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ABSTRACT
Ethics is inherently a multiagent concern. However, research on AI
ethics today is dominated by work on individual agents: (1) how an
autonomous robot or car may harm or (differentially) benefit people
in hypothetical situations (the so-called trolley problems) and (2)
how a machine learning algorithm may produce biased decisions
or recommendations. The societal framework is largely omitted.

To develop new foundations for ethics in AI, we adopt a so-
ciotechnical stance in which agents (as technical entities) help
autonomous social entities or principals (people and organizations).
This multiagent conception of a sociotechnical system (STS) cap-
tures how ethical concerns arise in the mutual interactions of mul-
tiple stakeholders. These foundations would enable us to realize
ethical STSs that incorporate social and technical controls to respect
stated ethical postures of the agents in the STSs. The envisioned
foundations require new thinking, along two broad themes, on how
to realize (1) an STS that reflects its stakeholders’ values and (2)
individual agents that function effectively in such an STS.
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1 ETHICS IN MULTIAGENT SYSTEMS
The surprising capabilities demonstrated by AI technologies over-
laid on detailed data and fine-grained control give cause for concern
that agents can wield enormous power over human welfare, draw-
ing increasing attention to ethics in AI.

Ethics is inherently a multiagent concern—an amalgam of (1) one
party’s concern for another and (2) a notion of justice. To capture
the multiagent conception realistically, we model our setting as a
sociotechnical system (STS). An STS comprises autonomous social
entities (principals, i.e., people and organizations) and technical
entities (agents, who help principals, and resources) [13].

What foundations do we need to build STSs that address ethical
concerns from multiple perspectives? Since an agent may incor-
rectly follow its principal’s ethical directive or correctly follow
an unethical directive, an ethical STS should provide social and
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technical controls [29–31] to promote ethical outcomes. The STS
conception leads us to formulate the problem as the one of specify-
ing (1) an STS to respect a stated systemic ethical posture over its
stakeholders’ value preferences; and (2) an agent who respects a
stated individual ethical posture and functions in that STS.

Existing works on AI and ethics adopt a single-party mindset in
topics such as (1) algorithmic accountability [17] and fairness [25],
where decisions or recommendations can be biased; and (2) the be-
havior of agents [16], when facing moral quandaries in hypothetical
situations, such as the famous trolley problems [23].

Even MAS-oriented research on ethics largely focuses on anal-
ysis of stakeholders’ values [24] with the purpose of specifying a
single agent. Recent efforts by MAS researchers, e.g., [36], identify
limitations of existing approaches, such as goal modeling, suggest-
ing that current models lack important components. In contrast,
we advocate realizing (1) STSs that reflect system objectives in their
social architecture; and (2) agents that balance moral preferences
and help their principals take ethical decisions.

Following [14, 29, 31], we seek to build on recent research on
values and principles of justice [41], providing new foundations for
ethical multiagent systems along three main research themes.
Model: Developing a model of ethics based on values and norms
that supports individual and system-level ethical judgments based
on modular criteria we call ethical postures.
• Novelty: Expanding the scope of multiagent system modeling
to include norms and values, incorporating ideas on guilt and
inequity aversion [19, 34], and the principles of justice [41].

Analysis: Developing reasoning techniques to help stakeholders
identify potential ethical pitfalls in an STS, specifically via (1) for-
mal verification approaches to accommodate ethics in terms of
norms and values preferences; and (2) agent-based simulations for
assessing the ethicality of STSs and their members..
• Novelty: Combining verification and simulation to assess how
well an STS respects a system-level ethical posture such as
utilitarianism and egalitarianism [35, 40].

Elicitation: Develop techniques to specify an acceptable STS based
on value-based negotiation between concerned stakeholders and
to elicit value preferences from stakeholders.
• Novelty: Enhancing negotiation and deliberation techniques to
focus on values and unintrusive learning of value preferences.

2 SOCIOTECHNICAL SYSTEM (STS)
Webegin from a description of a sociotechnical system (STS) adapted
from Kafalı et al. [29], introducing the necessary concepts underly-
ing our conception. Section 4 discusses additional literature.

Figure 1 shows an STS (right frame) and how we envision such
an STS being engineered (left frame).
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Figure 1: A schematic of a sociotechnical system (STS) [29].

A stakeholder in an STS is an autonomous entity (individual or
organization) that has an interest in the specification or operations
of the STS. For example, the stakeholders of a patient transfer [1]
STS include patients, doctors, nurses, and the hospital; for a phone
users’ [37] STS, the caller, the callee, as well as the people and
organizations nearby (e.g., a library is interested in the keeping the
phones of people in the library silent) are the stakeholders.

