information
systems and spatially distributed models has shown a steep increase over
the past years, owing to the substantial technological development both in
the field of computers and measuring techniques. If there are high quality
data and distributed models for assessing impacts of decisions, somehow
the scale and the refinement of policies and scenarios should improve as
well in order to benefit fully from these improvements. Classic optimisation
techniques such as linear and nonlinear programming can assist decision
makers in formulating optimal configurations, but often cannot be applied
satisfactorily in spatial planning. Spatial information is typically complex
and variable, particularly if the underlying processes are interdependent
and nonlinear by nature. Heuristic optimisation techniques such as Genetic
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Algorithms and Simulated Annealing are potentially more appropriate in
helping to develop optimal configurations for spatial planning. Although
genetic algorithms have been applied successfully to a wide range of
optimisation problems, application to spatial problems at a regional scale
has been relatively rare, so far. We developed a genetic algorithm that is
suitable for multi-objective optimisation of complex, spatial problems. We
applied the optimisation technique to a case study on the optimal spatial
distribution of agricultural production sites as to minimize adverse impacts
to natural vegetation.

5.3 Background

The spatial distribution of different land use types in many parts of
The Netherlands reflects a long history of agriculture in a poorly drained
river delta. Areas used for cattle breeding and dairy farming are
intermingled with small wetland patches with valuable natural vegetation.
Many of these wetland areas are at present threatened by acidification due
to nitrogen emissions from agricultural production [Last and Watling,
1991]. Governmental regulations limit agricultural production in order to
protect wetland vegetation. Over the past years, there is a growing insight
that improved conditions both for farmers and for nature could be achieved
by a redistribution of the land use. National and provincial authorities have
dedicated funds for covering the costs if farmers are willing to move to
less vulnerable areas or to stop their production entirely. At this point a
spatial planning problem emerges: how can the available budget be spent in
such a way that wetland vegetation benefits maximally from buying out
farmers? This optimisation problem concerns the allocation of different
types of land use to lots within a delineated region. We investigated the
feasibility of applying heuristic techniques to this optimisation problem.

The research project forms a follow—up of previous investigations carried
out by RIVM-MNP, the Dutch national research institute for public health,
environment and nature [Heuberger et al., 1997, Erisman et al., 1997].
During these previous studies a source— receptor model was developed to
simulate the deposition of nitrogen emissions from agriculture in the
Netherlands [de Leeuw and van Jaarsveld, 1992]. The entire Dutch
territory was schematised in squared grid cells of 5x5 km and for every
grid cell it was analysed how much all other grid cell contributed to the
deposition of nitrogen. The resulting source-receptor matrix was used to
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calculate the optimal configuration of agricultural land use for minimal
damage in nature areas by means of linear programming. The maximum
acceptable deposition in nature areas was determined and expressed in a
so—called critical load. The transport of nitrogen in the atmosphere was
thus generalised as a linear process, with a system of linear equations that
described the deposition of nitrogen.

In the source-receptor model every single grid cell was allocated an
equation of the type:

D, =A, E+..+Ay - Ey (5-1)

Where:

D; deposition in cell 1
A; .. Ay;  Set of N constants for cell i
E; emission from cell j

N total number of cells

Heuberger (1992) and Erisman (1992) applied linear programming to
determine the maximum total emission of nitrogen that would not result in
an exceedence of a critical load in any cell.

With a grid cell size of 5x5 km there are in total 1684 grid cells, of
which about 1000 grid cells represent areas with the vulnerable natural
vegetation. Solving the problem of this size would take typically about half
an hour CPU time in 1997. A reduction of the grid cell size would make the
problem practically unsolvable by linear programming.

Aerts [2002] analysed the problem of optimal land use allocation and
compared various methods, viz. simulated annealing (SA), mixed integer
linear programming (MILP) and nonlinear integer programming (NLIP). He
showed that the latter two methods become rapidly inappropriate if the
total number of integer variables exceeds several hundreds. It can
therefore be concluded that reducing the grid cell size in the optimisation
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problem described here above would make it unfeasible to solve the
problem by means of linear programming. Furthermore, it is considered
desirable to introduce additional objectives, such as the degree of
fragmentation of homogeneous land use areas (patch size) and the costs
and efforts that would be involved in the implementation of a particular
land use allocation scenario. Introducing more objectives would make the
optimisation problem much more complex and would therefore require
more effective optimisation techniques. As a result of these considerations,
a study was carried out to investigate which optimisation techniques could
be suitable for these more complex land use allocation problems.

5.4 Problem description

The general optimisation problem that was studied concerns a land
use allocation problem. There are two types of land use that can be
allocated: nature and agriculture. The objectives are to minimise deposition
of nitrogen from agriculture on nature areas and to minimise the degree in
which agriculture is limited by regulations due to the presence of nearby
nature areas. The optimisation problem is similar to those described in a
number of publications by the RIVM-MNP, the Dutch national research
institute for public health, environment and nature [Heuberger et al., 1997,
Erisman et al., 1997]. The spatial distribution of nitrogen emissions and
nature is represented in raster maps. The relation between emission and
deposition is determined by means of a source receptor matrix. Three
different optimisation problems were studied. A synthetic source receptor
matrix was used for the optimisation problems A and B (see 5.5 and 5.6) as
to enable verification of the results of the optimisation with the genetic
algorithm. The source receptor matrix that was applied for optimisation
problem C was calculated by means of a transport model for nitrogen that
is available at the RIVM-NMP. In the transport model prevailing wind
directions and site—specific properties are taken in account. For every
raster cell is determined which relative amount of nitrogen deposition all
cells receive from that particular cell. Multiplication of the source receptor
matrix with the emission matrix results in the deposition matrix (see 5.3).
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5.4.1 Objectives

The principal objectives that were applied in the optimisation sessions
are:

1. Minimum exceedence of critical loads"

2. Minimum exceedence of maximum emission per cell

3. Minimum exceedence of the maximum surface area nature per
cell

4. Minimum total area of nature to be moved

5. Minimum total emission of nitrogen to be moved

The first calculations consisted of single objective optimisations where
only objective 1 was applied. Later, other objectives were added, in some
calculations apart and in others lumped. Details of the various numerical
experiments are describes in the next sections.

5.4.2 Model variables

The model area is represented as a collection of cells of equal size.
The model variables are:

e critical load;

e nitrogen emissions from agriculture;

e nitrogen emissions from other functions within the model area;
e nitrogen emissions from outside the model area;

e nitrogen deposition;

e total surface area nature.

The critical load is the maximum deposition that is allowed in a
particular cell. The degree in which the critical load is exceeded within the
optimisation model for problem A and B is not only a function of the
deposition in a cell, but also of the surface area of nature in a cell.

! Critical load is maximum allowable deposition, variable per cell
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At the start of the optimisation the following data are known:

e the total quantity of emissions that can be moved;

e the total quantity of nature area that can be moved;

e the source receptor matrix;

e the critical loads per cell;

e the maximum emissions per cell;

e the maximum area of nature per cell;

e the emissions per cell that can not be moved;

e the depositions that stem from emissions from outside the
model area per cell.

5.4.3 Optimisation questions

The questions that should be answered through the optimisation are:

1. Which configuration of nitrogen emissions that originates from
agricultural activities from within the model area results in a
minimum exceedence of critical loads?

2. Which configuration of nature results in a minimum exceedence
of critical loads?

3. Which configuration of nitrogen emissions and nature results in
a minimum exceedence of critical loads?

5.5 One-dimensional spatial optimisation — Problem A
A genetic algorithm was developed for the general optimisation

problem that was described in paragraph 5.4.

5.5.1 Objective function

The objective function for minimum exceedence of critical loads is
stated in the following:
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0] :Min(Z(D[j]—Cl[j] Yv(plj]> cil/] )) (5-2)

With constraint

E[j]< Em|}] (5-3)
Where:
0 objective

D/j] deposition in cell j (M/L%/T)

Cilj] critical load in cell j

Elj] emission in cell j (M/L%/T)

Eml[j] maximum allowed emission in cell j (M/L2/T)

In equation 5-2, exceedence of the critical loads is squared as to
achieve minimum variance of exceedences.

The question that corresponds to the objective function is:

Which configuration of nitrogen emissions that originates from
agricultural activities from within the model area results in a minimum
exceedence of critical loads?

5.5.2 Selection

Selection of solutions for reproduction is determined as a function of
fitness: every generation 10 new solutions are created from five existing
solutions with the highest degree of fitness and five solutions that are

> In this thesis the difference between an objective and a constraint
consists in the following: an objective is something that is aimed to fulfil to
a maximum degree whereas a constraint is a condition that is required to

be fulfilled for a valid solution.
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randomly selected. The 10 new solutions replace 10 existing solutions with
the 10 lowest fitness scores.

5.5.3 Reproduction

The reproduction techniques that have been investigated are:

e uniform reproduction;
e arithmetic reproduction;

e multipoint reproduction.

These techniques also have been applied conjunctively. Furthermore a
mutation mechanism was applied to ensure a good exploration of the
search space and to prevent premature convergence.

5.5.4 Coding

A chromosome consists of a number of genes that equals the number
of cells in the model area, multiplied by the number of model variables
there are to be optimised. In problem A, there is only one model variable to
be optimised, the spatial distribution of nitrogen emissions, i.e. the
configuration of agricultural land use. The values of genes represent in this
case the quantity of nitrogen emissions that originate from agricultural
activities and that can be moved to other cells. The total movable nitrogen
emission in the model area is assumed to be a value that is to be
determined by decision makers as it is clearly dependent on the budgets
that are available to improve conditions for both nature and agriculture.
The value of a gene represents the movable emission as a fraction of the
maximum emission in a particular cell. Thus, adjustment of the total
movable emission within the model area can be carried out without the
need to change the coding of the genetic algorithm:

gljl- Emlj]- Ex

> (gljl Emlj])

(5-4)

E[j]=
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Where:

gli] value of gene j (0>=¢g[j1<=1) (=)
Et total movable emission in the model area ((M/L?/T)
Em/j]  maximum allowed movable emission in cell j (M/L2/T)

This type of optimisation problem requires a search for new
configurations of emissions in the model area while the sum of emissions
that are moved should be the same in all solutions taht are constructed.
Therefore, values of genes cannot represent emissions directly, because
the sum of emissions would then vary among solutions that are generated
during the optimisation run. Correcting deviations from the required total
movable emission in the model area by application of some kind of repair
function is very inefficient and disturbes the evolutionary optimisation
process. Therefore, the representation of emissions in values of genes is
indirect (mapped), according to equation 5-4. Application of a ‘mapping’ to
emissions per cell enables the use of classic GA reproduction techniques
while maintaining nevertheless a fixed total movable emission of the model
area. However, some possible combinations of gene values cause a
violation of constraint 5-3. This possible violation has not been
compensated by a reparation code as this would result in increased
calculation times and because optimum fulfilment of the objective function
also prevents a violation of this constraint. The determination of critical
loads has been such that a critical load of an individual cell is always less
than the maximum emission. If a deposition of a cell is less than the
critical load, then the emission of that cell is less than the maximum
emission.

