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Abstract Employees often report the experience of stress at work. In the
SWELL project we investigate how new context aware pervasive systems can
support knowledge workers to diminish stress. The focus of this paper is on
developing automatic classifiers to infer working conditions and stress related
mental states from a multimodal set of sensor data (computer logging, fa-
cial expressions, posture and physiology). We address two methodological and
applied machine learning challenges: 1) Detecting work stress using several
(physically) unobtrusive sensors, and 2) Taking into account individual differ-
ences. A comparison of several classification approaches showed that, for our
SWELL-KW dataset, neutral and stressful working conditions can be distin-
guished with 90% accuracy by means of SVM. Posture yields most valuable
information, followed by facial expressions. Furthermore, we found that the
subjective variable ‘mental effort’ can be better predicted from sensor data
than e.g. ‘perceived stress’. A comparison of several regression approaches
showed that mental effort can be predicted best by a decision tree (correla-
tion of 0.82). Facial expressions yield most valuable information, followed by
posture. We find that especially for estimating mental states it makes sense to
address individual differences. When we train models on particular subgroups
of similar users, (in almost all cases) a specialized model performs equally well
or better than a generic model.
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2 Saskia Koldijk, Mark A. Neerincx, Wessel Kraaij

1 Introduction

Employees often report the experience of stress at work, which can in the worst
case lead to burn-out. Stress is a broad concept referring to psychological and
biological processes during emotional and cognitive demanding situations. We
follow a pragmatic approach and decompose stress in three factors that can
be measured more precisely: (1) the task load, which poses demands on the
worker, (2) the mental effort, which the worker needs to handle the task and
(3) the emotional response that is raised, in terms of arousal and valence.

In the area of stress research, questionnaires are commonly used to get
insight in the general working experiences (e.g. Zapf (1993)), but little is known
on the immediate effects of stressors at work. Work in the area of affective
computing investigates the possibility of inferring stress and emotion from
sensor data (see e.g. Matthews et al. (2005)). To investigate the direct effect
of different degrees of mental load, typically standardized tasks are used in
a lab setting, like remembering digits. These tasks are very simple and not
representative of ‘real’ office work. Furthermore, work on user state modeling
is often performed in a process control context, e.g. on naval ships (Neerincx
et al., 2009) or in flight control. Only little work is done on user state modeling
in an office context.

Fig. 1 SWELL approach.

In the SWELL project we investigate how unobtrusive and easily available
sensors can be used in offices, to detect stress and the context in which it ap-
pears in real-time (see Figure 1; Koldijk (2012)). Based upon this information,
we aim to develop pervasive supporting technology that is optimally adapted
to the current working context and mental state of the user. Knowledge work-
ers can then directly act, gaining a more healthy work style and preventing
stress building up. Trends like ‘quantified self’ already show the potential of
collecting personal sensor data (e.g. heart rate, activity patterns) for health
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improvement. Personal sensor data is relatively easy to collect nowadays, the
challenge is making sense of this data.

The focus of this paper is on developing automatic classifiers to infer work-
ing conditions and stress related mental states from a multimodal set of sensor
data: computer logging, facial expressions, posture and physiology. We present
related work in Section 2. The dataset that we use is presented in Section 3.
We identified two methodological and applied machine learning challenges, on
which we focus our work:

1. Using several unobtrusive sensors to detect stress in office en-
vironments. We found that state of the art research in stress inference
often relies on sophisticated sensors (e.g. eye tracker, body sensors), and/or
uses data collected in rather artificial settings. We see possibilities to build
human state estimation techniques for use in office environments. We aim
to combine information from multiple weak indicator variables based on
physically unobtrusive measurements. We address the following research
questions: Can we distinguish stressful from non-stressful working con-
ditions, and can we estimate mental states of office workers by using sev-
eral unobtrusive sensors? Which modeling approaches are most successful?
Which modalities/ features provide the most useful information? This helps
to configure a minimal sensor set-up for office settings. We address these
questions in Section 4.

2. Taking into account individual differences. We found that, in affec-
tive computing, often one generic model is learned for all users. This may
work for something universal, as the expression of emotions. However, in
earlier work (Koldijk et al., 2011, 2015), we found that people differ in their
(work) behavior: typical behavior of users already differs per person. More-
over, the way in which people express mental effort or stress may differ.
This highlights a need to build personalized models for particular users
or user groups, instead of one general model. We address the following
research questions: How important are individual differences? Can we
improve performance by building personalized models for particular user
groups? We address these questions in Section 5.

Finally, we present our Conclusions and Discussion in Section 6 and 7.

2 Related work

Here we present related work on affective computing, more particularly on
using physiology, facial expressions, postures and computer interactions (or
preferably a combination of modalities) to infer the user’s mental state, e.g. in
terms of stress. We describe the sensors that are used, in which context data is
collected, which machine learning approaches are applied, and how individual
differences are addressed.

Physiology Most often, body sensors are used to measure the physiological
stress response directly. For a general overview of psycho-physiological sensor
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4 Saskia Koldijk, Mark A. Neerincx, Wessel Kraaij

techniques we refer to Matthews et al. (2005). Most studies report on experi-
mental environments, since this new technology is hardly deployed yet in work
environments.

In research by Riera et al. (2012), for example, brain imaging (electroen-
cephalography, EEG) and facial electromyography (EMG) data were collected.
The authors show that these sensors can be used for monitoring emotion (va-
lence and arousal) and stress. Although its great potential, we think deploying
brain imaging in a daily office setting is not yet realistic.

Other common measurements in stress research are pupil diameter and
heart rhythm (electrocardiogram, ECG). Mokhayeri et al. (2011), for example,
collected such data in context of the Stroop color-word test. They state that
pupil diameter and ECG have great potential for stress detection.

The question that arises is: can we make an estimate of affective and mental
states outside the lab? We see some potential for heart rhythm measurements
(ECG) and skin conductance (GSR or EDA), with the rise of wearable sensors,
which are becoming more and more integrated into devices as watches and
bracelets. Bakker et al. (2012) e.g. measured skin conductance of 5 employees
during working hours.

Setz et al. (2010) present work in which they use EDA measurements to
distinguish cognitive load and stress. 32 participants solved arithmetic tasks
on a computer, without (cognitive load condition) or with time pressure and
social evaluation (stress condition). To address individual differences, data
was also normalized per participant by using a baseline period. However, the
non-relative features turned out to work better. Leave-one-person-out cross
validation yielded an accuracy of 82% to distinguishing both conditions. The
authors ‘suggest the use of non-relative features combined with a linear clas-
sification method’ (p.416).

Cinaz et al. (2013) present research in which they used ECG. Three cal-
ibration tasks in a laboratory setting were used to induce low, medium and
high workload. This was used to train models, which were then used on 1 hour
data recorded during office work. Data was aggregated over 2 minutes. They
find that linear discriminant analysis (LDA) performs best in predicting men-
tal workload (classifying 6 of 7 participants correctly), followed by k-nearest
neighbor (kNN) and support vector machines (SVM).

