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Abstract: In this paper, we explore solution directions for the implementation of Safe by Design (SbD)
in safety regimes for academic experimentation. SbD is a dynamic and anticipatory strategy for safety
regulation in academic research. In this strategy, safety is taken in a broader sense including not only
issues of technical precaution of avoiding risks of experimentation but also the societal responsibility
of researchers and research institutes of identifying possible future risks. In our research, we have
interviewed academic researchers from different disciplines and university support personnel about
the factors that enable and limit the possibilities of researchers to implement SbD in safety regimes
for experimentation. We articulate our findings in terms of a core set of research values and in terms
of conflicts between safety and these research values. And we argue that tools for resolving value
conflicts as originating in design for values research can provide directions to solve the value conflicts,
and thus help academic researchers to adopt SbD in their experimentation.

Keywords: Safe by Design; academic experimentation; safety regimes; value conflicts

1. Introduction

Safe by Design (SbD) is a dynamic and anticipatory strategy for safety regulation in
academic research taking a prominent place in a variety of research fields and disciplines.
The primary focus of SbD is human well-being and environmental protection, thus, it aims
to support a clean, healthy and safe environment. Safe by Design thus, not only means a
design that allows and conditions safe use for humans across the whole life cycle of the
product, from manufacture, construction, transportation and installation, but also safety
for the environment through use, maintenance and modification, to decommissioning,
demolition and disposal [1]. In this paper, we take Safe by Design as a strategy which
aims to achieve the integration of safety in the early stages of academic research and
innovation of substances, materials, products and processes in both the precautionary
sense of avoiding risk and the anticipatory sense of identifying possible future risks.

SbD is a part of the Dutch governmental environmental policy. With SbD, the govern-
ment wants to stimulate researchers, designers and companies to take responsibility for
risk prevention. While SbD mainly corresponds to the prevention of new risks, research
in this area contributes to a better understanding of existing risks as well. Hence Dutch
research institutes such as the TU represent aim to implement SbD in their management
of research, specifically in the safety regimes for experimentation. Here we define safety
regimes as all internal and formal external rules and regulations that are compliant for an
academic when performing research.

In this paper, we explore the implementation of Safe by Design in safety regimes for
academic experimentation. In academic experimentation, SbD includes the anticipation
of risks of new substances in certification and dissemination and risks of new products
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and services in actual use. In our research, we have interviewed academic researchers
from different disciplines and university support personnel at TU Delft about the factors
that enable and limit the possibilities of researchers to implement SbD. We articulate
our findings in terms of a core set of research values that are endorsed by researchers
and other stakeholders in the safety regimes for experimentation. These core values are
environmental sustainability, efficiency, commercialisation and researchers’ autonomy. We
argue that these core values may come in conflict with the value of safety as envisaged
in SbD. For exploring ways to resolve these value conflicts we turn to the literature on
design for values [2], focussing on Ibo van de Poel’s [3] work on tools for resolving value
conflicts. Practical tools for the resolution of value conflicts in the applied and fundamental
research is an emerging area of research. We chose this particular approach from the ethics
of engineering, as we consider it to be one of the most developed accounts to date, both
in terms of theoretical rigour and successful applications. We argue that these tools can
help academic researchers to adopt SbD in their experimentation by providing solution
directions to resolving the value conflicts in SbD.

2. Methodology
2.1. The Interview Phase

For identifying the number and characteristics of safety management regimes for
experimentation in research institutes, the research team used literature study, desktop
research, review of documents and interviews with stakeholders. We have conducted a
number of interviews with researchers and support personnel involved in experimentation,
to identify key challenges for the design and adoption of SbD principles in the safety
regimes in academia. In our research, we adopted in line with SbD a broad sense of safety,
including occupational safety, security, environment, responsible science and the impact
of innovation products on society. Therefore, we surveyed all management systems that
belong to that broad sense.

As for the field of application, we narrowed that down to Dutch universities, as they
are not only the home of much innovative research but also the place where students
receive their education and are shaped as future scientists. In that capacity, universities
can be considered a model for all research institutes. In the course of the study, we have
conducted 19 interviews with the researchers of TU Delft working in the different areas
of fundamental research and engineering research including nano-engineering, chemical
engineering, civil engineering, electrical engineering, aerospace, and architecture, as well as
with the members of the support staff including safety officers (The study was designed to
preserve the anonymity of respondents. All participants were informed that no personally
identifiable information will be made public, and have signed corresponding informed
consent forms for the interviews. The design of the interviews was approved by the Human
Research Ethics Committee of TU Delft. Because of the limited number of interviews, more
detailed breakdown of the participants’ affiliations and backgrounds could lead to de-
anonymization, and therefore is unavailable.).

We have conducted unstructured interviews without a pre-determined set of ques-
tions. Our interview methodology was informed by the considerations that the value
of safety itself is not a single-dimensional concept, but rather is a relational value, i.e.,
it is not a mere property of a material (structure, system), but rather a normative judge-
ment whether material (structure, system, experiment setup) is safe for human life or the
environment [1,4–6].