5.5.5 Formulation of problem A that enables verification

Evaluation of the results of the test calculations can best be carried
out if the properties of the optimum solution are known. Therefore, a
limited number of additional model properties have been formulated:

> ciljl=> Elj] (5-5)
SRM [}, jl=1 (5-6)
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VSRMk,i]=0 A k=l (5-7)

Where:

SRM[k,1] fraction of the emission in cell / that ends as
deposition in cell &

Equation 5-5 states that the sum of all critical loads equals the sum of
all movable emissions; equation 5-6 states that all deposition in a cell
originates from emission in that cell. Thus is achieved that the optimisation
problem has a unique and known solution and therefore can be verified,
whereas the degree of difficulty of the optimisation problem when solved
by means of the genetic algorithm, does not differ significantly from a real-
world version, were deposition in cells originate from emissions from more
than one single cell. The principal difference between the two formulations
is that in the current formulation it can be verified if the best solution found
is the true global optimum.

As a result of the formulation of the test problem, it holds for the
known optimum solution that if the configuration of the emissions equals
the configuration of the critical loads. The value of the object function for
the global optimum is O.

At the start of the calculations, a random configuration of critical loads
is generated and stored as ‘target configuration’. Then, the optimisation run
is started and it is tried to find a configuration of emissions that equals the
target configuration of critical loads by means of the genetic algorithm.
Only one single optimum exists because the sum of the critical loads equals
the sum of the emissions.

5.5.6 Premature convergence

Mutation prevents that the population is prematurely converged.
Without mutation, a phenomenon which is known as genetic drift will cause
the population to become genetically identical before the global optimum
has been found. However a too high probability of mutation should be
avoided because this would prevent that properties of successful
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individuals can be passed to offspring. The number of genes per individual
is typically quite high in spatial optimisation problems. Relatively small
probabilities of mutation are in those cases already sufficient to prevent
premature convergence. If the probability of mutation is for instance five
per thousand, it implies that on average about 200 genes would mutate per
crossover if the optimisation problem would consist of 40,000 cells. In the
current study a variable probability of mutation was applied as to find a
good balance between avoiding pre—-mature convergence on one hand and
maintain good conditions for inheritance of successful properties on the
other hand. The probability of mutation was calculated as a function of the
genetic homogeneity within the entire population. This construction
improved the performance of the genetic algorithm significantly as
compared to calculations with a fixed probability of mutation.

With respect to inheritability it should be noted that as a result of the
type of mapping that was applied a change of a limited number of genes
(g[jD leads to a change of the absolute values (V[j]) of many cells. This is
a result of the coding of cell properties as described in equation 5-3. The
advantage of the mapping is that the sum of emissions and the total area of
nature of all solutions can easily be kept constant without the need for
expensive correction methods, this at the expense of a mutual dependency
of cell values. This interdependency causes a good exploration of the
search space but reduces the ease by which successful properties can be
inherited by offspring. Particularly in the last phases of an optimisation run
it is necessary that only small changes of successful solutions occur.
However, adverse impacts of this phenomenon are limited because relative
small differences between solutions exist in the final stages of the
optimisation process. In many cases there are only minor differences
between the genetic properties of parent solutions in the final stages. As a
result, the sum of all genes (glj]) does not change significantly between
parents and children and therefore individual cell properties (V[j]) can be
inherited quite well.

5.5.7 Results of 1-dimensional spatial optimisation

The calculations have been carried out for two different model sizes,
consisting of 10,000 and 40,000 cells respectively. The population size was
200 and the crossover techniques that were applied are: uniform,
arithmetic and multipoint.
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The relation between CPU time and the error in the best solution
found so far is displayed in Figure 5-1. The calculations were carried out
with a simplified version of the source receptor matrix model (see equation
5-5 and 5-6). No repair of function was applied for cases where
VIj1>Vmlj] (see equation 2) because this condition is implicitly present in
the objective function. The true optimal solution has a y—axis value of O.
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Figure 5-1 Results of 1-dimensional optimisation at model sizes of
10,000 and 40,000 cells.

5.5.8 Conclusions

Convergence to a (near) optimal solution is possible for optimisation
problem A. Premature convergence can be avoided by application of an
appropriate probability of mutation. Parallel calculation on different PCs is
required if model sizes exceed 10,000 cells or if a realistic and therefore
more expensive source receptor matrix model is applied.

5.6 Multiple objective optimisation — Problem B

Many real-world optimisation problems have more than one single
objective. This feature complicates the optimisation because introduction
of more objectives and more constraints make it more difficult to find
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optimal solutions. A technical solution to this problem can sometimes be
found by joining different objective functions into a single lumped objective
function. The only way to achieve this is to apply weights to the different
components of the lumped objective function. If one wants to determine a
pareto front, different combinations of weights have to be applied. Another
possibility is that some of the objectives are formulated as constraints.
However, such an approach requires a priori choices that are similar to the
allocation of weights to different objective functions.

If an optimisation problem with multiple objectives is not translated
into a single objective optimisation problem, either by application of
weights or by additional constraints, then usually a Pareto front is the
result of the optimisation, provided that the objectives are conflicting.
Decision—makers can select a final solution from the collection of Pareto
efficient solutions, thus implicitly allocating weights to the relevant
objectives.

5.6.1 Objectives

The objectives that were defined for problem B are the following:

Minimum exceedence of critical loads

Minimum exceedence of maximum emissions per cell
Minimum exceedence of maximum areas nature per cell
Minimum change of nature to other locations

Minimum change of nitrogen emissions to other locations

G W

5.6.2 Objective functions

The objective functions that correspond to the objectives stated in
5.6.1 are:

cilj]

0 = Min[ Z( (oljl-cilj] )~1ooj w(pLi]> cil)] )] (5-8)

0, = Mir{ 2(7@[1’]— Enlj])-100 )zv(E[j]> Emlj])+ Z(i(lv[j]_ Nif1)-100 jzv(N[j]> Nm[j])] (6579

Em[ j] Nml j]
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(LB 100 ) or o (WMD) 100 ) e ) (5-10)
0.  Min Z(WJV(E[f]>E1[J])+Z(WJV(N[J]>N1[,])

2

The constraints:

Elj]< Emlj] 1
NLj]< Nmlj] 19
> Elil=c, .
Ynlil=c, i
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Where:

0 objective function
Cllj] critical load in cell j (M/L2/T)
D/l deposition in cell j (M/L#/T)

Elj] emission in cell j (M/L2/T)
Eml[j] maximum allowable emission in cell j (M/L2/T)
Nlj] area nature in cell j (L?)

Nmlj] maximum allowable area nature in cell j (L?)
E1[j] initial emission in cell j (M/L2/T)
NI1[j] initial area nature in cell j (12)

C; constant 1; total movable nitrogen emission in the
model area

c2 constant 2; total movable area of nature in the model
area

Objective function 1 (5-8) corresponds with objective 1, minimum
exceedence of critical loads. Objective function 2 (5-9) corresponds with
objectives 2 and 3. Objective function 3 (5-10) corresponds with objectives
4 and 5.

5.6.3 Coding

The coding of the cell properties in the genetic algorithm is analogue
to that of the one—dimensional optimisation problem. The number of genes
of a chromosome has increased since in this test problem not only
emissions can be moved, but also nature areas. The number of genes per
chromosome equals the product of the number of cell properties multiplied
by the number of cells. A model size of 200 x 200 cells and two parameters
results thus in 80,000 variables per chromosome. It should be noted that
the level of detail in which solutions can be described is higher than the
size of a cell because the variables represent for nature the fraction of the
cell area that is dedicated to nature and for emission The fraction of the
maximum emission of that particular cell. Thus, the coding enables a more
detailed description of solutions then a coding where a cell processes
either the property “nature” or the property “emission”.
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5.6.4 Selection

Selection of promising solutions in an optimisation problem with
multiple objectives cannot be based on the results of a single objective
function. If the two objectives are conflicting and refer to different,
incommensurable values, subjective valuation is necessary to identify the
optimum solution. A Pareto front shows optimum solutions for different
weightings (‘exchange rates’) between the two objective functions. There
are two ways to calculate the Pareto front. The classic approach consists
of carrying out a set of optimisation runs, each with a different weighting of
the two objective functions. The approach in this thesis consists of
formulation of an unbiased objective function based on two properties:
Pareto efficiency (1) and Unicity (2). Pareto efficiency is a relative Boolean
property. The solution is Pareto efficient if there is no other solution within
the population that has a better score with respect to at least one objective
function, without having a worse score with respect to all other objective
functions. The unicity of a solution is intermittently defined as:

2 =i R

Uljl= =R (5-15)
i=1.M N -1
and:
ITi, j1— ITi, k] ’
. . L, j1— 111, .
Uljl= Min ]— ANJ#Ek (5-16)
i=1..M lali]— Ib[i]
Where:
U unicity (=)
I/ij] impact score of cell jfor objective function 7 (=)
lali] maximum score of objective function 7
bli] minimum score of objective function 7
N number of cells
M number of objective functions
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The term N-/ is not necesarry for the optimisation process but
facilitates comparing results of different optimisation problems with
different numbers of cells.

