

Student Number: 5973058

Student Name: Gabriella Low Chew Tung

Degree Programme: Master of Science Engineering and Policy Analysis

Faculty: Faculty of Technology, Policy and Management

Computational Reproducibility in
Modelling and Simulation Studies
A Case Study on Data Assimilation Algorithms for Agent-based

Modelling and Simulation

Graduation Committee

Chair Prof.dr.ir. Alexander Verbraeck
First Supervisor Dr. Yilin Huang

i

Table of Contents
Executive Summary ... 2

I. Introduction .. 3

1.1. Reproducibility Research ... 3

1.1.1 Data Assimilation for Agent-based Modelling and Simulation .. 3

1.1.2 Knowledge gap .. 4

1.1.3 Contributions ... 5

1.1.4 Relevance to degree programme ... 5

1.1.5 Thesis Structure .. 6

II. Research Design .. 7

1.2 Research Questions .. 7

1.2.1 Main Research Question .. 7

1.2.2 Sub-questions .. 7

1.3 Research Design Flow Diagram ... 8

1.3.1 Reproducibility Experiment .. 9

1.3.2 Particle Filter Sensitivity Analysis .. 9

1.3.3 Hardware and Software implementation Specification .. 10

1.3.4 Data Sources and Availability .. 10

III. Reproducibility and Replicability ... 11

1.4 Why conduct reproducibility and replicability research in M&S? 11

1.5 Benefits of Reproducible Research ... 11

1.6 Factors contributing to the Reproducibility Crisis ... 12

1.7 What solutions have been proposed? .. 12

1.7.1 The Code Review Process .. 13

1.8 How to assess a successful reproduction/replication success? .. 13

1.9 Reproducibility Frameworks... 14

IV. Data Assimilation for agent-based models.. 16

1.10 Data Assimilation Background .. 16

1.10.1 Recursive Bayesian Estimation Problem Formulation .. 16

1.11 Particle Filter .. 18

1.11.1 General Particle Filter Algorithm – SIR Filter .. 18

1.11.2 Particle Filter for ABMS ... 19

V. Reproducibility Assessment .. 21

1.12 Case Study Selection .. 21

1.13 Case Study Overview ... 21

1.13.1 Case Study Methodology ... 22

ii

1.13.2 Case Study Experimental Setup ... 23

1.14 Reproducibility Experimental Setup .. 23

1.14.1 Method – Reproducing Figures .. 24

1.14.2 Method – Reproducing Tabulated Results .. 24

1.14.3 Computational Workflow of Case Study Code Repository .. 26

1.15 Results ... 27

1.15.1 Reproduction of Figures of Bus Trajectories .. 27

1.15.2 Reproduction of Table 3: Sensitivity analysis of maxDemand and dynamic change

rate 33

1.16 Discussion .. 36

1.16.1 Challenges ... 36

1.16.2 Recommendations ... 38

VI. Particle Filter Sensitivity Analysis .. 40

1.17 Problem Formulation ... 40

1.18 Particle Filter Parameters ... 43

1.19 Experimental Setup ... 43

1.20 Particle Filter Sensitivity Analysis Results .. 44

1.20.1 Experiment 1 – Varying Number of Particles and Jitter and Resample Window = 1

 45

1.20.2 Experiment 2 – Varying Number of Particles and Resample Window; Jitter =

0.0005 48

1.20.3 Discussion ... 51

VII. Final Discussion .. 53

1.21 Challenges for reproduction attempt ... 53

1.22 Parameter Specifications for Particle Filter .. 54

1.23 Guidelines for reproduction process .. 59

VIII. Conclusion .. 62

1.24 Limitations .. 63

1.25 Recommendations/Future work ... 63

1.26 Reflection ... 63

References .. 65

Appendix A: Experiment Log .. 69

1.27 Experiment 1 .. 70

1.27.1 Figure 5 .. 70

1.27.2 Figure 6 .. 72

1.27.3 Figure 7 .. 75

1.27.4 Figure 8 .. 77

1.27.5 Figure 9 .. 80

iii

1.28 Sensitivity Analysis of maxDemand and dynamic change rate 𝜉 .. 83

1.28.1 Errors .. 85

Appendix B: Reproducibility Experiments of Table 3 .. 87

1.29 Experiment 1-Reproducing Table 3 using the original data files ... 87

1.30 Experiment 2 – Reproducing Table 3 using reproduced data ... 89

1.30.1 Experiment 2A – Using models calibrated by BusSim-truth for IncreaseRate and

using models calibrated by BusSim-stochastic for maxDemand ... 89

1.30.2 Experiment 2B – Using models calibrated to BusSim-truth .. 90

Appendix C: Error Logs ... 91

1.31 Test 1 – Preliminary execution ... 91

1.32 Test 2 – Check if codebase runs with the provided data files .. 103

Appendix D: Particle Filter Sensitivity Analysis Supporting Material ... 105

1.33 Particle Filter Algorithm According to Publication and Code .. 105

2

Executive Summary
In recent times, the ‘reproducibility crisis’ has become a cause for concern in the scientific

community. Many disciplines from psychology and neuroscience to machine learning and ecology

have been promoting initiatives towards ensuring the replicability and reproducibility of the

findings reported in research publications. However, ensuring reproducibility and replicability of

research faces many challenges such as differing definitions of the terms across disciplines, lack

of incentives towards reproducing/replicating already published work and no standard methods

for assessing a successful reproduction or replication. Reproducible research is fundamental to

the scientific process, helps to ensure the credibility of scientific research and facilitates the

dissemination and advancement of scientific knowledge. This crisis is especially relevant in the

field of Modelling and Simulation and other computational sciences which rely on computer

simulations to support findings yet there is a dearth of adequately detailed documentation to

facilitate successful reproductions.

This project focussed on investigating the computational reproducibility of a research publication

in the field of data assimilation for agent-based simulations. Agent-Based Modelling and

Simulation (ABMS) is a computational method frequently employed to study complex socio-
technical systems. Data assimilation techniques for ABMS is an emerging research area that seeks

to incorporate real-time data into the model to improve its predictive capabilities. However, due

to its novelty, reproducibility studies of these experiments are lacking. As this is a young research

field, with various new methodologies being published, it is important to support verification and

validation processes to advance scientific developments in the field such that the methods can be

suitably adopted by applied researchers for future studies.

The main challenges of the reproduction process were identified as code quality and missing

dependencies; ambiguous or missing specifications regarding the methodology and

inconsistencies between textual descriptions and implemented code. Evaluation of

reproducibility was also considered from the perspective of statistical metrics on one hand and

qualitative reproducibility frameworks on the other hand. Furthermore, the experiment also

highlighted the importance of computational provenance to connect the published results to the

code or software used to generate them.

A series of practical steps to guide the workflow of future reproduction studies was drafted along

with guiding questions to deduce computational workflows from publications and their code

repositories when workflows to produce published results are missing.

A sensitivity analysis was employed to examine the influence of filter parameters including the

number of particles, the resampling window, and the jitter standard deviation on the data

assimilation algorithm’s estimation accuracy to verify the implementation and reproducibility of

the particle filter algorithm used in the case study. From this experiment and based on literature,

key elements that should be specified in future data assimilation for ABMS studies to ensure

reproducibility of the research were identified.

In summary, this thesis project addressed the research gap in data assimilation for ABMS by

conducting a reproducibility study of a research publication employing the Particle Filter

technique. Key results from the original publication were reproduced and the original and

reproduced results were compared. A reproducibility protocol was formulated to guide

researchers in future reproducibility studies and with respect to data assimilation for agent-
based simulations, a list of key parameters and considerations that should be reported for studies

applying the particle filter to ABMS was devised.

3

I. Introduction

1.1. Reproducibility Research
The use of simulation studies and computational science has become increasingly common across

many disciplines. However, there remains the ever-present need to ensure that the results of

computational experiments uphold reproducibility which is considered a core principle of the

scientific process. Reproducibility is of great importance as evidenced by concerns in recent years

of the ‘Reproducibility crisis’ in science (Baker, 2016).

Taylor et al. (2015) discussed reproducibility in research as one of the grand challenges in the

field of Modelling and Simulation (M&S). It is less well-studied in M&S with works such as

Fitzpatrick (2019) discussing the difficulty of reproducibility in stochastic simulations,

particularly agent-based simulations. The failure of many simulation studies to ensure

reproducibility has contributed to the concerns about credibility in the simulation field(Dalle,

2012). The results of these simulations are used to inform decision-making and for forecasting.

Yet the situation is that without reproducibility, how reliable can the outcomes and insights from

these experiments be?

There is no consensus on the definitions of ‘reproducibility’ and ‘replicability’ across the scientific

disciplines(Gundersen, 2021; Plesser, 2018). The definitions of these terms differ on whether the

original author’s digital artefacts are used to verify the findings as compared to independently

creating the necessary digital artefacts based on the research article’s texts(National Academies

of Sciences & Medicine, 2019). In this thesis project, the definitions used are aligned with the

terminology used in National Academies of Sciences and Medicine (2019).

“Reproducibility is obtaining consistent results using the same input data; computational steps,

methods, and code; and conditions of analysis.”

“Replicability is obtaining consistent results across studies aimed at answering the same scientific

question, each of which has obtained its own data.”

Alternatively, to understand the M&S literature on replicating agent-based models (ABMs), it is

also necessary to discuss the term ‘replication’ as a verification method used by researchers in

computational social science. The following definition of the replication process shall be referred

to as ‘model replication’ in the sections that follow.

Model replication is a researcher’s implementation of another researcher’s conceptual model

which has been previously implemented. The implementation of the replicated model must differ

from the original model implementation in some manner such as algorithms, hardware and

authors, among others.(Wilensky & Rand, 2007) It is a means of verifying that a given simulation’s

reported results can be reproduced by someone starting from scratch(Axelrod, 1997).

Due to the different terminologies used across disciplines, it is important to identify the meaning

of reproducibility or replicability with regards to a researcher’s intention when studying the topic

and associated literature.

1.1.1 Data Assimilation for Agent-based Modelling and Simulation

ABMS is a type of simulation popularly employed in the social sciences and it consists of the

existence of many agents interacting with each with no central direction(Axelrod, 1997).

Traditionally, ABMs have been used to comprehend fundamental processes and not to accurately

represent a real-world system(Axelrod, 1997).

4

However, in recent times, there has been an increase in the availability and application of sensor

technologies which has generated a plethora of data. Data availability alongside increasing

computational power have spurred research in agent-based modelling and simulation (ABMS)

towards applications for which it could not be used previously(Ghorbani et al., 2023).

When using ABMS, the results can quickly diverge from the reality after the initial execution of

the simulation due to various model uncertainties. To overcome such shortcomings, researchers

have looked to incorporate real-time data into these simulation models using data assimilation

techniques to improve the forecasting capabilities of ABMS(Malleson et al., 2020). Such models

could provide up-to-date information and more accurate short-term forecasts to policymakers

allowing for improved situational awareness and decision-making. It could be used as a real-time

management tool in fields such as disaster management, emergency evacuation and crowd

management, among other applications (Malleson, 2018). This potential application of ABMS

represents a shift in the usage of ABMs as solely a tool for exploration and understanding of basic

processes to usage of ABMs to more accurately represent real-world systems.

Data Assimilation is an approach for combining prior knowledge of a system in the form of a

numerical model with new data (also called measurements or observations). (van Leeuwen,

2015) This is commonly done to calculate the best possible estimate of the model state. Data

assimilation practices originated in ocean and weather-prediction communities and have been

adopted by many research fields including the geosciences, economics and biology, among others.

(Evensen et al., 2022)

For ABMs, conventional data assimilation methods like the Kalman filter and its associated

derivations are difficult to apply because these models are usually specified as computer

programs, lack analytical form and display elements of non-Gaussianity, high dimensionality and

nonlinearity in their systems. For such problems, the particle filter algorithm is often

employed(Wang & Hu, 2015). This algorithm can be used to solve complex nonlinear, non-

Gaussian on-line (real-time) estimation problems that cannot be solved analytically. Particle filter

methods are flexible, easily implemented and generally applicable in different settings but are

generally computationally inefficient (Doucet et al., 2001).

1.1.2 Knowledge gap

The aim of applying data assimilation methods to ABMS is to realise real-time simulations that

employ ABMs and can be used to make improved forecasts of real-world systems. However, there

are challenges inherent to achieving computational reproducibility in the area of real-time

simulation studies. For example, in the case of real-time distributed simulations, analysis of the

simulations can be difficult due to the usually non-deterministic nature of the

simulations(McLean & Fujimoto, 2000). Sources of non-determinism include external inputs such

as a human operator in human-in-the-loop simulations or lacking complete control of the

experimental conditions(Dalle, 2012; McLean & Fujimoto, 2000). Such non-determinism can also

occur in future real-time ABMs and thus, should be considered by these researchers.

On the other hand, in the ABMS field, several research papers have addressed the subject of model

replication. This is a key concern as simulation studies shared via publications are difficult to

replicate or even fully understand without detailed specifications of the model itself (Axelrod,

1997). Replicating simulations has been proven a worthwhile process as studies like Axelrod

(1997) and Edmonds and Hales (2003) have found that it can reveal bugs and implementation

issues which can have either a minor or significant impact on the overall simulation results.

In short, data assimilation for ABMS presents a more complex reproducibility problem in which

reproducibility of both the model and the data assimilation algorithm need to be accounted for.

5

As data assimilation for ABMS is an emerging field, standard methodologies and implementations

have yet to be established. Most implementations are domain-dependent and therefore, are

formulated for their specific model (Tang & Malleson, 2022). This sentiment was echoed in the

critique of Monti et al. (2023) on data assimilation for ABMS research in which it is suggested that

successful results were dependent on the use of specific toy models which could be adjusted for

better performance.

Current research should be documented and verified to facilitate the reuse and reapplication of

their methodologies on alternative problems by future researchers. In order to advance the field,

existing research should be reproducible and verifiable yet there exists few reproducibility or

replication studies to facilitate this matter. The lack of reproducibility studies and lack of

guidelines to ensure reproducibility of published studies constitutes a research gap that inhibits

the credibility and reliability of this young field.

With new approaches for data assimilation for ABMS regularly published in the literature,

verification of these methodologies through reproducibility studies is key to establishing

confidence in them and enabling other researchers to more easily adopt and reuse these methods

for their own studies.

In essence, this research project aimed to address this research gap by conducting a

reproducibility study of the particle filter approach employed in real-time ABMS.

1.1.3 Contributions

Despite the widespread usage of simulation studies, they are often poorly designed, analysed, and

reported (Morris et al., 2019). Reporting guidelines can address this matter as they facilitate

reproducible research, enhance transparency, improve documentation practices, build trust in

methodological research and facilitate knowledge dissemination. (Plave n-Sigray et al., 2017;

Williams et al., 2024).

Furthermore, amidst the reproducibility crisis, scientific journals have implemented policies

aimed at mitigating the problem while research communities have urged the adoption of

reproducible research practices through various initiatives(Eglen & Nu st, 2019). Despite

improvements, reproducibility research in computational experiments remains outside of

mainstream practice due to its perception as time-consuming work with little payoff(Freire &

Chirigati, 2018). To facilitate the execution of future reproducibility studies, a protocol for

conducting reproducibility experiments was drafted in this thesis project and insights into the

challenges encountered were derived from the experiment.

In short, this project’s output included insights into the challenges encountered when conducting

a reproducibility study, a protocol formulated to guide similar future reproducibility experiments

and lastly, documentation tips for the reporting of relevant parameters for the particle filter when

used in data assimilation for ABMS studies to facilitate future reproduction and reuse.

1.1.4 Relevance to degree programme

In the MSc Engineering and Policy Analysis programme, M&S is one of the primary learning lines.

In the role of policy analysts, agent-based modelling and simulation can be used to model complex

socio-technical systems to gain insights and design interventions that can be used to tackle the

global grand challenges. Therefore, it is of utmost importance that these M&S studies meet

reproducibility and replicability standards such that the insights gained are reliable not only in

the eyes of the modeller but to stakeholders and the scientific community. Furthermore,

reproducibility of science is crucial for ensuring credibility of scientific claims and discoveries.

6

Therefore, it is especially important for evidence-based policymaking that makes use of scientific

knowledge in decision-making.

1.1.5 Thesis Structure

The structure of the thesis is as follows. Chapter II describes the research design and research

questions. Chapter III provides background on reproducibility research and Chapter IV details

the theory behind data assimilation for agent-based simulation emphasising the particle filter

method and its formulation for ABMs. Chapter V discusses the reproducibility experiment giving

an overview of the case study, the experimental setup and results of the reproducibility study.

Chapter VI conducts a sensitivity analysis on key parameters of the particle filter algorithm used

in the case study. Chapter VII summarises the key contributions of this study in the form of a list

of challenges to the reproduction process, reporting tips for the particle filter and the

reproducibility protocol. Chapter VIII concludes the study and reflects on the results and

limitations of this work.

7

II. Research Design
This research project’s methodology was divided into two sections. The first section focussed on

the reproducibility experiment and the second section focussed on the verification of the particle

filter. The project made use of a case study i.e. a selected research publication to be reproduced

which is detailed in Chapter 1.12. This section first describes the research questions followed by

the presentation of the research design flow diagram and corresponding methodology.

1.2 Research Questions

1.2.1 Main Research Question

What are the essential elements of data assimilation for ABMS studies applying the particle

filter that must be specified to facilitate reproducibility?

Based on existing reproducibility research, this project used primarily quantitative methods to

conduct the reproducibility study. Insights gained were based on both the subjective experience

of the researcher and quantitative analysis of the experimental results. Similar approaches were

used in Luijken et al. (2024), Zhang and Robinson (2021) and Edmonds and Hales (2003).

The reproduction was conducted using the original codebase and analysis scripts provided by the

case study’s authors. This involved running the scripts and determining whether the output was
the same as results reported in the original study. Similarity between the original and reproduced

results are dependent on the reporting of the results and can be difficult to ascertain such as with

figures(Eglen & Nu st, 2019; Gundersen, 2021). Therefore, it remained the choice of the

researcher on how to assess success of the reproducibility attempt. An experimental log was

maintained throughout the process to document all steps during the reproduction as was

similarly done in Axtell et al. (1996).

The main research question is divided into the following sub-questions:

1.2.2 Sub-questions

1. What challenges arise in attempting to reproduce a data assimilation for agent-based

simulation study using the particle filter?

2. Which properties/parameters of the particle filter method should be reported to facilitate

reproducibility efforts in data assimilation for agent-based simulation studies?

3. What procedure can be used to guide future reproducibility efforts in data assimilation for

agent-based simulation studies?

8

1.3 Research Design Flow Diagram

Figure 1: Research Design Flow Diagram

9

1.3.1 Reproducibility Experiment

The methodology employed for this experiment was based on the reproducibility and

replicability literature as well as the code verification procedures used by journal reviewers and

independent reproducibility code review initiatives like CODECHECK. The reproducibility

experiment focussed on the computational reproducibility of the publication’s results rather than

the model reproducibility. The results from this section are used to address sub-questions 1 and

3.

The general research steps are described as follows:

Step 1: Review the case study’s methodology and results obtained

In this step, the goal was to understand the aim and methodology of the case study and to

determine the main results to be reproduced. Following the style of code review initiatives,

relevant results of the case study included available figures/plots and tables among other forms

of result reporting.

Step 2: Attempt to reproduce the reported results using the provided source code

Step 2 involved the attempted reproduction of the figures and tables presented in the original

research paper using the available source code.

Step 3: Compare the original publication’s results to the reproduced results

The original study’s results and that of the reproduction were compared using a suitable

assessment method from literature.

Step 4: Resolve discrepancies if possible

This step involved examining the discrepancies between the original and reproduced results and

investigated the cause. Step 2 and Step 3 were repeated until either satisfactory results were

achieved, or considerable attempts had been made with minimal success. All challenges

encountered and changes made were documented/recorded in an experimental log to keep track

of errors encountered and solutions employed to resolve them.

Step 5: Discussion and Conclusion

In this step, the researcher reflected on the reproduction process of the case study to distil

insights into the factors that facilitated and hindered the process and to devise a protocol for

conducting reproducibility experiments. Insights into the main challenges encountered were

formulated based on the experiment log.

All steps and findings from the reproducibility process were documented accordingly regardless

of the success or failure of the attempted reproduction.

1.3.2 Particle Filter Sensitivity Analysis

This section of the research investigated the effect of fundamental parameters of the particle filter

algorithm implemented in the case study on the accuracy of the estimated system states. The

methodology was similar to the study by Cho et al. (2020) which studied the effect of select

conditions on the particle filter applied to discrete event simulation models. Furthermore, the

sensitivity analysis aided in understanding the sensitivity of the case study’s methodology by

exploring more of the parameter space than was reported in the published study similar to the

approaches taken by Edmonds and Hales (2003) and Gala n and Izquierdo (2005).