Another key consideration informing the design of our study is the recurring topic
on the distinction between the objective and subjective measurements of safety given that
the former is only applicable in the narrow contexts of technical safety [4,5]. However,
considering that many safety judgments are made in relation to the objectively perceived
values of human life, physical health, or bodily integrity, we treat (expert) subjectivity here
as an inherent part of the communication between different contexts of safety in technical
and social fields.
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Thus, we aimed to identify different values falling under our broad sense of "safety".
This suggests the importance of SbD extending beyond the research stage of the innova-
tions process. Such an approach has helped us additionally to identify some of the key
values relevant not only to the researchers but also to the affected stakeholders at the later
stages of the innovations process–such as environmental sustainability, innovation users’
safety, and environmental safety, (full list of identified values is provided in Appendix A).
During the interviews, we have asked the researchers to identify key values (apart from
the value of safety) relevant to the implementation of SbD—such as autonomy, research
efficiency, creativity, transparency, and uniqueness of innovation. Explication of these
concurrent values has made it possible to highlight value conflicts that while not directly
related to safety can still hamper implementation of SbD. In the context of our study, we
have considered value conflicts as an analytical tool for the identification of key factors
facilitating the implementation of SbD in safety regimes at academic institutes.

2.2. Plausibility of the Delft University Case

We took the Delft University of Technology as a model for all Dutch research institutes.
The assumption is that Delft University safety management regimes and the moral values
of the Delft University researchers are representative of the situation in other Dutch re-
search institutes. We expect that this assumption is plausible because most Dutch research
institutes have tight cooperation’s and interrelations on operational (e.g., student pro-
grams and research facilities) and top management levels. Furthermore, they share many
characteristics, amongst them: public funding of almost all institutes, high inter-institute
mobility of their researchers [7] and the fact that most universities share the same safety
management tool (Lab Servant). Our findings could apply to foreign research institutes,
but such was out of the scope of the project.

2.3. The Exploration Phase

In our study, we focused on conflicts about the value of safety in safety regimes, with
the assumption that resolving them paves the way to introducing SbD into these regimes.
Following van de Poel [8] we consider values of varieties of goodness that can be used for
moral (or non-moral) evaluation. Given the case where we hold two values “v” and “w”
(that do not trump each other), and possible two options “a” and “b”, we may consider this
as a case of value conflict iff: (1) value “v” selects the option “a” as best; (2) value “w” select
option “b” as best; (3) It is impossible to choose both “a” and “b” (Such typical conflict
may occur between, for instance, safety and convenience of an engineering solution, such
as in the case of the passenger safety belt. Often, however, value conflict occurs between
multiple values and options). On this reading, a value conflict occurs when two or more
values provide opposite or contradictory evaluations of the same state of affairs. Thus,
if a state of affairs is evaluated as good based on one value, it is in a value conflict by
definition bad based on the other value. It needs to be noted, however, that value conflicts
deriving from the opposition at the semantic level of values are relatively rare. More
often, and especially in the context of engineering and design, value conflicts derive from
practical implications of values. Interpreted as such, value conflicts express or correspond
to contradictory norms or reason for actions and choices.

In our exploration of ways to resolve the identified value conflicts, we used tools
originating in the literature of design for values [3]. We explored the application of these
tools on the identified value conflicts, and argue that for a number of value conflicts these
tools give useful solution directions.

3. General Findings

The interview results have made it possible to identify several key findings in the
different research fields, including areas specifically concerned with safety, and areas
where safety concerns are an emerging area of attention. It was established that such
cross-disciplinary analysis reveals a shared set of values and concerns pertaining to the
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application of SbD strategies and safety management regimes. This is consistent with
the previous findings from empirical studies that viewpoints on safety from different
engineering fields can provide a consistent picture, as differences often lie not within the
fundamental principles for safety, but in the adaptation to the context [9].

The key areas of attention in the design of SbD approaches are highlighted by the
value conflicts, identifiable across the range of different fundamental research and engi-
neering research fields. The general finding is the observation that safety standards and
SbD strategies need to be dynamic and ever-evolving to successfully address emerging
challenges to human and environmental safety. Another generalisable insight is the need
for the development of openness and collaboration between stakeholders separated by the
different stages of the innovation process.

In the course of this study, we have interviewed researchers from different fields and
members of support staff to identify key values relevant to SbD in the research process.
These values were highlighted by the interviewees in the specific context of safety consid-
erations in the research stage of innovation. Furthermore, interviews with the researchers
have helped to explicate and map other key values relevant to the broader context of SbD
implementations. In this process, we have also been able to identify several major trends
defining the dynamics of evolving concerns on safety in the several fields of research:
(1) greening of technologies; (2) automation; (3) commercialisation; (4) administrative burden.

1. The greening of technologies can be broadly characterised as a trend towards the de-
velopment of more environmentally friendly materials, structures and products.
Particular manifestations of this trend are field and context-specific, as different types
of innovative solutions may aim at energy saving, fuel efficiency, biodegradability, or
other aspects of environmental sustainability. What unifies these developments in
different areas of research, be it chemical engineering, civil engineering, or aerospace
engineering, is that they push experimentation outside the envelope for which exist-
ing safety standards are meant by introducing new types of materials, structures and
products that bring with them new types of risks and potential failures.