Both definitions of unicity have been applied alternatively during the
optimisation runs to prevent premature convergence and to improve the
exploration of the search space. The first equation (5-15) relates unicity of
a solution to the difference with the normalised mean of objective function
scores, whereas in the second form (5-16) unicity is related to the minimal
normalised difference with other solutions. Both formulations result in a
different ranking of total fitness and thus in a different exploration of the
search space.

5.6.5 Formulation of a known optimum for optimisation problem B

As in the test for optimisation problem A, a specific formulation was
applied as to define a problem with a known solution. Just like in problem
A, the total quantity of emission was set equal to the total sum of critical
loads. The source receptor matrix is also for problem B defined as a
simplified version of the true matrix. This implies that the configuration of
emissions in the optimum solution is equal to the configuration of critical
loads.

Objective function 1 describes the degree of exceedence of critical
loads by depositions. During the test calculations, no weights haven been
applied in this objective function for the area of nature in cells. Thus is
achieved that only a single solution is possible without exceedence of
maximum emissions. The second objective function concerns the degree in
which the maximum values of nature area and emissions in cells are being
exceeded. This criterion is rather a constraint than an objective, but has
been formulated as an objective function as to prevent that many solutions
that are being generated during the optimisation process will have to be
repaired. The third objective function concerns a minimisation of the
quantity of nature area and the emissions that have to be moved to other
locations. For the initial situation we chose a configuration of nature and
emissions that actually corresponds to the optimal configuration, where the
configuration of emissions corresponds with the configuration of critical
loads. This was combined with a random configuration of nature areas.
Thus it became possible to determine easily what percentage any solution
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deviates from the true optimum. According to this approach, the
configuration of nature areas is only relevant for objective function 3,
whereas in a real world application the configuration of critical loads is also
partly determined by the configuration of nature areas. The set up of the
testing as described here above enables verification of the performance of
the genetic algorithm but also implies that the objective functions are not
completely conflicting. As a result of the specific formulation of the
optimisation problem for testing purposes, all objective functions will
display O for the true optimum and there will be no other Pareto—efficient
solutions than the true optimum.

The values that were applied are displayed in Table 5-1; the initial
configuration of model properties was determined randomly.

Table 5-1 Applied values in the testing model for optimisation

problem B
Minimum Maximum Mean
Emission 0 1000 500
Area with 0 100 50
nature

5.6.6 Results of multiple objective optimisation — problem B

As was described in the previous section, initially three objective
functions were formulated, although objective function 2 is in practical
applications rather a constraint than an objective function, considering the
great weight that decision-makers attach to this objective. As to
investigate the performance of an alternative approach we also carried out
experiments where we reformulated objective function 2 as a constraint. A
repair function had to be implemented for correction of solutions where the
new constraint was not fulfilled. The effectiveness of either of the
approaches depends on the severity of the constraint. A repair function will
be demanding in terms of CPU time if it concerns a condition that is
difficult to fulfil. Besides, the “heuristic path” that is followed by the
genetic algorithm is disrupted if a repair function is applied. In those cases
an additional objective function in stead of a constraint may be more
effective, since no CPU time is required for reparation of invalid solutions
and the “heuristic path” is not cut off. Indicative numerical experiments
showed that a constraint that can be fulfilled relatively easily and that is
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therefore not very demanding for reparation is more effective than
introduction of an additional objective. Introduction of more objectives has
also an adverse impact on the speed that (near) true Pareto-efficient
solutions can be identified. The search power of a genetic algorithm
becomes diluted if more objectives are introduced because the total
surface of the pareto fronts is increased.
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Figure 5-2 Results of Z2—-dimensional optimisation for a model with
100 x 100 cells

The values for the two objective functions are displayed in Figure 5-2
as a function of calculation time.

1. Average exceedence of the critical loads: —L
n

2. Average percentage of nature and emissions that is to be
moved (compared to the total quantities of nature and
emissions): O3 (%)
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5.6.7 Conclusions

Comparison of the performance of the genetic algorithm for the
different versions of the optimisation problems that were investigated
make clear that the required calculation time increases exponentially if the
size of the problems increases linearly. An extremely simplified source
receptor matrix has been used for the test problems of optimisation
problem B, as described here above. More realistic calculations of nitrogen
transport will require a more complicated source receptor matrix and the
required CPU time will consequently be much higher. Parallel computing
can offer a solution to this problem because genetic algorithms are very
suitable for splitting up the calculations to different PCs.

The severity of constraints is decisive for the success of reparation
techniques. Boundary conditions that are mild and relatively easily to fulfil,
such as the constraints regarding the maximum values of emissions and
nature areas in problem B, enable more effective application of a repair
function than formulation of a constraint as an additional objective.
Application of a repair function becomes less effective in the constraint is
severe. This would be the case if, for instance, maximum emissions of
nitrogen in problem B would differ only a very little from critical loads. In
that case, many invalid solutions would be generated during the
optimisation process and it would be expensive in terms of CPU time to
repair them. In those cases it becomes increasingly interesting to apply
alternative mappings or transformations, such as was applied in equation
5-4 in order to keep the total sums of emissions and nature areas constant.
If that is not possible, it may be interesting to reformulate the constraint as
an additional objective function. Although this would reduce the focus and
therefore the search power of the algorithm, it would not disturb the
heuristic path towards gradual improvement of solutions.

5.7 Multiple objective optimisation — problem C

Optimisation problem C has been formulated by the provincial
authorities of Noord Brabant (Netherlands) and RIVM-MNP, the Dutch
national research institute for public health, environment and nature. The
definition and the size of the problem are such that it can be solved by
linear programming too. The optimisation problem concerns the spatial
distribution of nitrogen emissions from agricultural activities in Noord
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Brabant Province. The spatial distribution should be such that vulnerable
nature areas receive minimal nitrogen deposition from agricultural
activities and that agricultural areas are submitted to minimal restrictions
due to the proximity of nature areas. Like in the optimisation problems that
were described in the previous sections, spatial properties of the problem
are represented by raster maps. The raster cells represent either
agricultural land use or nature areas. This representation is different from
the optimisation problems A and B, where within a single raster cell more
than one single type of land use could be allocated. Although the level of
detail of spatial configurations is thus reduced as compared to the
optimisation studies that were described in the previous sections, it
enables comparison of the optimisation results with linear programming
techniques.

The model area consists of two subareas. The total emissions of the
two different subareas are to remain constant. Export of emissions to areas
outside the boundaries of the model should also remain constant. Fulfilment
of the latter constraint is implemented by creating an additional ring of
raster cells around the model area and by calculating deposition in this
additional subarea. As long as total deposition in this subarea is not
increased, it is assumed that there is no additional export of emissions
outside of the model area. Since this “zero change of export” constraint
can not be fulfilled effectively by implementation of a repair function, it
was formulated as an additional objective function.

5.7.1 Objectives

The objectives 1, 2 and 3 were formulated as objective functions
whereas the objectives 4, 5 and 6 were formulated as constraints.
Fulfilment of the constraints was achieved by application of a mapping
technique combined with a repair function (see 5.6)

1. Minimum exceedence of critical loads

2. Minimum additional exceedence of critical loads in cells that
represent existing nature areas where at present critical loads
are already too high

3. Minimum change of total emission that is exported out of the
model area

4. Minimum exceedence of maximum emissions per raster cell
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Minimum falling short of minimum emissions per raster cell

6. Minimum change of the total emission within the model area
and also minimum change of the total emission of the two
subareas of the model area

5.7.2 Objective functions

The objective functions that correspond to the objectives stated in
5.7.1 are:

0, =Min(Z(D[j]—Cl[j]) v(D[j]>cz[j])) (5-17)
0, =Min( Y (D[j]-cilj))v (D[j]> DiljlA Ditj1> CiL ) 5-18)
0, = Min( > (D[k]-cilk])v (D[k]> Cllk1)) 5-19)

The constraints:

1 E[z]SEmaX[l] (5-20)
5 Eli]2 E minli] (5-21)
5, 2Eml=c, (5-22)
4. 2 Elnl=c, (5-23)
Where:
7 index of a raster cell
J index of a raster cell that represents nature
k index of a raster cell that delimits the model area
m index of a raster cell from subarea 1
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n index of a raster cell from Subarea 1
0 objective function

Clli] critical load in raster cell j (M/L2/T)
D/l the deposition in cell j (M/L2/T)

Dilj] initial deposition in cell j (M/L%/T)
Elj] emission in cell j (M/L2/T)

E,.x/i]  maximum emission in cell i (M/L?/T)
E.n/i]  minimum emission in cell i (M/L%/T)

C; constant 1; total emission in subarea 1
c2 constant 2; total emission in subarea 2

The objectives 1, 2 and 3 (see 5.7.1) correspond with objective
functions 1, 2 and 3. The objectives 4, 5 and 6 have been implemented as
constraints.

5.7.3 Coding and selection

The coding of the cell properties is analogous to the coding in
optimisation problem B. The total emissions per subarea can be kept
constant by means of the mapping that was described in equation 5-4.
However, incidentally it may occur that the emission in particular cells
exceeds the maximum emission. If this occurs, a repair function is called.
By means of the repair function the values of genes of that solution are
changed randomly until the constraint is fulfilled. Falling short of the
minimum emission cannot occur because within the model there is
reference to movable emissions only.

Selection of promising solutions is not identical to the selection in
optimisation problem B. Pareto efficiency becomes increasingly unspecific
if the number of objectives is increased, because the probability that a
solution is Pareto inferior becomes less if the number of objectives is
increased. A solution is Pareto inferior if there is at least one other
solution that performs better with respect to at least one objective
criterion while not performing worse with respect to any other objective
criterion. If there are more objective functions, then it is more probable
that there is in other solutions at least one property where the
performance is less. Consequently, Pareto inferior solutions become scarce
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if there are many different objectives and therefore Pareto efficiency is
less effective as a selection criterion.

A solution to this problem was found by introducing the concept of
Pareto score. The Pareto score of a solution represents the number of
pairs of objective functions for which a solution is Pareto efficient. This
criterion enables again to select promising solutions effectively. During the
calculation sessions it was clearly shown that application of the Pareto
score resulted in a faster and better convergence to global optima.