Moreover, Yang et al. (2008) present work in which they evaluate a wear-
able patch style heart activity monitoring system. They extract several sig-
nals from the ECG measurements, like heart rate and heart rate variability
and demonstrate correlations with stress. Andreoli et al. (2010) present the
SPINE-HRV tool, which is a full-fledged heart monitoring system specially
designed to be non-restricted, non-aware and non-invasive, therefore suitable
in daily life use. Measuring physiological stress reactions in office settings may
thus be feasible.

Facial expressions There also is potential in using behavioral cues, such as fa-
cial expressions, postures or computer interactions as indicators for the user’s
mental state. For an overview of machine understanding of human behavior we
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refer to the survey by Pantic et al. (2007). In related work, facial expressions
are widely used for inferring emotions. The data are often recorded while emo-
tions are induced in participants. The publicly available multimodal dataset
described by Soleymani et al. (2012), for example, was collected in context
of watching emotion inducing video clips and consists of: face videos, audio
signals, eye gaze data and physiological signals (EEG, ECG, GSR, respira-
tion amplitude, skin temperature). Although this dataset is very interesting,
emotions in a daily computer work context are probably less intense than the
valence or arousal experienced during watching a movie clip.

An interesting question is whether people show facial emotions during com-
puter work, and whether their facial expressions are indicative of mental states.
Preliminary results by Dinges et al. (2005) suggest that high and low stres-
sor situations could be discriminated based on facial activity in mouth and
eyebrow regions. They applied a Hidden Markov model. They state that their
algorithm has ‘potential to discriminate high- from low-stressor performance
bouts in 75 - 88% of subjects’.

Moreover, Craig et al. (2008) looked at facial expressions while students
worked with an online tutoring system. Association rule mining identified that
frustration was associated with activity in facial action units (AU) 1, 2 (in-
ner and outer brow raiser) and 14 (dimpler); confusion was associated with
AU 4 (brow lowerer), 7 (lid tightener) and 12 (lip corner puller). So, facial
expressions are an interesting modality for detecting mental states.

Postures Regarding postures, Kapoor & Picard (2005) present research in
which posture data was collected together with facial expressions and computer
information while children solved an educational computer puzzle. Sensors
in the chair were used to extract posture features (like leaning back, sitting
upright) and activity level (low, medium, high). Posture information yielded
the highest unimodal accuracy (82.52%) with an SVM for estimating interest
(vs. uninterest). Performance was further improved by adding facial expression
and computer information in a multimodal Gaussian Process approach. We
conclude that posture information and movement are an interesting source for
estimating the users’ mental state. We see potential for posture measurements
in the office, as with the Kinect, recently an affordable 3D camera with skeleton
detection has entered the market.

Computer interactions Finally, in some research, stress or emotions are esti-
mated from computer interaction data. Vizer et al. (2009) provide an overview
of related work, and they present own work on the effect of stress on keystroke
and linguistic features. Participants first performed a mentally or physically
stressful task (e.g. remembering digits or exercising) and were then asked to
write an email. They applied the following classifiers: decision tree, SVM, kNN,
AdaBoost and artificial neural networks. They state that ‘These techniques
were selected primarily because they have been previously used to analyze
keyboard behavior (e.g. kNN), or they have shown good performance across a
variety of applications (e.g. SVM)’ (p.878). To address individual differences,
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data was also normalized per participant by using baseline samples. Results
indicate that stress can produce changes in typing patterns. With an accuracy
of 75% kNN generated the best results for detecting cognitive stress (based on
normalized features). In general, normalization improved the accuracy of all
techniques, with an average increase of 13.1%. Vizer et al. (2009) conclude:
‘individual differences should be taken into consideration when developing
techniques to detect stress, especially if cognitive stress is of interest’ (p.879).

In the work by Khan et al. (2008) the user’s mood is inferred from their
computer behavior. They aggregated computer activities within a 6 and 10
minute time window around mood ratings, and applied a correlation analy-
sis. For 31% of the 26 participants they found significant correlations between
keyboard/ mouse use and valence, and for 27% of the participants they found
significant correlations with arousal. They further found that valence can bet-
ter be predicted for users with more experience and less self-discipline, whereas
arousal can better be predicted for users that are more dutiful.

Furthermore, Epp et al. (2011) recognize 15 emotional states based upon
keystroke dynamics. For classification they used decision trees as a ‘simple and
low-cost solution’ (p. 719). They did not create user specific models due to the
large variation in responses per user.

Finally, van Drunen et al. (2009) did research on computer interaction
data as indicator of workload and attention. The participants performed a
task in which they were asked to search for an item on a website. They found
a correlation between mouse data and heart rate variability. So, computer
interactions may also be an interesting modality for detecting mental states.

To conclude, all four modalities have previously been used for mental state
inference with some success, although most researchers collected data in a lab
setting. Only some report on experiments that are more close to real-world
situations. Several machine learning approaches are applied. In most cases,
classification is used to distinguish 2 or more states. Sometimes, correlation
analysis is performed to assess the strength of a relation. We aim to not only
compare different classification approaches, but also apply regression models
to make numerical predictions of e.g. mental effort. Several researchers find
that individual differences play a role. In the models individual differences are
not addressed or addressed by normalizing data per participant based upon a
baseline sample. Making models for subgroups of similar users seems to be a
new approach.

3 Dataset

To investigate which preferably physically unobtrusive and readily available
sensors are most suitable to infer working conditions and mental states of
knowledge workers, a data collection study was performed. We now first de-
scribe the study in more detail and then present the resulting dataset (for
more details see Koldijk et al. (2014)).
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3.1 Data collection study

To collect data, we created a realistic knowledge worker setting in which the
effects of external stressors on subjective experience of task load, mental ef-
fort and emotions, as well as the effects on behavior could be investigated. 25
participants (8 female, average age 25, stdv 3.25) performed knowledge worker
tasks, i.e. writing reports and making presentations. To manipulate the expe-
rienced task load, we chose two stressors that are relevant in the knowledge
worker context: interruptions by incoming emails and time pressure to finish a
set of tasks before a deadline. So each participant worked under the following
3 working conditions:

– Neutral: the participant was allowed to work on the tasks as long as he/she
needed. After a maximum of 45 minutes the participant was asked to stop
and told that enough data of ‘normal working’ was collected.

– Stressor ‘Time pressure’: the time to finish all tasks was 2/3 of the time the
participant needed in the neutral condition (and maximally 30 minutes).

– Stressor ‘Interruptions’: 8 emails were sent to the participant during the
task. Some were relevant to one of the tasks, others were irrelevant. Some
emails required a reply, others did not. Examples are: “Could you look up
when Einstein was born?” or “I found this website with lots of nice pictures
for presentations.”.

