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ABSTRACT: 

The demand for 3D maps of cities and road networks is steadily growing and mobile laser scanning (MLS) systems are often the 

preferred geo-data acquisition method for capturing such scenes. Because MLS systems are mounted on cars or vans they can 

acquire billions of points of road scenes within a few hours of survey. Manual processing of point clouds is labour intensive and thus 

time consuming and expensive.  Hence, the need for rapid and automated methods for 3D mapping of dense point clouds is growing 

exponentially. The last five years the research on automated 3D mapping of MLS data has tremendously intensified. In this paper, we 

present our work on automated classification of MLS point clouds. In the present stage of the research we exploited three features – 

two height components and one reflectance value, and achieved an overall accuracy of 73%, which is really encouraging for further 

refining our approach. 

1. INTRODUCTION

Point clouds acquired by MLS are attribute poor. In addition to 

the 3D coordinates in a local, national or regional reference 

system, usually only the reflectance value of each point is 

available in a point cloud data set. As a result, many 

classification approaches rely on enriching the attribute set with 

RGB values from imagery, which may not always be available, 

and on examining the local geometric structure of a set of 

neighbouring points. The latter approach is based on the 

observation that many objects differ in shape. There are two 

main basic descriptors available to express the shape of a 

surface: normal vectors and eigenvalues. Both are assigned to 

individual points by examining the configuration of the point 

and its adjacent points. The normal vectors are computed per 

point by reconstructing the surface sampled by the point itself 

and the points in its vicinity. If the normal vectors of 

neighbouring points point in the same direction, the local 

neighbourhood forms likely a plane. If they diverge in a 

systematic manner they likely form a sphere or a cylinder. When 

no systematics in directions is present, the points may be 

reflected on a fuzzy surface, such as foliage. Also, eigenvalues 

of the 3x3 covariance matrix of the three coordinates of 

neighbouring points indicate shape. If one eigenvalue is large 

and the other two close to zero, the neighbourhood forms a line. 

A plane is indicated by two eigenvalues which have 

approximately the same value and one eigenvalue close to zero. 

Spherical and fuzzy surfaces will have three large eigenvalues. 

It is common practice to derive measures from the eigenvalues 

which indicate the type of local structure. Examples of such 

measures are: linearity, planarity, sphericity, anisotropy, 

eigenentropy and local surface variation. Methods based on the 

exploitation of the local geometric structure have been studied 

by multiple researchers. Recent overviews are provided by 

Guan et al. (2016), Grilli et al. (2017) and Lemmens (2017). 

Indeed, because point clouds have only few attributes it is 

inevitable to explore a local neighbourhood in the class 

assignment process of individual points. We propose a method 

which differs from the ones discussed above. In the case of 3D 

mapping of outdoor scenes, the heights above a reference 

surface, e.g. ground surface, are the most important asset of a 

point cloud and this information should by fully exploited 

(Lemmens, 2017). In a previous tentative research which aimed 

at exploring the height component we used the height above 

ground level (Zheng et al., 2017). It appeared that the height 

value of a point does not discriminate enough among the 

different classes. Points reflected on façades, cars, motorcycles, 

pedestrians and traffic signs all may have the same height. In 

this paper, we propose an approach of further exploring the 

height component by considering that off-ground points of 

urban scenes collected by a mobile laser scanner (MLS) are 

usually part of objects which extend in the vertical direction. 

One of the characteristics of these objects is that they have 

different heights. For example, a building facade varies in range 

which may start at eight meter, or higher, depending on the 

urban area, while the height of a traffic sign mounted on a pole 

from ground level upwards does usually not exceed 3.0 metres. 

