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Abstract 

Background Due to neuromuscular capacity decline, sit-to-stand, an essential daily life activity, is 

increasingly difficult to perform for elderly. In practice, elderly frequently use compensatory arm-

strategies in sit-to-stand. However, the specific advantages of these compensatory strategies are 

unclear. Aim The focus of this research is to study the influence of thigh push-off, a common 

compensatory strategy, on the stability of sit-to-stand for both the young and elderly. Method Motion 

data was retrieved from 50 young and elderly participants who performed sit-to-stand with and 

without thigh push-off. To mimic realistic daily-life strategies, participants were not restricted in sit-

to-stand style in any way but arm-use. The experimental sit-to-stand data was fitted to a pendulum 

model with feedforward and feedback control to simulate the stability limits of the observed sit-to-

stand strategies. The model allows us to explore stability limits without the need of perturbation. For 

each arm-strategy and participant a stability basin, i.e. all potential trajectories of motion, was formed. 

We compared the stability basins between arm-strategies and between age-groups. Results The size of 

the computed stability basin for thigh push-off was larger than for no arm push-off implicating thigh 

push-off is a more stable sit-to-stand strategy. The difference between arm strategies was larger for the 

elderly than for the young participants. Overall, the stability basins of the elderly were larger 

compared to those of the young participants, for both arm strategies. Conclusion The resulting 

stability basins suggest that thigh push-off increases the stability of sit-to-stand and thus could indeed 

be an effective compensatory strategy. Stability basin shape differences indicate that without thigh 

push-off elderly compensate for possible early sit-down and a step halfway sit-to-stand, and with the 

thigh push-off strategy only for early sit-down. The age-groups differences confirm stability basins 

quantify the stability of the observed movement strategy rather than the stability of the participants. 

We observed that elderly use more precautious sit-tot-stand movements.   
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1 Introduction 
The ageing of the world’s population goes hand-in-hand with a growing number of people that cope 

with mobility impairments. Limited mobility (due to age-related capacity decline) increases the 

likelihood of falling. At present, the consequences of older adult falls and it’s treatment are 

increasingly straining the health care system.1 Moreover, mobility impairments limit independency 

and decrease quality of life. Research to better understand mobility impairments is crucial for the 

development of preventative care which in turn reduces health care costs and increases older age life 

quality.  

An important daily-life activity that becomes increasingly difficult for elderly is sit-to-stand. It is a 

crucial transfer movement with a large influence on a person’s independence. In biomechanical terms 

it can be described as an aperiodic movement where the centre-of-mass (COM) is translated 

horizontally and vertically from a stable to a less stable position.2 In practice, elderly frequently use 

compensatory arm strategies such as pushing off on the thighs or using arm rests.3 It has been 

hypothesized that elderly use these compensatory strategies to increase stability, compensating for 

their increased risk or fear of falling and/or reduced lower limb muscle strength. However, current sit-

to-stand stability research has been limited to restricted sit-to-stand strategies without arm-

compensation. Furthermore, stability is difficult to quantify, especially in aperiodic unrestricted 

movements, without using perturbations.4 

The aim of this study is to research if thigh push-off (TH) increases stability of sit-to-stand compared 

to when no arms (N) are used in realistic, natural sit-to-stand. In the experiment, elderly and young 

participants performed self-preferred sit-to-stand movements for the two separate strategies. To assess 

the stability of the two strategies we used the stability basin method. Stability basins explore the limits 

of an observed movement strategy without perturbations. The method fits an individual-specific 

pendulum model with feedforward and feedback control to a set of strategy-specific sit-to-stand 

observations and then uses simulations to find the limits of the observed strategy. All simulated 

possible trajectories that reach standing successfully, without a change of strategy, together form the 

stability basin. A larger computed stability basin indicates a more stable observed movement strategy,  

providing an overall metric of stability. Stability basins can be computed for any sit-to-stand strategy 

enabling studying unrestricted strategies. Furthermore, stability basins enable studying stability 

throughout the movement enabling identification of momentary differences in stability next to 

providing quantification of overall stability of the observed movements.5  

In the development of the stability basin method, Shia et al.5 proved stability basins can indicate 

distinct differences in stability between two restricted sit-to-stand strategies (using momentum or 

exaggerated trunk flexion) for healthy young participants. In a follow up study, Holmes et al. 6 

validated the predictive power of the stability basin when compared to actual sit-to-stand observations 

perturbed to failure (sit or step). For different feedback and feedforward controller models, stability 

basins were robust in predicting successful trials (±98% correct success prediction) but varying in 

predicting unsuccessful trials correctly (23.0-85.0% correct failure prediction) depended on controller 

model. Both studies recommended the use of stability basins in longitudinal studies to assess the 

stability of an individual with regards to e.g. ageing or rehabilitation. In our study, we will be the first 

to 1) apply the method to unrestricted sit-to-stand strategies and 2) apply the method on sit-to-stand 

observations of elderly participants. 

We hypothesised that 1) the stability basins for thigh push-off are larger than that of sit-to-stand 

without arms, indicating thigh push-off is a more stable strategy, and 2) the stability basins of the older 

adults are smaller than that of young adults as we assume that the elderly have a higher risk of falling 

and thus are more unstable.   
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2 Method 
To determine whether the thigh push-off (TH) is more stable than the no arms strategy (N), we 

estimated stability using the stability basin method with experimental data from young and older 

adults3.  

The main steps in the computataion of a stability basin are illustrated as red boxes in figure 1. The 

stability basin method fits a pendulum model with feedforward and feedback control to observed data. 

With the fitted sit-to-stand model the limits of the observed strategy are explored via simulation. All 

successful simulated trajectories together form the stability basin describing the stability of the arm-

strategy of the participant.  

The simulative model with which we compute the stability basin can be described in three parts as 

illustrated in the purple sub boxes in figure 1. First, the equations of motion that are effective for the 

pendulum model. Second, the modelled input, modelling the acting forces on the system, defined by 

feedforward and feedback control. Thirdly, a target set defining what is successful standing, which 

acts as the set of initial points for the simulation. These three parts are fitted and optimised such that 

the model represents the observed sit-to-stand strategy. The observed, full-body motion sit-to-stand 

data is processed in several steps to comparable centre-of-mass trajectories such that they fit the sit-to-

stand model.  

 
Figure 1 Block Scheme Stability Basin method. The red boces indicate the main steps of the method. A sit-to-stand model 

is fit to observed data and with that model we simulate the limits of the observed sit-to-stand movements, expressed as a 

stability basin. The purple boxes indicate substeps in the method. The sit-to-stand observations are reduced to centre of 

mass trajectories to fit a telescopic inverted pendulum model (TIPM), the trajectories are cut and normalised and 

observed input is modelled using inverse dynamics. The sit-to-stand dynamics are described by equations of motion 

(EQM), input described by a controller and what is successful standing  by a target set. The stability basin is the result of 

a backward reachability analysis of the sit-to-stand model.  
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2.1 Sit-to-stand model 
We computed the possible sit-to-stand trajectories, forming the stability basin, with simulation of a sit-

to-stand model. We modelled the participants as an inverted pendulum and the observed sit-to-stand 

strategy as a controller. Finally, for simulation, we derived a definition for what is successful standing; 

the target set.  

2.1.1 Telescopic inverted pendulum model 

The observed centre-of-mass trajectories were further simplified using a simple model: a telescopic 

inverted pendulum model (TIPM). A TIPM comprises of a single mass with a position relative to a 

base. The mass of the pendulum was the participant’s measured mass. The base’s forward positon was 

identical to the anterior-posterior ankle position, the height was set at ground level. This base 

approached the centre-of-pressure without the use of a force plate. Medio-lateral movement is 

neglected; the TIPM only describes the dynamics in the sagittal plane. Using the TIPM enabled us to 

reduce dimensions. We neglected medio-lateral balance and translated each observed trajectory to the 

same point, relative to the base, such that all observed trials could be aligned and compared. 

We describe the anterior-posterior, forward or horizontal direction as the x-direction, the upward 

direction or transversal axis as the y-direction. Hereafter, these directions are denoted as subscripts. 

The TIPM describes the position and velocity in a state trajectory x(t) with four state components. The 

position of the pendulum’s mass, relative to base, notes as rx and ry. We denote the velocity 

components as vx and vy.  

  

Figure 1 Telescopic Inverted Pendulum Model: describes full-body centre-of-mass trajectories relative to a base as a four-

variable state vector neglecting medio-lateral displacement. 

Equation of Motion 

In the dynamic model we neglected angular momentum. External forces are gravity, gravitational 

force set at g = 9.81 m/s2, and the input force u produced by the subject. The real-life muscle input of 

the participant is modelled as a single input force vector with a horizontal and vertical component. The 

input force u is modelled by the controller u(t,x(t)) which is time and space dependent due to the 

feedback and feedforward control.  

[
∑ 𝐹𝑥

∑ 𝐹𝑦

] = [
𝑚 ∗ 𝑎𝑥 + 𝑢𝑥

𝑚 ∗ 𝑎𝑦 + 𝑚 ∗ 𝑔 + 𝑢𝑦
]  (1) 
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2.1.2 Model input: controller  

The controller models the input u(t,x(t)) the participant used during sit-to-stand. It has a feedforward, 

or predictive (dependent on time) component. And, a feedback, or reactive (dependent on space), 

component5. The feedback control accounts for the ability to adapt to small perturbations7,8. When a 

perturbation is too large for the feedback control to handle, the subject must switch to a new controller 

to achieve the original task which involves changing the feedforward component9. Both the 

feedforward and feedback component were fitted on the observed data such that it modelled the 

subject’s strategy-specific behaviour. Therefore, the controller was fitted separately for the different 

instructed arm-strategies (no arm use, thigh push-off). 

