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On the integrity of deformation monitoring
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Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands; cSchool of
Science, College of Science, Engineering & Health, RMIT University, Melbourne, Victoria, Australia

ABSTRACT
In safety-critical applications, deformation monitoring systems are
required to issue timely alerts when a deformation beyond a crit-
ical threshold occurs. Only a very small probability of failing to
issue an alert when in fact one should have been given, is accept-
able. This probability is referred to as integrity risk. In this contri-
bution, we show how to evaluate this risk, thereby taking the
intimate link between testing and estimation into account. Using
a simple example, the basic integrity components of deformation
monitoring are introduced and illustrated. The integrity risk is
then formulated for the generalized case where multiple-hypoth-
esis testing is involved. As monitoring systems, in addition to issu-
ing timely alerts, are also required to provide deformation
estimates, it is also crucial to assess their confidence levels. In
doing so, the statistical testing, that preceded the estimation of
the deformation parameters, needs to be accounted for. As this is
not the customary procedure followed in practice, we show how
the combined estimation and testing can be probabilistically
accounted for, and thereby demonstrate that the customary prac-
tice can give a too optimistic outcome of the stated confidence
levels. The presented methodology is worked out and numerically
illustrated by means of two deformation examples.
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1. Introduction

There is a rich literature on the design and analysis of deformation monitoring sys-
tems for both man-made structures (such as a dam, a dike, or a bridge) and natural
Earth structures (such as a volcano, a fault, or tectonic plates), see e.g. (Pelzer, 1971;
van Mierlo, 1978; Niemeier, 1985; Caspary and Borutta, 1987; Chen et al., 1990;
Alfaro et al., 2005; Devoti et al., 2011; Heunecke et al., 2013; Sabuncu and Ozener,
2014; Yigit et al., 2016; Scaioni et al., 2018; Yavaşo�glu et al., 2018). Although these
studies developed important and sophisticated statistical procedures for the individual
detection and estimation of deformations, no description has yet been given on how
to risk-evaluate the overall performance of the system’s alert-function. As monitoring
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systems are safety-critical, only a very small probability is acceptable of the system
telling us that no change beyond a critical threshold has taken place (issuing no
alert), while in reality it has. In this contribution we show how this probability,
referred to as integrity risk, can be computed thereby taking all the multivariate
aspects of the deformation monitoring into account. As we show, this requires that
the statistical considerations of the deformation monitoring’s estimation and testing
cannot be treated separately anymore, but that their interactions need to be integrally
accounted for in the probabilistic integrity evaluation.

This contribution is organized as follows. In Section 2 we first identify the various
elements that contribute to the (lack of) integrity of a deformation monitoring sys-
tem. We hereby make the case that for a proper integrity evaluation one needs to
combine the probabilistic consequences of both estimation and testing in the statis-
tical considerations. We then develop in Section 3 the integrity risk for the multiple
hypothesis testing problem, which in Section 4 is further generalized to include the
aspects of deformation estimation as well. Then, in Section 5, we show how, as a con-
sequence of the interaction between estimation and testing, the confidence levels or
confidence regions of the estimated deformation parameters need to be computed.
This and the integrity consequences of the interplay between estimation and testing
are then illustrated by means of numerical examples in Section 6. The contribution is
finalized with our conclusions in Section 7.

2. Integrity elements of deformation monitoring

To illustrate the basic integrity elements of deformation monitoring, we start with the
simplest case possible. We assume a deforming body of which the scalar deformation
or displacement is directly measured. The actual displacement or deformation is
denoted as d, while the measured displacement is denoted as d: We assume the
measurement to be unbiased, thus relating d to d as EðdÞ ¼ d, with Eð�Þ the mathem-
atical expectation operator. As a large deformation is considered unacceptable, an
alert should be issued when d becomes too large, say when jdj > e: The measurement
or observable d however is never exact and prone to random and other errors. As a
consequence, there is a chance that the monitoring system fails to issue an alert,
when in fact one should have been given. This is the integrity risk. It is the probabil-
ity that the observed displacement is within limits, dj j � e, while the actual displace-
ment is not, dj j > e

IR ¼ P dj j � e
�� dj j > e

� �
(1)

If we assume the observed displacement to be normally distributed, d � Nðd, r2dÞ,
then IR is easily computed as a function of d: This allows one to judge whether the
integrity risk is acceptable or not for the likely occurring values of d:

