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Abstract

Multi-agent path finding (MAPF) is the task of finding non-conflicting paths for multiple
agents that operate in a environment with shared resources. Finding an optimal solution
quickly becomes intractable for many applications and consequently suboptimal methods are
also explored extensively in literature. This work presents the Decentralized Optimization
(DECOP) algorithm: a novel receding horizon control algorithm that exploits insights from
MAPF research as well as decentralized control. In the proposed framework, each travelling
agent communicates with agents in its proximity to solve a local MAPF problem that con-
siders only a selected tractable number of agents. Inter-agent cooperation and conflict free
operation are induced through applying a common local optimization policy during parallel
local optimization and through a subsequent path reservation scheme based on random prior-
ities. Inter-agent communication consists of sharing respective route alternatives from which
additional information with regard to an agents’ entanglement can be inferred which can also
be included in the local optimization cost function.
Comparative results with other decentralized algorithms show that the DECOP algorithm
yields competitive results while guaranteeing conflict free operations, with limited required
communication and without the need of any training time. Among many degrees of freedom
to be explored further, including information about the entanglements of an agent’s route
alternatives in the common policy for local optimization yields an increase in performance
and suggests an increased extent of induced cooperation.
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Chapter 1

Introduction

In the transition towards automating transport operations that take many shapes in mod-
ern day societies, many challenges remain. Advancements in communication, sensing, and
computation technologies enable the replacement of human decision making by automated
intelligent decision making. The main drivers behind this transition process are the increase of
human safety, reduced energy consumption and monetary profits. Challenges range from in-
cluding vulnerable, and in general, non-automated road users [8, 2] to coordinating hundreds
of robots in automated warehouses [39]. This work aims to investigate how local coordination
through limited communication can improve global network performance.
In a general sense, self-interested users utilizing a network of transportation links pose a pris-
oners dilemma over shared resources wherein all users will naturally execute their personal
best trajectories while neglecting the demands of other users in the network. All users are
ultimately forced to cooperate by the network operator to achieve conflict free network uti-
lization, usually in a manner that can be described as passive. The (average) travel time
performance of a passively controlled network will likely be longer compared to a situation
where users actively cooperate as in order to reduce all users’ travelling efforts, often per-
sonally non-optimal trajectories are to be executed by all users. From an individual interest
perspective, such as for road users on a public road, the achieved reduction in travelling time
should be distributed equally over the participating network users. To the contrary, in a
network with common-interest users the network utilization is optimized according to the
common cost function and the fairness of distributing travel time delay can be neglected. At
the root of both problems lie the centralized optimal solutions that guide all users through a
network with respect to the appropriate cost function. Due to scalability issues, a centralized
approach to this problem will predictably not be tractable.

1-1 Research scope and contribution

This research aims to answer the following research question:
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2 Introduction

“Can a decentralized approach that applies local optimization combined with local
negotiation be designed to competently solve a highly scalable multi-agent path
finding (MAPF) problem?“

The scope of this research is limited to the evaluation of a conceptional algorithm design that
will be verified through simulation. Furthermore, this work aims to apply the widespread
theoretical insights on solving the MAPF problem attuned to the boundary conditions of
real world systems, using concepts of decentralized control theory. Especially computational
and communicative hardware capabilities that are currently widely and cheaply available, the
embodiment of internet of things (IoT), form an important basis of this research. Elaboration
on the extent of these capabilities will be provided when required by the context. It is at
least assumed that the users of a transportation network are equipped with some sort of
computational and communicative hardware. This could be considered as a real world system
boundary condition and will be exploited in this work.
The contribution of this work is threefold: 1) a novel framework called the Decentralized
Optimization algorithm (DECOP) for decentralized MAPF that applies parallel receding
horizon control is presented. 2) This work reports the first receding horizon control algorithm
designed for the MAPF problem which was achieved by designing a terminal cost function that
can avoid deadlocks. 3) The promising concepts that follow from route alternatives sharing
that are developed in this work open up a new research area into exploiting dependency
information to achieve induced cooperation through a common decentralized policy.

1-2 Outline

The remainder of this Masters Thesis is structured as follows: background information on
the MAPF problem and its properties will be provided in chapter 2 together with relevant
literature on MAPF algorithms. The methodology of the proposed framework will be pre-
sented in chapter 3. The empirical simulation results and algorithm evaluation are reported
in chapter 4. Finally, the conclusions are drawn in chapter 5, accompanied by a discussion
on the obtained results and the suggested directions for future work.
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Chapter 2

Multi-Agent Path finding background
and literature research

Multi-agent path finding (MAPF) is the task of finding non-conflicting paths for multiple
agents that operate in a environment with shared resources. The MAPF problem arises in
many real world applications such as routing of robots in warehouses [39], baggage handling
[40], or even micro droplet manipulation [11]. Since the joint optimization of agent’s contin-
uous trajectories poses a very complex problem, planning is usually done on a graph based
abstraction of the environment. A graph consists of nodes and edges that connect the nodes
with each other. Additional features can be embedded in the graph in order to better repre-
sent the real world case which it aims to describe. For example, weights and directions can
be considered for the edges of the graph. Weights on the edges could for example represent
the physical distance between two nodes. Even if agents could be less restrictive about their
movements in the environment, a graph abstraction can still be a useful mathematical tool.
In [27] for example, a graph in the form of a grid is used to describe the 3D space in which the
quadrotors can move. A MAPF algorithm comes up with an initial (feasible) solution for a
continuous trajectory optimization problem in which agents are no longer bound to the edges
and nodes of the 3D grid. Another example can be found in [20] where an initial solution
for the coordination of non-holonomic robots is obtained by a MAPF algorithm on a discrete
graph and consequently the trajectories are refined into smooth trajectories through nonlinear
optimization.

2-1 Classical MAPF

The notion of classical MAPF as defined in [34] is a planning problem in which a node can be
occupied by only one agent and all agents can either move or wait (in parallel) to a connected
node in each time step. The concept of an "agent" in MAPF literature refers to the entities
or users which operate in a shared environment by traversing through space over an assigned
path. In control systems type of literature on the other hand, an agent usually refers to a
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4 Multi-Agent Path finding background and literature research

decision-making entity that operates within a larger system by deciding on control inputs
for part of that system. As most of this work and the terminology used have their roots in
MAPF literature, the term agent will be in line with the concept of an agent as used in MAPF
literature. If the term agent is indeed used to designate a decision-making entity, this will be
described explicitly by the context. Furthermore, all terminology of the algorithm developed
in this work will be formally defined in the methodology in chapter 3.
For a system consisting of a number of k agents where A = {a1, . . . , ak}, |A| = k describes the
set of agents, the ith agent is referred to as ai. The input to a classical MAPF problem is the
3-tuple 〈G, s, g〉. The graph G = (V, E) is an undirected graph with nodes v ∈ V connected
through edges e ∈ E . The k-tuple s defines a list of start nodes for all agents where si ∈ V
denotes the start node of the ith agent. Similarly, the k-tuple g defines a list of goal nodes
where gi ∈ V denotes the goal node of the ith agent.
The initial simulation time is denoted as t0 and marks the beginning of the plan execution of
each agent starting at its start node. Time is furthermore discretized such that t = t0 + n · h
with n ∈ N

0. The time step h is normally set to 1 and traversing an edge usually takes
exactly one time step (for unweighted graphs). A single agent path for the ith agent is
defined by πi as a sequence of v ∈ V nodes. The single agent path πi takes a time step n
as an argument to denote the particular node v that the ith agent occupies in time step n:
πi(n) = v. The number of nodes that an agent plans to occupy (including wait actions, the
start node and the goal node) is denoted as |πi|, therefore the total number of actions in plan
πi is equal to Ni = |πi| − 1. Agents can only traverse over edges of the graph G therefore
{πi(n), πi(n+1)} ∈ E or alternatively an agent can wait at a node such that πi(n+1) = πi(n).
The solution to a MAPF problem is the set of k single agent plans P = {π1, . . . , πk} such that
the respective paths are non-conflicting. In order to conclude that the solution of a MAPF
problem is valid due to the absence of conflicts, the following conflicts are defined:

• a node conflict: πi(n) = πj(n) ∀i, j|i 6= j ∈ A, occurs when two agents occupy the
same node in the same time step

• an edge conflict or swap conflict: πi(n) = πj(n + 1) ∧ πi(n + 1) = πj(n) ∀i, j|i 6=
j ∈ A, occurs when two agents start from connected nodes and traverse over the same
edge in the same time step

• a following conflict: πi(n + 1) = πj(n) ∀i, j|i 6= j ∈ A, occurs when an agent
traverses to a node that was occupied by another agent in the previous time step

• a cycle conflict occurs when every agent moves to a node that was occupied by another
agent in the previous time step, therefore a cycle conflict requires a number of c of
only following conflicts between a number of c agents with c ≥ 3.

Different types of MAPF problems in practice may allow or disallow different types conflicts
to occur in their solution and an algorithm is designed accordingly. Another distinction in
the solving approach can be made with respect to the terminal state: whether an agent stays
in the target node or disappears after a certain amount of time.
The MAPF problem is sometimes referred to as a pebble motion on graph (PMG) problem,
which is an early identified variant of MAPF where only one pebble (agent) per time step is
allowed to be moved to an unoccupied node. It has been proven that the PMG problem is
solvable in polynomial time in [18] and it has also been proven that solution feasibility can be
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2-2 MAPF algorithm design strategies 5

checked in linear time by [14], predictably this also translates to solving MAPF problems with
parallel moves [42]. Both of these algorithms were also derived by [43] for MAPF problems
that allow the following, cycle, and swapping conflicts that were previously described. Fur-
thermore, a MAPF problem is well-formed if there exists a set of plans P such that none of
these paths cross each other [33]. Finally, a grid-based MAPF graph refers to the translation
of a grid to a graph where the grid tiles are nodes and each node is connected to the adjacent
up, down, right and left tile through an edge.

2-1-1 Objectives for optimal MAPF

Besides a (possibly non-unique) set of conflict free paths, a MAPF application might consider
some sort of global objective or cost function. The MAPF objective is considered on a
network level, as it refers to the utilization effectiveness of a composition of shared resources:
the network itself. Two main objective variants are distinguished in MAPF research, namely:

• the sum of costs (SOC) objective:
∑k

i=1

∑Ni

n=0 C(πi(n), πi(n + 1)), which is the sum
of each agent’s cost of travelling the edges along the determined path. C( · , · ) denotes
the cost of traversing a particular edge.

• the makespan objective maxi≤i≤k Ni that minimizes the amount of time (steps) re-
quired before all agents have reached their target node

The SOC objective can be regarded as the optimal solution purely from the operator perspec-
tive in terms of profit whereas the makespan objective ensures an equality objective among
agents such that no agent is (significantly) worse off compared to the other agents. The SOC
objective was shown to be NP-hard by proving that the distance optimal PMG problem is
NP-hard [13],[28]. The PMG problem with parallel moves is also proven to be NP-hard when
considering the makespan objective [35]. These objectives are also shown to have a Pareto
optimal structure in [42], moreover a solution cannot (always) be optimal with respect to
both objectives at the same time. It is furthermore proven that the optimal MAPF problem
is NP-hard for both the SOC and makespan objective when considering at least the node and
edge conflict types [42]. This makes the optimal MAPF problem intractable when a large
number of agents is considered.

2-2 MAPF algorithm design strategies

Many solving strategies exists for the (optimal) MAPF problem. Finding an optimal solution
with respect to one of the two introduced objectives quickly becomes intractable for many
applications and consequently suboptimal solving strategies are also explored extensively in
literature. Since there doesn’t exist a "perfect" strategy (yet), a MAPF algorithm is usually
tailored to fit its application. In general, MAPF algorithms will feature one or more of the
following properties:

• optimality, a number of strategies is introduced to quickly obtain an optimal solution
without exploring the entire search space (e.g. [30],[31]). Many algorithms also disregard
the strict optimality requirement and instead look for bounded suboptimal solutions
(e.g. [1],[12],[19]).
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6 Multi-Agent Path finding background and literature research

• completeness, a complete MAPF algorithm will always yield a feasible solution. Sev-
eral algorithms exist that yield feasible solutions for any MAPF problem with at least
two unoccupied nodes. Furthermore, [41] points out that feasible solutions often exist
for grid-based MAPF problems that allow the cycle conflict with as many agents as
nodes. A linear time algorithm to check feasibility is introduced in [44].

• fast solving time (tractability), a MAPF algorithm is considered "fast" if its worst-
case solving time is polynomial in the graph size and is not exponential in the number
of agents [33]. This property is usually combined with the completeness property as it
would otherwise be of little practical added value.

• robustness relates to the agent’s plan execution under uncertainty. A real world appli-
cation of MAPF might suffer from delays in the network as well as general uncertainties
in arrival times. An MAPF planning solution can be considered robust if it is still exe-
cutable under delays and uncertainties up to some extent, for example by incorporating
time buffers around agents at intersections.

Another important distinction in MAPF algorithm design strategies is between compilation-
based and search-based solvers. For compilation-based algorithms, the MAPF problem is
reduced to a well established formalism for which an efficient solver exists [36]. Examples of
such formalisms are boolean satisfiability (SAT), mixed integer linear programming (MILP),
answer set programming (ASP) and constraint satisfaction (CSP). Alternatively, search-based
algorithms solve the problem directly and define the solving process, treating it less like a
black box [36]. Most compilation-based algorithms use makespan as their cost function, while
most search-based use SOC [34].
Intuitively, one might try to solve the MAPF problem by generating single-agent shortest
paths while neglecting all other agents, this will be regarded as a solution to the single-
agent path finding (SAPF) problem. SAPF can be efficiently and optimally solved by graph
expansion algorithms such as A∗ [15]. An A∗ graph expansion algorithm can also be used
to jointly solve the (optimal) MAPF problem when considering the combined agents’ search
space[33]. This coupled approach is guaranteed to be feasible and optimal, it however becomes
intractable with an increasing number of agents very quickly. Alternatively, in decoupled
approaches, rather than expanding all possible moves, a single path is selected for each agent
and conflicts are discovered through simulation. The task is now to disentangle the SAPF
solutions such that no conflicts are resolved according to the MAPF objective. The most
prominent example of a decoupled search-based algorithm, and considered as state-of-the-art
(especially in enhanced forms), is conflict-based search (CBS) [30]. The term "coupled" is used
somewhat ambiguously in MAPF literature. In this work a search-based MAPF algorithm is
said to be coupled if it searches paths for all involved agents simultaneously and consequently
all intermediate MAPF solutions are feasible. A decoupled search-based MAPF algorithm
on the other hand usually has infeasible intermediate solutions. An intermediate solution is
infeasible if the solution contains conflicts over the shared variables (the nodes and edges)
and these conflicts in intermediate solutions are referred to as couplings.
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2-3 Decentralized MAPF algorithms 7

2-3 Decentralized MAPF algorithms

A centralized approach to optimal multi-agent path planning suffers from tractability issues
as the maximum time it could take to find an optimal solution grows exponentially with the
number of agents. This motivates the search for suboptimal yet very usable algorithms for the
MAPF problem. Alongside the development of (potentially bounded) centralized suboptimal
algorithms (e.g. [1],[3],[7],[19]), there is a growing interest in decentralized MAPF algorithms.
These algorithms apply decentralized decision-making where different decision-making agents
have access to only a limited part of the global MAPF problem. Among other things, prac-
tical applicability presents a valuable benefit of this approach.
An ongoing trend in control of large scale systems is the implementation of decentralized con-
trol in order to reduce controller complexity. An encouraging preliminary for the application
of decentralized control strategies in a system is if certain subsystems can be identified that
have a relatively weaker coupling with other parts of the system. In decentralized control,
a control policy is developed for each subsystem while treating any coupling with the rest
of the system as a disturbance. A number of search-based MAPF algorithms divide agents
into subsets of agents that are based on limited or no dynamic coupling and jointly search for
solutions of these subsets. The remaining path entanglements or couplings can be regarded
as disturbances between subsystems (subsets of agents) which are to be resolved in some
manner. A particular challenge in MAPF is the fact that resolving couplings between any
subsystems might create new couplings with other subsystems. For example in Independence
detection (ID), the algorithm aims to find decoupled subsets of agents in a given MAPF prob-
lem and finds joint solutions for these subsets. In worst-case no dynamic independence can
be identified and the ID algorithm adds all agents to the same subset such that the MAPF
problem becomes a regular centralized MAPF problem. In suboptimal extensions of ID, the
search is heuristically guided towards finding solutions that are decoupled for either the same
or a slightly higher total solution cost. For example optimal anytime algorithm (OAt) intro-
duces a maximum group size number and favours finding paths that are conflict free between
groups. The algorithm then iteratively improves the MAPF solution quality by increasing
the group size, thereby finding jointly optimal solutions for agents in a subset. Prioritized
planning is another example of a decentralized MAPF search algorithm: the agents are placed
within a hierarchy by a higher level control entity and subsequently plan their paths while
treating the other (previously planned) agents paths as disturbances. Effectively, the size
of the subsets in prioritized planning is one and couplings between agents are avoided by
introducing subsequent planning on a random priority basis.
All aforementioned examples use some sort of higher level controller that is able to (success-
fully) identify agent subsets based on their start and goal locations or is able to determine
a hierarchy among the agents. Moreover, a higher level control entity is used to enforce co-
operation between different types of subsystems. The full information requirement of this
higher level control entity is likely to be intractable or infeasible in practical applications. A
decentralized scheme for MAPF that doesn’t have a higher level control entity can be con-
sidered a distributed MAPF algorithm if path decision-making is allocated to the (travelling)
agents which additionally utilize inter-agent communication links. In distributed control,
there is usually no higher level control entity and cooperation is achieved solely through
communication between agents. The advantages of distributed cooperation are robustness
and tractability which also includes more convenient addition of new agents without being
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required to update the whole system. Whereas in many distributed systems communicative
coordination links might be fixed between particular decision-making agents, in MAPF these
links only make sense if there are unresolved couplings between agents which greatly varies
in time. Alternatively, a new type of decision-making agent could be introduced that is fixed
in space and controls the movements of all agents in its proximity. An example of such
an decision-making agent would be an intersection-management agent. In [9] for example,
distributed cooperation is achieved between intersection decision-making agents that control
on-ramp traffic flow (the travelling agents). The traffic flow can be interpreted as agents
executing their SAPF optimal solutions while consequent couplings are resolved by the in-
tersection agents through imposing wait actions and by conventional traffic rules. Although
this system achieves distributed cooperation, cooperative replanning of agents paths based to
further improve the network wide performance cannot be considered.
Three main challenges can be recognised in realizing a distributed MAPF algorithm: 1) iden-
tifying (possibly suboptimal) subsets of agents and thereby establishing communicative links
between agents based on decentralized information, 2) the communication protocol or infor-
mation to be communicated between agents and 3) the (re)planning strategy for individual
agents’ paths within a subset of agents to resolve or avoid conflicts.

2-3-1 Decentralized derivations from baseline algorithms

There are a number of algorithms that adapt an existing MAPF algorithm to work in a
distributed setting. For example the DMAPP [5] algorithm defines a communication protocol
such that the hierarchical cooperative A∗ (HCA∗) algorithm is carried out in a distributed
manner. The extended version called DiMPP [6] enables alteration of the initial hierarchy
until a feasible hierarchy is obtained making this prioritized planning approach feasible only
for well-formed MAPF problems as was proven by [46]. Using local communication graphs,
an algorithm called DisCoF is developed in [17] which readily applies an extension of the
(complete and fast) Parallel Push-and-Swap (PPS) algorithm in a distributed setting. In
follow-up work, asynchronous communication is enabled together with improved efficiency
to form DisCoF+ [45]. The priority inheritance with backtracking (PIBT) [24] algorithm is
based on conflict oriented windowed hierarchical cooperative A∗ (CO-WHCA∗) and applies a
one time step reservation scheme according to a random hierarchy where each agent chooses
the next node as the one with the shortest distance to its goal node. Agents (temporarily)
inherent priority form a higher priority agent that requests its current node and this process
is continued until an agent cannot make any feasible moves. When such a deadlock occurs,
the invalidity of the planned moves is backtracked along the chain of agents until one agent
finds an alternative move which makes the remaining moves up until the source agent valid.
The authors supply a powerful proof of completeness for any MAPF problem on an open
grid map which states that there exists a time step t ≤ diam(G) · |A| in which all agents
are at goal. The PIBT algorithm exhibits good performance on well connected graphs such
that agents can easily evade each other and the distance optimal path is approximately equal
to a greedy path planning strategy. The authors observe planning ineffectiveness of the
algorithm on graphs that are less connected and introduce the windowed priority inheritance
with backtracking (winPIBT) [25] algorithm which extends PIBT with planning windows of
more than one time step. Both the PIBT and winPIBT algorithms can be readily implemented
in a distributed fashion for which the authors recognize that the sensing and communication
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capabilities of agents should be two times the number of implementation steps.