LQR controller  

The Linear Quadratic Regulator (LQR) controller is based on proportional-derivative feedback about 

the average trajectory of the observed trials, hereafter called the average nominal trajectory xnom, to 

correct for deviations5. The feedforward control is the direct input from the average nominal 

trajectory; unom, derived using inverse dynamics with the equation of motion of the pendulum. (eq1).  

𝑢(𝑡, 𝑥(𝑡)) =  𝑢𝑛𝑜𝑚 +  𝑢𝑓𝑏(𝑡, 𝑥) 

𝑢(𝑡, 𝑥(𝑡)) =  𝑢𝑛𝑜𝑚 +  𝐾(𝑥(𝑡) − 𝑥𝑛𝑜𝑚(𝑡)) 

Feedback gain K[2x4] was determined by minimising the quadratic cost of the input determined by 

the controller u(t,xi(t)) and the estimated observed input ui over each observed trajectory i. Gain K is 

generated from optimised state weight matrix Q [4x4] and input weight matrix R [2x4] (eq2)10. The 

time vector was discretised in 200 time steps such that t = [0,1] and dt = 0.005:  

𝑚𝑖𝑛 ∑ ∫( 𝑢(𝑡, 𝑥𝑖(𝑡)) − 𝑢𝑖(𝑡) )2𝑑𝑡

1

0𝑖

 

min
𝑄,𝑅

∑ ∫ {
X̅𝑇 ∗ Q ∗ X̅ +  

𝑢𝑓𝑏(𝑡)𝑇 ∗ 𝑅 ∗ 𝑢𝑓𝑏(𝑡)
}   𝑑𝑡      with      X̅ = (𝑥(𝑡) − 𝑥𝑖(𝑡))

1

0𝑖

 

Equation 2 Optimisation of the state and input weight matrices to optimise the controller to the observed data 

In optimisation, Q was constrained to Q | {Qi,j  = 0 V i=j: Q1,1 = [1e-5 1e-2], Q2,2 = [1e-6 1e-1], Q3,3 = [0.1 

100], Q4,4 = [0.1 100]} and R was constrained to R | { Ri,j  = 0 V i=j: R1,1 = [1e-5 1e-2], R2,2 = [1e-6 1e-

1]}. Relative costs were restrained such that no input could cost ten times more than any other input 

and no state could cost more than 100 times any other state. 

2.1.3 Target Set 

The stability basin shows the possible trajectories which end in successful 

standing without change of controller. What is ‘successful standing’ was 

defined by the target set. The target set was, just like the controller, fitted 

to the observed trajectories. We created the target set by forming a convex 

hull around the end points (100% sit-to-stand) of the observed 

trajectories. Our state trajectory has four dimensions (rx, vx, ry, vy). In 

order to compute a convex hull in four dimensions, we needed at least 

five points. However, we had three observed trajectories and thus three 

points. Therefore, to compute the target set (xT), we modelled an ‘extra 

point’ for each measured end point. Figure 3 visually presents this 

computation. The extra points were generated to be very close to the 

measured points so that the fabricated target set approached the actual 

target set.  
Figure 2 Target Set zonotope computation in two 

dimensions. Note that, for two dimensions, we need 

at least three points to form a convex plane. 

(2) 
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𝑥𝑇 = [

𝑟𝑥1(1) ⋯ 𝑣𝑦1(1)

⋮ ⋱ ⋮
𝑟𝑥3(1) − 0.001 ∗ 𝑅 ⋯ 𝑣𝑦3(1) − 0.001 ∗ 𝑅

] [4𝑥6]  

Where R is a random number between 0 and 1. 

To save computational time, the target set was saved as a geometric object called a zonotope, as 

demonstrated by Holmes6. A zonotope is defined by closed linear maps in n dimensions, four in our 

study, each for every component of state trajectory x(t). Each map is parametrised by a centre c and 

g(1)-g(p) generators.11 The use of zonotopes was automated applying the open-source reachability 

toolbox CORA in MATLAB. This toolbox was applied again in simulation with the stability basin 

computation. 

Each generator was expanded by 20% conform recommendations 6 to avoid excluding observed states 

laying on the edge of the target set. 

2.2 Stability basin computation: backward reachability analysis 
With simulation of the fitted sit-to-stand model we explored the limits of the observed sit-to-stand 

strategy. All trajectories found in simulation that reach successful standing, as defined by the target 

set, together formed the stability basin.   

The simulation uses simple numerical integration. As described earlier, the pendulum model dictated 

the equations of motion of the system (eq1) and the controller the input forces of the participant. For 

numerical integration, we further require an initial position. However, we are interested in a set of 

positions: all positions that lie within the target set. Therefore, we used reachability analysis. This 

method allowed the simulation of a set of points simultaneously, defined in a zonotope, using the 

CORA toolbox. As we simulated backwards from the target set, we computed the backwards 

reachable set to form the stability basin.6 

Each stability basin was formed from 200 zonotopes so that the time vector is [0,1] with a unitless 

time step Δt = 0.005 [-]. Each zonotope spanned four dimensions (rx, vx, ry, vy) resulting in a four-

dimensional stability basin. To save computation time, the maximum number of generators describing 

the zonotope was set to 800 generators6. 

2.3 Sit-to-stand data pre-processing 
To fit the pendulum model we converted the observed full-body sit-to-stand kinematics to centre of 

mass (COM) trajectories. The observed COM trajectories were cut and normalised so that we could, 

from trials with different lengths, compute the stability basin from 0 to 100% sit-to-stand. Finally, we 

derived the observed input ui directly from inverse dynamics which was used to optimise the 

controller input (section 2.1.2).  

2.3.1 Anthropometric model 

For a full description on the calculation of the segment COM location, the segment lengths, segment 

anatomical coordination systems (ACSs), body segmental parameters (BSPs) and circumference 

approximation we refer to appendix B. 

From the captured marker data, we modelled the participant's movement using a 14 segment rigid 

body model: feet, calves, thighs, pelvis, abdomen, thorax and upper arms are separate segments 

directly modelled from marker positions. We neglected the hand position or wrist flexion by 

combining the forearm and hand to one segment where the position is solely based on forearm 

markers. The head's location was an approximation based on extrapolation of the thorax and assumed 

the head was aligned to the thorax. 
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Figure 3 Anthropomorphic model concept. The segment and joint positions are estimated from the marker data. Body 

segmental parameters are obtained with approximated circumferences. 

The variety of subjects, both in age and gender, attended careful consideration of method choice to 

model body segmental parameters (BSPs). Studies showed that 51% of the variability in BSPs is 

accounted for by body mass index (BMI) where age accounts for an additional 3-19%12. Considering 

one should choose an anthropomorphic model based on a subject group similar to one's study group 13, 

we applied a model based on adjustments to Zatsiorksy by de Leva14 on the young participants, and a 

model developed for older adults by Pavol15 on the elderly participants. 

Unknown circumferential data was approximated based on measured BMI values and correlations 

from BMI related studies or assumptions based on a standard UK size chart  (Belstaff Men's sizing 

Chart, 2020)]. Navel height was deducted from participant photos taken during the experiment. 

The estimated total mass was modelled with a maximum difference of 10% to the measured mass for 

42 participants, including 22 participants with a maximum difference of 5%. The six participants with 

a larger difference were mainly older men. All body segmental parameters are scaled linearly with the 

same factor such that the sum of the masses of the body segments corresponds with the measured total 

body mass. The differences in the anthropometric model with reality are expected to have a maximum 

effect on the height of the total body centre-of-mass of 5 cm.  

We deducted the total body centre of mass throughout the movement combining the body segments' 

locations.  

2.3.2 Trial segmentation and trial normalisation 

To compare trials independent of their difference in duration, we normalised each state trajectory x(τ) 

over the trial's length T such that we obtained unitless time interval t = [0,1][-], or 0 to 100% sit-to-

stand, from the original time interval τ [s].  

𝜏 = [0, 𝑇] [𝑠] → 𝑡 =
𝜏

𝑇
= [0,1] [−] 

�̃�(𝜏) = [𝑟�̃�(𝜏)   𝑣�̃�(𝜏)   𝑟�̃�(𝜏)   𝑣�̃�(𝜏)]
′
 

We obtained the normalised state trajectory x(t) by scaling the velocity components with trial length T. 

Forces and accelerations were scaled with T2 following the same logic.  

𝑥(𝑡) = [𝑟�̃�(𝑇 ∗ 𝑡)   𝑇 ∗ 𝑣�̃�(𝑇 ∗ 𝑡)   𝑟�̃�(𝑇 ∗ 𝑡)   𝑇 ∗ 𝑣�̃�(𝑇 ∗ 𝑡)]′ 

𝑥(𝑡) = [𝑟𝑥(𝑡)  𝑣𝑥(𝑡)  𝑟𝑦(𝑡)  𝑣𝑦(𝑡)]
′
 

Before normalisation, the trials had to be aligned and cut such that they resemble the most alike shape. 

We achieved this using an iterative process which used a scaled version of the average nominal 

trajectory xnom. This process is described in full detail in appendix C. 
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The start of the trial (τ = 0, t = 0) was defined as when the horizontal acceleration first reached 15% of 

the peak horizontal acceleration of the aligned best scaled xnom. The end of the trial (τ = T, t = 1) was 

defined as when the vertical position first reached 99% of the peak vertical position of the aligned best 

scaled xnom. Note that the end of the trial was not defined by a stand still.  

2.4 Experimental set-up 
The experiment consisted of two parts: motion capture and capacity measurements. These parts were 

measured in parallel with two participants at the same time. There was a large amount of recovery 

time between the tests so we assume we can neglect effects of fatigue. For this study, we only look at 

the data from the motion capture experiment. 

2.4.1 Sit-to-stand motion capture 

We used a VICON (VICON, 2019) motion capture system with ten cameras recording at 100 Hz to 

capture the motion trials. Participants were equipped with 84 reflective markers of 14 mm-diameter 

spherical markers to the thorax, arms, pelvis, legs and feet with double-sided adhesive tape. A full 

description of the marker set and the fourteen segment body-model is in Appendix A. The seat height 

was set such that the thigh was parallel to the ground with an approximate deviation  of 5⁰. For the 

thigh push-off trials additional small portable force plates were attached to the palms of the hand to 

measure the contact force during thigh push-off. For this study, we did not use the force data of the 

small portable force plates.  