Although the above gives a clear picture of what the integrity risk entails, in reality
the required derivation and computation of the integrity risk of a deformation moni-
toring system is far more complicated. As an example consider the deformation mon-
itoring of a dam, whereby a network of reference and object points is used to
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monitor the dam’s stability (see Figure 1). In such and similar monitoring systems,
one can discriminate between several different data-processing steps (Chen et al.,
1990; Heunecke et al., 2013; Sabuncu and Ozener, 2014; Yigit et al., 2016; Scaioni
et al., 2018; Yavaşo�glu et al., 2018): At each epoch, there is an epoch-wise determin-
ation of the network’s geometry which implies a combined use of estimation and test-
ing. The data are first validated by statistical means, after which the ‘cleaned’ data are
used for the epoch-wise coordinate estimation of the network points. Then between-
epoch statistical testing is applied to detect and identify possible changes in the net-
work’s geometry. This may include multiple tests, such as testing for the stability of
reference and object points, as well as the testing for the identification of other
hypothesized deformation models. Eventually, depending on the outcome of testing,
alerts may be issued and deformation patterns may be estimated, and provided with
their corresponding confidence levels.

It is clear that the integrity risk of the above monitoring systems cannot be cap-
tured by (1). The measurement scenarios, for instance, are much more involved than
that assumed under (1). Often no direct measurements of the deformation are avail-
able, but only indirect measurements such as for instance the coordinate outputs of a
monitoring network. Also, prior to the testing for deformation, the measurements
undergo their own statistical testing for the purpose of quality control, e.g. checking
for outliers. And in case multiple deformation models are in play, additional further
statistical testing is done to identify the most likely deformation. The conclusion
reads therefore that the complexity of deformation monitoring cannot be described as
a simple univariate hypothesis testing problem, but instead involves multivariate chal-
lenges of both estimation and testing (Teunissen, 2018). In the following we will
show how the multivariate combination of estimation and testing affects the compos-
ition of the integrity risk. First we consider the integrity risk for the multiple hypoth-
esis testing problem, which we then generalize to include the aspects of deformation
estimation as well.

Figure 1. Deformation monitoring of a dam. The monitoring network consists of reference points
on pillars around the dam and object points on the dam.
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3. Multiple hypothesis testing

As deformation monitoring involves statistical testing of multiple hypotheses, the
whole chain of such complex decision making should be reflected in the computed
integrity risk. Let the deformation monitoring multiple hypothesis testing problem
therefore consist of kþ 1 hypotheses Hiði ¼ 0, :::, kÞ: The null-hypothesis H0 is con-
sidered to model the all-stable, zero-deformation case, while the other hypotheses
model departures from H0. Then under H0, and in the presence of redundancy, a
vector-function of the observables can be formed that has a fixed and known prob-
ability distribution. This vector-function is an ancillary statistic and it is known as
the misclosure vector d 2R

r (Teunissen, 2018). It is then by means of d, and its
known probability density function (PDF), that the selection of the most likely
hypothesis takes place. As such selection implies the partitioning of Rr in kþ 1 sub-
sets Pi � R

r ði ¼ 0, :::, kÞ, the testing procedure can be described as

Select Hi if and only if d 2 Pi (2)

In the simple example of the previous section, the observed displacement takes the
role of the misclosure for which we could use P0¼ ½�e, þ e� and P1¼ R/P0.

If we now assume that an alert should be issued whenever the ‘all-stable’ null-
hypothesis H0 is rejected, or equivalently, whenever one of the alternative hypotheses
is selected, we have

Alert : fHj 6¼ 0 selectedg (3)

A missed alert happens therefore if H0 is selected, i.e. d 2 P0, while Hj 6¼ 0 is true. The
probability of this happening is given as

IRjHj 6¼ 0 ¼ P d 2 P0jHj 6¼ 0
� �

(4)

This is therefore the integrity risk conditioned on Hj 6¼ 0. To obtain the unconditional
integrity risk, we need to consider (4) for all k alternative hypotheses. With P Hið Þ
being the probability of occurrence of Hi and

Pk
i¼0 P Hið Þ¼ 1, the overall integrity

risk is obtained as

IR ¼
Xk
i¼1

ðIRjHiÞ � PðHiÞ (5)

It thus requires the computation of the probability that d resides in P0 under each of
the alternative hypotheses.

