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telemetry, is quite low. In particular, at any given time and spatial

region, there are frequency bands where there is no signal occupancy.
There has been recent interest in improving spectrum utilization by
permitting secondary usage using cognitive radios. Cognitive radios
use spectrum sensing to determine frequency bands that are vacant of
licensed signal transmissions and transmit on such portions to meet
regulatory constraints of avoiding harmful interference to licensed sys-
tems. Future cognitive radios will be capable of scanning a wide band
of frequencies, in the order of a few GHz, and employ adaptive wave-
forms for transmission depending on the estimated spectrum of li-
censed systems. In this thesis, we address the problem of estimating
the spectrum of the wide-band signal received at the cognitive radio
sensing receiver using compressive sampling coupled with a multi-
band spectrum detector to determine the spectrum occupancy of the
licensed system. Since individual cognitive radios might not be able
to reliably detect weak primary signals due to channel fading/shadow-
ing, we also propose a distributed compressive scheme based on joint
recovery of the license occupancy for application scenarios involving
geographically distributed radios. In such a distributed approach,
the spectrum occupancy is determined by the joint work of cognitive
radios (exploiting spatial diversity), as opposed to being determined
individually by each cognitive radio.





Compressive Wideband Spectrum Sensing for
Cognitive Radio Applications

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yvan Lamelas Polo
born in Nyon, Switzerland

This work was performed in:

Distributed Sensor Systems Group
Philips Research Europe
High Tech Campus
5656 AE Eindhoven, The Netherlands



Delft University of Technology

Copyright c© 2009 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Compressive Wideband Spectrum Sensing for Cognitive Radio Ap-
plications” by Yvan Lamelas Polo in partial fulfillment of the requirements for the
degree of Master of Science.

Dated: November 28, 2008

Chairman:
Prof. dr. ir. A.-J. van der Veen, CAS, TU Delft

Advisors:
Dr. ir. Ashish Pandharipande, Philips Research Europe

Dr. ir. Geert Leus, CAS, TU Delft

Committee Members:
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Abstract

It has been widely recognized that utilization of radio spectrum by licensed wireless
systems, e.g., TV broadcasting, aeronautical telemetry, is quite low. In particular, at
any given time and spatial region, there are frequency bands where there is no signal

occupancy. There has been recent interest in improving spectrum utilization by permit-
ting secondary usage using cognitive radios. Cognitive radios use spectrum sensing to
determine frequency bands that are vacant of licensed signal transmissions and trans-
mit on such portions to meet regulatory constraints of avoiding harmful interference to
licensed systems. Future cognitive radios will be capable of scanning a wide band of
frequencies, in the order of a few GHz, and employ adaptive waveforms for transmission
depending on the estimated spectrum of licensed systems. In this thesis, we address the
problem of estimating the spectrum of the wide-band signal received at the cognitive
radio sensing receiver using compressive sampling coupled with a multiband spectrum
detector to determine the spectrum occupancy of the licensed system. Since individual
cognitive radios might not be able to reliably detect weak primary signals due to chan-
nel fading/shadowing, we also propose a distributed compressive scheme based on joint
recovery of the license occupancy for application scenarios involving geographically dis-
tributed radios. In such a distributed approach, the spectrum occupancy is determined
by the joint work of cognitive radios (exploiting spatial diversity), as opposed to being
determined individually by each cognitive radio.
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Introduction 1
In this thesis we consider the problem of spectrum sensing for cognitive radio applica-

tions, and present a new approach based on compressive sampling. The purpose of
this chapter is to introduce the problem addressed in the thesis, motivate the need

for a new approach, and describe our main contributions and the organization of the
thesis.

1.1 Motivation: spectrum sensing for spectrum sharing

The development of wireless technologies has rapidly increased the demand for spec-
trum resources. However, most of the spectrum has already been allocated to licensed
users or primary users (PUs), especially in the frequency below a few GHz. The Na-
tional Telecommunications and Information Administration’s (NTIA) frequency allo-
cation chart in the United States (Fig. 1.1) indicates overlapping allocations over all
of the frequency bands, which reinforces the scarcity mindset. Under this static fre-
quency allocation wireless systems are regulated through fixed spectrum assignments,
operating frequencies and bandwidths, with constraints on power emission that limits
their range. Due to these constraints, most communications systems are designed so
that they achieve the best possible spectrum efficiency within the assigned bandwidth
using sophisticated modulation, coding, multiple antennas and other techniques.

Figure 1.1: The NTIA’s frequency allocation chart.

While the current spectrum allocation leaves no available bandwidth for future
wireless systems, actual measurements of spectrum utilization show that many assigned
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bands are not being used at every location and time [2]. The underutilization of the
electromagnetic spectrum leads us to think in terms of spectrum holes, i.e., bands of
frequencies assigned to a primary user, but at a particular time and specific geographic
location, the band is not being utilized by that user. Figures 1.2 and 1.3 show some
measurement results showing a typical utilization of spectrum resources. We can see
that a greater percentage of the spectrum is available at higher frequencies. This
result makes sense intuitively as, for a given transmitter power level, a wireless signal
will propagate further at a lower frequency, leading to a higher observed utilization at
any particular location. Studies carried out by the FCC’s (Federal Communications
Commision) Spectrum Policy Task Force reported the vast temporal and geographic
variations in the usage of allocated spectrum with utilization ranging from 15% to
85% [3]. A recent study conducted by Shared Spectrum [1] shows that the average
spectrum occupancy in the frequency band from 30 MHz to 3000 MHz over multiple
locations is merely 5.2%. The maximum occupancy is about 13% in New York city.
These measurements seriously question the suitability of the current regulatory regime
and possibly provide the opportunity to solve the spectrum bottleneck.

Figure 1.2: Measured spectrum utilization vs. frequency for the measurements recorded in
Annapolis [1].

Figure 1.3: Measurement of spectrum utilization.
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Unfortunately, creating a new spectrum allocation chart based on the usage distri-
bution is not only impractical but also inefficient, because it is not possible to predict
and optimize an allocation that would suit all current and future wireless systems. Fur-
thermore, any change in the spectrum allocation could create an opposition from the
current users/owners of the spectrum. Therefore, the solution to this problem should
preserve rights and access priorities of “primary users”.

In order to solve the conflicts between spectrum scarcity and spectrum under-
utilization, cognitive radio (CR) technology was recently proposed [4]. In IEEE 802.22,
the CR technique is introduced for the standardization of wireless regional area net-
works (WRAN) to use frequency resources, which were originally allocated for broad-
casting (54 ∼ 862MHz). In [20] a CR is defined as an intelligent wireless communi-
cation system that is aware of its surrounding environment (i.e., outside world), and
uses the methodology of understanding-by-building to learn from the environmental
and adapt its internal states to statistical variations in the incoming RF stimuli by
making corresponding changes in certain operating parameters (e.g., transmit power,
carrier frequency, and modulation strategy) in real-time, with two primary objectives
in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum.

Six key words stand out from this definition: awareness, intelligence, learning, adap-
tivity, reliability, and efficiency. Consequently, the CR will play the leading role in the
transition from fixed allocation assignments to dynamic spectrum allocation.

In order to protect the PUs from unlicensed users or secondary users (SUs), spec-
trum sensing is a key function to decide whether a frequency band is empty or not.
As explained before, a cognitive radio is designed to be aware of and sensitive to the
changes in its surroundings. Therefore, the SUs should monitor licensed bands, and
opportunistically transmit whenever no primary signal is detected. Consequently spec-
trum sensing may be identified as a key enabling functionality to ensure that a CR
would not interfere with primary users. In the rest of this thesis we address some of
the major challenges behind wideband spectrum sensing.

1.2 Spectrum sensing challenges

In short, CRs as secondary users of license bands have to dynamically sense the radio-
spectrum environment and rapidly tune their transmitter parameters to efficiently uti-
lize the available spectrum. The critical problem is the need to process multi-gigahertz
wide bandwidth (challenging traditional spectral estimation methods operating at or
above Nyquist rate) and reliably detect presence of primary users. We next analyze
this problem by splitting it up into two challenging tasks to be achieved:

• Detection capability [7]: In general, PUs have not been very receptive at the idea
of CRs and opportunistic spectrum sharing. In particular, they are concerned
that CRs will harmfully interfere with their operation. However, in this argu-
ment, it is not very well understood what is considered harmful interference. A
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first example of harmful interference is when a CR may not be able to reliably
detect a PU signal and therefore may start sending although the PU is using
that frequency band. This is the classic “hidden terminal problem” in wireless
networks where a receiver is unable to “hear” the transmitter and starts its own
transmission, thereby interfering with the intended receiver of the transmission.
A second example is when a cognitive radio is using a frequency band that was
deemed free by the sensing process but may not be able to reliably detect that
a PU has reappeared. Therefore, it may not vacate the frequency band quickly
enough and therefore continue to send creating harmful interference to the pri-
mary user’s transmission. From these two examples, we can see that there are
clearly two requirements on a CR sensing receiver that influence the amount of
harmful interference. In the first example, it is evident that receiver sensitivity
plays a key role in reliable detection. In addition, the objective of resource allo-
cation is to meet interference constraints of primary systems. These interference
constraints are met through adaptive transmit power allocation based on spec-
trum sensing measurements. In principle, if a radio can meet specified sensitivity
levels, it should be allowed to transmit higher power levels as it is located far away
from the protected radius. Based on this rationale, there is an explicit trade-off
between the sensing sensitivity and allowable transmission power. In the second
example, the sensing time needed to meet the required sensitivity is another re-
quirement for sensing performance. The sensing interval requirement presents the
maximum time a cognitive radio sensor could spend for primary user detection.

• Implementation of wideband front-end and sampling circuitry : The wideband
radio-frequency (RF) signal presented at the antenna of a wideband front-end
includes signals from close and far transmitters. One of the main limitations in
a radio front-end’s ability to detect small signals is its dynamic range, which also
dictates the requirement for the number of bits in the analog-to-digital converter
(ADC). The wideband sensing requires a multi-GHz speed ADC together with
high resolution. In [7], the dynamic range problem is addressed by proposing to
filter the signals in the spatial domain with multiple antennas. In this thesis we
investigate new signal processing techniques that can relax the challenging re-
quirements for the ADC. In particular, we make use of an emerging theory named
compressive sampling (CS). CS is a method for acquisition of sparse signals at
rates significantly lower than the Nyquist rate; signal reconstruction is a solution
to an optimization problem.

1.3 Outline and contributions

Before describing the content of the thesis chapter by chapter, we briefly summarize
our main contributions. The first major contribution is the development of an acqui-
sition scheme for compressive sensing at local CR sensing receivers. In this framework
we estimate the power spectrum density (PSD) of a wideband signal from compressive
sub-Nyquist rate measurements, as the solution of an edge detector optimization prob-
lem and we then perform energy based detection on the compressive estimate of the

4



PSD to detect channel occupancy. However, if one CR does not see energy in a par-
ticular band, it cannot assume that the channel is idle (i.e., hidden terminal problem).
Hence, the second contribution of the thesis is the extension to a distributed cognitive
wireless network scenario. We propose two distributed architectures extending the PSD
estimation based on compressive edge detection beyond a single cognitive radio sensing
receiver. The third contribution is the development of a joint recovery algorithm for
multiple measurement vectors under common sparsity constraints.

Chapter 2: Background discussion
In this chapter we present a literature review of some specific detection and esti-

mation techniques. We end the chapter by describing some of the limitations of these
techniques thereby motivating the need for our compressive estimation method.

Chapter 3: Compressive Wideband Sensing
This chapter contains the first contribution of the thesis. We start by giving a brief

overview of a compressive sensing technique existing in current literature. We discuss its
limitations and we then propose an acquisition scheme coupled with a compressive edge
detector for PSD estimation. We evaluate the performance of the proposed estimator
in terms of the mean square error (MSE). Finally, a PSD based energy detector is
proposed to find channel occupancy. Performance of the detector is evaluated in terms
of probability of detection and probability of false alarm.

Chapter 4: Distributed Spectrum Sensing
In this chapter we address the lack of reliability when detection is only performed

at a local sensing receiver. Consequently, we propose two distributed architectures to
provide spatial diversity gain under unfavorable channel conditions. Algorithms based
on independent CS recovery and joint CS recovery are provided and their detection
performance compared.

Chapter 5: Practical Performance Issues
This chapter is devoted to the analysis of the practical implementation issues of

the techniques developed in the previous chapters. First we describe the effects of the
different parameters involved in spectrum sensing. Next, we discuss how the assump-
tions made in the thesis affect implementation. We then provide an overview of the
actual techniques proposed in the literature to implement analog to information (A2I)
converters and we finally examine a detection algorithm where the intermediate stage
of estimating the PSD is avoided.