2-3-2 Decentralized reinforcement learning algorithms

Reinforcement learning (RL) techniques proved to be very useful solutions in many different
research areas. When applied to decentralized MAPF, the type of RL can be characterized as
multi-agent reinforcement learning (MARL). In MARL, the algorithm learns an individual
agent policy using learning inputs from multiple agents simultaneously. When all agents in
the system execute the resulting policy, a forthcoming global objective is achieved [26]. A
general overview and taxonomy of recent MARL strategies is provided in [26].
The first application of MARL to MAPF is the algorithm called pathfinding via reinforcement
and imitation multi-agent learning (PRIMAL) [29]. In PRIMAL, agents learn a decentralized
policy from an expert centralized (optimal) MAPF algorithm. PRIMAL combines learning
optimal SAPF with imitation of an expert (centralized) MAPF planner. PRIMAL assumes
that the graph is partially observable by each agent wherein the positions of other agents,
goals of other agents and the agent’s own goal are known. In other words, each agent has a
field of view (FOV) and receives information about other agents’ positions and other agents’
goals that lie within its FOV. An agent furthermore maintains a vector in the direction of
the agent’s goal with magnitude dependent on the remaining absolute distance to this goal.
During execution of the obtained decentralized policy, there is no explicit communication
between agents. In the extended version called pathfinding via reinforcement and imitation
multi-agent learning - lifelong (PRIMAL2) [10], an effort is made to deal with challenging
graph properties such as corridors. Additionally, the ability to obtain new goals when a goal
is reached is added which is called lifelong multi-agent path finding (LMAPF). The number of
input channels is considerably increased to include both optimal SAPF moves and a number
of graph properties. The added channels are SAPF optimal paths for a fixed horizon of all
agents in the observable part of the graph and graph specific maps that show start and end-
points of corridors in the observable part of the graph. Additionally, a blocking channel shows
whether there are agents inside a certain corridor. In both algorithms, the authors recognize
the potential to train the policy on a MAPF problem that is tractable for an optimal central-
ized MAPF algorithm while the learned policy can also be applied to a multi-agent system
that would no longer render tractable for a centralized optimal MAPF algorithm. Both of
these algorithms implicitly assume communication between agents since an agent knows the
goal locations of the other agents within its FOV, however no other explicit communication
is used.
In general, centralized search-based (optimal) MAPF algorithms suggest that communication
between agents enables some sort of path reservation or path announcement scheme. A cou-
pling in an intermediate MAPF solution occurs between at least two agents and an agent is
likely to be coupled with multiple agents throughout its planning horizon. It is to be expected
that multi-agent transportation systems would benefit from inter agent communication. The
authors in [38] conclude from ablation results that inter-agent communication is essential
in their decentralized RL algorithm called scalable communication for reinforcement- and
imitation-learning-based multi-agent pathfinding (SCRIMP). In order to include communi-
cation, the remaining challenges are the choices of what information to communicate and
which communication links to realize. In centralized optimal search-based algorithms basi-
cally all communicative links that emerge from inter-agent couplings are evaluated, guided by
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a cost tree search. The information communicated between agents is usually their paths as
rendered up to that point. As decentralized algorithms specifically deal with the tractability
issue and aim to improve scalability, an all to all communication scheme would inherently be
undesirable. Many distributed (RL) MAPF algorithms therefore assume exclusive (spacial)
neighbour communication. One of the first decentralized RL algorithms that explores rein-
forcement communication learning is the distributed, heuristic and communication (DHC)
[22] algorithm which reduces the FOV to a 3x3 grid and executes a two-round communication
between connected agents. Communication is represented by graph convolutional communi-
cation through a graph convolutional network (GCN). In the GCN, agents are represented
by nodes and communicative links between agents by edges. Feature vectors of neighbour-
ing agents are aggregated during a communication round and all of these aggregations are
passed through the same neural network. Additionally, more communication rounds can be
executed which will extend the communicative reach of the agents in the network. DHC
demonstrates the potential of inter-agent communication by outperforming the non-explicitly
communicative PRIMAL algorithm while having a smaller FOV. The prioritized communica-
tion learning (PICO) algorithm [21] first imitates the priority assignment from a centralized
optimal MAPF algorithm and subsequently learns inter-agent communication based on these
priorities, in turn outperforming the DHC algorithm. Alternatively, the decision causal com-
munication (DCC) algorithm [23] only slightly reduces the FOV compared to PRIMAL and
selects which specific agent to communicate with within its FOV. The resulting DCC algo-
rithm outperforms both PRIMAL and DHC.

2-4 Meta-analysis for scalable MAPF

It can be concluded from the presented MAPF literature that different types of algorithms
enjoy mutual interest from the research community. As the fundamental complexity of the op-
timal MAPF problem has been studied thoroughly, most recent work explores methods that
can provide practical solutions. Centralized suboptimal, decentralized, and reinforcement
learning approaches are jointly explored to achieve this goal, which underlines the versatility
of the problem. Although the aim of these approaches might differ (section 2-2), much of
these works contributes insights to the general problem as well.
This work aims to exploit the advantages of distributed control apropos of the challenges that
arise in the MAPF problem. The main advantages of controlling systems in a distributed man-
ner are scalability and robustness as a result of distributing computing and decision-making
power. A system that is controlled in a distributed manner would fail to benefit from these
advantages if the underlying MAPF problem would require (induced) all-to-all communica-
tion. Established MAPF literature does suggest the use of at least some sort of inter-agent
communication. All recent RL MAPF algorithms attempt to learn inter-agent communica-
tion in a MARL setting. In an ideal world, MARL algorithms would indeed be able to learn
the "optimum" communication protocol with the corresponding type of information that is
to be shared or agreed upon between agents. However, as a well performing decentralized
MARL policy is hard to obtain in general, inter-agent communication is usually learned
based on manually designed feature channels to increase performance. Manually designed
feature channels make the MAPF algorithmic performance likely depend heavily on the spe-
cific MAPF problem assumptions. Additionally, many of the RL MAPF algorithms seem to
learn concepts that have already been developed in existing search-based MAPF algorithms
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such as priority assignment and path information sharing.
A general observation among MAPF algorithms of all different approaches is the considera-
tion of mainly local evasion manoeuvres, which might be explained by the fact that significant
deviations from a SAPF solution are unlikely to yield a MAPF optimal solution (at least for
SOC). Additionally, two agents likely have to negotiate shared variables just once for two
reasons: 1) their general directions cross only once (two straight lines have a single intersec-
tion point) or 2) if part of their paths overlap (in this case the general directions are equal or
the environment forces an overlapping path for example through a corridor), priority has to
be negotiated once after which the joint solution has a leader-follower structure that doesn’t
have to be negotiated again. Overall, this shows a strong indication in favour of decentralized
MAPF algorithms.

2-4-1 Receding horizon MAPF

Considering local evasion manoeuvres as the driving mechanism behind solving a MAPF
problem implies that the solution is a sequence of local evasion manoeuvres. Computing
this sequence of control inputs in a receding horizon fashion instead of over the full problem
horizon, offers many analogies to receding horizon control (RHC) and model predictive control
(MPC). In these type of control strategies a (optimal) control input is computed based on
the current state, deviation from the terminal state and acting (or predicted) disturbances.
To the authors best knowledge, these strategies have not been applied directly to conceptual
MAPF problems. For example the MAPF algorithms in [4] and [32] do implement windowed
strategies by computing a number of control inputs over a certain window for the global MAPF
problem and repeat this process once the planning window has elapsed. These two algorithms
have better success rates compared to the baseline HCA∗ algorithm as the windowed planning
allows for some more flexibility, however both methods are still not complete. Additionally,
both methods will suffer from horizon effects by not being able to take the system state after
the planning window into account. The PIBT algorithm [24] essentially makes the windowed
hierarchical cooperative A∗ (WHCA∗) algorithm with a planning window of one step complete
by letting agents inherent priority if an intermediate move would be infeasible. As the PIBT
algorithm renders inefficient solutions because of the short planning window, this is improved
by the winPIBT algorithm [25] that applies the same strategy with a longer planning window.

2-5 Literature gap

Considering the presented research on MAPF algorithms, it can be concluded that there is
a literature gap regarding decentralized MAPF algorithms that apply windowed planning.
Whereas many decentralized algorithms aim to realize an established centralized MAPF al-
gorithm in a decentralized setting, other work demonstrates the potential of developing an
algorithm from a fundamentally decentralized perspective. The proposed RL MAPF algo-
rithms essentially try to learn optimal local evasion manoeuvres that are also exhibited by
optimal (centralized) MAPF algorithms. The drawback of this black-box approach is that
the fundamental complexity of learning a decentralized policy forces the designer to make
problem specific assumptions resulting in loss of generality.
Decentralized search-based algorithms on the other hand mostly use random prioritization
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to realize fast algorithms and considering dynamic priorities can considerably increase com-
pleteness of the algorithm. The drawback of a decentralized random prioritization scheme is
the inevitability of planning ineffectiveness as the algorithms cannot accommodate specific
situations. For example, inefficient solutions will be obtained by these algorithms in any case
where a higher priority agent has to incur delay in favour of a lower priority agent in order
to achieve a combined delay that would much more lower in comparison to the contrary.
In this work an algorithm will be developed that addresses the challenges of decentralized
MAPF control as raised in section 2-3. A novel receding horizon framework will be developed
from a fundamentally decentralized perspective that exploits insights from MAPF research
as well as distributed control theory.
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Chapter 3

Distributed control framework

The previous chapter introduced the notion of distributed control and motivated the explo-
ration of its application to the multi-agent path finding (MAPF) problem. This chapter will
elaborate on the design of the distributed control algorithm and discuss its numerous degrees
of design freedom. The design starting point of the algorithm follows from two assumptions
that are inherent to eventual practical application of the algorithm. Firstly, any entity trav-
elling through any network will require the capability to compute and actuate its physical
movements. It is therefore necessary that the travelling entity has some computational ca-
pability in order to compute inputs for its actuators to follow a desired path. Secondly, it is
assumed that entities travelling through the network can communicate based on their prox-
imity. The extent to which these two requirements are met in practice will depend on the
application.
Decision-making power is distributed in the following manner: each entity travelling through
the network plans its own path and controls its actuators in order follow this desired path,
these type of decision-making agents are referred to as "travelling agents". Alternatively,
paths could be assigned simultaneously to a subset consisting of travelling agents. However,
selecting these subsets in a decentralized manner would require either a large overhead of
communication or require a centralized communication entity. Additionally, the very process
of selecting subsets of travelling agents can pose problematic as described in subsection 2-3-2.
Thus, as there will be no other types of decision-making agents considered in this work, the
travelling agents are simply called "agents". The only type of controller that is considered
is the path planning controller, it is therefore assumed that agents implement exactly those
paths as computed by the path planning controller.
Since the (global) optimal MAPF problem is of NP complexity, the application of a distributed
optimization technique to solve the global MAPF problem (e.g. [37]) will render intractable as
the computational capability scales only linearly (with the number of agents). The algorithm
that will be described in this chapter therefore follows a decentralized local optimization ap-
proach that is inspired by the continuous time receding horizon control algorithm described in
[16]. In this work agents optimize their own path over certain time window while considering
(predicted) costs of neighbouring agents. This approach is in line with the meta-analysis of
MAPF algorithms described in section 2-4, which concludes that effective MAPF algorithms
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compute mostly local evasion manoeuvres. Since the number of agents that is considered (to
be) in the proximity of one agent is finite (and can be fixed), the optimal solution to the local
MAPF problem is guaranteed to be found within a certain time limit. On the other hand, by
considering a planning horizon that is shorter than the minimum (optimal) time required for
all agents to reach their goals, it is no longer guaranteed that the optimal solution or even an
existing feasible solution can be attained. The framework described in [16] considers continu-
ous time linear time-invariant (LTI) dynamical systems and as the MAPF problem does not
comply with these system characteristics, only the concept of windowed local optimization
will be considered. Also, in order to turn the described decentralized control approach into
a distributed control approach, the agents will consequently have to communicate to reach
consensus over the locally optimized paths.
The goal of this research is to design a highly scalable distributed MAPF algorithm in which
agents optimize their paths in parallel while considering a common objective of an agent’s
own goal together with the goals of a tractable number of other agents. After local optimiza-
tion, agents have to reach consensus over the shared variables which are the nodes and edges
of the network over the planning horizon. A supplementary element of this research is to
investigate the type of information that is shared among agents and how information about
path alternatives can be used for better parallel decision making.

3-1 Problem setup

The working principle of the distributed control algorithm is shown in Algorithm 1. The
agents participating in the MAPF problem by executing Algorithm 1 are indistinguishable,
that is: they execute the same algorithm in parallel. A distinction between agents does have
to be made when considering Algorithm 1 from the perspective of one particular agent. If
one particular agent is considered, this agent will be referred to as the "searching agent" (de-
noted ai ⊆ A). The searching agent can communicate with other agents within its proximity,
these agents are called (the time-varying set of) "connected agents" (denoted Γi(n)⊆ A). The
searching agent considers the alternatives and goals of a set of "selected agents" (denoted
Ri(n)⊆ Γi(n)) in its local path optimization in line 5 of Algorithm 1. Agents are added to
the set of connected agents based on their proximity to the searching agent in line 3 of Algo-
rithm 1. A planning horizon of w steps is considered and each planning iteration a number
of m ≤ w steps is implemented which yields a local MAPF problem that is smaller than or
equal to the global MAPF problem.

1 Each agent in parallel, do
2 while current position 6= goal do
3 infer the set of connected agents based on proximity
4 exchange information regarding path alternatives with connected agents
5 optimize desired path over window w while considering selected agents
6 negotiate shared variables with connected agents
7 implement m ≤ w steps
8 end

Algorithm 1: Basic path negotiation algorithm with planning horizon w and imple-
mentation window m
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The type of MAPF problem that will be considered in this research is the widely used ab-
stracted grid form in which start coordinates, end coordinates, and blocked coordinates are
assigned randomly. Each agent is assumed to have full static map knowledge, while informa-
tion about other agents has to be obtained through communication. An example of a MAPF
problem is shown in Figure 3-1 with the unsolved initial situation in Figure 3-1a and with a
feasible solution in Figure 3-1b. Blocked coordinates, or obstacles, are represented by black
squares. Start coordinates are indicated by circles and goal coordinates by hexagrams. Fur-
thermore, paths are represented by coloured lines where each agents has a dedicated colour.
A map such as shown in Figure 3-1 has an "invisible" border of blocked coordinates such that
agents cannot "leave" the map.
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(b) Solved problem

Figure 3-1: Example of a problem setup

Agents can execute one of the following five actions in each time step: move up, down, left
or right or wait at current location. Apart from not using blocked coordinates, the following
inter-agent conflicts that were described in section 2-1 will not be tolerated: node conflicts
and edge conflicts.
An important distinction in MAPF algorithms is the assumed consequence of agents reaching
their goal. In this research, agents are assumed to stay at their goal node if they have reached
this node and any other agent has not yet reached its goal node. The MAPF problem is
considered as solved once all agents have reached their goal node, in literature this is referred
to as "one-shot" MAPF. Although the assumption of "one-shot" MAPF might seem of less
practical value, this assumption best enables the analysis of the performance of the MAPF
algorithm itself. The alternative assumption of letting agents disappear upon arrival at their
goal node certainly has even less practical value. The most realistic alternative assumption
of agents having an infinite number of goal nodes over a finite time horizon would require
additional assumptions on the priority of specific task completions and would alter the purely
MAPF problem to a multi-agent package and delivery (MAPD) or multi-robot task alloca-
tion (MRTA) problem, depending on the particular application.
Communication links are established between agents based on proximity. In practice, the most
appropriate approach in establishing communication links between agents will depend on the
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type of communication technology that is utilized. In theoretical algorithms for abstracted
MAPF problems a fixed observation range within a Euclidean norm is usually assumed. The
value of this Euclidean norm will be denoted by v.

3-1-1 Summary of assumptions

The collection of assumptions that were posed can be summarized as follows:

• actuator dynamics the effect of actuator dynamics is neglected and agents are there-
fore assumed to perfectly follow the result of the path planning algorithm

• initial locations the initial locations for start, goal, and obstacle coordinates do not
overlap and the initial problem is therefore conflict free

• map knowledge agents posses full map knowledge: agents are informed with the
location of all blocked coordinates

• feasible actions each time step, agents can perform one of the following five actions:
up, down, right, left or wait

• inter-agent conflicts the notions of node conflict and edge conflict as defined in sec-
tion 2-1 are not allowed to be included in the solution for a MAPF problem instance.

• inter-agent communication communication links between agents are established
based on Euclidean norm proximity

• one-shot MAPF an agent stays at its goal location. The instance of a MAPF problem
is considered solved as soon as all participating agents have reached their goal. An agent
can move "out of the way" from its goal for another agent to pass, the time step in which
consequently the goal is reached for the last time counts as the task completion time
for this agent

3-2 Shared information

A concept that was introduced (and consequently also widely accepted as a result of proven
effectiveness) in the research area of decentralized MAPF algorithms, is multiple step inter-
agent communication. In the case of decentralized multi-agent reinforcement learning (MARL)
algorithms (e.g. [38],[22],[21]), it is left to a reinforcement learning mechanism to infer what
information is passed between agents in either a single or multiple round communication
scheme. To the authors best knowledge, there is no work on decentralized parallel decision-
making MAPF that investigates the type of information that is to be shared among agents.

Tjitze Karel Scheepstra Master of Science Thesis
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3-2-1 Multi-value Decision Diagrams

First off, in order to be able to consider a set of selected agents during local optimization,
the searching agent requires information about the goals of other agents. Rather than sim-
ply sharing goal locations with connected agents, the agents will share the complete set of
alternative paths with their respective connected agents. This type of information is called a
multi-value decision diagram (MDD) which was introduced in [31]. The concept of an MDD
will be explained before motivating the choice for the specific choice of MDDs as the shared
type of information. An MDD represents the set of alternative paths that an agent can tra-
verse in order to reach a goal node or nodes such that each possible alternative path is of
equal cost. The layers of an MDD diagram, such as shown in Figure 3-2a, correspond to time
steps where the top layer is the current time step. Each layers consists of a number of nodes
that are connected with arcs to other nodes on both the previous layer and the successive
layer. The arcs represent actions that an agent has to perform to move from a certain node
in a particular time step to another node in the next time step, hence different actions result
in different paths.
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Figure 3-2: Construction of a two step delay MDD (a) from expanding the A* graph expansion
base solution (b) with two extra steps (c)

The construction of a MDD harmonizes the result of a graph search single-agent path find-
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ing (SAPF) solution. Figure 3-2b shows the result of an A* graph search with Euclidean
distance as the heuristic cost. The different colors represent the amount of steps that were
taken from the start location, note that the goal location is reached in 4 time steps (blue),
this number of steps is called the minimum depth. If a delay of d time steps is consid-
ered, the graph search is continued by expanding nodes that have a heuristic cost lower than
minimum depth + delay. An extended search of delay d = 2 is shown in Figure 3-2c.
To construct a MDD from Figure 3-2c, one fills the layers of the MDD with expanded
nodes. The depth t of a layer determines which expanded nodes are included in this layer:
MDDlayer(t) = nodes|(t−d)≤depth(nodes)≤t. Consequently, arcs are established between MDD
layers if a particular node in one layer can reach a particular node in the next layer by ap-
plying one of the five feasible actions. Finally, nodes that are not connected to both a node
in the next as well as the previous layer are filtered from the MDD. The different colours of
the nodes and arcs of the MDD in Figure 3-2a represent the incurred amount of delay as a
result of traversing a particular arc where black is zero steps delay, red is one step and blue
is two steps. Note that the included MDD with one step delay (red) is just a shifted version
of the MDD with zero delay as it takes at least two steps to make a detour in a grid based
graph. Also note that a delay is always incurred irreversibly, which makes it relatively easy to
extend an existing MDD with an extra step of delay by expanding the corresponding SAPF
solution and appending the new nodes to the layers of the corresponding MDD.
From now on, the following notation will be used to indicate the amount of incurred delay
that is included in a MDD for a particular agent: MDDup to δ steps delay

agent number:ai∈A → MDDδ
i .