4. Deformation estimation

The integrity risk (5) is based on the assumption that an alert needs to be issued the
very moment one of the alternatives Hj 6¼ 0 is selected. It does therefore not yet
account for the severity, or lack thereof, in the alternative hypothesis. It could happen
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namely that, even when a particular deformation as described by Hj 6¼ 0 is taking place,
the threat of the deformation is still too small to warrant an alert. To build such tol-
erance into the integrity monitoring, we need to estimate the deformation parameters
for each of the postulated deformation models.

We assume that each alternative hypothesis Hi, with i ¼ 1, :::, k, has its own set
of parameters di: To build-in the mentioned tolerance, we assume that even if Hi is
‘active’, still no threat emanates from the deformation if di is ‘not too large yet’ and
resides in a zero-centred ball of radius e, i.e. if di 2 Be with Be ¼ d j kdk � ef g
(note: for simplicity the radius is assumed here to be the same for all hypotheses; this
can however be made hypothesis-specific too). The integrity risk under Hj 6¼ 0becomes
then

IRjHj 6¼ 0 ¼ P no alertjHj
� �

i dj
� �

for j ¼ 1, :::, k (6)

where i dj
� �

is the indicator function of the region outside Be, defined as i dj
� � ¼ 0 for

dj 2 Be, and i dj
� � ¼ 1 elsewhere. Thus now the integrity risk under Hj 6¼ 0 is still zero

if dj 2 Be.
We need our data to operationalize the ‘no alert’ situation, i.e. to help verify

whether or not all di can be considered small enough. But since the deformation
parameters di are unknown, they need to be estimated from the observed data and
this needs to be done for each of the postulated hypothesis Hiði ¼ 1, :::, kÞ: If we
denote these estimators as d̂i ði ¼ 1, :::, kÞ, we can describe the ‘alert’ vs ‘no-alert’
situation as follows

Alert : Hj 6¼ 0 selected and d̂j 62 Be

n o

No Alert: fH0 selectedg or fHj 6¼ 0 selected and d̂j 2 Beg

An alert is thus now, in contrast to (3), not immediately issued when one of the
Hj 6¼ 0 is selected, but only when its estimated deformation parameter d̂j has become
too large as well. Note that although more than one of the hypotheses may have its
estimated parameter (vector) d̂j lying outside Be, the unambiguous selection (2)
ensures that only one of the hypotheses will be identified.

With the above ‘no-alert’ situation, the integrity risk IRjHj 6¼ 0 can be worked out
to give

IRjHj 6¼ 0 ¼ P d 2 P0jHj
� �þ Pðd̂j 2 Be, d 2 PjjHjÞ þ

Xk
i 6¼ 0, j

Pðd̂j 2 Be, d 2 PijHjÞ
2
4

3
5i dj
� �

(7)

This shows that the integrity risk is now built up from three different terms. The first
term, P d 2 P0jHj

� �
, is the missed-alert contribution to the integrity risk. It can be

compared with (4). The second term, Pðd̂j 2 Be, d 2 PjjHjÞ, concerns the contribution
from the underestimated, but correctly identified deformation, while the last term
concerns the sum of all possible wrongfully identified hypotheses ði 6¼ 0, i 6¼ jÞ:
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When computing the above integrity risk, it is important to realize that the prob-
ability of the joint events d̂j 2 Be, d 2 Pj ðj ¼ 1, :::, kÞ cannot be computed as the
product of the probabilities of the individual events. The random vectors d̂j and d are
namely not independent, since dj is estimated from d: With (7) substituted into (5)
one obtains the overall integrity risk. An overview of the different contributing factors
to the overall integrity risk is given in Table 1.