5.7.4 Results

The best results with the genetic algorithm were achieved with a
variable probability of mutation. The probability was changed if stagnation
of improvement occurred. The criterion for selection consisted of the
product of the unicity score and the Pareto efficiency score. The first
score indicates the rank of a solution with respect to it's unicity in terms of
values of the various objective functions. The Pareto efficiency score
indicates the rank of a solution with respect to the number of pairs of
objective categories for which the solution is Pareto efficient.

The level of detail of the SRM model was gradually increased during
the optimisation as to reduce the computational cost in the initial stages of
the process.

The results of the calculations by linear programming, simulated
annealing and the genetic algorithm are presented in Table 5-2. The
calculations with the linear programming code were carried out at the
RIVM by Peter Heuberger [Vink, Heuberger and Bakema, 2002]. The
calculations with the simulated annealing code were carried out at Utrecht
University by Willem Loonen. The differences between the results of the
three techniques for the current optimisation problem are negligible.
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Table 5-2

Optimum results achieved by linear programming,
simulated annealing and the genetic algorithm

1 Objective Objective 2 Objective 3
Result LP 262.0 0.000 0.0
Result SA 262.0 0.000 0.0
Result GA 262.1 0.009 4.0

Results of the optimisation after 50,000 generations are given in
Figure 5-3 - Figure 5-5.
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Legend of figures 5-3 - 5-5

e triangle: Solutions that are Pareto—efficient for more than one
pair of objective functions (Pareto score >1)

e small dot: Solutions that are Pareto—efficient for one pair of
objective functions (Pareto score =1)

e open dot: Pareto inferior solutions.

5.7.5 Conclusions and discussion

The true optimum could be identified by linear programming and
simulated annealing, whereas the near optimum could be identified by the
genetic algorithm. However, the potential level of detail of the results that
were achieved with the GA is considerably higher than with LP and SA.
With SA and LP the optimisation problem was treated with less detail, as
only uniform types of land use could be allocated to single raster cells.
With the genetic algorithm the problem was treated at a higher level of
detail, as the allocated land use types within raster cells were expressed
as a fraction of the total area within. Since the optimisation problem was
designed for a comparison between the three techniques, the optimum
solution consisted of a configuration with uniform land use within single
raster cells. However, in real world problems it would be an advantage to
have access to solutions at a detailed scale. The computational costs of
the genetic algorithm were relatively high, but the results consist not only
of the single optimum but also of the Pareto fronts. The number of raster
cells corresponded to the maximum number that could be handled by the
LP for this particular optimisation problem, but SA and GA could have
handled a larger number of raster cells too.

The results of the GA possibly could be improved by formulating the
optimisation problem as a single objective optimisation problem. The
experiences with optimisation problem 2 showed that a reduction of the
number of objective functions can improve the efficiency of the algorithm.
Pareto fronts can be constructed by carrying out multiple calculation
sessions with different weight ratios to the objective functions.

The results for optimisation problem 3 were validated to some extent
by applying various methods to the same problem. Achieving some form of
circumstantial validation of the results without applying other techniques is
not trivial for the current problem since the SRM model plays a role in all
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objective functions. The most suitable technique for circumstantial
validation of a problem that is too large to be handled by a global
optimisation technique would consist of resizing the optimisation problem in
such a manner that it just can be solved by a global technique. If the GA
performs well for the smaller problem, the reliability of the results for the
larger problem has slightly increased.

Apart from circumstantial validation, it is also important to consider
the accuracy and reliability of the simulation models involved, and the
precision that is feasible in an implementation of the results in practice. It
is likely that results of optimisation with heuristic techniques are often
rather near optimal than optimal. The results can be appropriate if the
differences between near optimal and true optimal are sufficiently small.
Therefore it is important to be able to assess the precision of the impact
models and the precision that is feasible in the implementation phase.
There should be accordance between the level of detail in solutions that
are generated by the GA and the level of detail that is feasible in
simulations of impact models and in implementation of solutions in practice.
This property can be manipulated to some extent by changing the way the
problem is coded into the genetic algorithm. It should be avoided that the
algorithm generates many different solutions that do not lead to different
impacts and do neither differ significantly from the viewpoint of simulation
and implementation.

Whether or not an optimisation problem can be solved with GA
depends on the properties of the problem. As yet, no generic rules for the
assessment of the suitability of GA for a particular problem have been
identified. Analysis of the experiences with GA in a number of case studies
resulted in the identification of five properties that determine the feasibility
of the application of a genetic algorithm to an optimisation problem:

e size of the search space;
e continuity of the search space;
e computational cost of impact models;

e shape of the search space.

These properties will be discussed in the next sessions.
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Size of the search space

The size of the search space is determined by the number and the
ranges of the variables that are involved in the optimisation problem. The
higher the number and the larger the ranges, the more difficult it is to
solve an optimisation problem.

Continuity of the search space

The continuity of the search space indicates in which degree global
optimiser can be found by hill climbing. The higher the number of local
optima, the more difficult an optimisation problem can be solved. The type
of spatial optimisation problem that is described in this chapter probably
has only a few local optima. If there were many local optima, the size of
the current problem would make it almost impossible to identify the global
optima. The success of the simulated annealing algorithm that was applied
by Loonen en Heuberger [Loonen et al., 2004] confirms this assumption,
since the optimisation consisted of a sequence of very small changes to
properties of solutions. Only very few stagnation points were found. These
could be ‘overtaken’ by changing temporarily the weights that were
allocated to the different objective functions.

Computational costs of impact models

The computational costs are typically concentrated in the impact
models in ecological and agricultural optimisation problems. The impact
models often consist of highly complex simulation models in which spatial
distributedness and sometimes also a temporal dimension are taken in
account. The required calculation time may become a serious limitation for
heuristic techniques under these circumstances. Many researchers tried to
reduce the computational costs by gradually increasing the level of detail
of the simulation models. Other options consist in paralellization and
upscaling techniques [e.g. Haberlandt et al., 2002, Seppelt and Voinov,
20021].

Shape of the search space

The shape of the search space refers to the part of the collection of all
possible solutions that is (near) optimal. Some optimisation problems have
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quite a large proportion of near optimum solutions that do not differ
significantly, whereas other problems may have only a very small number
of near optimum solutions. The latter type of optimisation problems is
obviously more difficult to solve.
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6. An analysis of different strategies for the
prioritisation of groundwater quality prediction

studies with a sequential numerical game®

6.1 Abstract

Groundwater quality prediction studies are carried out to increase the
reaction time when drinking water companies have to respond to
breakthroughs of contaminants. Drinking water companies exploit
numerous wells and need to decide on research priorities for these wells,
as budgets are limited. The reliability and accuracy of predictions improve
if more funds are invested in data-collection and prediction studies, but
there is no clear decision model available to determine the required level
of (un)certainty. Hence, it is unclear which prioritisation strategy is
optimal. Unnecessary losses can occur if inappropriate strategies are
followed. A decision analysis of strategies for prioritising prediction studies
is presented, where the problem is posed as an optimisation problem with
an explicit loss function. A sequential numerical game was set up in order
to assess the effectiveness of different strategies. There were significant
differences between the performances of strategies. The most successful
strategy used the anticipated uncertainty reduction of additional studies as
one of the prioritisation criteria and takes the uncertainty of predictions in
to account.

Keywords: uncertainty  reduction, technological  forecasting,
groundwater quality prediction, research prioritisation, game theory,
decision analysis.

6 Adapted from: Proceedings of the Modelcare conference of 2005 in The
Hague.
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6.2 Introduction

Regional drinking water supply systems in densely populated areas
typically consist of multiple sources and sinks, interconnected by transport
pipes. The sources are production wells that pump groundwater or surface
water, the sinks represent water users. Predictive studies on the chemical
composition of pumped groundwater are carried out in order to reduce the
risks of failure of production wells due to contamination. These studies
function as an early warning system, providing time for taking counter
measures and thus enabling a reduction of the potential consequences in
case some contaminant would leave pumped groundwater quality unsuitable
for drinking water production. Contamination of wells can lead to high
economic costs because the construction of a new well at a different
location involves considerable investments in research and infrastructure.
If a contamination reaches a well before a replacing well has become
available then the required capacity needs to be obtained temporarily from
other wells which also may involve high economic and environmental cost.
In the worst situations there may be insufficient finance, time or spare
capacity and the supply is hampered. Generally the number of feasible
remedial actions decreases if the available reaction time is reduced and the
costs of remaining options increase. Early recognition of an upcoming
breakthrough can therefore reduce the adverse impacts. The quality of
groundwater has deteriorated in many regions over the past decades due
to agricultural and industrial pollution, national and international standards
for drinking water quality have become more stringent and prediction
studies have therefore gained importance. As a result, many drinking water
companies need to spend substantial budgets on monitoring and prediction
of groundwater quality. Yet, there seems to be no uniform strategy applied
to the prioritisation problem of prediction studies. Prioritisation of research
is required as budgets are limited, but which prioritisation strategy to
choose i1s not a trivial question: should decision makers aim for
minimization of total risk or minimization of maximum risk? What is a
suitable operational definition of the risk of well failure? How should
decision makers account for the uncertainty of predictions? Rational and
consistent methods are needed in order to spend available budgets
efficiently. However, prioritisation of prediction studies is often based on
ad hoc strategies, as more advanced strategies require complex
assessments due to the inherent uncertainty in predictions and to the
complexity of many present—-day regional drinking water supply systems.
Best professional judgment, expert judgment and educated guesses may
result in sub optimal prioritisation. Freeze et al [1987] developed a
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method for the assessment of data worth in groundwater contamination
problems. Finkel and Evans [1987] evaluated the benefits of uncertainty
reduction in environmental health risk management. Reichard et al. [1990]
provided a health risk oriented benefit—-cost analysis as a conceptual
framework for groundwater management under uncertainty. These studies
emphasized the importance to show that the value of data—collection
strategies can and should be valued in terms of their expected impact on
decision making. The problem of trend detection in water quality data and
the optimal design of monitoring networks and sampling strategies have
received considerable attention over the past decades [see e.g. Dixon et
al., 1996]. The focus of the aforementioned studies considered rather
methods to determine the cost and value of information than methods to
determine the optimal distribution of an already specified budget, as is the
subject of this paper. In a more general sense, decision making under
uncertainty has been addressed in mathematics by probability theory and
utility theory. In contrast with the rare literature on prioritisation of
prediction studies, many papers were dedicated to quantifying the
uncertainty of predictive simulations. Monte Carlo simulations, Kalman
filtering, Kriging and other techniques have been applied for assessment of
the uncertainty of data and model results [e.g. Carrera et al., 1984, Dagan,
1986, Gelhar, 1986, Neuman, 1987, van Geer, 1987, Delhomme, 1978]. The
use of some of these techniques is currently on its way to become common
practice in applied research. The integration of the achievements of the
latter studies in decision making strategies for prioritisation of prediction
studies has thus become an interesting option and forms the starting point
of the analysis that is presented in this paper.