Each of the experimental blocks started with a relaxation phase of about 8
minutes (which is typical for stress research) in which a nature film clip was
shown. Then the participants received instructions on the tasks to work on.
In each block the participants were provided 2 topics to work on, and were
instructed to write 2 reports, one on each topic, and make 1 presentation on one
of the topics (participants could choose the topic). After each condition, the
participants were asked to fill in a questionnaire on their subjective experience
of stress, emotion, mental effort and task load. Between the conditions the
subjects were allowed a short break and the total experiment took about 3
hours.

3.2 Collected data

The following data was captured with sensors:

– Computer interactions, via a computer logging tool
– Facial expressions, via a webcam
– Body postures, via a Kinect 3D camera
– Physiology (ECG and skin conductance), via body sensors

The raw sensor data was preprocessed and features per minute were ex-
tracted. The computer logging files were used to compute several relevant
mouse, keyboard and application characteristics per minute, resulting in 12
computer interaction features. The recorded videos were analyzed with facial
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expression software to determine the orientation of the head and looking direc-
tion, the amount of activation in several facial action units and the detected
emotion, resulting in 40 facial expression features, averaged per minute. The
3D recordings of body posture were analyzed with the Kinect SDK to extract
a skeletal model. From this model we determined joint angles between bones
of the upper body, for example the angle between the upper and lower arm.
Moreover, we determined bone orientations of the upper body relative to the
x, y and z axis, for example the angle between the left shoulder and the up
pointing y axis. From the depth image also the average distance of the user
was determined. This resulted in 88 body posture features, of which 44 are
minute averages on posture, and 44 are standard deviations of those minutes
for body movement. The raw ECG signal was filtered and peak detection was
applied to determine the heart rate and heart rate variablity (RMSSD). The
skin conductance signal was averaged per minute. This resulted in 3 physio-
logical features. Table 1 provides an overview of all features (for more detailed
information see http://cs.ru.nl/~skoldijk/SWELL-KW/Dataset.html).

Per participant ca. 45 minutes of working under normal conditions were
collected, ca. 45 minutes working with email interruptions and ca. 30 minutes
working under time pressure. The feature dataset is annotated with the con-
ditions under which the data was collected. The possibly chaotic minutes at
the very beginning and very end of each condition were removed. The result-
ing SWELL-KW dataset contains 149 features and 2688 instances in total (on
average 107 minutes data per participant). All our data is available for access
by the scientific community at https://easy.dans.knaw.nl/ui/datasets/

id/easy-dataset:58624.

Moreover, the SWELL-KW dataset includes a ground truth for subjective
experience (see Table 2). This was assessed by means of validated question-
naires on

– Task load (NASA-TLX, Hart & Staveland (1988))

Table 1 SWELL-KW feature dataset. Data is preprocessed and aggregated per minute.
The dataset contains 149 features and 2688 instances.

Modality (#features) Feature type (#features)

Computer interactions (18) Mouse (7)
Keyboard (9)
Applications (2)

Facial expressions (40) Head orientation (3)
Facial movements (10)
Action Units (19)
Emotion (8)

Body postures (88) Distance (1)
Joint angles (10)
Bone orientations (3x11))
(as well as stdv of
the above for amount of movement (44))

Physiology (3) Heart rate (variability) (2)
Skin conductance (1)
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Table 2 Subjective experience data (3 ratings per participants). Average values for the
Neutral, Interruption and Time pressure condition can be found in the last 3 columns.

Type Feature N I T

TaskLoad (NASA-TLX) MentalDemand (0: low - 10: high) 4.9 5.4 4.9
PhysicalDemand 1.9 2.3 2.7
TemporalDemand 5.7 5.9 7.1
Effort 5.2 5.9 6.1
Performance 4.8 6.1 6.0
Frustration 3.5 3.6 3.5

Mental Effort (RSME) MentalEffort (0: no - 10: extreme effort) 5.5 6.5 6.3
Emotion (SAM) Valence (1: unhappy - 9: happy) 4.8 5.7 5.3

Arousal (1: calm - 9: excited) 3.3 3.9 4.6
Dominance (1: submissive - 9: dominant) 5.2 6.2 5.9

Stress (VAS) Perceived stress (0: not - 10: very stressed) 2.9 3.2 3.8

Fig. 2 Bottom part: The stressors affected several aspects of subjective experience. Top
part: These aspects of subjective experience correlated with perceived stress. (* significant
at the .05-level, ** significant at the .001-level.)

– Mental effort (RSME, Zijlstra & van Doorn (1985))
– Emotion (SAM, Bradley & Lang (1994))
– Perceived stress (own visual analog scale)

25 participants each rated 3 working conditions, which yielded 75 ground
truth ratings in total. Note that one rating corresponds to 30-45 minutes of
working behavior data. In our dataset therefore, we repeatedly annotated each
row of one minute data with the ground truth of that condition. In previous
work (Koldijk et al., 2013) we found that the stressor working conditions
indeed affected subjective experience, see Figure 2. Therefore, we can use this
dataset for user state modeling in stress related terms.

In our work we make the following assumptions about the dataset: 1) “Fa-
cial expressions, postures and physiology were reliably inferred from the raw
sensor data”. The data that we used here, was captured in a realistic office
setting in an experimental context, which means that the quality of all record-
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ings was high. Moreover, specialist equipment for capturing physiology was
used.

2) “Aggregated data over 1 minute yields valuable information”. There are
many potential choices on how to handle the aspect of time. Here we chose to
aggregate data per minute and classify each minute separately. Alternatively,
different time-frames can be considered. Moreover, a model that takes into
account relations between time-frames may be suitable. We started with the
most simple approach.

3) “Subjective ratings provide a good ground truth”. There is debate on
whether subjective ratings provide a good ground truth. An alternative would
be to use e.g. physiology as ground truth for stress. Here we chose to use
subjective ratings, because we expected that physiological stress reactions in
office setting would not to be very strong.

4) “The subjective rating given to the entire condition can be used as
ground truth for each separate minute”. It may be argued that stress experi-
enced due to time pressure or incoming emails, may become stronger as the
deadline comes closer or more emails have interrupted the user. Moreover, be-
havior may fluctuate over time. Not each minute may include signs of stress,
whereas others do. Our analysis will need to show whether aggregating data
per minute and classifying each minute is a good approach.

We further discuss the validity of these claims in the discussion of this
paper.

4 Using several unobtrusive sensors to detect stress in office
environments

In this section, we aim to answer our first main research question: Can we dis-
tinguish stressful from non-stressful working conditions, and can we estimate
mental states of office workers by using several unobtrusive sensors? To dis-
tinguish stressful working conditions from neutral ones, we use classification
models (Section 4.1). Moreover, to estimate mental states, like the amount of
mental effort and stress, we use regression models (Section 4.2). We compare
the performance of several machine learning approaches and also investigate
which modalities (computer interactions, facial expressions, posture, physiol-
ogy) and which particular features are most suitable.