So far, it was assumed that all alternative hypotheses Hiði ¼ 1, :::, kÞ can pose dan-
gerous threats. For the case when only a subset of alternatives, say Hi for i ¼ 1, :::, q
with q � k, is considered dangerous, then the event of ‘no alert’ contains the follow-
ing events: ‘H0 is selected’, ‘Hi is selected and d̂i 2 Be ði ¼ 1, :::, qÞ’, and ‘Hi is selected
ði ¼ qþ 1, :::, kÞ’. For this scenario, the integrity risk for Hj 6¼ 0 is no longer given by
(7), but by

IRjHj 6¼ 0 ¼ P d 2 P0jHj
� �þ P d 2 [k

i¼qþ1PijHj

� �
þ
Xq
i¼1

P d̂i 2 Be, d 2 PijHj

� �" #
i dj
� �

(8)

In the special case when only one alternative, say Hj, is considered dangerous ðq ¼ 1Þ and
we are only concerned with the threat dj 62 Be (single-threat scenario), the integrity risk
(8) simplifies to

IRjHj 6¼ 0 ¼ P d 62 PjjHj
� �þ P d̂j 2 Be, d 2 PjjHj

� �h i
i dj
� �

Table 1. An overview of integrity risk computation (cf. 7) for deformation monitoring application.
Integrity risk under a specific hypothesis, say, is constructed from the probability of the corre-
sponding missed alerts (in red). False alerts (in yellow) are inconvenient and typically imply costs
or hassle (taking infrastructure out of service, or evacuating population, while this is not needed).
The white areas indicate correct alerts, meaning that a critical movement occurs in reality, and the
monitoring system issues indeed an alert (though this may be based on an incorrectly identified
hypothesis); the word ‘correct’ is to be interpreted from a safety perspective. By ‘no threat’ (in
green) we mean that the deformation threat in reality is still acceptable, and hence deemed not
immediately dangerous. The decision for H0, H1, . . . , Hk is driven by the misclosure vector d,
see (2).
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which for k ¼ 1, when d ¼ d̂1 and P0 ¼ Be, with the vanishing of the second term,
would give us (1) back again.

5. Presentation of identified deformation

Deformation monitoring not only has the task of issuing alerts when the situation is
deemed too dangerous, but also of providing estimates of the deformation together
with a computed confidence level, or confidence region of these estimates. To provide
such a description of the identified deformation, we assume that the statistical
hypothesis testing has done its job properly and identified the correct hypothesis, say
Hj 6¼ 0. The estimate of the occurring deformation is then given by d̂j: The question is
now what confidence to assign to this estimate.

To determine the confidence level, we have to define a dj-centered region, say
dj þ Be for a given e, and compute the associated probability. Since d̂j has been com-
puted from d under Hj 6¼ 0, one may be inclined to compute the confidence level p
for a given e as

p ¼ P d̂j 2 dj þ BejHj 6¼ 0

� �
(9)

or alternatively, obtain the confidence region by computing e for a given confidence
level, say p ¼ 95%. This is indeed the approach that is usually followed in computing
confidence regions for estimated deformations, see e.g. (Wieser, 2004; Alfaro et al.,
2005; Shahar and Even-Tzur, 2005; Devoti et al., 2011; Dheenathayalan et al., 2016).
Assuming the data to be normally distributed and the deformation models to be lin-
ear, one then usually presents the confidence regions as balls that are obtained by
inverting (9) for a given value of p: In case dj is a scalar, the region becomes
an interval.

Unfortunately however, the approach of using (9) to compute confidence levels or
confidence regions is statistically incorrect. It does namely not do justice to the statis-
tical testing that preceded the estimation of the deformation parameters. After all, the
consideration of d̂j in (9) is the result of a testing outcome, namely of having identi-
fied Hj 6¼ 0. And despite the fact that we assume this identification to be correct, one
cannot do away with the fact that this identification to be correct, one cannot do
away with the fact that this outcome is the result of the outcome of a random vector
d lying in Pj 6¼ 0. Thus for a proper computation of the confidence level or confidence
region, one has to take this into account as a condition.

The correct way of computing the confidence level or confidence region is there-
fore to use instead of (9) the following relation

p ¼ P d̂j 2 dj þ Bejd 2 Pj, Hj 6¼ 0

� �
(10)

As was pointed out in the previous section, the conditioning in this relation cannot
be nullified since d̂j is estimated from d and is therefore not independent of it.
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6. Numerical illustration