2. Another significant trend observable in different fields of research is a broad push
towards automation of computational risk modelling (e.g., structural safety modelling),
and implementation of automated safety barriers (e.g., automated recognition of
damage in flood defences), enabled by AI and machine learning techniques, defined
by the increasing reliance on computational models, automation of processes and tools.
This trend, thus, is broadly characterised as an enhancement or even replacement
of human performed activities and duties with the software-based solutions puts
particular emphasis on the consideration of research efficiency.

3. A third major trend is the commercialisation of safety research and safety standard
development, as taking place in different fields of innovation. It is not a stand-alone
or novel development, given that self-regulation in the emerging technologies and
privately funded research are hardly novel developments in themselves. On the
one hand, this process is a very welcoming development that can see a wider set
of stakeholder engagement in safety research and practices. On the other hand,
successful implementation of planning and directing safety (safety strategies) in the
context of commercialisation brings up new value conflicts and consequent challenges.

4. The fourth trend confirmed by our interviews is a long-standing trend of an increased
administrative burden on researchers. This trend has been documented earlier. The
US Faculty Burden Survey [10] shows that faculty members who serve as Princi-
pal Investigators (PI), actually spend 42% of their federally-funded research time
on administrative tasks. Overall, 84% of the PI’s reported that the administrative
burdens associated with their research have increased in recent years. Scientific
researchers complain about this administrative burden, which includes adherence
to safety regimes, and its negative impact on their productivity and ability to do
science [11].
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These four trends can be captured in terms of conflicts of values held by researchers
and safety regimes, and some of these conflicts are relevant to the feasibility of adding
SbD strategies to the safety regimes. SbD should not aggravate the value conflicts, for
instance, by increase the administrative burden of researchers and thus further limiting
their ability to do innovative research productively. Such an aggravation could make
researchers and their institutes less willing to accept SbD. Reversely SbD may be welcomed
when it alleviates or even resolves value conflicts in current safety regimes. For exploring
this feasibility of SbD, we analyse the four trends in terms of values and value conflicts.

4. The Four Trends as Value Conflicts
4.1. Human Safety and Environmental Safety

The greening of technologies is a major trend emphasising conflicts between the
uniqueness of results pushing the edge of safety standards and introducing new types
of risks and potential failures. Furthermore, the trend also introduces the potential for
conflicts between considerations of human safety and environmental safety at the earlier
and later stages of innovation.

Some of the examples of these unexpected risks in nanomaterials are ’carbon black’
nanoparticles used in the production of car tyres. These new nano-materials enable the
production of tyres with novel characteristics that enhance fuel efficiency and energy
efficiency–desirable properties from the environmental perspective. At the same time in
the process of utilisation, there is a potential for the release of "carbon black" nanoparticles
in the environment, a factor that may present unknown health and environmental risks.

Other types of concerns are highlighted in aerospace engineering where novel com-
posite materials can help to reduce fuel consumption and emissions of aeroplanes. These
novel materials, however, require the development of novel types of tests for structural
failures both in the design and maintenance stages, as test techniques used for mainly
aluminium structures are not applicable for composite materials.

It is also possible to identify similar value conflicts in civil engineering. For instance, in
flood risk management some novel safety challenges can emerge with the development of
’building with nature’ engineering (e.g., mangroves for coastal defences). Such structures
require also a reassessment of existing safety standards and anticipation of unknown risks.

4.2. Safety and Research Efficiency

The trend of enhancing or even replacing through automation human performed
activities such as the modelling of risks by computational means, is driven by the values of
research efficiency and uniqueness of innovation, and brings about novel safety concerns
as well as emphasises existing ones. (Although it may be noted that automation need
not always lead to efficiency. For instance, in aerospace engineering the abundance of
empirical safety data allows to test the accuracy of simulations against empirical findings,
and can reveal that accurate computer simulations for complex systems may cost more
than real-life testing.)

In many fields of research, not just aerospace engineering but also civil engineering,
reduction of uncertainties is a crucial element of safety regimes. In this context, software-
based computational models provide valuable improvements to the empirical lab and
real-world testing. However, in cases where computational risk modelling becomes a
replacement for empirical testing, automation does not eliminate uncertainty but rather
brings more uncertainty due to the limits of the computational modelling of risks and
in contexts where there are no established legal standards for the acceptable use of such
models (as in civil engineering). Consistency of safety standards and continuity between
different stages of the innovation lifecycle become crucial issues, instrumental for the
preservation of the values of safety.

Furthermore, all such computational models are necessarily limited in their scope
of prediction, as demonstrated by the collapse of the AFAS football stadium in the city
of Alkmaar, the Netherlands, on 10 August 2019. In this case, the investigation revealed
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design flaws in the roof structure and failure of risk assessment models to account for
strong winds [12]. This investigation led to recommendations to systematically use wind
tunnel testing for novel structures in addition to predictive models, that is, do not rely
solely on digital models.

It is also important to take into account that even successful elimination of human
factors by software solutions at the different stages of product (system, structure) lifecycles
does not completely eliminate risks due to human factors, but is pushing these risks into the
design stage (to the level of code). In the areas of research where robust empirical testing
is not available (flood risks, unique structures), AI-assisted modelling helps to derive
safety design considerations from simulations (“Safety design” is the concept of applying
methods to minimise occupational hazards early in the design process, with an emphasis
on optimising employee health and safety throughout the life cycle of materials and
processes). However, such simulation alone rarely can provide reliable extrapolations given
the difficulty of establishing and identifying causal relations from the statistical models.