A principal is a stakeholder that is active in a system. A principal
can choose its actions in the system. Our applications of interest
emphasize interactions among principals whereby they exchange
information and services, e.g., as in social media, scientific collabo-
ration, and healthcare. A stakeholder who is not a principal would
have an interest in the specification of a system but does not partic-
ipate as a decision maker. For example, in patient transfer, a nurse
and physician are principals, but a patient in general is not.

When an STS is operational, its social tier includes principals and
its technical tier includes agents and underlying resources, such
as databases, services, sensors, and actuators. The agents act on
behalf of the principals and their actions affect the principals: in
many-to-many relationships, shown as one-to-one for simplicity.

Engineering an STS involves identifying its stakeholders and
eliciting their goals (reflecting domain requirements) and value
preferences to produce a model that specifies the STS along with its
environmental (operating) assumptions and metrics. The specifica-
tion captures the STS’s (1) technical architecture in terms of capa-
bilities, viewed abstractly as actions on resources that participants
can perform; and (2) social architecture in terms of the principals’
roles and the norms capturing the legitimate expectations between
them and the consequences of the actions.

2.1 Ethical Postures
An individual ethical posture refers to how an agent may respond
to the value preferences of a principal in the STS who is affected by
the agent’s actions. An example ethical posture would be to reflect
the common intuition that a decision is ethical if it accommodates
the preferences of others besides oneself.

A systemic ethical posture refers to how an STS is specified
in light of the value preferences of its stakeholders. Examples of
ethical postures include (1) egalitarianism, i.e., to minimize disparity
across stakeholders with respect to satisfying their preferences; and
(2) utilitarianism, i.e., to maximize aggregate welfare (the greatest
good of the greatest number) without regard to any disparities.

The principals who participate in an STS may adopt a different
ethical posture from what is incorporated in the STS and different
value preferences from those of the stakeholders who specified it.

2.2 Agents
Figure 2 illustrates an agent’s representation and decision mak-
ing. An agent’s user model describes the agent’s user in terms of
goals, beliefs, value preferences, and ethical posture. An agent’s
user is a principal on whose behalf the agent acts and interacts.
The agent’s decisions may affect not only its user but also other
principals in the STS. The agent maintains knowledge of the STS in
which it functions, including how its principals relate. An agent’s
decision module produces actions that reflect the value preferences
of its user’s ethical posture, the ethical postures of other concerned
principals, as well as the systemic ethical posture.

Figure 2: An agent
that functions in an
STS by representing
and reasoning about
its technical and so-
cial architectures,
the goals, values,
preferences, and eth-
ical postures of the
principals in an STS.
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3 RESEARCH CHALLENGES AND QUESTIONS
Our research objective is to create new multiagent foundations for
AI ethics. To this end, we advocate addressing the shortcomings
of current approaches for AI ethics by, respectively, developing
(1) new representations and reasoning approaches about ethics
from both individual and system perspectives; (2) new ways of
analyzing systems with respect to an ethical posture both statically
(verification) and dynamically (simulation); and (3) new ways to
elicit value preferences from stakeholders and to assist them in
negotiating acceptable STS specifications. A practical approach
would have many components. However, we concentrate on novel
challenges that we posit as having the highest prospect of reward.

3.1 Model of Ethics for AI
Q1 Representation. What is an appropriate model and represen-

tation of an STS and of an agent from the standpoint of ethics?
Q2 Decision making. How can we support decision making by

an agent in an STS that takes into account the value preferences
of its user and other principals as well as the STS?

Motivation. To represent an STS precisely and reusably, we need
a sufficiently rich language that supports not only the necessary
normative relationships but also provides an ability to capture time



(to support constraints on ordering and occurrence), strength (to
use as a basis for determining preferences to handle conflicts), and
context (to modulate the outcomes of violation, for instance).

In our conception, an STS is not a separate running entity but
is realized through the interactions of the principals, agents, and
resources that feature in the STS. Each agent must represent (1) its
view of the social architecture of the STS, including the normative
relationships in which it participates; (2) its view of the technical
architecture of the STS, especially the context (state of the world)
and actions that may be performed in it; and (3) the goals and value
preferences of its user and other principals. Such a representation
enables agents to make decisions that balance the above elements.

Language. Develop a language with a suitable syntax and se-
mantics for specifying a general family of values and norms.

This language should enable the specification of an STS including
a model of the specific principals and agents featuring in it. It should
support specifying value preferences for each principal where the
preferences could be expressed as ordinals or as cardinal values.

Consent is a central construct in ethics and accountability that
has not received adequate attention from AI researchers. Consent
characterizes when an action by one autonomous party gains legiti-
macy despite potentially infringing upon the autonomy or authority
of another party, memorably called the “moral magic of consent”
[6, 28]. As these works and others, e.g., [43], indicate the intuitions
about consent are far from established in the legal literature. Two
major competing intuitions [43] are that consent reflects (1) a men-
tal action of the consenting party, indicating that it is the exercise of
an internal choice; and (2) a communicative act or performative by
the consenting party conferring powers on the recipient, indicating
that it is the exercise of a normative power [27, 32].