To numerically illustrate the integrity concept of the previous sections, we will give
two basic examples in the context of vertical deformation monitoring. Let us assume
that to monitor the vertical displacement of a deformable structure, e.g. a bridge, a
leveling network of nþ 1 equidistantly-spaced control points, labelled as 0, 1, :::, n, is
established with nþ 1� r points on the structure, as object points, and r points in a
stable area close to this structure, as reference points. Comparing different campaigns
of leveling data of such a network obtained at different times, we can then determine
vertical deformations of the structure at hand. We assume that a leveling loop runs
through the network points at two times (or epochs) t ¼ 1, 2: In each leveling loop,
we assume two instrument set-ups for every pair of successive points, implying 2n
instrument set-ups for nþ 1 points. The leveling observation collected at the sth

instrument set-up at epoch t is denoted by ys, t which is expected to be equal to the
height difference between the two points to which we take readings at the sth instru-
ment set-up. These observations are assumed to be normally distributed. Figure 2
illustrates an example of such a leveling loop for a network of four points of which
two are reference points.

At epochs t ¼ 1, 2, we observe the model E ytð Þ ¼ Axt , DðytÞ ¼ Qyy, with Eð�Þ and
Dð�Þ the mathematical expectation and dispersion operators, yt ¼ ½y1, t , y2, t , :::, yn, t�T 2
R
2n and xt 2 R

n denoting the height differences of the network points with respect to
the first stable point (point 0). Assuming the observations made at different set-ups, i.e.
ys, t (for s ¼ 1, :::, 2n), are independent and of the same standard deviation r, we have
Qyy ¼ r2 I2n with I2n being the identity matrix of size 2n: In case the leveling network
contains more than one reference point, i.e. r > 1, then the model will extend to accom-
modate the known height differences between the stable points, i.e. the known height dif-
ferences are included in the observational model as pseudo-observations with their
standard deviations being zero. In the following, we present our analysis for two cases:
point 0 is reference point (r ¼ 1); points 0 and n are reference points (r ¼ 2).

Under the null hypothesis H0, where no deformation occurs, we assume

H0 :x2 ¼ x1ðall stableÞ (11)

For simplicity of our analysis, we make the following assumptions about the alterna-
tive hypotheses that may occur. In case of deformation we assume that either only
one point is unstable, or that all object points are unstable with their deformation

Figure 2. A leveling loop running through four equidistantly spaced points with two of them
being reference points (black triangles), n ¼ 3 and r ¼ 2 . The blue curves indicate the measured
height differences and denotes the order of instrument set-ups. In this leveling loop, there are six
instrument set-ups between successive points.
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being simply linearly related in this example. Thus we have, in case only one point is
unstable,

Hi :x2 ¼ x1 þ cidi ðpoint i ¼ 1, :::, n is unstableÞ (12)

with ci 2 R
n being the canonical unit vector having the 1 as its ith entry and di 2 R a

scalar unknown deformation parameter. Note that with the above alternatives, in add-
ition to the stability of the object points, we also check the stability of the reference
points other than point 0. In case all object points are unstable, we assume that the
bridge is tilting about point 0, and then the vertical displacement of the object points,
which are equidistantly spaced on the bridge, can be modelled as

Hnþ1 :x2 ¼ x1 þ cnþ1dnþ1 ðall object points are unstableÞ (13)

in which cnþ1 ¼ ½1, 2, 3, :::, nþ 1�r, 0Tr�1�T and dnþ1 2 R is a scalar unknown deform-
ation parameter. Therefore, if at point 1 we have a height change of dnþ1, at points
i ¼ 2, 3, :::, nþ 1� r we have height changes of i� dnþ1:

There is a total of nþ 1 alternative hypotheses. In the testing procedure to validate
the above hypotheses, we use the overall model test and Baarda’s w-test inducing the
following partitioning of the misclosure space R

3n-1þr (Teunissen, 2018; Zaminpardaz
and Teunissen, 2018; Zaminpardaz et al., 2019)

P0 ¼ d 2 R3n�1þr

���� ê0j jj j2Q � ka, 3n�1þr

( )
(14)

Pi ¼ d 2 R3n�1þr n P0

���� wij j ¼ max
j2f1, :::, nþ1g

wjj j
( )