Chapter 6: Conclusions and Further work
This chapter summarizes the main ideas of the thesis and gives suggestions for

further research in the area.
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Background discussion 2
Since CRs are secondary users of unoccupied spectrum they do not have a priori

right to any frequency band. Their communication is strictly conditional on the
reliable detection of PU transmissions in their vicinity. As a result, CRs must

operate in a much wider frequency bandwidth than conventional radios which spans
multiple PU bands and CRs must perform frequent measurements of PUs’ activity
through spectrum sensing. The most autonomous and flexible approach which could
be used to check the presence of PU signals, is based on measurements of the actual
occupancy at a given location and time. In this chapter we describe the basic detec-
tion/estimation groundwork for wideband sensing. The literature of wideband sensing
for CR networks is very limited. An early approach is to use a tunable narrowband
bandpass filer (BPF) at the RF frond-end to sense one narrow frequency band at a
time [9], over which the existing narrowband spectrum sensing techniques discussed in
Section 2.1 can be applied. In order to operate over multiple frequency bands at a time,
the RF front-end requires a wideband architecture followed by a high-speed DSP and
the spectrum sensing usually involves the estimation of the PSD of the wideband signal.
Classical estimation techniques of the PSD are discussed in Section 2.2. Alternatively,
multiple narrowband BPFs [10] may be employed, but this architecture requires an
increased number of components and the filter range of each BPF is preset. In the
wideband regime, a major challenge stems from the high RF signal acquisition costs of
current ADC hardware technology. We shall close this chapter with a new emergent
promising technology called compressive sampling which allows for sub-Nyquist rate
sampling of sparse signals alleviating the sampling burden and energy consumption.

2.1 Detection techniques

In detection theory for CR systems we want to determine whether a PU is present or
not. This results in a binary hypothesis test, where two cases (hypotheses) are stated
and the algorithm has to decide which one is (most likely) true. The classical detection
problem is to distinguish between the hypotheses

H0 : x[n] = w[n] n = 0, 1, . . . , N − 1 (2.1)

H1 : x[n] = s[n] + w[n] n = 0, 1, . . . , N − 1

where x[n] is the signal received by the cognitive user, s[n] is the noiseless received
signal when the PU is present and w[n] is the additive white gaussian noise (AWGN).

The performance of a detector can be characterized by its probability of correct
detection pd and false alarm rate pfa. When working with hypothesis testing, there are
a number of different errors that can occur
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1. Type I: decide H1 but H0 is true (false alarm).

2. Type II: decide H0 but H1 is true (missed detection).

Four schemes are generally used for detection according to the hypothesis model:

1. When the information of the PU signal is known to the cognitive user, the optimal
detector in stationary Gaussian noise is the matched filter (coherent detection)
since it maximizes the received signal-to-noise ratio (SNR). While the main ad-
vantage of the matched filter is that it requires less time to achieve high processing
gain due to coherency, implementing this type of coherent detector is difficult since
a SU would need extra dedicated circuitry to achieve carrier synchronization with
each type of license user. Moreover there may be cases in practice where matched
filtering is ruled out due to the lack of knowledge about PUs. In [11] and [12]
compressive detectors using matched filtering have been proposed.

2. If the receiver cannot gather any information about the PU signal, the optimum
detector is an energy detector (non-coherent detection). Since it is easy to im-
plement, and also it is the most general technique since it applies to any signal
type, recent work on detection of the PU has generally adopted the energy detec-
tor [13] [14]. It requires minimum information about the signal, including only
signal bandwidth and carrier frequency. However, the performance of the energy
detector is susceptible to an uncertainty in the noise power. Another shortcoming
is that the energy detector cannot differentiate signal types but can only determine
the presence of the signal. Thus, the energy detector is prone to false detection
triggered by the unintended signals.

3. While energy detection is a fairly general approach, it neglects the presence of
deterministic signals like pilots that PUs embed in their transmissions in order
to perform synchronization and acquisition. Hence pilot detection represents a
different technique which relies on the fact that the power of the known pilot
tone is typically 1% to 10% of the total transmitted power. One special case of a
pilot signal, frequently present in PU broadcast systems, is a sinewave tone used
for receiver synchronization. This method has been suggested for CR sensing
receivers in [15] and [16].

4. An alternative detection method is the cyclostationary feature detection [17].
Modulated signals are in general coupled with sine wave carriers, pulse trains,
repeating spreading, hopping sequences, or cyclic prefixes, which result in built-
in-periodicity. These modulated signals are characterized as cyclostationary sig-
nals since their mean and autocorrelation exhibit periodicity. These features are
detected by analyzing a spectral correlation function. The main advantage of the
spectral correlation function is that it differentiates the noise energy from mod-
ulated signal energy, which is a result of the fact that the noise is a wide-sense
stationary signal with no correlation, while modulated signals are cyclostationary
with spectral correlation due to the embedded redundancy of signal periodicity.
Therefore, a cyclostationary feature detector can perform better than the energy
detector in discriminating against noise due to its robustness to the uncertainty in
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noise power. However, it is computationally complex and requires prior knowledge
about the PU signal structure and significantly long observation time.

2.2 Estimation techniques

The goal of spectral estimation is to describe the distribution over frequency of the power
contained in a signal, based on a finite set of data. Estimation of power spectra is useful
in a variety of applications, including the detection of signals buried in wideband noise.

The PSD of a stationary random process x(n) is mathematically related to the
correlation sequence rx(n) by the discrete time Fourier transform. This is given by

Sx(e
jω) =

+∞∑
n=−∞

rx(n)e−jωn − π < ω ≤ π (2.2)

with

rx(n) = E[x∗(m)x(m + n)]. (2.3)

The average power of a signal over a particular frequency band [ω1, ω2], 0 ≤ ω1 < ω2 ≤
π, can be found by integrating the PSD over that band

P[ω1,ω2] =

∫ ω2

ω1

Sx(e
jω)dω. (2.4)

We can see from the above expression that Sx(e
jω) represents the power content of a

signal in an infinitesimal frequency band, which is why it is called the power spectral
density.

The main methods for wideband spectrum estimation can be divided into non-
parametric and parametric methods

1. Nonparametric methods are those in which the PSD is estimated directly from
the signal itself. The simplest of such methods is the periodogram. An improved
version of the periodogram is Welch’s method. A more modern nonparametric
technique is the multitaper method.

2. Parametric methods are those in which the PSD is estimated from a signal that
is assumed to be the output of a linear system driven by white noise. Examples
are the Yule-Walker autoregressive (AR) method and the Burg method. These
methods estimate the PSD by first estimating the parameters (coefficients) of the
linear system that hypothetically generates the signal. They tend to produce
better results than classical nonparametric methods when the data length of the
available signal is relatively short.

Following [18] Appendix A presents a short review of parametric and nonparametric
methods showing simulations of a practical signal from a cognitive radio sensing receiver
perspective.
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2.3 Compressive sampling

Spectrum sensing in the wideband regime faces considerable technical challenges. A
major implementation challenge lies in the very high sampling rates required by con-
ventional spectral estimation methods which have to operate at or above the Nyquist
rate.

The Nyquist sampling theorem tells us that in order not to lose information when
uniformly sampling a signal we must sample at least two times faster than its band-
width. In many applications, the Nyquist rate can be so high that we end up with too
many samples and must compress in order to store or transmit them. In other appli-
cations, increasing the sampling rate or density beyond the current state-of-the-art is
very expensive.

In this section, an emerging field called compressive sampling (CS) will be explained.
CS builds on the works of Candes, Romberg, and Tao [23] [24] and Donoho [22], who
showed that if a signal has a sparse representation in one basis then it can be recovered
from a small number of projections onto a second basis that is incoherent with the first.

Nyquist-rate sampling completely describes a signal by exploiting its bandlimited-
ness. The goal of CS is to reduce the number of measurements required to completely
describe a signal by exploiting its compressibility. The difference will be that the mea-
surements are not point samples any more but more general linear functionals of the
signal.

Let us consider a discrete-time signal x, which we view as an N × 1 column vector
with elements x[n], n = 1, 2, , N . Any signal can be represented in terms of a basis of
N × 1 vectors {ψi}N

i=1. Forming the N ×N basis matrix

Ψ = [ψ1 | ψ2 | . . . | ψN ] (2.5)

by stacking the vectors {ψi} as columns, we can express any signal x as

x =
N∑

i=1

siψi (2.6)

or
x = Ψs (2.7)

where s is the N × 1 column vector of weighting coefficients. Clearly, x and s are
equivalent representations of the same signal, with x in the time domain and s in the
Ψ domain.

We focus on signals that have a sparse representation, where x is a linear combina-
tion of just K basis vectors, with K ¿ N . That is, only K of the si coefficients in (2.6)
are nonzero. Sparsity is motivated by the fact that many natural and manmade signals
are compressible in the sense that there exists a basis Ψ where the representation has
just a few large coefficients and many small coefficients and represents a requirement
in order to apply the CS framework.

Let’s consider the linear measurement process that computes M < N inner products
between x and a collection of vectors {φj}M

j=1 as in

yj = 〈x, φj〉. (2.8)
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Stacking the measurements yj into the M×1 vector y and the measurement vectors
φT

j as rows into an M ×N matrix Φ and substituting this in (2.6), we can write

y = Φx = ΦΨs = Θs (2.9)

where Θ is an M × N matrix. It should be noted that the measurement process is
non-adaptive; that is, Φ does not depend in any way on the signal x. Figure 2.1 shows
an illustration of (2.9).

Figure 2.1: Compressive sensing measurement process [60].

The solution consists of two steps. In the first step, a stable measurement matrix Φ
is designed which ensures that the information is not damaged by the dimensionality
reduction from x ∈ CN down to y ∈ CM . In the second step, a reconstruction algorithm
is developed to recover x from the measurements y.

2.3.1 Stable measurement matrix

The goal is to make M measurements from which the length-N signal x could be
reconstructed, or equivalently its sparse coefficient vector s in the basis Ψ. Clearly
reconstruction will not be possible if the measurement process damages the information
in x. Hence, since the measurement process is linear and defined in terms of the matrices
Φ and Ψ, solving for s given y in (2.9) is a linear algebra problem, with M < N , i.e.,
fewer equations than unknowns, resulting in an infinite number of solutions (ill-posed).

However the K-sparsity of s comes to the rescue and an intuitive approach to ensure
the solution is that the measurement matrix Φ is incoherent with the sparsifying basis
Ψ [23] in the sense that the vectors {φj}M

j=1 cannot sparsely represent the vectors

{ψi}N
i=1 and vice versa. Some favorable distributions to represent Φ are:

1. Gaussian: φi,j ∼ N (0, 1
M

)

2. Bernouilli/Rademacher: φi,j =

{
+ 1√

M
with probability 1

2

− 1√
M

with probability 1
2

3. Database-friendly: φi,j =





+ 1√
M

with probability 1
6

0 with probability 2
3− 1√

M
with probability 1

6

4. Random orthoprojection to RM .
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A Gaussian measurement matrix has an important and useful property: the matrix
Θ = ΦΨ is also independent and identically distributed (i.i.d) Gaussian regardless of
the choice of the sparsifying basis matrix Ψ. Thus, random Gaussian measurements
are universal in the sense that Φ is incoherent with Ψ for every possible Ψ making
the reconstruction possible with high probability if M > cK log(N), with c a small
constant.

In order to study the general robustness of the CS measurement matrix, the so-
called Restricted Isometry Property (RIP) has been proposed by Candès and Tao [24].
For each integer S = 1, 2, . . ., they define the isometry constant δS of a matrix Θ = ΦΨ
as the smallest number such that

(1− δS)‖s‖2
2 ≤ ‖Θs‖2

2 ≤ (1 + δS)‖s‖2
2 (2.10)

holds for all S-sparse vectors s. A matrix Θ is said to obey the RIP of order S if
δS is not too close to one. When this property holds, Θ approximately preserves the
Euclidean length of S-sparse signals. An equivalent description of the RIP is to say
that all subsets of S columns taken from Θ are in fact nearly orthogonal. Therefore,
the mutual coherence parameter µ represents as well a good measure of robustness

µ(Φ,Ψ) =
√

N · max
k≤M,j≤N

|〈φk, ψj〉| (2.11)

µ(Φ,Ψ) ∈ [1,
√

N ] (2.12)

µ is defined as a measure of the incoherence between the matrices involved in CS and
it is proportional to the minimum number of measurements which are needed in order
to perfectly reconstruct the sparse vector.

So it is possible to define a universal measurement process, based on projections
over a random matrix in which the signal is not sparse. This is possible because even if
the projection Φ does not have full rank (M < N) and loses information in general, it
preserves structure and information in sparse signal models with high probability and
it is invertible also for sparse models with high probability solving the ill-posed inverse
problem.

Figure 2.2: Random projection invertible for sparse signals [60].
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2.3.2 Signal reconstruction algorithms

The incoherent property provides the theoretical guarantee that a K-sparse or com-
pressible signal can be fully described by the M measurements in y, but it does not tell
us how to recover it. The signal reconstruction algorithm must take the measurement
y, the random measurement matrix Φ (or the random seed that generated it), and
the sparsifying basis Ψ and regenerate the length-N signal x, or equivalently its sparse
coefficient vector s.