3-2-2 Additional information in a MDD

The MDD concept offers several advantages with regard to decentralized communication.
Firstly, the number of different path alternatives in the diagram grows exponentially while
the MDD itself grows linearly in size [1]. Secondly, multiple MDDs can be compared in poly-
nomial time as only the nodes of each corresponding layer have to be compared. If a particular
node occurs in two MDDs in the same layer, these two agents are dependent on one another
for not both choosing this particular node in this specific time step and the notion of a "node
dependency" can be appended to the corresponding MDDs of both agents. Similarly, an "edge
dependency" can be appended to particular edges in two MDDs if correspondingly these two
agents will participate in an edge conflict by simultaneously traversing the respective edge.
In general, a dependency represents a coupling between two agents where either one or none
of the agents can opt to occupy a particular node or traverse a particular edge in a specific
time step.
Each path selection round, an agent will construct its MDD and share its MDD up to layer
w+1 with connected agents as described in line 4 of Algorithm 1. Sharing a windowed part of
the MDD offers a number of benefits over sharing a goal location. Firstly, if a searching agent
would receive goal locations of all of its connected agents, the searching agent would have
search path alternatives for all of these agents, thus creating a lot of overhead computation.
Secondly, privacy concerns might be raised in future practical implementation and by sharing
path alternatives exclusively within the planning horizon, the goal location of other agents
can only be inferred if it falls well within the planning horizon.
An exemplary MAPF problem was designed to exhibit the dependency scheme applied to
a decentralized setting which is shown in Figure 3-3. This decentralized problem is demon-
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strated from the perspective of agent a2(orange) and the assumed Euclidean norm for the
communication range is v = 6. The planning horizon is equal to the minimum depth of all
agents: w = 4. Corresponding to line 3 of Algorithm 1, communication links are established
to form Γ2 containing agents a1(red), a3(blue), and a4(purple). The MAPF problem map in
Figure 3-3a only shows the alternatives of the set of connected agents, with delay d = 0. After
having shared their MDD to connected agents, all agents agent can infer their respective set
of dependencies and append this information to their MDD. The result of appending MDDs
is shown in Figure 3-3b to 3-3e. The dashed boxes illustrate nodes with (node) dependencies
and the colour corresponds to the respective agent with which the dependency is shared.
Note that a dependency over the same resource could occur between more than two agents
but that this is not the case in the example. Also note that edge dependencies do not occur
in this example.
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Figure 3-3: MAPF problem example to illustrate dependencies in a decentralized setting

In an important next step, all agents resend their appended MDDs to their respective set
of connected agents. This last step enables the searching agent to obtain information about
agents that are outside of its own communicative reach and concludes the actions described
in line 4 of Algorithm 1. To illustrate the result of these two steps of sharing information,
a MDD product between all connected agents of agent a2 is shown in Figure 3-4. A joint
node in the MDD product (black boxes) contains a node for each agent participating in the
MDD product while an edge comprises an action for each participating agent. The layers of
a MDD product are constructed by taking all possible combinations of nodes of participating
MDDs in the corresponding layer. Note that layers 2-4 of the MDD product actually have
1 · 2 · 2 · 2· = 16 joint nodes, however most of these nodes have been filtered by considering
only feasible joint nodes. The filtered result of the MDD product shown in Figure 3-4 denotes
joint nodes by black boxes while nodes of individual agents are colour coded by the agent’s
respective colour. The dependencies obtained in Figure 3-3 are also included in the MDD
product but now only the type of dependency is displayed through the border type. The
general notion of a dependency can no be split into three: 1) an external dependency with an
agent that does not belong to the set of connected agents ("ext"), 2) an internal dependency
between agents that are included in the set of connected agents ("int"), 3) an internal depen-
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dency that includes the searching agent ("sa").

Figure 3-4: From the perspective of agent a2, the filtered MDD product between the MDDs of
the set Γ2 where dependencies corresponding to the nodes of individual agents are included as
"ext" (external), "int" (internal), and "sa" (internal with searching agent)

Ultimately, the appended information about individual agents dependencies could help dis-
tinguish between different joint solutions. Although the example of Figure 3-4 shows four
feasible solutions for the local MAPF problem, the only local solution that would yield a
global feasible solution with zero delay for all agents is the second column. Of the four fea-
sible solutions, this solution can be differentiated from the other three solutions by the fact
that is has a total of two external dependencies over all layers while the other solutions all
have a total of three external dependencies over all layers.

3-3 Local MAPF optimization

The input of the local MAPF optimization problem is established to be the joint set of
alternatives with additional node and edge properties as shown in Figure 3-4. The next
step in executing the distributed control algorithm corresponds to line 5 of Algorithm 1,
which executes the local windowed MAPF optimization. The local optimization problem
will consider a tractable amount of agents to ensure that a local solution is found within
a feasible amount of time. The set of agents that a searching agent will consider during
optimization was defined as the set of selected agents (Ri ⊆ Γi) in section 3-1. The reason for
defining two different sets (Ri and Γi) has to do with the computational tractability relative
to the communicative reach. For example, if every node in a grid MAPF problem instance is
occupied by a different agent and the Euclidean norm for setting up communication links is
6, there are 113 agents in the set of connected agents of a searching agent. The amount of
agents that will be considered tractable for solving an optimal MAPF problem in reasonable
time will be called r. This number r is commonly considered to be at least less than 100
(strongly dependend on problem size and type), while for coupled MAPF solving approaches
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this amount is significantly lower. It is for this reason that an additional step was added
before local MAPF optimization which is the selection of a set of agents to consider during
optimization. The selection of agents from Γi follows two basic steps:

1. at least every agent that can be reached within the implementation steps is added to
Ri(n) such that Ri(n) = Γi(n)|{∀aj ∈ Γi(n), Manhtd(πj(n), πi(n)) ≤ 2 ·m}, conse-
quently the number of implementation steps m is bounded by the considered tractable
number of r selected agents.

2. if |Ri(n)| < r as a result of the preceding step, additional agents aj ∈ Γi(n) are added
based on their Manhattan distance (Manhtd(πj(n), πi(n))) to the searching agent until
|Ri(n)| = r.

3-3-1 Cost function

Two types of objectives were introduced in MAPF literature as described in subsection 2-1-1,
namely the sum of costs (SOC) objective and the makespan objective. These objectives refer
to the global state of the system and would require solving the global MAPF problem in a dis-
tributed manner which was advocated to be undesirable as it would still yield an intractable
problem. Moreover, due to the nature of a receding horizon controller that optimizes a win-
dowed MAPF problem, agents are likely not to reach their goal within the planning horizon.
Intuitively, intermediate locations could be considered that are classified with respect to their
conformity with the final goal of an agent. To sketch an example of this approach one can
consider layer four (from the top) of the MDD shown in Figure 3-2a. The colour of the boxes
characterizes the conformity of a particular node with the final goal of the agent in terms of
incurred delay. Node (4,3) is more favourable to choose in layer four compared to node (5,2)
for example, as node (4,3) allows the agent to reach its goal node (4,4) in the next time step
while node (5,2) would require two more time steps (hence two steps delay). The objective to
consider in a windowed MAPF problem therefore becomes the combined intermediate delay
which is basically a confined interpretation of the introduced global objectives. Analogously
to the two mentioned global objectives, one can consider the confined interpretation of the
makespan objective as the minimal maximum intermediate delay and the confined interpre-
tation of the SOC objective as the total intermediate delay. The notion of "intermediate"
delay refers to the fact that a MDD will be constructed in each path planning round, starting
from the node that the agent currently occupies. If for example the agent in Figure 3-2a opts
to implement two steps [(1,2),(1,3)], the path planning is re-initiated from the current node
(1,3) and the zero-delay part of the new MDD will be [(1,4),(2,4),(3,4),(4,4)] as this would
be the only option to get to the goal node without incurring any new intermediate delay. As
a result, the final delay of an agent for a particular MAPF problem is equal to the sum of
intermediate delays that this agent has incurred during the combination of all planning rounds.

3-3-2 Baseline feasible solution

Agents participating in a MAPF problem controlled in a distributed manner inherently have
access to a limited amount of information. As a consequence, a situation might occur where
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a solution exists from a decentralized perspective but not on from the global perspective. An
example of such a situation is shown in Figure 3-5 which is identical to the problem shown
in Figure 3-3 except for the additional blocked coordinate (7,3). All agents in this problem
will find a feasible local solution for zero delay that is somewhat similar to that of agent
a2 in Figure 3-5b and therefore all agents will select a path with zero delay. Using figure
Figure 3-5a, one can easily infer that there doesn’t exists a globally feasible solution where
all agents have zero delay. Increasing the communicative range such that all agents are con-
nected, and provided that all agents can decide in parallel on one particular agent that should
incur delay (for example the most left agent in the chain), would allow the global problem
to be solved. All agents now essentially solve the centralized problem, which undermines the
decentralized approach and is certainly not realisable for a larger problem where this "depen-
dency chain" is longer.
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(a) problem setup
(b) Corresponding solution set for zero
delay from the perspective of agent a2

Figure 3-5: Exemplary MAPF problem where not all agents globally can reach their goal with
zero delay but cannot infer this from a decentralized perspective

To resolve the described issue, a conflict resolution strategy of random priorities will be im-
plemented. Random priorities are the driving mechanism behind most fast algorithms and
basically assign a shared variable to the agent with the highest priority whenever a conflicts
over shared variables occur. The main problem concerning algorithms that utilize random pri-
orities as a conflict resolution method is that they are not complete if the priority order simply
cannot accommodate the set of feasible solutions (a simple example is shown in Figure 2 of
[33]). Dynamic priorities are required in such special cases, for example through backtracking
as introduced in [24]. Priority backtracking is however likely to render inefficient solutions
and requires relatively more communicative overhead and, especially with longer planning
horizons. In order to reduce the communicative overhead and increase solution efficiency,
this work will apply the following approach: agents optimizing locally while considering the
local objectives of other agents in their proximity will induce a mechanism similar to dynamic
priorities. That is, an agent will incur delay if doing so follows from the local optimization
problem. Since the agents considered in a local optimization problem solve a very similar local
optimization problem themselves, all agents will come to complying solutions. The hypothesis
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is that the decentralized mechanism of selecting the optimum joint local solution based on the
supplied information (appended MDDs) will enable agents to dynamically adjust their im-
plicit priorities (can be interpreted as relatively incurred delay) based on their surroundings.
As all agents will select their local optimum solution according to the same decentralized
policy, it is expected that they will conclude on the same paths for each other. Furthermore,
solving an optimization problem allows for more flexibility compared to (dynamically) prior-
itizing agents. Adding more information to the local MAPF problem by appending MDDs
is expected to enable agents to differentiate between different local solutions with equal cost
to ameliorate the parallel decision-making by coming to the same joint solutions without the
need for additional communication. The "appended" properties embedded in the solutions of
a local MAPF problem could also be used in a heuristic manner by letting agents actively
choose paths that are less dependent on other agents to potentially favour the effectiveness
of decentralized decision-making.
The effectiveness of parallel decentralized decision-making is still to be investigated and it
is therefore uncertain if this decentralized control approach will indeed yield local MAPF
solutions that have converged to induced consensus between agents, that is: in which agents
have selected the same paths for each other. A restrictive conflict resolution strategy has been
designed to ensure that the implemented steps m of all agents are guaranteed to be conflict
free. This enables studying the decentralized optimization approach and also allows for com-
parison to other decentralized algorithms. The strategy entails the following; an agent will be
allowed to refer to a baseline solution which is waiting at its current location for the duration
of m implementation steps. Consequently, follower conflicts as described in section 2-1 are
not allowed in the first m time steps. Although the imposition of prohibiting follower con-
flicts in the first m time steps is restrictive, this approach requires much less communication
compared to the priority backtracking approach. Agents simply compare their local solutions
and can revert to the baseline solution at any point during this negotiation. Additionally,
if the parallel decentralized decision-making approach always yields local solutions that have
converged, the baseline solution never has to be activated.

3-3-3 MDD product path selection strategy (local optimization)

To find a local optimal MAPF solution, graph expansion of the MDD product (MDD product)
is applied which corresponds to the coupled centralized increasing cost tree search (ICTS)
algorithm [31]. Note that "graph" in this context refers to the combined set of considered
MDDs as shown in Figure 3-4 and not to the spacial graph that describes the MAPF problem.
The graph that describes a MDD product will from now on be referred to as the MDD product
with nodes describing a location for each of the participating agents and edges describing an
action for each of the participating agents.
Constructing the MDD product quickly becomes intractable as the number of nodes in each
layer of the MDD product is equal to the product of the number of nodes on the respective
layers of the MDDs of participating agents. The number of nodes in the MDD product
therefore scales exponentially with a linearly growing number of agents. The MDD product is
therefore expanded like a graph search in order to construct only the part of the MDD product
that is required to find the optimal solution. In each iteration, a node of the MDD product is
expanded by adding all of the connected nodes (on the next layer) to the open list of nodes.
Consequently, each newly added node will be associated with a depth and a cost as a result
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of the defined cost function. The next iteration expands the node with the lowest cost of
the list of open nodes. The node cost is a function of the cost of the originating node, delay,
internal dependencies and external dependencies:

c(nodenew) = c(nodeold) + w1

|Ri|
∑

n=1

∆δn + w2

|Ri|
∑

n=1

int.dep.(an) + w3

|Ri|−1
∑

n=1

ext.dep.(an) (3-1)

Where ∆δn is the increase of incurred delay from the previous layer to the current layer of
agent n, int.dep.(·) denotes the number of internal dependencies that an agent has as a result
of its individual node and similarly ext.dep.(·) denotes the number of external dependencies.
Note that this cost function doesn’t distinguish between internal dependencies within the
selected set of selected agents and internal dependencies specifically with the searching agent.
Also note that the sum of delay increases together with the cost of the previous node amounts
to the confined interpretation of the SOC objective as the minimum total intermediate delay.

3-3-4 Mitigation of horizon effects

A consequence of considering a planning horizon that is shorter than the problem horizon
in receding horizon control are implications as a result of the "horizon effect". The horizon
effect concerns information about changes in system state or acting disturbance(s) that aren’t
considered in planning as they lie outside the planning horizon. To capture the (predicted)
effect of states and disturbances on the trajectory cost that will occur after the planning
horizon, receding horizon control (RHC) and model predictive control (MPC) add a terminal
cost that is only depended on the final state.
For windowed MAPF, two different implications of the horizon effect have to be considered.
Firstly, agents that will interfere with a searching agent but are outside of communication
range in a certain time step can be interpreted as disturbances that will act outside of the
planning horizon. Agents that were within communication range but didn’t belong to the set
of selected agents for local optimization can be considered as an equivalent disturbance. The
implications of this type of disturbance might be alleviated through some form of extended
communication, for example induced through connected agents. It is however assumed that
setting the communication range and planning horizon sufficiently long will make these effects
negligible as the fundamental basis of the algorithm builds upon local evasion manoeuvres
(section 2-4). Secondly, the windowed planning mechanism can result in deadlocks. Planning
over the full problem horizon can never result in a deadlock as the corresponding cost would
be infinite (agents will not reach their goal). In windowed planning the cost corresponding to
a deadlock can be finite as the cost evaluated is the incurred delay with respect to the zero
delay path. A deadlock will occur in windowed planning if the joint delay cost of avoiding a
deadlock is higher compared to the cost of being stuck (equally) in the deadlock.

The illustrative example shown in Figure 3-6 will be used to explain the implications of apply-
ing the confined cost functions described in subsection 3-3-1 in windowed optimization for a
challenging MAPF problem. Figures 3-6(a)-(c) show the results of the first step of windowed
planning corresponding to different planning horizon lengths w. The three agents a1 (red),
a2 (orange), and a3 (blue) each have a planned number of w actions represented by lines
with their respective colours. Note that the planned paths have different lengths because
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(c) c0, w = 6

Figure 3-6: MAPF problem that will result in a deadlock if the planning horizon w is insufficiently
long for the baseline of the cost function of Equation 3-1: c0(w1, w2, w3) = c0(1, 0, 0)

wait actions cannot be displayed explicitly in this setting, though all agents do execute the
same number of w actions. The cost function c0 implements the node cost function described
in Equation 3-1 as c0(w1, w2, w3) = c0(1, 0, 0) which can be interpreted as the baseline cost
function that only considers the sum of (intermediate) delays. The scenario displayed in Fig-
ure 3-6 is challenging for a windowed MAPF optimization algorithm because multiple agents
(a2 and a3) have to incur delay for agent a1 to pass. For a relatively shorter planning horizon,
the actions of agents a2 and a3 would have to be exclusively wait actions, hereby incurring
maximum delay. As in this case two agents have to incur this maximum delay versus one
agent incurring no delay, a SOC intermediate delay path optimization will revert to the solu-
tion shown in Figure 3-6c where only one agent (a1) incurs maximum delay. The scenario of
Figure 3-6c will result in a deadlock in which only agent (a2) will reach its goal. If the window
length w is equal to the minimum problem depth, the agents are able to find the optimum
solution as shown in Figure 3-6a. If the planning horizon is shorter, the agents are not able
to see the optimum solution as shown in Figure 3-6b. However, as the path allocation process
will be carried out in a receding horizon fashion, the scenario in Figure 3-6b will still be
able to let all agents reach their goal in the minimum amount of steps for an implementation
length of m = 1. For w = 7 (no figure) only agents a1 and a2 will reach their goal and for
w = 6 (Figure 3-6c) only agent a2 will reach its goal. These last two scenarios result in a
deadlock where consequently the algorithm will not yield a feasible global solution.
One can infer from the scenarios displayed in Figure 3-6 that it becomes challenging for a win-
dowed MAPF optimization approach to obtain intermediate solutions that will yield a feasible
solution for the global MAPF problem if the majority of agents has to perform wait actions
for most of the planning horizon. This is also the reason that the confined interpretation of
the makespan objective (subsection 2-1-1) is less suitable for windowed MAPF planning since
a scenario where at least one agent has a delay equal to the full planning horizon, different
solutions with respect to other agents cannot be distinguished using this function. From a
global perspective, a deadlock is easily recognized if in any time step there is not a single
agent that decreases its Manhattan distance to its goal location. In a decentralized setting it
is challenging to distinguish if an agent is either stuck in a deadlock or has to incur delay to
let another agent past. Consequently, it is also challenging to infer which agents participate
in the same deadlock and if this is recognized, to come up with a decentralized policy that
can resolve the deadlock situation.
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Figure 3-7: MAPF problem instance first step planning results for cost function c0 with sup-
plemented terminal cost penalty for w = 6 (a) and w = 5 (b) and comparative result without
terminal cost penalty for w = 5 (c)

To alleviate the described implications of the horizon effect that can be interpreted as finite
cost deadlock scenarios, a terminal cost function was designed analogously to RHC and MPC.
The terminal cost function is implemented as a penalty function which penalizes local MAPF
solutions that do not have at least one agent (that is not at goal) decreasing its distance to
goal in the final time step of the planning horizon. In order to avoid scenarios where one agent
in a deadlock takes a step away from goal in time step w − 1 to consequently takes a step
towards goal in time step w (which would obviously not resolve the deadlock), a "decreasing
threshold" (T ) is introduced. This threshold demands an agent to execute a number of T
consecutive actions (including the final action in time step w) that all result in a decrease of
its distance to goal to be considered a "decreasing agent". Introducing the threshold T avoids
agents taking one step back and decrease their distance to goal only in the final time step to
avoid the deadlock penalty. Inevitably, in some cases a "truly" decreasing agent might have
less consecutive decreasing steps than the threshold, T is therefore left as a hyperparameter
to be obtained through tuning. Additionally, cases in which agents deliberately have to take
detours will also be wrongly penalized by the penalty function cT which underlines the chal-
lenge of inferring a deadlock scenario in a decentralized manner. The terminal cost penalty
function is given in Equation 3-2 and is dependent on both the set of agents that are not at
goal in the final time step (η) and the set of decreasing agents (θ) in the final time step. A
penalty of large number value F is given whenever the set η ⊆ Ri is not empty while the set
θ ⊆ η is empty, which is the case when there is no decreasing agent in the final time step w
among the agents that are not yet at goal.