10

This analysis aimed to explore the impact of different particle filter configurations on the case

study’s framework by investigating the influence of the parameters on the accuracy of the state

estimates. It also served to verify the code implementation used in the original publication and to

identify any reporting discrepancies.

The steps for this section are as follows:

Step 1: Verify agreement between the algorithm described in the publication and the code

Agreement between algorithm description and experimental setup in the publication and the

corresponding code implementation was examined. Any differences between the publication and

the code implementation were noted.

Step 2: Identify the target parameters for the sensitivity analysis based on particle filter

theory, literature and implementation parameters.

Step 3: Implement and conduct parameter sweep of the selected parameters.

Step 4: Discussion and Conclusion

The effects of the parameters on the state estimates were recorded, evaluated and compared to

the default configuration used in the original publication.

1.3.3 Hardware and Software implementation Specification

The methodology for this research project was implemented using the hardware and software

specified in Table 1.

Table 1: Specifications of hardware and software used in the thesis project

Hardware used Description
System LENOVO ThinkPad P14s Gen 5 AMD
Processor AMD Ryzen 7 PRO 8840HS w/ Radeon 780M

Graphics, 3301 Mhz, 8 Core(s), 16 Logical
Processor(s)

RAM 16 GB
Software used Description
Operating System Microsoft Windows 11 Home
Operating System Version 10.0.26100 Build 26100
Integrated Development Environment (IDE) Visual Studio Code May 2025 (version

1.101.2) Release date: June 12, 2025
Python Python 3.13.1
Package Manager pip 25.1.1
Provider of pseudo-random number
generator

Numpy 2.2.4
Command: numpy.random.seed
More details in code repository specifying the
random seeds used.

1.3.4 Data Sources and Availability

No external raw datasets were required or used in this thesis research project. All relevant

materials for the case study were sourced from the publisher’s website. Relevant materials

included the research article, supporting materials and associated archived code repositories.

The code repository for used for this thesis project is available at https://github.com/5690-

cosh/test-bus-sim.git .

https://github.com/5690-cosh/test-bus-sim.git
https://github.com/5690-cosh/test-bus-sim.git

11

III. Reproducibility and Replicability
In this section, the concept of reproducibility and replicability are explored to illustrate the

significance of the crisis particularly in the M&S field. The approaches taken by different actors in

the research community to conduct reproducibility and replication studies and to address the

crisis are also discussed.

1.4 Why conduct reproducibility and replicability research in

M&S?
Literature in M&S frequently address the issue of model replication, therefore in this short section,

replication mainly refers to model replication used for verification of simulation models.

The inability to independently verify and reproduce simulation experiments has created a

credibility gap in M&S(Yilmaz, 2011). Successful replications of simulation studies can

demonstrate that an experiment’s findings are repeatable and were not an exception(Yilmaz &

O ren, 2013). Yet the replication of computer models is rarely conducted by independent

researchers across the various disciplines that rely on computational models (Axelrod, 1997;

Yilmaz & O ren, 2013). This statement was echoed especially in the ABMS field by the literature

review of Zhang and Robinson (2021) which found that replication-related research in ABMS was

quite poor when reviewing six prominent journals.

Without verification via model replication, it is possible that published findings are incorrect due

to programming errors, mistakes in the analysis or reporting of results or misrepresentation of

the simulation experiment(Axelrod, 1997). The replication of experiments by independent

researchers helps to discern whether a study’s results can be attributed to crucial model

assumptions or artefacts created from arbitrary choices during design, implementation or

runtime of the simulation(Gala n & Izquierdo, 2005). Furthermore, simulation studies proposing

a novel method are likely to report more positive results when compared to existing

methods(Wilensky & Rand, 2007).

These insights into the importance of the replicability issue in M&S also encompass the

reproducibility issue because if simulation results are not reproducible then it cannot be expected

that they are replicable(Epskamp, 2019).

In the instance of replicating simulation studies to evaluate statistical methods - replicability as

defined by National Academies of Sciences and Medicine (2019) - the lack of sufficient detail in

reporting on a statistical method can result in limited understanding of the method’s strengths

and limitations(Williams et al., 2024). This hinders the reproducibility and comprehensibility of

findings which may lead to misuse of statistical methods when adopted by other researchers.

This thesis project focussed not on replicability or model replication but on reproducibility which

serves as a basic requirement for replicability(Epskamp, 2019).

1.5 Benefits of Reproducible Research
The many potential benefits of reproducible research have been discussed in literature.

(Edmonds & Hales, 2005; Hernandez & Colom, 2025; Miłkowski et al., 2018; Taylor et al., 2017)

These benefits include:

• Improving the quality of scientific writing

• Detecting research fraud and bias

• The advancement of operational knowledge

12

• Enabling the reuse of knowledge and data

• Testing of novel simulation methods i.e. the validation of new algorithms, analysis

methods or experimentation techniques which would require detailed specifications to

facilitate reuse.

• Increasing credibility and confidence of research findings

• Supporting reliable and accurate research results

• Increasing research visibility and impact

• Builds confidence and trust in the simulation mechanism used in the study

1.6 Factors contributing to the Reproducibility Crisis
It is a common occurrence that scientific articles cannot be reproduced in their entirety due to

insufficiently detailed documentation(Hernandez & Colom, 2025; Heroux, 2015; National

Academies of Sciences & Medicine, 2019). Factors contributing to this situation in the

computational sciences with an emphasis on simulation studies include:

• A large proportion of researchers lack formal training in software development

• Insufficiently detailed publications

• Unavailable source code

• Lack of clean code which impairs interpretability, reuse and extension of the code

• The use of software or models that are not Open Source and cannot be disclosed at the

source code level

• The continuous evolution of computer systems and architecture which inhibits long-term

reproducibility

• Lack of information on all software and system dependencies necessary for code

execution

• Difficulty sharing code as there is no agreement amongst journal policies on repositories,

metadata or computational provenance.

(Chirigati et al., 2013; Dalle, 2012; National Academies of Sciences & Medicine, 2019; Nu st &

Eglen, 2021; Stodden et al., 2013; Stodden et al., 2018; "Supporting computational reproducibility

through code review," 2021; Trisovic et al., 2020)

1.7 What solutions have been proposed?
To address the reproducibility crisis, policies have been implemented by several scientific

journals and initiatives have been organised by research communities centred on teaching and

encouraging reproducibility practices(Nu st & Eglen, 2021). Code verification and code peer

review are methods that have been proposed and implemented to improve code quality and

increase trust in published results. Some journals have instituted systematic code reviews which

require peer reviewers to verify code functionality, reproducibility of findings and suitability of

the documentation("Supporting computational reproducibility through code review," 2021).

Other journal policies require that authors release a replication package in a repository upon

publication to enable reproducibility and transparency (Trisovic et al., 2020). However, the

challenge is that code verification and review demands extra effort of reviewers, thus, the onus is

on authors to facilitate the reproducibility of their work as much as possible in their submissions

to journals("Supporting computational reproducibility through code review," 2021).

13

1.7.1 The Code Review Process

In this section, the review process used by code review initiatives - CODECHECK and the

Replicated Computational Results (RCR) review process - is discussed to provide a general

understanding of reproducibility experiment conducted in this thesis project.

The CODECHECK initiative (Nu st & Eglen, 2021) offers to researchers a service to independently

verify their computational workflows and provides a certification assuring that a research

article’s computational workflow can be executed. The CODECHECK process is akin to that of the

peer-review process commonly used by journals. It checks whether the code can generate the

output that it claims to create and therefore, constitutes the verification of the computational

workflow but excludes validation. The verification process relies on the author providing all

relevant materials required for reproduction and on communication between the codechecker

(i.e. the code reviewer) and the author for when issues arise. The process is repeated until

reproducibility is proven or it is concluded that workflow is irreproducible. Assessing a successful

reproduction is dependent on the judgement of the codechecker as it can be difficult to determine

whether reproduced figures are identical to those in the original article. Additionally, stochastic

simulations frequently generate different results and outputs can even differ based on the

operating system. Despite this challenge, the act of reproducing a research article’s findings can

improve transparency and uncover the submission’s shortcomings(Nu st & Eglen, 2021).

A code review process similar to CODECHECK is the RCR review process of the computational

journal ACM Transactions on Mathematical Software (TOMS). This process is an optional

component of the peer review process that is conducted upon the researcher’s request to

independently confirm that a research manuscript’s results are reproducible(Heroux, 2015). The

review procedure is similar to that of CODECHECK in that it focusses on reproducing

computational results and relies on cooperation between the code reviewer and the author. The

RCR reviewer also determines whether the manuscript’s results are successfully reproduced and

whether they support the research article’s findings(Heroux, 2015).

1.8 How to assess a successful reproduction/replication success?
There is no single measure that can describe replication success(Aarts et al., 2015). Some

reproducibility or replication efforts, like CODECHECK, do not employ specific metrics but rely on

the subjective assessment of the code reviewer. The RepliSims project by Luijken et al. (2024)

used the equivalence of results between original study and the replication to assess replicability

in other words by assuming that results turn out similar if simulated data, implemented

computations and software functionalities are similar. Additionally, Aarts et al. (2015) used five

statistical measures to evaluate replicability including significance levels and p-values, subjective

assessments, effect sizes, and meta-analyses of effect sizes.

Muradchanian et al. (2021) also reported on the difficulty of assessing replication success and the

lack of any standardised approaches. In Muradchanian et al. (2021), replication studies were

conducted with the aim of investigating and comparing different metrics of replication success

while accounting for differing levels of publication bias.

The Replication Standard(Axtell et al., 1996) is one approach to assessing the success of

replications and is referenced in several replication studies in M&S (Yilmaz & O ren, 2013; Zhang

& Robinson, 2021). It describes categories of equivalence testing for measuring replication

success: numerical identity, distributional equivalence and relational equivalence. Numerical

identity involves the reproduction of the exact reported results and is typically not expected for

any stochastic simulations unless information on random seeds has been specified. Distributional

equivalence can be determined by demonstrating that two models produce distributions of

14

results that are statistically indistinguishable. This was determined by formulating a null

hypothesis and using the Kolmogorov-Smirnov statistical test. Relational equivalence refers to

two models producing the same internal relationship among their results.

In essence, there are a variety of approaches both quantitative and qualitative that can be used to

evaluate a successful reproduction. In this thesis project, the methods selected are based on the

type of results reproduced and the information available in the original publication.

1.9 Reproducibility Frameworks
Frameworks have been drafted in the literature to classify the degree or level of reproducibility

of a research publication. In this section, different frameworks and their criteria are reviewed as

they present a different means of evaluating reproducibility apart from the dichotomous view of

reproducible or not.

Gundersen (2021) emphasised the relation of the researcher’s definition of the results to the

means used to judge a successful reproduction. Usually, an experiment is considered

reproducible if the hypothesis supported by the original agrees with the ones that is supported

by the reproduced results. This research article uses the following framework to define

reproducibility types and classify reproducibility experiments using degrees of reproducibility.

Outcome reproducible refers to when the same analysis, interpretation and result are produced.

Analysis reproducible refers to when the same analysis and interpretation can be done but

outcomes are not identical to the original. Interpretation reproducible refers to when the

neither the analysis nor outcome are the same, but the interpretation of the analysis leads to the

same conclusion. The quality and level of documentation can also be used to classify

reproductions as follows:

• R1 Description – textual description

• R2 Code – code and textual description

• R3 Data – data, textual description

• R4 Experiment – data, code and textual description

Another framework was developed by Raghupathi et al. (2022) for conducting and evaluating

reproducibility studies based on the division of the documentation into three sections: Method,

Data and Experiment. If these three sections are available such that other researchers can

reproduce the results, the study is R1: Experiment Reproducible. R2: Data Reproducible

refers to only having access to the method and data, therefore, only similar findings can be
deduced. R3: Method Reproducible implies the sole availability of the method section via which

researchers can reproduce results.

Dalle (2012) discusses the reproducibility of simulation-based experiments and defines

reproducibility as the capacity to produce similar but not necessarily identical numerical data by

running a similar simulation. Dalle (2012) presents four levels of reproducibility for the case of

computer simulations.

L1: deterministic, identical computation – The original experiment can be rerun exactly, and

the procedure uses the same source code to reimplement the same computation.

L2: non-deterministic, identical computation – At L2, non-deterministic aspects of the

simulation study cannot be reproduced exactly but results should be similar and not significantly

differ from the original.

15

L3: identical scenario and instrumentation - At L3, the simulation study is reimplemented

based on detailed documentation of the study’s model and setup. Implementation differences can

lead to the production of different results.

L4: similar scenario and instrumentation - At L4, a similar experiment can be executed but its

experimental conditions are not identical to those of the original.

Chirigati et al. (2013) describes a process for creating and reviewing reproducible research

papers and uses three criteria to characterise the reproducibility level of experiments. The first

criteria, transparency, refers to the degree of availability of the source code and data such as

whether limited data or the code scripts are accessible. The portability criteria refers to whether

the research experiment can be reproduced in an identical, similar or different computational

environment. The last criteria, coverage, refers to the completeness of the experimental pipeline

provided.

These frameworks reflect different aspects of reproducibility that are considered important for

scientific research. The primary two perspectives evident in these frameworks are the

reproducibility of the result or findings as compared to the quality and availability of

documentation and digital artefacts. Raghupathi et al. (2022) orients its classification system

solely on the documentation. On the other hand, Chirigati et al. (2013) while also focussing on

availability of documentation and digital artefacts, instead defines reproducibility by key

characteristics of research that can be achieved by the provision of certain documentation.

Gundersen (2021) differentiates between the two perspectives quite distinctly and Dalle (2012)

combines them in their framework. Of course, these two viewpoints influence each other as the

documentation quality directly affects the degree of similarity that can be achieved between the

original and reproduced results. Hence, the quality of documentation can be seen as indicative of

the degree of result reproducibility that is achievable.

In short, these frameworks provide another avenue to evaluate the reproducibility of a research

article that differs from the use of reproducibility metrics that classify the attempt as a success or

failure solely based on results.

16

IV. Data Assimilation for agent-based models
This section provides background on data assimilation and the state estimation problem

formulation.

1.10 Data Assimilation Background
Data Assimilation is a method for combining prior knowledge of a system in the form of a

dynamical model with new data (i.e. observations or measurements) from that system to

calculate an estimate of the distribution of the true state of the system under study (van Leeuwen,

2015; Wikle & Berliner, 2007). This methodology can be used for state estimation, parameter

estimation or to characterise the best model controls (Evensen et al., 2022).

The key components of a data assimilation problem are:

• The observation or measurement model relating the observations to the state

• An a priori dynamical systems model describing the evolution of the system state

• An algorithm to combine the observations and the model

Data assimilation is grounded in Bayesian methodology and can be formulated as a recursive

Bayesian estimation problem. The foundation of this approach is Bayes’ theorem which can be

derived by expressing the joint probability of the system state 𝑥 and measurements 𝑦 in terms of

conditional probability distributions (pdfs) (Evensen et al., 2022; van Leeuwen, 2015; Wikle &

Berliner, 2007).

𝑝(𝑥, 𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)

Bayes’ Theorem 𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)

𝑝(𝑦)
𝑝(𝑥)

1.10.1 Recursive Bayesian Estimation Problem Formulation

The data assimilation problem can be formulated as a recursive Bayesian estimation or filtering

problem for a discrete-time system in which the posterior distribution is recursively computed

when observations become available. The following description is adapted from Evensen et al.

(2022), Wikle and Berliner (2007), Gordon et al. (1993) and the course notes of H. Driessen

(personal communication, March 6th, 2025).

Assume that a system model and observation model are available. The state vector a time 𝑘, 𝑥𝑘 ∈

ℝ𝑛 , is assumed to evolve according to the system model

Dynamical model 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘 , 𝑤𝑘)

𝑓𝑘 is the system transition function and 𝑤𝑘 is the process noise. Assume the pdf of 𝑤𝑘 is known.

Observations 𝑦𝑘 ∈ ℝ𝑝 become available at regular time intervals and are related to the state

vector via the observation model.

Observation Model 𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)

ℎ𝑘 is the observation function and 𝑣𝑘 is the observation noise with a known pdf.

17

For a period of 𝑇 assimilation windows, the prior pdf of the system state can be formulated as:

𝑝(𝑥0:𝑇) = 𝑝(𝑥0)𝑝(𝑥1|𝑥0)𝑝(𝑥2|𝑥1) … 𝑝(𝑥𝑘|𝑥𝑘−1)

𝑝(𝑥0:𝑇) = 𝑝(𝑥0) ∏ 𝑝(𝑥𝑘|𝑥𝑘−1)

𝑇

𝑘=1

𝑝(𝑥𝑘|𝑥𝑘−1) is the evolution density i.e. the probabilistic mode of the dynamical model and 𝑝(𝑥0)

is the prior pdf of the initial state.

Assume that the incoming observations are independent and the associated errors are

uncorrelated. At time step 𝑘, a set of observations 𝑦𝑘 = {𝑦𝑖: 𝑖 = 1, … , 𝑘} are available.

The likelihood function for the observation vector can be written as the product of the

independent likelihoods for each assimilation window.

𝑝(𝑦1:𝑇|𝑥0:𝑇) = ∏ 𝑝(𝑦𝑘|𝑥𝑘)

𝑇

𝑘=1

Bayes’ Theorem can then be rewritten as

𝑝(𝑥0:𝑇|𝑦1:𝑇) ∝ 𝑝(𝑥0) ∏ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑦𝑘|𝑥𝑘)

𝑇

𝑘=1

This formulation demonstrates that as observations arrive, the previous state estimate is updated

by treating it as the prior pdf for the current estimate.

Given this formulation, to construct the posterior pdf i.e. the pdf of the current state given all the

available information, 𝑝(𝑥𝑘|𝑦𝑘), two steps must be performed recursively: prediction and update.

It is assumed that the posterior pdf from the previous assimilation window is available when a

new observation arrives at the current time, 𝑘. The posterior pdf of the previous window,

𝑝(𝑥𝑘−1|𝑦1:𝑘−1), becomes the prior for the current assimilation window and is used to determine

the forecast distribution 𝑝(𝑥𝑘|𝑦1:𝑘−1), and the updated distribution i.e. the posterior for the

current window, 𝑝(𝑥𝑘|𝑦𝑘).

PREDICTION STEP

𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1)𝑑𝑥𝑘−1

UPDATE STEP

𝑝(𝑥𝑘|𝑦1:𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1)

In essence, sequential data assimilation consists of iterating between the prediction and update

steps to recursively compute the posterior pdf.

18

1.11 Particle Filter

1.11.1 General Particle Filter Algorithm – SIR Filter

There are several variations of the particle filter. In this section, a generic and basic form of the

particle filter commonly known as the bootstrap filter is described according to Arulampalam et

al. (2002); Doucet et al. (2001); Gordon et al. (1993). This filter uses the idea of Sampling-

Importance-Resampling (SIR) and is also termed the SIR Particle Filter.

The concept behind the particle filter is to represent the posterior pdf using a set of random

samples (i.e. particles) and corresponding weights. As the number of particles becomes very

large, the set becomes an equivalent representation of the posterior pdf(Arulampalam et al.,

2002).

In essence, the particle filter is an algorithm for propagating and updating a set of random

samples {𝑥𝑘−1
(𝑖)

: 𝑖 = 1, … , 𝑁} from 𝑝(𝑥𝑘−1|𝑦𝑘−1) to obtain a set of samples {𝑥𝑘
(𝑖)

: 𝑖 = 1, … , 𝑁} which

are approximately distributed as 𝑝(𝑥𝑘|𝑦𝑘) (Gordon et al., 1993).

At time 𝑘 , a set of equally weighted random samples (i.e. particles) {{𝑥𝑘−1
(𝑖)

, 𝛾𝑘−1
(𝑖)

} : 𝑖 = 1, … , 𝑁} is

available.

PREDICT STEP

Draw samples 𝑥𝑘
(∗𝑖)

 from the evolution density 𝑝 (𝑥𝑘|𝑥𝑘−1
(𝑖)

) , 𝑖 = 1, … , 𝑁 where 𝑖 refers the index

of the sample. This is equivalent to propagating each sample 𝑥𝑘−1
(𝑖)

 through the system model:

𝑥𝑘
∗(𝑖)

= 𝑓𝑘−1 (𝑥𝑘−1
(𝑖)

, 𝑤𝑘−1
(𝑖)

)

𝑤𝑘
(𝑖)
 is a sample drawn from the pdf of the process noise 𝑝(𝑤𝑘−1).

REWEIGHT OR UPDATE STEP

On receipt of measurement 𝑦𝑘 , a normalised weight, 𝛾𝑘
(𝑖)
, is calculated for each prior sample 𝑖 that

is proportional to the likelihood function.