Define the p-th power of the lp norm of the vector s as

(‖s‖p)
p =

N∑
i=1

|si|p. (2.13)

When p = 0 we obtain the l0 norm that counts the number of non-zero entries in s;
hence a K-sparse vector has l0 norm K.

We now provide a brief and incomplete survey of existing approaches. The basic
idea behind sparse signal reconstruction is to identify the smallest subset of columns
of Θ, whose linear span contains (approximately) the observations, y. Algorithmic
approaches have been proposed for several decades and broadly fall into three categories.

One class of algorithms adopts a greedy search. Examples include, projection pur-
suit [31], orthogonal matching pursuit (OMP) [32] and tree based matching pursuit
(TbMP) [30]. There exist sufficient conditions on the sparseness of s and singular val-
ues of subsets of columns of Θ (restricted isometry property [25]) such that the above
algorithms stably recover s with high probability.

A second class of algorithms recursively solves a sequence of iteratively re-weighted
linear least-squares (IRLS) problems [33]; recent results [34] for the noiseless case have
established sufficient conditions such that the sequence converges to the sparsest solu-
tion.

A third class comprises penalized least-squares solutions for s and has likewise been
used for at least four decades. In this class of approaches, parameters are found via the
optimization

ŝ = arg min
s
‖Θs− y‖2

2 + λ‖s‖p
p (2.14)

or, equivalently for some ε > 0

ŝ = arg min
s
‖s‖p s.t. ‖Θs− y‖2

2 < ε (2.15)

Ridge regression [35] (i.e. Tikhonov regularization) adopts p = 2, while basis pursuit
[29] and LASSO [36] use p = 1. Equation (2.14) has been widely adopted, for example in
image reconstruction or radar imaging. With proper choice of the norm, total variation
denoising is also an algorithm in this class for p = 1 [23]. Elegant results by several
authors [25], [27], [28] have demonstrated sufficient conditions on Θ, and sparsity of s
such that for p = 1 the convex problem in (2.15) provides the unique solution to the
non-convex task

min
s
‖s‖0 s.t. ‖Θs− y‖2

2 < ε. (2.16)
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These proofs have validated the widespread use of (2.14) and (2.15), providing a
deeper understanding, spurring a resurgent interest, and promoting the interpretation
as “compressive sampling”. As mentioned before, the sufficient conditions on Θ are
the RIP [25] or a bound on the mutual coherence [28]. A constructive procedure for
Θ consistent with RIP still remains an open problem [37].

The number of measurements required to capture a class of signals depends on
several different factors:

• The sparsity level K of the signals.

• The length N of the signals.

• The coherence between the measurement matrix Φ and the sparsity basis Ψ.

To sum up, some important CS properties are as follows:

1. Stable: the acquisition/recovery process is numerically stable.

2. Universal: the same random projections /hardware can be used for any compress-
ible signal class.

3. Asymmetrical: most processing is carried out at the decoder.

4. Encryption of random projections weakly.

5. Democratic: each measurement carries the same amount of information which
makes it robust to measurement loss.

2.4 Conclusions

In this chapter we discussed some detection and estimation techniques and we intro-
duced CS as a suitable technology providing a solution to reduce the challenging high
sampling frequency rates required by wideband spectrum sensing. In the following
chapter, we shall provide a novel acquisition scheme for wideband sensing which ob-
tains an estimate of the PSD from compressive measurements.
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Compressive Wideband
Sensing 3
In this chapter, we address the problem of estimating the spectrum of the wide-band

signal received at the CR sensing receiver using the CS theory introduced in Section
2.3.
In [26], a spectrum sensing scheme based on CS was introduced. The signal received

from the licensed system at the CR sensing receiver is sampled, albeit at the Nyquist
rate. The autocorrelation of the resulting signal is compressively sampled. An estimate
of the spectrum is then obtained using a wavelet edge detector after CS reconstruction,
thus determining the spectrum occupancy of the licensed system. This scheme still
requires an ADC to operate at Nyquist rate or higher and takes a paradoxical approach
to CS. Wide-band ADCs operating at sampling rates of the order of several giga-
samples/s are thus a major challenge with such a scheme.

We consider a spectrum sensing scheme based on CS of the wide-band analog signal
using an analog-to-information converter (AIC). An AIC directly relates to the idea
of sampling at the information rate of the signal. Practical approaches to AIC design
have been considered in [51], [50]. An estimate of the original signal spectrum is then
made based on CS reconstruction using a wavelet edge detector along the approach
in [26]. We evaluate the resulting PSD estimate using the mean squared error (MSE)
and the probability of detecting spectrum occupancy, and compare the performance
with the scheme in [26]. We note that in [26], CS is done on the autocorrelation of the
discrete-time signal obtained by Nyquist-rate sampling. In our approach, CS is directly
performed on the wide-band analog signal.

3.1 Preliminaries

Let x(t) be the wide-band analog signal received at the CR sensing receiver. We con-
sider the frequency range of interest to be comprised of P non-overlapping contiguous
subbands. The bandwidth and channelization of the subbands need not in general be
known to the cognitive radio. For example, it is known that the digital TV licensed
system in the UHF-VHF spectrum has a channel occupancy of 8 MHz (in Europe).
Each subband may be vacant or used by a PU.

Let the analog signal x(t), 0 ≤ t ≤ T , be represented as a finite weighted sum of
basis functions (e.g., Fourier) ψi(t) as follows

x(t) =
N∑

i=1

siψi(t) (3.1)

where only a few basis coefficients si are much larger than zero due to the sparsity of
x(t). In particular, with a discrete-time CS framework, consider the acquisition of an
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N × 1 vector x = Ψs, where Ψ is the N × N sparsity basis matrix and s an N × 1
vector with K ¿ N non-zero (and large enough) entries si. It has been shown that x
can be recovered using M = KO(log N) non-adaptive linear projection measurements
on to an M ×N basis matrix Φ that is incoherent with Ψ [24].

3.2 Compressive spectrum sensing scheme of [26]

Figure 3.1: CS acquisition in spectrum sensing method of [26].

We now provide a brief overview of the approach of [26]. Figure 3.1 depicts the CS
acquisition employed. The basic idea of this approach is to view the entire wide-band
spectrum as subbands where subband edges indicate a change in spectrum occupancy.
These spectrum edges can be detected using a wavelet-based detector. The CS method
is applied to wide-band spectrum sensing as follows. The received signal x(t) is down-
converted and sampled at Nyquist rate or higher and the discrete-time signal is stacked
in to N × 1 vectors

xk = [xkN xkN+1 · · · xkN+N−1]
T , k = 0, 1, 2, . . . (3.2)

where T denotes the transpose operation. We assume the signal to be zero-mean, wide-
sense stationary. Denote the autocorrelation at lag j as rx(j) = E[xnx

∗
n−j]. In practice,

estimates of the autocorrelation are obtained by averaging over several signal segments.
Denote the 2N × 1 autocorrelation vector of (3.2) as

rx = [0 rx(−N + 1) · · · rx(0) · · · rx(N − 1)]T . (3.3)

A wavelet-based smoothing is then performed, followed by taking a Fourier transform to
obtain the PSD. Denote the discrete counterparts of these operations by the 2N × 2N
matrices W and F . The derivative of the PSD then gives the edge spectrum. The
derivative can be approximated by a first-order difference, given by the 2N×2N matrix

Γ =




1 0 · · · 0
−1 1 · · · 0

0
. . . . . .

...
0 · · · −1 1


 .

Denote G = (ΓFW)−1. Note that G represents the transform domain where the
autocorrelation vector rx has a sparse representation. The 2N × 1 discrete component
vector zs corresponding to the edge spectrum is then related to rx by [26]

rx = Gzs (3.4)
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Compressive sampling is now performed by means of a 2M × 2N compressive matrix

ΦI , giving rise to the 2M × 1 measurement vector cx = ΦIrx. An estimate ẑ
(1)
s of the

edge spectrum is obtained by solving the CS reconstruction problem:

ẑ(1)
s = arg min

zs

‖zs‖1 s.t. cx = (ΦIG)zs. (3.5)

An estimate of the wide-band spectrum can be obtained from ẑ
(1)
s =

[ẑ
(1)
s (1) ẑ

(1)
s (2) · · · ẑ

(1)
s (2N)]T by computing a cumulative sum. The discrete com-

ponents of the PSD estimate are given by

Ŝ(1)
x (n) =

n∑

k=1

ẑ(1)
s (k). (3.6)

It is important to point out that this scheme results in a somewhat paradoxical
architecture since sub-Nyquist sampling is achieved by first sampling the wide-band
analog signal at Nyquist rate and then applying CS on the autocorrelation vector rx.

3.3 Compressive spectrum sensing with AIC

Figure 3.2: CS acquisition in proposed spectrum sensing method.

Figure 3.2 depicts the acquisition under the proposed method. The analog baseband
signal x(t) is sampled using an AIC. An AIC may be conceptually viewed as an ADC
operating at Nyquist rate, followed by compressive sampling. Denote the N×1 stacked
vector at the output of the ADC by

xk = [xkN xkN+1 · · · xkN+N−1]
T k = 0, 1, 2 . . . (3.7)

and the M × N compressive sampling matrix by ΦA. The (i, j)-th element of ΦA is
given by φi,j. The output of the AIC denoted by the M × 1 vector

yk = [ykM ykM+1 · · · ykM+M−1]
T k = 0, 1, 2 . . . (3.8)

is given by
yk = ΦAxk. (3.9)

The respective N×N and M×M autocorrelation matrices of the compressed signal
and the input signal vectors in (3.8) and (3.7) are related as follows

Ry = E[yky
H
k ] = ΦARxΦ

H
A (3.10)

where H denotes the Hermitian. The elements of the matrices in (3.10) are given by:
[Ry]ij = ry(i− j) = r∗y(j − i), [Rx]ij = rx(i− j) = r∗x(j − i).
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Denote the respective 2N × 1 and 2M × 1 autocorrelation vectors corresponding to
(3.7) and (3.8) as follows

rx = [0 rx(−N + 1) · · · rx(0) · · · rx(N − 1)]T , (3.11)

ry = [0 ry(−M + 1) · · · ry(0) · · · ry(M − 1)]T . (3.12)

To pose the CS reconstruction in the form of (3.5), we need to first relate the
autocorrelation vectors in (3.11) and (3.12). Note that the components of these vectors
lie on the first column and row of the respective autocorrelation matrices. After some
matrix algebraic operations, we obtain the following result.

ry = ΦIIrx (3.13)

where ΦII is given as

ΦII =

[
ΦAΦ1 ΦAΦ2

ΦAΦ3 ΦAΦ4

]
, (3.14)

the M ×N matrix ΦA has its (i, j)-th element given by

[ΦA]i,j =

{
0 i = 1, j = 1, · · · , N,

φM+2−i,j i 6= 1, j = 1, · · · , N,

and the N ×N matrices Φ1,Φ2,Φ3,Φ4 are

Φ1 =




0 · · · 0 0

0
. . . 0 φ∗1,1

...
. . . . . .

...
0 φ∗1,1 · · · φ∗1,N−1


 ,

Φ2 =




φ∗1,1 φ∗1,2 · · · φ∗1,N

φ∗1,2 φ∗1,3
. . . 0

...
. . . . . .

...
φ∗1,N 0 · · · 0


 ,

Φ3 =




0 · · · φ1,3 φ1,2
...

. . . . . .
...

...
. . . 0 φ1,N

0 · · · · · · 0


 ,

Φ4 =




φ1,1 0 · · · 0

φ1,2 φ1,1
. . .

...
...

. . . . . . 0
φ1,N φ1,N−1 · · · φ1,1


 .
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Now using (3.4) and (3.13), we can formulate the CS reconstruction of the edge
spectrum as an l1-norm optimization problem

ẑ(2)
s = arg min

zs

‖zs‖1 s.t. ry = (ΦIIG)zs (3.15)

An estimate of the wide-band spectrum can now be obtained, as done in Section 3.2,

from ẑ
(2)
s = [ẑ

(2)
s (1) ẑ

(2)
s (2) · · · ẑ

(2)
s (2N)]T by computing a cumulative sum. The discrete

components of the PSD estimate are given by

Ŝ(2)
x (n) =

n∑

k=1

ẑ(2)
s (k). (3.16)

In [24], the mutual coherence parameter µ is defined as a measure of the incoherence
between the compressive sampling matrix Φ and sparsity basis matrix Ψ involved in
CS,

µ(Φ,Ψ) =
√

2N · max
1≤k≤2M,1≤j≤2N

|〈φk, ψj〉|, (3.17)

µ(Φ,Ψ) ∈ [1,
√

2N ]

where φk and ψj are respective columns of Φ and Ψ. The proposed scheme incurs a
reduced mutual incoherence due to the structure of ΦII in (3.14). However this does not
have a substantial impact on the performance of spectrum estimation and subsequent
detection, as will be shown via simulation results.