This observation should, of course, not be taken as an argument against automation.
In many areas of research and innovation, software-based solutions can deliver safety
that is unachievable by other types of testing. Automated safety barriers play a crucial
role in lab safety solutions, serving as an access control barrier to dangerous materials
and equipment for authorised (having necessary training) research personnel [10]. In
structural engineering, the automation of safety maintenance also takes a crucial role in the
improvement of safety standards. And at the early research and design stages enhanced
modelling capabilities provided by AI tools can deliver valuable insights into previously
unidentified risks.

4.3. Safety and Commercialisation

In the context of academic research commercialisation of safety standards can be
regarded as a trend that is driven by the value of efficiency. For instance, commercial
suppliers of dangerous materials for research also provide support such as training and
certification for lab personnel working with these materials. However, on the larger
scale commercialisation of safety standards introduces conflicts with safety by lacking
transparency and openness of research.

This conflict between the commercialisation of safety standards and safety is high-
lighted in the area of civil aerospace engineering, where consistency of integrated safety
throughout the whole supply chain is a crucial requirement. In this context, anticipatory
safety is regarded not as a property of materials or structures, but as detection of damage
before failure. This approach requires industry-wide involvement of stakeholders in the
safety research, not only researchers, engineers, and commercial operators of airlines, but
also airport operators. Intellectual property and commercial secrets can, however, create
gaps in the chains of communication between different suppliers, operators, and aerospace
engineering researchers. Given that, at the moment civil aerospace engineering can be con-
sidered one of the more advanced fields in terms of safety research (e.g., in aerospace safety
design has evolved from ‘fail-safe’ (Here the “safety-principle” is defined as designing in
a way so that when a failure does occur, the device will tend to fail predictably to a “safe
state.”) principle to “damage tolerance” (Here “damage tolerance” is defined as a property
of a product relating to its ability to sustain defects safely until repair can be effected.), in
civil structural engineering safety design now evolves towards ‘fail-safe’ principles), these
observations provide insights on the potential systemic problems in other fields as well.

This conflict between the commercialisation of safety research and safety also occurs in
civil engineering. In the case of novel structures, safety data on stresses and deformations
are particularly valuable, which could benefit from shared data repositories. The design of
the roof of the Alkmaar football stadium and the design of a parking garage at Eindhoven
airport, the Netherlands, which in 2017 also collapsed, can be seen as two cases where
safety was compromised by the commercialisation of safety standards.
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A somewhat similar trend is observed in the area of research on the health safety of
microwaves and radio waves. Here unknown and rare health safety risks can be identified
only based on extensive usage data which can be provided only by the commercial compa-
nies operating consumer equipment. Current safety standards in this area are based on
observable effects such as thermal impact (heating) of biological tissue. However, there
is no conclusive evidence for the absence of health effects that cannot be observed in this
way. Some (conflicting) interpretations of existing studies point at these additional risks,
especially for new consumer products.

4.4. Safety and Researchers’ Autonomy

Before considering the value conflict between safety and autonomy due to the admin-
istrative tasks of researchers, we want to stress that the importance of administration in
research institutes is not disputed by the researchers and lab managers we spoke during
our research. There is a shared understanding that administration is intrinsic to research
itself, to the validity of findings, to the integrity of its processes, and the justification of
research funds. Therefore, it is not the administration itself that is under dispute, but its
efficiency and usability for researchers.

Management regimes strive to steer the behaviour of academic researchers and their
work processes into the desired direction and to gather information about that direction
and those processes. Safety management systems, therefore, have an implicit impact on
the research choices and creativity of researchers [10]. For a better understanding of this
impact, we focused on safety management regimes; we also made an inventory of other
regimes such as Human Resources (HR), Facility Management (FM) and finance regimes,
but outcomes were used only as an information source for the safety management regimes.
The survey showed that 15 different safety management regimes are present at TU Delft.
An additional four "general" regimes were identified and were used as data sources, but
they had no active role in safety management as such.

Chances of one researcher needing all 15 safety regimes are almost zero. However, it is
not uncommon for a researcher, especially when involved in experimental laboratory work,
to deal with 10 different regimes at a time. In that case, up to 17 sets of information have
to be entered of which 8 sets may involve double data entries. There is a conflict between
safety management regimes and the productivity of researchers, ultimately contributing to
constraining the autonomy of those researchers.

5. Design for Values and Tools for Resolving Value Conflicts

The implementation of safe by design in safety regimes for academic experimentation
has as its aim to broaden the focus of these regimes from issues of technical precaution
and avoiding risks in experimentation to possible future risks that may emerge later in the
development of technologies. We submit that this goal can be achieved if SbD addresses
also the four value conflicts we spelt out in the previous section. Resolving the conflict
between safety and commercialisation, for instance, will enable researchers to better explore
the future risks of technologies. And addressing the conflict between safety and autonomy
may, as said, enlarge the willingness of researchers and their institutes to adopt SbD (Note
that some cases of value conflicts fall into a category of conflicting non-commensurable
engineering objectives. These cases can be nicely illustrated by the so-called Pareto frontier
which is the set of all Pareto efficient allocations. However, as van de Poel [3] argues Pareto
principles are not always applicable to the reconciliation of value conflicts in light of two
objections. The first is that more value is not always better; sometimes we want to minimise
a value (or a criterion for a value), or sometimes we might strive for a specific target rather
than for as much as possible. A second objection is that sometimes the desirable degree of
attainment of one value may be dependent on the actual attainment of another value).

