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ABSTRACT 
In the evaluation of existing bridges and viaducts, relying solely on a desk study is often inadequate 
for determining their structural reliability. Performing a proof load test provides valuable field data 
that offers detailed information about the structural integrity. However, the relation between the mag-
nitude of the load and the structural reliability is not immediately clear. This study addresses the chal-
lenges associated with determining the target load and highlights the uncertainties that play a key 
role. A case study is presented that shows the time-dependent character of the structural reliability 
and the influence of an informative and a weakly informative prior distribution in a Bayesian context. 
It is shown how both past traffic loads and a proof load test may contribute to the proven strength of 
a structure. The described method provides a starting point towards a flexible approach for proof load 
testing in which structure-specific knowledge levels and requirements are considered.
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1. Introduction

Due to the constant aging of infrastructure, increased traffic 
load and traffic intensities, methods are explored by which 
the reliability of existing road bridges and viaducts can be 
assessed. In case limited information of the structure is 
available or its condition is of concern, load testing may be 
used to obtain additional information about the structure. 
Historically, before complex structural analysis was com-
monplace, load testing was regularly performed prior to 
opening a bridge to the public. In a number of countries 
performing a load test before use is still required 
(Lantsoght, van der Veen, de Boer, & Hordijk, 2017b).

Three types of load testing may be distinguished: a diag-
nostic test, a proof load test and a collapse test. A diagnostic 
load test is performed at moderate load levels to gain 
improved understanding of the distribution of forces, stiff-
ness of materials or structural components, fixity of connec-
tions, composite action, etc. The measurements are typically 
used to adjust the structural (finite element) model and/or 
its input parameters. During a proof load test the level of 
load is typically much higher. The intent of this test is to 
prove that a bridge or viaduct can satisfactorily carry the 
traffic live loads. The method of load application varies 
from heavy vehicles to loading frames with ballast blocks. A 
load test in which the load is continuously increased until 
failure occurs is referred to as a collapse test. This type of 

test is used to determine the capacity of the bridge and 
study the mechanisms leading to failure (Lantsoght, 2019a).

Examples of proof load tests in the USA, Denmark and 
the Netherlands are provided in Zarate Garnica, Lantsoght, 
and Yang (2022). In the Netherlands, the tests were carried 
out as a precursor to proof load tests demonstrating suffi-
cient structural reliability. In these pilot tests, the loads were 
continually increased until collapse was established. One of 
the pilot tests was performed on the prestressed concrete T- 
beam bridge Vechtbrug (Ensink et al., 2018). In the test, use 
was made of a hydraulic jack installed in the loading frame 
to apply a concentrated load (Figure 1).

In proof load testing the magnitude of the load to be 
applied, or target load, is of particular importance. If the, 
relatively large, target load is successfully carried by the 
structure then it has proven to be sufficiently structurally 
reliable for future use. In contrast to desk studies and 
numerical verification methods, different uncertainties play 
a role during proof load testing. In addition, the condition 
of the structure may be of particular concern due to the 
effect of deterioration or other time-dependent processes 
(Ellingwood, 1996).

In this article, which is an extension of De Vries et al. 
(2022), it is examined how the structural reliability of rein-
forced concrete bridges and viaducts can be established by 
proof load testing. From the literature study, the challenges 
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in determining the target proof load and the associated 
uncertainties are highlighted. An approach to address the 
challenges is suggested and illustrated by a case study.

2. Literature review

2.1. International standards

Proof load testing is not a standardised assessment proced-
ure in many countries. If national guidance is lacking, 
standards or guidelines from other countries can provide 
useful insight into accepted practices. In the USA, the 
Manual for Bridge Evaluation (MBE) (AASHTO, 2018) is 
used as a guideline for diagnostic and proof load testing. 
The target proof load is expressed in terms of the regular 
load model and is magnified by a proof load factor (Xp). Its 
default value (1.4) was derived in a basic probabilistic ana-
lysis (Lichtenstein, 1993) that did not address the challenges 
described in this article. Suggested improvements to the 
probabilistic background are provided in De Vries, 
Lantsoght, Steenbergen, and Naaktgeboren (2023). Another 
relevant American standard is the ACI 437.2 M (ACI, 
2013a) which describes the requirements for proof load test-
ing of existing concrete buildings including loading proto-
cols and acceptance criteria.

Recently the German committee for reinforced concrete 
published a new version of its guideline for proof load tests 
on concrete structures (DAfStb, 2020). The guideline is 
intended for buildings, but refers in more general terms 
such to structures and components. The magnitude of the 
proof load is expressed in a format that resembles the load 
effect in Equation (6.10) of EN 1990:2019 (CEN, 2019). An 
interesting aspect of the guideline is the consideration of 
multiple similar components. It is recognised that two or 
more components of a structure may not be exactly the 
same but may be very similar. Similarity is to be expected 
when a component occurs multiple times and the same 
design applies (e.g. the floors in a building). The additional 

uncertainty introduced by not testing every component is 
compensated by increasing the test load slightly compared 
to the case where only each component is tested. The 
increase depends on the total number of components (ele-
ments), the number of elements tested (sample size) and the 
coefficient of variation (COV) associated with the material 
that governs failure (Marx, 2019).

2.2. State-of-the-art

2.2.1. Proof load testing
Proof load testing is still an active field of research and con-
tinues to gain attention due to the growing need for versa-
tile assessment methods for existing structures (Lantsoght 
et al., 2017b). It is desirable that the assessment of infra-
structure is not overly conservative because that may lead to 
the replacement or upgrading of bridges that are actually 
satisfactory. Proof load magnitudes can vary depending on 
the load rating, dead/live load ratios, degradation, bridge 
age, reference period and prior service loads (Faber, Val, & 
Stewart, 2000). Recent advances in measurement techniques 
and the treatment of proof load testing within a reliability- 
based decision-making context are described in Lantsoght 
(2019b). In Casas and G�omez (2013) proof load factors are 
presented that were developed as part of the large scale 
ARCHES (Assessment and Rehabilitation of Central 
European Highway Structures) project. The study presents a 
sophistication with respect to current code-based approaches 
by making use of recent traffic load data and differentiating 
the case where bridge documentation is available and the 
case where it is not.