4.1 Inferring the working condition

We first investigate whether we can distinguish stressful from non-stressful
working conditions, i.e. we try to predict whether a minute of data is from
the normal working condition (N, 1028 instances), or from a stressful working
condition (T&I, i.e. time pressure (664 instances) or email interruptions (996
instances)).
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4.1.1 Comparison of different classifiers

We start with our first subquestions: Which modeling approaches are most
successful? We selected the following types of classifiers (we used their imple-
mentations in the machine learning toolkit Weka (Hall et al., 2009)):

– Nearest neighbors: IBk (uses euclidean distance, we tested the following
number of neighbors: 1, 5, 10, 20), K-star (uses entropic distance)

– Bayesian approaches: Naive Bayes, Bayes Net
– Support vector machines (SVM): LibSVM (we tested the following kernels:

linear, polynomial, sigmoid, radial basis function)
– Classification trees: J48 (decision tree), Random Forest
– Artificial neural networks: Multilayer perceptron

(For a comprehensive and concise explanation of the different approaches, we
refer to Novak et al. (2012)). Based on the presented related work we expect
that nearest neighbors, trees and SVM perform well.

As features we always used the entire SWELL-KW dataset with features
on 4 modalities: computer interactions, facial expressions, physiology and pos-
tures. For nearest neighbor, SVM and neural network we first standardized the
features to 0 mean 1 std (as was done in Caruana & Niculescu-Mizil (2006),
for Bayes and trees scaling of the features is not necessary). We evaluated our
models on accuracy, i.e. the percentage of correctly classified instances. We
used 10-fold cross-validation. (This means that the data is randomly split into
10 equally large folds. 90% of the data (9 folds) is then used for training the
model, the remaining fold is used for testing. This is repeated 10 times, and
scores are averaged.)

The results for the different classifiers are presented in Table 3. In general,
a performance of about 90% accuracy can be reached in distinguishing neutral
form stressful working conditions based on sensor data, which is high.

Regarding the different classification approaches, we find the following: The
Bayesian approaches score only somewhat above baseline (61.7600%): naive
Bayes (64.7693%), and Bayes net (69.0848%). This means the data is not
well-modeled in terms of chance distributions, which is what we expected. Re-
garding the nearest neighbor classifiers, KStar does not work well (65.8110%).
However, IBk (which uses an euclidean distance measure) reaches a really good
performance with 10 neighbors (84.5238%). Looking up nearby data points
thus seems to work for this dataset, which was expected. Also as expected,
classification trees seem to work on our data: decision tree (78.1994%), and
random forest (87.0908%). The advantage of a decision tree approach is that
the model is insightful. The artificial neural network also yields a good result:
88.5417%. However, it takes very long to train a neural network model (1 hour
in our case). Finally, the best results were obtained with an SVM (using a ra-
dial basis function kernel): 90.0298%. That SVM perform well was also found
in previous work.
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Classifier Accuracy

BASELINE Majority class: Stressful (I&T) 61.76%
Naive Bayes 64.7693%
K-star (nearest neighbor with entropic distance) 65.8110%
Bayes Net 69.0848%
J48 (decision tree) 78.1994%
IBk (nearest neighbor with euclidean distance), 10 neighbors 84.5238%
Random Forest 87.0908%
Multilayer perceptron (neural network) 88.5417%
LibSVM (support vector machine), radial basis function kernel 90.0298%

Table 3 Comparison of classifiers. Predict working conditions (N vs. I&T) from 4 modalities
(Computer, Facial, Physiology, Posture).

4.1.2 Comparison of different feature sets

Now, we address our second subquestion: Which modalities/ features provide
the most useful information? We continued our analyses with the SVM classi-
fier, as this performed best.

First, we tested the following subsets: 1 modality (computer, facial, physiol-
ogy or posture), a combination of 2 modalities, 3 modalities or all 4 modalities.
We hypothesize that combining different modalities improves classification per-
formance. However, for an office setting, excluding sensors to yield a minimal
set-up would be preferable.

Our results are presented in Table 4. When using only a single modality,
posture features yield best performance (83.4077%). When adding a second
modality, facial features yield improvements (88.6905%). Only minor improve-
ments can be reached when adding a third modality (physiology: 89.2857% or
computer features: 89.1369%), and only a slightly higher accuracy is reached
when using all four modalities (90.0298%). So, as expected, combining more
than one modality improved performance, although the gains due to additional
modalities are modest. In an office setting thus the most important modality
to use would be posture, possibly combined with facial information.

We also ran feature selection in Weka1, yielding a subset of the 26 best fea-
tures for predicting the working condition. This set includes 17 posture features
(13 features related to sitting posture, 4 related to body movement), 5 facial
expression features (LidTightener, rightEyebrowRaised, Dimpler, looking sur-
prised, and happy), 2 physiological features (heart rate, and skin conductance)
and 2 computer interaction features (applicationChanges, and leftClicks). This
confirms our hypothesis that features from different modalities can comple-
ment each other. With only these 26 features, still a performance of 84.5238%
can be reached.

1 CfsSubsetEval with BestFirst search
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Features Accuracy

BASELINE: ZeroR (majority class I&T) 61.76%
1 modality (Computer, 18 features) 65.5134%
1 modality (Physiology, 3 features) 64.0997%
1 modality (Facial, 40 features) 75.4092%
1 modality (Posture, 88 features) 83.4077%
2 modalities (Computer & Physiology, 21 features) 67.8943%
2 modalities (Computer & Facial, 58 features) 79.1295%
2 modalities (Facial & Physiology, 43 features) 79.9479%
2 modalities (Posture & Computer, 106 features) 83.7798%
2 modalities (Posture & Physiology, 91 features) 83.7798%
2 modalities (Posture & Facial, 128 features) 88.6905%
3 modalities (Computer & Facial & Physiology, 61 features) 81.2872%
3 modalities (Posture & Computer & Physiology, 109 features) 84.0402%
3 modalities (Posture & Facial & Computer, 146 features) 89.1369%
3 modalities (Posture & Facial & Physiology, 131 features) 89.2857%
4 modalities (Computer & Facial & Physiology & Posture, 149) 90.0298%
Only 26 best features 84.5238%

Table 4 SVM with radial basis function kernel. Comparison of using feature subsets to
predict working conditions (N vs. I&T).