The literature on design for values [2], specifically Ibo van de Poel’s [3] work on value
conflicts in design for values, may provide ways to do address the value conflicts in safety
regimes by SbD. For arguing for this possibility, one should take the implementation of SbD
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itself as a design project, that is, as a design of a new policy for safety regimes that should
realise the value of societal responsibility. Van de Poel describes six tools for addressing
value conflicts, all in a sense generalisations of tools engineers already use for resolving
conflicts between design requirements. We briefly characterise these six tools in this section
and then demonstrate in the next section that they can be of use to resolving with SbD the
four value conflicts in safety regimes.

5.1. Cost-Benefit Analysis

Cost-benefit analysis is a rather ubiquitous tool based on economic estimates of the
conflicting aspects. In the context of value conflicts this tool requires that the realisation of
each of the conflicting values can be evaluated in monetary units, that value commensura-
bility exists between the values, and that their realisation can be compared on a common
ratio scale. When these requirements are met, a design that gives the optimal monetary
gain realised through the realisation of the conflicting values is the (best) solution to the
value conflict.

Cost-benefit analyses may on first sight not be feasible for the design of SbD by all
these requirements, and van de Poel discusses in general that this tool is problematic for
moral, methodological and practical reasons [3]. Cost-benefit analysis cannot be applied to
value conflicts in which one value is taken as imponderable, that is, as a value that cannot
be expressed in monetary terms (Another alternative to the cost-benefit analysis is the tool
of Multi-Criteria Decision Analysis (MCDA), which can be used to compare not only costs
but for instance stakeholders’ preferences. However, like cost-benefit analysis, MCDA also
requires commensurability of various criteria which is not always feasible). Autonomy
can be such an imponderable value. The tool can also and it cannot be applied to values
that are considered as incommensurable. And there are many issues with estimating all
the relevant costs to a fair degree. For example, we can try to estimate the environmental
damage to wildlife caused by the construction of a dam in terms of the costs involved in
mitigating this damage and reintroducing the animals in the affected area. But it could be
argued that such an estimate ignores the value of having an intact ecosystem.

5.2. Direct Trade-Offs

The tool of direct trade-offs suggests that it might be acceptable to trade off a loss in
one value dimension for a gain in another value dimension. The advantage of this tool is
that it allows for finding the best or most optimal designs without a need to carry out the
problematic and demanding task of expressing values in monetary units. However, the
trade-off still tool raises the fundamental issue of unit commensurability of whether a gain
in one value dimension can always be compensated by a loss in another dimension [3].

This fundamental issue is certainly problematic if we consider for a product such a
central value of as human health and try to compensate a loss in health by an increase in
the environmental friendliness of the product. Furthermore, we might encounter what, van
de Poel, labels as "taboo trade-offs", which create an irreducible loss because a gain in one
value cannot compensate or cancel a loss in the other. However, this does not mean that
the trade-off method is not informative in such cases. If moral obligations are interpreted
as thresholds for moral values, then below its threshold a moral value cannot be traded
off against other values because the moral obligation is more or less absolute. Yet above
the threshold, trade-offs may be allowed (It is noteworthy that the Analytical Hierarchy
Process (AHP) is an established method for the reconciliation of conflicting objectives.
Saaty [13] developed the AHP method to derive weight factors for conflicting objectives,
based on the results of pairwise comparisons).

5.3. Maximin

The maximin rule tool suggests that in the choice between different options we need
to select an alternative that scores best, compared to the other alternatives, on its lowest-
scoring value. In the context of engineering design, this method amounts to a kind of
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"robust design", i.e., to the choice of the design in which the weakest link of that design–the
worst scoring value–is relatively strongest, compared to the alternatives [3].

Again, when using this tool, we should avoid making choices for options where the
relevant values scores are so low as to make these options morally unacceptable. And, as
van de Poel highlights, the use of the maximin tool can also lead to somewhat irrational
results especially in the context of designing for safety. For example, in the choice between
two solutions where one scores low on safety and low on efficiency, and the second
scores almost negligibly lower on safety but much higher on efficiency, the maximin rule
tool would irrationally suggest discarding the second option (Apart from maximin rules,
minimax rules can be suggested for the choice between different options to minimise the
maximum regret).

5.4. Satisficing

The tool of satisficing requires that we set for each of the conflicting values a minimum
threshold that a design should meet to realise that value sufficiently. When such thresholds
can be set, then morally unacceptable design options become those that do not meet the
different thresholds. And value conflicts can be dealt with by finding options in which
these thresholds are met. The core issue here is that the setting of such thresholds for the
values involved is not done arbitrarily but based on relevant moral obligations, codes and
standards [3].