2. APPROACH

Our approach is based on assigning height features to each and 

every point, in addition to exploiting the reflectance value. That 

means our approach relies on a point-based classification. The 

two height features we consider within the present research, 

which is aimed at finding support for our approach, are height 

difference and number of points within a column spanned up by 

a cylinder. The cylinder is spanned up around each and every 

point of the point cloud. The axis of the cylinder is defined by 

the X, Y coordinates of the point under consideration and the 

vertical (Figure 1). The first height component used as feature is 

the height difference ∆h which is calculated as the difference of 

the highest point in the cylinder and the point with the lowest 

height: 
max min .h h h    

The presence of a high number of points within the cylinder 

indicates an object with a large vertical extension. Therefore, 

we take as second height component the number of points 

present in the cylinder. Of course, the height of a column and 

the number of points in that column are highly correlated. 

However, in MLS point clouds (and also point clouds acquired 
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by terrestrial laser scanners) the point density decreases with 

increasing distance from the sensor. This makes it feasible to 

explore both point density and height difference simultaneously 

as features in the classification. So, at the present status of the 

research we use three features in total: reflectance value (R) 

given as a digital number (DN) in a range up to 255; number of 

points (NP) and height difference (∆h). As we do not aim at 

finding the best classifier but to test the feasibility of exploring 

height components as features, we use a popular classification 

scheme which is available as open source software: LIBSVM 

(Chang and Lin, 2011). The Support Vector Machine (SVM) 

classifier belongs, together with Random Forest classification 

(Chehata et al., 2009) and Conventional Neural Network 

(Fukushima, K. et al., 1982), to the popular classification 

methods for multiple different application areas, of which the 

classification of MLS point clouds is just one. Recently the 

SVM classifier has also been used by Yang et al. (2017) for 

automatic classification of road facilities from MLS point 

clouds. 

Figure 1. Vertical neighbourhood definition using a cylinder 

with a pre-specified radius; the height is determined by the 

lowest and highest point. 

3. DATA AND EXPERIMENT

For examining the feasibility of our approach, we conducted 

experiments using a benchmark dataset generated by the 

Robotics laboratory (CAOR) at MINES ParisTech, France 

(Serna et al., 2014). This MLS point cloud, acquired during 

winter time on February 8, 2013, contains 20 million points and 

captures a 160m-traject along rue Madame, a street in the 6th 

Parisian district (France) between rue Madame and rue 

Vaugirard (Figure 2). Per second 700,000 points were acquired 

with a precision of 2cm. The observation part of the benchmark 

dataset consists of the planar coordinates (X, Y) of each point, 

the height above a reference surface and a DN representing the 

reflectance value. The developers of the dataset further assigned 

to each of the 20 million points label and class. In total, 26 

classes have been distinguished assigned to the points reflected 

on 642 individual objects. 

A common approach when classifying MLS point clouds is 

separating ground points from off-ground points. Also, we did 

so by leaving the class ground point out of consideration in our 

experimentation. In sequel research stage we will apply a 

ground filtering approach. An important tuning parameter of 

our approach is the radius of the base of the cylinder. After 

some testing, we selected a fixed radius of 25cm, which is 

reasonable given the point density. To evaluate our approach 

not only by means of accuracy measures but also by comparison 

with other approaches we followed Weinmann et al. (2014) in 

selecting the classes: facades, cars, pedestrians, motorcycles and 

traffic signs, with exception of the class ground. A further 

rationale to choose five classes is based on the fact that the 

chosen classes are dominantly present within the scene. The 

points belonging to other classes only count for 0.05% of the 

complete point cloud. We followed also Weinmann et al. (2014) 

in the definition of the training set by selecting randomly 1,000 

points per class from the total area. To check the distinctiveness 

of the three features chosen we calculated the mean values and 

standard deviations of these features in the training set (Table 1). 

As an example, Figure 3 provides a visual impression of the 

dispersion of the reflection values of cars. Weinmann et al. 

(2014) used 26 features mainly derived from exploiting the 

local geometric structure. This relatively large number of 

features allowed them to apply Random Forrest classification. 

In contrast, we used the SVM classifier as said earlier. 

Figure 2. Orthophoto of the benchmark site: Rue Madame, Paris, 

France (Courtesy: IGN-Google Maps). 