4.1.3 Conclusions

In this section we investigated the research question: Can we distinguish stress-
ful from non-stressful working conditions by using several unobtrusive sensors?
We found that a performance of about 90% accuracy can be reached, which
is reasonably high. SVM, neural networks and random forest approaches yield
the best performance. Also the rather simple nearest neighbor and decision tree
approaches seem to provide reasonable accuracy. On the other side, Bayesian
approaches seem less suitable for this data. With respect to the most useful
modalities we find that posture yields most valuable information to distin-
guish stressor from non-stressor working conditions. Adding information on
facial expressions can further improve performance. Computer interactions
and physiology, however, showed no gains, which was unexpected given the
presented related work on stress recognition based upon these modalities.

4.2 Predicting mental states

In the data collection experiment also information of subjective experience
was collected after each working condition. We have information on: perceived
stress, mental effort, emotion (i.e. valence, arousal, dominance), and task load
(i.e. mental demand, physical demand, temporal demand, performance, effort,
frustration). We address the following question now: Can we estimate mental
states of office workers by using several unobtrusive sensors?
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4.2.1 Predicting different subjective variables

First of all, we investigated which subjective variable can best be predicted
from our sensor data. Our main aim is to infer stress from sensor data. How-
ever, other relevant subjective variables may be more directly related to the
recorded sensor data.

We used Weka to train linear regression models. For evaluation, we used the
correlation r between the predicted values and the true values. We also used
RMSE (root mean squared error) as measure of error in the predictions. We
applied 10fold cross-validation again. As features we always used the entire
SWELL-KW dataset with features on 4 modalities: computer interactions,
facial expressions, physiology and postures.

The results for predicting different subjective variables from sensor data
are presented in Table 5. The variable mental effort can best be predicted
from our sensor data, yielding a reasonably high correlation of 0.7920 and the
lowest RMSE. Other related subjective variables (perceived stress, arousal,
frustration, valence, task load and temporal demand) can all be predicted
equally well, with a lower correlation of around .7 (and a worse RMSE). This
shows that mental effort is easier to read from facial expressions, posture,
computer interactions and physiology, than e.g. stress.

Prediction variable Correlation RMSE
Mental effort 0.7920 0.6115
Valence 0.7139 0.7024
Arousal 0.7118 0.7044
Frustration 0.7117 0.7048
Perceived stress 0.7105 0.7054
Task load 0.6923 0.7241
Temporal demand 0.6552 0.7592

Table 5 Linear regression. Predicting different subjective variables from our 4 modalities
(computer, facial, physiology and posture features). Data was standardized to 0 mean 1 std,
for fair comparison of RMSE.

Best features for each of the subjective variables We also ran feature selection
in Weka, to see which set of features is used to predict a specific subjective
variable (see Tables 6 and 7). In general, most often several facial and posture
features are selected for predicting mental states, sometimes combined with a
physiological feature. It is interesting to see that the algorithm selects different
specific features for different subjective variables. These selected features seem
to make sense: e.g. skin conductance to predict stress and frustration, or the
amount of error keys to predict arousal.

4.2.2 Comparison of different regression models

As the variable mental effort seemed to be best predictable from our sensor
data we focus on this subjective variable for the remainder of our analyses.
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Type MentalEffort Stress

Facial sad surprised
surprised Au05 UpperLidRaiser
scared Au06 CheekRaiser
rightEyebrowLowered Au15 LipCornerDepressor
gazeDirectionLeft Au26 JawDrop
Au06 CheekRaiser Au43 EyesClosed
Au07 LidTightener
Au10 UpperLipRaiser
Au17 ChinRaiser

Posture 2 posture features 3 posture features
(leaning, left shoulder) (left shoulder, left wrist, head)
1 movement feature 2 movement features
(right elbow) (average body movement, right up-

per arm)
Computer - -
Physiology - skin conductance level

Table 6 Feature selection for the subjective variables stress and mental effort. (CfsSub-
setEval with BestFirst, features were standardized to 0 mean and 1 stdv).

Type Arousal Frustration

Facial angry (quality)
scared gazeDirectionRight
zHeadOrientation Au05 UpperLidRaiser
rightEyeClosed Au09 NoseWrinkler
leftEyebrowRaised Au14 Dimpler
Au06 CheekRaiser Au15 LipCornerDepressor
Au09 NoseWrinkler Au23 LipTightener
Au10 UpperLipRaiser Au43 EyesClosed
Au25 LipsPart

Posture 6 posture features (head, shoul-
der center, left shoulder, left upper
arm, left wrist, right upper arm)

4 posture features (left shoulder,
left upper arm, left wrist, right up-
per arm)

1 movement feature 5 movement features
(right lower arm) (leaning, left upper arm, left wrist,

right upper arm, right lower arm)
Computer nErrorKeys nRightClicked
Physiology heart rate variability skin conductance level

Table 7 Feature selection for the subjective variables arousal and frustration. (CfsSubsetE-
val with BestFirst, features were standardized to 0 mean and 1 stdv).

We now address our first subquestion again: Which modeling approaches are
most successful? We selected the following types of regression models (we used
their implementations in the machine learning toolkit Weka):

– Linear regression
– Nearest neighbors: IBk (uses euclidean distance, we tested the following

number of neighbors: 1, 5, 10), K-star (uses entropic distance)
– Support vector machine: SMOreg (we tested the following kernels: polyno-

mial, radial basis function)
– Regression trees: REPTree (regression tree, i.e. sample mean at each leaf),

M5P (model tree, i.e. function at each leaf)
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– Artificial neural networks: Multilayer perceptron

We expected that a simple linear regression or tree approach, or the more
complex SVM would work well with our data. As features we always used the
entire SWELL-KW dataset with features on 4 modalities: computer interac-
tions, facial expressions, physiology and postures.

The results on predicting mental effort from sensor data are presented in
Table 8. Several models reach reasonable performance far better than baseline.
The simple linear regression model reaches a comparable performance to the
more complex support vector machine (correlation of 0.7920 vs. 0.7990; RMSE
of 0.6115 vs. 0.6035). Furthermore, a model tree approach seems to work best
with a correlation between predicted and real mental effort of 0.8221 and the
lowest RMSE (0.5739). This is in line with our expectations.

Classifier Correlation RMSE
ZeroR (baseline) -0.0703 1.0004
Kstar (nearest neighbor with entropic distance) 0.5875 0.9104
IBk (nearest neighbor with euclidean distance), 5 neighbors 0.7330 0.7229
REPTree (regression tree) 0.7577 0.6534
Multilayer Perceptron (neural network) 0.7763 0.7064
Linear regression 0.7920 0.6115
SMOreg (SVM), with radial basis function kernel 0.7990 0.6035
M5P (model tree) 0.8221 0.5739

Table 8 Comparison of regression models. Predict mental effort from 4 modalities (Com-
puter, Facial, Physiology, Posture). Data was standardized to 0 mean 1 std, for fair com-
parison of models.)

4.2.3 Comparison of different feature sets

For its good performance and speed, we decided to continue our analyses
with the model tree. We now address our second subquestion again: Which
modalities/ features provide the most useful information?