5.5. Re-Specification

In the design for values approach that van de Poel [14] proposes designers arrive at
technologies and products that incorporate the values through an intermediate step of
the specification. The value designed for is in this specification first translated in specific
norms on the technology of the product, or use thereof, that makes that the value is met.
Second these norms are translated in (functional or physical) design requirements for the
technology or product. This specification is not a logical derivation from the value involved
but expresses what the value means in the specific context of the technology or product. If
a value conflict exists mainly as a conflict between the specified design requirements, the
conflict may be addressed by reconsidering the way the values are specified and arrive at
alternative specifications in which the conflict does not occur.

5.6. Innovation

Sometimes, however, after all the relevant values are specified and thresholds are
established, we may find that the available options do not meet the relevant values, or
even that none of the options are morally acceptable. In this case, we need to take further
steps beyond moral-philosophical analysis and consider technical means that may enable
new, not yet existing options. Engineering innovation can contribute to the resolution of
value conflicts if values do not conflict as such, but only in the light of certain technical
possibilities [3,8]. Furthermore, the toolkit of design for values can be deployed to consider
innovation, not as a general direction, but rather engage in specific types of innovation that
ease value conflicts.

6. Possible Solution Directions to the Value Conflicts in SbD Implementation

Let us now return to the four value conflicts in current safety regimes for academic
experimentation, and give our argument that the design for values tools described in the
previous section can help to address these value conflicts when designing SbD implemen-
tations for these regimes. First of all, we then need to assume that the values involved in
the four conflicts do not necessarily conflict between each other as such, but that conflicts
are related to how the values are specified as norms and design requirements. This is
certainly the case when we consider the "greening trend" identified during our interviews.
Indeed, it would be wrong to think that there is an inherent conflict between the value of
human safety and environmental safety as such. Rather these values present a case of what
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van de Poel [8] characterises as a case of value commensurability and coherence through
contingent synergy. In abstract terms, this means that given the state of the world striving
for one value may help to achieve another value too.

Second, we have to avoid that a solution direction for addressing one value conflict
aggravates one of the other three conflicts. For instance, the conflict between safety and
efficiency can be avoided by adding procedures to safety regimes in which it is extensively
argued that used models do apply to the products or technologies under analysis. Such
a solution would increase the workload for experimenters and thus deepen the conflict
between safety and autonomy in experimentation. Extrapolating this argument, it can
be observed that the implementation of SbD is better not approached as defining an SbD
module that is to be added to safety regimes and defines additional tasks for experimenters:
SbD is then typically again deepening the conflict between safety and autonomy. Hence,
implementation of SbD is better taken as a redesign of safety regimes.

6.1. Addressing the Human and Environmental Safety Conflict

The conflict between human safety and environmental safety is in part a value conflict
that plays up in experimentation since assessing the safety risks of innovative green
materials and technologies by existing safety standards that do not apply to those materials
and technologies, may create environmental risks in the lab. But by the description
of this conflict as given in Section 4.1, the value conflict concerns also future human
and environmental safety risks in the later stages of the life cycle of the materials and
technologies concerned. SbD is actually meant to identify and anticipate these future risks
outside the lab, hence if SbD is to be successful it should contain a solution to this first
value conflict.

The root of this value conflict between human and environmental safety is the use
of existing safety standards to innovative materials and technologies without a clear
understanding of whether these standards apply to the innovations. A solution to this is
to require a more dynamic approach to safety standards in which it is regularly checked
if existing regulation is still capturing the values of human and environmental safety. If
the standards are taken as specifications of these values for specific types of materials
and technologies, then the tool of re-specification seems to be what is needed to resolve the
conflict: innovations should be followed by steps in which it is explicitly checked if the
existing standards still capture the values of human safety and environmental safety.

We can highlight an illustrative example of "Green Propellants". The initial push of
research in this area was driven by the concerns on the safety of lab researchers dealing with
highly toxic hydrogen propellants for aerospace. Further research on the alternative non-
hydrogen propellants has also brought attention to the high health and environmental risks
that the wide use of these chemicals brings. The development of this research program thus
also presents an example of innovation that aims to address a wide range of safety concerns
pertaining both to human health and environmental safety. This particular example is also
illustrative of an evolution of safety concerns from lab safety culture to the scale of broad
stakeholder participation.

6.2. Addressing the Safety and Efficiency Conflict

The conflict between the values of safety and efficiency occurs when testing for risks
can be done by both lab and field experimentation and by computational risk modelling
with computer tools, assuming that experimentation is more costly and time-consuming
but gives better risk estimates while computational modelling is cheap and fast but intro-
duces new risks. When it is accepted that safety can be monetarised, one has the tools
of cost-benefit analysis, trade-offs and maximin available to find solutions to the value
conflict. This monetarisation may be an acceptable (and problematic) practice in some
domains, say road design, and may thus allow for the replacement for (some) lab and
field experimentation by computer modelling of risks. The case of the collapse the roof
of AFAS football stadium caused by computational modelling, and the ensuing recom-
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mendation [12] to use wind tunnel testing for future designs of such structures, points
at an unwillingness in engineering and society to accept such trade-offs: reliance on just
computational models for risks assessment is untenable if experimentation leads to more
precise risk predictions. This suggests using the tool of satisficing to resolve the conflict
between safety and efficiency, where the risks levels that can be obtained by testing designs
in lab and field experimentation, count as the maximum threshold.