, i ¼ 1, :::, nþ 1 (15)

in which ê0 is the least-squares residual vector under H0 linked to the misclosure d
as ê0 ¼ QBðBTQBÞ�1d with Q the variance matrix of the observations, and B a basis
matrix of the orthogonal complement of the range space of the design matrix
(Teunissen, 2000). In (14), �j jj j2Q ¼ ð�ÞTQ�1ð�Þ and ka, 3n�1þr is the a-percentage of
the central Chi-square distribution with 3n� 1þ r degrees of freedom. a is the false
alarm probability, which is usually set a priori by the user, unlike relating the thresh-
old directly to e, like we did in (1). In (15), wi for i ¼ 1, :::, nþ 1 are given by

wi ¼
cTê0iQ

�1ê0
cê0ij jj jQ

, i ¼ 1, :::, nþ 1 (16)

where cê0i characterizes the mean of ê0 under Hi, i.e. E ê0jHið Þ ¼ cê0idi:

6.1. Example 1: leveling network with one reference point

Here, we consider a leveling network of four points (nþ 1 ¼ 4) with one, i.e. point 0,
as reference (r ¼ 1). Thus, there will be four alternative hypotheses; three of the form
(12) and one of the form (13). Assuming that the movement of each point is
bounded by e, the integrity risk corresponding with the first three alternatives is then
defined by the following zero-centered interval
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Be ¼ d 2 R
���� dj j � e

( )
(17)

The deformation described by the fourth alternative however, results in a displace-
ment of i� dnþ1 for point i: In this case, the maximum displacement that would

Figure 3. Illustration of integrity risk and confidence levels of deformation estimates corresponding
with the leveling network in Figure 2, for, n ¼ 3, r ¼ 1, a ¼ 0:01 and r¼ 1mm. The columns
from left to right show the results under H1, H2, H3 and H4. [First row] Graphs of P d 2 P0jHj

� �
as

a function of [Second row] Colormaps of Pðd̂ j 2 Be, d 2 PjjHjÞ as a function of dj and e. [Third

row] Colormaps of
P4

i 6¼ 0, j Pðd̂ i 2 Be, d 2 PijHjÞ as a function of dj and e. [Fourth row] Colormaps
of IRjHj as a function of dj and e. [Fifth row] Graphs of confidence level corresponding with

ðd̂ j 2 dj þ Bejd 2 Pj , Hj 6¼ 0Þ as a function of dj according to (10), where Be is set to correspond to
a confidence level of 0.95 according to (9), when the impact of testing is neglected; the red
dashed line indicates the confidence level of 0.95. Note the difference in colorbar scale between
colormaps of different rows.
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occur equals ðnþ 1� rÞ � dnþ1 for point nþ 1� r: To make sure that the movement
of each point does not go beyond the required threshold e, the maximum displace-
ment needs to remain below e, i.e. ðnþ 1�rÞ � dnþ1

�� �� � e: The integrity risk corre-
sponding with the fourth alternative is then defined by B~e with ~e ¼ e

nþ1�r .
Figure 3 depicts, for a ¼ 0:01 and r ¼ 1 mm, the behaviour of the integrity risk

under each of the alternative hypotheses, each column represents an alternative
hypothesis. Following the three terms in (7), the top row shows the graphs of
P d 2 P0jHj
� �

as a function of dj: With e1 ¼ e2 ¼ e3 ¼ e and e4 ¼ ~e, the second row

shows the colormaps of P d̂j 2 Bej , d 2 PjjHj

� �
as a function of dj and ej: The third

row shows the colormaps of
P4

i 6¼ 0, j
P d̂i 2 Bej , d 2 PijHj

� �
as a function of dj and ej:

The fourth row shows the colormaps of as a function of IRjHj as a function of dj
and ej: As integrity risk concerns those situations where the threat goes beyond the
threshold ej, cf. (7), the part of the colormaps above the straight line ej ¼ dj is left
empty. Note that the scale of the colorbars is logarithmic and varies from one row
to another.

The probability P d 2 P0jHj
� �

describes the missed-detection probability of the testing
procedure under Hj. Therefore, as the top panels in Figure 3 also show, P d 2 P0jHj

� �
gets smaller when the deformation magnitude gets larger. It is observed that for a given
deformation magnitude, the alternatives can be ordered in terms of deformation detect-
ability as H4 > H2¼H1 > H3 . This behaviour can be explained as follows. The potential
movement of point 1 or point 2 w.r.t. point 0 from t ¼ 1 to t ¼ 2, described by H1 and
H2, will affect four leveling observations, i.e. y1, 2, y2, 2, y5, 2, y6, 2 for point 1 and
y2, 2, y3, 2, y4, 2, y5, 2 for point 2 (see Figure 2). Whereas, movement of point 3 w.r.t.
point 0 from t ¼ 1 to t ¼ 2, described by H3, will affect only two leveling observations,
i.e. y3, 2, y4, 2: And, finally, if all the points 1, 2 and 3 move according to H4, then all the
leveling observations ys, 2 (s ¼ 1, :::, 6) will sense these movements. Thus, it is expected
that the testing detection step, cf. (14), has the same sensitivity to H1- and H2-deforma-
tions, greater than H3-deformations but lower than H4-deformations.