Because the desired remaining life of existing structures 
is often less than the normative design life (e.g. 50– 
100 years), flexibility in choosing an appropriate reference 
period is needed (Vrouwenvelder & Scholten, 2010). The 
reference period holds significance in the context of struc-
tural reliability as it considers the time-dependent nature of 

Figure 1. Collapse test being performed in October, 2016 on the Vechtbrug in The Netherlands (De Vries, Lantsoght, Steenbergen, & Fennis, 2022).
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reliability. Using a time-dependent reliability analysis, it is 
possible to directly determine if the structural reliability is 
sufficient for the desired remaining lifespan. An early 
description of the time-dependence in relation to proof load 
testing is found in Spaethe (1994). During the proof load 
test the reliability of the structure is low, due to the rela-
tively large load that is applied, but afterwards reliability 
increases – in case of a successful test. In more recent works 
by Schacht, Bolle, and Marx (2019) and Frangopol, Yang, 
Lantsoght, and Steenbergen (2019), the decrease of reliability 
with time in case of deterioration is also recognised. In the 
recent developments on proof load testing the link with 
structural reliability is recognised. However, the aspects in 
which the proof load testing situation is markedly different 
from the design situation are not sufficiently recognised and 
addressed. The incomplete understanding may lead to over-
conservative assessment methods or potentially unsafe 
situations.

2.2.2. System reliability
The assessment of structures by proof load testing is mark-
edly different from the conventional design procedure for 
new structures. In proof load testing, only the entire sys-
tem’s performance can be observed, whereas in the design 
process, verifications are typically conducted at the compo-
nent level rather than the system level. Therefore, system 
reliability is of particular interest to proof load testing. A 
system may be thought to be comprised of multiple compo-
nents. In this scheme, the components may act in parallel 
or in series. In addition, the combined performance of a 
group of elements may interact with one component, or 
another group. In the context of system failure a diagram of 
the interaction is called a fault tree (Fussell, 1975).

Various methods may be used to calculate the failure 
probability of a system. The Monte Carlo Simulation (MCS) 
is a straightforward method that is always applicable, but it 
is computationally expensive (Metropolis & Ulam, 1949). 
For better computational efficiency, the equivalent planes 
method (Roscoe, Diermanse, & Vrouwenvelder, 2015) is 
used in this article. The method is based on the equivalent 
component method (Gollwitzer & Rackwitz, 1983) and the 
first-order system reliability method described by 
Hohenbichler and Rackwitz (1982). The reliability of the 
individual components may be determined using the first- 
order reliability method (FORM) (Hasofer & Lind, 1974), 
the second-order reliability method (SORM) (Breitung, 
1984) or any other method that also provides the influence 
coefficients of the random variables.

2.2.3. Reliability updating
Proof load testing as a means to assess the performance of a 
structure in relation to its structural reliability was recog-
nised in the 1980s, with pioneering work by Grigoriu and 
Hall (1984), Lin and Nowak (1984), and Rackwitz and 
Schrupp (1985). Proof load testing is starting to be consid-
ered in the light of maintenance and durability. In particu-
lar, the so-called ‘updating’ of structural reliability as 

performed on the basis of Bayesian theory provides the 
opportunity to incorporate various sources of information. 
The theory can provide a mathematical basis for the 
updated distributions of the reliability (Yuefei, Dagang, & 
Xueping, 2014).

The more generally applicable Bayesian decision theory is 
also used in the context of proof load testing. It can provide 
decision support and the identification of information to aid 
in modelling and monitoring of structures (Schmidt et al., 
2020). In Bayesian decision theory, today often mentioned 
in the context of value of information, the state of informa-
tion about a structure at a given point in time results in 
three possible types of analysis: prior analysis, posterior ana-
lysis and pre-posterior analysis (Zhang, Lu, Qin, Th€ons, & 
Faber, 2021). Each stage in the analysis has its own set of 
possibilities (E, X, A, H), dependent on earlier choices or 
outcomes (Figure 2).

The collecting strategy (E) involves selecting informative 
observations or experiments (X) to enhance the accuracy of 
the posterior analysis. Decision alternatives (A) represent 
available choices prior to obtaining new information, while 
random outcomes (H) depict uncertain events associated 
with each chosen alternative. All possible paths lead to cer-
tain consequences or costs (C), which may also include the 
risk of losing human life. Proof load testing may be viewed 
as a source of information and a pre-posterior analysis can 
be used to determine its value (Nishijima & Faber, 2007). A 
decision analytic approach was developed for reclassifying 
bridges using proof load testing information and pre-poster-
ior decision analysis (Kapoor, Christensen, Schmidt, 
Sørensen, & Th€ons, 2023).

3. Challenges and suggested approach

The literature at the interface between proof load testing 
and structural reliability has been briefly described. In rela-
tion to a full probabilistic treatment of proof load testing, it 
is believed that a number of aspects deserve further atten-
tion. These aspects, and their combined usage, give rise to 
the challenges and the suggested approach described in the 
following subsections.

3.1. Time-dependence

The time-dependent nature of structural reliability may be 
addressed by using an annual reliability safety format. In 
this way, flexibility with regard to the remaining functional 
life span is obtained (De Vries et al., 2022). Considering the 
time dependence is also beneficial in relation to the proven 
strength by past traffic loads. In a sense, every truck passing 
a bridge may be viewed as a test, contributing to the ser-
vice-proven strength of the bridge (Wang, Ellingwood, & 
Zureick, 2011). Standard texts on reliability theory describe 
the concept of proven strength and degradation (or wear 
out) via the ‘bathtub curve’ of the failure probability (Smith, 
2005).

STRUCTURE AND INFRASTRUCTURE ENGINEERING 3



3.2. Stop criteria and structural reliability

During the proof load test signs of distress may appear 
when the load is gradually increased towards the target 
load. To test whether distress occurs, stop criteria may be 
evaluated. Stop criteria typically address unwanted structural 
behaviour, but act on a measurable property (indicator). For 
example, excessive strains indicate that the reinforcement is 
yielding, then a stop criteria on the strains is formulated. In 
the German guideline for proof load testing (DAfStb, 2020) 
various criteria are provided. Also in the Czech Republic, 
Slovakia, Spain, Switzerland, Poland and Hungary guidelines 
with stop criteria are available (Lantsoght, Yang, Van der 
Veen, Hordijk, & De Boer, 2019). The effectiveness of vari-
ous stop criteria for proof load tests is studied in Zarate 
Garnica and Lantsoght (2021). In the United States of 
America acceptance criteria apply and may be found in ACI 
437.2 M-13 (ACI, 2013b). Acceptance criteria are used to 
evaluate the state of the structure or component after the 
test.