The participant had to perform two sets of three successful sit-to-stand trials: 

• Thigh push-off (TH): the participant had to push off pressing their hands on their thighs.  

• No thigh push-off (N): the participant was instructed to repeat sit-to-stand without using arms 

to push off.  

In both sets there was no further restriction in sit-to-stand style: no posture instructions, arm placement 

instructions, no restriction in feet position,the speed and time between trials was self-selected and the 

use of arm swing was to the preference of the participant.  

Post-processing and analysis were performed in MATLAB2020b with use of the VU3D-model 

toolbox (Sjoerd Bruijn, 2018). Outliers, marker data with an absolute value larger than 50m, were 

removed. We used piecewise cubic spline interpolation to fill gaps in marker data up to 10 frames. 

Position data was filtered using a 6th-order Butterworth filter with a cut-off frequency of 2Hz. 

2.4.2 Participants 

This study comprised 27 young (Y) (aged 20-35, 13 men and 14 women) and 23 healthy older (E) 

adults (aged 65-95, 11 men and 12 women) recruited between July and November 2019 in London, 

UK. Participants were excluded if the participant had joint surgery or suffered from any mobility-

limiting pathology, had a pacemaker, was not able to walk without aid, was too inadequate in English 

to comprehend instructions or question forms, had an allergy to adhesives, was pregnant or was 

identified as 'moderately' or 'severely' frail at the Edmonton Frailty Scale16. The Imperial College 

institutional ethics committee approved the study. All participants gave their informed consent. Eleven 

participants were excluded from the data as the sit-to-stand data was incomplete and no stability basin 

could be computed. The final set of participants for this study comprises 39 participants, divided by 

age and sex into four groups, as presented in Table 1. 

 n Age [y] M (SD) BMI [kg/m2]  M (SD) 

Young Male (YM)   9 26.44 (4.09) 24.14 (2.73) 

Young Female (YF) 13 27.23 (5.01) 22.82 (2.98) 

Elderly Male (EM) 7 76.43 (7.98) 24.97 (3.45) 

Elderly Female (EF) 10 75.90 (5.39) 24.83 (3.81) 
Table 1 Participant overview 
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2.5 Analysis 
We performed between-group and between-strategy analysis on the computed basins to study the 

effects of thigh push-off on stability for young and elderly subjects. We studied the accuracy of the 

computed stability basins by calculation of the relative volume. 

2.5.1 Accuracy stability basin 

The resulting stability basins describe the possible trajectories that reach successful standing without a 

change of strategy. However, the pendulum model and fitted controller are not a perfect representation 

of reality. Underestimation of the true stable region is a common phenomenon using stability basins. 

Holmes17 observed false failure prediction in 76.96% of the measured trials using the LQR controller. 

We speak of false failure prediction when observed successful trajectories lay outside the computed 

stability basin. Because the stability basins are not perfect, we have to quantify the accuracy of our 

computed stability basins to perform between-group and between-strategy analysis. 

To assess accuracy, the resulting stability basin (SB) can be described quantitively as a percentage of 

the maximum possible bounded domain (IB). The bounded domain, or naive stability basin6, is the 

encapsulation of all observed trajectories at each time step with the same technique we applied to 

obtain the target set (section 2.1.3). 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 =  
1

200
• ∑

𝑆𝐵(𝑡𝑖)

𝐼𝐵(𝑡𝑖)
∗ 100%

𝑖

 

Where i ϵ [1,200]; an index for each zonotope describing the stability basin. ti = [0,1] [1x200]. 

A relative volume of 0% indicates that the bounded domain, and therefore all observed trajectories, lie 

outside the stability basin for the entire sit-to-stand movement. 100% indicates the bounded domain, 

and therefore all observed trajectories, remains within the computed stability basin for the entire trial.5 

A relative volume of 40% indicates that 40% of the bounded domain, and therefore 40% of all 

observed trajectories, lies inside the computed stability basin. The false failure prediction is 60% as 

60% of the observed successful trajectories lay outside the stability basin. 

2.5.2 Statistical Analysis 

The computed stability basins have a total volume, or size. This can be interpreted as an overall metric 

of stability of the observed sit-to-stand movements. Conform the study of Shia et al.5 we compared the 

total volume of the stability basins of the no-arm strategy with the thigh push-off strategy with a 

paired t-test. We compared no-arm (N) basins with thigh push-off (TH) basins for all participants, 

within age-gender group (young male N compared to young male TH etc) and for young and elderly 

participants separately (young N compared to young TH etc). To study age- and gender group 

differences we compared the basin sizes of the no-arm strategy basins of the young participants (Y-N) 

with the sizes of the no-arm strategy basins of the elderly participants (E-N), likewise for the thigh 

push-off basins (Y-TH compared to E-TH). 

Compared to other stability analyses, the stability basin enables to assess the stability throughout the 

movement by assessing the stability basin’s shape. To identify momentary differences in stability, we 

used statistical parametric mapping (SPMD). SPMD allows to study statistical differences in 

continuous datasets. The mapping method makes interferences of statistical processes that are 

continuous functions on topological features using Random Field Theory (Pataky, 2021). We assessed 

the size of the stability basin as a continuous function through time interval [0,1]. Specifically, the 

volume of the stability basin through the sit-to-stand time (VSB(t) [m4]), or the area in either the 

forward or upward direction (Ax(t) [m2] or Ay(t) [m2]) acted as the continuous one-dimensional data. 

We used open-access MATLAB package spm1d (Pataky, 2021) which applies SPMD to one-

dimensional data. We performed a SPMD analysis of variance (ANOVA) to compare the stability 

basin shapes between arm-strategies (independent of age or gender) and between age groups for each 
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arm-strategy (young compared to elderly). The SPM(t) value indicates the momentary chance that the 

continuous data is different for the observed groups. We compared the continuous data of sit-to-stand 

with- and  without thigh push-off (N/TH) and between age groups for both arm-strategies (Y/E N and 

Y/E TH). 

To study the correlation of the stability basin size and other known individual-specific parameters we 

performed linear regression analyses. We analysed the correlation of basin size to age, the target set 

area [m4], mean sit-to-stand time [s] and average centre-of-mass acceleration range [m/s2].  

For all statistical analyses the confidence interval was set to 95%.   
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3 Results  
In this section we present examples of computed stability basins, show the range of accuracy of the 

computed stability basins, and compare the basins between arm-strategies and between age-groups.  

We computed two stability basins for 39 participants, one for sit-to-stand with thigh push-off (TH) and 

one for sit-to-stand without thigh push-off (N). In figure 5 we present two examples of computed 

stability basins. A stability basin is visualised as two volumes: one for the possible trajectories 

depended on time in mediolateral direction (rx(t), vx(t)), and one for the possible trajectories depended 

on time in upward direction (ry(t), vy(t)). Where the basin is large there are more possible trajectories 

that reach standing without a change in strategy; for this observed sit-to-stand strategy the strategy is 

(momentarily) more stable.  

 

 

3.1 Accuracy or relative volume 
Note that, in figure 5, part of the observed trajectories lie outside the stability basin indicating that, in 

theory, the observed trajectories could not reach standing without a change of sit-to-stand strategy 

(change of feedforward control). However, all the observed trajectories reached standing successfully. 

Thus, we observe false failure prediction. The stability basin underestimates the true stable region. The 

accuracy of the computed basins, described by the relative volume of the enclosed trajectories (section 

2.5.2), has a median of 86.25% and a standard deviation of 19.00% for all computed basins. In figure 6 

we present a boxplot of the computed accuracies per arm-strategy, separately for young and elderly 

participants. The difference in accuracy between thigh push-off stability basins and no-arm stability 

basins is not significant: The difference in accuracy between the stability basins of the elderly and the 

stability basins of the young participants is not significant: Vrel_N_Y = 79.0 ± 24.2 [%], Vrel_N_E = 85.0 ± 

14.0 [%], p rel_N_E/Y = 0.375, V rel_TH_Y = 78.8 ± 19.1 [%], V rel_TH_E = 81.3 ± 17.0 [%], p rel_TH_E/Y = 

0.671. Neither is the difference in accuracy between thigh push-off and no-arm sit-to-stand: p rel_Y_TH/N 

= 0.975, p rel_E_TH/N = 0.504. 

Figure 4 Two examples of computed stability basins. a) stability basin of a young female participant for sit-to-stand without 

thigh push-off (N) b) stability basin of an elderly male participant without thigh push-off (N). Each basins is presented 

separately for the anterior-posterior (left) and upward (right) component of sit-to-stand.The red, yellow and blue line 

represent the observed trajectories, the purple line the average nominal trajectoy. 
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Figure 5 Boxplots of the accuracy (relative volume) of the computed stability basins per arm-strategy and age-group 

3.2 Arm-strategy comparison 
In table 2 we present the mean values of the size of the stability basins per age- and gender-groups per 

arm-strategy. 

 

 

If we consider all participants, the size of the computed stability basin for thigh push-off (TH) was 

significantly larger than for no arm push-off (N): N = 0.0083 ± 0.0123 [m4], TH = 0.0404 ± 0.0870 

[m4], p = 0.025. The size difference is not significant within age-gender groups alone. The size 

difference is larger for elderly than for young participants. Note, if we look at the means in table 2, 

that this difference is small for the young female participant groups. This is due to two young females 

with a large no-arm-strategy stability-basin (V_N_P1108 = 0.027 m4, V_N_P1130 = 0.045 m4). With 

the no-arm-strategy, both of these participants showed non-fluent sit-to-stand with hitches; a point in 

sit-to-stand when the velocity of the centre of mass became negative in both the vertical direction. This 

hesitation was consistent over the three observed trials.   