We tested the following subsets: 1 modality (computer, facial, physiology
or posture), a combination of 2 modalities, 3 modalities or all 4 modalities. We
hypothesize that combining different modalities improves classification perfor-
mance. However, for an office setting, excluding sensors to yield a minimal
set-up would be preferable.

Our results are presented in Table 9. When using only a single modality,
facial features yield the best performance with a correlation between predicted
and true values of 0.8091. When adding a second modality, only posture fea-
tures yield a slight improvement (0.8300). No real improvement is gained when
adding more modalities. Contrary to our expectations, it seems best to merely
use facial features, or just add posture information to predict mental effort.

We also ran feature selection in Weka2, yielding a subset of the 25 best
features for predicting mental effort with a model tree. This subset includes 10

2 Wrapper for M5P with BestFirst search
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Features Correlation
BASELINE: ZeroR -0.0637
1 modality (Computer, 18 features) 0.1545
1 modality (Physiology, 3 features) 0.5715
1 modality (Facial, 40 features) 0.8091
1 modality (Posture, 88 features) 0.5896
2 modalities (Computer & Physiology, 21 features) 0.5527
2 modalities (Computer & Facial, 58 features) 0.8027
2 modalities (Facial & Physiology, 43 features) 0.7891
2 modalities (Posture & Computer, 106 features) 0.6254
2 modalities (Posture & Physiology, 91 features) 0.7644
2 modalities (Posture & Facial, 128 features) 0.8300
3 modalities (Computer & Facial & Physiology, 61 features) 0.7909
3 modalities (Posture & Computer & Physiology, 109 features) 0.7718
3 modalities (Posture & Facial & Computer, 146 features) 0.8182
3 modalities (Posture, Facial, Physiology, 131 features) 0.8295
4 modalities (Computer, Facial, Physiology, Posture, 149) 0.8309*
Only 25 best features 0.8416

Table 9 Decision tree (M5P). Comparison of feature subsets to predict mental effort. (*
slightly differs from result in Table 8, as for the tree here non-standardized features were
used.)

facial features (BrowLowerer, UpperLidRaiser, LidTightener, UpperLipRaiser,
looking sad, angry, left and right eyebrows lowered, xHeadOrientation, and
gazeDirectionLeft), 9 posture features (5 features related to sitting posture,
and 4 related to body movement), 2 physiological features (heart rate, and skin
conductance), and 4 computer interaction features (right click, double click,
direction keys, and error keys). This confirms our hypothesis that features from
different modalities can complement each other. With only these 25 features
a performance of 0.8416 can be reached, which is slightly better than the best
accuracy, which was reached with all 149 features (0.8309). Although for a
real-world office setting it might be more interesting to restrict the setup to
only facial expressions, which worked well as single modality (0.8091).

4.2.4 Conclusions

In this section we investigated the research question: Can we estimate mental
states of office workers by using several unobtrusive sensors? First of all, we
found that mental effort seems to be the variable that can be best predicted
from our sensor data (better than stress, arousal, frustration, valence, task load
or temporal demand). A comparison of different regression models showed that
a performance of 0.8221 can be reached with a model tree, which is reasonably
high. Also linear regression models, or SVMs provide good accuracy. With
respect to the most useful modalities we find that facial expressions yield most
valuable information to predict mental effort. Adding information on posture
can slightly improve performance.
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5 Taking into account individual differences

Until now, we built one generic model over all users. Now, we address our sec-
ond main research question: How important are individual differences? First
we investigate the role of individual differences regarding working conditions
(Section 5.1), then regarding mental states (Section 5.2). Finally, we investi-
gate the performance of models that were built for specific user groups (Section
5.3).

5.1 Individual differences regarding working condition

We start with investigating the role of individual differences in the classifica-
tion problem, i.e. predicting whether a data point is from the normal working
condition, or from a stressful working condition.

Participant ID as feature To investigate in how far the models benefit from
participant information, we add the participant ID as feature to the dataset.
Recall that a SVM predicting stressor vs. non-stressor working conditions
based on all 4 modalities reached a performance of 90.0298%. When we add
participant ID to the set of features, the SVM reaches a comparable perfor-
mance: 89.6577%. This means that knowledge on which specific user needs to
be classified, yields no valuable information to the model.

We performed feature selection to test the relative importance of the par-
ticipant ID feature. We find that the participant ID feature has a very low
information gain and gain ratio, and is not selected in the subset of best fea-
tures for predicting the working condition.

As decision trees provide most insight, we decided to also apply this model
to our data. When we inspect the built decision tree, we see that participant
ID is a feature which occurs relatively late in the tree. It is thus not the case
that the model builds different sub-trees for different users. However, it is the
case that towards the end of a branch describing particular behavior, a split-
point based on the participant can be found. So the same behavior may need
to be interpreted differently, depending on the user at hand. This may indicate
that different users display stress in different ways.

Test on unseen user Furthermore, we investigated how general models per-
form on new, unseen users. Therefore, we trained a SVM on 24 user’s data
and test it on a left out, unseen, user (leave-one-subject-out cross validation).
What we see is a drop in performance. It differs per user how bad this drop is.
Remember that 10-fold cross-validation yielded a performance of 90.0298%.
When testing on an unseen user, the model reaches an average accuracy of
only 58.8887%. (Recall that the baseline for our dataset was 61.76%). The
worst performance was reached for participant 21, namely 37.5000%. The best
performance was reached for participant 2, namely 88.3495%. The standard
deviation between performances on different users was with 11.6376%-points
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relatively high. Whether a model performs well on a new, unseen user may
depend on the similarity of the new user to previous users.

Conclusions With respect to distinguishing stressor form non-stressor work-
ing conditions, we see that information on the particular participant does not
improve classification accuracy. We also find, that the participant ID is not im-
portant enough to be selected as one of the best features for this classification
task. In the decision tree, the participant ID only appears late in the branches,
helping to interpret the same behavior differently for different users. When we
test a generic model on an unseen user, we see a drop in performance. It differs
per user how big this drop is. This may depend upon the similarity of the new
user to previous users.

5.2 Individual differences regarding mental states

We now investigate the role of individual differences in the regression problem,
i.e. predicting the amount of mental effort based on sensor data.

Participant ID as feature To investigate in how far the models benefit from
participant information, we add the participant ID as feature to the dataset
again. Recall that a decision tree predicting mental effort based on all 4 modal-
ities reached a performance of 0.8221 (RMSE was 0.5739). When we add par-
ticipant ID to the set of features, the decision tree reaches a higher perfor-
mance: 0.9410 (RMSE is 0.3383). This means that knowledge on the specific
user yields valuable information to the model.

We performed feature selection to test the relative importance of the par-
ticipant ID feature. We find that the participant ID is selected in the subset
of 13 best features for predicting mental effort (besides 9 facial expression and
3 posture features).