The link between structural reliability, after and during 
the load test, and the formulation of stop criteria including 
safety margins needs to be explored. If the safety margins of 
stop criteria are too stringent, the proof load test may be 
aborted long before the structure is actually near its max-
imum capacity. Theoretically, the capacity of a structure 
may be extrapolated from the observed behaviour (e.g. loca-
tion and width of cracks, deflection, etc.) at low levels of 
loading. However, this approach has not been applied in 
practice or thoroughly studied yet.

3.3. Knowledge level

A flexible method is needed that can utilise various types of 
information. Various data sources and their influence on 
the state of information are collected in Figure 3. A balance 
should be sought between how much information is col-
lected and analysed prior a proof load test and regarding 
the proof load test itself as the primary source of informa-
tion (Kapoor, Schmidt, Sørensen, & Th€ons, 2019). It is sug-
gested to follow a Bayesian approach in which the state of 

information plays a key role in structural reliability predic-
tions (De Vries et al., 2022). In this approach, large uncer-
tainties may be introduced purposely as ‘objective’ low 
informative priors (Ditlevsen & Vrouwenvelder, 1994). If 
available, other broad prior distributions following from 
basic information (bridge span, traffic type, etc.) may be 
included.

3.4. System-level assessment

In a system-level assessment, the performance of multiple 
components and spatial variability is incorporated. In add-
ition to the physical components of a bridge, its cross-sec-
tions may also be regarded as components. By modelling 
the bridge as a system including correlations the reliability 
analysis can address the associated uncertainties directly (De 
Vries et al., 2022). Also here Bayesian analysis can be uti-
lised to update the system reliability (joint PDF) with 
incomplete and uncertain information about a limited num-
ber of parameters (Schneider, 2020).

An example of a simplified bridge with two spans is pro-
vided in Figure 4. In this case only load and spatial vari-
ation in the longitudinal direction is considered (and not 
over the bridge width). The structural schematisation with a 
distributed load indicates three common design checks: 
bending moment at midspan (blue), support moment 
(green) and shear force near the support (orange). The cor-
responding cross-sections are indicated in the lower part of 
the figure. Because of spatially varying material properties 
and execution details other cross-sections may be critical. In 
Figure 4, these cross-sections have been drawn with the 
same colour, but transparently.

4. Methods

To address the challenges and implement the suggested 
approach discussed in Section 3, a number of probabilistic 
methods are required. The methods described in the follow-
ing subsections will be utilised in the case study (Section 5).

Figure 2. Analysis type depending on the state of information (De Vries et al., 2022).
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4.1. System reliability

Calculating the system reliability using the equivalent planes 
method works on the basis of two components. The (linear-
ised) limit state functions Zi of two components may be 
written using the reliability index (bi) of the component and 
the influence coefficients (aij) of all random variables pre-
sent in the system (Roscoe et al., 2015):

Z1 ¼ b1 þ a11U11 þ a12U12 þ � � � þ a1nU1n (1a) 

Z2 ¼ b2 þ a21U21 þ a21U21 þ � � � þ a2nU2n (1b) 

In this equation, Uij are standard normally distributed 
random variables that are statistically independent (i.e. 
uncorrelated) within the component. However, auto-correl-
ation qj ¼ q(U1j, U2j) may exist. In case one or more ran-
dom variables are used in both components, correlation 

Figure 3. State of information considering various information sources (De Vries et al., 2022).

Figure 4. Visualisation of the cross-sections to be assessed in a system-level assessment (De Vries et al., 2022).
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between the two limit state functions exists and it is calcu-
lated via:

q ¼ qðZ1, Z2Þ ¼
Xn

j¼1
a1ja2jqj (2) 

Using the component correlation coefficient q, the limit 
state functions of the two components may be expressed 
using just two independent standard normally distributed 
random variables (U1 and U2):

Z1 ¼ b1 þ U1 (3a) 

Z2 ¼ b2 þ qU1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
U2 (3b) 

It should be noted that standard normal random varia-
bles U1 and U2 are unrelated to the random variables Uij in 
Equation (1a) and (1b). The same holds for correlation coef-
ficient q used in Equation (3) and the correlation coeffi-
cients denoted as qj in Equation (2).

In case of a parallel system, failure occurs if components 
1 and 2 fail. In a series system, failure occurs if component 
1 or 2 fails. In the latter case the system failure probability 
(of only these two components) Pf,or is calculated via:

Pf , or ¼ Pf ;1 þ Pf ;2 − Pf ;and (4) 

where Pf,1 ¼ P(Z1 < 0), Pf,2 ¼ P(Z2 < 0) and Pf,and ¼ P(Z1 
< 0 \ Z2 < 0). The last probability may be rewritten to a 
conditional probability such that it may be easily computed 
using a standard reliability method such as FORM (Hasofer 
& Lind, 1974).

In case of more components, the combination process 
needs to be repeated several times until just one component 
remains. Each time two components are combined to give a 
new component that replaces the two original components. 
The most accurate results are obtained when the compo-
nents with the highest correlation between the limit state 
functions are combined first in every step (Gong & Zhou, 
2017).

4.2. Time-dependent reliability analysis

4.2.1. Limit state functions
The limit state function used in a time-dependent analysis is 
the same as used for a regular probabilistic analysis. The 
main difference is in the reference period used for the vari-
able loads. In a regular probabilistic analysis, the reference 
period of the load effect will be large, commonly 50– 
100 years, but if the time-dependence is explicitly studied it 
will be small. As discussed in Section 3.1, the reference 
period is chosen as one year, resulting in annual reliability 
values. Because of the time-dependence auto-correlation of 
the random variable becomes important. Normally only the 
variable loads will be uncorrelated in time.

The limit state function for the probabilistic analysis of 
structural failure may be formulated in terms of resistance 
(R) and the load effect fib (2016). The load effect is split 
into the contributions from the dead load (GDL), the super-
imposed dead load (GSDL) and the variable load (Q). Both 
the resistance and load effect are associated with model 
uncertainty (hR and hE). Specific to the variable load is the 

time-invariant part of the variability (C0Q). In addition, two 
random variables are added that account for the deterior-
ation of the resistance (cR) and trend in traffic load (cQ):

Z ¼ hRcRR − hEðGDL þ GSDL þ cQC0QQÞ (5) 

The limit state function is subsequently adjusted to 
incorporate the proof load test event. When a proof load 
test is performed an additional term (QPL) is included for 
the proof load effect in the limit state function:

Z ¼ hRcRR − hE GDL þ GSDL þmaxðcQC0QQ, QPLÞ
� �

(6) 

where the max-function is used to ensure that the regular 
traffic load is also considered for the year in which a proof 
load test is conducted. If a very low target load is used for 
proof load testing, it will have no effect. The adoption of 
the same model uncertainty for the load effect of traffic 
action and proof load testing is discussed in Section 6.