 # N_mean N_sd TH_mean TH_sd TH > 

N ?   

p TH > N   

All  39 0.0083 0.0123 0.0404 0.0870 28/39 0.025 

Young 22 0.0062 0.0103 0.0159 0.0437 15/22 0.319 

Young 

Male 

9 0.0037     0.0036 0.0264    0.0687 5/9 0.337 

Young 

Female 

13 0.0080   0.0130 0.0086    0.0074 10/13 0.879 

Elderly 17 0.0109 0.0144 0.0722 0.1165 13/17 0.039 

Elderly 

Male 

7 0.0157     0.0216 0.0482     0.0559 5/7 0.178 

Elderly 

Female 

10 0.0075    0.0051 0.0890      0.1458 8/10 0.094 

Table 2 Stability basin sizes per participant group [m4] for thigh push-off (TH) and no-arm push-off (N). The pre-final 

column shows the number of individuals for which the stability basin of the thigh push-off was larger than for the no-arm 

strategy. 

Figure 7 Scatter of the computed stability basin sizes for both arm strategies per subject. Colors indicate agegender group. 
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SPMD analysis shows the difference between strategies in the size of the stability basin is largest, and 

significant, in the vertical direction in the middle of sit-to-stand (p = 0.038). See figure 8.  

3.3 Participant-group comparison 
Overall, the stability basins of the elderly were larger compared to those of the young participants, for 

both arm strategies. VN_Y = 0.0062 ± 0.0103 [m4], VN_E = 0.0109 ± 0.0144 [m4], pN_E/Y = 0.249, VTH_Y 

= 0.0159 ± 0.0437 [m4], VTH_E = 0.0722 ± 0.1165 [m4], pTH_E/Y = 0.044. For stability basins of sit-to-

stand with thigh push-off the elderly have a significantly larger stability basin than the young 

participants. For sit-to-stand without arm push-off, this difference is not significant. Note: if we 

excluded outliers P1108 and P1130, the two young females with hesitant sit-to-stand without thigh 

push-off, the stability basins of the elderly are significantly larger than the stability basins of the young 

participants: VN_Y_exP8&30 = 0.0033 ± 0.0027 [m4], VN_E_exP8&30  = 0.0109 ± 0.0144 [m4], pN_E/Y_exP8&30  = 

0.026.  

As presented in figure 9, SPMD analysis shows the significant differences in shape between elderly 

and young for each arm-strategy. The no-arm strategy shows points in sit-to-stand where the elderly’s 

basins are significantly larger in the horizontal plane compared to those of the young participants: at 

the start of sit-to-stand and just after the peak vertical velocity. The stability basins of the thigh push-

off strategy show a significant difference where the elderly have a larger basins compared to the young 

participants at the start of sit-to-stand. The dashed vertical lines indicate the mean sit-to-stand phase 

transitions18 between primary horizontal movement to primary vertical movement.   

 

Figure 9 SPMD age-group-analysis. The vertical black striped lines indicate the mean phase transitions of the sit-to-stand 

observations. Sit-to-stand can be described in three phases: the accelerating phase (I), the transition phase (II) and the 

deceleration phase (III). Where the SPM(t) reaches the threshold the difference in the size of stability basins are momentarily 

significant.  

Figure 8 SPMD analysis comparison shape of stability basins (SB) for sit-to-stand with (TH) and without (N) thigh push-off 

independent of age- or gender groups. 
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3.4 Regression analysis 
In appendix D we present visual presentations of the regression analyses. 

Regression analysis showed that slower (larger average end time sit-to-stand) and inconsistent (large 

target set area) sit-to-stand is correlated to a larger stability basin independent of arm-strategy  (pNtend < 

0.001, pTHtend< 0.001, pNATs = 0.010, pTHATs = 0.015). 

Regression analysis showed that smoother (smaller mean absolute acceleration range) sit-to-stand is 

stronger correlated to a smaller stability basin for sit-to-stand without thigh push-off than for sit-to-

stand with thigh push-off (pNaccrange < 0.001, pTHaccrange=0.070). 

We found a weak positive linear correlation to the stability basin size and age (pNage  = 0.095, pTHage = 

0.167).  
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4 Discussion 
We hypothesised that sit-to-stand with thigh push-off is more stable than sit-to-stand without thigh 

push-off, in young and elderly participants. We found that the stability basins for sit-to-stand with 

thigh push-off are larger than for sit-to-stand without push-off, for most (29/39) participants. Over all 

participants, the stability basin of the thigh push-off was significantly larger than the basins of the no-

arm sit-to-stand strategy. The basin size difference between arm-strategies were larger for the elderly 

participants than for the young participants. The differences in the shape of the stability basins 

between young and elderly were different for the two arm-strategies: without thigh push-off basins 

were larger for elderly at the middle (40-60% of movement) and start of sit-to-stand (0-10% of 

movement), with thigh push-off basins only at the start of sit-to-stand. Accuracy of the stability basin, 

estimated by relative volume, was high (compared to previous studies) and even over the four age-

gender groups. 

Accuracy  The accuracy of the computed stability basins is lower than 100%, thus we observe 

underestimation of the true stable region. This means the computed stability basins cannot predict the 

actual limits of the observed strategies. However, we showed that the accuracy of the computed 

stability basins is comparable over all participant- and strategy groups such that between-age and 

between-strategy stability basin comparison is valid. Furthermore, the underestimation is small 

compared to the study of Shia5 where they successfully distinguished differences in stability between 

two restricted sit-to-stand strategies.  

The accuracy, or relative volume, of a stability basin is largely dependent on controller fit. We 

optimised the feedback and feedforward control parameters such that they best fitted the observed sit-

to-stand centre-of-mass trajectories. With the linear quadratic controller we use, accuracies of near 

100% can only be obtained if all measured trajectories fit a linear model. To achieve better accuracy, 

Holmes6 introduced a more sophisticated controller model where the controller input is defined as a 

range of inputs fitting the observed data thereby modelling a range of inputs which predict successful 

standing. In Holmes’ perturbation study, the input bound controller reduced false failure prediction 

from 76.96% to 15.02% compared to the linear quadratic controller (LQ)R controller.17 In our study, 

we only had three observations to form a stability basin on. The fabrication of ‘extra points’ in the 

target set nearby the observed end points mathematically enabled us to compute the stability basins. 

Adversely, the target set area became very small and the stability basins become more of a slab than a 

volume. This raises concerns about overparametrisation. We checked available control models and 

found that only the LQR controller did not show signs of overparameterising for an input of three 

observations. In appendix E we present the results of this check.  

Our high accuracy score, compared to the previous studies, partly can be explained by the small 

number of trials we based our model on. A linear model based on three inputs can fit more accurately 

to those three inputs compared to a model with five (Shia5) up to twelve (Holmes6) trials used as input 

for previous studies. However, we had a higher chance of more variable observations as we studied 

novel unrestricted sit-to-stand data, where the other studies used restricted (instructions on execution) 

sit-to-stand. More variable but successful observations result in a larger basin but also a worse 

controller fit and thus lower accuracy 

Between-strategy. The stability basins of thigh push-off strategy sit-to-stand were overall larger than 

for the no-arm strategy. A larger basin indicates there are more possible trajectories that reach standing 

following the observed sit-to-stand strategy. In other words, in the observed thigh push-off sit-to-stand 

strategies was more room for variation and a larger resistance to small perturbations; the strategy was 

more stable. That said, it is not the case for all participants.  

In this study we analysed unrestricted sit-to-stand. Participants were free to execute sit-to-stand to 

their preference. The chosen observed style, where use of trunk flexion is a characteristic for example, 
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largely influences the stability. Shia5 showed for all participants that the stability basins indicated one 

instructed strategy (quasi-static) to be more stable than another (momentum transfer). Because, in our 

study, there were no restrictions in sit-to-stand style except for arm-use the observed strategies show 

between- participant and between-arm strategy variability. This could have lead to a participant 

performing a careful and stable version of sit-to-stand without thigh push-off and a hastily executed 

thigh push-off sit-to-stand, if that was to their preference. The observed natural strategies indicate that 

for some individuals thigh push-off sit-to-stand is less stable. This could be due to a number of 

irregularities in the observatios e.g. alternate foot placement, between-strategy variation in intention of 

the participants (unconciously chosen different movement objectives), undetected asymmetry or the 

participants being distracted. However, we wanted to study natural sit-to-stand. And these 

irregularities can be typical of the participant’s natural sit-to-stand style for the instructed arm-

strategies. Therefore we did not exclude these results.   

Because the difference in stability basin size is significant between the two strategies and the 

participants with a more stable sit-to-stand without thigh push-off are distributed evenly over the 

participant groups, we conclude that sit-to-stand with thigh push-off is, in general, likely to be more 

stable than sit-to-stand without thigh push-of.  

Between-group Between-group analysis shows that the stability basins of the elderly are larger 

compared to those of the young participants. This indicates that elderly use more stable sit-to-stand 

strategies. These results contradict our hypothesis that elderly have a smaller basin because we 

assumed elderly to be more unstable. This reveals the explicit statement that stability basins quantify 

the stability of the observed movements rather than the stability of the observed subject. What we 

observed is that elderly’s observed strategy has more room for variation in it’s simulated trajectories to 

still reach standing within the observed strategy. And more room for variation is a higher resistance to 

small perturbations. Intuitively, this is understandable. Elderly have a decreased neuromuscular 

capacity19 and are therefore less capable of a successful (quick) change of strategy which could result 

in falling. To reduce this risk elderly use more careful strategies; with more room for variation before 

a necessary (possible risky) change of strategy.  