3.4 Multiband spectrum detection

We model the detection problem over the subband p as one to choose between hypoth-
esis H0,p (“0”), which represents the absence of PU signals, and hypothesis H1,p (“1”),
which represents the presence of PU signals. The crucial task of spectrum sensing is
to sense the P frequency bands and identify spectral holes for opportunistic use. A
convenient description for these signals is the multiband model where the frequency
support of a signal resides within several continuous intervals in a wide spectrum but
vanishes elsewhere. For simplicity, we assume that the high-layer protocols guarantee
that all CRs keep quiet during the detection such that the main spectral power under
detection is emitted by the PUs. One measure to compute an optimal detector is to
get the maximum pd for a given pfa. The approach used to compute the threshold that
results in a maximum probability of detection for a defined probability of false alarm
is called the Neyman-Pearson theorem [8]. There exist other measures to compute the
performance of a detector, such as Bayesian Approach that minimizes a risk function
instead of the pfa, but this requires the knowledge of the a priori probability of the hy-
pothesis, the so called a priori distribution. This a priori distribution would basically
be the probability of PU presence, which generally is not known, as the detection of
the PUs’ presence is the actual problem.

In the frequency domain, the received signal at each subchannel can be estimated
by computing its PSD. The discrete PSD of a wide-sense stationary stochastic process
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is defined to be the Discrete Fourier Transform (DFT) of its autocorrelation function
rx(n) (Wiener-Khinchin theorem)

Sx(e
jω) =

+∞∑
n=−∞

rx(n)e−jωn, −π < ω ≤ π, (3.18)

or the discrete counterpart

Sx,p(k) =
PK−1∑
n=0

rx(n−N)e−j 2π
2N

n(pK+k) = |Hp(k)|2Ss,p(k) + Vp(k), (3.19)

p = 0, 1, . . . , P − 1

k = 0, 1, . . . , K − 1

where Ss,p(k) is the PSD of the PU signal occupying subchannel p, Hp(k) stands for the
unknown channel frequency response between the corresponding PU transmitter at sub-
channel p and the CR sensing receiver, Vp(k) is the PSD of the additive complex white
Gaussian noise with zero mean and variance σ2

v , i.e., v(n) ∼ CN (0, σ2
v) and K is the

number of samples per band considered in the approximation, holding 2N = PK. Two
architectures to obtain an estimate of the PSD from compressive measurements were
proposed in Sections 3.2 and 3.3. Since the radio channel gain is normally considered to

Figure 3.3: A schematic representation of the the independent mutiband detection for wide-
band spectrum sensing in a CR sensing receiver.

be a random variable, for example the path loss at a particular location is distributed
log-normally (normal in dB) when signals are under shadowing effects, the local SNRs
in the P sub-channels will take different values. Let us define SNRp as the ratio of the
received signal variance to the noise variance

SNRp = 10 log10(‖Hp(k)‖2
2σ

2
p/σ

2
v) (3.20)
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with σ2
p denoting the transmitted energy over subchannel p. To decide whether the

p-th subchannel is occupied or not, we test the following binary hypotheses:

H0,p : Sx,p(k) = Vp(k), p = 0, 1, . . . , P − 1

H1,p : Sx,p(k) = H2
p (k)Ss,p(k) + Vp(k), k = 0, 1, . . . , K − 1 (3.21)

(3.22)

For each subchannel p, we compute the test statistic as the sum of the received energies,
i.e.,

Tp =
K−1∑

k=0

Sx,p(k) p = 0, 1, . . . , P − 1. (3.23)

The decision rule is given by

Tp

H1,p

≷
H0,p

γ p = 0, 1, . . . , P − 1 (3.24)

where γ is the corresponding decision threshold. The randomness is coming from the
fact that we are estimating the power spectrum density from the finite set of time
samples. The threshold γ is found by fixing the pfa. The choice of threshold γ leads to
a tradeoff between the probabilities of false alarm and miss pm = 1− pd. Specifically, a
higher threshold will result in a smaller probability of false alarm but a larger probability
of miss, and vice versa. The fundamental tradeoff between pm and pfa has different
implications in the context of dynamic spectrum-sharing. A high pm would result in
missing the presence of a PU with high probability and in turn increases interference to
a licensee user. On the other hand, a high pfa would result in low spectrum utilization
since false alarms increase the number of missed opportunities (white spaces). Figure
3.3 shows a schematic description of the proposed detection architecture.

3.5 Simulation results

In this section we evaluate the performance of the proposed AIC-based spectrum
sensing scheme. We consider, at baseband, a wide frequency band of interest ranging
from -40 to 40 MHz, containing P = 10 non-overlapping subbands of equal bandwidth
of 8 MHz. Each subband is possibly occupied by a licensed system transmission signal
that uses OFDM modulation according to the DVB-T standard. Each 8 MHz OFDM
symbol has 8192 frequency tones and a cyclic prefix length of 1024. The number of
OFDM symbols used for spectrum sensing is 2. The over-sampling1factor is 16.
The occupancy ratio of the total 80 MHz band is 50%, i.e., 5 out of 10 subbands are
occupied by licensed transmission signals and the remaining 5 channels are unoccupied.
The received signal is corrupted by additive white Gaussian noise (AWGN) with a

1The oversampling is performed commonly in practice after appending the cyclic prefix in order to loosen the
requirements on the DAC [59]. When the samples go through the DAC, the spectrum is replicated periodically,
and in order to suppress the spectral replicas, a reconstruction filter is required following the DAC. If there
are no high frequency bins left empty to create a large gap enough between the spectral replicas, oversampling
is required to simplify the design of the reconstruction filter since the roll-off can now be much larger.
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Figure 3.4: Spectrum estimation: (a) Nyquist rate PSD; (b) recovered edge spectrum; (c)
recovered PSD from edges
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Figure 3.5: MSE performance

variance of σ2
n = 1. The received SNRs of the 5 active channels are 7dB, 0dB, 2dB,

5dB, and 7dB, respectively.

A Gaussian wavelet function is used for smoothing. For compressed sensing, N
is 256 and the compression rate M/N is set to vary from 1% to 100%. The entries
of the compressive sampling matrix Φ are Gaussian distributed with zero mean and
variance 1/M . Seeking to estimate the autocorrelation, we divide the data sequence into
segments, thus reducing the variance. The input signal is segmented in time domain
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Figure 3.6: Detection performance

and the number of segments is denoted by Q.

The estimated / recovered PSD : Fig. 3.4 shows the estimated PSD based on our
proposed approach. The top plot shows the original PSD of the received wide-band

signal. The middle plot shows the estimated edge vector ẑ
(2)
s in (3.15) using a tree-based

Matching Pursuit recovery from the CS measurements with M/N=0.5. The bottom

plot shows the recovered PSD Ŝ
(2)
x vectors whose elements are defined as in (3.16) via

a cumulative sum of the estimated edge vector.

MSE performance: We compare the normalized MSE of the estimated PSD of our
approach and that of [26]. The normalized MSE is defined as

MSEi = E{‖Ŝ
(i)
x − Sx‖2

2

‖Sx‖2
2

}, i = 1, 2 (3.25)

where Sx denotes the PSD estimate vector based on the periodogram using the signals

sampled at Nyquist rate, Ŝ
(1)
x the PSD estimate vector based on the approach of [26],

and Ŝ
(2)
x the PSD estimate vector based on our approach. We can see from Fig. 3.5

that for both approaches the signal recovery quality (via tree-based Matching Pur-
suit) improves as the compression rate M/N increases. The MSE performances of the
two approaches are similar, even though a reduced sampling rate is employed in our
approach while an ADC operating at Nyquist rate is required in the approach of [26].

Probability of Detection Performance: We evaluate the probability of detection pd

based on the estimated PSD Ŝ
(2)
x . The decision of the presence of a licensed transmission

signal in a certain subband is made by an energy detector using the estimated frequency
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response over that subband. The decision rule is given by

Tp

H1,p

≷
H0,p

γ, p = 0, 1, . . . , 9 (3.26)

In order to determine the detection threshold, we assume the signal to be ergodic.
Therefore, the PSD may be estimated by

Sx(b) =
1

2QN

Q−1∑
q=0

|X[q, b]|2, b = 0, 1, . . . , 2N − 1, (3.27)

where

X[q, b] =
2N−1∑

l=0

x[q2N + l]e
−j2πbl

2N , (3.28)

which is the DFT of the non-overlapping sliding sampled signal. The parameter 2N
is the size of the DFT. In the absence of PUs, V [u, l], l = 0, 1, . . . , 2N − 1 computed
by (3.28) are i.i.d. complex Gaussian random variables with zero-mean and variance
2Nσ2

v . Then, Sv(b) computed by (3.27) are i.i.d. Gamma distributed random variables

Sv(b) ∼ Γ(Q, ζ) (3.29)

where ζ = 2Nσ2
v

2NQ
. The test statistic is given by

Tp =

(p+1)K−1∑

b=pK

Sx(b), p = 0, 1, . . . , 9, (3.30)

which corresponds to the sum of K independent Gamma distributions and

Tp ∼ Γ(KQ, ζ). (3.31)

Then pfa can be evaluated as

pfa = Prob{Tp > γ|H0,p} =
Γ(KQ, γ

ζ
)

Γ(KQ)
(3.32)

where γ denotes the energy threshold, Γ(a, x) is the incomplete gamma function given
by Γ(a, x) =

∫∞
x

ta−1e−tdt and Γ(a) is the gamma function. From the Central Limit
Theorem, when KQ is sufficiently large, Tp approaches that of a Gaussian distribution

lim
KQ→∞

Tp → N(KQζ, KQζ2). (3.33)

Therefore, the cumulative distribution function of the test statistic for hypothesis H0

is given by

FTp = Q(
γ −K√

K
Q

) (3.34)
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where Q(·) corresponds to the standard normal cdf

Q(x) =

∫ ∞

x

1√
2π

e−
1
2
u2

du (3.35)

Then, for a particular pfa, the corresponding threshold γ can be found by

pfa = 1− FTp(γ : H0,p). (3.36)

Finally, after some straightforward calculations, we have

γ = σ2
v

√
K

Q
Q−1(1− pfa) + Kσ2

v . (3.37)

The threshold γ is found by fixing pfa to 0.01, and Q = 288. The probability of
detection pd is calculated as

pd = Prob{Tp > γ|H1,p} =
1

5

p5∑
p=p1

Pr{Tp > γ} (3.38)

where pi, i = 1, . . . , 5 denote the indices of five active subbands. Fig. 3.6 shows pd

versus different values of compression rate M/N under a fixed pfa of 0.01. Note that
pfa depends only on the noise variance, thus the threshold can be set regardless of the
PU signal level. We observe that pd reaches 1 when M/N is larger than 0.1. When
M/N is smaller than 0.1, pfa is much larger than the designed value of 0.01, which
indicates that the CS recovery completely fails due to too few CS measurements.

3.6 Conclusions

We presented a compressive wide-band spectrum sensing scheme wherein an AIC oper-
ates on the received analog signal. Spectrum estimation is done based on CS reconstruc-
tion using the autocorrelation vector of the resulting compressed signal. The spectrum
estimate was used to determine the spectrum occupancy of the licensed system. Per-
formance evaluation using MSE and probability of detection showed that the proposed
scheme performs comparably to the scheme in [26]. The loss in incoherence thus does
not substantially affect spectrum estimation and spectrum occupancy detection.
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Distributed Spectrum Sensing 4
In the previous chapter we proposed an architecture to perform energy based com-

pressive wide-band detection at a local CR sensing receiver. However, if one CR does
not see energy in a particular band, it cannot assume that the PU is not present.

After all, a SU may suffer multi-path and/or severe shadowing with respect to the PU
transmitter. At the same time, its own transmissions may interfere with a primary
receiver should it decide to transmit (classical “hidden terminal problem” in wireless
networks). To account for possible losses from multi-path, shadowing and local in-
terference, the SU must be significantly more sensitive in detecting than the primary
receiver. The presence of multiple radios helps to reduce the effects of severe multi-path
at a single radio since they provide multiple independent realizations of related random
variables (exploiting spatial diversity). With multiple realizations, the probability that
all users see deep fades is extremely low. In essence we wish to make the cognitive
radios’ spectrum sensing robust to severe or poorly modeled fading environments.

In this chapter we consider the situation in which spectrum sensing is compromised
by destructive channel conditions between the PUs and the detecting CRs, which makes
it hard to distinguish between an empty spectrum band and a weak signal. We pro-
pose a distributed wide-band spectrum sensing scheme that exploits the joint common
structure of the received PU signal among CRs to improve the sensing reliability via
CS.