η(node) = ∀aj ∈ Ri | πj(w) 6= gj

θ(node) = ∀aj ∈ η | decrease count(aj) ≥ T

cT (node) =

{

F, if η 6= ∅ ∧ θ = ∅

0, if η = ∅ ∨ θ 6= ∅
(3-2)

Note that the terminal cost penalty function described in Equation 3-2 requires only a single
agent to be decreasing within the set of selected agents Ri. In a scenario where a number
of agents are involved in a deadlock while at least one selected agent is not involved (and
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decreasing), the penalty will not be activated to resolve the deadlock. It is however assumed
that eventually all of the agents hindering the decentralized recognition of a deadlock will
either reach their goal (and no longer belong to η) or leave the proximity of the stuck agents
and therefore will no longer be considered in the set of selected agents Ri.
Figure 3-7a and Figure 3-7b show the first step planning result of enhancing the cost function
c0 with the penalty function described in Equation 3-2. Figures 3-6c and 3-7a show compar-
ative results in both cases with w = 6 and Figures 3-7b and 3-7c correspondingly for w = 5.
Finally, Table 3-1 reports the receding horizon implementation results for the same MAPF
problem instance as considered in Figures 3-6 and 3-7 for an action implementation horizon
of length m = 1. Clearly, using the supplemented terminal cost penalty function ameliorates
solving this scenario for planning horizon lengths that are relatively shorter compared to the
minimum amount of steps required to solve the global problem. If supplemented with the
terminal cost penalty function, the algorithm is able to solve the problem for a planning
horizon length as short as w = 5. Slightly different values for the decreasing agent threshold
T didn’t have an impact on the final result. This threshold value is expected to be mostly
dependent on the selected planning horizon length w and should be tuned accordingly as a
hyperparameter.

Table 3-1: Receding horizon implementation (m = 1) results for different lengths planning
horizon w for baseline cost function c0 without (a) and with (b) terminal cost penalty. The agent
columns indicate if an agent has reached its goal and the final column shows total number of
steps after which the solution no longer changes

(a) c0 without terminal cost penalty

a1 a2 a3

w (red) (orange) (blue) steps
9 ✓ ✓ ✓ 9
8 ✓ ✓ ✓ 9
7 ✓ ✓ ✗ 8
6 ✗ ✓ ✗ 4
5 ✗ ✓ ✗ 4
4 ✗ ✓ ✗ 4
3 ✗ ✗ ✗ 3

(b) c0 with terminal cost penalty

a1 a2 a3

w T (red) (orange) (blue) steps
9 3 ✓ ✓ ✓ 9
8 3 ✓ ✓ ✓ 9
7 3 ✓ ✓ ✓ 9
6 3 ✓ ✓ ✓ 9
5 3 ✓ ✓ ✓ 11
4 2 ✓ ✓ ✗ 7
3 1 ✗ ✗ ✗ 4

3-4 Path communication and conflict resolution

This final section will aggregate all previous parts into the final Algorithm 2. The baseline
solution scheme was already introduced in subsection 3-3-2 as well as the application of a
random prioritization scheme. The prioritization scheme together with the baseline solution
essentially serve as the backbone of the algorithm to ensure that the path allocation step in
the receding horizon planning will always be conflict free. Before the solving process through
running the algorithm in parallel is commenced, all agents draw a random priority value from
a uniform distribution as shown in line 4. This priority value will be used to resolve a conflict
over shared variables. The baseline solutions (wait actions for m time steps) of connected
agents are filtered from an agent’s MDD in line 9. During each planning round, lines 6-25,
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all agents will secure a number of m actions to perform before starting the next planning
round until the total simulation time has passed. Securing a path within a planning round
can take multiple path securing iterations where all agents start with an invalid solution and
execute lines 14-22 to secure a desired path over the planning horizon w. A desired path
can be secured if it has no conflicts with higher priority agents (lines 19-21). If an agent
was not able to secure a desired path, it will repeat the path search (lines 14-22). As a
result of the prioritization scheme (combined with the baseline solutions), each negotiation
round (lines 19-21), at least one agent will be able to secure a path and therefore the number
of negotiation rounds in finite. Note that if the shared decentralized path selection policy
(line 17) can successfully induce cooperation, all agents can secure a path simultaneously
during the first negotiation round as all desired paths will comply. If an agent has to repeat
its path search because it wasn’t able to secure a path in the negotiation round, it filters the
paths of the set of agents with secured paths within its set of connected agents Λi⊆ Γi in line
16.
Ideally, line 17 of Algorithm 2 consists of a tractable local MAPF problem optimization as

Result: parallel conflict free movement action selection
1 Input agent set A with set of start coordinates s and set of goal coordinates g
2 initialize n = tsim = 0
3 Each agent in parallel, do
4 draw εi from a uniform distribution (0, 1)
5 set start location as current location πi(0)← si

6 while n < tfinal do
7 infer the set of connected agents Γi(n) by Euclidean distance:
8 construct MDDδ

i , δ = w

9 filter the baseline solutions from aj ∈ Γi(n): πj∈Γi
(n, . . . , n + m) from MDDδ

i

10 select first w levels of MDDδ
i and send to connected agents

11 infer internal dependencies and append to MDDδ
i

12 communicate new MDD to connected agents to infer external dependencies
13 sort Γi(n) according to the Manhattan distance to the searching agent
14 while solution i = invalid do
15 collect the set of agents with valid solutions Λi(n) ⊆ Γi(n)
16 filter πj∈Λi

(n, . . . , n + w)\πi(n) from MDDδ
i

17 select a desired path according to the shared decentralized policy
18 communicate selected path to connected agents aj ∈ Γi(n)
19 if no conflicts with received paths of higher priority agents then
20 solution i = valid
21 end

22 end
23 perform selected action: πi(n + 1, . . . , n + m)← actioni

24 n = n + m

25 end

Algorithm 2: Receding horizon path negotiation algorithm with conservative base-
line solution

described in section 3-3 that results in a desired path with w actions for agent ai. However, for
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some scenarios the local optimization problem still might not render tractable and therefore
a common decentralized policy was designed to resolve these scenarios. Algorithm 5 shows
the decentralized desired path selection policy which is used in line 17 of Algorithm 2. Line 6
of Algorithm 3 is activated if the local MAPF optimization is no longer considered tractable.
Consequently, a desired path is chosen greedily (according to zero delay in the MDD) in line 7.
It was pointed out in section 3-3 that the number of r agents to consider in a local optimization
problem is likely less than the total number of connected agents and therefore a set of selected
agents for optimization Ri ⊆ Γi is constructed in line 4. Additionally, a feature was added to
"artificially" increase the number r: one can safely assume that agents which are already at
goal will only move if required to by agents that are not at goal. Therefore, when constructing
the set of selected agents, all connected agents that are already at goal are added to the initial
set of ignored agents Σi. If it turns out that any of the resulting paths of the selected agents
crosses a location of an agent in Σi, this agent is removed from Σi and the set of selected
agents Ri is reconstructed. This scheme was implemented by considering an intermediate
solution (int.solutioni) for agent ai that is obtained in lines 3-14 which can only be valid if
either the local MAPF problem is considered intractable or if all paths of connected agents
(Ri) do not interfere with the agents in Σi.

Result: desired path of agent ai over planning horizon w
1 Input Γi(n), MDDδ

j ∀aj ∈ Γi(n)
2 initialize the set of ignored agents Σi(n) ⊆ Γi(n) with agents that were at goal in

time step n− 1
3 while int.solution i = invalid do
4 construct the set of selected agents Ri(n) = Γi(n) \ Σi(n), such that |Ri(n)| ≤ r
5 select path as a result of optimal MDD product graph search according to cost

function f with terminal cost cT

6 if # expanded nodes has exceeded the maximum # of search iterations then
7 choose greedy path
8 int.solution i = valid

9 else if any of the obtained paths contains a node of an agent in Σi(n) then
10 remove this agent from Σi(n)
11 else
12 int.solution i = valid
13 end

14 end

Algorithm 3: Decentralized desired path selection policy
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Chapter 4

Empirical performance evaluation

This chapter will report the simulation results that have been collected by running the de-
signed algorithm over a number of multi-agent path finding (MAPF) instances. The designed
algorithm is named the Decentralized Optimization (DECOP) algorithm for easier reference.
After describing the experiment setup and selection of hyperparameters, the performance
evaluation is presented. The empirical performance evaluation based on simulation results
consists of three parts. Firstly, three different variants of DECOP are compared to other de-
centralized MAPF algorithms conform the performance evaluation structure as presented by
reinforcement learning (RL) algorithms. Secondly, DECOP is compared to one specific fast
decentralized MAPF algorithm, namely the priority inheritance with backtracking (PIBT)
algorithm. Finally, the algorithmic behaviour for MAPF instances where DECOP is unable
to attain a global solution is analysed.

4-1 Simulation experiment setup

In order to evaluate the performance of the distributed algorithm, the MAPF solution char-
acteristics with respect to a number of MAPF instance types will be analyzed. Each instance
type consists of a grid MAPF problem with the following initial properties:

• map size the considered grid maps are square

• agent number the total number of agents participating in a (one-shot) MAPF problem.

• obstacle density a percentage of random grid locations are selected as obstacle and
cannot be used by the agents.

• start locations each of the agents has a dedicated start location which does not overlap
with start locations of other agents or with locations of obstacles.

• goal locations each of the agents has a dedicated goal location which does not overlap
with goal locations of other agents or with locations of obstacles (start and goal locations
can overlap).
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The MAPF instance types are analogous to those used by the considered RL algorithms
for straightforward comparison. The following instance types of agent number - map size
(corresponding agent density) will be evaluated: 8 agents on a 10x10 map (8%), 16 agents
on a 20x20 map (4%), 32 agents on a 30x30 map (3.6%). Additionally, for the in depth
analysis an instance type with a higher agent density is also considered: 20 agents on a 10x10
map (20%). Each of these combinations will be considered for a obstacle density percentage
of 0%, 15% and 30%, resulting in a total of nine different instance types. For each MAPF
instance type, one hundred random instances are created and the experiments are run on a
server with an Intel Xeon E5-2637 (v3) CPU (4 cores). Although the DECOP algorithm is a
fundamentally decentralized algorithm that can be executed in parallel by multiple agents, in
this simulation setup the execution is sequential rather than parallel such that it is performed
by a single computational entity. That is, the single CPU computes the outcomes of a path
secure iteration for all agents sequentially. The total simulation could be readily adapted such
that the computations of each individual agent is performed by a single computational unit.
A MAPF instance is considered to be solved if a set of conflict free paths has been obtained
such that all agents reach their goal location (see section 2-1 for formal definition). The total
number of time steps required before all agents have reached their goal is referred to as the
"problem depth". The problem depth is actually equal to the path length of the agent that is
last one to arrive at its goal. An agent is considered to be at goal if it has to perform merely
wait actions, at its goal location, up to the problem depth. Note that an agent that reaches
its goal location in some time step is therefore not considered to be at goal if it has to leave
its goal location again in a later time step. The time step in which an agent is considered to
be at goal is referred to as the "individual agent problem depth" or "agent depth" for short.

4-2 Hyperparameter selection

The DECOP algorithm uses a number of hyperparameters during execution. The hyperpa-
rameters are shown in Table 4-1 with a corresponding description and assigned value. All
of the parameters described in Table 4-1 have already been introduced in chapter 3 except
the hyperparameter P . P designates the maximum number of nodes to be expanded when
performing a graph search in the MDD product and was set to 20000 to limit the amount of
memory required by the graph search. Furthermore, the other hyperparameters are already
fixed are δ, m and u. The delay parameter δ was set equal to the planning horizon length
w such that the most delayed route alternative of staying at the same node during the full
planning horizon is included in the set of route alternatives. The parameter m was set to the
minimum value of 1 to allow for maximal flexibility as local optimal planning is performed
in each time step. Additionally, as the DECOP algorithm uses the baseline solution mecha-
nism as described in subsection 3-3-2, a longer implementation window would lead to more
restrictive planning as no other agents are allowed to use another agents current location
over the whole implementation window m. The parameter u was set to a value of 5 which
is equal to the communicative assumption made by the SCRIMP algorithm. The remaining
hyperparameters (w,T ,r) will be selected from Monte-Carlo simulation results on a number
of MAPF instance types.
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Table 4-1: Overview of hyperparameters used by the DECOP algorithm

parameter description value
w length of the planning horizon tuning
δ maximum delay included in all multi-value decision diagram (MDD) w
m length of the implementation horizon 1
T agent decreasing threshold tuning
P maximum number of nodes to expand from the MDD product 20000
r desired size of the set of selected agents (|Ri|) tuning
F terminal cost penalty for zero decreasing not at goal agents 100
v Euclidean norm for two agents to be within communication range 5

4-2-1 Hyperparameter tuning

A number of hyperparameters shown in Table 4-1 have a value corresponding to "tuning".
The values of these hyperparameters will be selected according to the results that follow from
running a Monte-Carlo simulation with different value combinations of these parameters. The
MAPF instance types used for Monte-Carlo simulation are the middle size MAPF instances
with 16 agents on a 20x20 map with 0%, 15%, and 30% obstacle rates. Since the hyperpa-
rameter r relatively has the largest impact on the computational complexity and therefore
the computation time, only two cases will be considered: r = 4 and r = 5. The exemplary
MAPF instances used to design the terminal cost function in subsection 3-3-4 suggested that
a longer planning horizon will better enable the local planning to find local solutions with
a longer problem depth. Two planning horizon lengths w = 8 and w = 12 will be tested to
evaluate the expected effect of incorporating a longer planning horizon. Finally, the decreas-
ing threshold value T is tested for three different values with respect to the planning horizon
length.

Table 4-2 shows the result of the Monte-Carlo simulation for r = 4 and Table 4-3 shows
the result of the Monte-Carlo simulation for r = 5. The success rate (SR) key performance
indicator (KPI) indicates the amount of MAPF instances for which a global solution was
obtained. The "common maps" value displays the number of MAPF instances for which all
combinations of hyperparameters have obtained global solution. The remaining values in the
table are averaged only over those commonly solved MAPF instances to allow for fair com-
parison. The "δ" KPI represents the delay of an agent as a result of the obtained solution
compared to its path length in a scenario where no other agents would have be present in the
MAPF instance. Correspondingly, the "δ/depth" KPI denotes this delay relative to the path
length in a scenario where no other agents would have be present in the MAPF instance. The
relative delay is limited to 100%. The "expansion limit1" KPI indicates the number of times
that the node expansion limit was reached by at least one agent in each first path securing
iteration compared to the total number of planning rounds. Similarly the "expansion limit2"
KPI shows the total number of times that the node expansion limit was reached in an agent’s
first path securing iteration compared to the total number of first path securing iterations (#
planning rounds × # agents). Reaching the node expansion limit forces an agent to choose
a greedy path instead of applying the common decentralized policy.
It can be concluded from these results that increasing the parameter r form 4 to 5 yields
more complex local MAPF problems that exceed the node expansion limit more often and
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Table 4-2: MAPF planning results on a 20x20 map with 16 agents with different obstacle
rates. The desired selected agent set size (r) is 4. The results are given for different values of
hyperparameters w (planning horizon) and T (decreasing threshold). The action implementation
length m is equal to 1. A value in brackets (·) denotes a standard deviation from the corresponding
mean value

obst. com.
w T δ δ/depth

exp. exp.
SR

average total
rate maps limit1 limit2 runtime time

0% 100

8 2 0.19(0.60) 1.7%(6.3) 0.00% 0.00% 100% 3.4m(2.0) 5.7h
8 4 0.19(0.60) 1.7%(6.3) 0.00% 0.00% 100% 3.3m(1.9) 5.6h
8 6 0.20(0.65) 1.7%(6.5) 0.07% 0.00% 100% 3.6m(2.1) 6.0h
12 3 0.19(0.59) 1.6%(6.2) 0.71% 0.09% 100% 9.3m(6.7) 15.5h
12 4 0.19(0.59) 1.6%(6.2) 0.78% 0.09% 100% 9.1m(6.6) 15.1h
12 6 0.19(0.58) 1.6%(6.2) 0.78% 0.09% 100% 9.4m(6.8) 15.7h

15% 91

8 2 0.54(1.5) 4.1%(12) 0.00% 0.00% 93% 1.2m(1.2) 2.0h
8 4 0.59(1.7) 4.5%(13) 0.04% 0.00% 92% 1.3m(1.1) 2.1h
8 6 0.62(1.7) 4.9%(14) 0.40% 0.04% 94% 1.5m(1.4) 2.5h
12 3 0.55(1.5) 4.2%(12) 0.12% 0.01% 92% 2.6m(2.4) 4.3h
12 4 0.55(1.5) 4.2%(12) 0.24% 0.02% 92% 2.5m(2.5) 4.2h
12 6 0.56(1.6) 4.2%(12) 0.28% 0.03% 94% 2.7m(2.7) 4.6h

30% 82

8 2 2.1(4.1) 12%(23) 0.20% 0.02% 86% 1.7m(2.6) 2.9h
8 4 2.2(4.3) 12%(23) 0.10% 0.01% 89% 1.9m(2.9) 3.2h
8 6 2.2(4.3) 13%(24) 0.55% 0.05% 87% 2.2m(3.1) 3.7h
12 3 2.0(4.1) 12%(23) 1.03% 0.09% 94% 3.4m(6.0) 5.7h
12 4 2.0(4.1) 12%(23) 1.13% 0.10% 94% 3.4m(5.7) 5.6h
12 6 2.1(4.4) 12%(23) 1.30% 0.11% 92% 3.9m(6.4) 6.4h

it takes significantly more time to attain a global solution. As the success rates with r = 5
are not higher compared to r = 4, r was selected to be 4 to reduce computation time. The
remaining hyperparameters w and T will therefore be selected from the results in Table 4-2.
For the 0% obstacle rate MAPF instance type, different combinations of w and T do not
yield notably different results apart from runtime, likely because agents on average incur very
little delay (∼1.6%) in all cases. For a longer planning horizon w = 12, the node expansion
limit is reached slightly more often and the run times increase probably just due to the fact
that the local problems are larger in size. An analogous conclusion can be drawn for the
MAPF instance type with a 15% obstacle rate. Finally, the results for the MAPF instance
type with a 30% obstacle rate show more significant differences with respect to the success
rate and incurred delay for different combinations of w and T . The longer planning horizon
w = 12 yields a higher success rate compared to w = 8 for all cases of T . Furthermore, the
success rate and performance of w = 12 with T = 3 and T = 4 are better compared to T = 6
but T = 3 has a slightly lower amount of times that the node expansion limit is reached by
at least one agent in the first path securing iteration, compared to T = 4. The remaining
hyperparameters w and T are therefore selected to be equal to w = 12 and T = 3.
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Table 4-3: MAPF planning results on a 20x20 map with 16 agents with different obstacle rates.
The desired selected agent set size (r) is 5. The results are given for different values of hyperpa-
rameters w (planning horizon) and T (decreasing threshold). The action implementation length
m is equal to 1. A value in brackets (·) denotes the standard deviation from the corresponding
mean value

obst. com.
w T δ δ/depth

exp. exp.
SR

average total
rate maps limit1 limit2 runtime time

0% 100

8 2 0.18(0.56) 1.6%(5.9) 1.53% 0.13% 100% 13m(10) 21h
8 4 0.18(0.56) 1.6%(5.9) 1.53% 0.13% 100% 13m(10) 21h
8 6 0.19(0.63) 1.7%(6.4) 1.60% 0.14% 100% 12m(10) 20h
12 3 0.18(0.58) 1.7%(6.9) 6.44% 0.71% 100% 26m(22) 43.3h
12 4 0.18(0.55) 1.6%(6.1) 5.76% 0.66% 100% 28m(25) 47h
12 6 0.18(0.55) 1.6%(6.1) 5.71% 0.66% 100% 27m(23) 45h

15% 91

8 2 0.51(1.6) 3.8%(12) 0.28% 0.03% 93% 2.9m(5.1) 4.9h
8 4 0.54(1.7) 4.0%(12) 0.32% 0.03% 93% 3.1m(4.4) 5.1h
8 6 0.56(1.7) 4.4%(14) 0.53% 0.05% 93% 3.0m(2.9) 5.1h
12 3 0.49(1.5) 3.8%(11) 0.69% 0.07% 94% 5.3m(6.5) 8.8h
12 4 0.49(1.5) 3.8%(11) 0.81% 0.09% 95% 5.7m(7.1) 9.4h
12 6 0.52(1.6) 4.0%(12) 0.85% 0.10% 95% 5.9m(7.0) 9.8h

30% 74

8 2 1.6(3.6) 10%(21) 1.25% 0.15% 91% 4.2m(6.3) 7.0h
8 4 1.6(3.7) 10%(21) 1.37% 0.14% 92% 4.5m(7.0) 7.4h
8 6 1.6(3.7) 10%(21) 1.73% 0.20% 84% 4.8m(8.2) 8.0h
12 3 1.5(3.2) 9%(21) 2.77% 0.36% 92% 6.6m(9.1) 11.1h
12 4 1.6(3.3) 9%(21) 2.92% 0.37% 91% 7.4m(10) 12.3h
12 6 1.4(3.1) 9%(20) 3.02% 0.38% 93% 8.0m(14) 13.3h

4-3 Comparison with other decentralized algorithms

The DECOP algorithm will be compared to state-of-the-art decentralized MAPF algorithms.
To the authors best knowledge, there is no other decentralized algorithm that applies parallel
local receding horizon optimization and therefore a number of other types of decentralized
algorithms was selected for comparison. The SCRIMP algorithm [38] is considered to be the
state-of-the-art decentralized RL MAPF algorithm and the algorithms reported in the com-
parison results of SCRIMP will be included as well which are the distributed, heuristic and
communication (DHC) algorithm [22] and the prioritized communication learning (PICO) al-
gorithm [21]. From other types decentralized algorithms the PIBT algorithm [24] is considered
state-of-the-art for decentralized fast MAPF algorithms. The extended version (windowed pri-
ority inheritance with backtracking (winPIBT) [25]) is still under development and doesn’t
offer a fundamental advantage yet.
The KPIs are initially set equal to those considered in the results of SCRIMP to allow for
straightforward comparison. In order to be able to properly compare the results according to
these KPIs, also the types of MAPF problem instances are equal to the ones considered in
SCRIMP. The first KPI that will be considered is the SR which is the percentage of MAPF
instances of a certain MAPF instance type that has been solved successfully. The second
KPI that is considered by SCRIMP is the problem depth (the amount of time steps it took
to solve a MAPF instance) from which the average of solved MAPF instances is taken. Two
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additional KPIs used in SCRIMP are left out because, 1) the first additional KPI refers to
the amount of occurring conflicts which is relatively low in SCRIMP and doesn’t occur in
DECOP, 2) the KPI showing to what extent an unsolved MAPF instance was successfully
solved has been replaced by a more focused analysis in section 4-5.