The shape analysis further strengthens this conclusion. We observed a larger basin for the elderly at 

specific points in sit-to-stand which indicate that, compared to the young participants, the strategy 

used by elderly has more room for error at those points. In other words: they were more careful at 

these specific points. If we assume humans to be optimisers caution is only taken when necessary, to 

reduce risks or even avoid specific failures. For the thigh push-off there is one significant point of 

difference, where the elderly basins are significantly larger than the young participants’ basins, at the 

start of sit-to-stand; compliant with a failure mode of an early sit-down. For sit-to-stand without thigh 

push-off there is a second and larger difference in basin size halfway sit-to-stand; compliant with a 

failure mode of a sit-down or step in the transition phase and the start of the deceleration phase18. The 

consequences of a step or sit-down in the later stages of sit-to-stand have more risks than an early sit-

down. This implicates that thigh push-off is not only in general a more stable strategy, as quantified by 

the overall larger basin size, but also that it is a strategy with lower risks if the subject needs to change 

the strategy.   

Regression analysis We found a strong positive correlation to the stability basin size and the average 

mean end time of sit-to-stand and the target set area. One could argue that these values alone can act as 

an overall metric of stability. This would eliminate the need of the model fitting and simulation and  

would reduce the method to just the data pre-procesment, specifically trial segmentation using the 

average nominal trajectory. However, the average end time and end point consistency do not give any 

information about the stability throughout the movement. This remains an essential advantage of the 

stability basin method. The strong positive correlations do confirm that the computed stability basin 

sizes act a stability metric as they correlate to logical other stability indicators, speed and consistency, 

independent of arm-strategy.  
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The correlation to the range of centre of mass acceleration during the movement (mean value over 

three observations) is significanlty stronger for the no-arm strategy than the thigh push-off strategy. 

Interestingly, for the no-arm strategy the observed acceleration range was smaller and with less 

variation compared to the observed acceleration range of the thigh push-off strategy (see Appendix D, 

figure 17). The larger variation and range in centre-of-mass acceleration for thigh push-off did not 

result in a larger variation and size of the stability basin for the thigh push-off. This indicates that the 

stability of sit-to-stand using thigh push-off is less dependent on the acceleration of the centre of mas. 

This could mean that thigh push-off sit-to-stand can be executed with a higher speed and less control, 

or slower speed and more control, with less influence on the stability than it would have if no arms 

were used. This stability robustness, if we may call it such, could explain why elderly frequently 

prefer thigh push-off sit-to-stand over using no arms in sit-to-stand.3 

Future recommendations Some critical notes on the use of stability basins. If the predictive power of 

the basins is insufficient the potential of the method is limited. For future effective use of stability 

basins we recommend an accuracy study of stability basins and the different models of controllers 

dependent on the number of trials and variability of the input. This could be performed by using 

available sit-to-stand data sets (from the Holmes17 perturbation study for example) and leaving 

multiple trajectories out or as a simulative study, where the ‘observed’ trajectories are simulated using 

a musculoskeletal model to obtain realistic input data.  

If the predicitve power can be improved there are multiple applications and improvements to be 

further made using stability basins. We only studied the stability of sit-to-stand with and without thigh 

push-off. With the stability basin method one could easily study the stability of other common sit-to-

stand strategies, such as using arm rests. With the simple inverted pendulum model and the neglection 

of angular momentum there would be no need to adjust the equations of motion, even if arm rests are 

used. Another movement which could be studied with stability basins is sit-to-walk. For other stability 

quantification methods, the end point of the aperiodic sit-to-walk movement can be difficult to define 

as the ‘end point’ is walking, a non-stationary position. With the stability basin method this would be 

defined by the target set which simply could be all the observed trajectory points at the moment of the 

second heel strike for example.  

Furthermore, to improve understanding in the stability of certain movement strategies, the stability 

basin is fit to be extended to include medio-lateral stability assessment as well. One would need to add 

another dimension, one state variable for centre of mass lateral position and one state variable for 

centre of mass lateral velocity, which would result in a six-dimensional stability basin. The stablity 

basin would be visualised in three volumes instead of two. The total size of the stability basin, acting 

as overall stability metric of the entire movement, would be more correlated to the ‘actual’ stability, in 

terms of risk of falling, of the movement. 

Both Shia et al.5 and Holmes et al.6 proposed to use the stability basin method in longitudinal studies 

to track the influence of age or (the rehabilitation) of an injury on instability. The stability basin should 

be able to reveal unstable portions of motion. Coupling with other clinial techniques, such as 

electromyography, stability basins could help to indentify which (weakened) muscles are associated 

with (momentary) instability. This could improve preventitive and rehabilitive care.5,6 However, our 

results based on unrestricted sit-to-stand movements showed that the stability basins quantify the 

stability of the observed chosen movement strategy. An example: Longitudinal studies using stability 

basins could show decreased momentary stability according to the stability basins. This would indicate 

that the observed strategy has an increased chance of a necessary change of strategy to avoid failure. 

However, if studying unrestricted strategies, this would not necessarily mean an increased likelyhood 

of falling and therefore indicating decreased stability. It could also show that the subject has a 

decreased fear of falling and therefore uses a more ‘risky’ strategy now, indicating increased stability. 

Therefore, we recommend to only use stability basins in longitudinal studies with restricted movement 

strategies. For unrestricted statregies, one should couple the results with other clinical (stability) 

assesments. Then, the stability basins could aid to understand strategy preferences.  
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5 Conclusion 
We conclude that, in general, sit-to-stand with thigh push-off is likely to be a more stable strategy than 

sit-to-stand with no arms: The computed stability basins show that the thigh puh-off strategy is more 

robust to small perturbations to reach standing without a change in strategy for most of the observed 

natural strategies. Compared to those of young adults, the observed older adults strategies have less 

risk for a possible early sit-down and a step mid sit-to-stand in sit-to-stand without thigh push-off and 

only for early sit-down for the thigh push-off strategy. The differences in stability basin size between 

the elderly and young participants confirm that stability basins quantify the stability of the observed 

movement strategy rather than the stability of the subject. 
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Appendices 
 

A – Full marker set description 

Table 2 Full marker-set description 

 

 

 

 

 

 

 

Segment Markers Anatomical Location 

Foot – left 

and right 

FM2 Head of the second metatarsal 

FCC Calcaneus 

FMT Tuberosity of the fifth metatarsal 

TF Additional marker placed on foot 

Calf - left 

and right 

TAM Apex of the medial malleolus 

FAM Apex of the lateral malleolus 

C1-4 Cluster of four markers placed on frontal flat part of the shank 

Thigh – left 

and right 

FLE Lateral femoral epicondyle 

FME Medial femoral epicondyle 

T1-4 Cluster of four markers placed on lateral side of thigh 

Pelvis RASIS Right anterior superior iliac spine 

LASIS Left anterior superior iliac spine 

RPSIS Right posterior superior iliac spine 

LPSIS Left posterior superior iliac spine 

P1-3 Cluster of three markers placed on pelvis 

Thorax C7 7th cervical vertebra 

T8 8th thoracic vertebra 

IJ Sternum jugular notch 

MA Sternum manubrium 

PX Sternum xiphoid process 

LS1 Left acromion 

RS1 Right acromion 

Upper arm – 

left and right 

LE Lateral epicondyle 

ME Medial epicondyle 

HU1-4 Cluster of four markers placed on lateral side upper arm 

Lower arm – 

left and right 

RS Radial styloid 

US Ulnar styloid 

U1-4 Cluster of four markers placed on lateral side thigh 
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Figure 6 Overview full marker-set and circumference locations 
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B - Anthropomorphic model 
This section elaborates on anthropomorphic model choices. 

Circumference Approximation 

Circumferential data largely accounts for the between-subject variation. Approximation of 

circumferences from photos of participants developed for the clothing industry 20 had limited 

application without the availability of photos of the transverse plane. To vary the approximated 

circumferences on the individual’s Body Mass Index (BMI) we can account for up to 50% of the 

between-subject variability of the BSPs12. For each circumference approximation we assume a linear 

relation between BMI and circumferences. A first degree polynomial was used to fit known 

correlations between BMI and circumferences. The circumferences of the pelvis, abdomen and thorax 

were derived from a standard UK size chart (Belstaff Men's sizing Chart, 2020) where we assumed the 

underweight boundary of a BMI of 18 to correspond with a size XS and the overweight boundary BMI 

of 30 to correspond to XL for female. The XL waist circumference corresponded to the waist 

circumference of 80 cm which is another indicator for overweight. (BMI and obesity: Where are you 

on the UK fat scale?, 2018) For the male group, a similar approach resulted in size XS and XL 

corresponding to a BMI of 20 an 32 kg/m2 respectively. These known correlations are presented in 

table 4. 

  Male values Female values 

min max min max 

 BMI (kg/m2) 18 28 18 28 

Calf 7 circumference (cm) 31 42 29 40 

 BMI (kg/m2) 20.8 27 19.9 25.3 

Thigh 8 circumference (cm) 53.2 65.6 48.1 57.5 

 BMI (kg/m2) 20 32 18 30 

Pelvis circumference (cm) 91 107 90 106 

 BMI (kg/m2) 20 32 18 30 

Abdomen circumference (cm) 78.5 94.5 64 80 

 BMI (kg/m2) 20 32 18 30 

Thorax circumference (cm) 90 106 82 98 

 BMI (kg/m2) 21.7 25.0 21.0 25.0 

Neck 9 circumference (cm) 35.5 37.5 31.5 33.5 
Table 3 BMI coefficients 

The upper arm circumference is approximated with regression equations from a large study (n=408 

male, n=258 female) with reasonable predictability (R2=0.76).21 

C = BMI/1.01 + 4.7 for male participants 

C = BMI/1.10 + 6.7 for female participants 

The feet circumferences we assumed to be BMI independent and are scaled to standard lengths 

dependened on gender. Both the Forearms and hands were scaled to ratio between the length of the 

forearm and the standard length of the forearm. The head circumference was assumed to be the same 

standard circumference and only gender dependent. These circumferences are presented in table 5. 
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C = Cstandard ∗ L/Lstandard 

  Standard length Standard circumference (cm) 

 male 258.1 mm 25 cm 

Foot 2 female 228.3 mm 22.1 cm *assuming same ratio male 

 male 268.9 mm 26 cm 

Forearm 2 female 264.3 mm 25.56 cm *assuming same ratio male 

 Male *scaled to forearm ratio 21 cm 

Hand 2 female *scaled to forearm ratio 19.0 cm *assuming same ratio male 

 male - 56.9 

Head 11 female - 53.4 
Table 4 Length and circumference ratio's feet, hands, forearms and head 

Anthropomorphic methods 

To approximate body segmental parameters (BSPs) and segment COM location a distinction in 

anthropomorphic models was made between the young and elderly group. The local anatomical 

coordinate systems of each segment were derived independent of method and participant group and 

are presented per segment in the subsections following the method presentation. 