In the next section the objectives of predictive studies and some
operational definitions for relevant system properties are discussed. The
analysis results in the identification of a number of possible criteria for
prioritisation of groundwater quality prediction studies. This section is
followed by a description of the general setup and results of the game
experiment, which was used as an environment for testing the performance
of a number of strategies. The paper is concluded with conclusions and a
discussion of the results.
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6.3 Methods

We constructed a conceptual sequential game model to investigate the
effectiveness of various prioritisation strategies, measured in terms of
losses due to breakthroughs. Apart from the strategies, the game consists
of a “stochastic well properties generator”, including time series of
concentrations of pumped groundwater, an uncertainty reduction function
and a loss function, related to the impact of an upcoming exceedence of a
concentration limit. By allocating research budgets to wells, the virtual
players/decision makers can reduce the uncertainty of predictions of the
future concentration of pumped groundwater of these wells. Uncertainty
reduction results in an increase of the expected minimum reliable reaction
time and sometimes in a sufficiently reliable prediction of a exceedence of
a quality standard for drinking water, i.e. a prediction of the maximum
reliable reaction time (Figure 6-2 and Figure 6-3).

6.3.1 Risk of breakthrough

A breakthrough occurs if the concentration of a solute in pumped
groundwater exceeds a certain threshold value. In this context, threshold
values determine the suitability of water for drinking water production
based on toxicological and/or technical considerations. Prediction studies
can contribute to the reduction of risks of breakthroughs by expanding the
available time for remedial actions.

A general definition of risk according to the British Standard Institution
describes risk as “the combined effect of the probability of occurrence of
an undesirable event, and the magnitude of the event”. [Griffith, 1981]

The operational definition of the risk of well failure due to the
breakthrough of a contaminant we define accordingly as:

R=Px*] (6-1)
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Where:

R risk
P probability of breakthrough
7 impact of breakthrough

Some management options in the case of a threatening well failure’ are
directed at reducing the probability that the event will take place, other
options are directed to a reduction of the impact of a breakthrough. There
are various remedial actions possible if well failure due to the
breakthrough of a pollutant is expected. The major counter measures are:

e transferring of the production to a newly constructed well;

e transferring production to another well as a provisional
solution;

e timely installing appropriate purification capacity;

e changing the caption zone of a well by changing the pumping
regime and thus influencing the future composition of the
pumped groundwater;

e purchasing land and modifying the land use in order to reduce
the pollutant load that enters the groundwater.

The impact of well failure varies among wells because:

e the construction cost of new wells vary according to local
conditions and according to the required capacity;

e the economic and environmental impact of temporary transfer
of production to another well as a provisional solution depends
on the role of a well within a regional distribution network;

e the reaction time varies.

Not all wells are therefore of equal importance to the functioning of a
regional drinking water supply system. Some wells may play a crucial role

7 Only well failures caused by contamination of groundwater are considered
in this paper.
117



within a system while others can be missed with relatively small
consequences, for instance if the production can easily be transferred to
other wells where spare capacity is available. Allocation of research
budgets for groundwater quality prediction proportional to the potential
consequences of well failure is then a logical step. However, assessment of
the impact of a well failure is a complex task. Temporary transfer of the
production capacity from a contaminated well to other wells within the
same regional supply system works out differently for every well, due to
the relatively large spatial variability of many parameters. Wells,
purification plants and transport facilities vary in capacity and in economic
and environmental efficiency. The inherent combinatorial explosiveness of
network systems makes that there are often many ways to transfer the
needed capacity to other wells. Each solution will have different impacts on
economic, environmental and other objective categories and nonlinearity
and interdependency of well's impact relations as a function of pumping
rate make it generally infeasible to identify the optimum (minimum negative
impact of well failure) without computer—based modelling and optimisation
techniques. Valuation of the relevant impact categories such as for
instance economic costs, environmental costs and reliability of supply is
required before the optimal configuration can be identified. A method for
multi-objective optimisation of drinking water production by means of
genetic algorithms is presented in [Vink and Schot, 2001]. According to
this method the optimal i.e. minimized negative impact of a particular well
failure is determined by optimisation of the production configurations of a
regional system with and without that well respectively.

The magnitude of adverse impacts of breakthroughs also depends on
the available reaction time (Figure 6-1). The available reaction time at the
instant that an upcoming breakthrough is predicted reliably is therefore one
of the decisive factors that determine the actual impact of a breakthrough
and thus the magnitude of the risk.

Ib = f(Ib0,rt) (6-2)
Where:

Ib manifest impact of breakthrough

IbO potential impact of breakthrough (Ib=Ib0 if rt=0)

rt reaction time
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The relevance of reaction time concerns not only the financial means
that are required for remedial actions; it also concerns the feasibility of
measures. In cases that ample reaction time is available there may be
sufficient time to construct a new well without the need for urgency, but
when an upcoming contamination is predicted only shortly before the
breakthrough occurs, provisional measures may be necessary in order to
maintain continuity of supply. Urgent measures are usually more expensive
and provisional measures more often invoke adverse environmental
impacts, such as high energy requirements for transportation or damage to
groundwater dependent ecosystems due to changed production
configurations. Impact-reaction time functions vary widely according to
case—specific conditions but all cost - reaction time functions have in
common that an increase of reaction time will never result in an increase of
total failure impact. Two extreme scenarios of generalized cost — reaction
time functions are shown in Figure 6-1.
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Probabilities of breakthroughs are like all probability statements
concerning the future essentially subjective and without a physical basis
[Szaniawski, 1998]. They are rather a result of an imperfect interpretation
of an incomplete representation of a set of conditions and processes. This
implies that probabilities of breakthroughs depend on the accuracy and
reliability of prediction studies. The reliability of the statements can be
defined at least partially by applying uncertainty assessment techniques
and by making the basis of predictions as explicit and accessible to
verification as possible. A prediction study that includes a quantitative
uncertainty analysis not only produces a predicted concentration time
series but also an upper and lower boundary of the associated confidence
interval time series (Figure 6-2). The size of the confidence intervals
increase with increasing time horizon due to the possible accumulation of
prediction errors and due to the fact that predictions for the longer term
correspond to parts of the caption zone where monitoring activities
generally are scarcer then near the well. Figure 6-3 shows how additional
research can narrow the space between the upper and lower boundaries of
the confidence intervals. Increased accuracy of predictions at a uniform
confidence level results in narrowed boundaries of the confidence
intervals. The concepts minimum and maximum reliable reaction time
correspond to the time period between the present and the time instant
when the threshold concentration intersects with the upper and lower
boundaries of the confidence interval time series (Figure 6-2). Improved
accuracy due to additional prediction studies will result in a narrowed
confidence interval time series and consequently in an increase of the
expected value of ‘minimum reliable reaction time’ and a reduction of the
risk of well failure.

The probability that a concentration in pumped groundwater will
exceed the threshold concentration at a time instant ¢ can be determined if
the probability density function of the predicted concentration at that time
instant is available. If the confidence boundaries of all prediction studies
apply a uniform confidence level then the ‘discounted’ impact (equation 2)
that corresponds to the minimal reliable reaction time can be used as a
measure of risk.

The potential reduction of risk depends on the uncertainty reduction
that forms the result of a prediction study. The uncertainty reduction per
unit of research budget can be highly variable. Dependent on site—specific
conditions such as the size of the caption zone and the spatial and temporal
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variability of relevant geohydrological variables it may be feasible to
improve the accuracy of predictions significantly at relatively low cost for
some wells whereas for other wells high investments are required for only
a modest improvement of the accuracy of predictions. Besides, it can be
assumed that there is a decreasing marginal utility of research investments
within a particular time domain and that consequently the uncertainty
reduction depends also on the amount of budget that has been spent
already.

In practical situations research priorities are allocated according to
many different considerations, partly related to the potential impact and
partly related to the probability of a breakthrough of a well. Assessment of
the probability of a breakthrough may for instance be based on changes of
trends in observed concentrations or on the pollutant load in the caption
zone. In this study the prioritisation problem is considered without these
types of information. The question which total budget should be allocated
to prediction studies is also beyond the scope of this paper; we consider a
situation where a periodical budget has been defined and is to be
distributed over the available wells. The performance of different
prioritisation strategies cannot be compared easily in field experiments as
the frequency of well failure due to contamination is too low for obtaining
significant results at acceptable levels of cost and time. Comparison of
strategies that are applied to different regional supply systems is
furthermore hampered by the large variability of the relevant properties of
individual wells and of the distribution network. Identification of the optimal
strategy on a basis of the generalization of field data is therefore
considered hardly feasible. An analytical mathematical analysis is
considered infeasible too. If possible at all it would probably lack the
flexibility of handling a variety of often discontinuous and nonlinear
impact-reaction time and cost-uncertainty reduction functions. We chose
to investigate the prioritisation problem in the setting of a sequential game
experiment. The adopted approach enables a discrete and flexible handling
of possibly discontinuous and nonlinear functions. In this paper the problem
was analysed under generalized conditions, but for specific drinking water
supply systems it can be applied within the framework of a decision—
support model. There, the game properties can be adjusted to system-
specific conditions by which the effectiveness of strategies in specific
situations can be investigated.
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6.4 Sequential game

We constructed a sequential game model in order to investigate the
effectiveness of various prioritisation strategies for groundwater prediction
studies, measured in terms of losses due to breakthroughs. By allocating
research budgets to wells the players can reduce the uncertainty of
predictions about the future concentration of pumped groundwater from
these wells. Uncertainty reduction results in an increase of the expected
minimal reliable reaction time and thus in a reduction of potential losses
due to breakthroughs.