Table 4-4: selected weights corresponding to the designed cost function in Equation 3-1, resulting
in three variants of the DECOP algorithm

Variant w1 w2 w3

DECOP0 1 0 0
DECOP1 3 · w · (|Ri| − 1) 0 1
DECOP2 3 · w · |Ri| 1 0

Three different variants of the DECOP algorithm have been included which refer to different
cost functions with the same hyperparameters as selected in section 4-2.The weights assigned
corresponding to the cost function in Equation 3-1 to create different variants of the DECOP
algorithm and the selected values are shown in Table 4-4. The DECOP0 variant deploys a
vanilla variant of the node cost function that assigns a cost to each node corresponding only
to the combined incurred delay with respect to a node in the MDD product. The DECOP2

variant assigns a value of 3 · (problem depth) · |Ri| to w1 which is set such that any joint
path over the full planning horizon having the maximum amount of dependencies (3 types of
dependencies times the total depth times the total amount of selected agents) is still favoured
over a joint path having a single step of delay with no dependencies. In the DECOP2 variant
|Ri| − 1 is used instead of |Ri|, since the searching agent cannot have external dependen-
cies. DECOP1 and DECOP2 are therefore still able to find the local optimum solution (with
minimum delay) but can also distinguish between equal cost solutions by considering the
amount of external and internal dependencies respectively. Distinguishing between equal cost
solutions by favouring a solution with fewer dependencies is expected to improve induced
cooperation through parallel decision making and ameliorate the solvability of future local
problems regarding the receding horizon implementation.

Table 4-5 shows the results as reported by SCRIMP [38]. The displayed SCRIMP variant
is reported in [38] as "SCRIMP-local". The results of a suboptimal centralized algorithm
(OdrM* with inflation factor ε = 2.0 and a runtime limit of five minutes) as reported in
[38] are included as well as a reference. Overall, the variants of the DECOP algorithm show
very similar performance to the suboptimal centralized (ODrM∗) reference algorithm. In all
cases except for 30% 16 and 32 agents, the DECOP algorithm shows lower average problem
depths compared to PIBT and in all cases the DECOP variants report lower average problem
depths than any of the RL algorithms. For the 30% obstacle rate on all MAPF instance sizes,
both PIBT and the DECOP algorithm do report a lower success rate compared to SCRIMP.
Interestingly, the success rates on the 32 agent 30 by 30 map size differ significantly between
the different DECOP variants. To investigate this phenomenon, an in depth analysis will be
performed on for the 30 by 30 MAPF instance types.
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Table 4-5: Performance results with three variants of the DECOP algorithm compared to other
decentralized (RL) MAPF algorithms for different MAPF instance types. A value between brackets
(·) denotes the standard deviation to the corresponding mean value.

algorithm average problem depth success rate (SR)

8 agents in 10× 10 world with 0%, 15%, 30% obst. rate (columns)
ODrM* 12.64(2.13) 13.72(2.46) 16.16(4.03) 100% 100% 100%
DHC 14.34(5.08) 17.23(5.96) 29.82(20.93) 100% 98% 92%
PICO 17.35(12.39) 29.23(28.71) 35.04(26.93) 100% 63% 29%
SCRIMP 14.40(2.57) 18.30(18.84) 20.95(10.23) 100% 100% 97%
PIBT 13.45(2.62) 14.84(3.00) 17.52(8.70) 100% 99% 86%
DECOP0 12.30(2.35) 13.57(2.61) 15.78(4.77) 99% 96% 93%
DECOP1 12.25(2.30) 13.75(3.28) 15.51(4.38) 100% 97% 90%
DECOP2 12.26(2.42) 13.51(2.73) 15.54(4.57) 100% 99% 91%

16 agents in 20× 20 world with l0%, 15%, 30% obst. rate (columns)
ODrM* 27.38(3.63) 27.64(3.74) 34.61(6.55) 100% 100% 95%
DHC 29.15(4.66) 34.72(8.44) 55.71(26.75) 100% 100% 83%
PICO 29.83(5.80) 61.83(30.73) - 100% 18% 0%
SCRIMP 26.47(4.09) 28.46(3.43) 41.30(20.07) 100% 100% 97%
PIBT 27.76(4.25) 27.80(4.21) 35.17(6.90) 100% 98% 92%
DECOP0 26.80(4.16) 27.48(4.19) 36.00(8.82) 100% 92% 94%
DECOP1 26.76(4.16) 27.41(4.36) 36.16(8.71) 99% 94% 92%
DECOP2 26.84(4.04) 27.40(3.99) 36.26(8.15) 100% 99% 97%

32 agents in 30× 30 world with l0%, 15%, 30% obst. rate (columns)
ODrM* 42.97(4.62) 43.39(4.97) 53.95(10.43) 100% 100% 97%
DHC 48.64(17.54) 52.48(7.10) 91.29(29.25) 100% 98% 78%
PICO 65.14(10.30) - - 14% 0% 0%
SCRIMP 43.29(4.96) 46.53(7.00) 69.10(31.62) 100% 100% 97%
PIBT 44.19(4.78) 43.66(5.19) 52.37(7.42) 100% 100% 84%
DECOP0 43.28(4.74) 43.41(5.31) 56.53(9.49) 100% 99% 66%
DECOP1 43.20(4.69) 43.26(5.35) 55.52(9.56) 99% 95% 79%
DECOP2 43.32(4.70) 43.36(4.84) 55.60(9.96) 100% 98% 88%

4-4 In depth analysis together with the PIBT algorithm

The performance differences of the DECOP algorithm variants on the MAPF instance type
of 32 agents with a size of 30 by 30 presented in Table 4-5 are investigated using the KPIs
introduced in section 4-2. The planning results of the PIBT algorithm are added as a reference
as this algorithm is really fast and also complete for open maps[24]. The planning results
according to the introduced KPIs are shown in Table 4-6. The KPIs used in Table 4-6 are
mostly equal to the ones introduced in section 4-2 but the "expansion limit2" KPI has been
replaced by a "compliance" KPI. The compliance KPI denotes the amount of time steps in
which all agents were simultaneously able to selected a complying solution during the first
path securing iteration compared to the total number of planning rounds. The compliance
KPI therefore gives an indication of the extend to which cooperation was successfully induced
through the decentralized policy. The values with respect to all KPIs except the success rate

Master of Science Thesis Tjitze Karel Scheepstra



38 Empirical performance evaluation

are shown only with respect to the set of commonly solved MAPF instances which allows for
a better comparison. The planning results according to the introduced KPIs are shown in

Table 4-6: MAPF planning results for two different MAPF instance types with 0%, 15% and 30%
obstacle rates. The hyperparameters of the DECOP algorithm are set as described in section 4-2.
A value between brackets (·) denotes the standard deviation to the corresponding mean value.

obst. com.
method δ δ/depth

exp.
compl.

success average
rate maps limit1 rate runtime

32 agents on 30 × 30 map - 3.6% agent density

0% 99

PIBT 2.3(5.3) 14%(30) - - 100% instant
DECOP0 0.25(0.65) 1.4%(4.1) 13% 37% 100% 83m(52)
DECOP1 0.23(0.73) 1.3%(4.5) 2.8% 35% 99% 42m(21)
DECOP2 0.21(0.59) 1.1%(3.5) 2.0% 45% 100% 34m(16)

15% 93

PIBT 2.8(5.8) 17%(31) - - 100% instant
DECOP0 0.78(2.1) 4.0%(11) 0.20% 34% 99% 12m(7.5)
DECOP1 0.77(2.0) 3.9%(11) 0.20% 33% 95% 10m(5.7)
DECOP2 0.69(1.8) 3.5%(9.4) 0.30% 39% 98% 8.7m(4.4)

30% 49

PIBT 2.9(6.7) 13%(28) - - 84% instant
DECOP0 2.1(5.5) 8.4%(20) 1.85% 29% 66% 9.8m(25)
DECOP1 2.1(5.2) 8.4%(20) 1.57% 29% 79% 8.8m(17)
DECOP2 2.0(5.0) 8.2%(20) 1.56% 32% 88% 8.4m(16)

20 agents on 10 × 10 map - 20% agent density

0% 62

PIBT 0.93(2.1) 18%(36) - - 100% instant
DECOP0 0.46(1.2) 9.9%(24) 0.00% 37% 74% 0.9m(0.9)
DECOP1 0.49(1.3 10%(24) 0.00% 32% 87% 1.8m(1.8)
DECOP2 0.52(1.4) 11%(25) 0.00% 31% 86% 1.0m(1.0)

15% 43

PIBT 1.2(2.8) 16%(34) - - 88% instant
DECOP0 1.1(3.0) 14%(31) 2.10% 27% 71% 4.2m(11)
DECOP1 1.1(3.0) 14%(31) 2.23% 23% 74% 4.1m(8.6)
DECOP2 1.1(3.2) 15%(31) 1.94% 23% 72% 3.6m(9.4)

30% 3

PIBT 0.17(1.4) 1.6%(12) - - 44% instant
DECOP0 0.17(1.5) 1.5%(11) 3.23% 21% 17% 0.4m(2.6)
DECOP1 0.14(1.2) 1.6%(12) 5.08% 17% 22% 0.8m(4.8)
DECOP2 0.20(1.8) 1.8%(13) 7.59% 15% 29% 1.1m(6.6)

Table 4-6. Whereas the values with respect to the problem depth KPI of Table 4-5 between
the PIBT and DECOP did not seem to differ significantly, the delay and relative delay KPI
in table Table 4-6 show more significant differences. The compliance values are higher for the
variant of the DECOP algorithm that uses the amount of internal dependencies to distinguish
equal cost solutions (DECOP2) only for the 30 by 30 MAPF instance types which have a lower
agent density. Interestingly, for the MAPF instance type of 32 agents on a 30 by 30 open
map, the DECOP2 variant the node expansion limit is reached significantly fewer times by
any agent in the first path securing iteration compared to the other variants. This likely also
explains the significantly lower computation time. For the MAPF instance with 20 agents on
a 10 by 10 map, the patterns are less clear as the compliance value of the vanilla DECOP0

variant is higher compared to the other variants. In all cases, the DECOP0 variant reports
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a lower success rate compared to the extended variants. Note that the MAPF instance type
with 20 agents on a 10 by 10 map with a 30% obstacle density shows KPI values over just
3 commonly solved instances, therefore only the SR KPI is of statistical significance for this
MAPF instance type.
The results for the remaining MAPF instance types that were tested for the introduced
KPIs show similar but less explicit patterns in the respective values and can be found in the
Appendix section B-1.

4-5 Algorithm behaviour analysis

The unsolved MAPF instances of the DECOP algorithm as reported in the previous sections
can all be characterized according to (possibly a combination of) one of three scenarios.
Examples of these three scenarios will be reported in this section. Each example is a MAPF
problem instance from the 20x20 - 16 agents - 30% obstacle density problem set for which
no global solution was obtained. The examples all show the final implementation step before
either all agents would persist in recurring actions (stay at the same location or oscillate
between the same locations).

Too many agents requesting the same variable

Secondly, if a scenario requires coordination with a number of agents more than r, the DECOP
will likely fail to find a global solution. For example Figure 4-1b shows a scenario where five
agents have to coordinate the utilization of the same corridor. The goal of a blue agent at
(8,20) corresponds to the blue agent at (12,16). The goal location of the other blue agent
at (8,18) is not shown in this figure but this blue agent does have to cross this corridor in
opposite direction. Since the hyperparameter r was set to 4, the orange agent at (9,16) cannot
incorporate both blue agents at (8,18) and (12,16).

Alternation of desired path

Finally, in some cases an agent alternates between two feasible solutions by selecting the
implementation of a different solution each consecutive planning rounds. Figure 4-1a shows
a MAPF configuration in which the orange agent at (12,5) can choose between two routes
to evade the obstacles at (13,4) and (14,3). After selecting one of the two options and im-
plementing the first step (m = 1), the agent opts to use the other route instead, resulting in
persistent alternation of the same actions.

Multiple equal cost local solutions

Firstly, the local optimization problem might contain two solutions of identical cost and agents
participating in this local problem do not select the same desired local solution. An exam-
ple of this scenario is shown in Figure 4-2 where agent a1 (red at (1,13)) selects a different
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(a) MAPF problem instance that is not solved
because the orange agent at (12,5) alternates
between two different solutions in consecutive
planning rounds.
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(b) MAPF problem instance where more many
agents than the selected agent set size r = 4

have to coordinate the use of the same shared
variables (the corridor).

Figure 4-1: Exemplary scenarios in which the DECOP algorithm fails to attain a global solution

evasion manoeuvre than agent a2 (orange at(1,12)). Figures 4-2b and 4-2c show the selected
local solutions of agents a1 and a2 respectively. Clearly, the selected desired paths conflict at
t = 3. The higher success rate of the two variants of the DECOP algorithm that incorporate
the amount of dependencies in their cost function can probably be explained due to having
fewer occurrences of this scenario.
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(a) MAPF problem configuration

(b) path allocation
from a1 perspective

(c) path allocation
from a2 perspective

Figure 4-2: MAPF problem instance that is not solved due to agents choosing different equal
cost local solutions
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Chapter 5

Discussion

This chapter presents a reflection on the results reported in chapter 4. A number of conclu-
sions is drawn with respect to the performance of the Decentralized Optimization (DECOP)
algorithm both in comparison to other algorithms and regarding the algorithmic behaviour.
Finally, some suggestions for further investigation of different aspects of this type of frame-
work are provided.

5-1 Algorithm performance

It can be concluded from the presented results that the proposed DECOP algorithm yields
very effective solutions that are likely close to the global sum of costs (SOC) optimal solution.
For most considered multi-agent path finding (MAPF) instance types, the DECOP algorithm
reports a lower average problem depth compared to reinforcement learning (RL) algorithms
while it is guaranteed to be conflict free and requires no training. It is however questionable
if it can be concluded that the DECOP algorithm indeed consistently provides solutions with
a shorter problem depth as the average problem depth values in Table 4-5 only consider the
MAPF instances that have been solved by the respective algorithm. Therefore the conclusion
whether the DECOP algorithm indeed consistently provides solutions with a shorter problem
depth is highly dependent on the assumption that those MAPF instances that the algorithm
didn’t solve do not have a problem depth that is significantly longer compared to the average
problem depth. For example, an algorithm that solves only one MAPF instance out of
a hundred instances but does solve this instance with a problem depth of 1 will report a
deceptively good average problem depth performance. Overall, the results in Table 4-5 depend
on the assumption that the randomly created MAPF instances have comparable problem
depths.
To overcome this issue, the in-depth results in Table 4-6 report all values, except for the success
rate, only for the set of commonly solved MAPF instances. Another problem regarding the
key performance indicator (KPI) of average problem depth is that it provides no information
with respect to the paths of agents that arrive at their goal location before the last agent
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does. If one were to consider the makespan objective for the optimal MAPF problem as
described in subsection 2-1-1, this information would indeed not be relevant. For reasons
described in subsection 3-3-4, the makespan objective is not suitable for a receding horizon
MAPF algorithm and therefore the SOC objective function is used for optimization of the local
MAPF problems. Additionally, using the SOC objective function likely is more relevant in
practice as this objective can be adapted to accommodate a sequence of goal locations rather
than a one-shot setting. In this regard, information about paths of all agents participating in
a MAPF problem becomes relevant and therefore the KPIs of delay and relative delay have
been introduced in section 4-2.
From the in-depth results shown in Table 4-6, it can be concluded that all variants of the
DECOP algorithm consistently provide sets of paths that contain a lower combined delay
over all agents compared to the priority inheritance with backtracking (PIBT) algorithm.
The DECOP2 variant, which considers the total amount of internal dependencies for equally
delayed solutions, achieves a higher success rate and compliance value for the lower agent
density MAPF types that were considered. For the higher agent density MAPF type (20
agents on 10 by 10 map), no clear conclusion can be drawn with respect to the induced
cooperation based on the compliance values and success rates.
Similarly to the RL algorithms, the most challenging MAPF instances (and therefore unsolved
instances) are instances with a higher obstacle density. This is likely due to the fact that these
types of maps contain many corridors which pose a complex coordination task like the scenario
described in section 4-5 where too many agents request the same variables. Although MAPF
instances that require complex corridor coordination such as shown in Figure 4-1b can be
solved by increasing r, w and u, this approach doesn’t scale well. For example Figure 5-1
shows a similar case of an unsolved MAPF instance with more agents involved in the global
problem which consequently increases the chance of more agents participating in a complex
corridor situation. Since the (local) MAPF problem is proven to be of non polynomial (NP)
time complexity, the approach of extending sensing and optimization range would eventually
result in local MAPF problems that are too large to be solved in reasonable time. The
detrimental effect of scaling is also evident in the success rates of the SCRIMP algorithm
for MAPF instance types that were not reported in the results of Table 4-5. Whereas the
SCRIMP algorithm is able to achieve a near perfect success rate for all MAPF instance
types reported in this work, the success rates significantly drop for a MAPF instance type
of 128 agents on a 40 by 40 map with 15% and 30% obstacle density. This is also likely due
to cluttering of a large number of agents as a result of problematic scaling as displayed in
Figure 5-1, which might just be impossible to solve using a decentralized MAPF algorithm.
Secondly, the unresolved MAPF instance scenario shown in Figure 4-1a can likely be resolved
by increasing the number of implementation steps m. Increasing m to from m = 1 to m = 2
does implicate that the number of baseline selected agents (agents that can interfere with
the searching agents within m steps) will be higher but this increase is likely to avoid agents
alternating between two solutions.
The last scenario for which the DECOP algorithm was reported to fail in section 4-5 could be
resolved by adding more properties to different equal cost solutions which would allow agents
to distinguish equal cost solutions and subsequently follow the same policy. For the unresolved
MAPF instance showcased in Figure 4-2 for example, the decentralized path searching policy
could be extended such that in case of equal case solutions, a solution where agents pass each
other on the right is always selected.
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Figure 5-1: Example of an unsolved MAPF instance due to complex corridor coordination for a
20x20 size, 32 agents, 30% obstacle MAPF instance

5-1-1 Considered MAPF problems

From a general point of view, one might argue that the types of MAPF problems shown in
Figure 4-1a and Figure 5-1 are less relevant to real world (logistical) applications as it would
yield a very inefficient network, even in a centralized optimal setting. On the other hand,
these types of MAPF problems (compared to open maps and maps with 15% obstacle den-
sity) might be the only of the considered low agent density MAPF problem instance types
that incur coordination situations where a relatively large number of agents is located in near
proximity such as shown in Figure 5-1. To investigate this hypothesis, a MAPF instance type
was considered in Table 4-6 with a relatively higher agent density of 20% (compared to the
considered low agent density rates of ∼4%). Although many agents being present close to each
other on an open map is very different to a complex corridor scenario shown in Figure 5-1,
the success rates for the DECOP algorithm variants reported in Table 4-6 for a 20 by 20 map
with 20% agent density are indeed significantly lower compared to the same MAPF instance
size with a lower agent density. It can therefore be concluded that the DECOP algorithm
performs less well in scenarios where many agents are closely packed together. This is more
or less to be expected from this decentralized framework because an agent will assume that at
least one agent within its locally solved MAPF problem is able to move and can consequently
not accommodate situations in which this is impossible from a global perspective. Strategies
to overcome this issue will most certainly contain some form of induced communication like
the backtracking strategy of the PIBT algorithm or using external dependencies introduced
in subsection 3-2-2.