The existing literature on consent focuses on a retrospective view
(which is to adjudicate on some apparent violation, as in a court of
law) but in AI ethics the prospective view is arguablymore important
(since it is about decisions to be made by an agent on the fly).

Decision Making. Realize prosocial agents that model value
preferences of not only their respective users but also the other
principals affected by the agents’ actions.

Specifically, can an agent’s decision making reflect its user’s
ethical posture and the value preferences of the principals affected
by its actions? A particular ethical posture is inequity aversion [19],
which maps to the informal concept of guilt. When an inequity
averse agent doesn’t act in accordance with the value preferences
of a principal, it accumulates guilt (on behalf of its user). The guilt
applies deferentially when it follows or deviates from a norm. Such
an agent may anticipate guilt from taking a dubious action, which
feeling may discourage the agent from taking that action [34].

3.2 Analysis of Ethicality
Q3 Verification. How can we verify that an STS specification

satisfies the stakeholder requirements with respect to a given
systemic ethical posture?

Q4 Simulation. How can we enable stakeholders of an STS to
assess an STS specification in reference to actual or imputed
ethical postures of the principals who would realize that STS?

Motivation. As we model ethics, it is important to analyze an
STS specification on measures such as liveness (something good
happens), safety (nothing bad happens), robustness (how long some-
thing good keeps happening), and resilience (how quickly an STS
recovers from something bad). Such analyses necessitate the use of
(1) formal verification to assess the STS specification, and (2) simu-
lation to foresee an outcome. Bremner et al. [12] present a leading
approach for formal verification geared toward ethical reasoning,
incorporating beliefs, desires, and values in a framework based on
planning. This approach can help advance the present agenda.

Verification of STSs and Agents. Develop newmodel checking
approaches that consider value preferences of stakeholders and
work on top of existing probabilistic model checking tools.

Given an STS specification and the knowledge of outcomes pro-
moted by values, an enhanced verification tool would help us un-
derstand whether the specification is biased toward certain values.
For example, we may identify that a phone ringer agent always
prefers safety over privacy. That agent might ring a user’s phone
loud for a call from a family member. How can we adapt emerging
model checking tools for these purposes? A source of complexity in
our setting is that we represent both the STS specification and the
agents who support its principals. Because of the requirement of
autonomy, any norm may be violated [46], though norms provide a
basis for accountability. And, in general, we cannot interpret value
preferences as expected utilities as is conventional in game theory.

Thus, a research challenge is how to formulate the correctness
problems. We anticipate that correctness properties would be as-
sessed (1) separately for an STS and conditional upon an STS for
its member agents; and (2) qualitatively with respect to ethical
postures of individual agents and of the system.

Although formal verification can help assess an STS specification
under general assumptions, social simulations provide us with an
avenue to foresee the runtime outcome.
Social Simulation. Enable stakeholders to guide the simulation,
and subsequently help them understand the outcomes in an STS
if a certain type (or group) of individuals were to interact in it.

For example, if the phone user is traveling extensively for work
and is attending meetings, the simulation will help the stakeholder
determine that in an STS specification biased toward safety over
privacy, the agent will ring the phone loud more frequently than in
an STS that balances safety and privacy depending on the user’s
context; such an agent will thus deviate more often from STS norms
and attract more sanctions from agents of other principals.

Can we generate social dilemma scenarios for each user based
on an understanding of the user’s previous interactions and known
value preferences? These social dilemma situations include cases
where (1) multiple norms conflict, (2) one or more norms conflict
with value preferences of a user, (3) value preferences of one user
conflicts with those of other users in the interaction.

3.3 Elicitation of Ethical Systems
Q5 Learning. How can an agent elicit its users’ value preferences?
Q6 Negotiation. How can we enable stakeholders to create an

STS specification that accords with their value preferences?



Motivation. Can agents act in ways that align with the values
of principals? To do so, an agent must, first, recognize the value
preferences of its principals, which can be extremely challenging.
First, asking the principals what values they prefer over others
directly (e.g., via a survey) is likely to be futile. As Bostyn et al. [11]
show, responses to hypothetical questions on moral preferences
(e.g., as in the trolley problem surveys) do not predict the behavior
of the participants in real life. Thus, an agent must learn its princi-
pals’ value preferences by observing what the principals do in real
decision scenarios and reasoning about why they did so.