Each radio performs spectrum sensing locally, subsequently, coordination among the
nodes to share their statistics about the common phenomenon sensed is required. The
sharing mechanisms depend on the network architecture. We consider a centralized
network, relying on a fusion center (FC) playing the role of a coordinator for exchange
of spectrum sensing measurements of local CR sensing receivers. The local sensing
measurements can be obtained following any of the acquisition schemes described in
Chapter 3. However, along this chapter we assume every node is equipped with the
acquisition sensing receiver proposed in Section 3.3.

4.1 Distributed compressive spectrum sensing

Because detection by one CR receiver is subject to missed detection due to channel
fading and low SNR, a network of spatially diverse CRs is required. In other words, local
spectrum sensing can never surpass its limitation on detecting weak signals. Distributed
spectrum decision fusion mitigates the channel fading effect by enabling spatial diversity
gain. Diversity combining exploits the fact that independent fading signals have a
low probability to be all in a deep fade at the same time. The impact of diversity
schemes such as equal gain combining (EGC), selection combining (SC) and switch and
stay combining (Dual SSC) over various fading channels is studied in [46]. There are
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Figure 4.1: Block diagram of a parallel fusion network.

previous studies on spectrum sensing in CR networks with focus on cooperation among
multiple CRs [13] [44] [45], via distributed detection approaches [43]. However, they are
limited to the detection of signals on a single frequency band. A cooperative wide-band
spectrum sensing scheme was proposed in [47]. To provide reliable spectrum sensing
at affordable complexity, we present a distributed compressed edge sensing framework
for wide-band communication networks.

In this section, we model the CR system with a standard parallel fusion network
with a total of J sensing receivers randomly deployed, as shown in Fig. 4.1. We assume
that the nodes do not communicate with each other and that there is no feedback from
the FC to any node. In this model, each CR obtains some relevant information on
the spectrum occupancy and they rely on a FC to make collaborative decisions with
improved sensing quality. Let

xj(t) j = 1, 2, . . . , J, (4.1)

be the analog wideband signal received at the j-th CR sensing receiver. We propose
two architectures:

1. Independent CS (Fig. 4.2): In short, each CR sensing receiver makes a binary de-
cision based on its local observation and then forwards its per-band decision to the FC.
After gathering all decision vectors, the FC generates a global spectrum usage decision
by fusing the local decisions. In this approach we seek to minimize the communication
overhead. Subsequently, users only share their final decisions rather than the raw data
set.

2. Joint CS (Fig. 4.3): Briefly, each CR node sends the compressed local sensing
estimates ry,j to the fusion center which jointly estimates the J replicas and then gen-
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erates a global spectrum usage decision. In this approach we seek to reduce complexity
at the nodes.

4.1.1 Independent CS

Figure 4.2: Block diagram of the architecture described in Section 4.1.1 (Independent CS).

Fig. 4.2 depicts the sensing architecture under the Independent CS method. The
procedure of this scheme is described as follows:

1. Denote dj as the P × 1 decision vector obtained at the CR sensing receiver j

dj = [d1,j d2,j · · · dP,j]
T j = 1, 2, . . . , J. (4.2)

Every CR j performs wideband spectrum detection independently obtaining a
binary decision vector dj (following the NP energy detector introduced in Section
3.4) being

dp,j =

{
1, H1,p

0, H0,p
(4.3)

2. All of the CRs forward their binary decisions vector to a common FC.
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3. Denote the P × 1 global spectrum usage decision vector as

u = [u1 u2 · · · uP ]T . (4.4)

The FC combines those binary decisions and makes a final decision u given by

up =

{
1, H1,p

0, H0,p
(4.5)

to infer the absence or presence of the PU in the P frequency bands.

For simplicity we assume that all J cognitive users experience independent and
identically distributed fading/shadowing with the same average SNR. A fundamental
result in distributed binary hypothesis testing is that when nodes are conditionally
independent (as in our case), the optimal decision rule for individual nodes is the likeli-
hood ratio test (LRT) [43]. However, optimum individual thresholds are not necessarily
equal and it is generally hard to derive them. We assume that all users employ a NP
energy-detector and use the same decision rule (i.e. same threshold). While these as-
sumptions render our scheme sub-optimum, they facilitate analysis as well as practical
implementation. As long as the threshold is known, the probability of false alarm at
each CR sensing receiver is known, which can be derived from the probability density
function (PDF) of the noise. However, at each node, it is very difficult to calculate
the probability of detection pd, since it is determined by each CR sensing receiver’s
channel with the PU. Without the knowledge of pd, the FC is forced to treat detections
from every SU equally. At the common receiver, all 1-bit decisions are fused together
according to the following logic k-out-of-J rule

up =

{
1, if

∑J
j=1 dp,j ≥ k

0, if
∑J

j=1 dp,j < k
(4.6)

This means that the FC adopts hypothesis H1,p (presence of a PU) as the true
hypothesis when at least k CRs favore that hypothesis. Under hypothesis H1,p (PU
presence), the probability of detection at CR sensing receiver j is a function of its
receiver’s SNR. Under hypothesis H0,p (PU absence), each SU has the same probability
of false alarm, and we denote it as pfa. At the FC, the global probability of false alarm
PFA is given by

PFA = Prob{up > k|H0} =
J∑

i=k

cJ
i pi

fa(1− pfa)
J−i (4.7)

and the global probability of detection PD, assuming that all decisions are independent
from each other under hypothesis H1

PD = Prob{up > k|H1} =
J∑

i=k

cJ
i pi

d(1− pd)
J−i (4.8)

where

cJ
i =

J !

i!(J − i)!
(4.9)
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For k = 1, the fusion rule reduces to an OR fusion rule, while for k = J it becomes
an AND fusion rule. For a specified value of PFA, there is an integer k that maximizes
the PD. In [42] it is shown that when minimizing the total probability of error when
pfa and pm have the same order, the optimal choice of k is J/2, the OR rule becomes
optimal when pfa ≤ pJ−1

m (large detection threshold γ) and the AND rule is optimal
when pm ¿ pfa (small detection threshold γ).

4.1.1.1 Decentralized Independent CS

It is worth mentioning that when seeking for completely decentralized algorithms a
“consensus” or “agreement computation” for networked systems can be followed, i.e., in
the absence of a fusion center. These systems are more robust than the centralized ones
since the network cannot be compromised just by eliminating the FC (node failure).
Also, since all nodes asymptotically compute the consensus value there is an added
layer of robustness. In such ad hoc CR systems, each node is a SU equipped with a
CR acting as both a sensing terminal and a FC.

In order to solve the decentralized distributed averaging problem, let G = (N , E)
be an undirected connected graph with node set N = {1, . . . , J} and edge set E , where
each edge (j, k) ∈ E is an unordered pair of distinct nodes. Let cj(0) = dj be a real
vector associated with CR node j at time t = 0. The average consensus problem is
to compute the average 1

J

∑J
j=1 cj(0) at every node, via local communication with its

neighbors Nj = {k|(j, k) ∈ E}.
Gossip algorithms [48] provide an intuitive solution by computing a sequence of

pairwise averages. In each round, one node is chosen randomly, and it chooses one of
its neighbors randomly. Both nodes compute the average of their values and replace
their own value with this average. By iterating this pairwise averaging process, the
estimates of all nodes converge to the global average under suitable conditions on the
graph topology.

Alternatively, each node may update its local variable by adding a weighted sum
of the local discrepancies, i.e., the differences between neighboring node values and its
own

cj(t + 1) = cj(t) +
∑

k∈Nj

Wjk(ck(t)− cj(t)) j = 1, . . . , J ; t = 0, 1, . . . , (4.10)

where Wjk is a weight associated with the edge (j, k). These weights are algorithm
parameters. Since we associate weights with undirected edges, we have Wjk = Wkj.
In [49], the problem of finding the edge weights that result in the least mean square
deviation in steady state was considered. With properly designed weights, we can
guarantee that

lim
t→∞

cj(t) =
1

J

J∑

k=1

ck(0) =
1

J

J∑

k=1

dk, j = 1, . . . , J. (4.11)

Thus, through local one-hop communications, each CR obtains the averaged statistic
of the entire multi-hop network. Subsequently, each CR can make the fusion decision
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straightforwardly by comparing cj(t) with a threshold

γac ∈ [
1

J
, 1] (4.12)

at a sufficiently large t.
The threshold is chosen to reflect how conservative the network is in protecting the

PUs. In the most conservative case, detection is declared as long as there exists a single
CR which locally declares detection, corresponding to γac = 1

J
(OR fusion rule).

The fundamental issue in average consensus is the number of iterations it takes to
converge to a sufficiently accurate estimate.

4.1.2 Joint CS

Figure 4.3: Block diagram of the architecture described in Section 4.1.2 (Joint CS).

In [38] the compressed sensing theory was extended to take into account the joint
sparsity of a signal ensemble giving rise to the Distributed Compressive Sensing (DCS)
framework based on the joint structure of an ensemble of signals in the case they
observe presumably related phenomena. In a typical DCS scenario, a number of CR
sensing receivers measure signals that are each individually sparse in some basis and
also correlated from node to node. Next we present a model for jointly sparse signals
which exploits both the intra- and inter-signal correlation structure that allows for joint
recovery at the FC from the raw data of the CR nodes. Fig. 4.3 depicts the detection
architecture under the joint CS method. The procedure of this scheme is described as
follows:
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1. Every CR sensing receiver j obtains compressive sensing measurements ry,j inde-
pendently which are then forwarded to the FC.

2. The FC jointly reconstructs the J received PSD’s Ŝx,j, j = 1, . . . , J , and then
makes JP binary decisions dp,j.

3. Those binary decisions are combined and a final decision up is made to infer the
absence or presence of the PU in the observed frequency band p following the
k-out-of-J rule defined in (4.6).

The multiple CR nodes are acquiring the same signal but through a different channel
(phase shifts and attenuations caused by signal propagation). Since all CRs are mea-
suring the same phenomenon, all signals are constructed from the same edge-domain
sparse set of basis vectors, but with different coefficients.

In order to show more explicitly the above mentioned relationship among the re-
covered edge spectrum zs,j in the CR local nodes, let’s suppose as done in [41] that
there are I PUs emitting spectral power at I of the total P subchannels during the
detection interval, whose transmitted signals are denoted by si(t), i = 1, . . . , I. After
propagating through a wireless fading channel, the signal si(t) reaches the j-th CR
sensing receiver in the form hij(t) ? si(t), where ? denotes the convolution operator and
hij(t) is the channel impulse response between the i-th PU and the j-th CR sensing
receiver. We assume that the channel is slowly varying such that the channel frequency
response remains constant during a detection interval. The received signal at CR j is
thus given by

xj(t) =
I∑

i=1

hij(t) ? si(t) + vj(t) (4.13)

where the ambient noise vj(t) is white Gaussian with zero mean and PSD σ2
v . To reflect

the discretized signal response on the P sub-channels, we transform equation (4.13) into
its discretized PSD-domain. Consequently, following (3.19) we have

Sx,j = HjH
∗
jSs + Vj j = 1, 2, . . . , J (4.14)

Let zs denote the 2N × 1 edge spectrum of Ss given by

Ss = FGzs. (4.15)

When channel state information (CSI) is available at each CR receiver j, zs may be
estimated at every CR sensing receiver. In [41] a computationally distributed fusion
technique based on CS is proposed based on a stochastic approximation when CSI is
available at the CR sensing receivers. This technique may be directly applied to our
framework. However, acquistion of the CSI, may be extremely costly or even impossible
in a multiuser wireless system with unknown PU locations and transmission parameters.
Consequently, we estimate the faded edge spectrum at the j-th CR sensing receiver zs,j

which is related to zs as
zs,j = HjH

∗
jzs (4.16)

Hence, all signals share the same common sparse support (positions of edges) which we
denote as Ω. The common structure among the signals may be exploited to perform
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an improved joint recovery of the set at the FC.

4.1.2.1 Joint recovery algorithm

The common sparse profile allows for a fast algorithm to recover all of the signals jointly.
A popular search technique for finding the sparse solution is based on a suboptimal
forward search through the dictionary. These algorithms, termed Matching Pursuit
(MP), proceed by sequentially adding vectors to a set which will be used to represent
the signal. After convergence we obtain an expansion of the measurement vector on
a subset of the dictionary basis vectors. To obtain the expansion coefficients in the
sparse basis, we then reverse it by least squares.

We write Θ = ΦIIG in terms of its columns

Θ = [θm,n] = [θ1 θ2 · · · θ2N ] m = 1, . . . , 2M (4.17)

n = 1, . . . , 2N

Denote Ω as the index set of all columns of the matrix Θ

Ω ⊂ {1, 2, . . . , 2N} (4.18)

and Ωk as the index set of all columns that are selected from the beginning up to
step k. At the k-th iteration step, the algorithm selects a new column of the common
sparse support via a two-stage selection process. In the first stage, the inner products
of the current residual are examined with the remaining atoms for all the signals.
Based on these inner products, the search is narrowed down to a small set of potential
candidates. In the second stage, the atom that provides the maximal average reduction
of the residual is selected. The procedure of our algorithm is described as follows:

I. INPUT:

• A common dictionary 2M × 2N matrix Θ.