4.2.2. Conditional annual reliability
The annual reliability is calculated under the condition that 
no failure occurs in any of the years before the year under 
consideration. Using the following events:

A  failure in the year i;
B  failure in the years 1 to i – 1;
B’  no failure in the years 1 to i – 1 (complement).

the conditional annual probability of failure can be written 
as:

P AjB0
� �

¼
PðA \ B0Þ

PðB0Þ
¼

PðA [ BÞ − PðBÞ
1 − PðBÞ

(7) 

The probability PðA [ BÞ may be read as the cumulative 
failure probability up to and including the year i, whereas 
P(B) is the cumulative failure probability up to, but not 
including, the year i. In the case of a proof load test, the 
failure probability (in the year) after the test will be signifi-
cantly less since P(B) includes the relatively large failure 
probability associated with proof load testing.

To calculate the conditional annual reliability using the 
system reliability method, first the reliability index and 
influence coefficients of each year need to be calculated, e.g. 
using FORM. The individual years are the system compo-
nents in this calculation. Next, the cumulative probability of 
failure can be calculated using the equivalent planes method 
(OR-combination). Then, the conditional probability of fail-
ure in year i is:

Pf ;cond;i ¼
Pf ;i − Pf ;i−1

1 − Pf ;i−1
(8) 

where Pf,i is the cumulative failure probability up to and 
including the year i. In the first year no conditionality holds 
and thus Pf,cond,1 ¼ Pf,1.

The conditional probability calculation via Equations (7)
or (8), in combination with the limit state functions in 
Section 4.2.1, effectively performs the update of structural 
reliability. In this updating process all random variables that 
are correlated in time will be updated each year. They 
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include, the resistance, permanent loads, model uncertain-
ties, the deterioration of the resistance and the trend in traf-
fic load – but not the traffic load effect (Q). When moving 
to a context in which subjective knowledge about the resist-
ance plays a significant role, the updating process is often 
referred to as Bayesian updating.

4.3. Bayesian reliability updating

4.3.1. Updating the resistance distribution
At the heart of the probabilistic treatment of proof load 
testing is the expectation that after a successful test, the load 
effect produced during a proof load test EPL can be consid-
ered as a lower bound for the resistance (R) Lin and Nowak 
(1984):

R � EPL (9) 

Truncating the left tail of the random variable for the 
resistance (R) leads to the posterior distribution for the 
resistance and may be expressed as:

fR
�ðrÞ ¼

fRðrÞ
1 − FRðEPLÞ

for r � EPL

0 for r < EPL

8
<

:
(10) 

where fR(�) is the probability density function and FR(�) is 
the cumulative density function of the prior distribution for 
R. It may also be obtained via the application of Bayes’ the-
orem together with a likelihood function providing the value 
0 when r < EPL and 1 otherwise. As noted by Ditlevsen and 
Madsen (1996), the proof loading must be made at rather 
high levels in order to achieve a high reliability. If EPL is a 
deterministic value, the probabilistic calculation may be per-
formed directly using the updated distribution of resistance 
R, i.e. Equation (10). However, commonly the load effect 
achieved within a proof load test is not precisely known and 
is better described using random variables (see Section 
4.3.2). It should be noted that Equation (10) is not needed 
when the update is performed using the conditional prob-
ability calculation in Section 4.2.2.

As an assessment method for existing structures, proof 
load testing is typically applied when large doubts exist 
about the resistance of the structure. Even if drawings and 
original calculations are available, there may be such signifi-
cant evidence of deterioration that they become irrelevant. 
In this context, often a weakly or low-informative prior dis-
tribution is desired (Ditlevsen & Vrouwenvelder, 1994). A 
reliability analysis will typically result in an unacceptably 
low reliability index when using a prior distribution for R 
with such large uncertainty. But, after a successful proof 

load test the truncation, Equation (10), will lead to an 
increase of the reliability index. The prior distribution does 
not necessarily need to be a (log)normal distribution. In 
Kapoor, Sørensen, Ghosh, and Th€ons (2021), a uniform dis-
tribution was chosen to reflect the lack of knowledge about 
the resistance (Figure 5).

4.3.2. Limit state function
When transitioning from a context where the resistance is 
based on reliable information (informative) to a context 
with significant uncertainty surrounding this parameter 
(weakly informative), it is necessary to adjust the limit state 
function to reflect the situation. As in the time-dependent 
analysis, the limit function for a specific failure mechanism 
is considered (e.g. bending or shear). The corresponding 
limit state function is expressed as:

Z ¼ R − hEðGDL þ GSDL þ C0QQÞ (11) 

where the definition of the random variables is the same as 
in Section 4.2. Here the time-dependent coefficients cR and 
cQ have been excluded for simplicity. In this context, no 
mechanical model will be used to calculate the resistance 
from a set of basic parameters (such as geometry and mater-
ial properties). Therefore, hR is not explicitly included in the 
limit state function, the remaining random variable R may 
be regarded as the resistance including any probabilistic 
uncertainty. As it is already known that the structure can 
carry the permanent loads (GDL and GSDL), they may be 
eliminated from the limit state equation:

Z ¼ ðhEGDL þ hEGSDL þ R̂Þ–hEðGDL þ GSDL þ C0QQÞ
¼ R̂ − hEC0QQ

(12) 

where R̂ represents the remainder of the capacity available 
to resist the variable traffic load. Note that this principle is 
similar to the rating factor used in the MBE (AASHTO, 
2018).

At the moment of proof load testing, the load effect fol-
lowing from the traffic is replaced by the load effect 
achieved during the proof load test (assuming no traffic is 
allowed onto the bridge during the test):

ZPL ¼ R̂ – hE, PLQPL (13) 

where hE,PL is the model uncertainty of the load effect spe-
cific to the proof load testing situation. This model uncer-
tainty may be smaller than the one applied in the traffic 
load situation because it only needs to account for a load or 
vehicle placed at a known location. Normally the same 
structural schematisation or finite element model will be 
used to calculate the load effect in both the regular traffic 

Figure 5. Schematic representation of the Bayesian update of the reliability distribution following a successful proof load test.
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load and proof load testing situation. This implies a reason-
ably strong correlation between hE and hE,PL.