5-2 Conclusion

An overall conclusion is that in basic settings the DECOP algorithm works very well for
MAPF instances with a relatively low agent density. Increasing the respective hyperparame-
ters of the DECOP algorithm would not be an adequate approach to overcome the described
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challenges as it would not scale well and eventually create intractable local MAPF problems.
Although the DECOP algorithm is less effective for MAPF problems with a relatively high
agent density compared to the PIBT algorithm, the cooperation that the DECOP algorithm
is able to induce in complex corridor situations do yield a higher success rate for MAPF
problems with a relatively high obstacle density.
Table 5-1 shows a comparison of algorithm features where “++" denotes good performance,
“+" a slight advantage and “-" bad performance or not favourable for scalability. Since
SCRIMP and PIBT apply a decentralized policy, both algorithms exhibit good performance
with respect to the computational effort. The OrdM* algorithm requires centralized commu-
nication (and computation) and the PIBT algorithm demands induced sequential communica-
tion, both resulting in relatively bad performance with respect to the communicational effort.
The DECOP algorithm requires no training and reports a high (individual agent) efficiency.
The communicational effort in DECOP can be multi-step but the number of communication
rounds is bounded by the (maximum) number of connected agents. Besides being much more
efficient compared to the PIBT and SCRIMP algorithms, the DECOP algorithm can better
cope with complex corridor scenarios using a dedicated deadlock detection mechanism. Al-
though a higher computational effort is demanded by DECOP, this effort is distributed over
all agents in the system.

Table 5-1: Algorithm feature comparison

method training time efficiency communication computation
ODRM* ++ ++ - -
SCRIMP - + ++ ++
PIBT ++ - - ++
DECOP ++ ++ + +

5-3 Future work

This research was mainly aimed to propose a new approach for solving the MAPF problem in
a decentralized manner with high scalability. The reported results suggest that the proposed
approach could be very effective as it requires no training and the hyperparameters can be
tuned with respect to a particular MAPF problem type. To further investigate the charac-
teristics of the parallel decentralized decision-making mechanism the following directions can
be considered:

• the implementation of a decoupled MAPF optimization algorithm instead of the used
graph search coupled increasing cost tree search (ICTS) algorithm. Although increasing
the respective hyperparameters is argued to not scale well, a more efficient local opti-
mal MAPF algorithm would enable increasing the size of the set of baseline selected
agents which is expected to be beneficial to the performance in higher agent dense
environments.

• in coherence with the previous point, the path search is currently stopped if the itera-
tions exceed a certain limit. Ultimately there would be no iteration limit because the
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local MAPF problems should be able to be readily solved within reasonable time. Dis-
carding the iteration limit would enable further research into the induced cooperation
through shared policy decentralized decision-making over path allocation.

• further investigation into the compliance of the first path securing iteration in each
planning round. Instruments to consider are the weights of different dependencies in
the cost function and for example the type of dependencies to consider.

• investigation of heuristic search that for example favours having fewer dependencies
over delay, this mechanism could potentially further enable induced cooperation based
on a common decentralized planning policy.

• incorporating policies for scenarios where agents can recognize that they are stuck or
will get stuck, for example if agents have to fit through a single corridor.

• inclusion of some sort of priority values in the local optimization problem that are
depended on the amount of incurred delay such that the delay can be balanced in an
online manner.
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DECOP: a parallel local optimization framework for
decentralized cooperative multi-agent pathfinding

Karel Scheepstra, Azita Dabiri, Bilge Atasoy

Abstract—Multi-agent path finding (MAPF) is the task of
finding non-conflicting paths for multiple agents that operate
in a environment with shared resources. Finding an optimal
solution quickly becomes intractable for many applications and
consequently suboptimal methods are also explored extensively
in literature. This work presents the Decentralized Optimization
(DECOP) algorithm: a novel receding horizon control algorithm
that exploits insights from MAPF research as well as decen-
tralized control. In the proposed framework, each travelling
agent communicates with agents in its proximity to solve a local
MAPF problem that considers only a selected tractable number
of agents. Inter-agent cooperation and conflict free operation are
induced through applying a common local optimization policy
during parallel local optimization and through a subsequent
path reservation scheme based on random priorities. Inter-agent
communication consists of sharing respective route alternatives
from which additional information with regard to an agents’
entanglement can be inferred which can also be included in the
local optimization cost function.
Comparative results with other decentralized algorithms show
that the DECOP algorithm yields competitive results while guar-
anteeing conflict free operations, with limited required commu-
nication and without the need of any training time. Among many
degrees of freedom to be explored further, including information
about the entanglements of an agent’s route alternatives in
the common policy for local optimization yields an increase
in performance and suggests an increased extent of induced
cooperation.

Index Terms—Multi-agent pathfinding, receding horizon con-
trol, decentralized control.

I. INTRODUCTION

IN the transition towards automating transport operations
that take many shapes in modern day societies, many chal-

lenges remain. Advancements in communication, sensing, and 
computation technologies enable the replacement of human 
decision making by automated intelligent decision making. 
The main drivers behind this transition process are the increase 
of human safety, reduced energy consumption and monetary 
profits. C hallenges r ange f rom i ncluding v ulnerable, a nd in 
general, non-automated road users [1], [2] to coordinating 
hundreds of robots in automated warehouses [3]. This work 
aims to investigate how local coordination through limited 
communication can improve global performance in the Multi-
agent Pathfinding (MAPF) problem.
Multi-agent pathfinding i s t he t ask o f fi nding non-conflicting 
paths for multiple agents that operate in a environment with 
shared resources. The MAPF problem arises in many real

K. Scheepstra is with the Department of Maritime and Transport Technol-
ogy at the Faculty of Mechanical Engineering, Delft University of Technology, 
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world applications such as routing of robots in warehouses
[3], baggage handling [4], or even micro droplet manipulation
[5].

A. Related work

The MAPF problem is sometimes referred to as a pebble
motion on graph (PMG) problem, which is an early identified
variant of MAPF where only one pebble (agent) per time step
is allowed to be moved to an unoccupied node. It has been
proven that the PMG problem is solvable in polynomial time
in [6] and that solution feasibility can be checked in linear time
[7]. Predictably this also translates to solving MAPF problems
with parallel moves [8]. A feasible solution solution for a
MAPF problem is a set of non-conflicting paths. A MAPF
problem is well-formed if there exists a set of paths such that
none of these paths cross each other [9]. Besides a (possibly
non-unique) set of conflict free paths, a MAPF application
might consider some sort of global objective or cost function.
The MAPF objective is considered on a network level, as it
refers to the utilization effectiveness of a collection of shared
resources: the network itself. Mainly two types of global
objective are distinguished in MAPF research, firstly the sum
of cost (SOC) objective:

∑k
i=1

∑Ni

n=0 C(πi(n), πi(n + 1)),
which is the sum of each agent’s cost of travelling the edges
along the determined path where C( · , · ) denotes the
cost of traversing a particular edge. Secondly the makespan
objective: maxi≤i≤k Ni minimizes the amount of time (steps)
required before all agents have reached their goal node. It is
has been proven that the optimal MAPF problem is of NP-
hard complexity for both the SOC and makespan objective
[8]. Finding an optimal solution with respect to one of the two
introduced objectives therefore quickly becomes intractable for
many applications and consequently suboptimal algorithms are
also explored extensively in literature. In general, MAPF al-
gorithms will feature one or more of the following properties:

• optimality, a number of algorithms is introduced to
quickly obtain an optimal solution without exploring the
entire search space (e.g. [10], [11]). In order to make
algorithms more time efficient, (potentially bounded)
suboptimal variants of optimal MAPF algorithms have
also been developed (e.g. [12], [13], [14], [15]).

• completeness / feasibility, a complete MAPF algorithm
will always yield a feasible solution. Several algorithms
exist that yield feasible solutions for any MAPF problem
with at least two unoccupied nodes. Furthermore, [16]
points out that feasible solutions often exist for grid-
based MAPF problems that allow the cycle conflict with
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as many agents as nodes. A linear time algorithm to check
feasibility is introduced in [17]. A prominent example of
such an algorithm is the ”Push and rotate” algorithm [18].

• computational efficiency / tractability, a MAPF algo-
rithm is considered time efficient if its worst-case solving
time is polynomial in the graph size and is not exponential
in the number of agents [9]. For example the Hierarchical
Cooperative A* (HCA*) algorithm [19] introduces a
random hierarchy among agents and subsequently agents
plan their paths sequentially.

• compilation-based Compilation-based MAPF algorithms
reduce a MAPF problem to a formalism for which a
solver already exists. Examples of such formalism’s are
SAT, MILP, ASP and CSP, an overview of compilation-
based MAPF algorithms is provided in [20].

A centralized approach to optimal multi-agent path planning
suffers from tractability issues. This motivates the search for
suboptimal yet very usable algorithms. Alongside the devel-
opment of centralized (potentially bounded) suboptimal algo-
rithms, there is a growing interest in decentralized MAPF algo-
rithms. Decentralized algorithms apply decentralized decision-
making where different decision-making agents have access to
only a limited part of the problem. Work on decentralized al-
gorithms can roughly be divided into three different categories.
Firstly, a number of algorithms adapt a centralized MAPF
algorithm to work in a decentralized setting. For example the
DMAPP algorithm [21] introduces a communication protocol
to achieve a decentralized version of the HCA* algorithm
and the DisCof algorithm [22] adapts the Push and rotate
algorithm [18] to work in a decentralized setting through
induced communication. The second category of decentral-
ized algorithms applies multi-agent reinforcement learning
(MARL) to the MAPF problem. While the first applications
of MARL aimed to imitate an optimal centralized planner, the
most recent contributions focus explicitly on learning (multi-
step) decentralized communication (e.g. [23], [24], [25]). See
[26] for an overview of decentralized reinforcement learning
MAPF algorithms. The last category of decentralized MAPF
algorithms considers designing algorithms which apply fun-
damentally (non RL) decentralized decision-making through
(induced) communication. To the author’s best knowledge, the
only examples of algorithms that fall within this category are
the priority inheritance with backtracking (PIBT) algorithm
[27] and its extended version with longer planning windows:
winPIBT [28].
Three main challenges can be recognised in realizing a decen-
tralized MAPF algorithm: 1) identifying (possibly suboptimal)
subsets of agents and thereby establishing communicative links
between agents based on decentralized information, 2) the
communication protocol or information to be communicated
between agents and 3) the (re)planning strategy for individual
agents’ paths within a subset of agents to resolve or avoid
conflicts.

B. Scope and contribution

The scope of this research is limited to the evaluation
of a conceptional algorithm design that will be verified

through simulation. Furthermore, this work aims to apply the
widespread theoretical insights on solving the MAPF problem
attuned to the boundary conditions of real world systems, using
concepts of decentralized control theory.
The contribution of this work is threefold: 1) a novel frame-
work called the Decentralized Optimization algorithm (DE-
COP) for decentralized MAPF that applies parallel receding
horizon control is presented. 2) This work reports the first
receding horizon control algorithm designed for the MAPF
problem which was achieved by designing a terminal cost
function that can avoid deadlocks. 3) The promising concepts
that follow from route alternatives sharing that are developed
in this work open up a new research area into exploiting de-
pendency information to achieve induced cooperation through
a common decentralized policy.

C. Outline

The remainder of this paper is structured as follows: after
describing the formal problem definition in section II, the
framework is introduced in section III where subsequently
the DECOP algorithm is presented. The empirical simulation
results and algorithm evaluation are reported in section IV.
Finally, conclusions are drawn in section V, accompanied by a
discussion on the obtained results and the suggested directions
for future work.

II. PROBLEM DEFINITION

The notion of classical MAPF as defined in [29] is a
planning problem in which a node can be occupied by only
one agent and all agents can either move or wait (in parallel)
to a connected node in each time step. For a system consisting
of a number of k agents where A = {a1, . . . , ak}, |A| = k
describes the set of agents, the ith agent is referred to as ai.
The input to a classical MAPF problem is the 3-tuple ⟨G, s, g⟩.
The graph G = (V, E) is an undirected graph with nodes v ∈ V
connected through edges e ∈ E . The k-tuple s defines a list of
start nodes for all agents where si ∈ V denotes the start node
of the ith agent. Similarly, the k-tuple g defines a list of goal
nodes where gi ∈ V denotes the goal node of the ith agent.
The initial simulation time is denoted as t0 and marks the be-
ginning of the plan execution of each agent starting at its start
node. Time is furthermore discretized such that t = t0 + n · h
with n ∈ N0. The time step h is normally set to 1 and
traversing an edge usually takes exactly one time step (for
unweighted graphs). A single agent path for the ith agent is
defined by πi as a sequence of v ∈ V nodes. The single agent
path πi takes a time step n as an argument to denote the
particular node v that the ith agent occupies in time step n:
πi(n) = v. The number of nodes that an agent plans to occupy
(including wait actions, the start node and the goal node) is
denoted as |πi|, therefore the total number of actions in plan πi

is equal to Ni = |πi|−1. Agents can only traverse over edges
of the graph G therefore {πi(n), πi(n+1)} ∈ E or alternatively
an agent can wait at a node such that πi(n+1) = πi(n). The
solution to a MAPF problem is the set of k single agent plans
P = {π1, . . . , πk} such that the respective paths are non-
conflicting. In order to conclude that the solution of a MAPF
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problem is valid due to the absence of conflicts, the following
conflicts are defined:

• a node conflict: πi(n) = πj(n) ∀i, j|i ̸= j ∈ A, occurs
when two agents occupy the same node in the same time
step

• an edge conflict or swap conflict: πi(n) = πj(n+1) ∧
πi(n + 1) = πj(n) ∀i, j|i ̸= j ∈ A, occurs when two
agents start from connected nodes and traverse over the
same edge in the same time step

• a following conflict: πi(n + 1) = πj(n) ∀i, j|i ̸= j ∈
A, occurs when an agent traverses to a node that was
occupied by another agent in the previous time step

• a cycle conflict occurs when every agent moves to a node
that was occupied by another agent in the previous time
step, therefore a cycle conflict requires a number of c of
only following conflicts between a number of c agents
with c ≥ 3.

The type of MAPF problem that will be considered in this
research is the widely used grid as an abstracted graph,
which is also referred to as the “map”. Start coordinates, end
coordinates, and blocked coordinates are assigned randomly
with a set of unique start locations and a set of unique goal
locations. Each agent is assumed to have full static map
knowledge (obstacles), while information about other agents
has to be obtained through communication. Communication
links between agents are established based on Euclidean norm
proximity. Agents can execute one of the following five actions
in each time step: move up, down, left or right or wait at
current location. Apart from not using blocked coordinates,
the following inter-agent conflicts will not be tolerated: node
conflicts and edge conflicts. This paper considers a ”one-shot”
MAPF problem in which each agents has a single goal location
and agents will stay at their goal location. The path length
of an agent is equal to the last time step in which the goal
location is reached and the number of time steps it takes for
the last agent to reach its goal location is the “problem depth”.
A MAPF instance is considered to be “solved” if all agents
have successfully reached their goal in some finite time step.

III. DECOP FRAMEWORK

The framework proposed in this paper consists of a highly
scalable distributed MAPF algorithm in which agent ai can
communicate with a set of connected agents Γi(n) = {aj ∈
A
∣∣ ∥πj(n)− πi(n)∥ ≤ v} based on proximity with Euclidean

norm v. Each agent in parallel optimizes its own path using
local information. An agent considers a combined cost together
with the paths of selected agents in the set Ri(n) ⊆ Γi(n),
such that the number of selected agents less than or equal
to a tractable number of r agents: |Ri(n)| ≤ r. The working
principle of the algorithm is inspired by a framework presented
in [30] which applies cooperative local optimization for con-
tinuous linear systems.
Considering a limited number of nearby other agents yields
a tractable local MAPF problem. The local MAPF problem
that one particular agent solves is likely similar but not
identical to the local MAPF problems of its neighbours.
It is expected that agents will conclude on the same local

optimal evasion manoeuvres when applying the same local
optimization objective. This approach is motivated by a meta-
analysis of multiple search-based centralized optimal MAPF
algorithms which suggest that efficient algorithms explore
different combinations of local evasion manoeuvres in order
to select the optimal set of local evasion manoeuvres.
Agents traversing over a graph will likely be nearby different
agents in different time steps. To account for the alteration
in nearby agents, receding horizon control (RHC) is well
suited. This control strategy optimizes an agent’s actions over
a planning horizon w and implements a number of m ≤ w
actions, where usually m≪ w.
After local optimization, agents have to reach consensus with
other agents in their set of connected agents Γi(n) over
shared variables. The shared variables in this case are the
nodes and edges of the network in specific time steps. A
supplementary element of this research is to investigate the
type of information that is shared among agents and how
information about path alternatives can be used to ameliorate
parallel decision making.
Before formally introducing the DECOP algorithm, its features
and characteristics will be explained according to the structure
of the decision-making process as shown in Figure 1.

Fig. 1. DECOP decision-making process pipeline

A. Communicate shared information

A concept that was introduced (and consequently also
widely accepted as a result of proven effectiveness) in the
research area of decentralized MAPF algorithms, is multiple
step inter-agent communication. In the case of decentralized
MARL algorithms (e.g. [24], [25], [23]), it is left to a
reinforcement learning mechanism to infer what information
is passed between agents in either a single or multiple round
communication scheme. To the authors best knowledge, this
work presents the first research on the type of information
that is to be shared among agents in decentralized parallel
decision-making MAPF.
The selected foundation of the type of shared information
is a multi-value decision diagram (MDD) for path finding
that was introduced in [11]. A MDD contains the set of
route alternatives that an agent can take to reach a desired
node in the final (bottom) layer of the MDD, according to a
specified delay. A MDD is a powerful concept because it scales
linearly with the size of the map [12]. Furthermore, comparing
two MDD’s can also be done relatively quickly. Each agent
constructs a MDD to reach its goal node and shares the first
w layers with its set of connected agents. An MDD of agent
ai with a considered amount of δ delay is denoted as MDDδ

i .
Figure 2 shows an exemplary MAPF instance where each

colour represents an agent and the corresponding path alter-
natives with zero individual delay δ are indicated. Figure 3
shows the corresponding MDD’s with w = 4 and δ = 0,
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Fig. 2. Exemplary MAPF instance with w = 4 and δ = 0 from the
perspective of agent a2(orange): agents a1(red), a3(blue) and a4(purple)
belong to the set of connected agents Γ2(n) and R2 = Γ2(n)

agents traverse to a next layer of their MDD in each time
step starting from the top layer. The coloured dashed boxes in
Figure 3 indicate nodes that are also present in the same layer
of the MDD of the agent with the respective colour of the box.
For each shared node, agents are said to share a dependency
which refers to the fact that both selecting the particular node
in the particular time step as it would result in a node conflict.
Equivalently edge dependencies are considered, however that
type of dependency doesn’t occur in this particular example.
Combining the individual MDD’s of Figure 3 into feasible

(a) (b) (c) (d)

Fig. 3. Individual MDD’s corresponding to the exemplary MAPF instance in
Figure 2 for agents a1(a), a2(b), a3(c), a4(d)

combinations results in a joint solution set called the MDD
product, as shown in Figure 4. In this new type of data
structure, the colour of the boxes represents the respective
agent involved in the MDD product. Additionally, the dash
type of a box represents a specific type of dependency (with an
unspecified agent). The dash type distinguishes types of depen-
dencies with respect to the set of agents connected (Ri) to the
”searching agent” which is agent a2 in this case. An external
dependency between agents (aj , ap) indicates a dependency
of any agent aj ∈ Γi(n) with another agent ap /∈ Γi(n).
Similarly, for an internal dependency between (aj , ap), both
agents aj , ap ∈ Γi(n) belong to the set of selected agents.
Finally, an internal dependency with the searching agent is
also indicated.