• A 2M × J data matrix Y = [y1 y2 · · · yJ ] corresponding to the acquired
data from the J CR sensing receivers.

• ρ (optional) maximum number of iterations.

• ξ (optional) threshold for convergence.

II. OUTPUT:

• A 2N × J reconstruction matrix Zs = [zs,1 zs,2 · · · zs,J ] solving

Θzs,j = ry,j j = 1, 2, . . . , J, (4.19)

with all zs,j sharing the same sparse support.

III. PROCEDURE:
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1. Denote R(k) as the 2M × J residual matrix obtained at the k-th iteration
written in terms of its columns

R(k) = [r
(k)
1 r

(k)
2 . . . r

(k)
J ]. (4.20)

Initialize the residual R(0) = Y, the index set Ω(0) = 0, and the counter
k = 1. Create the index set Ω of all columns in Θ

Ω = {1, 2 . . . , 2N}. (4.21)

2. Denote c
(k)
n as the J×1 correlation vector between the residuals and the n-th

dictionary element

c(k)
n = [c

(k)
n,1 c

(k)
n,2 . . . c

(k)
n,J ]T , (4.22)

where

c(k)
n = 〈(R(k−1))T , θn〉 n ∈ Ω\Ω(k−1) (4.23)

|Ω\Ω(k−1)| = 2N − (k − 1).

Denote c̄(k) as the (2N − (k−1))×1 average correlation over the CR sensing
receiver’s vector given by

c̄(k) = [c̄
(k)
1 . . . c̄(k)

n . . . c̄
(k)
2N−(k−1)]

T , (4.24)

where

c̄(k)
n =

1

J

J∑
j=1

c
(k)
n,j n ∈ Ω\Ω(k−1). (4.25)

We find the columns of Θ which have larger common inner products with
the residual.

c∗(k) = max{c̄(k)} (4.26)

Ξ(k) = {n : c̄(k)
n ≥ αc∗(k)} (4.27)

with α denoting the narrowing down factor seleceted from 0 to 1.

3. Search among the candidate set Ξ(k) for the item that maximizes the reduc-
tion of average residual

n(k) = argmax
n∈Ξ(k)

J∑
j=1

‖r(k)
j −P

span{θl∪θn:l∈Ω(k−1)}r
(k)
j ‖2. (4.28)

4. Set Ω(k) = Ω(k−1) ∪ n(k).

5. Update the residual: R(k) = Y − P
span{θl:l∈Ω(k)}Y, where the orthogonal

projector onto the span of the selected columns from Θ is given by

P
span{θl:l∈Ω(k)} = Θ(k)Θ(k)† (4.29)
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with

[Θ(k)]m,n = θm,n n ∈ Ω(k) (4.30)

m = 1, 2, . . . , 2M

and Θ† denoting the Moore-Penrose pseudo-inverse

Θ† = (ΘHΘ)−1ΘH . (4.31)

6. Compare min ‖r(k)
j ‖2

2, j = 1, 2, . . . , J with a preselected limit ξ, and compare

the number of selected items in Ω(k) with a preselected limit ρ. If these limits
are not reached then increase k by one and return to step 2.

7. Locations of nonzero coefficients of Zs are listed in Ω(k). The values of those
coefficients are in the expansion

P
span{θl:l∈Ω(k)}yj =

∑

l∈Ω(k)

zs,j(l)θl → zs,j = (Θ(k))†yj. (4.32)

Similar algorithms have been considered by different authors in the area of simul-
taneous sparse approximation [38], [40]. We shall compare the performance of our
proposed algorithm against theirs in future work.

4.2 Simulation results
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Figure 4.4: Detection performance for fixed average SNR.

In this section we evaluate the performance of the proposed AIC-based distributed
spectrum sensing scheme. We consider the simulation scenario described in Section 3.5.
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Figure 4.5: Independent Detection performance under low SNR conditions.

Three quantities are varied in the experiments: the SNR per band, the number of
CRs J and the compression rate M/N which is set to vary from 1% to 100%. In a
Monte Carlo simulator, 500 trials are run. In each trial, a different realization of the
measurement matrix Φ, the sparse vector zs,j, and the noise vectors are used.

Probability of Detection Performance: We evaluate the local probability of detection
pd based on the estimated PSD Ŝx,j and the global probability of detection PD. The
local energy collected in the PSD domain is denoted by Tp and it is defined as in Section
3.5. The local threshold γ is again found by fixing pfa to 0.01 and Q = 288. The local
probability of detection pd is calculated as

pd =
1

5

p5∑
p=p1

Pr{Tp > γ} (4.33)

where pi, i = 1, . . . , 5 denote the indices of five active subbands. The global probability
of detection PD is computed according to the OR fusion rule.

In Fig. 4.4 we show the local probability of detection pd against different values
of SNR under a fixed pfa of 0.01. The received SNR is held fixed in each set of trials
along the different PUs. We observe that there is a SNRwall of −8 dB below which no
PU presence is detected.

In Fig. 4.5 and Fig. 4.6 we show the global probability of detection PD and the
false alarm rate PFA when J is held constant while compression rate is set to vary from
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Figure 4.6: Joint Detection performance under low SNR conditions.

1% to 100% and SNRp also is set to vary from −10 to 0 dB in each trial and from user
to user as discussed in Section 4.1.1 and Section 4.1.2, respectively. Note that below
−5.5dB local sensing is not sufficient to determine all PUs. The asymptotic bound of
the OR fusion probability is determined by the local probability of detection pd and
the number of CRs involved

PD = 1− (1− pd)
J (4.34)

PFA = 1− (1− pfa)
J . (4.35)

In Fig. 4.7 and Fig. 4.8 we carry out the same experiment as in Fig. 4.5 and Fig.
4.6 with SNRp varying from 0 to 5 dB.

Spectrum sensing sensitivity requirements are set by the minimum detectable signal
strength of sensing SNR:

• In the high noise case (SNRp < −5.5 dB), one CR is not able to identify correctly
all the PUs and distributed sensing is required. We note that using a value of
J > 1 results in an improvement in performance (spatial diversity gain).

• In the low noise case (SNRp > −5.5 dB), the achieved gain when using a dis-
tributed network of CRs is highly reduced. For instance, we are able to find the
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Figure 4.7: Joint Detection performance under high SNR conditions.

correct occupancy with J = 1.

• In both high and low noise case, when M/N is smaller than 0.2, pfa is much larger
than the designed value of 0.01, which indicates that the CS recovery completely
fails due to too few CS measurements.

Finally, we note that the global probability of detection PD is very similar between
the independent distributed scenario and the joint distributed one. This can be ex-
plained by the fact that even if the joint recovery algorithms exploits the common
sparse support in the high noise case, the recovered signal amplitude will depend on
the received SNR which in high noise case turns to be below the noise level leading in
both cases to a missed detection.

4.3 Conclusions

We presented a distributed compressive wide-band spectrum sensing architecture based
on the compressive acquisition scheme proposed in Chapter 3. We motivated the dis-
tributed network of CRs by the need for an additional layer of robustness to fight
against unfavorable channel conditions. In order to coordinate the nodes, we assumed
the existence of a FC and depending on how the tasks involved in spectrum sensing are
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Figure 4.8: Independent Detection performance under high SNR conditions.

shared we proposed two architectures: independent CS and joint CS. Performance eval-
uation using local probability of detection and global probability of detection showed
that both the proposed architectures perform comparably well in destructive and non
destructive channel conditions even if no CSI is available.
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Practical Performance Issues 5
In this chapter, we address some major practical performance issues related with the

proposed architectures. We start with a description of the influence of the main
parameters governing the scheme performance. Second we discuss the practical

limitations of our spectrum detector block, i.e., noise variance assumed constant and
known, local channels of the distributed network assumed i.i.d., . . . . Then we describe
the main architectures which have already been proposed in the literature to implement
the AIC and we finally conclude the chapter with a low complexity distributed com-
pressive recovery algorithm to perform detection without going into the intermediate
stage of estimating the PSD.

5.1 Degrees of freedom to improve signal detection

All simulations along the thesis have been obtained by fixing the parameters whose
influence we now discuss:

• Spectral estimation block size (N): this parameter is related to the bandwidth
resolution, referred to as the ability to discriminate spectral features.

• Number of spectral averages (Q): by averaging we reduce the variance of the PSD
estimator. Note that obtaining a PSD estimator with the lowest possible variance
is crucial for the compressive edge detector.

• Measurement matrix (Φ): in Section 2.3.1, we have introduced several possible
measurement matrices. The main requirement of the measurement matrix is to
provide incoherency with the sparsifying matrix. The bigger the incoherency is,
the less measurements are needed by the compressive edge optimization algo-
rithm to converge. Owing to the universal incoherency of the gaussian matrix, we
selected it to run the experiments all along the thesis.

• Number of compressive measurements (M): the applied compression in the scheme
influences the error in the PSD estimate. It has been shown from simulations that
a compression rate of 10% incurs a very similar performance as the full Nyquist
rate signal.

• Wavelet smoothing function (W): the matrix W introduced in Section 3.1 to
calculate the edge transform domain matrix G represents the discrete time wavelet
smoothing function. Due to the inversion involved when obtaining G, the wavelet
function can not be freely dilated. Consequently, our method is not eligible for
performing a multiscale/multi-resolution wavelet transform. The interest of a
multi-resolution transform comes from the fact that the edges of interest would
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show up always at the same positions. On the other hand, noise-induced spurious
edges are random at each scale and thus tend not to propagate through all scales;
hence, if a multiscale wavelet transform was available, an improved recovery could
be applied.

• Number of CR sensing receivers (J): as the number of radios increases, the proba-
bility that every radio experiences a deep fade decreases. Hence, sensing reliability
improves with the number of CRs. Due to this gain, sensing time, and thus aver-
aging Q of individual radios can be reduced.

Note that there is a tradeoff between N and Q, i.e., a larger N improves the band-
width resolution but at the same time increases the required averaging Q. In practice
it is common to choose a fixed N to meet the desired resolution with a moderate com-
plexity. Then, the number of spectral averages becomes the parameter used to meet
the estimator performance goal.

5.2 Spectrum detection limitations

Our algorithms are based on some assumptions which are common in literature. Here
we discuss them further:

1. We assumed that the noise is a white, additive and Gaussian wide-sense stationary
process, with zero mean, and known variance. However, noise is an aggregation
of various sources including not only thermal noise at the receiver and underlined
circuits, but also interference due to nearby unintended emissions, weak signals
from transmitters very far away, etc.

2. We assumed that noise variance is precisely known to the receiver, so that the
threshold can be set accordingly. However, this is practically impossible as noise
could vary over time due to temperature change, ambient interference, filtering,
etc. The deviation from the assumed known value becomes particularly important
when the signal strength is below the error of the noise variance. In that case,
the detection threshold, which is set based on the known variance, is set too high
and weak signals could never be detected.

3. In modeling the channels we assumed that they are independent and identically
distributed. As a result, the diversity gains shown in the plots are maximized.
However, channel coefficients are a result of superposition of three components
(path loss, shadowing, and multipath) that do not necessarily need to be inde-
pendent for all radios. While path loss for small to medium networks can be
assumed equal for all radios, the other two effects could have quite different char-
acteristics. For example, shadowing can exhibit high correlation if two radios are
blocked by the same obstacle.

4. Our last assumption was made for equal distribution of noise and local interference
across all radios. As a result, every CR could apply the same detection threshold
and achieve equal pfa. However, in all practical situations these two assumptions
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do not hold. First, due to circuits variability or temperature difference, each radio
has a different aggregate local noise.

In a nonstationary background, a fixed threshold NP detector cannot be used, be-
cause, as the background conditions vary, the resulting value of pfa may be too high
(i.e., decreasing the reuse of the unused spectrum) or the value of pd may be too low
(i.e., increasing the interference to the PU systems). This suggests to employ adaptive
threshold techniques based on an estimate of the mean power level of the background
noise. Several approaches may be reused from the noise estimation literature to solve
the practical spectrum sensing problem: how can we set the threshold based on a real
time estimation of the noise power, so that we can still guarantee the target probability
of detection, or the probability of false alarm?

A simple but reasonable method is to treat the estimate of noise power as the
true noise power and calculate the threshold used in energy detection accordingly.
In [54], the practicality of performing real time noise estimation was justified with two
examples:

1. Assume the spectrum regulators still want to reserve certain channels for special
applications, and SUs are never allowed to access this channel. In addition, this
special channel is rarely used and therefore can serve the purpose of noise estima-
tion, e.g., in the United States, channel 37 (from 608 to 614 MHz) is reserved for
radioastronomy and is used in very few occacions.