𝛾𝑘
(𝑖)

∝ 𝑝(𝑦𝑘|𝑥𝑘
(∗𝑖)

)

𝛾𝑘
(𝑖)

=
𝑝(𝑦𝑘|𝑥𝑘

(∗𝑖)
)

∑ 𝑝 (𝑦𝑘|𝑥𝑘
(∗𝑖)

)𝑁
𝑗=1

RESAMPLE STEP

Resample from {𝑥𝑘
(∗𝑖)

: 𝑖 = 1, … , 𝑁}with probability proportional to 𝛾𝑘
(𝑖)
 to generate a set of

random samples {𝑥𝑘
(𝑖)

: 𝑖 = 1, … , 𝑁} for time 𝑘 for which the weights are reset to 𝛾𝑘
(𝑖)

=
1

𝑁
.

If 𝑁 is sufficiently large, then the new set of samples {{𝑥𝑘
(𝑖)

, 𝛾𝑘
(𝑖)

} : 𝑖 = 1, … , 𝑁} approximates the

updated posterior distribution 𝑝(𝑥𝑘|𝑦𝑘).

19

CONSIDERATIONS FOR APPLYING THE PARTICLE FILTER

The widespread use of the particle filter is owed to the simplicity of implementing it in code and

its real-world applicability as it does not place restrictions on the form of the system and

observation models nor does it restrict the pdfs of the process noise and measurement noise.

However, there are properties of the algorithm that can greatly affect its performance and need

to be considered. Principally, the number of samples or particles required to produce satisfactory

approximations of the pdfs is difficult to determine and depends on the dimensionality of the state

space, the number of required time steps and the overlap between the prior pdf and likelihood

function(Gordon et al., 1993). Another concern is particle degeneracy which manifests over time

when all particles except one have negligible weights(Arulampalam et al., 2002). Resampling

used in the SIR particle filter is employed to mitigate the effects of particle degeneracy; however,

excessive resampling decreases the filter’s efficiency due to sample impoverishment. This

phenomenon occurs when a few particles with high weights are resampled frequently such that

the population of particles becomes almost identical and there is a reduction in particle

diversity(Arulampalam et al., 2002).

1.11.2 Particle Filter for ABMS

The particle filter is the data assimilation technique commonly applied to agent-based models in

several scientific publications (Kreuger & Osgood, 2015; Lueck et al., 2019; Malleson et al., 2020;

Murata & Tanaka, 2025; Oswald et al., 2024; Rai & Hu, 2013; Wang & Hu, 2015). This algorithm

is used because it is non-parametric and hence appropriate to apply to systems that exhibit non-

linear and non-Gaussian behaviours such as agent-based models.

1.11.2.1 Formalisation of Agent-Based Models

To apply the recursive Bayesian estimation problem framework to an agent-based model, it is

necessary to first formalise it as a state-space model. The following is based on the formalisation

used in Grazzini et al. (2017) and Wang and Hu (2015) and the work of Liu (2001).

The state-space model is a common dynamic system composed of the observation equation and

the state equation which can be represented by a Markov process.

The system state vector of the ABM at time 𝑘, 𝑥𝑘, consists of the set of the states of all agents in

the model with 𝑥𝑖,𝑘 referring to the state of each agent 𝑖 in the model. This is denoted

𝒙𝒌 = {𝑥𝑖,𝑘}, 𝑖 = 1, … , 𝑁

In Wang and Hu (2015), the state-space model representing the agent-based model is formulated

with additive process noise 𝑄𝑡, and 𝐴𝐵𝑀𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 referring to the state transition function of

the agent-based model.

𝒙𝒌+𝟏 = 𝐴𝐵𝑀𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝒙𝒌) + 𝑄𝑡

The observation model and observation vector need to be defined though this is based on the

type of sensor being used and the observation data expected.

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑇}

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘)

The importance weight of a particle is calculated by comparing the ground truth state vector to

the state vector of each particle. In the bootstrap filter, the importance weight is proportional to

20

the likelihood function 𝑝(𝑦𝑘|𝑥𝑘) which is specified by the modeller. There are many possible

choices for the importance weighting function(Doucet et al., 2001). In Wang and Hu (2015), the

likelihood is specified as a multivariate Gaussian distribution whereas Kreuger and Osgood

(2015) uses a negative binomial distribution as the likelihood function to compute the particle

weights.

1.11.2.2 Considerations for applying data assimilation to ABMS

Due to the nature of ABMS, there exists challenges that must be overcome if data assimilation

algorithms like the particle filter are to successfully be applied.

Data Association problem

The data association problem which concerns how to map the real-world observations onto the

state-space of the agent-based model has not been solved and nor researched in some studies as

the identical twin framework is often used and simplifying assumptions made(Malleson et al.,

2020)

High-dimensional state vectors

On another note, ABMs are typically high-dimensional systems. Thus, when applying the particle

filter algorithm, as the dimensionality of the system increases, the number of particles required

to produce a suitable estimate grows exponentially along with the computational power

required(Malleson et al., 2020)

.

21

V. Reproducibility Assessment

1.12 Case Study Selection
To select a case study, various papers that specifically described a simulation study implementing

the particle filter on agent based models were reviewed. The selection was further narrowed by

the availability of original source code from the publication; the researcher’s familiarity with the

paper’s study domain and the complexity of the models used as the thesis project’s time

constraints had to be considered.

The article Kieu et al. (2020) titled “Dealing with uncertainty in agent-based models for short-

term predictions” with a citation number of 35 according to The Royal Society Publishing was

selected as the case study for this reproducibility experiment. The research article included a

description of the ABM in the Appendix. The original source code was also available via Zenodo

archive and Github. All relevant materials were sourced from the following locations:

• https://royalsocietypublishing.org/doi/10.1098/rsos.191074

• https://doi.org/10.5281/zenodo.3549633

1.13 Case Study Overview
The study’s objective was to improve the accuracy of short-term forecasts using ABMs by

performing dynamic state estimation to reduce the uncertainty of the model’s current system

state. Three models were developed in the case study and each was executed for 6000 seconds

and 20 bus stops.

BusSim-truth

BusSim-truth can be briefly described as a bus route model that generates synthetic GPS data for

each bus on the route over a simulation runtime of 6000 seconds for which a single simulation

timestep is 10 seconds. The model contains two agent classes - buses and bus stops - and other

parameters. A bus can be in one of the following states during the simulation: MOVING when on

the road; DWELLING when stopping at a bus stop; FINISHED when its service has ended or IDLE.

Every timestep, each bus agent checks whether its planned dispatch time was larger than the next

timestep. If yes, then the bus state is checked and if it is MOVING and not at a bus stop then the

bus speed is compared to the traffic speed. If its speed is slower than the traffic speed then the

bus speed increases else, it remains constant. Alternatively, if the bus is approaching a bus stop

and it is the last bus stop then its state changes to FINISH and speed changes to zero else the bus

state will change to DWELLING at the bus stop.

The model is both stochastic and dynamic and is used to generate synthetic ‘pseudo-truth’ GPS

data in the form of two datasets: historical GPS data and real-time GPS data.

The level of stochasticity and dynamicity of the model can be controlled to reflect bus route

systems which are either stable or changing over time.

The level of stochasticity in BusSim-truth is controlled by the equation for the passenger arrival

rate at each bus stop, m. The arrival rate represents the number of passengers arriving at each

bus stop per minute.

𝐴𝑟𝑟𝑚 = 𝒰(𝑚𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑, 𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑) , 𝑚 = 1, … , 𝑀

https://royalsocietypublishing.org/doi/10.1098/rsos.191074
https://doi.org/10.5281/zenodo.3549633

22

If 𝑚𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑, then BusSim-truth would become a deterministic model.

The level of dynamicity in the model is controlled using the 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒, 𝜉, parameter.

This parameter is used to vary the arrival rate 𝐴𝑟𝑟𝑚 and traffic speed, 𝑉, throughout the

simulation run according to the following equation:

𝑉 = 𝑉 ∙ (1 −
𝑡

𝑇
∙

100

𝜉
)

𝐴𝑟𝑟𝑚 = 𝐴𝑟𝑟𝑚 ∙ (1 −
𝑡

𝑇
∙

100

𝜉
)

Note: It was observed that the equations above from the case study publication were not in

agreement with the corresponding code implementation.

BusSim-deterministic

This model is deterministic and runs the exactly the same way during each model run when

initialised with the same parameters.

BusSim-stochastic

This model is stochastic but not dynamic. It is similar to BusSim-truth in that the passenger arrival

rate at each bus stop is initialised according to the earlier equation but the arrival rates and traffic

speed once initialised do not change over time. The maxDemand parameter has influence on this

model and there is no dynamic change rate parameter.

1.13.1 Case Study Methodology

The case study explored the application of parameter calibration and a data assimilation

technique, i.e. particle filter, to reduce the uncertainties in the predicted bus trajectories of bus

operation models. The primary steps involved were:

1. Generate pseudo ground truth data for real-time GPS data and historical GPS data.

2. Calibrate BusSim-deterministic and BusSim-stochastic using the historical GPS data via

the Cross Entropy Method.

The Cross-Entropy Method (CEM) was used to calibrate the model parameter vector 𝑆𝑡of the

models. The model parameter vector consists of the arrival rate at each bus stop 𝑚, the

departure rate at each bus stop, 𝑚, and the traffic speed.

𝑆𝑡 = [𝐴𝑟𝑟𝑚
𝑡 , 𝐷𝑒𝑝𝑚

𝑡 , 𝑉𝑡] , 𝑚 = 1 … 𝑀

3. Using the particle filter, update the states of the calibrated models to the real-time GPS

data to produce more accurate short-term forecasts.

23

Figure 2: Case Study Methodology Workflow. Derived from the description in Kieu et al. (2020)

1.13.2 Case Study Experimental Setup

The numerical experiment setup aimed to evaluate the predicted results of BusSim-deterministic

and BusSim-stochastic as compared to the synthetic ‘ground-truth’ data under different
scenarios. “Scenario 1: No calibration (benchmark)” serves as a benchmark and evaluates the

models’ predictions without parameter calibration or data assimilation. Under “Scenario 2:

parameter calibration”, the model state vectors of the two models are calibrated using CEM and

the predictions of bus trajectories evaluated. Under “Scenario 3: applying a particle filter”, the

particle filter is applied to the calibrated models, BusSim-deterministic and BusSim-stochastic.

The observation vector 𝑂𝑡 is provided to the two models and used to correct the prediction of

their future system states 𝑋𝑡. A sensitivity analysis was done in the case study to compare the

prediction error in each of the scenarios by varying two parameters: 𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑 and

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 individually. The prediction error was evaluated using root mean square

error (RMSE) between the real-time and predicted bus trajectories.

Table 2: Experimental Setup of Scenarios used in the Case Study Kieu et al. (2020)

Scenario
CEM Parameter
Calibration

Particle Filter

1  
2 ✓ 
3 ✓ ✓

1.14 Reproducibility Experimental Setup
Upon reviewing the case study publication, 5 figures and one table were identified for

reproduction along with the corresponding interpretations of results. These outputs were

selected because they were produced using data generated by the available codebase. One figure

used an external dataset that was not provided and was thus excluded from the reproduction.

There is no single metric or standard that can be used to assess a successful reproduction.

Therefore, in this experiment, the methods chosen were based on the type of results being

reproduced and the availability of data and code.

The computational workflow of the case study was derived based on the information in the

research article and the information in the code. Figure 3 displays the general workflow as it was

comprehended for the reproduction task.

24

1.14.1 Method – Reproducing Figures

The reproducibility of the case study’s figures was quantitatively assessed for successful

reproduction. The metric used in the case study to compare the performance of each

experimental Scenario was the root mean square error (RMSE). Therefore, the RMSE between the

real-time bus trajectory and BusSim-stochastic predicted trajectory as well as the error between

the real-time bus trajectory and BusSim-deterministic predicted trajectory were calculated for

each of the figures both the published originals and the reproductions. 50 simulation replications

each using a different random seed were executed for the reproduction of each figure. The RMSE

values of the published figures were then compared to the RMSE values of the reproduced figures

for similarity.

1.14.1.1 Extracting Data from Figures

The datasets corresponding to the figures were not included in the downloaded codebase.

Consequently, data had to be extracted from the case study’s figures to estimate the RMSE values

associated with each figure. This was done using the free web-based software, WebPlotDigitzer

5.2 (Rohatgi), for data extraction.

WebPlotDigitzer was used to extract 15 data points from the first 3 bus trajectories of each figure.

These points were used to estimate the RMSE values to compare to the RMSE metric of

reproduced versions of the figures.

A limitation of this approach was that only 15 datapoints were used resulting in reduced accuracy

of the estimated RMSE values from the case study figures. Only 15 datapoints were extracted for

each model’s trajectories due to limited time available for the manual data extraction using

WebPlotDigitzer.

1.14.2 Method – Reproducing Tabulated Results

The only numerical results included in the case study were in the form of a table presenting the

results of the sensitivity analysis of the model parameters maxDemand and dynamic change rate

which influence the stochasticity and dynamicity of the BusSim-truth model. The table evaluated

the prediction error using RMSE for each Scenario and model configuration.

The metric selected to evaluate similarity was whether the original study’s effect would be

contained in 95% confidence interval of the reproduced estimates. The confidence interval was

calculated for the estimated RMSE values of each of the three experimental scenarios. The original

table’s values were then compared to the reproduced values to check whether they fell within the

estimated confidence intervals.

Number of simulation replications used, 𝑛𝑠𝑖𝑚 = 100

𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒: √
95 × (1 − 95)

100
= 2.18

Number of replications used in the original study = 10

The number of simulation replications chosen was motivated by both practicality and to reduce

the Monte Carlo standard error. The use of 100 replications ensured the reproduced results had

a higher power than the original study’s results. As such, 100 replications should have been

sufficient to reproduce the estimates of the original study and/or show whether the power of the

original study was suitable or not.

25

26

1.14.3 Computational Workflow of Case Study Code Repository

Figure 3: Computational workflow of the case study

27

1.15 Results

1.15.1 Reproduction of Figures of Bus Trajectories

First, 5 graphs, Figures 5 to 9 of the case study’s article, were selected for reproduction. The

reproduction of Figures 7 to 9 from the publication are discussed in this section. (See Appendix A

for the other reproduced figures and more details.)

Reproducing these figures was facilitated by the provision of the plotting code in the code

repository and the Jupyter notebook describing the basic workflow. The descriptions from the

publication though helpful were at times ambiguous or incomplete. There were no datasets

included in the repository that could be linked to the plots, therefore, the data files required to

create these plots had to be generated. The figures generated were not identical to the originals

due to the lack of random seed management in the case study’s codebase.

In the case study’s article, the figures for each scenario were compared visually and did not

include any associated metrics. The reproducibility comparison took a quantitative approach

instead. To quantitatively assess the similarity of the original and reproduced figures, the RMSE

was calculated for each figure over 50 replications and the RMSE of the case study’s original

figures was estimated.

A function, rmse(), was provided in the case study’s code and used for the testing. However, this

function was implemented differently from what was reported in the case study’s publication.

𝑟𝑚𝑠𝑒 = √(
1

𝑇
∑(𝑦̂𝑘 − 𝑦𝑘)

𝑇

𝑘=1

)

2

In the process of reproducing the study, another function rmse_fixed() was implemented to

evaluate the prediction error using the correct RMSE formula.

𝑟𝑚𝑠𝑒_𝑓𝑖𝑥𝑒𝑑 = √
1

𝑇
∑(𝑦̂𝑘 − 𝑦𝑘)2

𝑇

𝑘=1

The mean RMSE was calculated for both the case study’s incorrectly implemented rmse function

and the correct RMSE formula implementation using rmse_fixed. These results are displayed in

Table 3 and Table 4 for the original published figures and for the reproduced figures, respectively.

Table 3: Estimated RMSE prediction error values for BusSim-deterministic and BusSim-stochastic calculated using the case
study’s incorrect implementation of the RMSE formula and the correct RMSE formula. RMSE values were estimated using
datapoints extracted from published figures in Kieu et al. (2020) using WebPlotDigitizer software.

Figure

Scenario

Case Study
Estimated RMSE
BusSim-
deterministic

Case Study
Estimated
RMSE BusSim-
stochastic

Estimated RMSE
BusSim-
deterministic

Estimated
RMSE
BusSim-
stochastic

7 1 3151 4021 13864 13708
8 2 254 2880 721 10090
9 3 51 39 160 178

28

Table 4: Reproduced RMSE prediction error values for BusSim-deterministic and BusSim-stochastic calculated using the
case study’s incorrect implementation of the RMSE formula and the correct RMSE formula. The average RMSE was
calculated over 50 simulation replications.

Figure

Scenario
Case Study Mean
RMSE BusSim-
deterministic

Case Study
Mean RMSE
BusSim-
stochastic

Mean RMSE
BusSim-
deterministic

Mean RMSE
BusSim-
stochastic

7 1 354 221 6361 5479
8 2 57 60 4073 4493
9 3 88 48 3095 2576

The results in the first table showing the estimated RMSE values of the published figures agreed

with the case study’s visual comparison demonstrating that the prediction error (RMSE)

decreased from Scenario 1 to Scenario 3 with Scenario 3 having the best performance when using

the results of the correctly implemented RMSE function. In the reproduced results in Table 4, a

similar decreasing trend was observed in the RMSE of the reproduced results from Scenario 1 to

Scenario 3. These findings agreed with the conclusions drawn from the figures in the research

article where the author concluded that Figure 9 (scenario 3) appeared to demonstrate

substantial improvement in prediction performance compared to Figures 7 and 8 (Scenarios 1

and 2).

The spread of RMSE values over 50 replications are visualised in the boxplot diagrams below.

These plots also demonstrated the reduced prediction error for Figure 9 as compared to Figure 7

and 8 from the case study.

Additionally, examples of the reproduced figures from the experiment were visually compared to

the original published figures as shown in the Figure 7: Original Figure 7 Scenario 1: no

calibration (benchmark). Source Kieu et al. (2020)Figure 7-12 of this thesis project.

Figure 4: Boxplot showing the spread of the case study RMSE and correct RMSE formulas for Kieu et al. (2020) Figure 7
using experiment Scenario 1 across 50 simulation replications for the models BusSim-deterministic and BusSim-stochastic

29

Figure 5: Boxplot showing the spread of the case study RMSE and correct RMSE formulas for Kieu et al. (2020) Figure 8
using experiment Scenario 2 across 50 simulation replications for the models BusSim-deterministic and BusSim-stochastic

Figure 6: Boxplot showing the spread of the case study RMSE and correct RMSE formulas for Kieu et al. (2020) Figure 9
using experiment Scenario 3 across 50 simulation replications for the models BusSim-deterministic and BusSim-stochastic

30

Figure 7: Original Figure 7 Scenario 1: no calibration (benchmark). Source Kieu et al. (2020)

Figure 8: Reproduced Figure 7 Scenario 1: no calibration (benchmark).

31

Figure 9: Original Figure 8 Scenario 2: parameter calibration using cross-entropy method. Source Kieu et al. (2020)

Figure 10: Reproduced Figure 8 Scenario 2: parameter calibration using cross-entropy method

32

Figure 11: Original Figure 9 Scenario 3: Parameter Calibration and Particle Filter. Source on Kieu et al. (2020)

Figure 12: Reproduced Figure 9 Scenario 3: Parameter Calibration and Particle Filter

33

1.15.2 Reproduction of Table 3: Sensitivity analysis of maxDemand and

dynamic change rate

The case study result Table 3 of the original publication contained results of a sensitivity analysis

conducted using the average RMSE of 10 replications to evaluate the error between each of the
static model bus trajectories and the real-time bus trajectories. The main difficulty in reproducing

this result stemmed from ambiguities and inconsistencies between the published descriptions

and the code structure. A few of these inconsistencies and ambiguities are summarised below.

The research paper did not specify which model, BusSim-deterministic or BusSim-stochastic, was

used for the RMSE calculations. Short experiments were conducted using both BusSim-

deterministic and BusSim-stochastic which can be found in the Appendix B. However, it was

assumed that BusSim-stochastic was used for the sensitivity analysis and these results are

presented in experiments 1 and 2 below.

Another issue was that the original data files included in the archived code repository were not

generated with the parameter configurations used to reproduce the table’s results and/or

included some of the parameter configurations while missing others. New files were generated

using the codebase to correspond to the range used for the dynamic change rate parameter and

maxDemand parameter in the table. 100 simulation replications each using a different initialised

random seed were used to generate the table’s results.

Therefore, all historical, real-time and calibration datafiles were generated for the following

ranges:

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 ∈ {0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5}

𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑 ∈ {0.5, 1, 1.5, 2, 2.5,3, 3.5, 4, 4.5}

This experiment used the provided functions in the study’s repository to generate the results.