B. Path selection from local optimization

The input of an agent’s local MAPF optimization prob-
lem are the MDD’s that were received from selected agents
(aj ∈ Ri). The MDD’s are appended with additional node
and edge properties as shown in Figure 3. Subsequently, each
agent in parallel solves a local MAPF problem by performing
a graph search on the local MDD product (set of feasible
joint solutions), as shown in Figure 4, according to a common
objective.
Two types of global objectives were introduced in MAPF
literature, namely the sum of cost (SOC) objective and the
makespan objective. The SOC objective refers to the sum of
all path lengths while the makespan objective considers only
the length of the longest path (which is equal to the problem
depth). These objectives refer to the global state of the system
whereas for RHC, agents are likely not to reach their goal
within the planning horizon. The sum of intermediate delays
is therefore introduced as an objective to comply with the
windowed planning mechanism. Intermediate delay is defined
as the number of additional time steps that an agent has to
travel within the planning horizon in a single planning round,
compared to its shortest path to goal. Contrary to the generic
MAPF objectives, the intermediate delay objective is more
focused on individual agent objectives as it can take into
account the minimum amount of time steps required to reach
an agent’s goal. With respect to the generic MAPF objectives,
one can consider the minimum maximum intermediate delay
as the confined interpretation of the makespan objective and
the minimum total intermediate delay as the confined inter-
pretation of the SOC objective. The confined interpretation of
the makespan objective is less suitable for windowed MAPF
planning, for example in a scenario where at least one agent
has a delay equal to the full planning horizon as different
solutions with respect to other agents cannot be distinguished
using this objective.
The MDD product is explored through a graph search and the
cost of a new node in the MDD product is equal to the cost
of the originating node together with the sum of all agent’s
intermediate delay increase:

c(nodenew) = c(nodeold) +

|Ri|∑
n=1

∆δn (1)

When applying the node cost function specified in Equation 1
to the exemplary MDD product in Figure 4, all nodes will
be of cost zero since the considered delay in the individual
MDD’s was zero. To be able to differentiate between solutions
in these special scenarios, an additional cost can be considered
for nodes with external and internal dependencies resulting in
a weighted node cost function:

c(nodenew) =c(nodeold) + w1

|Ri|∑
n=1

∆δn + w2

|Ri|∑
n=1

int.dep.(an)

+ w3

|Ri|−1∑
n=1

ext.dep.(an) (2)
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Fig. 4. Feasible combinations of individual agent MDD’s ∈ R2 with w = 4 and δ = 0, resulting in a joint solution set called the MDD product. The dash
type distinguishes types of dependencies with respect to the set (R2) of agents connected to the searching agent (a2)

Note that the number of agents over which the external
dependencies are summed in Equation 2 is |Ri| − 1 since
the searching agent cannot have external dependencies.
A consequence of considering a planning horizon that is
shorter than the (minimum) problem depth in RHC are impli-
cations as a result of the ”horizon effect”. The horizon effect
concerns information about changes in system state or acting
disturbance(s) that aren’t considered in planning as they lie
outside the planning horizon. To capture the effect of states
and disturbances on the trajectory cost that will occur after the
planning horizon, RHC and model predictive control (MPC)
usually add a terminal cost that is only dependent on the final
state.
The main implication of horizon effects in windowed MAPF
is the fact that a local optimum solution with respect to
the sum of intermediate delays might be a deadlock con-
figuration. Planning over a horizon of sufficient length such
that all considered agents can reach their goal location can
never result in a deadlock as the corresponding cost would
be infinite (agents will not reach their goal). In windowed
planning the cost corresponding to a deadlock can be finite
as the cost evaluated is the incurred intermediate delay over
a finite planning horizon. A deadlock will occur in windowed
planning if the joint delay cost of avoiding a deadlock is
higher compared to the cost of being stuck (equally) in the
deadlock. Figure 5 shows an example of a windowed MAPF
optimization problem that will result in a deadlock. The cost
function applied in Figure 5(a) is the baseline cost function c0
that doesn’t consider internal and external dependencies. The
weights of the node cost function in Equation 2 are therefore
set as c0(1, 0, 0) = c(w1, w2, w3). Since the orange and blue
agents both have to incur intermediate delay to let the red
agent pass, the combined cost is lower when incurring delay
in the deadlock configuration shown in Figure 5(a). Figure
5(b) shows the MAPF optimization result when applying the
terminal cost function cT (node) which assigns a penalty of
value F to a node in the final layer of the MDD product if
there is no agent decreasing its distance to goal in the final

1 2 3 4

1

2

3

4

(a)

1 2 3 4

1

2

3

4

(b)

Fig. 5. Result of local MAPF optimization without (a) and with (b) terminal
cost function cT for w = 5, T = 3

time step:

η(node) = ∀aj ∈ Ri | πj(w) ̸= gj

θ(node) = ∀aj ∈ η | decrease count(aj) ≥ T

cT (node) =

{
F, if η ̸= ∅ ∧ θ = ∅
0, if η = ∅ ∨ θ ̸= ∅

(3)

The set η contains the agents considered in the local MAPF
optimization problem that are not at goal and its subset θ
contains only agents that are considered to be ”decreasing”.
A threshold value T is introduced which specified the number
of consecutive time steps an agent has to decrease its distance
to goal to be considered as a decreasing agent.
Introducing the threshold T avoids agents taking one step back
and decrease their distance to goal only in the final time step to
avoid the deadlock penalty. Inevitably, in some cases a ”truly”
decreasing agent might have less consecutive decreasing steps
than the threshold, T is therefore left as a hyperparameter
to be obtained through tuning. Additionally, cases in which
agents deliberately have to take detours will also be wrongly
penalized by the penalty function cT which underlines the
challenge of inferring a deadlock scenario in a decentralized
manner.
Table I shows the results of applying a RHC policy with

implementation window length m = 1 and considers apply-
ing the baseline cost function c0 compared to applying c0
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TABLE I
NUMBER OF AGENTS THAT REACH THEIR GOAL AS A RESULT OF RHC

IMPLEMENTATION WITH m = 1 FOR THE MAPF PROBLEM INSTANCE OF
FIGURE 5 FOR DIFFERENT PLANNING HORIZON LENGTHS w

w 9 8 7 6 5 4 3
c0 3 3 2 1 1 1 0

c0 + cT 3 3 3 3 3 2 0

T 3 3 3 3 3 2 1

combined with the terminal cost penalty function cT . The
minimum problem depth in this scenario is 9 and evidently
all agents can reach their goal for a planning horizon w = 9
when applying c0. For a shorter planning horizon of w = 7,
the red and orange agent will reach their goal and for an even
shorter planning horizon only the orange agent or no agent
will reach its goal. Supplementing the cost function c0 with
penalty function cT allows all agents to reach their goal for
a planning horizon as short as w = 5, where the decreasing
threshold values T are tuned accordingly.

C. Path negotiation

In a decentralized setting, agents inherently have access to
limited information about the global problem when solving
a local optimization problem in parallel. Consequently, the
desired paths obtained from solving local MAPF optimization
problems might render infeasible from a global perspective.
An illustrative example is shown in Figure 6 with commu-
nication range v = 3.5 and r = 6. The communication
range for both the red and green agent are indicated with
large circles of their respective colour. Local optimization
results with a resulting delay of zero are shown from the
perspectives of the red agent Figure 6(a) and the green agent
Figure 6(b). Although the desired paths are locally feasible,
one can easily see that the desired paths for the blue and
purple agents from the perspective of respectively the red and
green agent, are incompatible. Moreover, for this exemplary
MAPF problem there exists no solution where all agents
can reach their goal location with zero delay. However, all
agents will select a desired path with zero delay because
they can all find a feasible local solution with zero delay. To

(a) (b)

Fig. 6. Result of local MAPF optimization without (a) and with (b) terminal
cost function cT for w = 5, T = 3

resolve any remaining conflicts a random prioritized planning
scheme is therefore introduced in which each agents draws
a random priority value from a uniform distribution and

the conflict over shared variables is awarded to the agent
with the highest priority. Note that such a scheme, which
is analogous to the HCA* MAPF algorithm [19], is not
complete for MAPF problems that are not well-formed. A
number of MAPF algorithms introduce schemes that employ
dynamic priorities using communication to overcome this
problem such as in the DMAPP algorithm [21] or the PIBT
algorithm [27]. In order to keep the communication effort
tractable, a fixed priority scheme combined with a conservative
baseline solution will be implemented. The baseline solution
of an agent entails a number of m wait actions such that
πi(n) = πi(n+1) = . . . = πi(n+m) and represents a solution
that is always feasible. To ensure that the baseline solution
is always feasible, each agent is deterred from selecting any
other agent’s baseline solution as a desired path within its
planning horizon. Filtering other agent’s baseline solutions
introduces the restriction of follower conflicts during the first
m steps, making this scheme more conservative. Since the
“fixed priority - baseline feasible solution” mechanism is only
activated in special scenarios such as described in Figure 6, it
is expected that the combined approach of local optimization
and receding horizon implementation will compensate for the
drawbacks of a fixed priority mechanism.
The described decentralized MAPF framework is presented in

Result: parallel conflict free action selection
1 Input ¡A, s, g
2 initialize tsim = 0
3 Each agent in parallel, do
4 draw εi from a uniform distribution (0, 1)
5 πi(0)← si
6 while tsim < tfinal do
7 construct Γi by Euclidean distance norm v
8 construct MDDδ

i , δ = w
9 filter baseline solutions of aj ∈ Γi from MDDδ

i

10 select first w levels of MDDδ
i and share with Γi

11 infer dependencies and append to MDDδ
i

12 share new MDD with Γi to infer external
dependencies

13 sort Γi according to Manhattan distance
14 while solution i = INVALID do
15 collect agents with valid solutions: Λi ⊆ Γi

16 filter valid solutions of aj ∈ Λi from MDDδ
i

17 search MDD product to select desired path
18 communicate selected path to Γi

19 if no conflicts with received paths of higher
priority agents then

20 solution i = VALID
21 end
22 end
23 πi(tsim + 1, . . . , tsim +m)← actioni
24 tsim = tsim +m
25 end
Algorithm 1: DECOP: receding horizon path negoti-
ation algorithm with conservative baseline solution

pseudo-code in Algorithm 1. In each planning round, lines 6-
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25 are executed where line 9 represents realising the baseline
solution scheme. The allocation of shared variables according
to the random priority scheme in lines 19-20 ensures that
each path securing iteration (lines 14-22) at least one of the
agents in a set of connected agents will be able to secure a
path. Note that if induced cooperation is achieved successfully
through the common local path optimization policy of line
17, all agents can simultaneously secure a path in the first
iteration. Algorithm 2 shows the decentralized common path
selection policy which is used in line 17 of Algorithm 1. The
local MAPF problem is no longer considered tractable if a
maximum number of P nodes has been expanded without
obtaining a final solution. Consequently, a greedy path search
is performed in line 7 of Algorithm 2 which doesn’t consider
any other agents. In order to potentially increase the size of
the set Ri, agents that are already at goal are initially added to
the set of ignored agents Σi in line 2 of Algorithm 2 as it can
be assumed that these agents will stay at their goal location.
If it turns out that after local optimization a path of any agent
ai, aj ∈ Ri crosses the goal location of an ignored agent,
this ignored agent is removed from the set Σi and the path
selection process is repeated.

Result: desired path of agent ai with length w
1 Input Γi, {MDDδ

j ∀aj ∈ Γi}
2 initialize the set of ignored agents Σi ⊆ Γi with

agents that were at goal in tsim − 1
3 while int.solution i = INVALID do
4 construct Ri = Γi \ Σi, such that |Ri| ≤ r
5 select path as a result of optimal MDD product

graph search according to node cost function c
(Eq. 2) with terminal cost cT (Eq. 1)

6 if # expanded nodes has exceeded P then
7 choose greedy path
8 int.solution i = VALID
9 else if any of the paths of agents in Ri contains a

node of an agent in Σi then
10 remove this agent from Σi

11 else
12 int.solution i = VALID
13 end
14 end

Algorithm 2: Decentralized path selection policy

IV. EMPIRICAL EVALUATION

After describing the experiment setup and selection of
hyperparameters, the performance evaluation is presented. The
designed algorithm is named the decentralized optimization
(DECOP) algorithm for an easier reference. The empirical
performance evaluation based on simulation results consists
of three parts. Firstly, DECOP is compared to a number
of state-of-the-art decentralized MAPF algorithms. Secondly,
DECOP is compared to one specific fast decentralized MAPF
algorithm, namely the PIBT algorithm [27], with an in-depth
analysis on individual agent performance.

A. Experimental setup and hyperparameter selection

The following properties will be specified for the consid-
ered grid map MAPF problem instances: (square) map size,
density of (random) obstacles, set of unique start locations,
set of unique goal locations. A MAPF instance type specifies
these properties and consequently one hundred instances are
generated. A MAPF instance is considered to be solved if a
set of conflict free paths has been obtained such that all agents
reach their goal location.
The experiments are run on a server with an Intel Xeon E5-
2637 (v3) CPU (4 cores) and although the DECOP algorithm is
a fundamentally decentralized algorithm that can be executed
in parallel by multiple CPU, in this simulation setup the
path securing iteration is preformed in a sequential manner
by a single CPU. The hyperparameters shown in Table II
are selected from the performance results for MAPF instance
type: 20 (square) map size, 16 agents (4% agent density),
0%, 15% and 30% obstacle density. The hyperparameter
combinations of r = 4, 5, w = 8, 12 and T = 2, 3, 4, 6 were
evaluated for this MAPF instance type (reported in Appendix
section A). Whereas performance with respect to the delay
KPI’s was similar for all considered combinations, the selected
combination of hyperparameters exhibited a better combined
performance on success rate and times the node expansion
limit was reached.

To investigate the consideration of internal and external

TABLE II
OVERVIEW OF HYPERPARAMETERS USED BY THE DECOP ALGORITHM

parameter description value
w length of the planning horizon 12
δ maximum delay included in all MDD w
m length of the implementation horizon 1
T agent decreasing threshold 3
P maximum number of nodes to expand 20000
r desired size of the set of selected agents (|Ri|) 4
F terminal cost penalty value 100
v Euclidean norm for communication range 5

dependencies, three different variants of the DECOP algorithm
will be evaluated with node cost functions: c0 = c(1, 0, 0) +
cT , c1 = c (3 · w · (|Ri| − 1), 0, 1) + cT , c2 = c(3 · w ·
|Ri|, 1, 0) + cT . Where c is the cost function presented in
Equation 2 and cT is the terminal cost function in Equation 3.
The weights of cost functions c1 and c2 are set such that the
internal and external dependencies are only used to differen-
tiate between equal cost solutions. A single step of delay is
equal to the maximum number of dependencies (three types
times the number of agents) over the full planning horizon w.
Note that c1 uses |Ri| − 1 as the number of agents since the
searching agent cannot have external dependencies.

B. Performance comparison

The DECOP algorithm will be compared to the state-of-the-
art decentralized RL algorithm SCRIMP [25] and the state-of-
the-art decentralized fast algorithm: PIBT [27]. In SCRIMP a
policy is trained in a MARL setting, including a two step
learned communication with agents that are within a range
of 5. The PIBT algorithm applies dynamic priorities and
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induced communication and it is proven to be complete for
open maps (no obstacles). The two used KPI’s by SCRIMP
are the problem depth, which is the number of time steps it
takes to attain a global solution for a MAPF instance, and
the success rate of successfully solved MAPF instances. The
planning results of SCRIMP and OdrM* reported in Table III
were not run but instead taken directly from tables II and
IV in [25]. OdrM* is a suboptimal centralized algorithm
with an inflation factor ε = 2.0 and a runtime limit of
five minutes. The PIBT and DECOP algorithms were both
run on the same dataset of 100 MAPF instances and the
DECOP2 variant represents the best performing variant of
DECOP with node cost function c2. Note that both the DECOP
and PIBT algorithms are guaranteed to be conflict-free while
the SCRIMP algorithm usually contains a (small) number
of conflicts in its solutions. Overall, the DECOP algorithm

TABLE III
PERFORMANCE COMPARISON WITH OTHER DECENTRALIZED (RL) MAPF

ALGORITHMS FOR DIFFERENT MAPF INSTANCE TYPES. A VALUE
BETWEEN BRACKETS (·) DENOTES THE STANDARD DEVIATION TO THE

CORRESPONDING MEAN VALUE.

method average problem depth success rate
8 agents in 10× 10 world with 0%, 15%, 30% obst. rate (columns)

ODrM* 12.6(2.1) 13.7(2.5) 16.2(4.0) 100% 100% 100%
SCRIMP 14.4(2.6) 18.3(18.8) 21.0(10.2) 100% 100% 97%
PIBT 13.5(2.6) 14.8(3.0) 17.5(8.7) 100% 99% 86%
DECOP2 12.3(2.4) 13.5(2.7) 15.5(4.6) 100% 99% 91%

16 agents in 20× 20 world with l0%, 15%, 30% obst. rate (columns)

ODrM* 27.4(3.6) 27.6(3.7) 34.6(6.6) 100% 100% 95%
SCRIMP 26.5(4.1) 28.46(3.4) 41.3(20.1) 100% 100% 97%
PIBT 27.8(4.3) 27.8(4.2) 35.2(6.9) 100% 98% 92%
DECOP2 26.8(4.0) 27.4(4.0) 36.3(8.2) 100% 99% 97%

32 agents in 30× 30 world with l0%, 15%, 30% obst. rate (columns)

ODrM* 43.0(4.6) 43.4(5.0) 54.0(10.4) 100% 100% 97%
SCRIMP 43.3(5.0) 46.5(7.0) 69.1(31.6) 100% 100% 97%
PIBT 44.2(4.8) 43.7(5.2) 52.4(7.4) 100% 100% 84%
DECOP2 43.3(4.7) 43.4(4.8) 55.6(10.0) 100% 98% 88%

shows very similar performance to the suboptimal centralized
(ODrM∗) reference algorithm. In all cases, except for 30% 16
and 32 agents, the DECOP algorithm reports lower average
problem depths compared to PIBT and in all cases the DECOP
has a lower average problem depth than SCRIMP. For the 30%
obstacle rate on all MAPF instance sizes, both PIBT and the
DECOP algorithm do report a lower success rate compared to
SCRIMP.
Two additional KPI’s are introduced to accommodate the
(more individualistic) objective function of minimum inter-
mediate delay, namely the total delay δ and the relative delay
δ/depth where “depth” is the shortest path with zero delay. The
relative delay is limited to 100%. Table IV shows the per-
formance results according to the new KPI’s for the different
variants of the DECOP algorithm and the PIBT algorithm.
Instead of taking an average over the MAPF instances that an
algorithm solved successfully (as was done in Table III), the
values reported in Table IV are averaged only with respect
to the set of MAPF instances that all considered algorithms

solved successfully to get a more representative performance
comparison. Additionally, Table V shows the success rates of
the PIBT algorithm and considered DECOP variants for the
same 100 MAPF instances for each MAPF instance type.
To represent the extent to which cooperation was successfully