Zatiorsky/Leva 

A method based on the studies of Zatsiorksy and de Leva14 was used for the young subjects. Each BSP 

is approximated from the segmental length (L), the circumference (C) and regression parameters based 

on measurements with a gamma-ray scanner by Zatsiorsky et al. (1990a)22 De Leva made adjustments 

so that the anthropomorphic model would depend on joint locations instead of bony landmark 

coordinates ’to better fit kinematic models’.14 It is important to note what kind of participant group this 

method is based on. The participant group on which Zatsiorsky based his method consisted of 

significantly more males (n = 100,a = 24y,73.0kg,1.741m) than females (n = 15,a = 

19y,61.9kg,1.735m)22 and that the mean BMI of the male group (24.1kg/m2) is significantly higher 

than that of the female group (20.6 kg/m2). Equations (eq3) present how the mass and inertia 

parameters are derived for a body segment from segment length, circumference and segment specific 

regression parameters. Km is the coefficient for the mass (m) derivation, Ks the coefficient for inertia 

parameter around the sagital axis (x-axis), and Kf and Kl for the frontal (y-axis) and longitudinal (z-

axis) axis. 

regression parameters RP = [Km,Ks,Kf,Kl][14]  

m = Km ∗ L ∗ C2 ∗ 10−5 

Ixx = Is = Ks ∗ m ∗ L2 ∗ 10−2 

Iyy = If = Kf ∗ m ∗ L2 ∗ 10−2 

IzzIl = Kl ∗ m ∗ C2 ∗ 10−2 

Equation 3 Zatsiorksy/Leva coefficient equations 

For each segment the calculation of the segment COM location approximation, segment length (L) and 

regression parameters are presented in the next section. 
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Pavol 

Pavol For the elderly participant groups the Pavol23 method was 
used. This method was specifically developed to estimate BSPs 

for the general population of older adults with a cadaver study. 

The study’s population consisted of less male (n = 29, a = 73.2y, 
84.4kg, 1.72m) than female (n = 50, a = 70.3y, 71.2kg, 1.59m) 

subjects.[7] 

This indicates a mean BMI value of 28.4 and 28.2 [m/kg2] for 

the male and female group respectively. Pavol accounts for the 

large between-subject variation with individual measurements 

of lengths, total mass and circumferences. The trunk is modelled 

as five components divided by transverse sections marked by the 

C7, the acromion, shoulder, breast, mid breast-L3L4 and L3L4 as 

proposed by Yeadon24. We have simplified this to a four component model where the top three 

components together form the thorax segment and the bottom two components are modelled as one 

component which forms the abdomen segment. The division between the two segments is the section 

at the breast, indicated by the PX marker. See figure 11.  

Each component is modelled as a stadium solid where the volume is approximated by a cylinder: 

 w0 = circ0/(π), w1 = circ1/(π) 

 

𝑉𝑠 =  
ℎ

3
∗ (2 ∗ 𝑟0 ∗ 𝑡0 + 𝑟0 ∗ 𝑡1 +  𝑟1 ∗ 𝑡0 + 2 ∗ 𝑟1 ∗ 𝑡1 + 𝜋(𝑟0

2 + 𝑟0 ∗ 𝑟1 + 𝑟1
2)) 

Where circi is the circumference, wi the width and Di the depth at level i. Level 1 is the top level of 

each component, level 0 the bottom component. For example, the abdomen component circ1 is the 

waist circumference and circ0 is the hip circumference. 

The depths and widths are approximated from circumferences we assumed or modelled with the 

assumption that the cross section is perfectly round as there was no depth data available. We calculate 

the thorax and abdomen COM location with the Zatsiorsky/Leva method as the assumption of a round 

circumference may influence the posterior location of the COM too much. 

Anthropomorphic segment models 

For each segment the calculation of the BSPs, the segment COM location approximation, local 

segment anatomical coordinate system (ACS) and segment length are presented in the next 

subsections. The segment specific x-, y- and z-axis axis are, for each segment, normalized to form the 

ACS according: 

  (3) 

 

Feet 

The feet are modeled according to the adjusted Leva14 and Pavol model23 for young and elderly 

participants respectively. For the young participants the sagital axis is determined as the line of the 

midpoint between the head of the second metatarsal (FM2) and the tuberosity of the fifth metatarssal 

(FMT), and the heel (FCC). The segment length is ideally determined with a marker on the toe tip but 

in the absence of one we assume the total length of the foot to be 25% larger than the length between 

FM2 and FMT, and the heel. 

Figure 7 Adjusted Pavol model (based on five component 

model Yeadon) such that the thorax consists of three 

components and the abdomen of one component 
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Markers Calculation ACS 

1. Head of second metatarsal (FM2) 
2. Tuberosity of the fifth metatarsal (FMT) 
3. Calcaneous (FCC) 
4. Lateral Malleolus (TAM) 
5. Sphyrion (FAM) 
6. Additional marker (TF) 

xtemp = (FM2+ FMT)/2 − CAL y = 

(FM2+FMT)/2-CAL  AJC-CAL z = xtemp × 

y x = y ×z 

Calculated joint centres Segment length 

1. Ankle Joint Center (AJC) 
AJC = (TAM+FAM)/2 

L = ||(FM2+ FMT)/2 − FCC|| ∗ 1.25 
*assumption of the extra 25% 

Young participants:23 

 COMfootmale = FCC + L ∗ 0.4415 COMfootfemale = FCC + L ∗ 0.4014 

 RPfootmale = [6.14 7.86 7.14 1.60] RPfootfemale = [6.35 8.98 7.79 2.09]; 

Elderly participants:23,25,26  

(4) 

COMfoot = AJC + 0.28 ∗ ((FM2 + FMT)/2 − FCC) ∗ 1.25 ∗ cos(29.6◦) 

COMfoot(3) = AJC(3) − 0.28 ∗ L ∗ sin(29.6◦) 

(5) 

m = 0.0083 ∗ bodymass + 254.5 ∗ L ∗ hankle ∗ wankle − 

0.065[] Where wankle = norm(SPH − LM) and hankle = COM(3) 

Calfs 

No adjustments were made to the models proposed by Leva14 for young participants and Pavol23 for 

elderly participants. 

Markers Calculation of Anatomical Coordinate System (ACS) 

1. Lateral Malleolus (FAM) 

2. Sphyrion (TAM) 

3. Lateral Femur Epicondile (LFE) 

4. Medial Femur Epicondile (MFE) 

5-8. Four additional clustermarkers (C1-4) 

ytemp = MFE − LFE on right side 

ytemp = LFE − MFE on left side z = 

KJC-AJC 

x = ytemp × z y 

= z ×x 

Calculated joint centres Segment length14 

1. Ankle Joint Center (AJC) 

AJC = (TAM+FAM)/2 

2. Knee Joint Center (KJC) 

KJC = (MFE+LFE)/2 

L = ||AJC − KJC|| ∗ 393.4/440.3 male 

L = ||AJC − KJC|| ∗ 393.8/438.6 female 

Young participants: 

 COMcalfmale = KJC + (AJC − KJC) ∗ 0.4395 COMcalffemale = KJC + (AJC − KJC) ∗ 0.4352 (6) 

 RPcalfmale = [5.85 8.77 8.44 1.44] RPcalffemale = [6.59 8.80 8.58 1.42]; 

Elderly participants: 

 COMcalfmale = KJC + (AJC − KJC) ∗ 0.428 COMcalffemale = KJC + (AJC − KJC) ∗ 0.419 (7) 

m = 0.0226 ∗ bodymass + 31.33 ∗ L ∗ C2 + 0.016 
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Pelvis 

Markers Calculation ACS 

1. Right Anterior-Superior Iliac Spine (RASIS) 

2. Left Anterior-Superior Iliac Spine (LASIS) 

3. Right Posterior-Superior Iliac Spine (RPSIS) 

4. Left Posterior-Superior Iliac Spine (LPSIS) 

5-7. Three additional cluster markers (P1-3) 

MASIS = Midpoint between RASIS and LASIS 

MPSIS = Midpoint between RPSIS and LPSIS 

xtemp = LASIS − MPSIS y = 

LASIS - RASIS 

z = xtemp × y x = 

y ×z 

Calculated joint centres Segment length14 

1. Right Hip Joint Centre (RHJC)27,28 

See text 

2. Left Hip Joint Centre (LHJC) 27,28 

See text 

3. Lumbar Joint Centre (LJC)29 

See text 

L = |znavel − zMHJC| ∗ 251.7/145.7 male 

L = |znavel − zMHJC| ∗ 256.8/181.5 female 

* Navel height approximated from photos 

The navel height was approximated from photos of the participants using a reference length with a 

known length from marker locations. Note that this was an arbitrary task whenever there was a 

substantial amount of body fat or loose skin. If there was no photo available the navel height was 

assumed to be zero. 2 

 znavel = zMASIS + hnavelfromphotos where navel = MASIS (8) 

Calculation joint centres:27–29 

 dpelvis = ||(RASIS + LASIS)/2 − MPSIS|| (9) 

wpelvis = ||RASIS − LASIS|| 

 RHJCloc = [−0.19 ∗ wpelvis − 0.36 ∗ wpelvis − 0.30 ∗ wpelvis] 