4.3.3. Lower bound
Although customary, it is not necessary to treat the 
Bayesian (or probabilistic model) uncertainty of the resist-
ance R in the same way as the other random variables. 
Instead of calculating the predictive posterior (integrating 
the posterior distributions), the failure probability may also 
be calculated using other methods such as point estimates, 
nested reliability analysis and confidence bounds (Der 
Kiureghian, 2022). To reduce complexity, specific attention 
can be paid to the first ‘slice’ of the posterior distribution – 
essentially providing the most conservative reliability 
estimate.

Conceptually, making this slice increasingly smaller 
results in the resistance being equal to the proof load effect 
(Figure 6). The limit state function in Equation (13) may 
then be written as (including model uncertainties):

Z ¼ hE, PLQPL − hEC0QQ (14) 

This limit state function may also be directly obtained by 
assuming that the resistance is at least equal to the load 
effect caused by the permanent loads and the proof load 
(R�G þ QPL) as shown in De Vries et al. (2023). This 
assumption lies at the basis of the probabilistic background 
for the proof load testing method in the MBE (AASHTO, 
2018) as described by Lichtenstein (1993).

5. Case study

5.1. Description

A case study was performed to explore the implications of 
the challenges described in Section 3 using the methods 
described in Section 4. The hypothetical structure under 
consideration is a concrete slab bridge with a relatively short 
span of L¼ 10. This type of bridge is very common in the 
Netherlands and also in many other countries (Christensen 
et al., 2022). Most of the bridges that are in service today 
were built during the 1960s and 1970s. Due to the continu-
ously increasing traffic intensity and loads, bridges situated 
in the highway network are of primary interest in relation 
to their (load-carrying) capacity. If assessed via today’s 
Eurocode standards these bridges and viaducts often do not 
fulfil capacity requirements (Lantsoght, Van der Veen, De 
Boer, & Hordijk, 2017a).

5.2. Time-dependent analysis

5.2.1. Assumed design
For this example, it is assumed that the structure was built 
in 1960 and designed according to the prevailing standards 
of that time (KIVI, 1938, 1950). The traffic load used in its 
dated design is inappropriate when compared to today’s 
high traffic intensity. But, the design values of material 
properties (e.g. steel and concrete strength) were quite con-
servative. As a result, old bridges and viaducts can still pos-
sess adequate structural strength to resist today’s higher 
loads. In this case study, only the bending moment at mid-
span will be considered. In reality, the shear capacity of the 
slab near the supports and the capacity of other bridge com-
ponents will require assessment as well.

In case the original bridge documentation such as draw-
ings and calculations are still available, they may be used to 
infer the (prior) probabilistic description of the resistance of 
the structure. In this case, the bridge documentation is not 
available. Therefore, its design was ‘reverse engineered’ by 
using historic standards (Harrewijn, Vergoossen, & 
Lantsoght, 2021). For simplicity, only the slab bridge’s right- 
most lane is considered, primarily used by trucks. This con-
servative approach does not take into account the distribu-
tion of forces that typically occurs across multiple lanes. A 
top view and cross-section with the inferred bottom 
reinforcement layout from the historic standards is provided 
in Figure 7 (De Vries, Lantsoght, & Steenbergen, 2021).

The bending moment resistance (R) is calculated from 
the balance of normal forces in the cross-section when the 
reinforcement yields (Figure 8). Equating the force in the 
concrete (Fc) with the force in the reinforcing steel (Fs) and 
solving for the location of the neutral axis (x) gives:

Fc ¼ Fs () accfcbkx ¼ Asfy

x ¼
Asfy

accfcbk

(15) 

Using the effective depth d¼ h—a the moment arm is 
calculated as z¼ d—kx/2. Note that the compressive stress 
block reduction factor (k) disappears in the expression 
moment arm when neutral axis location x, Equation (15), is 
inserted. Finally, the moment resistance is obtained as:

R ¼ Fcz ¼ Fsz ¼ Asfy d −
Asfy

2accfcb

� �

(16) 

where As is the cross-sectional area of the reinforcement 
over cross-section width b¼ 3 m, fy is the yield strength of 
the reinforcement, fc is the concrete compressive strength. 
The concrete compressive strength is reduced with factor acc 
¼ 0.85 to account for long-term effects and possible 
unfavourable effects from the way the load is applied.

5.2.2. Probabilistic model
The limit state equations in Section 4.2 are used in the fol-
lowing to perform the time-dependent reliability analysis. 
The random variables are described in Table 1, where each 
variable is characterised by a distribution, the mean value, 
the COV and the auto-correlation coefficient. The auto- 

Figure 6. Schematic representation of the lower bound approximation when 
compared to a posterior distribution of the resistance.

8 R. DE VRIES ET AL.



correlation coefficient describes the correlation of the ran-
dom variable in time. The chosen distribution types and 
parameter values are based on fib (2016) and JCSS (2015).

The now obsolete concrete type K250 (referring to a 
compressive strength of 250 kg/cm2) was commonly used in 
the Netherlands in the 1960s. The COV of 0.15, a value 
commonly used for concrete, is increased to 0.20 to describe 
the uncertainty associated with historic concrete. Back then, 
smooth (i.e. not ribbed) steel rebars were extensively 
applied. The characteristic value (5th percentile) of the 
QR24 reinforcing steel yield strength corresponds to 
2400 kg/cm2 � 235 N/mm2 when a lognormal distribution is 
assumed with a COV of 0.05 (RWS, 2013). A mean value of 
1.1 is used for the time-independent uncertainty of the traf-
fic load (C0Q) to include dynamic effects.

WIM data from 2015 was analysed to determine the load 
effect (Q), expressed as the largest bending moment at mid-
span within a certain period of time. Only the traffic in the 
right-most lane, where the trucks drive, has been analysed. 

Vehicles with a length smaller than 7 m, such as cars and 
small vans, have been excluded from the dataset. The com-
bined effect of all vehicle axle loads located on the bridge is 
calculated via the linear superposition. Effectively a ‘train’ of 
axles is moved gradually over the bridge to record the larg-
est moment at midspan within a certain period of time. 
Over a period of one year the weekly maxima have been 
collected for various highways in the Netherlands (A16, 
A27, A50 and A67). Depending on the span length, highway 
location and load effect considered (i.e. bending or shear), 
different values for the mean and COV of Q are obtained 
(De Vries et al., 2023). The values used for this case study 
represent an average of the considered highway locations.