2. Detecting pilot signals which are distinct narrow band spectral features. After
performing the PSD estimation on the received signal, the noise variance can be
estimated from some frequency bin not corresponding to the pilot frequency.

Intuitively, this method may incur in an inherent loss of detection probability since
the threshold is set by estimating the total noise power from only a finite number of
observed noise samples. In [54] a method to determine the threshold from real time
noise variance estimation is derived that can achieve the desired probability of detection
of false alarm.

The previous approach relies on a noise variance estimated from a possibly vacant
channel. In [55], the noise power is estimated from the full wideband signal with
a method based on the shortest half sample, under the assumption of sparsity, i.e.,
the number of data points containing only noise is greater than the number of data
points containing both signal and noise. The assumption is quite reasonable, since
the current dynamic spectrum sharing research is motivated by the fact that many
parts of the spectrum are under-utilized most of the times. This makes the concept
of spectrum sharing to be attractive. Therefore, one can estimate the noise power
without doing any explicit separation of the noise from the noisy signal. In [56] a
wideband detector for single SUs or multiple collaborative SUs which does not require
the noise variance is proposed based on the general likelihood ratio test (GLRT). They
assume that among the subbands there is some minimum number of vacant subbands.
Basically, the estimate of the noise variance in [56] is based on the average of the least
energies of the subbands when sorted in an ascending order. This approach is intuitively
justified, since it is more likely for the subbands with lower energies to be vacant rather
than the higher energy ones.
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Most of the fusion approaches in the literature have focused on the cases with
conditionally i.i.d. observations. The correlated case where it is assumed that each SU
knows the geographic locations of the other users and hence the correlation between
the observations is studied in [57].

5.3 AIC implementation issues

Part of the CS research has focused on advanced devices for “analog-to-information”
conversion (AIC) of high-bandwidth signals. The goal as introduced in this thesis is to
alleviate the pressure on conventional ADC technology, which is currently limited to
sampling rates on the order of 1 GHz.

Figure 5.1: Random sampling scheme for AIC.

Probably because of the novelty of CS theory, there is not much literature about
AIC hardware designs. We now provide a brief overview of existing methods in the
actual literature:

• Random sampling

• Pseudo-random demodulation

• Random filtering.

In a nutshell, a low-rate sequence of measurements y(m) can be acquired from a
high bandwidth analog signal. Ideally, we would like to sample the signal at some
multiple of the sparsity level, rather than at twice the bandwidth as demanded by the
Nyquist sampling theorem.

The random sampling architecture digitizes the signal at randomly or pseudo-
randomly sampled points. This architecture has been proposed for wideband signals
that are sparse in a local Fourier representation in the sense that at each point in
time they are well-approximated by a few local sinusoids of constant frequency (e.g.,
frequency hopping communication signals). Two implementations have been proposed
in [50]. Fig. 5.1 depicts one of them. A bank of parallel low-rate ADCs that have
equal shifts between their starting conversion points is used. This creates a shift in the
samples that are produced from each of the parallel ADCs. The switching mechanism
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Figure 5.2: Pseudo-random demodulation scheme for AIC.

(a)

(b) (c)

Figure 5.3: Random filtering scheme for AIC: (a) general scheme; (b) using convolution; (c)
using FFT/IFFT. The FIR filter h has random taps, which must be known in order to recover
the signal x from the compressed data y.

is then controlled pseudo-randomly. The main implementation challenges come from
the large chip area for the many ADCs and also the minimization of the jitter effect
when controlling the switches.

The pseudo-random demodulation architecture [51] [52] is most notably applicable
to those signals having a sparse representation in the time-frequency plane. Whereas
it may not be possible to digitize an analog signal at a very high rate, it may be quite
possible to change its polarity at a high rate. The basic idea is thus to multiply the
signal by a pseudo-random sequence of ±1s, integrate the product over time windows,
and digitize the integral at the end of each time interval. The purpose of the demod-
ulation is to spread the frequency content of the signal so that it is not destroyed by
the integrator. This is a parallel architecture and one has several of these random
multiplier-integrators pairs running in parallel using distinct sign sequences. In effect,
this architecture correlates the signal with a bank of sequences of ±1, one of the CS
measurement processes known to be universal. Fig. 5.2 shows a schematic of the AIC
based on pseudo-random demodulation. The most significant sources of non-idealities
are: the clock jitter of the random number generator for pc(t), the linearity and inter-
modulation distortion of the mixer, and the quantization error of the back-end ADC.

The random filtering architecture (Fig. 5.3a) [53], in contrast to the previous two
architectures is sufficiently generic to summarize many types of compressible signals
sparse in the time, frequency, and wavelet domains, as well as piecewise smooth signals
and Poisson processes (universal). It builds on the idea of random filters as a new
paradigm for compressive signal acquisition. A random filter is an FIR filter whose
taps are i.i.d. random variables. Seeking for consistency with the previous chapters,
we are in particular interested in the case where the taps are drawn from the normal
distribution. The wideband analog signal is hence captured by convolving it with
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a random-tap FIR filter h(t) and then downsampling the filtered signal to obtain a
compressed representation y

y = D↓(h ? x) (5.1)

where D↓ downsamples by a factor of bN
M
c. Note that, because this process is lin-

ear, the map from the signal x to the summary y can be viewed as y = Φx. Two
implementations which we show in Fig. 5.3b and Fig. 5.3 have been proposed in [53].

5.4 Detection without estimation

Figure 5.4: Block diagram of the architecture for OSGA.

In [38], a joint recovery algorithm has been proposed named as One-Step Greedy
Algorithm (OSGA) intended to recover the joint common sparse support of a signal
ensemble with fewer than O(K log N) measurements per CR. Of course this approach
does not recover the coefficients for each signal but it provides a sufficient statistic to
perform detection at lower complexity, i.e. theorem 1 in [38] claims that with M ≥ 1
measurements per signal, OSGA recovers the common sparse support with probability
approaching 1 as J →∞. We next show from simulations that OSGA may be utilized as
a recovery algorithm for the architecture shown in Figure 5.4 under the same assumption
of joint sparsity concerning the case of multiple sparse signals that share common sparse
components, but with different coefficients.

The measurements can be obtained following any of the acquisition schemes de-
scribed in Chapter 3. Again, for simplicity we shall develop the equations for our pro-
posed architecture (Section 3.3). We assume that an equal number of measurements is
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taken per CR and we write Θj in terms of its columns

Θj = [θj,1, θj,2, . . . , θj,N ] j = 1, . . . , J, (5.2)

where Θj is given by
Θj = ΦII,jF j = 1, . . . , J, (5.3)

with ΦII,j denoting the 2M × 2N compressive sampling matrix as defined in (3.14) at
the j-th CR and F standing for the 2N×2N discrete Fourier matrix. The measurements
obtained under our proposed architecture in Section 3.3 follow

ry,j = ΦII,jFSx,j j = 1, 2, . . . , J, (5.4)

with Sx,j denoting the PSD of the sought signal xj(t) at the j-th CR. After gathering
all of the measurements the following statistic is computed

ξn =
1

Jχ

J∑
j=1

〈rT
y,j, θj,n〉2 n = 1, 2, . . . , 2N, (5.5)

where χ denotes the mean of the test statistic ξn in the absence of the PU signal.
In [39] the mean and the variance of ξn have been found assuming Gaussian measure-

ment matrices, i.e. [ΦII,j]m,n ∼ N (0, 1), Gaussian signal entries, i.e. Sx,j ∼ N (0, σ2)
and a common sparse support denoted by Ω with |Ω| = K. They show that under the
above assumptions the mean and the variance of ξn are given by

E(ξn) =

{
mb, if n 6= Ω
mg, if n ∈ Ω

(5.6)

and

V ar(ξn) =

{
σ2

b , if n 6= Ω
σ2

g , if n ∈ Ω
(5.7)

where

mb = MKσ2, (5.8)

mg = M(M + K + 1)σ2, (5.9)

σ2
b =

2MKσ4

J
(MK + 2K + 3M + 6), (5.10)

σ2
g =

Mσ4

J
(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M3 + 2MK2 + 4M2K).

(5.11)

We note that the background level depends on the unknown sparsity of the signal
and also on the parameters of the unknown distribution of the signal. Hence, we propose
to normalize the algorithm by including the normalization factor χ, consisting of an
estimate of the background level, which allows us to define a predetermined detection
threshold independent of the unknown parameters of the received signal. The parameter
χ may be estimated with any of the methods discussed in Section 5.2.

We propose two methods for decentralized computation in case a FC is not available
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• Method 1 : Each CR obtains its own ry,j and then computes

〈ry,j, θj,n〉 n = 1, 2 . . . , 2N. (5.12)

Afterwards, average consensus is applied to obtain an estimate of ξn. This method
requires every CR to share 2N samples.

• Method 2 : Every CR broadcasts its measurement vector ry,j (2M measurements).
After gathering all measurements from all neighboring nodes, each CR may com-
pute an estimate of ξn.
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Figure 5.5: ξ(1) for different compression ratios when J = 1000.

Let’s denote the 2N × 1 test statistic vector as

ξ = [ξ1 ξ2 . . . ξ2N ]. (5.13)

Next we plot ξ for the test signal introduced in Section 3.5 with a new occupancy ratio
of 40%, i.e., 4 out of 10 subbands are occupied by licensed transmission signals and
the remaining 6 channels are unoccupied. The received SNR of the 4 active channels is
uniformly varied ranging from -5 to 5 dB and N is set to 128. We shall estimate ξ for
both schemes described in Chapter 3. Hence in the simulations the test statistic under
the acquisition scheme of Section 3.2 is denoted by ξ(1) and the one under the scheme
proposed in Section 3.3 is denoted by ξ(2) .

Simulation scenario 1 : Figs. 5.5 and 5.6 show ξ(i), i = 1, 2, when the number of
CRs is fixed to J = 1000 and the compression rate is set to vary from 1% to 100%. As
expected,ξ(i), i = 1, 2 follow the occupancy of the subbands.

Simulation scenario 2 : Figs. 5.7 and 5.8 show again ξ(i), i = 1, 2,, when the
compression rate is 0.05 and the number of CRs is set to vary from 1 to 5000. Note
that the proposed algorithm of Section 4.1.2.1 would completely fail to recover the
sparse signal for such a low compression rate. Fig. 5.9 shows a snapshot of Figs. 5.5
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and 5.6 for a fixed compression rate of 0.05. The top plot shows one realization of the
original PSD of the received wide-band signal where the signal to noise ratios of the 4
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active channels are 5 dB, 0 dB, -3 dB and 3 dB, respectively.

Simulation scenario 3 : In Fig. 5.10 we evaluate the probability of detection PD

based on the statistic ξ(2). The decision of the presence of a licensed transmission signal
in a certain subband is again made by the energy detector of (3.26). The normalization
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Figure 5.10: Detection performance

factor χ is estimated from a vacant subchannel following

χ =
1

K

pK−1∑

k=(p−1)K

ξ(2)(k) (5.14)

where p refers to the vacant channel and K = 14. Note again that the probability of
detection reaches 1 for very small compression rates as long as the number of sensors
is large enough.

All figures show the averaging behavior of the statistic ξ(2), i.e., the SNR of the
active channels is averaged out providing the algorithm with robustness against deep
fades.

5.5 Conclusions

We have discussed several practical limitations in the context of compressive sensing in
CRs and we have described the main architectures available in literature to implement
the AIC. While potentially practically useful, the discussed algorithm OSGA requires J
to be large. Our numerical experiments predict a good performance when M is small,
as long as J is sufficiently large. However, in the case of fewer signals (small J), OSGA
performs poorly.
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Conclusions and further work 6
In this chapter we summarize the work done in the thesis, draw the final conclusions,

and suggest directions for further research.

6.1 Conclusions

We presented fundamental schemes for wideband spectrum sensing in CRs based on
compressive sampling. We addressed problems with current state-of-art approaches
that require a wideband ADC, by proposing a scheme that works at sub-Nyquist rates.
Several architectures and algorithms were provided depending on whether or not there
was coordination between different CRs in the CR network.

In Chapter 3 we presented a spectrum sensing scheme based on CS for applications
on wideband CR systems. The main advantage of this scheme is that it operates well
below Nyquist rate. We compared its performance with the energy detector and it gives
similar performance. Note that each CR is designed not expecting cooperation from
other users in the detection process. Actually, in practice, cooperation between the
CR users cannot be guaranteed in general, since a user can cooperate with others only
when there are also other users in its vicinity monitoring the spectrum. A more feasible
and reliable system where the individual secondary users make independent decisions
about the presence of the primary users and communicate their decisions to a fusion
center was considered in Section 4.1.1 (independent CS). The fusion center makes the
final decision about the occupancy of the band by fusing the decisions made by all
distributed radios in that area. In practice, the fusion center could be some centralized
controller that manages the channel assignment and scheduling for the secondary users.
In the same section we also proposed a solution for the topology where a centralized
fusion center is not available, and where the secondary users exchange their decisions
and each secondary user performs its own fusion of all the decisions.