However, as previously mentioned, the case study’s implemented RMSE function differed from

the RMSE function stated in the publication. Therefore, an RMSE function with the correct formula

was implemented and both formulae were used to reproduce the table’s results similar to what

was done to reproduce the figures.

Lastly, the research paper specified that the models were calibrated to historical data produced
by BusSim-truth and while this is true for the dynamic change rate sensitivity analysis, the code

structure implied that the models were calibrated to data produced by BusSim-stochastic for the

maxDemand analysis. These assumptions were followed for the reproduction process. This

ambiguity may be due to the similarity between BusSim-stochastic and the more complex

dynamic model BusSim-truth. BusSim-stochastic lacks the dynamicity of BusSim-truth as the

arrival rate and traffic speed at each bus stop remains constant throughout the simulation run

after initialisation. For BusSim-truth, arrival rate and traffic speed are influenced primarily by the

dynamic change rate with the arrival rate also influenced by maxDemand. BusSim-stochastic

lacked this dynamic nature and did not have a dynamic change rate parameter. While this

understanding can be derived from the code, it was not specified in the publication which claimed

that calibration were done to BusSim-truth data. Furthermore, the case study had clear

descriptions of BusSim-truth model but lacked specification of the companion static ABMs

BusSim-deterministic and BusSim-stochastic and how they differed from BusSim-truth.

34

Table 5: BusSim-stochastic reproduced Average RMSE results using Case Study rmse function to reproduce results of Table
3 Kieu et al. (2020)

maxDemand values Scenario 1
RMSE

Scenario 2
RMSE

Scenario 3
RMSE

0.5 292 58 49

1 250 37 13

1.5 230 91 9

2 230 87 63

2.5 243 192 13

3 212 138 30

3.5 184 42 47

4 169 94 24

4.5 168 210 54

dynamic change
rate

values Scenario 1
RMSE

Scenario 2
RMSE

Scenario 3
RMSE

0 226 32 27

2.5 237 63 23

5 195 166 36

7.5 227 85 33

10 234 119 60

12.5 233 165 59

15 233 127 52

17.5 259 133 115
Table 6: BusSim-stochastic reproduced Average RMSE results using the correct formula to reproduce Table 3 Kieu et al.
(2020)

maxDemand values Scenario 1 RMSE Scenario 2
RMSE

Scenario 3
RMSE

0.5 5734 3345 1698

1 5327 3033 1061

1.5 5264 3642 920

2 5381 3562 1176

2.5 5575 4461 1075

3 5434 4217 1923

3.5 5504 4335 3060

4 5385 4315 1836

4.5 5335 4598 1277

dynamic change
rate

values Scenario 1 RMSE Scenario 2
RMSE

Scenario 3
RMSE

0 5598 3521 1429

2.5 5482 3192 1341

5 5253 3831 2075

7.5 5435 3279 1698

10 5630 3800 2163

12.5 5456 3892 2537

15 5524 4301 2849

17.5 5650 4404 3339

35

Table 5 and Table 6 showed that case study’s Table 3 could not be reproduced identically. From

the reproduced results, scenario 3 appeared to generate the lowest estimation errors compared

to scenarios 1 and 2. This interpretation agreed with the conclusions made in the original study.

In the bar charts below, the 95% confidence intervals have been plotted as error bars for

comparison with the original table 3 results. This was done using the case study’s RMSE formula.

The majority of the original RMSE values obtained did not lie with the 95% CI of the reproduced

results. The exception to this was Scenario 1 results for the sensitivity analysis of the dynamic

change rate parameter shown in Figure 14. In which all of the original estimates from Scenario 1

do lie in the 95% CI of the reproduced result. The successful reproduction in terms of 95% CI for

Scenario 1 of the dynamic change rate analysis and failure for others may be indicative of

incorrect assumptions made for the calibration and particle filter steps. The calibration using

CEM would not have produced calibrated model parameters numerically identical to the ones

used in the original study and due to the extensive computational resources and time needed to

run the model calibrations, the model calibration itself was not replicated but executed once to

produce the optimised parameters. For the maxDemand sensitivity analysis the majority of the

original case study RMSE values did not lie within the 95% CI.

Figure 13: Bar chart comparing the original values from the maxDemand sensitivity analysis from Table 3 Kieu et al. (2020)
to the reproduced RMSE using the Case Study rmse formula and the corresponding 95% confidence intervals of the
reproduced results indicated by straight black lines to the .

36

Figure 14: Bar chart comparing the original values from the dynamic change rate sensitivity analysis from Table 3 Kieu et
al. (2020) to the reproduced RMSE using the Case Study rmse formula and the corresponding 95% confidence intervals of
the reproduced results indicated

1.16 Discussion

1.16.1 Challenges

The reproduction of the case study’s results was facilitated by the associated code retrieved from

the Zenodo repository, the case study’s modular code implementation, the provision of a Python

Jupyter notebook that depicted a basic version of the code’s execution workflow and a qualitative

description of the experimental setup and methodology in the research article. Yet despite the

case study’s use of such methods, there were still issues to be improved upon and several

challenges to the reproduction of the case study’s results.

Upon initial review, the codebase appeared well-organised, and a Python notebook was included

which demonstrated the steps to generate plots resembling the figures from the publication and

which reflected the general experimental procedure described in the publication. Datasets were

included in the code package that had been generated by the simulation and had been archived

with the code. However, the README.md file was not instructive beyond referring to the research

publication and the Python notebook for more information. The example Python notebook

provided used these datasets to generate similar bus trajectory plots to those in the publication.

Initial challenges to the reproducibility experiment consisted of basic programming errors often

encountered when running another programmer’s code in addition to documentation failures.

The python notebook was instructive of the experimental workflow used by the author; however,

it fell short of being a proper replication package as it did not link directly to the publication and

37

did not generate the plots provided. Issues related to code quality though tedious could be

resolved such as simple file path errors. The main challenges for the reproduction came from

discrepancies between the documentation of the code and the experiment described in the code

and missing parameter specifications and ambiguous descriptions.

Another challenge was the evaluation of the non-numerical results like the figures. The datasets

used to make the graph were not made available in the code repository. To circumvent this issue,

data extraction was conducted using WebPlotDigitizer. However, this approach carried a small

margin of error(Burda et al., 2017).

The chosen reproducibility metric was determining whether the original results lay within the

95% confidence interval of the reproduced results. While easy to implement and applicable for

numerical input from tables, this method has several limitations. It ignored the uncertainty in the

original study which was high given the low simulation replication number used, however, there

was also a high probability that the method could have indicated replication failure when the

estimates were the same(Heyard; Heyard et al., 2025).

It should be noted that a major limitation of this reproducibility study was the lack of

communication with the study’s author due to time constraints of the project. Furthermore, more

research is still required into the applicability of different reproducibility metrics to ascertain

statistical equivalence of results. Therefore, a limitation of this experiment is that only one

method, the 95% confidence interval, was used and a single metric is often insufficient to capture

the reproducibility success or failure.

1.16.1.1 Documentation failures encountered

• README.md was not sufficiently detailed and lacked information on the structure of the

project and the functionality of the files. The file only referred the reviewer to a Python

notebook for details.

• Missing information on dependencies

o There was no requirements.txt or environment.yml files included in the

downloaded project. No information was provided on the Python packages used

nor the Python version used.

1.16.1.1.1 Code Quality Issues

• File path errors encountered due to the use of absolute paths in the code. Although the

author did acknowledge that the working directory would have to be changed for the

some of the code to be executed in the primary Python notebook.

• Outdated comments were found. For instance, some comments referred to components

or files that had been renamed by older names.

• No random seed management implemented which prevented the reproducibility of

identical figures

1.16.1.1.2 Code-Publication discrepancies

• Formulae used in model description differed from the publication

• Instructions in code comments and the format of the code differed from the experimental

setup described by the article.

1.16.1.1.3 Evaluation using Frameworks

Using the reproducibility framework of Gundersen (2021) that was briefly explained in earlier

sections, the reproduction of this experiment can be considered as reproducibility type R4

Experiment due to the level of documentation provided in the form of data, code and textual

description. However, this classification does not account for the missing parameter specification

38

and contextual information, nor does it account for the inconsistencies between the implemented

code and the textual description. The research paper itself can be classified as interpretation

reproducible. It was only partially analysis reproducible due to the ambiguity concerning the

experimental frame used to conduct the original case study analysis. Lastly, it was not outcome

reproducible as the exact outcomes cannot be regenerated. A similar analysis can be conducted

to what was done in the case study, but the missing parameter specifications and/or data files

prevent the analysis from being numerically identical. On another note, using the framework of

Dalle (2012), the reproducibility study can be considered at level “L2 non-deterministic, identical

computation” due to the provision of the data files and source code and because the results are

similar to the original study but not exactly the same. Yet, the missing components and

ambiguities are also not considered in this framework.

The criteria of Chirigati et al. (2013) can be used to account for the ambiguities in the research

paper. The case study was partially transparent as it made available some of the data and the

executable scripts, the partial pipeline was included therefore the publication showed partial

coverage, and it was somewhat portable as it could be reproduced in a different environment but

no information about software dependencies had been included in the package.

From the viewpoint of the researcher who conducted the reproducibility experiment, the case

study’s findings and interpretations were indeed reproducible i.e. interpretation reproducible as

both the original and reproduced results confirmed that the Scenario 3 performed better than

Scenarios 1 and 2. Yet challenges remained and there were many aspects of the study that could

have been improved upon not only for documentation but also to improve the study’s design.

1.16.2 Recommendations

A major issue in the reproduction process was the missing information relating the figures in the

publication to the project code. While some information was provided on the key parameters for

the figure through a narrative description, several parameter specifications were missing.

Inconsistencies were also found when between the publication’s description and the

implemented code and code comments.

For researchers to address this issue, one solution is to include metadata that can link the figures

to the process used to create them. Drawing from the work of Chirigati et al. (2013), the use of

deep captions for figures which would consists of the workflow used to derive the plot, the

underlying libraries invoked by the workflow, and the input data would allow these figures to be
reproduced more easily. Furthermore, Dalle (2012) mentions that when addressing

reproducibility issues, the concept of traceability of simulations should be considered such that a

publication’s results can be traced to the software elements used to produce them.

A similar concept to traceability, is the idea of provenance of workflows. Provenance is

considered vital for facilitating result reproducibility and knowledge re-use in the research

community. The provenance of a result would contain detailed specifications of the procedure

and data used to generate it such that other researchers could reproduce and validate the

results(Davidson & Freire, 2008). While partial details of the execution steps were specified in

the case study’s materials, there was no documentation specifically addressing the computational

provenance of its results. Consequently, a key step in this reproduction process was the

knowledge gained in comprehending and mapping the computational workflow required to

produce the results. In other words, attempting to create a retrospective provenance of the case

study’s results uncovered the missing information and ambiguities in the provided

documentation This step facilitated both the understanding of the process and documentation of

39

the workflow being followed for the reproduction as shown in Figure 3. Therefore, giving more

attention to the capture of provenance information in scientific studies would be advantageous

for authors in preparing their publications.

40

VI. Particle Filter Sensitivity Analysis
The particle filter sensitivity analysis is explained in this section. The case study did not report

the assumptions and key parameters of the particle filter in the publication though parameters

were hard-coded in the algorithm implementation. It can be assumed that the hard-coded filter

parameter values were the ones used to conduct the analysis reported in the publication. This

was the assumption made in the previous reproducibility experiment. Alternatively, by exploring

more of the parameter space, it was possible that there was a configuration of the filter

parameters that provided a closer match to the reported results.

In this section, first the setup of the data assimilation problem is described followed by the

parameter sweeps for the identified parameters used in the sensitivity analysis.

1.17 Problem Formulation
Aim: To calculate a posterior probability for the state vector 𝑋𝑡 given prior distributions from a

model and data from observations.

The full model state is denoted by state vector 𝑋𝑡. For simplicity, it is assumed in the case study

(Kieu et al., 2020) that the state vector is fixed in size and initialised considering all of the agents

that will ever be in the system. If an agent is not yet present in the system yet, then its variables

are set to 0.

This state-space model can be represented by the state-space vector which consists of the

observation vector 𝑂𝑡 and the model parameter vector 𝑆𝑡.

𝑋𝑡 = [𝑂𝑡 , 𝑆𝑡]

𝑋𝑡 = [𝑐𝑗
𝑡 , 𝑠𝑗

𝑡 , 𝑣𝑗
𝑡 , 𝑂𝑐𝑐𝑗

𝑡, 𝐴𝑟𝑟𝑚
𝑡 , 𝐷𝑒𝑝𝑚

𝑡 , 𝑉𝑡], 𝑚 = 1, … , 𝑀

𝑀 : Number of bus stops.

𝑗 = 1, … 𝑁𝑎

Observation vector: 𝑂𝑡 = [𝑐𝑗
𝑡 , 𝑠𝑗

𝑡 , 𝑣𝑗
𝑡 , 𝑂𝑐𝑐𝑗

𝑡]

𝑐𝑗
𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑏𝑢𝑠 (𝐼𝐷𝐿𝐸, 𝑀𝑂𝑉𝐼𝑁𝐺, 𝐷𝑊𝐸𝐿𝐿𝐼𝑁𝐺 𝑜𝑟 𝐹𝐼𝑁𝐼𝑆𝐻𝐸𝐷) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑠𝑗
𝑡 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑏𝑢𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑎 1𝐷 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑣𝑗
𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑏𝑢𝑠 𝑗

𝑂𝑐𝑐𝑗
𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Model Parameter vector: 𝑆𝑡 = [𝐴𝑟𝑟𝑚
𝑡 𝐷𝑒𝑝𝑚

𝑡 𝑉𝑡]

𝐴𝑟𝑟𝑚 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑡𝑜 𝑠𝑡𝑜𝑝 𝑚 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐷𝑒𝑝𝑚 − 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑚 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑉𝑡 − 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑚𝑠−1

𝐴𝑟𝑟𝑚 = 𝑈(𝑚𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑, 𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑), 𝑚 = 1, … , 𝑀

𝐷𝑒𝑝𝑚 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑈(0.05,0.5))

𝐷𝑒𝑝𝑀 = 1

41

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑝𝑒𝑒𝑑 = 14 𝑚𝑠−1

𝑁𝑎: Number of agents i.e. buses

The problem can be represented using the form of a general nonlinear discrete-time stochastic

dynamic system.

𝑋𝑡̇ = 𝑓(𝑋𝑡) + 𝜖𝑡 .

𝑋𝑡 ∈ 𝒳

𝒳 ∈ ℝ𝑛

The process noise 𝜖𝑡 is not explicitly modelled in the case study.

The observation model is linear and defined as a measurement of the vector 𝑂𝑡 , the GPS data and

subset of the model system state 𝑋𝑡 at time 𝑡. It is assumed the assimilation window is fixed in

size and that data is assimilated at each time step of the simulation. The observation model is not

specified mathematically in the publication. The following equation is based on the code and the

qualitative description in the research article where 𝑦𝑡 represents the observation data as

mapped onto the subset of the observation vector 𝑂𝑡.which is a subset of the full state vector 𝑋𝑡.

𝑦𝑡 = 𝑂𝑡

Figure 15 shows the general format of the particle filter algorithm in relation to the other

components in the experimental setup. Figure 16 describes the case study’s implementation of

the particle filter in a flowchart. See Appendix D for the particle filter algorithm transcribed from

the implemented code in pseudocode.

Figure 15: Block Diagram of Particle Filter setup for case study

42

Figure 16: Flowchart of Particle Filter Algorithm reflecting the coded implementation. See Appendix D for the pseudocode.

43

1.18 Particle Filter Parameters
The following parameters were varied to examine their effect on the estimation accuracy of the

case study’s proposed experimental framework. The parameters that were varied are shown in

Table 7 for a fixed configuration of the BusSim-truth model - 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 = 7 and

𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑 = 2.

The configurable filter parameters in the case study’s particle filter implementation included the

number of particles, the resampling window and the jitter noise standard deviation.

The algorithm had been implemented such that a measurement arrived each timestep of the

simulation and therefore the assimilation window = 1 timestep. However, this was not variable

in the implementation but implicit in the structure of the code. Additionally, measurement noise

was not specified in the case study publication nor included as a variable in the code although

there was commented code such that measurement noise could be added if desired.

Therefore, the sensitivity analysis focussed on the primary filter parameters of the code

implementation.

Number of particles

The number of particles specifies the size of the set of particles used to approximate the

probability distribution of the system state variable.

Resample window

This parameter controls the frequency of resampling and jitter. It is specified as an integer

representing the time interval between resampling executions. Resampling is used to mitigate

particle degeneracy and also causes sample impoverishment.

Jitter Noise Standard Deviation

An independent jitter is drawn from a random Gaussian white noise 𝑗~𝒩(0, 𝜎2) in which 𝜎, the

jitter standard deviation, is predefined by the modeller. The jitter is added to each particle’s
model parameter state vector 𝑆𝑡 instead of the whole state vector 𝑋𝑡. This procedure occurs after

the resampling step to increase particle diversity and mitigate particle degeneracy. The

predefined parameter was not specified in the original publication but was hard coded in the case

study’s codebase as 0.0005.

1.19 Experimental Setup
For the following experiments, a fixed model configuration was used by setting the two main

parameters 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 = 7 (called IncreaseRate in the code scripts) and

𝑚𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑 = 2. This experiment was conducted using the calibrated BusSim-stochastic and

calibrated BusSim-deterministic models in accordance with the experimental design of fixing all

other components of the case study’s framework and using the data provided for the testing. This

setup was shown in Figure 15.

The Numpy module global random seed was initialised for these experiments to ensure

reproducibility and were specified in the code. 10 replications using 10 different seeds were

executed for each combination of the three filter parameters according to the ranges specified in

the table below. This resulted in 210 different combinations of the three parameters and for each

combination, 10 simulation replications were executed. This is the same number of replications
used in the case study’s sensitivity analysis though the low number of replications is also a

limitation of the experiment.

44

Table 7: Parameters investigated for particle filter sensitivity analysis

Filter Parameter Case Study Code
Implemented value

Values

Number of particles 500 [10, 100, 500, 1000,
2000, 3000]

Resampling window 1 [1, 10, 30, 60, 100]

Jitter noise standard
deviation

0.0005 [0, 0.0005, 0.001,
0.01, 0.1, 1, 10]

The metrics used to evaluate the prediction error in this experiment was the RMSE as was used

in the case study’s sensitivity analysis. Both the case study’s incorrectly implemented rmse

function and the implementation the correct RMSE formula were used.

The root mean squared error was calculated for the trajectories i.e. positions of the buses

predicted by each model and the ground truth trajectories and the mean RMSE was calculated

over 𝑀 = 10 replications.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑀𝑆𝐸 =
1

𝑀
∑ 𝑅𝑀𝑆𝐸

𝑀

𝑘=1

1.20 Particle Filter Sensitivity Analysis Results
In this section, results of the sensitivity analysis are discussed. For visualisation, one parameter

value was fixed, and variation of the other two parameters was shown.

The sensitivity analysis was conducted using the framework used to generate Figure 9 of the case

study publication. Therefore, the estimated RMSE values of Figure 9 calculated based on extracted

data points can be used as a point of comparison to determine whether the hard-coded values of

the filter parameters were the values used in the original case study’s experiments.

Table 8: Estimated RMSE values of the case study Figure 9 calculated from datapoints extracted using WebPlotDigitizer

Figure

Scenario

Case Study
Estimated RMSE
BusSim-
deterministic

Estimated RMSE
BusSim-
deterministic

Case Study
Estimated
RMSE BusSim-
stochastic

Estimated
RMSE
BusSim-
stochastic

9 3 51 160 39 178

45

1.20.1 Experiment 1 – Varying Number of Particles and Jitter and

Resample Window = 1

The figures display heatmaps showing the variation in the RMSE value according to the rmse()

function of the case study and the rmse_fixed() function that implemented the correct formula.

1.20.1.1 RMSE results for BusSim-deterministic

Figure 17: Average RMSE of 10 replications for BusSim-deterministic predictions under scenario 3 and varying the jitter
standard deviation and number of particles. Calculated using case study’s rmse() function

46

Figure 18: Average RMSE of 10 replications for BusSim-deterministic predictions under scenario 3 and varying the jitter
standard deviation and number of particles. Calculated using correct implementation of RMSE formula

The RMSE values resulting from the jitter standard deviation = 0 confirm the deterministic nature

of BusSim-deterministic. This experiment used the setup of Scenario 3 such that the BusSim-

deterministic model had been calibrated before the application of the particle filter algorithm.

Without the jitter standard deviation to diversify the particles, all the particles evolve in the same

way during the simulation leading to the same output. This output not only confirmed the

deterministic nature of BusSim-deterministic but also demonstrated that increasing the number

of particles when using a deterministic model did not improve prediction performance. Another

observation is that the prediction error was lowest when the jitter standard deviation was 0.01.