Following fib (2016), the area of the reinforcing steel (As) 
is not included as a random variable because its small vari-
ability. Note that the resistance model uncertainty (hR) is 
intended to account for any remaining uncertainty that may 
exist between modelling and reality. If corrosion of the 
reinforcement plays a significant role, the decrease of the 
reinforcement area should not be neglected and may also be 
measured to update reliability predictions (Jacinto, Neves, & 
Santos, 2016). Instead of modifying parameter As, a separate 
and more general deterioration parameter cR is included 
here. Use is made of the following relations for the time- 
dependent coefficients to include the deterioration of the 
resistance and a trend in the traffic load:

cRðtÞ ¼
1 t � tR0
1 − DcRðt − tR0Þ t > tR0

�

(17a) 

cQðtÞ ¼ cQ0 þ DcQt (17b) 

where the parameters are random variables, listed as well in 
Table 1. The mean value of the parameters was chosen in 
such a way that the annual reliability is insufficient around 
the year 2020.

Figure 7. Layout of the reverse-engineered bottom reinforcement of the slab. Rebar size and spacing in mm.

Figure 8. Calculation of moment resistance capacity.
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This article aims to provide methods for updating the 
structural reliability after a proof load test, not to provide 
an accurate description of resistance degradation. The 
chosen degradation model includes a time to initiation (tR0), 
followed by a linear reduction of strength (Enright & 
Frangopol, 1998). Corrosion leading to a reduction of the 
effective steel area in a cross-section was modelled by a 
quadratic function in Vu and Stewart (2000). In case of 
deterioration, a large degree of uncertainty exists with 
respect to the current capacity of the bridge. In this example 
only a limited amount of uncertainty is considered for sim-
plicity. It thus represents the rather uncommon scenario 
where the deterioration process is well-known.

5.2.3. Results
Using the presented probabilistic description, a time- 
dependent reliability analysis can be performed. The inde-
pendent reliability analysis for each year (a component) was 
performed using the improved SORM approximation by 
Hohenbichler, Gollwitzer, Kruse, and Rackwitz (1987). This 
approximation provides a good balance between computa-
tional effort and accuracy in the presented case study. For 
the combination of components the FORM (Hasofer & 
Lind, 1974) is used. Comparisons with MCS indicated an 
acceptable difference of about a tenth in the annual reliabil-
ity index. The result of the calculations is displayed in 
Figure 9.

The base case displays the reliability without traffic trend 
and degradation. In this case, the annual reliability increases 
gradually due to proven strength of past traffic loads. The 
traffic trend and degradation are incorporated subsequently 
to display their detrimental effect on the evolution of the 
annual reliability. A higher reliability is attained in the first 
years when including the traffic trend because the adopted 
linear trend expresses a reduction before 2015 and an 
increase afterwards.

Note that in this example the parameters of the degrad-
ation and traffic load trend have been tuned to yield a reli-
ability index that drops below the acceptable annual 
reliability b¼ 4 for CC3 (Steenbergen & Vrouwenvelder, 
2010) around 2020. In a real-life situation, the parameters 

will need to be determined by studying the effect of all pos-
sible degradation mechanisms and the actual trend in traffic 
loads.

Proof load testing is adopted to ensure the bridge meets 
the required structural reliability. When a proof load test is 
performed, an additional term is included for the proof load 
effect in the limit state function, see Equation (6). The first 
proof load test is performed in the year 2020 and has a 

Figure 9. Development of the conditional annual reliability with time, incorpo-
rating a traffic load trend and deterioration (De Vries et al., 2022).

Figure 10. Effect of proof load testing on the annual reliability (De Vries et al., 
2022).

Table 1. Random variables used in the limit state function.

Var. Description Distribution Mean COV Auto-corr.

hR Model uncertainty of the resistance Lognormal 1 0.05 1
fc Concrete compressive strength (K250) Lognormal 21.1 MPa 0.20 1
fy Reinforcement steel yield stress (QR24) Lognormal 261 MPa 0.05 1
h Height of the slab Normal 0.8 m 0.02 1
a Distance of reinforcement to surface Gamma 0.057 m 0.17 1
hE Model uncertainty of the load effect Lognormal 1 0.11 1
GDL Load effect of the dead load Normal 721 kNm 0.05 1
GSDL Load effect of the superimposed dead load Normal 101 kNm 0.1 1
C0Q Time-independent uncertainty of the variable load, including bias for dynamic load effect Lognormal 1.1 0.1 1
Q Load effect of the traffic load, annual maximum Gumbel 1150 kNm 0.025 0
tR0 Initiation time to deterioration Lognormal 20 years 0.1 1
DcR Degradation per year Lognormal 0.0025 0.1 1
cQ0 Starting value of the trend Lognormal 0.78 0.1 1
DcQ Increase of traffic load per year Lognormal 0.004 0.1 1
QPL Load effect of the proof load Normal 1800 and 2000 kNm 0.01 1
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target (mean) value of 1800 kNm. Then, in the year 2030, 
the second proof load test is performed with a higher target 
load effect of 2000 kNm (Figure 10). In the year the test is 
performed, the annual reliability is markedly lower, but as a 
reward, the reliability in the following years is higher. The 
low reliability indices during proof load testing are below 
the acceptable target reliability. Hence, further safety meas-
ures are necessary during the load test, such as closing off 
the area underneath the viaduct or bridge. In addition, 
instrumenting the structure and evaluating the stop criteria 
after each load cycle can avert damage and collapse. 
Incorporating stop criteria results in an increased reliability 
index during the test. But if the target load is not attained, 
the post-test reliability is inadequate.

The target loads have been determined in an iterative 
fashion such that the annual reliability remains above the 
target in the next 10 years. Alternatively, the higher target 
load could have been applied directly in 2020, also leading 
to sufficient reliability until 2040. But, then the probability 
of failure in the first test in 2020 would be larger.

5.3. Bayesian reliability updating

5.3.1. Weakly informative prior
Instead of using a mechanical model, as adopted in the pre-
vious time-dependent analysis (Section 5.2), here a weakly 
informative prior distribution is used. This situation 
describes the other end of the spectrum; a situation in 
which very little is known about the resistance. The limit 
state function of Equation (12) is used to update R̂, i.e. the 
remainder of the capacity available to resist the variable traf-
fic load. To enable comparisons, the mean value of the load 
effect to be attained during the proof load is chosen as 
mQ,PL ¼ 1800 kNm. This value corresponds to the initial 
proof load test conducted in the time-dependent analysis of 
Section 5.2.