 LHJCloc = [−0.19 ∗ wpelvis 0.36 ∗ wpelvis − 0.30 ∗ wpelvis] 

 xRHJC = −0.31 ∗ dpelvis xLHJC = 0.31 ∗ dpelvis 

Navelloc = gRsegT ∗ (Navel − MASIS) 

MPSISloc = gRsegT ∗ (MPSIS − MASIS) 

MHJCloc = RHJCloc + LHJCloc)/2 

 LS51loc = [−0.498888 ∗ dpelvis 0 0.111790 ∗ wpelvis][10] 

 LS51loc = [−0.543004 ∗ dpelvis 0 0.102756 ∗ wpelvis][10] 

RHJC = MASIS + gRseg ∗ RHJCloc 

LHJC = MASIS + gRseg ∗ LHJCloc 

LJC = MASIS + gRseg ∗ L5S1loc 

Young Participants:14,26 

 COMmale = [xMPSIS ∗ 0.63 0 zMHJC + (znavel − zMHJC) ∗ 0.3885] (10) 

 RPmale = [3.60 10.90 8.92 0.76] RPfemale = [3.43 9.37 8.07 0.74] 
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Elderly Participants:23 

 COMmale = LJC + ((RHJC + LHJC)/2 − LJC) ∗ 0.604 (11) 

COMfemale = LJC + ((RHJC + LHJC)/2 − LJC) ∗ 0.484 m = 

Kp ∗ bodymass + 14.61 ∗ C + 4.2987 ∗ (Cwaist/C) − 

11.7585 

Where Kp = 0.0636 for male, Kp = 0.0710 for female 

Thighs 

No adjustments were made to the models proposed by Leva14 and Pavol23. 

Markers Calculation ACS 

1. Lateral Femur Epicondile (LFE) 

2. Medial Femur Epicondile (MFE) 

3. ASIS (Not used in ACS calculation) 

4-7. Four additional markers (T1-4) 

ytemp = MFE − LFE for right side ytemp = LFE − 

MFE for left side 

z = HJC - KJC 

x = ytemp × z y = 

z ×x 

Calculated joint centres Segment length 

1. Knee Joint Centre (KJC) 

KJC = (MFE+LFE)/2 

2. Hip Joint Centre (HJC) 

Hip from pelvis segment, see pelvis 

L = ||HJC − KJC|| ∗ 520.2/422.2 for male[4] 

L = ||HJC − KJC|| ∗ 496.2/368.5 for female 

Young participants:[5] 

COMthighmale = HJC + (KJC − HJC) ∗ 0.4095 COMthighfemale = HJC + (KJC − HJC) ∗ 0.3612 (12) 

 RPthighmale = [6.64 7.18 7.18 1.33] RPthighfemale = [6.48 7.49 7.30 1.24] 

Elderly participants:[7] 

 COMthighmale = HJC + (KJC − HJC) ∗ 0.417 COMthighfemale = KJC + (AJC − KJC) ∗ 0.390 (13) 

m = 0.1032 ∗ bodymass + 12.76 ∗ L ∗ C2 − 1.023[12] 
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Abdomen 

Note that for for the calculation of the anatomical coordinate system we assume the subject to be 

standing upright. 

Markers Calculation ACS 

1. Right Anterior Iliac Spine 

(RASIS) 

2. Left Anterior Iliac Spine (LASIS) 

3. 8th thoracic vertebrae (T8) 

4. Sternum xiphoid process (PX) 

MASIS = (RASIS+LASIS)/2 

5. Additional marker (RPSIS) 

6. Additional marker (LPSIS) 

xtemp = MASIS − T8 z = 

[0 0 1] 

y = xtemp × z x 

= y ×z 

Calculated joint centres Segment length[5] 

No joint centres calculated 

L = |znavel − zPX| ∗ 1.035 

*Navel approximated from photos, see 

pelvis 

Young participants:[5][8] 

 xyCOM = xyT8 + (xyPX + xynavel)/2 − xyT8)) ∗ 0.48[8] (14) 

zCOM = znavel + (zPX − znavel) ∗ Ka[5] 

Where Ka = 0.5498 for male, Ka = 0.5488 for female 

 RPabdomenmale = [8.49 20.65 12.60 1.43] RPabdomenfemale = [8.55 18.73 12.54 1.40] 

Elderly participants:[7][13] 

V s(C0,D0,C1,D,h) = V s(Cpelvis,D0,Cabdomen,D1,L) 

D0 = ||xyMASIS − xyT8|| D1 

= ||xyT8 − xyPX|| w0 = 

Cpelvis,w1 = C m = (920 + 

1010)/2 ∗ V s 

For the COM location the same method was used as for young participants. 

Upper arms 

No adjustments were made to the models proposed by Leva[5] and Pavol[7]. 

(15) 

Markers Calculation ACS 

1. Top lateral scapula marker (S1) 

2. Lateral Humeral Epicondyle (LHE) 

3. Medial Humeral Epicondyle (MHE) 

4-7. Additional cluster markers (HU1-

4) 

ytemp = MHE − LHE for right side ytemp = 

LHE − MHE for left side 

z = SJC-EJC 

x = ytemp × z y 

= z ×x 
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Calculated joint centres Segment length[5] 

1. Shoulder Joint Centre (SJC) 

SJC = S1 + (EJC-S1)*0.108[5] 

2. Elbow Joint Centre (EJC) 

EJC = (LHE + MHE) / 2 

L = ||SJC − EJC|| ∗ 244.8/281.7 for male 

L = ||SJC − EJC|| ∗ 235.9/275.1 for female 

 

Young participants:[5] 

  

COMmale = SJC + (EJC − SJC) ∗ 0.5772 COMfemale = SJC + (EJC − SJC) ∗ 0.5754 (16) 

RPupperarmmale = [9.67 10.81 9.71 2.06] 

Elderly participants:[7] 

RPupperarmfemale = [9.49 10.50 9.18 2.34]  

COMmale = SJC + (EJC − SJC) ∗ 0.468 COMfemale = SJC + (EJC − SJC) ∗ 0.479 (17) 

m = 0.0288 ∗ bodymass 

Thorax 

The T12L1 joint is only calculated to structure the 3D plot. The segment length is determined by the 

location of the seventh cervical vertebrae (C7) and the xiphoid (PX). 

Markers Calculation ACS 

1. Sternum xiphoid process (PX) 

2. 8th thoracic vertebra (T8) 

3. Sternum jugular notch (IJ) 

4. 7th cervical vertebra (C7) 

5. Right top scapula (RS1) for Pavol 

method 

6. Left top scapula (LS1) for Pavol method 

7. Right sternoclavicular joint (RSC) 

8. Left sternoclavicular joint (LSC) 

9. Sternum manubrium (MA) 

xtemp = (PX + IJ)/2 − (C7 + T8)/2 z = 

[0 0 1] y = z ×xtemp x = y ×z 

Acromion = (RS1+LS1)/2 

Shoulder = (RSJC+LSJC)/2 

Calculated joint centres Segment length 

1. T12L1*to structure 3D plot 

T12L1 = C7 + gRseg*[0 0 -0.3] 

2. RSJC from upper arm 

3. LSJC from upper arm 

L = abs(PX(3)-C7(3)) 

Young participants: 

 xyCOM = xyT8 + ((xyPX + xyIJ)/2 − xyT8) ∗ 0.45[8] (18) 

zCOM = zPX + (zC7 − zPX) ∗ Ktwhere Kt = 0.4934 for male, Kt = 0.4950 for female[5] 

 RPthoraxmale = [5.72 21.83 9.35 1.35] RPthoraxfemale = [5.33 21.71 9.83 1.33] 

Elderly participants with the three components as described in Pavol:[7][13] 

 mneck = 1110 ∗ (zC7 − zAcromion) ∗ (Cneck2 /(4 ∗ π) (19) 

mshoulder = 1040 ∗ π ∗ wshoulder ∗ Dshoulder ∗ (zAcromion − zShoulder)/4 

where wshoulder = ||RS1 − LS1|| and Dshoulder = ||xyIJ − xyC7|| 
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mlowthorax = 920 ∗ V s(Cabdomen,D0,Cshoulder,D1,Llowthorax) where 

D0 = ||xyPX − xyT8|| and D1 = ||xyIJ − xyC7|| 

Cshoulder = ||RS1 − LS1|| ∗ πactual width used in Vs calculation 

Llowthorax = zShoulder − zPX m = 

mneck + mshoulder + mlowthorax 

for the COM location same method as young participants was used 

Lower arms and hands 

The lower arm and hand together form one segment as the position of the hands is assumed to not 

have much influence on the estimation of the total body COM location. 