This value was larger than the case study’s hard-coded value of 0.0005 and demonstrated

improved performance. By tuning the jitter standard deviation, prediction error can be reduced

accordingly. This result was reflected in both the calculation using the case study’s incorrectly

implemented rmse function and the rmse_fixed function that correctly implemented the RMSE

formula. For most of the jitter values used, increasing the number of particles, decreased the

prediction error. However, this trend did not consistently apply to larger sets of 3000 particles,

at which point the drop in prediction error is less significant or the error increased. Therefore,

the use of 500 particles in the case study’s code can be considered a practical choice for

implementation though the jitter value of 0.0005 that was used could have been selected more

carefully to improve predictive accuracy.

47

1.20.1.2 RMSE results for BusSim-stochastic

Figure 19: Average RMSE of 10 replications for BusSim-stochastic predictions under scenario 3 and varying the jitter
standard deviation and number of particles. Calculated using case study’s rmse() function

48

Figure 20: Average RMSE of 10 replications for BusSim-deterministic predictions under scenario 3 and varying the
standard deviation and number of particles. Calculated using correct implementation of RMSE formula

For BusSim-stochastic, the results using the case study rmse function and the corrected

rmse_fixed function differed greatly as compared to the results of BusSim-deterministic discussed

previously. The variability of the results may be indicative of the need for more simulation runs

to produce a more accurate estimate due to the stochasticity of BusSim-stochastic. The inherent

stochasticity of the model can be seen in the variability of the prediction error results when there

is no jitter being added to the state vector and demonstrates that this uncertainty in the stochastic

model aids in producing more accurate estimations than the BusSim-deterministic model. For

most of the jitter values, increasing the number of particles above 2000 did not significantly

improve performance. The lowest RMSE value resulted from a combination of 1000 particles and

0.001 jitter standard deviation. The differences between the case study rmse and the corrected

rmse_fixed also illustrated the impact on findings due to programming errors like this as the

BusSim-stochastic model RMSE values varied greatly between the two formulae.

1.20.2 Experiment 2 – Varying Number of Particles and Resample

Window; Jitter = 0.0005

The jitter standard deviation was fixed to 0.0005 i.e. the parameter value hard-coded in the case

study’s code repository. Recall that jittering is only implemented in the algorithm when

resampling occurs. Therefore, the resample window parameter also controlled the frequency of

adding jitter to the model parameter vector. The results were visualised in the heatmaps below.

49

1.20.2.1 RMSE results for BusSim-deterministic

Figure 21: Average RMSE of 10 replications for BusSim-deterministic predictions under scenario 3 and varying the
resampling window and number of particles. Calculated using case study’s rmse() function

Figure 22: Average RMSE of 10 replications for BusSim-deterministic predictions under scenario 3 and varying the
resampling window and number of particles. Calculated using correct implementation of RMSE formula.

For BusSim-deterministic, the prediction error increased with the increasing resampling window

as seen in the figure using the correct RMSE formula. This observation follows from the previous

experiment on the matter of deterministic nature of BusSim-deterministic and how without the

50

jitter to add noise and improve particle diversity, the model was incapable of accurately

representing the pdf of the system state vector and differed from the ground truth state.

Increasing the resample window resulted in a drastic increase in prediction error, therefore, it

was reasonable to assume that the resample window parameter was set to 1 in the case study’s

original implementation. Furthermore, the results produced using the case study’s rmse function

vs the rmse_fixed function once again show the unreliability of results calculated using the case

study’s incorrect rmse function and how it can affect the overall analysis.

1.20.2.2 RMSE results for BusSim-stochastic

Figure 23: Average RMSE of 10 replications for BusSim-stochastic predictions under scenario 3 and varying the resampling
window and number of particles. Calculated using case study’s rmse() function

51

Figure 24: Average RMSE of 10 replications for BusSim-stochastic predictions under scenario 3 and varying the resampling
window and number of particles. Calculated using correct implementation of RMSE formula.

The BusSim-stochastic model also demonstrated that increasing the resample window produced

more inaccurate estimates likely due to particle degeneracy occurring without sufficient use of

resampling to mitigate the problem. This was observed in both heatmaps despite the different

rmse formulae used. Once again, it was observed that increasing the number of particles used did

not guarantee improved estimation accuracy as values of 2000 and 3000 while computationally

expensive did not significantly reduce the prediction error.

1.20.3 Discussion

The results of these experiments demonstrated that the jitter standard deviation appeared to

have a strong influence on the estimation accuracy when using the case study’s implemented

particle filter. This finding was in agreement with the findings of Malleson et al. (2020) in which

the amount of jitter added to the particles was found to be important as an overly large value can

cause the particles to deviate greatly from the true underlying system state. Jitter was

demonstrated to have a more significant impact on BusSim-deterministic. This was likely due to

lack of stochasticity in the model which can be considered equivalent to having small or no

process noise being modelled. In such cases of small or no process noise being modelled, the

particle filter is not considered to be an appropriate algorithm to apply. BusSim-stochastic with

its inherent stochasticity was less influenced by the jitter parameter as shown when the jitter

standard deviation was 0.

The number of particles employed had less of an impact than initially expected. The sensitivity
analysis proved that there appears to be a threshold at which point increasing the number of

particles did not improve estimation accuracy as it increased the prediction error. For particle

sets of 500, 1000 or 2000, the prediction error often varied slightly either decreasing or

increasing as the number of particles increased. Using 3000 particles was proven to be an

impractical choice requiring more computational time and power yet frequently resulting in

52

worsening estimation accuracy. The hard-coded parameter of 500 particles can be considered a

suitable choice though 1000 particles would have worked as well with slightly better

performance for some filter parameter configurations.

Based on the corrected RMSE calculations, BusSim-deterministic tended to have higher

prediction errors than BusSim-stochastic. This would suggest that the stochasticity of the models

contribute to the prediction error. This finding contradicted a statement made in the case study’s

article in which the two static models performed relatively the same under Scenario 2. This could

be due to the difference in the calibration settings between the case study’s original experiment

and the reproducibility experiment. There was ambiguity regarding which model’s historical data

(BusSim-truth or BusSim-stochastic) should have been used to calibrate the two static models

and ultimately, the models had been calibrated to historical data generated by BusSim-stochastic.

Furthermore, the hard-coded filter parameter values of 500 particles, 0.0005 jitter standard

deviation and resampling window of 1 timestep, were estimated to have RMSE values of 51 and

39 for BusSim-deterministic and BusSim-stochastic, respectively. These values can be compared

to the average RMSE values form the heatmaps calculated using the case study’s rmse() function,

81.3 for BusSim-deterministic and 45.1 for BusSim-stochastic under the same parameter

configuration. Differences between the values generated can be attributed to the low estimation

accuracy of the RMSE estimates calculated from extracting the datapoints in addition to

differences in the calibration of the static models. This challenge underscored the need the

provide the datasets that accompany plots or to make the datasets used in plots numerically

reproducible.

Other key parameters that should be investigated in future work include the assimilation window

and the weight function used as both parameters are known to be crucial to the performance of

the particle filter.

53

VII. Final Discussion
This project has conducted a reproducibility experiment for the selected case study with the aim

of extracting the key elements that should be documented and reported to facilitate

reproducibility of data assimilation for ABMS studies. In this section, the insights gained from the

experiments are discussed, summarised and distilled into guidelines for future reproducibility

studies and for those conducting data assimilation for ABMS studies who desire to ensure that

their work is reproducible.

1.21 Challenges for reproduction attempt
In response to the first sub-question, the main challenges encountered in the reproduction

process were identified based on the researcher’s subjective experience.

What challenges arise in attempting to reproduce a data assimilation for agent-based

simulation study using PF?

Table 9: Summary of Reproducibility Challenges

Category Challenge

Code/Packaging errors • File path errors due to use of absolute paths and not relative

paths.

• Outdated comments that were never removed. E.g. filenames

were changed but comments still refer to old names.

• No specification of software dependencies. Lack of suitable

requirements.txt or environment.yml file.

• Only partial execution pipeline described. The code relies on

previously generated files, but the Jupyter notebook provided

does not guide through the generation of all the necessary files.

• Lack of random seed management to facilitate numerically

reproducible results.

Publication - Code

implementation

Inconsistencies

1. Model formulae and equations described in publication differ

from code implementation. For example, the RMSE formula

implemented in code did not match the publication.

2. Inconsistencies between the textual description and the code

implementation.

3. Datasets specific to the plots or the results in the publication not

included in the codebase

Missing/ Ambiguous

Specifications

• Insufficient metadata for plot reproduction.

• Missing real-time datasets or “pseudo-ground truth” datasets.

• Ambiguous documentation of experimental frame used.

54

Several of the challenges encountered while attempting to reproduce the case study’s results

aligned with insights gained from existing literature. The identified challenges in the

reproduction process were very similar to the categories of replication problems identified in

Axelrod (1997): ambiguity in published descriptions, gaps in the published data and

unambiguous yet incorrect published descriptions. Examples from these categories were

observed during the reproduction process such as inconsistencies between the textual

description and the code implementation.

One of the main hindrances to the reproducibility process was the lack of metadata and

computational provenance for each of the reported results. This impeded the reproduction

process as there was much ambiguity concerning the experimental frame and parameter settings

used to generate each result.

On another note, the nature of data assimilation for ABMS was not adequately accounted for in

the codebase of the case study. To reproduce the results and figures exactly would have required

the provision of the original ground truth data used to execute the experiments. Alternatively,

had the case study initialised and recorded the random seeds used in the experiments, similar

datasets to those used in the case study’s results could have been regenerated under the identical

twin experiment framework that was employed. Had datasets from the real applications been

used, it would have been necessary to provide access to those datasets in order to reproduce the

results. Additionally, specification of the random seed would not only have contributed to

achieving reproducibility of the data assimilation and parameter calibration processes but also

would have ensured the repeatability of each simulation run of one of the agent-based models.

During the reproduction process, another major issue was discrepancies between the reported

formulae used and the code implementation i.e. there was a gap between what the author

reported and what was actually programmed. This appeared mainly in the form of the incorrectly

coded RMSE formula rmse(). Such implementation mistakes can spark reasonable doubt in the

research publication’s results. Reproducibility experiments, therefore, prove useful not only to

achieve computational reproducibility of results but to verify implementation details which is

important for future researchers who wish to reimplement or replicate the methodology for

another application.

1.22 Parameter Specifications for Particle Filter
Which properties/parameters of the research methods need to be reported to facilitate

reproducibility efforts in data assimilation for agent-based simulation studies?

By reviewing the implementation of the case study’s particle filter algorithm and comparing with

other data assimilation for ABMS literature and particle filter theory, the following properties and

parameters of the particle filter algorithm were distilled and considered important for the

reproduction and potential reuse of the particle filter by future researchers.

Table 10: Summary of Particle Filter parameters for specification

Parameters Justification for specifying the parameter
Number of particles Indicative of computational resources required for

execution and the most important hyper-parameter
with direct influence on estimation
accuracy(Malleson et al., 2020).

Weight function The weight function is typically selected by the
modeller and proportional to the likelihood function.

55

The functions used for data assimilation on agent-
based models vary across research articles.

Process noise Some studies explicitly model process noise while
others consider it negligible.
The particle filter is not the most appropriate
algorithm for estimation of models with small
process noise as if there is no process noise, particle
collapse may occur(Gordon et al., 1993).

Jittering standard deviation Impacts the particle variance based on experiments.
Important parameter as it is used to mitigate sample
impoverishment from resampling.

Resample window Important parameter to mitigate particle degeneracy
and increasing particle variance over time.

Improved state estimate calculation
from the set of particles

It is necessary to describe how the state estimate is
obtained from the posterior pdf, for instance, via
taking the mean state of all particles or by using the
state of the highest weighted particle. (Hu & Wu,
2019)

Error evaluation metric This value should be specified and verified whether
RMSE, MSE or L2-norm, SSE, or otherwise.

Assimilation window The time interval dictating when the next observation
is assimilated.

System state vector The system state vector needs to be specified as it
defines the states of the particles(Hu & Wu, 2019) and
the dimensionality of the system. As the
dimensionality increases so does the number of
particles required to suitably estimate the system
state(Malleson et al., 2020).

The case study reported its main contribution to be the framework of using parameter calibration

(CEM) and data assimilation together to improve short-term model forecasts, yet the paper

lacked documentation on the implementation of the particle filter and the values of the filter’s

parameters. While it was possible to conduct the reproductions by assuming that the filter

parameter configuration hardcoded in the case study’s source code was the same used to produce

the published results, this assumption may not always be a suitable particularly in circumstances

in which the source code published may not be the same version as the one used to produce the

published results.

Table 10 lists key elements of an implemented particle filter that should be considered in future

studies. The importance of these parameters are summarised in the table and explained in more

detail in the following paragraphs.

Assimilation Window

Regarding the implementation of the particle filter in the code, the algorithm’s implicit use of an

assimilation window of 1 by assimilating an observation at each timestep implied that the

parameter could not be varied or experimented with. Due to the importance of the assimilation

window as emphasised in literature such as Cho et al. (2020), this parameter should be included

as a variable filter parameter in particle filter implementations.

56

Number of Particles

The number of particles used is an important metric to include as generally the more particles

used the better the accuracy of the state estimate as well as the higher the computational cost(Hu

& Wu, 2019). However, from the sensitivity analysis experiment, it was shown for the case study,

there seemed to be a limit to this increase in performance because for the highest numbers of

particles, the reduction in prediction error was either minimal or did not occur as the error

increased instead due to worse estimates. Therefore, the choice of the number of particles should

be practically motivated such that estimation accuracy is sufficient for the respective problem

and also reasonable to implement regarding computational cost.

Process Noise

The modelling of the process noise in the dynamical model is of importance and can improve the

quality of the data assimilation(Wang & Hu, 2015). The researcher must choose how best to

model the process noise. In Wang and Hu (2015), the process noise is modelled by adding noise

to the state vectors of the particles after re-sampling such that the particles re-sampled from the

same parent particle can have states that differ from each other. Contrary to this idea, Lueck et al.

(2019) assume process noise is negligible in their implementation and they rely on the inherent

uncertainty in the agent-based model. It should be noted that the particle filter is not a suitable

algorithm in the case when the process noise is zero. Furthermore, if the process noise is very

small, particle collapse will occur in a few iterations due to the resampling step reducing the

diversity of the particles(Arulampalam et al., 2002). The effect of small or no process noise in the

system model was demonstrated in the earlier sensitivity analysis in which the prediction error

of BusSim-deterministic was evaluated without any jittering. Without uncertainty or noise in the

system model, the prediction error increased, and the particles were not an accurate

approximation of the posterior pdf of the system state variable.

Performance Evaluation Metric

The formula of the metric used for the prediction error is significant because as shown in the case

study, it can be implemented incorrectly, and it is important to know whether the entire state

vector or only a subset of the state vector is being evaluated. In the case study, the RMSE was

calculated using only the bus trajectories which represent a subset of the system state vector 𝑋𝑡.

Weight Function

The weights of the particle filter are usually updated by the likelihood function but more generally

can be updated using any importance function(Gustafsson et al., 2002). In the reviewed literature,

the definition of the likelihood function used for the weight calculation varies across research

articles applying the particle filter to agent-based models(Kreuger & Osgood, 2015; Malleson et

al., 2020; Wang & Hu, 2015). Additionally, the weight function and the method for extracting the

state estimate from the posterior pdf of the system state variable should be implemented using a

modular approach such that alternative functions can be employed to achieve better state

estimates.

Measurement Model and Measurement Noise

The measurement or observation model is a key part of the data assimilation problem setup and

as such, should be stated explicitly. The observation equation and its statistical equivalent the

likelihood function impact the weighting of the particle filter as the weights of the particles are

proportional to the likelihood function. The measurement model defines the mapping between

the system state vector and the observation data. The model should be formulated based on the

sensors used to collect the data. The measurement noise is also an important part of the model

57

because the more accurate the observation data (i.e. the less noise) the better the estimation

results.(Hu & Wu, 2019). The system state vector of the ABMs in the case study was well-

described in the article, however, the observation model was not formally specified but only

qualitatively described. Moreover, the case study did not specify whether any observation noise

was added which was also reflected in the code.

Further considerations

To reproduce and evaluate the efficacy of the data assimilation method, it was necessary to fix

other components in the experiment: the dynamic model used (BusSim-stochastic and BusSim-

deterministic) and the ‘real-world’ model producing the ground truth data (BusSim-truth).

Therefore, in addition to specifying the features and parameters of the filtering algorithm used, it

is also necessary to specify the experimental frame employed for the data assimilation

experiments. For example, it was observed that Figure 9 of the case study, did not specify the

values for the maxDemand and dynamic change rate parameters used and therefore lacked

information on the specific model configuration and datasets used for Scenario 3 in which both

parameter calibration and data assimilation were applied.

Apart from this, a key element is to identify whether the data assimilation for ABMS study used

collected sensor data from the real system or an identical twin framework. The real-time data

used in the original study needs to be made available whether from the real system or generated

from a simulation model. Alternatively, the model run used to generate the real-time data could

be setup to reproduce the same data during each simulation run. The availability of this real-time

data dictates the level of reproducibility of the overall study.

 In Figure 25, a diagram is shown containing the various elements that should be specified for a

study applying the particle filter to an ABM and the data that should be specified and stored in

such research to ensure reproducibility of results.

58

Figure 25: Diagram showing the generalised elements and parameters of data assimilation for ABMS study that require
specification to facilitate reproducibility of results.

59

1.23 Guidelines for reproduction process
What procedure can be used to guide future reproducibility efforts in data assimilation for

agent-based simulation studies?

In Table 11, general steps have been drafted to guide future reproducibility studies. These

guidelines are based on the experience of the researcher during the reproduction of the case

study as well as insights gathered from the relevant literature.

Table 11: Protocol for Reproducibility Experiments

 Steps Description
1 Gather all relevant materials from the

selected research study for the
reproducibility attempt

This would include the research article,
supporting materials, all digital artefacts such
as archived code and data. Any resources
provided by the author as part of the research
compendium.

2 Ascertain the software
requirements/dependencies and
hardware requirements for the study if
any.

Descriptions of software and hardware
requirements may be included in the
publication by the author or be included in a
README or other form of code documentation.

Determine whether the reproducibility attempt
is feasible based on the accessibility of the
required software and the hardware resources
available to the reproduction researcher.

3 Determine the aim, general experimental
setup and methodology of the study

Review the research article and the research
compendium and note the general steps of the
study to be followed.

4 Select the results from the research
article to reproduce

Results can take different forms including
figures/plots, numerical data in tables,
qualitative descriptions or conclusions drawn
from the study

5 Map or trace the workflow required to
produce each of the results and formulate
as a diagram.

For each result, attempt to trace which datasets,
functions and parameters were used to
generate it. This requires reviewing both the
descriptions in the publication as well as the
code provided. Note any processes or
parameters for which there is no information or
where the steps used to create the result are
ambiguous.

Check for the use of literate programming for
example in the form of Jupyter notebooks that
may provide benchmark examples explaining
the workflow used or which may already
reproduce results from the publication.

In the case of missing or ambiguous
information, the reproduction researcher may
wish to contact the author of the paper.
Alternatively, assumptions can be made based
on reasonable justifications and noted for future
reference.

60

6 Assess the reproducibility level of the

results using a reproducibility
framework from literature.

Using the map created in the previous step,
determine the expected degree of
reproducibility of the result based on the
specificity of the workflow and the information
that is missing.

7 Select potential metrics or measures that
could be used to assess the
reproducibility of each result.

Statistical analyses can be used for numerical
results depending on the information available.
Subjective assessments may be required for
qualitative results.

Note the number of simulations (i.e. sample
size) used in the estimation of results in the
original study and how this might affect the
choice of metric.

8 Recreate the results Execute the code required to recreate the
results and store the appropriate information
required for later analysis.

Keep a log of all errors encountered, steps taken
to resolve them and assumptions made.

Depending on the quality of code available, this
step will require possible debugging.

9 Evaluate reproduced results using
suitable metrics

Evaluate the reproduction using the previously
selected metrics. Note any discrepancies found.

10 Repeat steps 7-9 until satisfactory results
have been obtained or sufficient effort
has been expended in pursuit of
reproduced results.

The metric chosen may not be the most suitable
depending on the power of the original study or
the reproduced study.

Debug and identify the causes of the
discrepancies. Resolve them if possible and
record them otherwise if they impede the
reproduction process.

11 Include a reflection or subjective
assessment on the reproduction process.

Note limitations of both the original study and
the reproduction attempt. Reflect on
assumptions made and any ambiguities found.

61

The following questions in Table 122 can be used to collect the required information needed to

formulate the case study’s computational workflow similar to Figure 3. The questions in this table

can aid in step 5 of the reproducibility protocol. See the Appendix A: Experiment Log for an

example of these questions applied to the case study for the process of reproducing figures and

tables.