Second, value preferences can be context specific—a principal
may prefer one value to another (v1 ≻ v2) in a context but have the
opposite preference (v2 ≻ v1) in another context. For example, con-
sider Charlie, a principal who is visually impaired. Charlie prefers
safety (a value) to privacy (another value) when he is traveling (a
context). Thus, when Charlie is traveling, his agent automatically
takes pictures of his surroundings and shares them with his friends.
However, if Charlie is traveling with Dave, a trusted friend (another
context), there is no need for Charlie’s agent to compromise pri-
vacy by sharing pictures. Third, although an agent needs to learn
its user’s values, those values, in turn, may depend on the values
of other principals with which the agent and its user interact.

As the examples above suggest, learning value preferences in-
volves recognizing and modeling several nuances. Even for a small
set of core values of interest in an application scenario, there can
be a large number of value preferences, considering the variety of
physical and social contexts in which the preferences apply.

Learning Value Preferences. Learn value preferences by ob-
serving (1) the principal’s actions; (2) whether the principal ap-
proves or disapproves the agent’s actions; and (3) whether other
principals sanction the agent’s actions, positively or negatively.

This problem is fundamentally different from the typical pref-
erence learning problems, e.g., [3, 44], whose objective is to learn
preferences from pairwise comparisons of items of interest. As we
argue above, directly eliciting preferences between value pairs from
principals may not yield desirable outcomes. In contrast, we seek
to learn value preferences by observing what principals and agents
do (as opposed to what they say) in different contexts. Ajmeri et al.
[5] show how value preferences can be aggregated to identify a
consensus action which is fair to all stakeholders involved.

Knowing the value preferences of stakeholders helps in better
facilitating interaction between them. Interest-based negotiation
[21] is based on the idea that stakeholders’ goals may differ from
their positions during negotiation. Thus, satisfying their (imputed)
goals is better than giving them what they explicitly ask for.

Prior negotiation protocols for settings related to STSs, e.g., [8,
10], accommodate neither values nor the entire breadth of an STS as
conceived here. Existing approaches, e.g., [42], focus on eliminating
conflicts among negotiating parties. In contrast, we bring forth
conflicts as a basis for negotiation of an STS (during elicitation) and
as an input into ethical decision making by an agent (at run time).

Value-Based Negotiation. Support stakeholders with conflict-
ing requirements but similar value preferences in generating an
acceptable STS specification.

In our conception of value-based negotiation, each offer com-
prises an STS specification. A stakeholder can reason about how the
current offer contributes to that stakeholder’s preferred values to
decide the response move: accept, reject, or generate a counteroffer.
Facilitating such reasoning requires (1) a normative negotiation
framework for the specification of STSs that provides a basis for
systematically revising norms to enable the generation of effective
offers and counteroffers; and (2) a value-based concession bidding
strategy that adapts its offers at run time based on opponent’s
behavior without predefined utility functions.

4 ETHICS AND RELATED CONSTRUCTS
An AI system is neither merely an algorithm nor a standalone agent,
but sociotechnical system representing a society of humans and
agents. Accordingly, there is a need and urgency for addressing
societal concerns on AI adoption. Ethics is one such concern but it is
closely related to other societal concerns on AI, including fairness,
accountability, transparency, and privacy. The new foundations we
call for can and should address these related concerns as well.
Fairness concerns judgments on the outcomes of machine learn-
ing predictors. Research on fairness in AI [18] and how people
assess AI fairness [9, 33, 48] focuses on an individual (is it fair to
me?) or system (is the system fair as a whole?), but not on a group,
incorporating the preferences of stakeholders and their social re-
lationships and power dynamics. To achieve group fairness, each
agent must support fairness in decision making by understand-
ing contextually relevant norms [4] and reasoning about value
preferences of all stakeholders [5], not just of the agent’s user.
Accountability is crucial to establishing who is accountable for a
decision made by an agent [15]. Prior works understand account-
ability as either traceability [7, 26] or negative utility [20], but
these concepts are neither necessary nor sufficient for capturing
accountability because they lack the social-level semantics that
undergirds accountability. We seek to capture the normative ba-
sis of accountability directly though it supports traceability and
sanctioning where appropriate.
Transparency relates to the principle of explicability and con-
cerns traceability [2]. We seek to support these desired principles
of responsible AI through traceability of STS negotiation steps as
well as explicability of agents’ reasoning at runtime.
Privacy is naturally approached from a values perspective [24, 45].
It encompasses values such as confidentiality, disapprobation, and
avoiding infringing into others’ space [4, 22]. Researchers advo-
cate giving greater control to users on decision making, e.g., for
privacy [47]. However, giving control to users raises the question
of whether a user’s action accords with that user’s or other con-
cerned users’ values. Social norms are the centerpiece of contextual
integrity [38, 39], a theory of privacy where violations occur when
information flows violate contextual norms.
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