R [DN] NP ∆h [m] 

Façade μ 153 912 11.7 

σ 44 639 4.5 

Cars μ 206 2869 1.6 

σ 51 1940 2.3 

Pedestrians μ 148 1110 2.7 

σ 51 871 3.3 

Motorcycles μ 215 1399 1.2 

σ 46 828 0.43 

Traffic 

signs 

μ 169 2027 2.9 

σ 81 812 0.46 

Table 1. Mean (µ) and standard deviation (σ) of the features 

calculated from the 1,000 training samples per class; R: 

reflectance value; NP: number of points within cylinder and ∆h 

height difference. 
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Figure 3. Visualization of the dispersion of the reflectance 

values of cars (ranging from 55 to 255); the colours range from 

dark green (lowest) to yellow, red and brown (highest). 

4. RESULTS AND DISCUSSION 

To evaluate the classification results a confusion matrix was 

computed by confronting the class assignments to the individual 

points with the labels of the benchmark dataset. The confusion 

matrix itself is already a very valuable tool for examining the 

accuracy (Table 2). Further, compound measures can be derived 

including the mapping accuracy (MA) per class and overall 

accuracy (OA). These are also included in Table 2 

 

 

 Facade Cars Pedestrians Motorcycles Traffic 

signs 

Sum MA 

Facade 7,744,529 209,660 807,226 672,369 543,651 9,977,435 0.76 

Cars 135,033 928,081 209,587 473,755 87,927 1,834,383 0.50 

Pedestrians 469 124 3,988 2,129 2,338 9,048 0.44 

Motorcycles 218 19,618 25,271 41,690 11,070 97,867 0.43 

Traffic signs 2,689 655 2,482 843 7,811 14,480 0.56 

Sum 7,882,938 1,158,138 1,048,554 1,190,786 652,797 11,933,213  

      OA 0.73 

Table 2. Confusion matrix (i.e. numbers of points) of the five classes showing also the mapping accuracy (MA) and the overall 

accuracy (OA) 

 

The experiments show that an overall accuracy of 73% could be 

achieved. Using 26 features Weinmann et al. (2014) achieved 

an overall accuracy of 90.5%, which is of course significantly 

higher than our result. Figures 4, 5 and 6 compare the results of 

both approaches in greater details. The definition of precision, 

recall and F1-score are given in the Appendix. Façades and cars 

show high precision. These are also the classes which are very 

often present in the data set and show significant difference in 

average reflectance value: 153 versus 206 (see Table 1). 

543,651 points of class Facade are assigned to class Traffic 

signs, which far exceeds the correctly assigned number 7,811 

(see Table 2) and results in a low precision. The same is true for 

the classes pedestrians and traffic signs. To the low precision of 

the pedestrians contributes the fact that 209,587 points of class 

Cars are incorrectly assigned to class Pedestrians, only 3,988 

points are correctly assigned. The values of the recall measures 

show a similar trend. As an example, Figure 7 shows the 

classification of points reflected on cars. 

 

Nevertheless, the results demonstrate that our approach has 

potential, although it requires a number of significant 

refinements to obtain accuracies which are high enough for 

practical application and are at the same level as the results 

mentioned above. We discuss some of the possible refinements 

below. 

 

As is the case for many classification pipelines of MLS point 

clouds also our approach suffers from clutter. The results are 

also affected in cases where two or more objects are located on 

top of each other; for example, a pedestrian walking underneath 

the crown of a tree. If there is a vertical gap in between the 

objects, they may be separated based on the height of the gap, 

which requires the setting of a threshold and hence introduces 

an additional tuning parameter. If there is no vertical gap 

present, different types of objects may be distinguished on basis 

of their shape. For example, a tree crown may show 

significantly different distributions of normal vectors than the 

traffic sign underneath the tree.   

 

Different objects belonging to the same class may have different 

sizes. The setting of different radius sizes of the base of the 

cylinder may support to solve the issues introduced by different 

object sizes. That means, the setting of different radius sizes 

may be a means for introducing a multiscale approach and to 

improve the classification result in this way. 