The properties of the game experiment consider:

e a cost—uncertainty reduction function;

e an impact-reaction time function.

A number of wells each provided with:

e a concentration time series;
e g failure impact;
e a prediction difficulty class;

e a concentration variability class.

A number of players each provided with:

e a periodical budget to be distributed over the wells according
to the players strategy;

e a set of confidence boundaries for each well that are adjusted
through budget allocation.

The uncertainty reduction function is defined according to:

Ci(p,i,t,t)=(=Urf(p,i,0))*Ci(p,i,t —1,t) (6-3)
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vr =2 o1
subject to:

(t'—t) < Mh (6-5)
Where:

Ci(p,i,t,t) confidence interval (mg)

D player index

I well index

t time step index

t’ prediction time index

Urf uncertainty reduction factor (=)

B fraction of total available budget per time step (=)
Pd prediction difficulty class (=)

Mh maximum time horizon of uncertainty reduction (T)
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6.4.1 Loss function

The performance of the strategies is expressed through a penalty
score. The score represents the sum of the manifest impact of wells that
show a breakthrough. The score is summed at the first instant that the
breakthrough was predicted reliably, which corresponds to the instant that
the lower confidence boundary of a prediction intersects with the threshold
concentration line. The manifest impact that corresponds to a reaction time
of 1 time unit is summed in case a breakthrough is not predicted reliably
before the instant of breakthrough.

n

Penalty score = Z{f(IbO[i],rt[i])} (6-6)

i=1

subject to-:
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[Lbnd  Cthr # 9] for (" —1) < Mh 6-7)

Where:
n number of wells
b0 potential failure impact®
rtfi] true reaction time; period between present and moment
that the threshold is exceeded
Lbnd lower boundary of confidence intervals
Cthr threshold concentration

The remaining game properties are described in the appendix.

6.4.2 Prioritisation strategies

The general objective of prioritisation of prediction studies is to
minimize the negative impact of well failures due to contamination of
groundwater. How this objective 1is achieved best is not clear on
beforehand. A wide range of strategies were investigated. According to
each strategy research budgets were allocated to the available wells every
time step, proportional to the relative weight of a wells priority score to
the sum of all priority scores. The total budget to be spent at each time
step is 1. The strategies that were investigated are stated in the following
section:

1. Priority score = random. To provide a reference performance for the
experiment the first strategy denotes the random strategy. It
represents a player/decision maker who assigns priorities for
allocation of research budgets at random

2. Priority score = 1/(threshold-current concentration); represents an
‘ad hoc’ decision maker who allocates budgets according to the
difference between the threshold concentration and the current
concentration of pumped groundwater

® The units of failure impact depend on the impact category it refers to.
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3. Priority score = potential failure impact; represents a decision maker
who allocates budgets according to maximum potential failure
impact (that varies among wells)

4. Priority score = 1/minimum reliable reaction time; represents a
decision maker who applies priorities for maximizing the minimum
reliable reaction time

5. Priority score = failure impact*anticipated change of reaction time
/minimum reaction time; represents a decision maker who allocates
budgets for maximizing the minimum reliable reaction time,
weighted for potential failure impact and taking anticipated
uncertainty reduction in account. The relations between allocated
budget and reduced uncertainty of predictions as they are defined
in the game are known by this player

6. Priority score = anticipated impact reduction / anticipated budget
requirements; represents a decision maker who allocates budgets
for early reliable prediction of breakthroughs. Maximization of early
reliably predicted breakthroughs implies investments in research
where chances are best to make the lower boundary of the
confidence intervals intersect with the threshold concentration. The
relations between allocated budget and reduced uncertainty of
predictions as they are defined in the game are known by this
player

The general features of the game represent the essential properties of
the prioritisation problem, but it is poorly known what the ranges of values
are that may occur for these features in the real world. The orders of
magnitude of the model inputs are based upon estimates of real world data,
but different drinking water systems possibly show large differences with
respect to system properties. The performance of the various strategies
was therefore investigated for large ranges of input values.

A total number of 16 game runs were carried out. Every run consisted
of 1000 simulated well failures. An enumeration of the input values for the
game runs is presented in Table 6-1 and in the appendix of this chapter.
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6.5 Results

The results of the simulations show that strategy 6 performs best in all
conditions that were investigated (Figure 6-5, Figure 6-6). The difference
between the average relative performance of strategy 6 and other
strategies was in all cases larger than 30%. The largest differences
occurred when a type 2 impact-reaction time function was applied. The
success of the strategy of player 6 considered both the percentage of
breakthroughs that were predicted reliably (Figure 6-7) and the average
reaction time at the instant of reliable prediction (Figure 6-8). Strategy 5
resulted in a minimal total risk level throughout a game run as compared to
the other strategies, but this did not result in minimal losses.
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Figure 6-5 Average performance of players relative to average loss
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6.6 Discussion and conclusions

Significant differences in performance were shown to exist between
the wvarious strategies that were investigated. It pays to formulate
strategies carefully: strategies are suboptimal if the objective function of a
strategy differs from the pay off function, or in this case, loss function of
the well. Since the uncertainty of a prediction is important to the loss
function, it should be taken in account in the strategies for prioritisation, as
is shown in the relatively good results of strategies 4, 5 and 6, where
uncertainty of predictions is taken in account. Confidence boundaries of
time series of predicted groundwater concentration can be used to improve
the effectiveness of prioritisation of prediction studies. The concept of
“reliable reaction time” can contribute to a better integration of prediction
studies and decision making.

The definition of appropriate strategies requires explicit and accurate
loss functions. Maximization of minimum reliable reaction time (strategy 5)
may seem intuitively a good strategy for minimization of total risk, but was
less successful than strategy 6, which is better focused on the loss
function. The uncertainty within risks often consists not only in the
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probability of events, but also in the consequences. Both risks and loss
functions are therefore often hard to define accurately. It is therefore
desirable that problems with stochastic loss or pay off functions are
approached with a formalised, explicit and rational strategy. The use of
numerical game experiments helped assessing the effectiveness of
different strategies.

Application of strategy 6 in real situations requires both that prediction
studies include quantitative uncertainty assessments and that the cost -
uncertainty reduction functions of the wells can be assessed. Prioritisation
in practice could improve if effective methods would exist for assessing on
beforehand how much uncertainty reduction can be expected from
additional studies. Uncertainty assessment techniques and related
optimisation techniques of monitoring networks probably can be applied for
this purpose as far as the use of additional observations is concerned
(parameter uncertainty). However, the costs involved in assessing the
budget requirements for a particular uncertainty reduction were not taken
in account in the simulations.

Confidence intervals of time series of predicted groundwater
concentration can be used to improve the effectiveness of research
prioritisation of prediction studies. The sequential game approach was
helpful in identifying the relevant properties for this prioritisation problem.

The validity of this experiment is based on the assumed analogy
between the simulation game and the real world. In the real situation there
is often more information available about relevant system variables such as
land use and observed changes of concentrations in monitoring wells.
Within the game model described in this paper this type of prior
information was not considered. It is therefore not pretended that the
model here presented is adequate for a specific case.

The wuse of numerical game experiments helped assessing the
effectiveness of different strategies. Application of strategy 6 requires
both that prediction studies include quantitative uncertainty assessments
and that the cost — uncertainty reduction functions of the wells can be
assessed. Prioritisation in practice could be improved if methods become
available for assessing the expected uncertainty reduction due to additional
studies.
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APPENDIX to Chapter 6

Game procedure

In pseudo programming language the procedure of the game can be
represented as:

Construct hypothetical time series of pseudo observed concentrations
of pumped water for every well in the game.
Repeat

Determine the distribution of research budgets for all players this

time step;

Calculate for each player for each well the new boundaries of the
confidence intervals as a function of the allocated budget and
the cost—uncertainty reduction function,

Increment time;

Update pay off scores;

If there was a breakthrough, or all players have a reliable prediction
that a breakthrough will occur then define new properties of a
replacing well;

Until the total numbers of breakthroughs corresponds to the number of
plays that was chosen.

Definition of time series of concentration

At the start of the game a number of virtual wells are created and the
failure impact of these wells is defined randomly. Fictitious time series of
concentration are generated by using random functions. In the next section
the procedure is described in pseudo programming language:
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While no concentration exceeds a predefined threshold concentration
do

begin
for all wells in the game;
begin
if the trend duration has expired
begin
define a random trend
define a random trend duration
end
Conc|[t]=conc[t-1]+random noise+ random trend;
end
end

134

Concentration time series are defined according to:

Ct)y=Ct-1)+Tr+N (6-8)
With:
—Trmax*Wd[i] < Tr < Tr max*Wd[i] (6-9)
—nf *Ctr *Wd[i] £ N < nf * Ctr *Wd(i] (6-10)
C(t =1) = Random* Ctr *0.5 (6-11)
Trd min < Trd < Trd max (6-12)
Where:
cw) concentration at time t (mg/1)
Tr random trend (mg/l) (-Trmax<Tr<Trmax)
N random noise (mg/1)
TF maximum trend (mg/1)




wd[I]
Nf

Ctr
Trd
Tr dmfn
Trd,..

Constants

concentration variability class of well [i] (=)

noise factor (=)

threshold concentration (mg/1)
trend duration (time steps)

minimum duration of trend (time steps)
maximum duration of trend (time steps)

Game properties that were kept constant throughout the numerical
experiments are listed in Table 6-1.