Markers Calculation ACS 

1. Lateral Humeral Epicondyle (LHE) 

2. Medial Humeral Epicondyle (MHE) 

3. Radial Styloid (RS) 

4. Ulnar Styloid (US) 

5-8. Additional cluster markers (U1-4) 

ytemp = US − RS for right side ytemp = 

US − RS for left side 

x = ytemp × z y 

= z ×x 

Calculated joint centres Segment length[5] 

1. Elbow Joint Centre (EJC) EJC = 
(LHE+MHE)/2 

2. Wrist Joint Centre (WJC) 

WJC = (US+RS)/2 

3. 3th finger tip (FT3) 

FT3 = WJC+((WJC-EJC)/Larmstandard) 

*dactilonstandard 

Larm = ||EJC − WJC|| ∗ 251.3/268.9 for male 

Larm = ||EJC − WJC|| ∗ 247.1/264.3 for female 

Lhand = ||FT3 − WJC|| ∗ 189.9/187.9 for male 

Lhand = ||FT3 − WJC|| ∗ 172.0/170.1 for female 

 

Young participants:[5] 

 COMarmmale = EJC + (WJC − EJC) ∗ 0.4574 COMarmfemale = EJC + (WJC − EJC) ∗ 0.4559 (20) 

 RPlowerarmmale = [6.26 7.55 7.03 1.51] RPlowerarmfemale = [6.43 7.81 7.95 1.14] 

COMstandard = dactilonstandard ∗ 0.3624 

COMhand = WJC + ((WJC − EJC)/Larmstandard) ∗ COMstandard 

 RPhandmale = [5.54 6.65 4.86 2.29] RPhandfemale = [5.56 5.85 4.32 1.58] 

where dactilonstandard = 187.9 for male and dactilonstandard = 170.1 for female, Larmstandard = 268.9 for 

male and Larmstandard = 264.3 for female Elderly participants:[7] 

 marm = 0.0169 ∗ bodymass mhand = 0.0063 ∗ bodymass for male (21) 

 marm = 0.0135 ∗ bodymass mhand = 0.0052 ∗ bodymass for female 

COMarmmale = EJC + (WJC − EJC) ∗ 0.430 COMarmfemale = EJC + (WJC − EJC) ∗ 0.431 COMhandmale = 

WJC + Lhand ∗ Kh where Kh = 0.362 for male and Kh = 0.343 for female 

For all participant groups combine both the lower arm and hand segment to one segment: 
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m = marm + mhand 

COM = (marm ∗ COMarm + mhand ∗ COMhand)/m 

Head 

The head’s location is approximated extrapolating the spine indicated by the markers PX and T8 

assuming a standard ratio between the height of the thorax and the length of the head. The 

assumptions holds if the head is in an upright position while in the calibration posture. 

Markers Calculation ACS 

1. Sternum xiphoid process (PX) 

2. 8th thoracic vertebra (T8) 

3. Sternum jugulae notch (IJ) 

4. 7th cervical vertebra (C7) 

5. Right sternoclavicular joint 

(RSC) 

6. Left sternoclavicular joint (LSC) 

7. Sternum manubrium (MA) 

xtemp = (PX + IJ)/2 − (C7 + T8)/2 z = 

[0 0 1] y = z ×xtemp x = y ×z 

Calculated joint centres Segment length[5] 

No joint centres calculated 

L = |zC7 − zPX| ∗ 249.9/242.1 for male 

L = |zC7 − zPX| ∗ 243.7/228.0 for female 

*standard lengths from Zatsiorsky/Leva 

  

 

 (22) 

 

where Kh = 0.4998 for male and Kh = 0.5159 for female 

Younger participants mass with Zatsiorksy/Leva parameters:[5] 

 RPheadmale = [6.37 8.68 9.38 1.25] RPheadfemale = [5.39 7.36 8.68 1.33] 

Elderly participants mass:[7] 

m = 14.6 ∗ (height − zC7) + 8.88 ∗ C + 1.78 ∗ Cneck + 19.9 ∗ C/100/π − 7.385 

Accuracy of the anthropomorphic model 

The accuracy of the anthropomorphic model is determined with larger set of participants than used for 

the SB computation: 

 

 N MEAN AGE (SD) [Y] MEAN BMI (SD) 

YM 12 27.3 (4.3) 23.4 (2.7) 

YF 14 27.1 (4.9) 22.6 (3.0) 

EM 10 76.3 (7.0) 26.1 (3.7) 

EF 12 75.0 (5.3) 25.2 (3.7) 
Table 5 BMI data participant group 

We assess the model by the performance factor:  
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𝑀𝑜𝑑𝑒𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
∑ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑚𝑎𝑠𝑠
 [%] 

 

As the participants are clothed, and wear shoes, the model performs best if it slightly underestimates 

the total measured mass. In table 7 we see that for all categories except for the young women the 

estimated mass is larger than the measured mass.  
 

total Young male (YM) Young female (YF) Elderly male (EM) Elderly female (EF) 

n 48 12 14 10 12 

mean (SD) [%] 
 

104.5 (4.6) 97.3 (4.7) 107.3 (7.8) 103.5 (4.7) 

Table 6 Model performance mean and standard deviation per age-gender-group 

The circumferences of the body segments have a large influence on the BSP estimation. BMI can 

account for approximately 50% of the BSPs12 and so has a large influence on the total mass. Our set of 

participants is largely varied. The model performance per participant, dependened on BMI, is 

presented in figure 12. Previously reported model performance is approximated to be between 95% 

and 105% 13, indicated with a dashed line. There is no clear BMI influence indicating the BMI 

dependency on the circumference approximation is performed adequately. 

 

Figure 8 The participant’s individual body model performance values per age-gender-group 

Segment mass approximation result are varied. However, this is expected to be so as our participants 

are very different as well. To have an indication of the estimated mass per segment in kilo’s we refer 

to table 8.   
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segment est mean [kg]  est SD [kg] 

foot 1.00 0.32 

calf 2.92 0.91 

thigh 8.71 3.81 

pelvis 8.91 3.15 

abdomen 8.63 4.16 

thorax 14.13 4.73 

upper am 1.86 0.57 

lower arm 1.36 0.49 

head 4.73 1.18 

Table 8 Estimated masses of the body segments. 

In figure 13 we have differentiated per category and compared the estimated masses to mean segment 

masses of a known data of a comparable subject group14,15. 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠

𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (𝑔𝑟𝑜𝑢𝑝)
 [%] 

A large standard deviation within a subject group is accounted for by the variability of the subjects 

within the group. Large differences in mean values between the groups is accounted for by the model 

choice. For young participants the thigh and thorax are slightly overestimated whilst the abdomen is 

underestimated. Our choice of boundary between the two segments was lower than literature’s ‘usual 

application’ thus this can be explained. The abdomen and thorax of the elderly group are larger than 

literature’s referential values, this is due to our simplification of the Pavol model where we assume the 

circumference of the abdomen and thorax to be perfectly round rather than ‘oval/part rectangular’, this 

might also account for the general overestimation. These effect are expected to have a maximum of 5 

cm effect on the height of the total body centre-of-mass. 

 

Figure 13 Segment performance (estimated mass / literature average mass) per participant group 
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C – Trial normalisation: detailed process 
The average nominal trajectory is computed first. To do so the observed state trajectories (traj1, traj2, 

traj3) are aligned to the peak horizontal COM velocities. The average nominal trajectory (trajavnom) is 

the average of the aligned state trajectories. (figure 14b) The trajavnom is cut to start at (τ = 0) when the 

horizontal COM acceleration first exceeds 15% of its maximum. The trajavnom is cut to end (τ = Tnom 

when it first exceeds 99% of the maximum vertical COM position. The trajavnom is normalised by 

scaling the velocities with Tnom and to divide it’s time vector τ avnom by Tnom resulting in the normalised 

time vector tavnom. 

 

Figure 149 Trial normalisation: Average nominal trajectory computation 

The iterative process to cut and align the observed state trajectories iterates over T = [Tmin,Tmax] in 100 

steps where Tmin = 0.75s and Tmax = 1.5*Tnom. Each iteration trajavnom is scaled to run from 0 to T. Then 

we align and cut the measured state trajectory to the peak horizontal acceleration of trajavnomscaledtoT and 

the interval [0,T] to form xsegmentedtoT. We compute the root squared mean error (RSME) of 

trajavnomscaledto} and   xsegmentedtoT. We use xsegmentedtoT where T has the smallest RSME from all iterations 

for normalisation.   
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Figure 15 Trial normalisation: Iterative segmentation procedure 

Each aligned and segmented state trajectory x(τ) is normalised. The time vector τ is divided over the 

trial's length T such that the unitless time interval t = [0,1][-], or 0 to 100% STS,  is obtained. The state 

trajectory x(t) is normalised by scaling the velocity components with trial length T.  

𝜏 = [0, 𝑇] [𝑠] → 𝑡 =
𝜏

𝑇
= [0,1] [−] 

�̃�(𝜏) = [𝑟�̃�(𝜏)   𝑣�̃�(𝜏)   𝑟�̃�(𝜏)   𝑣�̃�(𝜏)]
′
 

𝑥(𝑡) = [𝑟�̃�(𝑇 ∗ 𝑡)   𝑇 ∗ 𝑣�̃�(𝑇 ∗ 𝑡)   𝑟�̃�(𝑇 ∗ 𝑡)   𝑇 ∗ 𝑣�̃�(𝑇 ∗ 𝑡)]′ 

𝑥(𝑡) = [𝑟𝑥(𝑡)  𝑣𝑥(𝑡)  𝑟𝑦(𝑡)  𝑣𝑦(𝑡)]
′
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D - Parameter regression analysis 
Performance parameter and age regression analysis results. The area of the target set and average time 

[s] of the three observations used as input for the stability basin have a significant positive relation to 

the stability basin size. A large target set area indicates less consistent end points and, we assume, 

strategy. A high mean value for tend indicates slower sit-to-stand. The acceleration range is the mean 

difference between the maximum and minimum acceleration over the three trajectories. A smaller 

acceleration range indicates a more smooth sit-to-stand movement. The acceleration range has a 

stronger correlation to the stability basin of sit-to-stand without thigh push-off than to the stability 

basin of sit-to-stand with thigh push-off. Figure 17 presents the distribution of the minimum and 

maximum observed accelerations per arm-strategy. 

 

Figure 16 Regression analysis visualisation 

 

Figure 17 Observed acceleration range distribution per arm-strategy: No-arm (N) or thigh push-off (TH).  



BM51032 Thesis Janna Worp   39 

 

E – Controller model input check 
In figure 18 we visualised the modelled input for an observed trajectory for three different controllers: 

LQR (optimised feedback), FFFB (using feedforward and feedback optimalisation) and BFFFB (input 

bound, feedforward and feedback optimalisation with a minimum and maximum computed input).17 

We compared the computed controller input with ‘observed input’. The observed input, or direct input, 

is obtained directly from the observed trajectory from inverse dynamics using the equation of motion 

(eq1).   

 

Figure 18 Controller model check: viualosation of controller ouptut u(t,x(t)) and observed input udir obtained from direct 

inverted dynamics.  