As the panels on the second row show, Pðd̂j 2 Bej , d 2 PjjHjÞ only gets significant
values around ej ¼ dj, particularly when dj gets larger than a specific value. For a
given dj, when ej increases, the probability mass of the PDF of d̂j inside Bej increases
while that of the PDF of d inside Pjremains unchanged. Therefore, for a given dj,
Pðd̂j 2 Bej , d 2 PjjHjÞ is an increasing function of ej:

The signature of Pðd̂j 2 Bej , d 2 PjjHjÞ as a function of dj can be decreasing or
increasing, which can be explained as follows. For a given ej, when dj increases, the
probability mass of the PDF of d̂j inside Bej decreases. However, the probability mass
of the PDF of d inside Pj increases when dj increases. Therefore, Pðd̂j 2 Bej , d 2
PjjHjÞ may decrease or increase as a function of dj depending on the interaction
between the probabilistic properties of d̂j and d: The third part of the integrity risk,
i.e.

P4
i 6¼ 0, j Pðd̂i 2 Bej , d 2 PijHjÞ shown on the third row, gets small values for

almost all considered ranges of ej and dj: This can be attributed to low probabilities
of wrong identification implying that under Hj, the PDF of d has low probability
mass in Pi 6¼ 0, j. The colormaps on the fourth row are obtained by adding the
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corresponding integrity risk values on the first three rows, showing that in this case
the missed detection delivers by far the largest contribution.

Assuming that the statistical hypothesis testing has identified the correct hypothesis
and the corresponding deformation has been estimated, we now analyse the confi-
dence level for this estimated deformation. To do so, for a given confidence level p in
(9), where we set p ¼ 0:95, we first determine the region Be. This region together
with actual displacement dj, known from simulation, are then substituted into (10) to

Figure 4. Illustration of integrity risk and confidence levels of deformation estimates corresponding
with the leveling network in Figure 2, for n ¼ 3, r ¼ 2, a ¼ 0:01 and r ¼ 1 mm. The columns
from left to right show the results under H1, H2, H3 and H4 . [First row] Graphs of P d 2 P0jHj

� �
as a function of dj . [Second row] Colormaps of Pðd̂ j 2 Be, d 2 PjjHjÞ as a function of dj and e.
[Third row] Colormaps of

P4
i 6¼ 0, j Pðd̂ i 2 Be, d 2 PijHjÞ as a function of dj and e. [Fourth row]

Colormaps of IRjHj as a function of dj and e. [Fifth row] Graphs of confidence level corresponding
with ðd̂ j 2 dj þ Bejd 2 Pj , Hj 6¼ 0Þ as a function of dj according to (10), where Be is set to corres-
pond to a confidence level of 0.95 according to (9), when the impact of testing is neglected; the
red dashed line indicates the confidence level of 0.95. Note the difference in colorbar scale
between colormaps of different rows.
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compute the correct confidence level for the estimated deformation when preceded by
statistical testing. The last row in Figure 3 shows the correct confidence levels corre-
sponding with ðd̂j 2 dj þ Bejd 2 Pj, Hj 6¼ 0Þ as a function of dj ðj ¼ 1, :::, 4Þ, where
Beis set to correspond to a confidence level of 0.95 in (9), when the impact of testing
is neglected. The red dashed lines in the last-row panels indicate this 0.95 confidence
level. As can be seen, for d1 < 2:6 mm, d2 < 2:6 mm, d3 < 3:8 mm and d4 < 2:1 mm
(typically displacement values of a few times the standard deviation of the observ-
able), Pðd̂j 2 dj þ Bejd 2 Pj, Hj 6¼ 0Þ is smaller than Pðd̂j 2 dj þ BejHj 6¼ 0Þ for j ¼
1, :::, 4, revealing that ignoring the conditioning on the testing decision results in a
too optimistic description of the estimator’s quality.