 

Our approach enables to include statistical measures, 

particularly standard deviations and covariance matrices, which 

allows the application of the Maximum Likelihood Classifier 

(MLC), (see Table 1) a conventional classifier described in 

many textbooks, e.g. Duda and Hart (1973), and in the remote 

sensing literature, e.g. Foody et al. (1992). MLC has been 

thoroughly applied for the classification of multispectral images 

and also for statistical pattern recognition applications. We 

think it is worthwhile to conduct, in addition to the popular 

SVM and Random Forest classifiers and the meanwhile very 

popular Convolutional Neural Network (CNN) classifier, 

experiments with the MLS classifier.  

 

Referring to Table 1, two groups can be distinguished based on 

the reflectance values. Group 1: facades, pedestrians and traffic 

signs; and group 2: cars and motorcycles. Such a coarse 

distinction on basis of one feature alone allows for stratified 

classification. 

 
Figure 4. Precision values in the five classes 
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Figure 5. Recall values in the five classes 

Figure 6. F1-score values in the five classes 

Figure 7. Classification of points reflected on cars; cars: green, 

façades: blue, motorcycles: orange, traffic signs: purple, 

pedestrians: yellow 

5. CONCLUSION AND FUTURE WORK

The fully automated classification of MLS point clouds is still 

in its infancy. However, the diverse research efforts are rapidly 

growing. This work hopes to contribute to the development of 

research directions by recognizing that urban and also road 

scenes are complex outdoor scenes, which differ a lot from 

many other scenes which are subject of research in computer 

vision. In particular, the classification of MLS point clouds is 

directed towards 3D mapping, that is, the outlining of objects 

which are of interest for a particular task at hand and the 

assignment of class labels to these objects (Lemmens, 2017). 

Our work aims to contribute particularly to automatic class 

assignment. Although we only used three features in the 

classification we were able to achieve relatively high 

classification accuracy. This means that our results are 

promising and we will continue our research in the direction 

chosen.  In particular we want to focus on including features 

such as range, i.e. distance between sensor and object and 

histograms of the height distribution of points within the 

cylinder. Furthermore, scene knowledge can be exploited for 

checking and improving classification results. 

Topics for further experimentation are the setting of the radius 

size of the cylinder, feasibility of using different radius sizes for 

a multiscale approach, impact of the maximum likelihood 

classifier on the classification result, selection of the number of 

training samples and their distribution over the scene, 

robustness over space and time of training sample selection for 

use on multiple scenes and use of other benchmark datasets 

such as the Oakland MLS 3D Point Cloud Dataset of an urban 

area (Munoz et al., 2009).  The efficient use of the sheer amount 

of points requires a DBMS which may be equipped with 

classification functionality to avoid data transfer, and so reduce 

computation time (Cura, et al., 2016). For the latter purpose 

also spatial indexing and clustering of the points have to be 

considered. We want also to contribute to the concept of smart 

point cloud (Poux, et al., 2016). 
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APPENDIX 

Measure Description 

,1,1iF true positives, point samples in class i are 

assigned to the class i.  

,1,2iF false positives, point samples in class i are 

assigned to other classes. 

,2,1iF false negatives, point samples in other classes are 

assigned to the class i. 

,2,2iF true negatives, point samples in other classes are 

assigned to other classes. 

Table 3. Four common measures. 

From the four measures in Table 3 three evaluation measures 

can be derived. 

Precision:  a measure of exactness or quality.  

,1,1

,1,1 ,2,1

i

i

i i

F
P

F F




 (1) 

Recall: a measure of completeness or quantity. 

,1,1

,1,1 ,1,2

i

i

i i

F
R

F F




       (2)

F1-score: combines precision and recall with equal weights. 

2
1 i i

i

i i

PR
F

P R




(3) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-321-2017 | © Authors 2017. CC BY 4.0 License.

 
325

https://agile-online.org/images/conference_2017/