The influence of the prior distribution is studied to 
determine if the distributions are indeed weakly informative. 
Three different types of prior distributions are employed to 
compare the reliability calculation outcomes. The parame-
ters of the prior distributions will be chosen such that only 
little extra, sensible but subjective, information is included 
(Ditlevsen & Vrouwenvelder, 1994). Information about the 
traffic load will always be available because its statistical 
modelling is required to perform the reliability calculation 
once the posterior of R̂ is obtained. (The accuracy of the 
traffic load model may be represented in the time-invariant 
coefficient C0Q.) Therefore, the mean value of the annual 
traffic load is used as additional information to determine 
the prior distribution parameters.

For the normal prior distribution the mean value is equal 
to the mean value of the annual traffic load effect (1150 
kNm, see Table 1). In addition, a normal prior is considered 
with the mean value equal to 1.5 times the traffic load effect 
(1.5 � 1150 kNm ¼ 1725 kNm). The factor 1.5 indicates 
that one expects a positive outcome – merited by the con-
sideration of performing a proof load test in the first place. 
To reflect the large uncertainty, the value of the COV is 

chosen as 0.5. For the uniform prior distribution, the lower 
bound is not important. For the upper bound, the safety 
margin associated with new structures may be utilised. 
Referring to Table 1, the average capacity to resist live loads 
is 4100 − 721 − 101¼ 3278 kNm, which is about a factor 3 
higher than the average annual traffic load effect. Therefore, 
the upper bound parameter value is chosen as 
3 � 1150¼ 3450 kNm. A triangular distribution, with the 
same bounds as the uniform distribution, is also included to 
(conservatively) express a stronger belief in lower resistance 
values (Figure 11).

5.3.2. Results
The Bayesian update is performed in a MCS by removing 
the samples that do not survive the proof load test. The 
number of samples in the simulation was 5 � 108. This 
update procedure also accounts for the uncertainty with 
regard to the proof load effect – in contrast to Equation 
(10). For simplicity, it is assumed that the same model 
uncertainty holds for the regular traffic load and the proof 
load testing situation – in line with the time-dependent 
example (Section 5.2). By assuming hE ¼ hE,PL the single 
remaining model uncertainty may be eliminated from the 
equations (i.e. its contribution is now incorporated in the 
resistance R̂). For each of the prior distribution types (nor-
mal, uniform and triangular) the reliability analysis is per-
formed. The posterior distributions obtained for R̂ are 
plotted in Figure 12. The result of the calculations is 
expressed as the annual reliability index for the first year 
after a successful proof load test (Table 2).

There is slight difference between the outcomes, indicat-
ing some sensitivity to the chosen prior distribution. The 
smallest reliability index is obtained using a normal prior 
distribution with the mean value equal to the mean value of 
the traffic load effect – which was to expected with this con-
servative prior. Additional calculations were performed in 
which the COV of the load Q has been increased and the 
shape of the right tail was varied between light (Weibull) 
and heavy (Fr�echet). The same relative differences between 
the reliability indices were found, indicating no apparent 
sensitivity to such alterations.

Figure 11. Prior distributions considered for the resistance.
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The result of the lower bound reliability calculation using 
the limit state function of Equation (14) has also been 
included in Table 2. The somewhat lower reliability index is 
explained by the conservative lower bound assumption. In 
this light, the values obtained using a prior distribution 
should be viewed as best estimates of the reliability index. 
Compared to the time-dependent analysis (Section 5.2), 
similar reliability indices are found, with the exception of 
the lower bound calculation. However, the two outcomes 
are not directly comparable since resistance degradation and 
the trend in traffic loads is not included.

5.4. Time-dependent Bayesian analysis

The time-dependent and Bayesian analysis considered thus 
far may also be combined to incorporate (and visualise) 
time-dependent effects such as resistance deterioration and 
a trend in traffic loads. To express a lack of knowledge 
about the resistance the weak or informative normal prior 
distribution is used, with the mean value equal to 1.5 times 
the traffic load (Section 5.3.1). The time-dependent 

coefficients cR and cQ for this case study, Equations (17a)
and (17b), are inserted in the limit state functions for 
Bayesian analysis, Equations (12) and (13), to result in:

Z ¼ cRR̂ � maxðcQC0QQ, QPLÞ (18) 

where again use is made of the remainder of the resistance 
available to resist variable loads (R̂) and the model uncer-
tainty assumption hE ¼ hE,PL (Section 5.3). For complete-
ness, an overview of the random variables used in the time- 
dependent Bayesian analysis is provided in Table 3. The 
description of random variables provided for Table 1 pro-
vided in Section 5.2.2 also applies here.

The result of the time-dependent Bayesian analysis with 
two proof load tests is provided in Figure 13. The previous 
(informative) time-dependent analysis result (Section 5.2) is 
included as well for comparison. The conditional annual 
reliability is markedly lower for the weakly informative case 
when compared to the informative case – especially before a 
proof load test is performed. This is because the informative 
case has high reliability from the start, following from the 
assumed design.

The annual reliability in the year following the first proof 
load test is also lower than found in the simplified Bayesian 
analysis, namely b¼ 3.67 versus b¼ 4.17 (Section 5.3). 
However, in the simplified analysis the resistance deterior-
ation and the trend in traffic load were not considered. 
Figure 13 also shows that an annual reliability index of 
about 2.5 just before the year 2020 is obtained considering 
proven strength by traffic loads alone – a value far from the 
reliability target b¼ 4.0. Also here the same remarks as pro-
vided in Section 5.2.3 regarding the unacceptably low reli-
ability during a proof load test hold. To compensate for the 
lack of knowledge in the weakly informative case, the value 
of the target load in the proof load tests may be increased. 
To reach the desired reliability level in the period from 2020 
to 2040 the required target loads are 2050 and 2150 kNm 
(For the informative case 1800 and 2000 kNm were 
required).

6. Discussion

In the literature review, international standards and the 
state-of-the-art on proof load testing have been briefly 
described. The body of literature related to proof load test-
ing is much larger. In this article only the most relevant 
studies with regard to structural reliability have been high-
lighted and referred to. Although the various subjects identi-
fied as challenges are not new, their combined usage in the 
context of proof load testing deserves extra attention.