Table 6-1

Constants of the game experiment

Name Value
wd 1-5

Nf 0.05
Ctr 50

Trd 10 - 30
1rd, min 10

Trd, . 30
Maxhorizon 10 - 50
Pd 1-5
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Table 6-2  Calculation scheme of input combinations

Run Impact- Maximum Maximum Maximum

reaction time concentration prediction prediction

function (=) variability class | horizon (time | difficulty

=) steps) class (-)
1 asymptotic 5 10 5
2 asymptotic 5 10 1
3 asymptotic 5 50 5
4 asymptotic 5 50 1
5 asymptotic 1 10 5
6 asymptotic 1 10 1
7 asymptotic 1 50 5
8 asymptotic 1 50 1
9 linear 5 10 5
10 Linear 5 10 1
11 Linear 5 50 5
12 Linear 5 50 1
13 Linear 1 10 5
14 Linear 1 10 1
15 Linear 1 50 5
16 Linear 1 50 1
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7. Analysis of heuristic optimisation techniques as a

tool for decision support

7.1 Circumstantial validation

Heuristic techniques are powerful and flexible optimisation techniques.
In Part B of this thesis it was demonstrated that highly complex problems
can be solved by the genetic algorithms that were developed for this study.
As a result of the heuristic, inductive character of these techniques, they
can be used in a very flexible manner, without the need to reformulate
existing models. It is expected that in the nearby future this property will
lead to a strong increase in the application of heuristic techniques. The
rapidly increasing computational power of desktop computers enforces this
tendency.

However, it is not evident that the global optimum, or global Pareto
fronts and surfaces in case of multiple objective optimisations, are indeed
found when there is stagnation or convergence during the optimisation
process. Therefore, validation of the results is needed. Direct validation is
generally unfeasible because there are no global optimisation techniques at
hand that are suitable to solve highly complex, nonlinear and
interdependent optimisation problems. However, partial confirmation of the
results is feasible. This circumstantial validation, as it is called in this
thesis, acknowledges the fact that complete validation is in principle
impossible, but that an acceptable level of validation for practical purposes
can be provided in many cases.

Three different methods for circumstantial validation have been
applied in this thesis and are enumerated in the next section.

e Analytical inspection of particularly the extreme ends of Pareto
fronts.

e Application of the genetic algorithm to similar, slightly
simplified problems that allow application of other techniques,
whereas the degree of difficulty of the modified problem is
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similar, if not identical, from the viewpoint of optimisation by a
genetic algorithm or other heuristic technique.

e Reformulation of the optimisation problem in such a way that
one or several unique solutions along the Pareto front are
known and therefore can be partially verified for these
solutions, whereas the degree of difficulty of the optimisation
problem remains the same, from the viewpoint of solving it by
the genetic algorithm.

7.2 Valuation

Valuation of environmental and other non—economic objective
categories is always required in decisions and becomes explicit by this
approach. Effectiveness of decision making is hampered by the absence of
an integrated and coherent valuation system of environmental values such
as energy, COZ emission, waste production, use of materials, use of
environmental capital and biodiversity. A formalised approach to
optimisation problems is not only desirable if all impacts can be quantified
easily. Many real world optimisation problems contain ‘soft’ elements that
cannot be quantified without discussion. Yet, even in these cases the
formulation of a management problem as an optimisation problem has clear
advantages. Objectives are formulated explicitly, which results in an
improved discussion between experts and/or stakeholders, as differences
between opinions become more clearly.

7.3 Benefits

Economic and environmental benefits of the application of DSS and
optimisation techniques can be significant. Optimum solutions of complex
problems are rarely trivial and different solutions result in considerable
differences of impacts. Gradual progress towards generally accepted
formal quantitative relations becomes possible when calculated optima can
be compared with expert judgments. Generally excepted impact models and
valuations can be applied consistently throughout the optimisation process,
which is unfeasible in the case of pure expert judgments.
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7.4 Polder or poker?

The use of decision support systems, with or without optimisation
modules, is not in all situations effective. It is relatively simple to apply
decision support systems if there is only one decision maker, or a group of
decision makers that support the decision support system. Decision support
systems can facilitate the decision process substantially if the negotiation
attitude is cooperative. If stakeholders/decision makers with different
interests are to use a decision support system jointly, transparency might
result in polarisation. DSS are more suitable for a “polder model” than for a
“poker model” where players tend to “keep their cards against their
breasts”. Transparency is required when decision support systems are
meant to be used by stakeholders with conflicting interests, as it is
unfeasible to hide information within a decision support system and
maintain acceptance by all users of the decision support system. An open
participatory decision process is then required. A decision process where a
single institute or person has sufficient authority to determine the rules of
the negotiation process may enforce acceptance of a particular decision
support system. The use of decision support systems is unsuitable if the
stakeholders have conflicting interests, do not agree on transparency and
do not support the results of the decision support system. A decision
support system as a common tool is not useful in those conditions as long
as the actors disagree on the definitions ad assumptions of a DSS.

7.5 Continuing lines

Decision support systems and heuristic optimisation techniques with
results presented in Pareto fronts are not only instruments to find “the
optimal solution” but also offer a way to better understand the problem by
analysing results of different scenarios. They form to my opinion a
continuation of a line that started quite some time ago, when calculations
were introduced to support decisions. At first, only one, or at most a few
scenarios were calculated. Later, impacts of many scenarios, eventually
presented as Pareto fronts were quantified by application of a simulation—
optimisation approach. Presently, many complex optimisation problems
with a spatial dimension can be solved effectively by heuristic techniques,
but optimisation problems with both spatial and temporal dimensions seem
still a bridge too far. Perhaps the line can be continued here by joining
heuristic techniques with game modelling.
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There is also another line of which this thesis aims to be a
continuation: quite a long line, that started in the early days of man’s
existence, when people probably used instinct as their principal cerebral
tool, Relatively recently, people developed optimisation techniques for
single objective problems. They applied weighting factors for multiple
objective problems, thus reducing them to single objective problems.
However, using of weighting factors is not always a satisfactory approach,
as has been discussed in this thesis. Using Pareto fronts is an interesting
alternative; it enables determination of weighting factors aposteriori. Many
investigations have showed that intuitive and implicit decisions are often
irrational and inconsistent [e.g. Kahneman et al. 1982]. [ am the opinion
that the complexity of many present—-day optimisation problems requires a
formalised, rational and explicit approach. If optimisation problems are
suitable for solving by genetic algorithms, the continuation of this long line
consist of 6 basic steps:

Identify the objective categories and criteria.
Determine the impact models and the indicators.
Code a problem into a genetic algorithm.
Optimise and determine the Pareto fronts.

Validate results by circumstantial validation.

e gk w

Choose the appropriate solution.

As it is possible to determine the weighting factors aposteriori, it is
possible to verify whether the selected solution is consistent with
decisions taken previously. At present, such a comparison is rarely made.
It is very well possible that, for instance, the ratio of actual weighting
factors for environmental objectives as compared to economic objectives
vary widely in recent governmental projects. If a government or an
enterprise wants to spend a certain available budget consistently with
respect to the values it attributes to particular objectives, it is necessary
that the weighting factors are known. The weighting factors related to
investments in goods can be determined by means of a life cycle
assessment (LCA) or by other techniques. These assessments should be
carried out with respect through all relevant objectives. Thus, it can be
achieved that investments for improvement of ecological quality, or any
other relevant objective, are done there where a maximum yield can be
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expected, based on explicit considerations. Over the last decades quite a
number of authors have proposed new valuation methods for non—economic
goods and services [e.g. Costanza et al., 1997].

There are certainly some setbacks to such an approach to multiple
objective optimisation problems. It requires a degree of transparency that
might result in a polarisation between different groups of stakeholders
involved. In some cases a less transparent, more implicit approach can
avoid this polarisation. Furthermore, it is in many cases quite difficult to
handle uncertainty and avoid bias in the quantification of impacts of
decisions. However, a generally accepted pricing system for non—-economic
costs and benefits within a sector, a region, a state or even larger
organisation levels could facilitate negotiation processes and improve the
consistency and effectiveness of actions in public and private domains.
Finally, from the viewpoint of the historical development of mankind,
continuing the lines from intuitive, implicit societies to open and rational
societies, requires a gradual shift to a more explicit approach for multiple
objective optimisation problems. Genetic algorithms can play a useful role
in that evolution.
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Abbreviations

GA
SA
GP
NN
LP
NLP
DSS
SDSS
LCA
MOO
QP
MC
DP

Genetic Algorithm

Simulated Annealing

Goal Programming

Neural Network

Linear Programming

Nonlinear Programming
Decision Support System
Spatial Decision Support System
Life Cycle Assessment
Multiple Objective Optimisation
Quadratic Programming

Monte Carlo technique
Dynamic Programming
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Summary

Management of hydrological and other natural resources is becoming
increasingly complex because of their increasing scarcity, the increasing
number of actors and objectives involved, and because of the increasing
rate of change of technological, environmental and economic conditions.

The risks of choosing suboptimal solutions have become more
pronounced because of this increasing complexity.

Yet, at the same time computers have become more powerful and
computer based heuristic optimisation techniques have become more
suitable for complex, nonlinear and interdependent optimisation problems.

Consequently, the hypothesis of this thesis is that application of
heuristic optimisation techniques to complex spatial environmental
problems with multiple objectives can improve the identification of (near)
Pareto—efficient solutions and thus contribute to more effective decision
making.

Evaluation of this hypothesis within the framework of this thesis
consisted of the application heuristic optimisation techniques, to a suite of
case studies.

The study consisted of four case studies, of which three comprised the
application of genetic algorithms. The fourth case consisted of a sequential
game experiment. It was investigated whether genetic algorithms can be
applied successfully to a suite of complex optimisation problems in the
environmental and hydrologic fields. The pro’s and con’s of the use of
these techniques and the conditions for effective application were studied,
particularly focussed on handling multiple objectives and validation of
results.

In case study 1 the calibration of a groundwater model was approached
as a multiple objective optimisation problem. Regional drinking water
production was formulated as a multiple objective optimisation problem in
case study 2 and case study 3 consisted of various optimisation problems
concerning allocation of agriculture and nature landuse types. In the fourth
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study, the optimal strategy for the prioritisation of groundwater quality
prediction studies was searched with a set of game experiments that
enabled simulation and evaluation of various strategies.