When we inspect the built decision tree we see that the participant ID is
included in the regression formulas: for groups of users specific weights are
added or subtracted.

Test on unseen user Furthermore, we also investigated how generic models
perform on new, unseen users. Therefore, we trained a decision tree model on
24 user’s data and test it on a left out, unseen, user (leave-one-subject-out
cross validation). What we see is a drop in performance. Remember that 10-
fold cross-validation yielded a performance of 0.8221 (RMSE 0.5739). When
testing on an unseen user, the model reaches an average correlation of only
0.0343 (average RMSE: 1.1684). (Recall that the baseline for our dataset was a
correlation of -0.0703, with an RMSE of 1.0004). Predicting the mental effort
of an unseen user is thus difficult. In terms of correlation, the worst perfor-
mance was reached for participant 20, namely a negative correlation of -0.4311.
The best performance was reached for participant 5, namely a correlation of
0.7241. The standard deviation between performances on different users was
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with 0.2800 reasonably high. Whether a model performs well on a new, unseen
user may depend on the similarity of the new user to previous users.

Conclusions With respect to estimating mental states, we see that informa-
tion on the particular participant improves the mental effort estimates. The
participant ID is even important enough to be selected as one of the best fea-
tures for this regression task. In the regression formulas we see that specific
weights are added or subtracted for groups of users. A general model tested
on a new user does not perform well. This suggests that especially for the task
of estimating mental states it makes sense to address individual differences.

5.3 Addressing individual differences

Finally, we investigate how individual difference can be addressed. We test
whether the performance of the regression models for a single modality can be
improved when distinct models are made for groups of similar users.

Clustering of users In previous work (Koldijk et al., 2015) we clustered users
into groups, with respect to their average level of: computer activity, facial ex-
pressions or postures. Hierarchical clustering was used to reveal the amount of
clusters (k) in the data and then k-means clustering was applied. We addressed
each sensor separately and found that for each sensor the users were grouped
differently. This yielded, for each modality, particular groups of similar users.

Computer activity groups We found that, based on average computer activity,
2 groups of users can be discriminated: the ‘writers’ (16 participants (PP),
many keystrokes) and the ‘copy-pasters’ (9 PP, much mouse activity and spe-
cial keys). Recall that the performance of a decision tree with only computer
activity features for predicting mental effort yielded a performance of 0.1545.
When training and validating a model only on the ‘writers’, we find an equal
correlation of 0.1668 for predicting mental effort. When training and validating
a model only on the ‘copy-pasters’, we find a higher correlation of 0.3441.

Furthermore, we applied feature selection to find the features most predic-
tive of mental effort for both groups. For ‘writers’, the best features to predict
mental effort are: amount of right clicks and scrolling. For ‘copy-pasters’, how-
ever, the best features to predict mental effort are: the amount of dragging,
shortcut keys, application and tabfocus changes, as well as the error key ratio.

Facial action unit groups We found that, based on average facial action unit
activity, 3 groups of users can be discriminated: The ‘not very expressive’ ones
(16 PP), the ‘eyes wide & mouth tight’ group (3 PP), and the ‘tight eyes &
loose mouth’ group (6 PP). Recall that the performance of a decision tree with
only facial features for predicting mental effort yielded a performance of 0.8091.
When training and validating a model only on the ’not very expressive’, we find
a sightly worse correlation of 0.7892. When training and validating a model
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only on the ‘eyes wide & mouth tight’ group, we find an equal correlation of
0.8091. When training and validating a model only on the ‘tight eyes & loose
mouth’ group, we find a higher correlation of 0.8742.

Furthermore, we applied feature selection to find the features most pre-
dictive of mental effort for both groups. For ‘not very expressive’ users, the
best features to predict mental effort include the action units: Dimpler and
LipsPart. For ‘eyes wide & mouth tight’ users, the best features to predict
mental effort include the action units: LidTightener, UpperLipRaiser, Lip-
CornerPuller and ChinRaiser. For ‘tight eyes & loose mouth’ users, the best
features to predict mental effort include the same action units, but additionally
also: BrowLowerer, Dimpler, MouthStretch and EyesClosed.

Body movement groups We found that, based on average body movement,
3 groups of users can be discriminated: the group that ‘sits still & moves
right arm’ (5 PP), the group that ‘moves body a lot & wrist less’ (6 PP)
and the group that ‘moves average’ (14 PP). Recall that the performance of
a decision tree with only posture features for predicting mental effort yielded
a performance of 0.5896. When training and validating a model only on the
group that ’sits still & moves right arm’, we find a higher correlation of 0.7564.
When training and validating a model only on the group that ‘moves body
a lot & wrist less’, we find a higher correlation of 0.8488. When training and
validating a model only on the group that ‘moves average’, we find a higher
correlation of 0.6917.

Conclusions When we train models on particular subgroups of similar users,
(in almost all cases) a specialized model performs equally well or better than
a general model. With respect to computer activity, the model for ‘writers’
performs similar to a general model, whereas a model for ‘copy-pasters’ out-
performs our general model. With respect to facial activity, the model for ‘not
very expressive’ users performs slightly worse than a general model. However,
the model for the ’eyes wide & mouth tight’ group performs the same as our
general model. And the model for the ’tight eyes & loose mouth’ group really
outperforms our general model. Finally, with respect to posture, all models
for the sub-groups really outperform our general model. We also find that
for different user groups, different features are selected. To apply models for
subgroups of users in office settings, data of an initialization phase may be nec-
essary to categorize a user into one of the subgroups based upon his average
behavior.

6 Conclusions

In this paper we investigated different machine learning approaches to infer
working conditions and mental states from a multimodal set of sensor data
(computer logging, facial expressions, posture and physiology).
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We addressed two methodological and applied machine learning challenges:
1) Detecting work stress using several (physically) unobtrusive sensors. We
first answered the following research question: Can we distinguish stressful
from non-stressful working conditions by using several unobtrusive sensors?
We found that on our dataset a performance of about 90% accuracy can be
reached. SVM, neural networks and random forest approaches work best. Also
the rather simple nearest neighbor and decision tree approaches seem to pro-
vide reasonable accuracy. With respect to the most useful modalities we find
that posture yields most valuable information to distinguish stressor from non-
stressor working conditions. Adding information on facial expressions further
improves performance.

Moreover, we answered the research question: Can we estimate mental
states of office workers by using several unobtrusive sensors? Mental effort
seems to be the variable that can be best predicted from our sensor data
(better than e.g. stress). A comparison of different regression models showed
that a performance of 0.8221 can be reached on our dataset. Model trees
yield the best performance. Also linear regression models, or SVMs provide
good accuracy. With respect to the most useful modalities we find that facial
expressions yield most valuable information to predict mental effort. Adding
information on posture can slightly improve performance.