Satisficing does not exclude that some experimentation can still be replaced by com-
putational modelling of risks. Efficiency can still be realised if that replacement does
not introduce new risks. Computational modelling then becomes a tool to make exper-
imentation less elaborate. Say, computer modelling is used to identify the riskier roof
designs, such that only a few less risky construction are subjected to wind tunnel testing.
Or computational modelling may fully replace experimentation if it is argued that this does
not make risk levels becoming higher. For instance, it may be argued that full reliance on
computational modelling may introduce new risks but that these risks can be avoided by
specific measures. If the extra risks to the roof of that football stadium due to the modelling
had been explicitly known upfront, they could have been avoided by specific strengthening
or maintenance measures.

6.3. Addressing the Safety and Commercialisation Conflict

We propose that the tool of innovation can guide a way out of the value conflict
between safety and commercialisation. Commercialisation may incite business models in
which firms engaged in safety research derive their profitability from intellectual property
and commercial secrets, which block that relevant information about risks are shared with
researchers in the lab and with stakeholders in later phases of the life cycle of materials,
products and technologies. SbD requires transparency about safety research and found
risks throughout these life cycles. Open science may be that innovation, leading firms
to which safety research is outsourced to look for alternative business models, say by
earning money by the services they provide. Transparency enhanced by open data on
safety research, sharing of safety research findings, and collaboration between various
stakeholders enables SbD and also enables firms to be co-designing up-to-date and com-
prehensive safety standards. This suggests that industry stakeholders ultimately can also
benefit from sharing of data and research on safety; while enhancing safety standards on
an industry-wide scale, it also opens up new markets for commercial firms.

6.4. Addressing the Safety and Researchers’ Autonomy Conflict

Finally, the tool of satisficing can help to address the value conflict between the
administrative tasks of researchers and their autonomy. Satisficing suggests that the
workload caused by the bureaucratic overhead of safety regimes requirements should not
exceed a specific limit and that conversely the time and resources experimenters have
for doing their research should stay above a limit. Adding just another regime to an
already overloaded regime would inevitably result in an even larger value conflict, leading
to increased numbers of researchers trying to avoid administrative tasks [15]. In a time
of limited resources, efforts to reduce expenses associated with the productivity of the
research enterprise should be a top priority for everyone involved in research and research
administration. SbD can be implemented successfully within safety regimes for academic
research only if the administrative burden of these regimes remain in check.

7. Discussion

Based on the findings of the current research we suggest that the implementation of
the future safety regime tools should take into consideration value conflicts pertaining to
safety in academic research. We suggest that explicit focus on the researchers, incremental
prototyping, and close collaboration with the future users and management in the design of
such tools, are critical design elements that can take into account values and value conflicts
relevant to the successful SbD strategies. The autonomy of the researchers, freedom of
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innovation and openness of the safety design process, are values that can be facilitated in the
process of such collaborative design. Close involvement of the researchers in the iterative
and inclusive design process not only ensures the relevance of such tools for the future
users facilitating smooth adoption but also provides avenues for the early identification
of emerging safety concerns. We, therefore, see a fruitful collaboration between safety
research and research on design for values, for finding those solution directions to value
conflicts and for enabling the development of these directions in actual implementations in
and beyond academic experimentation. Given the dynamic and ever-evolving nature of
the safety concerns, the inclusion of the wider set of stakeholders can enable facilitation
of the holistic SbD strategies. Focus on value conflicts resolution can promote successful
implementation of safety strategies further down the innovation lifecycle, facilitating
collaboration between researchers, industry stakeholders, and regulators.

8. Conclusions

In this paper, we explored solution directions for the implementation of SbD in safety
regimes for academic experimentation. We have reported our findings from interviews
that we conducted with academic researchers from different disciplines and university
support personnel about the factors that enable and limit possibilities of researchers to
implement SbD in safety regimes for experimentation. These finding could be summarised
in terms of four values that in current safety regimes conflict with the value of safety,
namely environmental safety, efficiency, commercialisation and autonomy of researchers.
Successful implementation of SbD in safety regimes should address these conflicts to
become acceptable to researchers and their institutes. Finally, we introduced six tools for
resolving value conflicts that originate in research on design for values and argued that
these tools can help SbD with finding directions to solve the value conflicts. Hence, design
for values may support the introduction of SbD in academic experimentation.

The tools that research on design for values is creating may also more generally be of
support to the safety of technologies, products and processes. In this paper, we focused on
conflicts between safety and four other values in safety regimes for academic experimenta-
tion. Yet beyond these regimes, other conflicts exist as well, as when implementations of
safety measures hamper the usability of products and technologies, or when transparency
for supporting safety undermines the need for security, as may occur in the chemical
industry (e.g., [16]). The design for values approach and its tools for addressing value
conflicts may also here be of help in the search for solution directions.
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Appendix A

List of key values pertaining to the implementation of SbD, as highlighted by the
interviewed researchers working in the areas of nanoscience, nano-engineering, chemical
engineering, civil engineering, electrical engineering, aerospace, and architecture:

- human safety (all respondents);
- environmental safety (all respondents);
- efficiency (all respondents);
- scalability (all respondents);
- transparency, regarding the openness of safety research (all respondents);
- innovation uniqueness (chemical engineering, nanoscience, civil engineering);
- aesthetics (structural engineering, architecture);
- researchers’ autonomy, independence (fundamental research);
- creativity freedom (fundamental research, civil engineering, architecture).