TABLE IV
PERFORMANCE RESULTS FOR TWO DIFFERENT MAPF INSTANCE TYPES
WITH 0%, 15% AND 30% OBSTACLE RATES OVER A SET OF COMMONLY

SOLVED MAPS. A VALUE BETWEEN BRACKETS (·) DENOTES THE
STANDARD DEVIATION TO THE CORRESPONDING MEAN VALUE.

obst com.
method δ

δ
depth EX CP

average
rate maps runtime

32 agents on 30 × 30 map - 3.6% agent density

0% 99

PIBT 2.3(5.3) 14%(30) - - instant
DECOP0 0.25(0.65) 1.4%(4.1) 13% 37% 83m(52)
DECOP1 0.23(0.73) 1.3%(4.5) 2.8% 35% 42m(21)
DECOP2 0.21(0.59) 1.1%(3.5) 2.0% 45% 34m(16)

15% 93

PIBT 2.8(5.8) 17%(31) - - instant
DECOP0 0.78(2.1) 4.0%(11) 0.20% 34% 12m(7.5)
DECOP1 0.77(2.0) 3.9%(10) 0.20% 33% 10m(5.7)
DECOP2 0.69(1.8) 3.5%(9.4) 0.30% 39% 8.7m(4.4)

30% 49

PIBT 2.9(6.7) 13%(28) - - instant
DECOP0 2.1(5.5) 8.4%(20) 1.85% 29% 9.8m(25)
DECOP1 2.1(5.1) 8.4%(20) 1.57% 29% 8.8m(17)
DECOP2 2.0(5.0) 8.2%(20) 1.56% 32% 8.4m(16)

20 agents on 10 × 10 map - 20% agent density

0% 62

PIBT 0.93(2.1) 18%(36) - - instant
DECOP0 0.46(1.2) 9.9%(24) 0.00% 37% 0.9m(0.9)
DECOP1 0.49(1.3) 10%(24) 0.00% 32% 1.8m(1.8)
DECOP2 0.52(1.4) 11%(25) 0.00% 31% 1.0m(1.0)

15% 43

PIBT 1.2(2.8) 16%(35) - - instant
DECOP0 1.1(3.0) 14%(30) 2.10% 27% 4.2m(11)
DECOP1 1.1(3.0) 14%(31) 2.23% 23% 4.1m(8.6)
DECOP2 1.1(3.2) 15%(31) 1.94% 23% 3.6m(9.4)

30% 3

PIBT 0.17(1.4) 1.6%(12) - - instant
DECOP0 0.17(1.5) 1.5%(11) 3.23% 21% 0.4m(2.6)
DECOP1 0.14(1.2) 1.6%(12) 5.08% 17% 0.8m(4.8)
DECOP2 0.20(1.8) 1.8%(13) 7.59% 15% 1.1m(6.6)

TABLE V
SUCCESS RATE COMPARISON BETWEEN DIFFERENT VARIANTS OF DECOP

AND THE PIBT ALGORITHM FOR BOTH A LOWER AND A HIGHER AGENT
DENSITY MAPF INSTANCE TYPE

method 32 agents on 30 × 30 20 agents on 10 × 10
obstacle rate 0% 15% 30% 0% 15% 30%

PIBT 100% 100% 84% 100% 88% 44%
DECOP0 100% 99% 66% 74% 71% 17%
DECOP1 99% 95% 79% 87% 74% 22%
DECOP2 100% 98% 88% 86% 72% 29%

induced, the EX and CP values are reported in Table IV. The
“expansion limit” (EX) indicates the number of times that the
node expansion limit P was reached (in line 17) by at least one
agent in each first path-securing iteration compared to the total
number of planning rounds. The “compliance” (CP) denotes
the number of times all agents were simultaneously able to
selected a complying solution during the first path securing
iteration compared to the total number of planning rounds.
Evidently, for the 30 by 30 MAPF instance types with a
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relatively low agent density, the compliance values are consis-
tently higher for the DECOP2 variant which uses the amount
of internal dependencies to distinguish equal cost solutions.
Interestingly, for the DECOP2 variant on the MAPF instance
type of 32 agents on a 30 by 30 open map, the node expansion
limit is reached significantly fewer times by any agent in the
first path-securing iteration compared to the other variants
which likely also explains the lower computation time. For the
MAPF instance with 20 agents on a 10 by 10 map, the patterns
are less clear as the compliance value of the vanilla DECOP0

variant is higher compared to the other variants. In all cases,
the DECOP0 variant reports a lower success rate compared to
the extended variants. Note that the MAPF instance type with
20 agents on a 10 by 10 map with a 30% obstacle density
shows KPI values over just 3 commonly solved instances,
therefore only the success rate KPI is of statistical significance
for this MAPF instance type.

V. DISCUSSION

It can be concluded from the presented results that the
proposed DECOP algorithm yields very effective solutions
that are likely close to the global SOC optimal solution.
For most considered MAPF instance types, the DECOP
algorithm reports a lower average problem depth compared
to RL algorithms while it is guaranteed to be conflict free
and requires no training.
Table VI shows a comparison of algorithm features where
“++” denotes good performance, “+” a slight advantage
and “-” bad performance or not favourable for scalability.
Since SCRIMP and PIBT apply a decentralized policy,
both algorithms exhibit good performance with respect to
the computational effort. The OrdM* algorithm requires
centralized communication (and computation) and the PIBT
algorithm demands induced sequential communication, both
resulting in relatively bad performance with respect to the
communicational effort. The DECOP algorithm requires no
training and reports a high (individual agent) efficiency.
The communicational effort in DECOP can be multi-step
but the number of communication rounds is bounded by
the (maximum) number of connected agents. Besides being
much more efficient compared to the PIBT and SCRIMP
algorithms, the DECOP algorithm can better cope with
complex corridor scenarios using a dedicated deadlock
detection mechanism. Although a higher computational effort
is demanded by DECOP, this effort is distributed over all
agents in the system.

TABLE VI
ALGORITHM FEATURE COMPARISON

method training time efficiency communication computation
ODRM* ++ ++ - -
SCRIMP - + ++ ++
PIBT ++ - - ++
DECOP ++ ++ + +

From the in-depth results shown in Table IV, it can
be concluded that all variants of the DECOP algorithm

consistently provide sets of paths that contain a lower
combined delay over all agents compared to the PIBT
algorithm. Of the three variants, the DECOP2 variant, which
considers the total amount of internal dependencies for
equally delayed solutions, achieves a higher success rate
(Table V) and compliance value (Table IV) for the lower
agent density MAPF types that were considered. For the
higher agent density MAPF type (20 agents on 10 by 10
map), no clear conclusion can be drawn with respect to the
induced cooperation based on the compliance values and
success rates.
Similarly to the RL algorithms, the most challenging MAPF
instances (and therefore unsolved instances) are instances
with a higher obstacle density. This is likely due to the fact
that these MAPF problems are usually not well-formed or
contain corridors through which many agents have to pass
(simultaneously). Although MAPF instances that require such
complex corridor coordination can be solved by increasing r,
w and u, this approach doesn’t scale well as the number of
agents to consider will eventually render intractable.
Many of the MAPF instances that were not solved by the
DECOP algorithm failed as a result of agents choosing
different solutions from a set of equal cost solutions. This
shortcoming might be resolved by considering additional
properties during path selection such as “always pass on the
right”.

VI. CONCLUSION AND FUTURE WORK

This research introduced a novel approach for solving the
MAPF problem in a decentralized manner with high scal-
ability. In the proposed DECOP algorithm, agents achieve
induced cooperation through solving a tractable local MAPF
problem. Local optimal solutions are obtained in parallel and a
communication protocol is executed to achieve global conflict-
free operation using only local information.
The reported results suggest that the proposed approach could
be very effective as it requires no training and the hyper-
parameters can be tuned with respect to a particular MAPF
problem type. To further investigate the characteristics of
the parallel decentralized decision-making mechanism, many
research directions can be considered, for example:

• the implementation of a more computationally efficient
decoupled MAPF optimization algorithm instead of the
used graph search coupled ICTS algorithm.

• further investigation into the compliance of the first path
securing iteration in each planning round. Instruments to
consider are for example the weights of different depen-
dencies in the cost function and the type of dependencies
to consider.

• investigation of heuristic search that for example favours
having fewer dependencies over delay, this mechanism
could potentially improve induced cooperation.

• design a policy to overcome complex corridor scenarios,
or deadlocks in general, in a decentralized manner

• introduce priority values in the local optimization prob-
lem that are dependent on the amount of incurred delay
such that the delay can be balanced in an online manner.
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the total number of first path securing iterations (# planning
rounds × # agents). Reaching the node expansion limit forces
an agent to choose a greedy path instead of applying the
common decentralized policy. Table VII shows a Monte-Carlo

TABLE VII
MAPF PLANNING RESULTS ON A 20X20 MAP WITH 16 AGENTS WITH

DIFFERENT OBSTACLE RATES. DIFFERENT VALUES OF HYPERPARAMETERS
w (PLANNING HORIZON) AND T (DECREASING THRESHOLD) ARE GIVEN
FOR r = 4. THE ACTION IMPLEMENTATION LENGTH m IS EQUAL TO 1. A

VALUE IN BRACKETS (·) DENOTES A STANDARD DEVIATION FROM THE
CORRESPONDING MEAN VALUE

type w T δ δ
depth EX EX2 SR average

runtime

0%⁄100

8 2 0.19(0.60) 1.7%(6.3) 0.00% 0.00% 100% 3.4m(2.0)
8 4 0.19(0.60) 1.7%(6.3) 0.00% 0.00% 100% 3.3m(1.9)
8 6 0.20(0.65) 1.7%(6.5) 0.07% 0.00% 100% 3.6m(2.1)
12 3 0.19(0.59) 1.6%(6.2) 0.71% 0.09% 100% 9.3m(6.7)
12 4 0.19(0.59) 1.6%(6.2) 0.78% 0.09% 100% 9.1m(6.6)
12 6 0.19(0.58) 1.6%(6.2) 0.78% 0.09% 100% 9.4m(6.8)

15%⁄91

8 2 0.54(1.5) 4.1%(12) 0.00% 0.00% 93% 1.2m(1.2)
8 4 0.59(1.7) 4.5%(13) 0.04% 0.00% 92% 1.3m(1.1)
8 6 0.62(1.7) 4.9%(14) 0.40% 0.04% 94% 1.5m(1.4)
12 3 0.55(1.5) 4.2%(12) 0.12% 0.01% 92% 2.6m(2.4)
12 4 0.55(1.5) 4.2%(12) 0.24% 0.02% 92% 2.5m(2.5)
12 6 0.56(1.6) 4.2%(12) 0.28% 0.03% 94% 2.7m(2.7)

30%⁄82

8 2 2.1(4.1) 12%(23) 0.20% 0.02% 86% 1.7m(2.6)
8 4 2.2(4.3) 12%(23) 0.10% 0.01% 89% 1.9m(2.9)
8 6 2.2(4.3) 13%(24) 0.55% 0.05% 87% 2.2m(3.1)
12 3 2.0(4.1) 12%(23) 1.03% 0.09% 94% 3.4m(6.0)
12 4 2.0(4.1) 12%(23) 1.13% 0.10% 94% 3.4m(5.7)
12 6 2.1(4.4) 12%(23) 1.30% 0.11% 92% 3.9m(6.4)

simulation for different combinations of hyperparameters w
and T for an selected agent set size r = 4. The node expansion
limit is P = 20000, the communication range is v = 5 and
the length of the implementation horizon is m = 1.
Similarly Table VIII shows a Monte-Carlo simulation for a
selected agent set size r = 5.

TABLE VIII
MAPF PLANNING RESULTS ON A 20X20 MAP WITH 16 AGENTS WITH

DIFFERENT OBSTACLE RATES. DIFFERENT VALUES OF HYPERPARAMETERS
w (PLANNING HORIZON) AND T (DECREASING THRESHOLD) ARE GIVEN
FOR r = 5. THE ACTION IMPLEMENTATION LENGTH m IS EQUAL TO 1. A

VALUE IN BRACKETS (·) DENOTES A STANDARD DEVIATION FROM THE
CORRESPONDING MEAN VALUE

type w T δ δ
depth EX EX2 SR average

runtime

0%⁄100

8 2 0.18(0.56) 1.6%(5.9) 1.53% 0.13% 100% 13m(10)
8 4 0.18(0.56) 1.6%(5.9) 1.53% 0.13% 100% 13m(10)
8 6 0.19(0.63) 1.7%(6.4) 1.60% 0.14% 100% 12m(10)
12 3 0.18(0.58) 1.7%(6.9) 6.44% 0.71% 100% 26m(22)
12 4 0.18(0.55) 1.6%(6.1) 5.76% 0.66% 100% 28m(25)
12 6 0.18(0.55) 1.6%(6.1) 5.71% 0.66% 100% 27m(23)

15%⁄91

8 2 0.51(1.6) 3.8%(12) 0.28% 0.03% 93% 2.9m(5.1)
8 4 0.54(1.7) 4.0%(12) 0.32% 0.03% 93% 3.1m(4.4)
8 6 0.56(1.7) 4.4%(14) 0.53% 0.05% 93% 3.0m(2.9)
12 3 0.49(1.5) 3.8%(11) 0.69% 0.07% 94% 5.3m(6.5)
12 4 0.49(1.5) 3.8%(11) 0.81% 0.09% 95% 5.7m(7.1)
12 6 0.52(1.6) 4.0%(12) 0.85% 0.10% 95% 5.9m(7.0)

30%⁄74

8 2 1.6(3.6) 10%(21) 1.25% 0.15% 91% 4.2m(6.3)
8 4 1.6(3.7) 10%(21) 1.37% 0.14% 92% 4.5m(7.0)
8 6 1.6(3.7) 10%(21) 1.73% 0.20% 84% 4.8m(8.2)
12 3 1.5(3.2) 9%(21) 2.77% 0.36% 92% 6.6m(9.1)
12 4 1.6(3.3) 9%(21) 2.92% 0.37% 91% 7.4m(10)
12 6 1.4(3.1) 9%(20) 3.02% 0.38% 93% 8.0m(14)
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Appendix B

B-1 Supplementary results

Table B-1: MAPF planning results on a 10x10 map with 8 agents with different obstacle rates.
The hyperparameters of the DECOP algorithm are set as described in section 4-2. A value between
brackets (·) denotes the standard deviation to the corresponding mean value.

obst. com.
method δ δ/depth

exp.
compl.

success average
rate maps limit1 rate runtime

8 agents on 10 × 10 map

0% 99

PIBT 1.0(2.2) 16%(32) - - 100% instant
DECOP0 0.22(0.59) 3.6%(11) 0.00% 67% 99% 0.5m(0.3)
DECOP1 0.21(0.60) 3.6%(11) 0.00% 66% 100% 0.5m(0.3)
DECOP2 0.19(0.54) 3.4%(11) 0.00% 72% 100% 0.6m(0.4)

15% 93

PIBT 1.5(3.0) 21%(36) - - 99% instant
DECOP0 0.79(1.7) 11%(23) 0.16% 57% 96% 0.6m(1.4)
DECOP1 0.81(1.8) 11%(23) 0.16% 59% 97% 0.7m(1.3)
DECOP2 0.76(1.6) 11%(23) 0.24% 63% 99% 0.8m(1.2)

30% 78

PIBT 2.1(4.3) 23%(38) - - 86% instant
DECOP0 1.2(2.5) 14%(29) 1.24% 62% 93% 1.1m(2.1)
DECOP1 1.3(2.7) 15%(30) 1.16% 58% 90% 1.1m(1.9)
DECOP2 1.2(2.6) 15%(30) 1.41% 63% 91% 1.3m(2.2)
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Table B-2: MAPF planning results on a 20x20 map with 16 agents with different obstacle
rates. The hyperparameters of the DECOP algorithm are set as described in section 4-2. A value
between brackets (·) denotes the standard deviation to the corresponding mean value.

obst. com.
method δ δ/depth

exp.
compl.

success average
rate maps limit1 rate runtime

16 agents on 20 × 20 map

0% 99

PIBT 1.4(3.6) 12%(29) - - 100% instant
DECOP0 0.19(0.58) 1.6%(6.2) 0.72% 51% 100% 9.2m(6.8)
DECOP1 0.19(0.88) 1.6%(6.6) 0.38% 51% 99% 6.7m(4.5)
DECOP2 0.14(0.47) 1.2%(4.5) 0.38% 63% 100% 5.5m(3.8)

15% 89

PIBT 1.8(3.9) 15%(30) - - 98% instant
DECOP0 0.53(1.5) 4.0%(12) 0.12% 51% 92% 2.5m(2.4)
DECOP1 0.54(1.5) 4.1%(12) 0.21% 52% 94% 2.4m(3.0)
DECOP2 0.52(1.5) 4.0%(12) 0.16% 58% 99% 2.0m(1.6)

30% 81

PIBT 3.0(5.9) 18%(33) - - 92% instant
DECOP0 2.0(4.5) 11%(23) 0.83% 48% 94% 3.2m(5.3)
DECOP1 2.0(4.1) 11%(22) 0.84% 49% 92% 3.6m(8.0)
DECOP2 2.0(4.1) 12%(23) 0.63% 51% 97% 3.5m(4.9)
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Glossary

List of Acronyms

MAPF multi-agent path finding

PMG pebble motion on graph

SAT boolean satisfiability

MILP mixed integer linear programming

ASP answer set programming

CSP constraint satisfaction

CBS conflict-based search

SOC sum of costs

ICTS increasing cost tree search

ID independence detection

SAPF single-agent path finding

HCA∗ hierarchical cooperative A∗

WHCA∗ windowed hierarchical cooperative A∗

PPS Parallel Push-and-Swap

CO-WHCA∗ conflict oriented windowed hierarchical cooperative A∗

PIBT priority inheritance with backtracking

OAt optimal anytime algorithm

winPIBT windowed priority inheritance with backtracking

MARL multi-agent reinforcement learning

RL reinforcement learning

LMAPF lifelong multi-agent path finding

GCN graph convolutional network

FOV field of view
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60 Glossary

DHC distributed, heuristic and communication

PICO prioritized communication learning

DCC decision causal communication

PRIMAL pathfinding via reinforcement and imitation multi-agent learning

PRIMAL2 pathfinding via reinforcement and imitation multi-agent learning - lifelong

MDD multi-value decision diagram

LTI linear time-invariant

MAPD multi-agent package and delivery

MRTA multi-robot task allocation

MDD product MDD product

SCRIMP scalable communication for reinforcement- and imitation-learning-based
multi-agent pathfinding

KPI key performance indicator

IoT internet of things

RHC receding horizon control

MPC model predictive control

NP non polynomial

SR success rate

DECOP Decentralized Optimization

List of Symbols

Γi(n) The set of connected agents based on proximity to the searching agent

Λi From the perspective of agent ai, the set of agents within the set of connected
agents (⊆ Γi) that have already secured a path during a planning round

A Set of k agents

G = (V, E) Transportation network graph

P = {π1, . . . , πk} Solution to a MAPF problem as a set of k single agent plans

Ri(n) The tractable set of selected agents which the searching agent considers for local
optimization

πi Single agent path for the ith agent

ai The particular ith agent

ai The searching agent from whose perspective the algorithm is considered

C( · , · ) Cost of traversing a particular edge

e ∈ E Single edge in a set of edges that represent transportation links

g List of goal nodes where gi ∈ V denotes the goal node of the ith agent

P Maximum number of nodes to expand from the MDD product in a single local
optimization graph search
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r The number of agents considered tractable for finding the optimal solution in
reasonable time for the respective multi-agent path finding (MAPF) problem

s List of start nodes for all agents where si ∈ V denotes the start node of the ith

agent

T Threshold that specifies the number of consecutive actions in which an agent
should decrease its distance to goal in order to be considered a "decreasing agent"

t = t0 + n · h with n ∈ N
0 Discretized time with time step h

t0 Initial simulation time

v Value of the Euclidean norm that defines the maximum distance that agents can
be apart to allow for communication

v ∈ V Single node in a set of nodes that represent junctions of links

MDDδ
i MDDup to δ steps delay

agent number:ai∈A → multi-value decision diagram (MDD) for agent i with δ
steps of incurred delay
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