Then, we addressed the second methodological and applied machine learn-
ing challenge: 2) taking into account individual differences. We first answered
the research question: How important are individual differences? With respect
to distinguishing stressor form non-stressor working conditions, we see that
in our dataset information on the participant is not important enough to be
selected as one of the best features. In the decision tree, the participant ID
only appears late in the branches. When we test a generic model on an unseen
user, we see a drop in performance. It differs per user how big this drop is.
This may depend upon the similarity of the new user to previous users. With
respect to estimating mental states, we see that information on the partici-
pant is important enough to be selected as one of the best features. In the
regression formulas we see that specific weights are added or subtracted for
groups of users. We further find that a general model tested on a new user
does not perform well. This suggests that especially for the task of estimating
mental states it makes sense to address individual differences. It should be
investigated in future work why individual differences seem to play a bigger
role in estimating mental states than in distinguishing neutral form stressor
working conditions.

Finally, we answered the research question: Can we improve performance by
building personalized models for particular user groups? When we train models
on particular subgroups of similar users, (in almost all cases) a specialized
model performs equally well on our dataset or better than a general model.
Especially with respect to facial activity, the model for the group ’tight eyes
& loose mouth’ really outperforms our general model. Also, with respect to
posture, all models for the sub-groups really outperform our general model. We
also find that for different user groups, different features are selected. We have
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to note that, a good approach to address individual differences could also be
to build models for single users. However, the amount of data we had available
per participant here was not enough (only 3 different subjective ratings).

To conclude, the four modalities were successfully used in an office context.
Several classification and regression models were compared to find the most
suitable approach. We also investigated which modalities and features were
most informative. Besides applying generic models, we investigated the role of
individual differences. We showed how models for subgroups of similar users
can be made.

7 Discussion

Our work was based on several assumptions, on which we will comment now:
1) “Facial expressions, postures and physiology were reliably inferred from the
raw sensor data”. The data that we used here, was captured in a realistic
office setting in an experimental context, which means that the quality of all
recordings was high. In a real-world office setting recordings may be more
noisy, e.g. facial expression recognition may be less reliable with bad lighting,
or when the user is not positioned well in front of the camera. Moreover,
specialist equipment for capturing physiology was used here. In real-world
settings, devices like smart measuring watches may provide less reliable data.

2) “Aggregated data over 1 minute yields valuable information”. There are
many potential choices on how to handle the aspect of time. Here we chose to
aggregate data per minute and classify each minute separately. Alternatively,
different time-frames can be considered. Moreover, a model that takes into
account relations between time-frames may be suitable. Finally, we have to
note that consecutive minutes may be very similar. A random split for cross-
validation may thus contain test cases that are very similar to training cases.
This effect may be stronger when data of less different participants is used. On
the one side, learning from similar examples is exactly what machine learning
aims to do. On the other side, we have to note that such very similar minutes
may cause high accuracy in evaluation.

3) “Subjective ratings provide a good ground truth”. There is debate on
whether subjective ratings provide a good ground truth. An alternative would
be to use e.g. physiology as ground truth for stress. Here we saw that the link
between physiology and subjective ratings was not particularly strong. It may
be the case that physiological stress reactions in office setting are not strong
enough to be reliably measured by sensors.

4) “The subjective rating given to the entire condition can be used as
ground truth for each separate minute”. It may be argued that stress experi-
enced due to time pressure or incoming emails, may become stronger as the
deadline comes closer or more emails have interrupted the user. Therefore, one
could argue to only use the data from the last part of the condition. As we
do not have too much data per participant, however, we decided to include
the entire condition. Moreover, behavior may fluctuate over time. Not each
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minute may include signs of stress, whereas others do. The good accuracy of
the classification and regression approaches, however, indicates that not too
much noise was introduced into our models in this way.

We have to note that we did all analyses on one specific dataset, the
SWELL-KW dataset. Our results may be dependent on specific characteris-
tics of this dataset. First of all, the participants’ behavior is dependent on the
specific tasks we gave them. This may be especially reflected in our computer
interaction data: part of the interactions we record are related to the tasks
of writing reports and making presentations.3. Note however, that the tasks
themselves stayed the same for all 3 working conditions, the only thing that
may have changed due to our stressors is the manner of working. Computer
logging can capture, besides task related aspects, general computer interaction
characteristics that change under stress, e.g. a faster typing speed or quicker
window switching. These may generalize to other office working contexts, and
are thus independent of our chosen tasks. Second, the specific stressors we
chose, time pressure and email interruptions, may have a specific influence on
the participants behavior, like a quicker work pace or more effort to concentrate
on the task at hand. This may explain why stress itself was harder to predict
from our sensor data. Mental effort may be more closely related to the be-
havior displayed under these stressors. Finally, the (behavioral) signs of stress
may be intertwined with a specific way of working. An interesting question
is in how far the results found in our knowledge work context hold for stress
detection in general. Throughout our analyses, the facial expression features
proved to be well suited. We think that facial expressions are a rather general
expression of mental effort, which holds among different contexts. Moreover,
posture features proved suitable. These have a little less generalizability, as the
participant’s posture is clearly related to the task of working behind a com-
puter. However, it may be independent of the exact tasks that are performed.
All in all, we can conclude that in future work our analyses should be applied
to another dataset to prove the generalizability of the findings presented in
this paper.

In general, the affective computing community often uses (black-box) ma-
chine learning algorithms to classify sensor data into mental states. In this
work, we also investigated which behavior (e.g. typical facial activity, leaning
forward, sitting still) that can be captured with sensors, is indicative of mental
states related to stress. We see potential in building inference models that use
an intermediate behavioral layer. This is in line with what Scherer et al. (2012)
propose. We expect that a model with a more abstract intermediate behav-
ior layer is more robust to individual differences and generalizes better over
different users. This should be investigated in future work. In previous work
(Koldijk et al., 2015), we e.g. applied a supervised Self-organizing Map (SOM)
to find typical facial expressions related to high mental effort, which could be
used as intermediate behavior layer. The same analyses could be applied to

3 We also did research on automatic task recognition to investigate the manner of working. A vi-
sualization of these results can be seen here: http://cs.ru.nl/~skoldijk/Visualization/
ExperimentBrowser/Generic/Gantt and Numeric2.html
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posture or computer interaction data, to yield more behavioral patterns for a
layered model.

As a final note, implementing such a stress detection system in real world
settings brings additional challenges. Not only sensors have to be installed to
collect data in the workplace, but also the signals need to be processed, features
extracted and analyzed to yield meaningful data. Aspects like processing speed
and privacy play an important role in practice. In their paper on body sensor
networks, Fortino et al. (2013) elaborate on how a sensor system can handle
such challenges. Moreover, ideally one system collects data and infers context
information and then makes this available to several applications that want
to make use of this context data. In their paper Fortino et al. (2014) describe
different middleware systems that aim to accomplish this.
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