In case studies 1 -3, the spatial/ dimension is the major dimension that
contributes to the complexity, but in the fourth case it is rather the
temporal dimension.

The results of the case studies confirm the hypothesis of this
dissertation that the application of heuristic techniques to complex
optimisation problems in spatial planning and resource management enables
better, more efficient decision making. The genetic algorithms that were
built specifically for the case studies provided a powerful, stable and
flexible optimisation technique. Pareto-optimality and uniqueness of
solutions proved to be effective, unbiased fitness criteria for identifying
trade—off curves. In these three case studies a certain degree of tuning of
the genetic algorithm was necessary for the more complex versions of the
problems. Consequently, it is considered essential to validate the results of
heuristic optimisation techniques. Although complete validation is
principally not possible, several ways of circumstantial validation could be
achieved. Three different methods of circumstantial validation were
applied:

1. Formulation of ‘dummy’ problems that are similar to the real
optimisation problem, but constructed in such a way that one or
more properties of solutions along the Pareto front of the
‘dummy’ optimisation problem are known; the results of the
optimisation of the real problem can thus be partially validated.

2. Analytical inspection of particularly the extreme ends of Pareto
fronts.

3. Application of the genetic algorithm to similar, but simplified
problems that allow application of other techniques, such as
linear or nonlinear programming, while maintaining a similar
degree of difficulty of the modified problem from the viewpoint
of optimisation by a heuristic technique.
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Like in case study 1, case study 4 shows how uncertainty of model
characteristics can be incorporated in the optimisation approach. An
explicit formulation of the prioritisation problem enabled comparison of
concepts that were conceived by deduction with the numerical results of
the game model. Thus, “expert judgment” and intuition, that presently are
in practice the major bases for decision making on this prioritisation
problem, could be strengthened by a more scientific approach.

Decision making with respect to real-world problems with conflicting
objectives requires valuation of incommensurable objectives. Valuation of
non—economic impact categories requires Inevitably communication,
negotiation and sometimes even confrontation between decision makers
and stakeholders. Explicit valuation on a basis of ‘willingness to pay’ of
individuals offers good possibilities to differentiate between various kinds
of environmental capital and services, particularly if the valuers are well
informed. The definition of formal and explicit objectives, valuations and
quantification methods with respect to environmental and other non-
economic issues is therefore desirable. Optimisation techniques and
decision support systems have the potential to improve the transparency,
efficiency and consistency of decisions. However, experiences in practice
showed that the use of decision support systems is not in all situations
effective. Having confidence in the results of such a system is the principal
condition if only one stakeholder, or a group stakeholders with the same
interests uses a decision support system. If stakeholders with different
interests are to use a decision support system jointly, then the negotiation
attitude needs to be cooperative too. A decision support system is suitable
for a “polder model” but less suitable for a “poker model” where players
tend to “hide their cards against their breasts”.
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Samenvatting

Management van hydrologische en andere natuurlijke bronnen wordt
steeds complexer door toenemende schaarste van bronnen, het
toenemende aantal betrokken actoren, het toenemende aantal
doelstellingen en de toenemende snelheid waarmee technologische,
milieuhygiénische en economische omstandigheden veranderen.

Het risico dat suboptimale keuzen worden gemaakt is groter geworden
als gevolg van deze toegenomen complexiteit.

Tegelijkertijd zijn computers echter krachtiger geworden en is de
toepassing van digitale heuristische optimalisatietechnieken daardoor
effectiever geworden bij het oplossen van complexe, nonlineaire en
interdependente optimalisatieproblemen.

De hypothese van dit proefschrift is dat gebruik van heuristische
optimalisatietechnieken bij complexe ruimtelijke, milieuhygiénische
problemen met meerdere doelstellingen de identificatie van Pareto-
efficiénte oplossingen kan faciliteren en daardoor kan bijdragen aan
effectievere besluitvorming.

Toetsing van deze hypothese in dit proefschrift bestond uit de
toepassing van heuristische optimalisatietechnieken, op vier case—studies.

In dit proefschrift zijn vier case—studies beschreven, waarvan er drie
betrekking hebben op het gebruik van genetische algoritmen. De vierde
case study betreft de analyse van een optimalisatieprobleem met een
sequentieel spel-experiment. Er 1is onderzocht of deze heuristische
optimalisatietechnieken met succes kunnen worden toegepast in deze
case-studies op hydrologisch en milieukundig gebied. De voor— en nadelen
van het gebruik van deze technieken en de voorwaarden voor effectieve
toepassing zijn onderzocht. Daarbij is met nadruk het omgaan met
meerdere doelstellingen en de validatie van de resultaten onderzocht.
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In case study 1 is de calibratie van een numeriek grondwatermodel
benaderd als een optimalisatieprobleem met meerdere doelstellingen.
Drinkwatervoorziening op regionale schaal is geformuleerd als een
optimalisatieprobleem met meerdere doelstellingen in case study 2. Case
study 3 bestaat uit een analyse van enkele optimalisatieproblemen die
betrekking hebben op de toedeling van de landgebruikstypen natuur en
landbouw. In de vierde case study is onderzocht welke strategie voor het
prioriteren van ruwwaterkwaliteitvoorspellingstudies optimaal is. Dit is
onderzocht met behulp van een serie numerieke spel-experimenten.

In de case studies 1 t/m 3 is de ruimtelijke dimensie de belangrijkste
veroorzaker van de complexiteit van de optimalisatieproblemen, terwijl in
de vierde case study eerder de temporele dimensie de oorzaak van de
complexiteit is.

De resultaten van de case studies 1 t/m 3 bevestigen de hypothese
van deze dissertatie; de toepassing van heuristische
optimalisatietechnieken op complexe optimalisatieproblemen in ruimtelijke
planning en het beheer van natuurlijke hulpbronnen maken een betere,
efficiéntere besluitvporming mogelijk. De genetische algoritmen, die
speciaal voor deze case studies zijn gemaakt, zijn een krachtige, stabiele
en flexibele optimalisatietechniek gebleken. Er is aangetoond dat Pareto-
optimaliteit en uniciteit van oplossingen effectieve, objectieve criteria voor
fitheid zijn bij de identificatie van optimale oplossingen. In deze case
studies is enige mate van aanpassing van de genetische algoritmen aan de
specifieke aard van de optimalisatieproblemen nodig gebleken, m.n. voor
de meest complexe varianten. Op grond van deze bevinding Kkan
geconcludeerd worden dat het essentieel is dat met heuristische
technieken verkregen resultaten zo goed en volledig mogelijk worden
gevalideerd. Hoewel volledige validatie principeel onmogelijk is, zijn er
verschillende manieren van ‘onvolledige validatie’ ontwikkeld en toegepast.
Drie verschillende vormen van deze onvolledige validatie zijn toegepast:

1. Formulering van ‘variantproblemen’ die lijken op het eigenlijke
optimalisatieprobleem, maar die zodanig zijn geformuleerd dat
¢één of meerdere eigenschappen van Pareto—efficiénte
oplossingen van het variantprobleem bekend zijn. Op deze
wijze kan aannemelijk gemaakt worden dat ook de oplossingen
van het eigenlijke optimalisatieprobleem optimaal zijn.
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2. Analytische inspectie van m.n. de uiteinden van Pareto fronten.

3. Toepassing van het genetische algoritme op gelijkende, maar
zodanig vereenvoudigde problemen dat ook met nadere
technieken, zoals lineaire en nonlineare programmering,
oplossingen kunnen worden berekend. Hierbij is het zaak
ervoor te zorgen dat de moeilijkheidsgraad van het probleem
bezien vanuit het functioneren van het genetisch algoritme niet
vermindert.

Evenals in case study 1 is ook in case study 4 getoond hoe
onzekerheid van modeleigenschappen in de benadering van het
optimalisatieprobleem kan worden verwerkt. Een expliciete formulering
van het prioriteringprobleem maakte het mogelijk om verschillende, met
deductie gegenereerde concepten te vergelijken met de numeriek
gegenereerde resultaten van het spel-experiment. Op deze wijze konden
“expert judgment” en intuitie, die in de huidige praktijk de belangrijkste
basis voor de besluitvorming m.b.t. dit prioriteringprobleem zijn, versterkt
worden met een wetenschappelijke benadering.

Besluitvorming t.a.v. problemen met meerdere, conflicterende doelen
waarvan de waarden niet objectief in een gemeenschappelijke schaal zijn
uit te drukken vereist waardering (in de zin van waardetoekenning) van de
verschillende doelen. Waardering van niet—economische effectcategorién
vereist communicatie, onderhandeling en soms zelfs confrontatie tussen de
verschillende actoren. Expliciete waardering, gebaseerd op de mate van
‘bereidheid te betalen’ (‘willingness to pay’) van personen biedt goede
mogelijkheden om verschillende vormen van milieukapitaal en —diensten
onderling te kunnen vergelijken, m.n. wanneer de betrokken personen goed
geinformeerd zijn. Het wvaststellen van formele en expliciete doelen,
waarderingen en waarderingsmethoden voor milieuhygiénische en andere
vraagstukken die niet uitsluitend economisch relevant zijn is daarom
wenselijk. Optimalisatietechnieken en beslissingondersteunende systemen
kunnen de transparantie, efficiéntie en consistentie van besluiten
verbeteren. In de praktijk is echter gebleken dat beslissing—
ondersteunende systemen niet in alle situaties effectief is. Wanneer slechts
één actor, of een homogene groep actoren gebruik maken van een adequaat
beslissingondersteunend systeem, dan is het hebben van vertrouwen in de
met het systeem verkregen resultaten de belangrijkste voorwaarde voor
succes. Wanneer verschillende actoren gezamenlijk gebruikmaken van een
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beslissingondersteunend systeem, dan dient niet alleen vertrouwen te
bestaan in de resultaten, maar ook de attitude van de betrokkenen
codperatief te zijn. Een beslissingondersteunend systeem voor meerdere
actoren is geschikt voor een ‘poldermodel’, maar veel minder voor een
‘pokermodel’, waar de spelers geneigd zijn hun ‘kaarten tegen de borst te
houden’.
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