6.2. Example 2: leveling network with two reference points

Here, we again consider the leveling network of the previous example with the same
set of observations, be it that in this example in addition to point 0, point 3 is also
considered to be a reference point (r ¼ 2). In this case, the leveling observation equa-
tion extends to accommodate the known height difference between the point 0 and
point 3, i.e. the known height difference between the point 0 and point 3 is included
in the observational model as a pseudo-observation with its standard deviation being
zero. Figure 4 shows the same information as Figure 3, but for this second example
where we have two reference points. In the following, we make comparisons between
the results under Hifor i ¼ 1, 2, 3 as these alternatives describe the movements of
points i ¼ 1, 2, 3 in both examples. However, one should note that, under each of
these alternative hypotheses, the observational model is different for Example 1 and 2.
In case of H4, no comparison is made as the nature of this fourth alternative differs
from Example 1 to this current example. Under H4, the linear motion of the points on
the bridge concerns points 1, 2 and 3 in Example 1, and only points 1 and 2 in
Example 2.

As it can be seen from the first row of Figure 4, the detectability of points 1 and 2
deformation has remained almost unchanged compared to the previous example.
However, the testing procedure is now a bit more sensitive to movement of point 3
which is due to the fact that the additional information in Example 2 directly con-
strains the height difference of point 3 with respect to point 0. The panels on the
second row corresponding with Pðd̂j 2 Bej , d 2 PjjHjÞ for j ¼ 1, 2, show similar val-
ues as their counterparts did in Figure 3. Under H3, the second part of integrity risk
now has a bigger contribution as compared with the previous example particularly
for the cases where both d3 and e take large values. The third part of integrity risk,
i.e.

P4
i 6¼ 0, j Pðd̂i 2 Bej , d 2 PijHjÞ has remained almost unchanged under H1,

increased under H2and decreased under H3. The overall integrity risk colormaps cor-
responding with points 1 and 2 deformations show almost the same signature as their
counterparts in Example 1. In case of the deformation of point 3, which is now a ref-
erence point, the overall integrity risk takes smaller values. Comparing the confidence
levels in Figure 4 with those in Figure 3, no significant difference can be found for
the conditional deformation estimates under H1 and H2. Under H3, a higher
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confidence level is assigned to the corresponding conditional deformation estimate
when point 3 is considered as a reference point.

7. Conclusions

Although statistical procedures for the individual detection and estimation of defor-
mations have long been in place, risk evaluation of the overall performance of a mon-
itoring system’s alert-function has not yet been described. In this contribution, we
presented integrity risk evaluation in the context of deformation monitoring applica-
tions. Integrity risk is referred to as the probability of a monitoring system failing to
issue an alert, when in fact one should have been given.

Commencing with a simple deformation example with one alternative hypothesis,
the basic integrity components of deformation monitoring were introduced and illus-
trated. As deformation monitoring involves statistical testing of multiple hypotheses,
we then developed the integrity risk for the multiple hypothesis testing problem.
Using the concept of misclosure space partitioning, it was shown how the integrity
risk is constructed from the testing decisions under the alternative hypotheses in con-
sideration. A further generalization was then introduced by having the alerts not
solely dependent on the identified hypothesis, but also on the threat that the esti-
mated size of deformations entails. It was thereby shown how the required probabilis-
tic properties of both estimation and testing come together in the computation of the
integrity risk.

Deformation monitoring, in addition to issuing timely alerts, is often also required
to provide estimates of the deformation together with their associated confidence lev-
els. These confidence levels are usually computed without taking the statistical testing
that preceded the deformation estimation into account. We have shown however that
it is the combined estimation and testing that needs to be probabilistically taken into
account and that failing to do so can give a too optimistic outcome of the stated con-
fidence levels.

To numerically illustrate the various aspects of the presented integrity concept,
two simple examples of deformation monitoring were given. The contributions from
different measurement setups, alternative hypotheses and testing decisions to the
integrity risk were discussed and analysed. Also the confidence levels were computed
with and without considering the intimate link between estimation and testing,
thereby numerically confirming that ignoring the effect testing has on the confidence
level, may lead to a too optimistic description of the deformation estimator’s quality.
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