Table 12: Guiding questions for deducing computational workflows

Questions Description
What is the result as described in the
publication?

For a graph, what is plotted on the axes?
For numerical results, this could refer to a
calculated metric.

What is the interpretation/conclusion drawn
from the result?

List the conclusions or insights drawn from
the result by the author in the original study.

Where is the code to generate this result
located?

Has the code to generate this result been
provided? If the code to generate this result is
provided, list the files or functions used to
produce the result.

How is this result generated/defined in the
code?

Review the source code and/or comments for
the description of the result and check
whether it agrees with the description in the
publication.

Which datasets or files are required to
reproduce this result?

Determine which datasets are required to
produce the result.

Which model is used to produce the
data/results?

If the dataset was generated by the code,
determine which model or process was used.
If the dataset required is external to the
project, check whether it was included in the
relevant materials.

What are the parameter settings required to
produce the results using the model?

List the parameters of the model used to
generate the datasets. Any assumptions made
are justified and recorded.

62

VIII. Conclusion
This thesis project has investigated the reproducibility of a published simulation study in the field

of data assimilation for ABMS.

From this attempt, challenges characteristic of the reproduction process were identified. These

challenges were aligned with the difficulties typically experienced by other researchers

conducting reproducibility studies and/or replication studies which were explained in the earlier

chapters. The errors can largely be divided into issues of code quality and software dependencies;

ambiguous or missing specifications regarding the methodology and inconsistencies between

textual descriptions and implemented code which is similar to the categories derived from the

replication experience in Axelrod (1997). Another challenge was the assessment of a successful

reproduction. The use of a single quantitative metric such as the confidence interval had several

limitations. Another avenue for assessing reproducibility apart from metrics is the use of

frameworks for classifying the experiments. This is a more accessible means of assessing

reproducibility especially for researchers interested in ensuring the reproducibility of their own

work by others as the emphasis is in the communication and transparency of the research rather

than the correctness of the study. Though this does not detract from the importance of proper
simulation study design. Statistical metrics may be more suited for validating the adequacy and

statistical power of study’s design in the case of replication whereas the frameworks focus on

evaluating only the level of documentation and reporting which are indicative of the degree of

result reproducibility that can be achieved.

Further to these insights, a protocol was derived from the reproduction attempt to provide

guidance to future researchers attempting to reproduce other scientific works. The protocol

along with the challenges can aid other researchers in the execution of future reproducibility

studies and provides insights as to what to expect when navigating published code repositories.

The particle filter algorithm employed in the study was also tested by conducting a sensitivity

analysis for key parameters and comparing the implementation to existing literature. Though this

part of the study was limited in the range of its exploration, it helped to investigate the influence

of the parameters: number of particles, jitter standard deviation and the resampling window on

the estimation accuracy of the results. Based on this analysis and that of existing literature, some

key properties of the particle filter that should be specified in future studies were identified. Apart

from this, elements required to reproduce data assimilation for ABMS research were also

indicated including the specifying the experimental frame and whether an identical twin

framework is being used.

These insights into data assimilation for ABMS resulting from this thesis can be considered a step

towards encouraging reproducible and reusable research in this field such that both researchers

interested in conducting reproducibility studies and those interested in ensuring their research

is reproducible can benefit from this project’s findings.

Note that this study has only sought to verify the computational workflow and implementation of

the case study and not to validate its methodology. It should be noted that computational

reproducibility is a basic requirement for science and that higher levels of such as replicability

should also be considered in one’s research.

63

1.24 Limitations

• Firstly, the findings of this thesis project were based on a single reproducibility attempt. To

test the generalisability and applicability of the proposed protocol would require further

reproducibility experiments to be conducted.

• There is always a bias in reproducibility studies related to the level of expertise of the

researcher who attempted the reproduction. This must be accounted for when assessing the

results of this project.

• The author of the case study was not contacted during the reproducibility study. While it is

not always necessary to contact the author if sufficient details and code artefacts are available,

many code review processes rely on open communication between the author and reviewer

for the code review for journals. However, this study was more than a code review and the

reviewer also took on the role of an independent researcher who wished to not only

reproduce but understand the method proposed in the original paper for potential future

applications.

• Many reproducibility guidelines and those that promote open science practices, have

advocated for the registration of reproducibility studies by publishing the study protocol

prior to engaging in the research. This was not done for this study.

• Limited computational power and time was available to increase the number of simulation

replications and reduce the Monte Carlo Standard Error.

• Extracting data from figures using WebPlotDigitizer has been found to have a small margin of

error(Burda et al., 2017) which would have affected the accuracy of the RMSE estimates.

1.25 Recommendations/Future work
An important topic of future research is how to assess the results of a reproducibility study. Many

researchers have published studies on this subject whether the methods be statistical analyses

or subjective in nature and based on expert opinion. Works such as Gundersen (2021) also call
for the research community to question and define what exactly is meant by the ‘result’ that

replication studies try to compare. The most suitable metric to use for a reproducibility study

depends on the result being reproduced and the amount of data and information available in the

original publication. A possible future work could involve extensive testing of a variety of

statistical measures for assessing reproducibility to better understand the properties best

captured by each metric and potentially derive guidelines for selecting a diverse set of metrics for

a reproducibility experiment such as was done for transportation metrics in Jafino et al. (2020).

On the subject of data assimilation for ABMS, an expanded sensitivity analysis exploring the

choice of weight function, the assimilation window, measurement noise and other parameters

not directly investigated in this thesis would be useful to better understand how critical these

choices are to the accuracy of the algorithm when applied to ABMS.

1.26 Reflection
Research in data assimilation applied to ABMS required an understanding of not only the data

assimilation algorithm but the ABM being used. The stochasticity of both elements needed to be

considered. It was initially thought that the ABM could be thought of as a black-box model because
the data assimilation algorithm did not impact the model structure. However, during the

reproduction process, it was necessary to understand the model in order to debug the errors that

were encountered as well as to understand the parameters included in the state vector.

64

Reproducing the case study showed that even research publications with seemingly organised

and detailed source code and text description can contain mistakes and lack information that can

be easily missed. One such example was the incorrectly implemented rmse function.

While this project has focussed on verification and the computational reproducibility of published

research, there are other perspectives on the issue which have not been touched upon.

Reproducibility is seen as a standard requirement of scientific research, but replicability,

reusability, robustness and generalisability of the research are all higher standards for which

repeatability and reproducibility are necessary requirements. To ensure reproducibility, many

journals and in response researchers are providing code and data to accompany their research

publications, however, there are some disagreements on this point.

The opinion paper by Miłkowski et al. (2018) discusses that in computational studies, model

validation efforts are more valuable than model verification. The author states that many

researchers fall into the trap of writing too much which sometimes results in giving too much

detail to some aspects and too little in others. Miłkowski et al. (2018) proposed that research

papers should contain only the information needed to recreate the model and assess its

relationship to the intended target. The article differentiates between the purpose of publication

and the purpose of code repositories in that repositories facilitate code reuse and reproducibility

whereas publication serves a different function from code.

By taking this perspective, one could argue that reproducibility is not the requirement of the

research article but of the archived digital artefacts that support the research. Therefore,

standards can be created for the publication of research articles which would differ from the

publication or release of the associated software artefacts in repositories.

On another note, the research process is not linear workflow but an iterative one and a learning

process. This makes it difficult for researchers under pressure to publish or meet deadlines

capable of ensuring their work is reproducible. Given the difficulty in assessing reproducibility

using metrics, the current approach of code review processes to leave the decision of

reproducible or not up to the code reviewer is a sensible decision. The promotion of the use of

reproducibility frameworks in such reviews would be helpful to identify the level of

reproducibility to be expected from independent researchers interested in reusing or reapplying

published methods. In doing this, publications could be given a credibility or reusability score like

a citation score depending on the number of researchers able to independently adapt or

reproduce a particular research paper.

65

References
Aarts, A., Anderson, J., Anderson, C., Attridge, P., Attwood, A., Axt, J., Babel, M., Bahní k, S ., Baranski,

E., Barnett-Cowan, M., Bartmess, E., Beer, J., Bell, R., Bentley, H., Beyan, L., Binion, G.,
Borsboom, D., Bosch, A., Bosco, F., & Pen, M. (2015). Estimating the reproducibility of
psychological science. Science, 349. https://doi.org/10.1126/science.aac4716

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50(2), 174-188. https://doi.org/10.1109/78.978374

Axelrod, R. (1997). Advancing the Art of Simulation in the Social Sciences. In R. Conte, R.
Hegselmann, & P. Terna, Simulating Social Phenomena Berlin, Heidelberg.

Axtell, R., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation models: A case
study and results. Computational & Mathematical Organization Theory, 1(2), 123-141.
https://doi.org/10.1007/BF01299065

Burda, B. U., O'Connor, E. A., Webber, E. M., Redmond, N., & Perdue, L. A. (2017). Estimating data
from figures with a Web-based program: Considerations for a systematic review. Research
Synthesis Methods, 8(3), 258-262. https://doi.org/https://doi.org/10.1002/jrsm.1232

Chirigati, F. S., Troyer, M., Shasha, D. E., & Freire, J. (2013). A Computational Reproducibility
Benchmark. IEEE Data Eng. Bull., 36(4), 54-59.

Cho, Y., Huang, Y., & Verbraeck, A. (2020). Strategic Use of Data Assimilation for Dynamic Data-
Driven Simulation. In V. V. Krzhizhanovskaya, G. Za vodszky, M. H. Lees, J. J. Dongarra, P.
M. A. Sloot, S. Brissos, & J. Teixeira, Computational Science – ICCS 2020 Cham.

Dalle, O. (2012, 9-12 Dec. 2012). On reproducibility and traceability of simulations. Proceedings
of the 2012 Winter Simulation Conference (WSC),

Davidson, S. B., & Freire, J. (2008). Provenance and scientific workflows: challenges and
opportunities Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, Vancouver, Canada. https://doi.org/10.1145/1376616.1376772

Doucet, A., De Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice.
Springer.

Edmonds, B., & Hales, D. (2003). Replication, Replication and Replication: Some hard lessons from
model alignment. Jasss-The Journal Of Artificial Societies And Social Simulation, 6, U227-
U253.

Edmonds, B., & Hales, D. (2005). Computational Simulation as Theoretical Experiment. The
Journal of Mathematical Sociology, 29(3), 209-232.
https://doi.org/10.1080/00222500590921283

Eglen, S., & Nu st, D. (2019). CODECHECK: An open-science initiative to facilitate sharing of
computer programs and results presented in scientific publications. Septentrio Conference
Series(1). https://doi.org/10.7557/5.4910

Epskamp, S. (2019). Reproducibility and Replicability in a Fast-Paced Methodological World.
Advances in Methods and Practices in Psychological Science, 2(2), 145-155.
https://doi.org/10.1177/2515245919847421

Evensen, G., Vossepoel, F. C., & Van Leeuwen, P. J. (2022). Data assimilation fundamentals: A unified
formulation of the state and parameter estimation problem. Springer Nature.

Fitzpatrick, B. G. (2019). Issues in Reproducible Simulation Research. Bulletin of mathematical
biology, 81(1), 1–6. https://doi.org/https://doi.org/10.1007/s11538-018-0496-1

Freire, J., & Chirigati, F. (2018). Provenance and the different flavors of computational
reproducibility. IEEE Data Engineering Bulletin, 41(1), 15.

Gala n, J. M., & Izquierdo, L. (2005). Appearances Can Be Deceiving: Lessons Learned Re-
Implementing Axelrod's 'Evolutionary Approach to Norms'. Journal of Artificial Societies
and Social Simulation, 8.

Ghorbani, A., Ghorbani, V., Nazari-Heris, M., & Asadi, S. (2023). Data Assimilation for Agent-Based
Models. Mathematics, 11(20).

https://doi.org/10.1126/science.aac4716
https://doi.org/10.1109/78.978374
https://doi.org/10.1007/BF01299065
https://doi.org/https:/doi.org/10.1002/jrsm.1232
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1080/00222500590921283
https://doi.org/10.7557/5.4910
https://doi.org/10.1177/2515245919847421
https://doi.org/https:/doi.org/10.1007/s11538-018-0496-1

66

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE proceedings F (radar and signal processing),

Grazzini, J., Richiardi, M. G., & Tsionas, M. (2017). Bayesian estimation of agent-based models.
Journal Of Economic Dynamics & Control, 77, 26-47.
https://doi.org/10.1016/j.jedc.2017.01.014

Gundersen, O. E. (2021). The fundamental principles of reproducibility. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
379(2197), 20200210. https://doi.org/doi:10.1098/rsta.2020.0210

Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., & Nordlund, P.-J.
(2002). Particle filters for positioning, navigation, and tracking. IEEE Transactions on
Signal Processing, 50(2), 425-437.

Hernandez, J. A., & Colom, M. (2025). Reproducible research policies and software/data
management in scientific computing journals: a survey, discussion, and perspectives
[Original Research]. Frontiers in Computer Science, Volume 6 - 2024.
https://doi.org/10.3389/fcomp.2024.1491823

Heroux, M. A. (2015). Editorial: ACM TOMS Replicated Computational Results Initiative. ACM
Trans. Math. Softw., 41(3), Article 13. https://doi.org/10.1145/2743015

Heyard, R. A scoping review on metrics to quantify reproducibility. Retrieved 19 July 2025 from
http://rachelhey.github.io/reproducibility_metrics/

Heyard, R., Pawel, S., Frese, J., Voelkl, B., Wu rbel, H., McCann, S., Held, L., Wever, K. E., Hartmann,
H., Townsin, L., & Zellers, S. (2025). A scoping review on metrics to quantify
reproducibility: a multitude of questions leads to a multitude of metrics. Royal Society
Open Science, 12(7), 242076. https://doi.org/doi:10.1098/rsos.242076

Hu, X., & Wu, P. (2019). A Data Assimilation Framework for Discrete Event Simulations. ACM
Trans. Model. Comput. Simul., 29(3), Article 17. https://doi.org/10.1145/3301502

Jafino, B. A., Kwakkel, J., & Verbraeck, A. (2020). Transport network criticality metrics: a
comparative analysis and a guideline for selection. Transport Reviews, 40(2), 241-264.
https://doi.org/10.1080/01441647.2019.1703843

Kieu, L.-M., Malleson, N., & Heppenstall, A. (2020). Dealing with uncertainty in agent-based
models for short-term predictions. Royal Society Open Science, 7(1), 191074.
https://doi.org/10.1098/rsos.191074

Kreuger, K., & Osgood, N. (2015, 6-9 Dec. 2015). Particle filtering using agent-based transmission
models. 2015 Winter Simulation Conference (WSC),

Liu, J. S. (2001). Monte Carlo strategies in scientific computing. Springer.
Lueck, J., Rife, J. H., Swarup, S., & Uddin, N. (2019, 8-11 Dec. 2019). Who goes there? Using an

agent-based simulation for tracking population movement. 2019 Winter Simulation
Conference (WSC),

Luijken, K., Lohmann, A., Alter, U., Claramunt Gonzalez, J., Clouth, F. J., Fossum, J. L., Hesen, L.,
Huizing, A. H. J., Ketelaar, J., Montoya, A. K., Nab, L., Nijman, R. C. C., Penning de Vries, B. B.
L., Tibbe, T. D., Wang, Y. A., & Groenwold, R. H. H. (2024). Replicability of simulation
studies for the investigation of statistical methods: the RepliSims project. Royal Society
Open Science, 11(1), 231003. https://doi.org/10.1098/rsos.231003

Malleson, N. (2018). Data Assimilation for Agent-Based Modelling. https://urban-
analytics.github.io/dust/index.html

Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A., & Heppenstall, A. (2020). Simulating
Crowds in Real Time with Agent-Based Modelling and a Particle Filter. Journal of Artificial
Societies and Social Simulation, 23(3), 3. https://doi.org/10.18564/jasss.4266

McLean, T., & Fujimoto, R. (2000, 28-31 May 2000). Repeatability in real-time distributed
simulation executions. Proceedings Fourteenth Workshop on Parallel and Distributed
Simulation,

Miłkowski, M., Hensel, W. M., & Hohol, M. (2018). Replicability or reproducibility? On the
replication crisis in computational neuroscience and sharing only relevant detail. Journal
of Computational Neuroscience, 45(3), 163-172. https://doi.org/10.1007/s10827-018-
0702-z

https://doi.org/10.1016/j.jedc.2017.01.014
https://doi.org/doi:10.1098/rsta.2020.0210
https://doi.org/10.3389/fcomp.2024.1491823
https://doi.org/10.1145/2743015
http://rachelhey.github.io/reproducibility_metrics/
https://doi.org/doi:10.1098/rsos.242076
https://doi.org/10.1145/3301502
https://doi.org/10.1080/01441647.2019.1703843
https://doi.org/10.1098/rsos.191074
https://doi.org/10.1098/rsos.231003
https://urban-analytics.github.io/dust/index.html
https://urban-analytics.github.io/dust/index.html
https://doi.org/10.18564/jasss.4266
https://doi.org/10.1007/s10827-018-0702-z
https://doi.org/10.1007/s10827-018-0702-z

67

Monti, C., Pangallo, M., De Francisci Morales, G., & Bonchi, F. (2023). On learning agent-based
models from data. Scientific Reports, 13(1), 9268. https://doi.org/10.1038/s41598-023-
35536-3

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical
methods. Statistics in Medicine, 38(11), 2074-2102.
https://doi.org/https://doi.org/10.1002/sim.8086

Muradchanian, J., Hoekstra, R., Kiers, H., & van Ravenzwaaij, D. (2021). How best to quantify
replication success? A simulation study on the comparison of replication success metrics.
Royal Society Open Science, 8(5), 201697. https://doi.org/doi:10.1098/rsos.201697

Murata, R., & Tanaka, K. (2025). Dynamic Estimation of Customer Movements by Agent-Based
Simulation with Particle Filter. In P. Mathieu & F. De la Prieta, Advances in Practical
Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection
Cham.