To illustrate the challenges, a case study of a hypothetical 
slab bridge was presented. With regard to the knowledge 
level, in the time-dependent example a scenario was 
depicted where the structural properties of the bridge, the 
traffic trend and the deterioration process are known to a 
large degree. Normally, this will not be the case. Especially 
the rate by which deterioration occurs will be difficult to 
establish. Suitable treatment of these uncertainties is critical. 
A clear need for stop criteria and their relation to structural 

Figure 12. Traffic, proof load and resistance posterior distributions for (a) the 
normal priors and (b) the uniform and triangular priors.

Table 2. Results of reliability analyses with varying prior distributions.

Prior distribution Parameter values Annual reliability index (b) [−]

Normal m ¼ 1150 kNm, V¼ 0.5 3.95
Normal (factor 1.5) m ¼ 1725 kNm, V¼ 0.5 4.17
Uniform a¼ 0, b¼ 3450 kNm 4.29
Triangular a¼ 0, b¼ 3450 kNm, c¼ 0 4.14
Lower bound - 3.43
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reliability emerges from the relatively large probability of 
failure during the proof load test.

The mathematical form of the limit state function for the 
proof load testing situation is not definitive; other formula-
tions are possible as well. In the presented formulation, the 
model uncertainty of the load effect (hE) acts on both the traf-
fic load effect and the load effect produced during the proof 
load test. In practice, the methods to calculate both effects will 
likely be similar (e.g. finite element analysis), but it does not 
guarantee full correlation. In the same way, the choice of the 
weakly informative prior distribution of the resistance, as 
used in Bayesian reliability updating, is not absolute. The case 
study demonstrates that the calculated reliability only differs 
slightly when the distribution type changes, and the same 
holds for its parameters. However, slight discrepancies will 
persist with the weakly informative prior approach.

A future framework for proof load testing should be flex-
ible in such a way that it addresses the needs and reflects the 
knowledge level. As shown in the case study, the increased 
knowledge level can influence the level of proof loading 
needed to reach a certain target reliability. The framework 
could also consider the method by which a proof load test is 
performed. For example, less spatial uncertainty remains 
when driving over a bridge than when a single position is 
loaded. In the next steps towards a flexible framework for 
proof load testing, stop criteria in relation to capacity predic-
tions and spatial uncertainty will be addressed.

7. Conclusions

With the suggested approach to the reliability assessment of 
existing reinforced structures through proof load testing a 

new framework can be developed that addresses existing 
challenges. An assessment based on annual reliability high-
lights the evolution of the structural reliability before, dur-
ing and after the proof load test. The probabilistic methods 
that aid in addressing the challenges via time-dependent 
analysis and Bayesian updating have been described.

By adopting a flexible method, different types of informa-
tion can be combined to assess the structural reliability 
through proof load testing. Future research should quantify 
how much benefit is obtained when considering various 
kinds of information. The case study of reinforced concrete 
slab bridge reveals that a significant difference exists in reli-
ability predictions between the use of an informative and 
weakly informative prior distribution for the resistance. As a 
result, the required target loads in a proof load test are 
higher for the latter. Furthermore, uncertainty concerning 
multiple failure mechanisms and spatial variability can be 
addressed by judging the reliability on the system level 
rather than on the component level. This way, reservations 
regarding the assessment of shear capacity through proof 
load testing could be lifted.

The Bayesian reliability example considered the case in 
which very little is known about the resistance. Comparison 
of time-dependent analysis results between an informative 
and weakly informative prior distribution reveals that the 
effort devoted to obtaining an informative prior distribution 
leads to higher reliability estimates. This result of course 
depends on whether the original design was adequate and if 
the resistance deterioration was incorporated properly.

In addition, it was investigated to what extent the historic 
traffic load influences the reliability at the moment of proof 
load testing. If the traffic load before the year 2015 (date of 
measurements) is ignored, comparable outcomes are pro-
duced. This result established insensitivity towards historic 
traffic load (from 1960 to 2015), which is difficult to model. 
In the weakly informative Bayesian analysis it is found that 
the reliability before the proof load test is quite low, 
although the historic traffic load is included. It is concluded 
that the service-proven strength of past traffic load alone is 
not enough to reach the desired reliability level for a high-
way in the Netherlands.

List of symbols 

a Distance of reinforcement to surface 
As Cross-sectional area of the reinforcement 
b Width of the cross-section 
cR(t) Deterioration of the resistance 
cQ(t) Trend in traffic load 
cQ0 Starting value of the trend 

Table 3. Random variables used in the time-dependent Bayesian analysis.

Var. Description Distribution Mean COV Auto-corr.

R̂ Resistance to variable loads Normal 1725 kNm 0.5 1
C0Q Time-independent uncertainty of the variable load, including bias for dynamic load effect Lognormal 1.1 0.1 1
Q Load effect of the traffic load, annual maximum Gumbel 1150 kNm 0.025 0
tR0 Initiation time to deterioration Lognormal 20 years 0.1 1
DcR Degradation per year Lognormal 0.0025 0.1 1
cQ0 Starting value of the trend Lognormal 0.78 0.1 1
DcQ Increase of traffic load per year Lognormal 0.004 0.1 1
QPL Load effect of the proof load Normal 1800 kNm and 2000 kNm 0.01 1

Figure 13. Conditional annual reliability of the weakly informative and the 
informative time-dependent analysis.
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C0Q Time-independent variability of traffic load 
d Effective depth of reinforcement 
D Data (Bayesian context) 
e Realisation of the load effect 
E Load effect 
EPL Target proof load effect 
fc Concrete compressive strength 
fy Yield strength of the reinforcement 
fR Probability density function of the load effect 
fR Probability density function of the resistance 
Fc Force in the concrete 
Fs Force in the reinforcing steel 
FR Cumulative probability function of the resistance 
GDL Dead load 
GSDL Super-imposed dead load 
h Height of the slab 
H Hypothesis (Bayesian context) 
L Span length 
P(�) Probability of (operator) 
Pf Probability of failure 
Q Traffic load 
QPL Target proof load 
r Realisation of the resistance 
R Resistance 
R̂ Remainder of resistance available to resist variable loads 
t Time (year) 
tR0 Initiation time to deterioration 
U Standard normal random variable 
x Location of the neutral axis 
Z Limit state function 
a Influence coefficient 
acc Concrete compressive strength reduction factor 
b Reliability index 
DcQ Starting value of the trend 
k Factor for height of the compression block 
q Pearson correlation coefficient 
hE Model uncertainty of the load effect 
hE,PL Model uncertainty of the target proof load effect 
hR Model uncertainty of the resistance 
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