The algorithms proposed in Sections 4.1.2 (joint CS) and 5.4 (OSGA) rely on the
existence of a distributed network of CR sensing receivers. While the joint CS architec-
ture does not need a large number of secondary users to provide good detection results,
OSGA requires a very large number of low complexity sensing devices, subsequently, it
suits applications where a dense sensor network is available. In a dense sensor network,
a potentially large number of distributed sensor nodes can be programmed to perform
data acquisition tasks as well as to network themselves to communicate their results
to a central collection point. The main advantage of our architectures rely on the
capability of giving the same results as existing systems from presumably less samples.

Finally, in Chapter 5 we provided an extensive discussion about the major practical
implementation issues.
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6.2 Suggestions for further Work

• Sequential compressive sensing
Existing analytical results on CS provide guidelines on how many measurements
are needed to ensure exact recovery with high probability, but these are often seen
to be pessimistic and rely on a priori knowledge about the sparsity of the unknown
signal. A more suitable scenario would then be to get observations in sequence,
and perform computations in between observations to decide whether enough
samples have been obtained. Exact recovery would be in that case, possible from
the smallest possible number of observations, and without any a priori knowledge
about how sparse the underlying signal is.

• Direct detection from compressive measurements
Our research has focused on the reconstruction of the PSD (relying on the as-
sumption of sparsity). However, seeking to reduce the complexity of the algo-
rithms involved, we must not forget that the fundamental task is not estimating
the PSD but detecting the presence of the primary users, subsequently, the full
reconstruction of the signal should not be required. In Section 5.4, we described
a first approach meeting this goal, without going into the intermediate stage of
estimating the PSD.

• CS recovery algorithm
When the wavelet transform is involved, a multi-resolution solution may be avail-
able by dilating the wavelet basis function. The interest in a multi-resolution
transform comes from the fact that the edges of interest would show up always at
the same positions for different scalings, however, noise-induced spurious edges are
random at each scale and thus tend not to propagate through all scales; hence,
if a multiscale wavelet transform was available, an improved recovery could be
applied.

• Decentralized computation
When performing joint recovery in a distributed wireless network under the com-
mon sparse support assumption when no CSI is available, we relied on a fusion
center. It may be interesting trying to completely distribute the computation of
a detection consensus from compressive measurements.
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Nonparametric and parametric
spectrum estimation
techniques review A
Here is a short review of the parametric and the non parametric methods following

the presentation in [18].

A.1 Nonparametric estimation

One way of estimating the PSD of a process is to simply find the discrete time Fourier
transform of the samples of the process (usually done with an FFT) and take the mag-
nitude squared of the result. This estimate is called the periodogram. The periodogram
of a length N signal x(n) is

Ŝx(f) =
|X(f)|2

N
(A.1)

where

X(f) =
N−1∑
n=0

x(n)e−j2πfn. (A.2)

Since Ŝx(f) is a function of random variables, it is necessary to consider convergence
in a statistical sense. Therefore we are interested in whether or not

lim
N→∞

E{[Ŝx(f)− Sx(f)]2} = 0. (A.3)

In order for the periodogram to be mean-square convergent, it is necessary that it
is asymptotically unbiased

lim
N→∞

E{[Ŝx(f)]} = Sx(f) (A.4)

and have a variance that goes to zero as the data record length N goes to infinity,

lim
N→∞

V ar{Ŝx(f)} = 0. (A.5)

In other words, Ŝx(f) must be a consistent estimate of the power spectrum.
The periodogram is a biased estimator of the PSD. Its expected value can be shown

to be

E[Ŝx(f)] =
N−1∑

m=−(N−1)

(1− |m|
N

)rx(m)e−j2πfm. (A.6)

This suggests that the estimates produced by the periodogram corresponds to a leaky

PSD rather than the true PSD. Note that 1− |m|
N

essentially yields a triangular Bartlett
window (which is apparent from the fact that the convolution of two rectangular pulses
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is a triangular pulse). This results in leakage, distortion increasing the sidelobes, and
smoothing (decresased resolution). However, it is asymptotically unbiased, which is
evident from the earlier observation that as the data record length tends to infinity, the
frequency response of the rectangular window more closely approximates the Dirac delta
function (also true for a Bartlett window). However, in some cases the periodogram
is a poor estimator of the PSD even when the data record is long. This is due to the
variance of the periodogram, i.e., the periodogram is not a consistent estimator of the
PSD: increasing the number of samples increases frequency resolution but does not
enhance the variance of the estimate. There are some nonparametric methods that
are able to reduce the variance in the spectral estimate by decreasing the frequency
resolution. Then the quality of the power spectrum estimate increases when sample
size is increased.

The modified periodogram windows the time-domain signal prior to computing the
FFT in order to smooth the edges of the signal

Ŝx(f) =
N−1∑

m=−(N−1)

x(m)w(m)e−j2πfm. (A.7)

Common used windows are Hann and Hamming. This has the effect of reducing the
spectral leakage. However it also results in a reduction of resolution.

In the Bartlett method the N-point sequence is subdivided into K non-overlapping
segments. The periodogram is computed for each segment and the periodograms are
averaged.

Ŝx(f) =
1

K

K−1∑
i=0

1

M
|

M−1∑
n=0

x(n + iM)e−j2πfn|2. (A.8)

Variance of the estimate is then reduced by factor of K.
The Welch method consists of dividing the time signal into overlapping segments,

computing a modified periodogram of each segment, and then averaging the PSD esti-
mates

Ŝx(f) =
1

L

L−1∑
i=0

1

MU
|

M−1∑
n=0

x(n + iD)w(n)e−j2πfn|, (A.9)

where

U =
1

M

M−1∑
n=0

w2(n). (A.10)

Each periodogram is calculated starting from sample iD. Thus, the Welch method
is the same than the Bartlett method if D = M and the window function w(n) is
constant. The variance of Welch’s estimator is difficult to compute because it depends
on both the window used and the amount of overlap between segments. Basically,
the variance is inversely proportional to the number of segments whose periodograms
are being averaged. In summary there is a trade-off between variance reduction and
resolution.

The methods of Bartlett and Welch are designed to reduce the variance of the
periodogram by averaging periodograms and modified periodograms. Another method
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for decreasing the statistical variability of the periodogram is periodogram smoothing,
often referred to as the Blackman-Tukey method. In the Blackman and Tukey method
the sample autocorrelation sequence is windowed first and then Fourier transformed in
order to decrease the contribution of the unreliable autocorrelation estimates

Ŝx(f) =
M−1∑

m=−(M−1)

∞∑
n=−∞

x∗(n)x(n + m)w(m)e−j2πfm. (A.11)

Here the window function w(n) has length 2M − 1 and is zero for |m| ≥ M .
The periodogram can be interpreted as filtering a length N signal, x(n), through a

filter bank of N FIR bandpass filters. The magnitude response of each one of these
bandpass filters resembles that of the rectangular window. The periodogram can thus
be viewed as a computation of the power of each filtered signal, i.e., the output of
each bandpass filter, that uses just one sample of each filtered signal and assumes
that the PSD of x(n) is constant over the bandwidth of each bandpass filter. As the
length of the signal increases, the bandwidth of each bandpass filter decreases, making
it a more selective filter, and improving the approximation of constant PSD over the
bandwidth of the filter. This provides another interpretation of why the PSD estimate
of the periodogram improves as the length of the signal increases. However, there
are two factors apparent from this standpoint that compromise the accuracy of the
periodogram estimate. First, the rectangular window yields a poor bandpass filter.
Second, the computation of the power at the output of each bandpass filter relies on a
single sample of the output signal, producing a very crude approximation.

Welch’s method can be given a similar interpretation in terms of a filter band.
In Welch’s implementation, several samples are used to compute the output power,
resulting in reduced variance of the estimate. On the other hand, the bandwidth of
each bandpass filter is larger than that corresponding to the periodogram method, which
results in a loss of resolution. The filter bank model thus provides a new interpretation
of the compromise between variance and resolution.

Multitaper method (MTM) [19] and [20] builds on these results to provide an im-
proved PSD estimate. In MTM the power spectrum estimate for a frequency slot
[fi −∆, fi + ∆] is calculated by averaging over output of several filters or tapers. This
reduces the variance of the estimate. The tapers are orthogonal to each other and

are centered on the frequency fi. The filters are called Slepian sequences {w(k)
t }N

t=1.
The data x(t) is expanded using the Slepian sequencies and an eigenspectrum Yk is
calculated according to

Yk(f) =
N∑

t=1

w
(k)
t x(t)e−j2πft. (A.12)

The power spectrum estimate consists of a weighted sum of the eigenspectra

Ŝx(f) =

∑K−1
k=0 λk(f)|Yk(f)|2∑K−1

k=0 λk(f)
, (A.13)

where λk is the eigenvalue corresponding to eigenvector with elements of the k-th taper

{w(k)
t }N

t=1. The more concentrated the taper is to the frequency slot [fi−∆, fi +∆] the
higher the value of λk.
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In [21], they show that for wideband signals, the multitaper spectral estimation
procedure is “nearly optimal” in the sense that it almost achieves the Cramer-Rao
bound for a nonparametric spectral estimator.

However, nonparametric methods are based on non-realistic assumptions. There
is an inherent assumption that the autocorrelation estimate is zero for samples > N .
Also, there is an inherent assumption that the data is periodic with period N. The
assumptions limit frequency resolution and quality of the estimate. The power spectrum
can be estimated without these assumptions using parametric methods. They result in
better frequency resolution and better quality of estimate with finite sample size.
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Figure A.1: Periodogram wideband estimation method.

A.2 Parametric estimation

A different limitation of the nonparametric methods is that they are not designed to
incorporate information that may be available about the process into the estimation
procedure. In some applications this may be an important limitation, particularly when
some knowledge is available about how the data samples are generated. Parametric
methods can yield higher resolutions than nonparametric methods in cases when the
signal length is short. These methods use a different approach to spectral estimation;
instead of trying to estimate the PSD directly from the data, they model the data as
the output of a linear system driven by white noise, and then attempt to estimate the
parameters of that linear system

x(n) = −
p∑

k=1

akx(n− k) +

q∑

k=0

bkw(n− k). (A.14)

With a parametric approach, the first step is to select an appropriate model for the
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Figure A.2: Welch wideband estimation method.
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Figure A.3: Multitaper wideband estimation method

process. This selection may be based on a priori knowledge about how the process is
generated or, perhaps on experimental results indicating that a particular model “works
well”. Models that are commonly used include autoregressive (AR), moving average
(MA), and autoregressive moving average (ARMA).

In ARMA the data sequence is the output of a linear system characterized by a
system function

H(z) =
B(z)

A(z)
=

∑q
k=0 bkz

−k

1 +
∑p

k=1 akz−k
. (A.15)
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In AR the system function is

H(z) =
1

A(z)
. (A.16)

The AR model is suitable for representing spectra with narrow peaks. It is also the
most commonly used parametric method since it results in simple linear equations for
the ak parameters. The MA is characterized by

H(z) = B(z). (A.17)

The power density spectrum is calculated from the system function using

Ŝx(f) = σ2
w|H(f)|2. (A.18)

Although it is possible to significantly improve the resolution of the spectrum esti-
mate with a parametric method, it is important to realize that, unless the model that
is used is appropriate for the process that is being analyzed, inaccurate or misleading
estimates may be obtained.

A.3 Simulation results
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Figure A.4: AR wideband estimation method

The PSD is estimated for the test case introduced in Section 3.5. We consider, at
baseband, a wide frequency band of interest ranging from -40 to 40 MHz, containing
P = 10 non-overlapping subbands of equal bandwidth of 8 MHz. 5 subbands are
occupied by signals using OFDM modulation according to the DVB-T standard. Each
8 MHz OFDM symbol has 8192 frequency tones and a cyclic prefix length of 1024. The
number of OFDM symbols used for spectrum sensing is 2. The over-sampling factor is
16. The signal whose PSD is to be estimated is corrupted by additive white Gaussian
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noise (AWGN) with a variance of σ2
n = 1. The received signal to noise ratios (SNR) of

the 5 occupied channels are 10dB, 5dB, 10dB, 0dB, and 10dB, respectively. Spectrum
estimation was performed with four different methods: periodogram, Welch method,
AR method, and multitaper method. The parameters for the methods are

• Periodogram (Fig. A.1): the FFT length considered is N=8192.

• Welch method (Fig. A.2): the number of segments is set to K = 8,with an
overlapping of 50% and a Hamming windowing.

• Multitaper method (Fig. A.3): the number of discrete prolate spheroidal se-
quences (Slepian sequences) is set to 7.

• AR model (calculated with Yule-Walker method) (Fig. A.4): the order of the
autoregressive model is set to p = 25.
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