National Academies of Sciences, E., & Medicine. (2019). Reproducibility and Replicability in
Science. The National Academies Press. https://doi.org/doi:10.17226/25303

Nu st, D., & Eglen, S. (2021). CODECHECK: an Open Science initiative for the
independent execution of computations underlying research articles during peer review
to improve reproducibility [version 2; peer review: 2 approved]. F1000Research, 10(253).
https://doi.org/10.12688/f1000research.51738.2

Oswald, Y., Malleson, N., & Suchak, K. (2024). An Agent-Based Model of the 2020 International
Policy Diffusion in Response to the COVID-19 Pandemic with Particle Filter [Article].
JASSS, 27(2), Article 3. https://doi.org/10.18564/jasss.5342

Plave n-Sigray, P., Matheson, G. J., Schiffler, B. C., & Thompson, W. H. (2017). The readability of
scientific texts is decreasing over time. eLife, 6, e27725.
https://doi.org/10.7554/eLife.27725

Plesser, H. E. (2018). Reproducibility vs. Replicability: A Brief History of a Confused Terminology
[Opinion]. Frontiers in Neuroinformatics, Volume 11 - 2017.
https://doi.org/10.3389/fninf.2017.00076

Raghupathi, W., Raghupathi, V., & Ren, J. (2022). Reproducibility in Computing Research: An
Empirical Study. IEEE Access, 10, 29207-29223.
https://doi.org/10.1109/ACCESS.2022.3158675

Rai, S., & Hu, X. (2013). Behavior pattern detection for data assimilation in agent-based simulation
of smart environments. Proceedings - 2013 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IAT 2013,

Rohatgi, A. WebPlotDigitizer. In (Version 5.2) https://automeris.io
Stodden, V., Guo, P., & Ma, Z. (2013). Toward Reproducible Computational Research: An Empirical

Analysis of Data and Code Policy Adoption by Journals. PLoS ONE, 8(6), e67111.
https://doi.org/10.1371/journal.pone.0067111

Stodden, V., Seiler, J., & Ma, Z. (2018). An empirical analysis of journal policy effectiveness for
computational reproducibility. Proceedings of the National Academy of Sciences, 115(11),
2584-2589. https://doi.org/doi:10.1073/pnas.1708290115

Supporting computational reproducibility through code review. (2021). Nature Human
Behaviour, 5(8), 965-966. https://doi.org/10.1038/s41562-021-01190-w

Tang, D., & Malleson, N. (2022). DATA ASSIMILATION WITH AGENT-BASED MODELS USING
MARKOV CHAIN SAMPLING [Preprint]. arXiv.
https://doi.org/10.48550/arXiv.2205.01616

Taylor, S. J. E., Anagnostou, A., Fabiyi, A., Currie, C., Monks, T., Barbera, R., & Becker, B. (2017, 3-6
Dec. 2017). Open science: Approaches and benefits for modeling & simulation. 2017
Winter Simulation Conference (WSC),

Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L., Zander, J., & Mosterman, P. J. (2015). Grand
challenges for modeling and simulation: simulation everywhere—from
cyberinfrastructure to clouds to citizens. SIMULATION, 91(7), 648-665.
https://doi.org/10.1177/0037549715590594

https://doi.org/10.1038/s41598-023-35536-3
https://doi.org/10.1038/s41598-023-35536-3
https://doi.org/https:/doi.org/10.1002/sim.8086
https://doi.org/doi:10.1098/rsos.201697
https://doi.org/doi:10.17226/25303
https://doi.org/10.12688/f1000research.51738.2
https://doi.org/10.18564/jasss.5342
https://doi.org/10.7554/eLife.27725
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1109/ACCESS.2022.3158675
https://automeris.io/
https://doi.org/10.1371/journal.pone.0067111
https://doi.org/doi:10.1073/pnas.1708290115
https://doi.org/10.1038/s41562-021-01190-w
https://doi.org/10.48550/arXiv.2205.01616
https://doi.org/10.1177/0037549715590594

68

Trisovic, A., Durbin, P., Schlatter, T., Durand, G., Barbosa, S., Brooke, D., & Crosas, M. (2020).
Advancing Computational Reproducibility in the Dataverse Data Repository Platform
Proceedings of the 3rd International Workshop on Practical Reproducible Evaluation of
Computer Systems, Stockholm, Sweden. https://doi.org/10.1145/3391800.3398173

van Leeuwen, P. J. (2015). Nonlinear Data Assimilation for high-dimensional systems. In
Nonlinear Data Assimilation (pp. 1-73). Springer International Publishing.
https://doi.org/10.1007/978-3-319-18347-3_1

Wang, M., & Hu, X. (2015). Data assimilation in agent based simulation of smart environments
using particle filters. Simulation Modelling Practice and Theory, 56, 36-54.
https://doi.org/https://doi.org/10.1016/j.simpat.2015.05.001

Wikle, C. K., & Berliner, L. M. (2007). A Bayesian tutorial for data assimilation. Physica D: Nonlinear
Phenomena, 230(1), 1-16. https://doi.org/https://doi.org/10.1016/j.physd.2006.09.017

Wilensky, U., & Rand, W. (2007). Making Models Match: Replicating an Agent-Based Model.
Journal of Artificial Societies and Social Simulation, 10(4), 2.
https://www.jasss.org/10/4/2.html

Williams, C., Yang, Y., Lagisz, M., Morrison, K., Ricolfi, L., Warton, D. I., & Nakagawa, S. (2024).
Transparent reporting items for simulation studies evaluating statistical methods:
Foundations for reproducibility and reliability. Methods in Ecology and Evolution,
n/a(n/a). https://doi.org/https://doi.org/10.1111/2041-210X.14415

Yilmaz, L. (2011). Reproducibility in modeling and simulation research. SIMULATION, 87(1-2), 3-
4. https://doi.org/10.1177/0037549710387316

Yilmaz, L., & O ren, T. (2013). Toward Replicability-Aware Modeling and Simulation: Changing the
Conduct of M&S in the Information Age. In A. Tolk (Ed.), Ontology, Epistemology, and
Teleology for Modeling and Simulation: Philosophical Foundations for Intelligent M&S
Applications (pp. 207-226). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-31140-6_11

Zhang, J., & Robinson, D. T. (2021). Replication of an agent-based model using the Replication
Standard. Environmental Modelling & Software, 139, 105016.
https://doi.org/https://doi.org/10.1016/j.envsoft.2021.105016

https://doi.org/10.1145/3391800.3398173
https://doi.org/10.1007/978-3-319-18347-3_1
https://doi.org/https:/doi.org/10.1016/j.simpat.2015.05.001
https://doi.org/https:/doi.org/10.1016/j.physd.2006.09.017
https://www.jasss.org/10/4/2.html
https://doi.org/https:/doi.org/10.1111/2041-210X.14415
https://doi.org/10.1177/0037549710387316
https://doi.org/10.1007/978-3-642-31140-6_11
https://doi.org/10.1007/978-3-642-31140-6_11
https://doi.org/https:/doi.org/10.1016/j.envsoft.2021.105016

69

Appendix A: Experiment Log
17/04/2025

Preamble:

After much experimentation and debugging, the case study code now produces plots that are

visually similar to the plots from the publication base on face validation. Details of this process

can be found in the change/log and README.md file of the github repository.

 I will now proceed to list a series of experimental checks to be done to confirm reproducibility of

the results.

• Experiment 1a: Reproducing Publication Results

o maxDemand low passenger high passenger plot max Demand= 0.5% and

maxDemand = 2%

o Dynamic change rate plot 1% and 10%

o This will require produce plots for each scenario with setting maxDemand = 2 and

dynamic change rate = 7%.

• Experiment 1b: Reproducing Publication Results (10 replications per scenario

experiment and average RMSE values reported)

o Producing the sensitivity analysis RMSE results

o maxDemand range(0.5, 4.5, 0.5)

o dynamic change rate range(0,17.5,2.5)

• Experiment 2: Using the codebase with the original data and calibration files to reproduce

the results from the paper. (Essentially using doing experiment 1 using the data files

present. Recall that BuSim_experiments.ipynb does not regenerate certain data files

which are included in the Data/ and required for further calculations).

• Experiment 3: Reproducing the data provided in the codebase download i.e. the original

data and calibration files.

70

1.27 Experiment 1

1.27.1 Figure 5

Figure 26: Original Figure 5 Plot: Synthetic bus GPS trajectory at low and high passenger demand. Red, dashed lines are
bus trajectories when maxDemand equals 0.5, while black, colid lines re bus trajectories when maxDemand equals 2

Figure description from publication:

Figure 5 gives insight into the differences in bus trajectories when maxDemand=0.5 and 2. When

maxDemand=minDemand=0.5, BusSim-truth reduces to a deterministic model.

Interpretation of the Figure from publication:

As maxDemand increases there are more delays for individual buses and it is less likely that a

stable headway can be maintained between the buses.

Where is the code to generate this plot found?

The code to generate this plot is found in BusSim_stochastic.py instead of BusSim_truth.py. The

codebase appears to have been set up to use BusSim-stochastic for this plot using maxDemand =

0.5 and maxDemand = 3. The tester has extracted the plot generation code from the

BusSim_stochastic.py and adapted it for use with BusSim-truth model as indicated by the

research publication.

What is plotted on the figure according to the code?

The code plots variables x and t. X refers to the trajectory of each bus trajectory refers to a list

storing bus positions after each model timestep.

Which data files are required to reproduce this figure?

No data files are required to produce this figure as it is generated by running BusSim-truth.

Which model is used to produce the necessary files?

71

According to the publication, BusSim-truth. However, the codebase was setup to use BusSim-

stochastic.

What are the parameter settings required for the model to produce the data files?

maxDemand = 0.5

maxDemand = 2

Unspecified parameters required to produce plots:

Unspecified parameters Assumed value for testing
dynamic change rate, ξ
(variable name: IncreaseRate)

1

Note: If BusSim-stochastic were used to create this figure as indicated by the code, no dynamic

change rate parameter would be required because the BusSim-stochastic is a static model.

Reproduced Figure

Reproduced figure 5 using BusSim-truth

Reproduced figure 5 using BusSim-stochastic

72

1.27.2 Figure 6

Figure 27: Original Figure 6 plot: Synthetic bus GPS trajectory with two different values of ξ.

Figure description from publication:

Dynamic change rate parameter, ξ, is equal to 1% and 10%.

Interpretation of the Figure from publication:

Because arrival rate and traffic speed gradually change, there is little change in bus trajectories

of BusSim-truth with 𝜉 = 1% and 𝜉 = 10%. As time passes there are more delays for BusSim-

73

truth 𝜉 = 10% because there are more passengers (higher arrival rate) and the buses are

travelling slower (lower traffic speed).

Where is the code to generate this plot found?

Code to generate figure 6 appears to be located in the main function of BusSim_truth.py.

What is plotted on the figure according to the code?

The code plots variables x and t. x refers to the trajectory of each bus. trajectory refers to a list

storing bus positions after each model timestep.

Which data files are required to reproduce this figure?

No data files are required for this process because they are generated by the model.

Which model is used to produce the necessary files?

BusSim-truth is used.

What are the parameter settings required for the model to produce the data files?

𝜉 = 1%

𝜉 = 10%

Unspecified parameters Assumed value Comments
maxDemand 1 This value and others

were set in the code but
not specified in the
publication explicitly. As
no changes were made to
the code that produces
this plot the parameters
set in the code are
assumed to be correct.

74

Reproduced Figure 6

75

1.27.3 Figure 7

Figure 28: Original Figure 7 Plot: Prediction results from scenario 1: no calibration

Figure description from publication:

Scenario 1: no calibration (benchmark)

An example of prediction results where maxDemand = 2 and 𝜉 = 7%.

Interpretation of the Figure from publication:

Both static models poorly predict the trajectories of the ‘real’ buses. Gaps between the real

trajectories widen as the buses operate (as the distance and time increase). Models are shown to

diverge from reality which is expected because the models do not have optimal parameters to

capture the bus route operations.

Where is the code to generate this plot found?

Code to generate this plot adapted from A02_doing_nothing_analysis.IncreaseRate_analysis()

method.

What is plotted on the figure according to the code?
The bus trajectories for all the models.

𝑥, 𝑡 , 𝑥2, 𝑡2, 𝑥3, 𝑡3

Which data files are required to reproduce this figure?

BusSim-truth needs to be executed beforehand to create Real-time_data_IncreaseRate_X.pkl files.

This is then read into memory and compared to BusSim-deterministic and BusSim-stochastic

which a re executed using random parameters to generate bus trajectories.

76

To create this graph, the Realtime_data_IncreaseRate_',str(IncreaseRate),'.pkl' files generated by

BusSim_truth are required. This is first done by executing the main function of BusSim_truth.py

and setting 'do_data_export_realtime' = True . Realtime_data_increaseRate_XX.pkl was generated.

Which model is used to produce the necessary files?

BusSim-truth produces files beforehand.

BusSim-deterministic an BusSim-stochastic

What are the parameter settings required for the model to produce the data files?

BusSim-deterministic and BusSim-stochastic are implemented using random parameters based

on equation 4.1 and 4.1 of the publication for arrival rate and departure rate which are generated

from uniform distributions. (m refers to bus stops)

𝐴𝑟𝑟𝑚 = 𝑈(𝑚𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑, 𝑚𝑎𝑥𝐷𝑒𝑎𝑚𝑛𝑑) , 𝑚 = 1, … , 𝑀

𝐷𝑒𝑝𝑚 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑈(0.05,0.5))𝑎𝑛𝑑 𝐷𝑒𝑝𝑀 = 1, 𝑚 = 1, … , 𝑀

BusSim-truth produces synthetic real-time trajectories to which the static models’ trajectories

are compared.

maxDemand = 2

dynamic change rate 𝜉 = 7%

Reproduced Figure 7

77

1.27.4 Figure 8

Figure 29: Original Figure 8 Plot: prediction results from scenario 2: parameter calibration

Figure description from publication:

Figure shows an example of the comparison between BusSim-deterministic and BusSim-

stochastic versus synthetic ‘real-time’GPS data where maxDemand = 2 and 𝜉 = 7%.

Interpretation of the Figure from publication:

Both models outperform models in scenario 1. During 1st quarter of the route when distance is

less than 1000, there are few visible gaps between the predicted trajectories and synthetic real-

time data. However, increasing divergence is still a problem. Gaps between predicted and

synthetic trajectories widen by time. This is because BusSim-stochastic and BusSim-deterministic

are static models i.e. their model states do not change over time, whereas the synthetic data comes

from a dynamic system. At 𝜉=7%, both passenger demand and the traffic speed are changing

rapidly. BusSim-stochastic shows no improvement in prediction performance in comparison to

BusSim-deterministic. This shows that the changing system state is the main source of the

prediction error, not the deterministic or stochastic nature of the models.

Where is the code to generate this plot found?

A03_calibration.py

What is plotted on the figure according to the code?

The bus trajectories generated by BusSim-stochastic and BusSim-deterministic versus the

synthetic real-time trajectories generated by the BusSim-truth.

Variables: x, t, x2, t2, x3, t3

Which data files are required to reproduce this figure?

78

Synthetic historical data is required to create this figure. The research paper states that the

models are calibrated against historical data. It does not state that the historical data should be

generated by BusSim_truth. However, this can be assumed based on the specification of 𝜉 = 7%

as the static models do not have this parameter. Moreover, it aligns with the setup of the study in

which synthetic GPS data is generated by BusSim-truth for the purpose of parameter calibration

and particle filtering. The data files for the setting maxDemand =2 and 𝜉 = 7% do not exist among

the provided data files in the codebase.

BusSim_experiments.ipynb also states that the static models are calibrated against data

generated by BusSim-truth. However, the codebase upon downloading it from the repository was

set up such that model calibration was done using the data files,

*"./Data/Historical_data_static_maxDemand_". These files are read by the unpickle_initiation

function of BusSim_model_calibration.py which contains the code for model calibration.

According to the comments in BusSim_model_calibration.py, the Historical_static_maxDemand

data files are supposed to be generated using BusSim_static_v2.py which does not exist but can

be assumed to refer to BusSim_stochastic.py. If the data were generated using one of the static

models then there is no IncreaseRate parameter to deal with. This generates

BusSim_ModelX_calibration_static_maxDemand data files.

On another note, the analysis of the performance of the calibrated static models versus synthetic

real-time data is executed by code in the script A03_calibration.py. The setup of this code was

such that it calls upon provided data files BusSim_ModelX_Calibration_IncreaseRate_XX . There

were no code excerpts in the codebase that were setup to produce

BusSim_ModelX_Calibration_IncreaseRate_XX files by calibrating models using

Historical_Data_IncreaseRate_XX files which were provided in the code download and can be

generated as well by the code.

Which model is used to produce the necessary files?

BusSim-truth used to produce synthetic historical data for calibration and real-time data for

performance analysis. The real time data file required for this plot was produced during the

generation of previous plot Figure 7 used in scenario 1 benchmarking. This file will be used for

the generation of Figure 8.

BusSim-deterministic and BusSim-stochastic are used by the code in

BusSim_model_calibration.py to generate BusSim_Model1_Calibration_XX and

BusSim_Model2_calibration_XX files. These static models then executed in A03_calibration.py

using the calibrated parameter settings to generate bus trajectories and for performance analysis

against synthetic real-time data.

What are the parameter settings required for the model to produce the data files?

maxDemand = 2

𝜉 = 7%

Procedure

The tester aims to follow the description in the research publication that would suggest the

synthetic historical data was generated with maxDemand = 2 and 𝜉 = 7%. These parameters

require the use of BusSim-truth for the generation of historical data. The code for this historical

data generation for BusSim_truth.py involves conducting 20 replications and taking the standard

deviation and meand of the produced GPS data. This functionality is edited by the tester such that

79

number of replications is set to 1. (this functionality may be used for replications in subsequent

experiments).

Reproduced Figure calibrated using BusSim truth

Reproduced figure using calibration to busSim stochastic

80

1.27.5 Figure 9

Figure 30: Original Figure 9 plot: Prediction results from scenario 3: parameter calibration and particle filtering

Figure description from publication:

This figure illustrates the results after the models have been calibrated and have ‘real-time’ data

assimilated into them during runtime.

Interpretation of the Figure from publication:

Figure 9 shows a better prediction performance compared to figures 7 and 8. There are still

observable gaps between the prediction and synthetic ‘real-time’ GPS data because the

underlying models do not know the underlying stochasticity and dynamicity in the synthetic data

but improvements appear to be substantial.

Where is the code to generate this plot found?

M01_BusSim_PF_v2.py

What is plotted on the figure according to the code?

Bus trajectories from BusSim-stochastic and BusSim-deterministic

Which data files are required to reproduce this figure?

Data files required:

Realtime_data_IncreaseRate_XX.pkl

BusSim_ModelX_calibration_IncreaseRate_XX.pkl

Which model is used to produce the necessary files?

Realtime_data_IncreaseRate_X.pkl is produced by running BusSim_truth.py.

BusSim_ModelX_Calibration_IncreaseRate_X.pkl is produced in the generation of figure 8 using all

three models and BusSim_model_calibration.py.

81

M01_BusSim_PF_v2.py contains the code for executing scenario 3 particle filter.

What are the parameter settings required for the model to produce the data files?

Unspecified parameters Assumption Note
maxDemand 2 Assume value is the same

as previous figures.
IncreaseRate 7% Assume value is the same

as previous figures.

Preliminary Justification: It is assumed by the tester that the maxDemand and IncreaseRate (i.e.

𝜉) are equal to 2 and 7% respectively as this was the parameter setup in the previous figures. The

author of the publication compares the three figures 7,8 and 9. It is therefore logical to reason

that such a comparison is possible when the parameter settings for maxDemand and

IncreaseRate are fixed across the scenarios.

However, the research publication was accompanied by supporting materials including a

Latex Project of the published article. In this study the plot referenced and embedded at the

location of Figure 9 in the publication is called “Fig_PF_IncreaseRate_5.pdf”. Provided figure

naming was done accurately, this suggest that the parameter setting should be IncreaseRate =

5%. This counteracts the above assumption. The tester assumes that the name of the pdf file is

descriptive of its contents i.e. the Figure 9 pdf file used IncreaseRate= 5%.

Unspecified parameters Assumption Note
maxDemand 2 Assume value is the same

as previous figures.
IncreaseRate 5% Assume value according

to Latex Project pdf file
naming.

Reproduced using bus simtruth calibration

82

Reproduced using bussim stochastic calibration maxdemand = 2

83

1.28 Sensitivity Analysis of maxDemand and dynamic change rate

𝜉

Figure 31: Table 3 sourced from case study publication Kieu et al. (2020)

Table description from publication:

The same experiments as described in scenarios 1 to 3, are repeated at different values of

maxDemand and dynamic change rate 𝜉. To increase robustness, 10 replications have been made

for each experiment and the average root mean square error (RMSE) values reported. RMSE is

calculated as the difference in prediction bus location and synthetic ‘real-time’bus location.

Interpretation of the Table from publication:

It is clear that scenario 3 (i.e. the combination of parameter calibration and Data Assimilation)

outperforms the other two scenarios.

Where is the code to generate this table found?

There is no code that directly generates the table but there is code that generates results similar

to the RMSE values in the table. Two functions IncreaseRate_analysis and maxDemand_analysis

that execute a parameter sweep for the dynamic change rate in range [1,20] and maxDemand in

range [0.5, 4.5] respectively. The main python files A02_doing_nothing_analysis.py,

A03_calibration.py and M01_BusSim_PF_v2.py which correspond to the original experiment’s 3

scenarios all contain their respective versions of IncreaseRate_analysis and maxDemand_analysis.

What does the data in the table represent according to the code?

84

The data represents the RMSE between the real-time bus trajectories i.e. ground truth and the

bus trajectories of BusSim-stochastic and the RMSE values between the real-time bus trajectories

i.e. ground truth and the bus trajectories of BusSim-deterministic.

Which data files are required to reproduce this figure?

The calibration files required are:

BusSim_Model1_calibration_IncreaseRate_X.pkl

BusSim_Model2_calibration_IncreaseRate_X.pkl

BusSim_Model1_calibration_static_maxDemand_X.pkl

BusSim_Model2_calibration_static_maxDemand_X.pkl

The real-time files required are:

Realtime_data_IncreaseRate_X.pkl

Realtime_data_static_maxDemand_X.pkl

Which model is used to produce the necessary files?

BusSim-truth and BusSim-stochastic create the real-time data files required

The file BusSim_model_calibration.py contains the functions necessary to produce the calibration

files using BusSim-stochastic and BusSim-deterministic.

What are the parameter settings required for the model to produce the data files?

Parameters Values
maxDemand [0.5 , 4.5] Assume static

maxDemand. Historica
and realtime static
maxdemand data files
generated by
BusSim_stochastic.
IncreaseRate = 0

IncreaseRate [0 , 17.5] maxDemand = 1
Number of replications 10

Procedure

1. Generate real-time and historical data for IncreaseRate = [0,17.5] and maxDemand =

[0.5,4.5]

2. Execute A02_doing_nothing_analysis IncreaseRate_analysis and maxDemand_analysis

functions with do_reps = True and Numreps = 10.

3. Generate BusSim_ModelX_calibration data for BusSim-stochastic and BusSim-

deterministic

4. Execute A03_calibration.py IncreaseRate_analysis and maxDemand_analysis.

5. Execute M01_BusSim_PF_v2.py IncreaseRate_analysis and maxDemand_analysis.

85

1.28.1 Errors

The sensitivity analysis for dynamic change rate is conducted in the range [0,17.5] with intervals

of 2.5 (i.e. range(0,20,2.5)). However, IncreaseRate = 0, produces a divide-by-zero error.