References
1. Hale, A.; Kirwan, B.; Kjellén, U. Safe by Design: Where Are We Now? Saf. Sci. 2007, 45, 305–327. [CrossRef]
2. Van den Hoven, J.; Vermaas, P.E.; Van de Poel, I. Handbook of Ethics, Values, and Technological Design: Sources, Theory, Values and

Application Domains; Springer: Cham, Switzerland, 2015; ISBN 94-007-6970-9.
3. Van de Poel, I. Conflicting Values in Design for Values. In Handbook of Ethics, Values, and Technological Design; van den Hoven, J.,

Vermaas, P.E., van de Poel, I., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 89–116. ISBN 978-94-007-6969-4.
4. Van de Poel, I.; Robaey, Z. Safe-by-Design: From Safety to Responsibility. Nanoethics 2017, 11, 297–306. [CrossRef] [PubMed]
5. Macpherson, J.A.E. Safety, Risk Acceptability, and Morality. Sci. Eng. Ethics 2008, 14, 377–390. [CrossRef] [PubMed]
6. Möller, N.; Hansson, S.O. Principles of Engineering Safety: Risk and Uncertainty Reduction. Reliab. Eng. Syst. Saf. 2008, 93,

798–805. [CrossRef]
7. Geuna, A. Global Mobility of Research Scientists; Elsevier: Amsterdam, The Netherlands, 2015.
8. Van de Poel, I. Dealing with Moral Dilemmas through Design. In Designing in Ethics; van den Hoven, J., Miller, S., Pogge, T., Eds.;

Cambridge University Press: Cambridge, UK, 2017; pp. 57–77. ISBN 978-0-511-84431-7.
9. Drogoul, F.; Kinnersly, S.; Roelen, A.; Kirwan, B. Safety in Design—Can One Industry Learn from Another? Saf. Sci. 2007, 45,

129–153. [CrossRef]
10. Decker, R.S.; Wimsatt, L.; Trice, A.G.; Constan, J.A. A profile of federal-grant administrative burden among Federal Demonstration

Partnership faculty: A report of the Faculty Standing Committee of the Federal Demonstration Partnership; National Academy of Sciences:
Washington, DC, USA, January 2007.

11. Kuzmina, O.; Hoyle, S. Challenges for Health and Safety in Higher Education and Research Organisations; Royal Society of Chemistry:
Cambridge, UK, 2020; ISBN 978-1-83916-281-7.

12. Koper, A.; van Overbeek, T. Onderzoek naar de Technische Oorzaken van het Gedeeltelijk Bezwijken van de Dakconstructie van het AFAS
Stadion te Alkmaar; Royal Haskoning DHV: Rotterdam, The Netherlands, 2020; p. 71.

13. Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [CrossRef]
14. Van de Poel, I. Translating Values into Design Requirements. In Philosophy and Engineering: Reflections on Practice, Principles

and Process; Michelfelder, D.P., McCarthy, N., Goldberg, D.E., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 15,
pp. 253–266. ISBN 978-94-007-7761-3.

15. Weggeman, M.; Hoedemakers, C.; Ellis, J. Managing Professionals? Don’t!: How to Step Back to Go Forward: A Continental European
Perspective; Warden Press: Amsterdam, The Netherlands, 2014; ISBN 978-94-92004-01-7.

16. Khadzad, N.; Vermaas, P.; Reniers, G. Rethinking Chemical Security Risks: There Is a Need for a Value-Driven Security Risk
Assessment in Chemical Clusters. African Newsletter Occupational Health and Safety, 1 September 2017; 1–4.

http://doi.org/10.1016/j.ssci.2006.08.007
http://doi.org/10.1007/s11569-017-0301-x
http://www.ncbi.nlm.nih.gov/pubmed/29238409
http://doi.org/10.1007/s11948-008-9058-5
http://www.ncbi.nlm.nih.gov/pubmed/18373214
http://doi.org/10.1016/j.ress.2007.03.031
http://doi.org/10.1016/j.ssci.2006.08.004
http://doi.org/10.1016/0270-0255(87)90473-8

	Introduction 
	Methodology 
	The Interview Phase 
	Plausibility of the Delft University Case 
	The Exploration Phase 

	General Findings 
	The Four Trends as Value Conflicts 
	Human Safety and Environmental Safety 
	Safety and Research Efficiency 
	Safety and Commercialisation 
	Safety and Researchers’ Autonomy 

	Design for Values and Tools for Resolving Value Conflicts 
	Cost-Benefit Analysis 
	Direct Trade-Offs 
	Maximin 
	Satisficing 
	Re-Specification 
	Innovation 

	Possible Solution Directions to the Value Conflicts in SbD Implementation 
	Addressing the Human and Environmental Safety Conflict 
	Addressing the Safety and Efficiency Conflict 
	Addressing the Safety and Commercialisation Conflict 
	Addressing the Safety and Researchers’ Autonomy Conflict 

	Discussion 
	Conclusions 
	
	References