Upon closer inspection, the tester noted that the equations that used the 𝜉 parameter in the

BusSim-truth model differed from the equations included in Appendix A. The BusSim model of the

publication.

𝜉 represents the change in passenger demand or surrounding traffic speed. This is modelled as

the following equations according to the research publication.

𝑉 = 𝑉 ∙ (1 −
𝑡

𝑇
∙

100

𝜉
) (A8)

𝐴𝑟𝑟𝑚 = 𝐴𝑟𝑟𝑚 ∙ (1 −
𝑡

𝑇
∙

100

𝜉
) (A9)

The article then states that for 𝜉 > 0 , the equation gradually reduces surrounding traffic speed V

and increases the arrival rate Arrm which would lead to more bus delays and congestion.

However, the contents of the paper are in conflict with the formulae implemented in code for

BusSim-truth.

self.TrafficSpeed=self.TrafficSpeed0 *(1-

self.current_time/((100/self.IncreaseRate)*self.EndTime))

self.ArrivalRate=np.random.uniform(self.minDemand*

(1+self.current_time/((100/self.IncreaseRate)*self.EndTime)) / 60, self.maxDemand *

(1+self.current_time/((100/self.IncreaseRate)*self.EndTime)) / 60, self.NumberOfStop)

According to the code, the equations are implemented as follows:

86

𝑉 = 𝑉 ∙ (1 −
𝑡

100
𝜉

∙ 𝑇
)

𝐴𝑟𝑟𝑚 = 𝐴𝑟𝑟𝑚 ∙ (1 +
𝑡

(
100

𝜉
) ∙ 𝑇

)

As such, there exist a discrepancy between the formulae described and those implemented.

In the current form of the code, IncreaseRate = 0 cannot be executed.

When 𝜉 = 0, 𝐴𝑟𝑟𝑚 and V should remain constant over time. Therefore the brackets in each

equations can be removed. The tester will use this approach to generate data for IncreaseRate =0.

This will involve editing BusSim_truth.py Model class temporarily.

NOTES

• Two different datasets were generated. Realtime_static_maxDemand_XX.pkl and

Historical_data_static_maxDemand_XX.pkl were generated using BusSim-truth model and

BusSim-stochastic model. BusSim-truth is aligned with the description in the research

publication. BusSim-stochastic is aligned with the comments and setup of the codebase

upon download.

• The replications programmed into the codebase are only for the historical data. Real-time

data files are generated without replications. Historical data files are generated over a

number of replications for which the mean and standard deviation of the GPS data and

the model parameters used are saved in the pickle file. This applies to the generation of

both static_maxDemand and IncreaseRate datasets.

RMSE formula error

The RMSE formula used for the sensitivity analysis is specified in the research article as follows:

𝑅𝑀𝑆𝐸 = √(
1

𝑇
) ∑(𝑦𝑘̂ − 𝑦𝑘)2

𝑇

𝑘=1

𝑦𝑘̂: the bus location at time 𝑘 from the model prediction

𝑦𝑘: the bus location at time 𝑘 from the synthetic ‘real-time’ data

The RMSE function provided and used in the code is calculated according to a different formula.

𝑅𝑀𝑆𝐸 = √((
1

𝑇
) ∑ (𝑦𝑘̂ − 𝑦𝑘)𝑇

𝑘=1)
2

87

Appendix B: Reproducibility Experiments of Table 3
Table 3: Sensitivity Analysis of maxDemand and dynamic change

rate 𝜉

It is noted that the BusSim_stochastic.py file is used to create the synthetic ground truth data for

the maxDemand sensitivity analysis. -> Historical Data static maxDemand, realtime data static

maxDemand. BusSim_truth.py only used to generate data for IncreaseRate parameter sweep.

The publication does not state which model was used for the sensitivity analysis as the table

appears to report results from only one of the model.

Number of replications 𝑅 = 10

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑦̂𝑘 − 𝑦𝑘)2

𝑇

𝑘=1

Reported value 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑀𝑆𝐸 =
∑ 𝑅𝑀𝑆𝐸𝑖

𝑅
𝑖=1

𝑅

Assumption: BusSim_stochastic is used for the sensitivity analysis.

1.29 Experiment 1-Reproducing Table 3 using the original data

files
The scenarios were executed for 10 replications using the data files available in the original

Zenodo download. It should be noted that maxDemand sensitivity analysis uses files generated

by BusSim_stochastic as its ground truth whereas the increaserate sensitivity analysis uses files

generated by BusSim_truth. The latter makes sense as the static models BusSim-stochastic and

BusSim-deterministic do not have an IncreaseRate parameter.

Number of replications = 10

BusSim-deterministic results

maxDemand scenario_1 scenario_2 scenario_3

0.5 245.0 80.0 15.0

1.5 380.0 8.0 31.0

2.5 257.0 195.0 115.0

3.5 232.0 184.0 78.0

4.5 241.0 67.0 24.0

IncreaseRate scenario_1 scenario_2 scenario_3

1 247 12 23

3 378 54 18

5 258 4 17

7 212 54 9

9 315 44 44

11 285 45 50

13 321 22 44

15 379 88 30

88

17 229 66 10

19 292 21 30

BusSim-stochastic results

maxDemand scenario_1 scenario_2 scenario_3

0.5 266.0 86.0 14.0

1.5 279.0 33.0 9.0

2.5 297.0 146.0 27.0

3.5 152.0 93.0 30.0

4.5 99.0 52.0 111.0

IncreaseRate scenario_1 scenario_2 scenario_3

1 202 85 33

3 250 103 22

5 256 31 36

7 211 31 25

9 232 42 61

11 351 30 41

13 261 238 61

15 243 47 20

17 226 41 22

19 223 161 40

89

1.30 Experiment 2 – Reproducing Table 3 using reproduced data
The same experiment as experiment 1 is rerun using datasets that have been generated using the

code instead of the datasets that were stored in the github repository/ zenodo archive at the time

of download. The range of the IncreaseRate analysis will be [0,17.5] with step size of 2.5. This

contrasts with the hard-coding of the archived code that used a range of [1,20] step size = 2.

1.30.1 Experiment 2A – Using models calibrated by BusSim-truth for

IncreaseRate and using models calibrated by BusSim-stochastic for

maxDemand

BusSim-stochastic

maxDemand scenario_1 scenario_2 scenario_3
0.5 178.0 39.0 39.0
1.5 254.0 21.0 13.0
2.5 277.0 108.0 24.0
3.5 208.0 51.0 42.0
4.5 141.0 193.0 78.0
IncreaseRate scenario_1 scenario_2 scenario_3
0.0 270.0 50.0 40.0
2.5 192.0 31.0 34.0
5.0 340.0 65.0 21.0
7.5 251.0 26.0 24.0
10.0 227.0 54.0 34.0
12.5 340.0 244.0 96.0
15.0 371.0 183.0 104.0
17.5 245.0 114.0 53.0

BusSim-deterministic

maxDemand scenario_1 scenario_2 scenario_3
0.5 348.0 89.0 9.0
1.5 340.0 108.0 45.0
2.5 358.0 80.0 84.0
3.5 172.0 176.0 102.0
4.5 274.0 28.0 121.0
IncreaseRate scenario_1 scenario_2 scenario_3
0.0 420.0 63.0 25.0
2.5 354.0 16.0 18.0
5.0 478.0 56.0 45.0
7.5 376.0 38.0 19.0
10.0 400.0 38.0 16.0
12.5 328.0 138.0 95.0
15.0 429.0 42.0 49.0
17.5 567.0 124.0 113.0

90

1.30.2 Experiment 2B – Using models calibrated to BusSim-truth

BusSim-stochastic

maxDemand scenario_1 scenario_2 scenario_3
0.5 181.0 76.0 47.0
1.5 263.0 95.0 10.0
2.5 240.0 58.0 124.0
3.5 182.0 101.0 103.0
4.5 133.0 188.0 197.0
IncreaseRate scenario_1 scenario_2 scenario_3
0.0 270.0 54.0 42.0
2.5 192.0 34.0 36.0
5.0 340.0 87.0 26.0
7.5 251.0 33.0 18.0
10.0 227.0 40.0 38.0
12.5 340.0 245.0 91.0
15.0 371.0 194.0 80.0
17.5 245.0 125.0 59.0

BusSim-deterministic

maxDemand scenario_1 scenario_2 scenario_3
0.5 373.0 1.0 8.0
1.5 349.0 78.0 18.0
2.5 270.0 176.0 40.0
3.5 202.0 112.0 23.0
4.5 274.0 57.0 57.0
IncreaseRate scenario_1 scenario_2 scenario_3
0.0 420.0 63.0 30.0
2.5 354.0 16.0 11.0
5.0 478.0 56.0 42.0
7.5 376.0 38.0 16.0
10.0 400.0 38.0 16.0
12.5 328.0 138.0 91.0
15.0 429.0 42.0 34.0
17.5 567.0 124.0 111.0

91

Appendix C: Error Logs

1.31 Test 1 – Preliminary execution
07/04/2025

Note: This log was generated for the first try at generating the data included in the BusSim

codebase. The data from this attempt can be found in test_v1_data/.

This error was due to the use of absolute paths in A02_doing_nothing_analysis.py.

Error fixed by changing the relative path.

Error resolved. Code in cell now runs.

92

Note in the Jupyter Notebook. The author indicated that the working directory would have to be

changed when running the file from the command line. He also stated that the cell block could

also be run alternatively. Does this count as acknowledgement of the use of his absolute file path

or not?

Step 3.1 error. Module not found error because Scipy is require by one of the .py files specifically

BusSim_model_calibration.py. error resolved by installing Scipy module

Step 3.1 error. FileNotFoundError.

93

Error corrected by changing the file path.

Error #3 is similar to Error #1.

Error due to missing file that was not regenerated by code. Why was this file not generated by the

code? Is it a data file from the real-world? Unlikely given this is a identical twin framework.

94

Comment in the code indicates that there should be a BuSim_static_v2.py file to run first to

generate the static data required from the calibration analysis. But this file is not included in the

codebase provided.

08/04/2025 – continuation

The jupyter notebook containing the experiments does not include any cells nor instructions to

generate the historical static max demand files nor the real-time static max demand files. By

examining the comments of BusSim_model_Calibration.py, it can be seen that the
Historical_data_static needs to be generated by running the BusSim_static_v2. BusSim_static_v2

does not exist. However, upon examining the code of BusSim_stochastic.py, there is code to

generate these files present in its ‘main’ function. This is evidence of filename changes that

occurred but were not properly recorded in the description and comments of the codebase.

BusSim_stochastic.py

95

There is also file generation possible existing in BusSim_determinsitic.py. However the filenames

in this generation do not seem to be present in the original files provided with the codebase.

Both BusSim_stochastic.py and BusSim_deterministic.py are static model compared to the

dynamic BusSim_truth.py.

The static models are supposed to be calibrated against synthetic GPS data generated by the

BusSim_truth model according to the publication. So why is it that the calibration data is

generated by the static stochastic model BusSim_stochastic.py.

I ran BusSim_stochastic.py to generate the necessary files. A figure was produced and saved to

the general directory. Figure was not saved to the figures folder. The data required was not

produced. Specific parameters have to be set to true to generate the necessary data. These lines

96

were commented out and changed accordingly.

The script was then rerun.

Multiple plots were produced during this run and saved to the Figures/ folder. The figures

appeared in popup windows during the run which I had to close continuously.

These files were generated and saved to Data/.

97

For some reason the historical static max demand data was not generated so the code was

changed to as follows and rerun.

Historical static max demand data now generated.

The error was resolved and step 3.1 cell now executes.

Calibration step will likely take some time.

98

No new figures were generated from this execution of BusSim_stochastic.py.

Note: BusSim_determinsitic.py also seems to capable of generating data but this will not be

executed until such data is required by the simulation experiments.

Returned the BusSim_stochastic.py code to its original setup.

Further notes:

99

Successfully calibrated BusSim_stochastic.py. Still need to calibrate BusSim_determinsitic.py. In

BusSim_model_calibration.py the desired model, BusSim_deterministic, was

uncommented/commented as instructed in the comments.

Step 3.1 cell was then re-run to calibrate BusSim_deterministic model.

However, because the code does not change the naming convention, BusSim_deterministic run

overwrote the first datafile for BusSim_stochastic.py marked

BusSim_Model2_calibration_static_maxdemand. Upon noticing this change, I discarded the

change and reverted to the old file using the version control i.e. git.

Re-execute BusSim_deterministic.py which will save its files as

BusSim_Model1_calibration_static_maxdemand.py.

Error encountered in ‘step 3.2 analyse and plot results’. FileNotFoundError. Similar to previous

errors that have been encountered due to the use of absolute file paths.

100

Fixed the error by changing the file path.

Step 3.2 cell error. Previous cell did not generate the calibration data using the

Historical_data_IncreaseRate_XX.pkl data. There is no code included to do this automatically. I will

have to read the calibration code and attempt to regenerate the data.

101

Note there are two analyses that can be run IncreaseRate analysis and MaxDemand analysis. If I

change the command from IncreaseRate analysis to Maxdeman analysis from A03_calibration.py.

The corresponding figures should be generated.

Attempted solution to the IncreaseRate_analysis missing data problem:

When BusSim_truth was sued to generate the historical_increaserate.pkl files maxDemand was

set to 1 and the loop was for IncreaseRate (1,21).

I will copy the calibration cell and change the for loop to reflect the IncreaseRate for loop

previously used.

Created a cell that runs the calibration using the historical_data_IncreaseRate.pkl files with

maxDemand = 1 which is the same setting as BusSim_truth when the hisotrical data was created.

Executing the cell or BusSim_stochastic first and results should save as Model2 calibration

IncreaseRate results. The cell will be re-executed for BusSim-deterministic.

Calibrating using IncreaseRate files for BusSim_stochastic.py took 274 minutes 36.5 seconds,

102

Calibrating using IncreaseRate for BusSim_deterministic.py. Due to laptop shutdown overnight,

did not get to record the time taken for the cell to run but it was a long time. Completed the cell

execution for IncreaseRate 15, 17 and 19 on 09/04/2025. Took 70 minutes 26.9 seconds.

09/04/2025

Possible error (Not sure)

In BusSim_truth main function, saw an 11 in this function instead of a 1. Thought this was strange.

Changed it to 1.

There was a persistent error in the calibration of files in which the plots produced for scenario 2

were erroneous. It was thought that the calibration data was not being generated properly and

so time was input to investigate why this was occurring and reruns were done that took a lengthy

period of time.

After examining the code and the difference between the original calibration files and my own

calibration files, changes were noted.

The original files: ‘BusSim_Model2_calibration_IncreaseRate_X’ contained arrays of bestmean

value of size 42.

The output from my runs for these files were of size 41.

After examining the publication as well as delving deeper into the CEM code. I noticed that the

solutions drawn for the traffic parameter were the last solutions in the dataset I generated.

Therefore in the setup to run busmodelstochastic and bussim-deterministic there was an

indexing error that utilised traffic data from the 2nd to last location in the array instead of the

final element of the array. What this final value is and where it came form remains to be
understood. But once this change was made such that the traffic data was intialised with the right

value. The plots came to resemble something closer to the publication. Thought the sizes of the

different datasets will make it difficult to compare datasets for testing.

103

This same issue was present in the M01_PF_v2 file. This same correction was made to intialise the

traffic parameter properly.

1.32 Test 2 – Check if codebase runs with the provided data files
The following errors were encountered in trying to execute the BusSim_experiments.ipynb

notebook that contained the case study’s experiment workflow.

Step 1

- Cells executed without error.

- Data files produced:

o “Historical_data_IncreaseRate_X.pkl” , X in [1,19]

▪ 19 historical data files regenerated but there are 20 historical data files in

the provided Data/ folder.

o “Realtime_data_IncreaseRate_X.pkl” X in [1,20] produced.

▪ 20 files produced.

o Fig_spacetime_IncreaseRate_X , X in [1,20] produced.

104

Step 2

- FileNotFoundError.

o Change path in A02_doing_nothing_analysis.

- Cell executes after fix was applied.

- Files generated:

o Fig_do_nothing_IncreaseRate_X.pdf where X in [1,19]

o Fig_do_nothing_results.pdf

o No data files produced or saved to Data/

Step 3.1

- FileNotFoundError

o Change path in BusSim_model_calibration

- Cell started executing but takes a while so stopped it prematurely but it was executing.

Notes on step 3:

- The calibration is set up for BusSim_stochastic by default.

Step 3.2

- FileNotFoundError.

o Change path in A03_calibration

- Cell executed successfully.

- Files generated:

o Fig_calibration_IncreaseRate_X.pdf in X range(1,19,2).

o Fig_calibration_results_IncreaseRate

Step 4

- Executes successfully without error. No path change required.

- Files generated:

o Fig_PF_IncreaseRate_X.pdf , X in range(1,19,2)

o Fig_calibration_results_IncreaseRate.pdf

105

Appendix D: Particle Filter Sensitivity Analysis

Supporting Material

1.33 Particle Filter Algorithm According to Publication and Code
The particle filter algorithm transcribed below is based on the case study’s implemented code.

Initialise set of 𝑁𝑝 particles, 𝑃0 = {〈𝑋0
(𝑖)

, 𝑤0
(𝑖)

〉 , 𝑖 = 1, … , 𝑁𝑝 } , 𝑋0
(𝑖)

= {𝑂𝑡
(𝑖)

, 𝑆𝑡
(𝑖)

} , 𝑡 = 0

Initialise 𝑠𝑒𝑙𝑓. 𝑠𝑡𝑎𝑡𝑒𝑠 = {𝑋0
(𝑖)

, 𝑖 = 1, … , 𝑁𝑝}

PREDICT

For 𝑖 = 1: 𝑁𝑝

• Assign previous state estimate to particle state

𝑋𝑡
(𝑖)

= 𝑋𝑡−1
(𝑖)

• Advance the timestep of the particle

𝑋𝑡+1
(𝑖)

= 𝑓 (𝑋𝑡
(𝑖)

)

𝑠𝑒𝑙𝑓. 𝑠𝑡𝑎𝑡𝑒𝑠 = {𝑋𝑡+1
(𝑖)

, 𝑖 = 1, … , 𝑁𝑝}

𝑡 = 𝑡 + 1

IMPORTANCE WEIGHTING

• Take the observation vectors of each particle

𝑠𝑡𝑎𝑡𝑒𝑠 = {𝑂𝑡
(𝑖)

, 𝑖 = 1, … , 𝑁𝑝}

• Calculate the distance metric using Frobenius norm of the difference between each

particle’s observation vector and the measured state

• 𝑑𝑡
(𝑖)

= ‖𝑂𝑡
(𝑖)

− 𝑦𝑡
(𝑖)

‖
2

 ∀ 𝑖 ∈ {1, … , 𝑁𝑝}

• Weight computation: 𝑤𝑡
(𝑖)

=
1

max(𝑑𝑡
(𝑖)

,1𝐸−99)

• Normalise weights 𝑤𝑡
(𝑖)

=
𝑤𝑡

(𝑖)

∑ 𝑤𝑡
(𝑖)𝑁𝑝

𝑖=1

RESAMPLE

Generate a new set of particles from the current set with the likelihood of drawing a particle

proportional to its weight

If 𝑁𝑂𝑇 (𝑡 % 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑖𝑛𝑑𝑜𝑤)

• Draw a random number for each particle

𝑈(𝑖) =
(𝑖−1)+𝑈

𝑁𝑝
∀ 𝑖 ∈ {1, … , 𝑁𝑝}

• Construct the CDF i.e. an array of cumulative sum of the weights

o Initialise CDF, 𝑐0 = 0

106

o 𝑐(𝑖) = 𝑐(𝑖−1) + 𝑤𝑡
(𝑖)

 ∀ 𝑖 ∈ {1, … , 𝑁𝑝}

While 𝑖 < 𝑁𝑝 and 𝑗 < 𝑁𝑝

If 𝑈(𝑖) < 𝑐(𝑗)then

Assign particle to new set of particles 𝑋𝑡
(∗𝑖)

= 𝑋𝑡
(𝑗)

𝑖 = 𝑖 + 1

Else

𝑗 = 𝑗 + 1

JITTER

Add a random gaussian white noise to the components of the model parameter vector 𝑆𝑡.

𝐴𝑟𝑟𝑚 = 𝐴𝑟𝑟𝑚 + 𝑗~𝒩(0, 𝑎𝑟𝑟𝑠𝑡𝑑
2)

𝐷𝑒𝑝𝑚 = 𝐷𝑒𝑝𝑚 + 𝑗~𝒩(0, 𝑑𝑒𝑝𝑠𝑡𝑑
2)

𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑚 = 𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑚 + 𝑗~𝒩(0, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑠𝑡𝑑
2)

Endwhile

