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Laymen's summary

Meta-analysis is a powerful method to combine multiple independent studies answering a common
research question. To determine a causal treatment effect in a meta-analysis it is important to look at
the characteristics of the participants, like age or diseases, also known as covariates. This is especially
important in observational studies, where the covariate is not guaranteed to be balanced between
treatment groups. This makes it difficult to determine a causal effect of the treatment, since the
covariate may affect the outcome. In this thesis, the covariate imbalance between more than two
treatment groups is assessed using so-called multi-sample test statistics, from which it is determined
whether the imbalance is too large to consider the studies combinable. If this imbalance is too large, a
balancing procedure is proposed to make the studies more combinable for meta-analysis. This is done
by discarding some treatment groups that particularly hinder combinability. In simulated datasets, the
result is an improvement of the covariate imbalance by discarding groups.



summary

Meta-analysis is a powerful method to combine the treatment effects of multiple independent studies
answering a common research question. To determine a causal treatment effect in a meta-analysis it is
important to look at the characteristics of the participants, like age or diseases, also known as covariates.
In the case of experimental studies, participants are randomly allocated to treatment groups. As a result,
the covariate is in expectation equally distributed between the treatment groups. In observational
studies, no randomisation has occurred and thus, the covariate imbalance between treatment groups
may be more profound. This makes it difficult to determine a causal effect of the treatment, since the
covariate may affect the outcome. Therefore, it is important to balance these covariates between the
treatment, especially for observational studies. The condition when this balance is present is called
combinability.

In this thesis, the covariate imbalance between treatment groups is assessed using five multi-sample
test statistics. These assessment methods are based on the comparison of the empirical cumulative
distribution functions of the covariate between the meta-arms, which are the collections of the similar
treatment groups. Then, a permutation test is used to determine whether the covariate imbalance is
significant, as assessed by the multi-sample test statistics. This is done by computing a distribution of
the multi-sample test statistics under the null hypothesis that there is no covariate imbalance between
the meta-arms. If the observed multi-sample test statistics are significantly large, then combinability is
not satisfied.

Subsequently, a balancing procedure is proposed to minimise the covariate imbalance if combinability
is not satisfied. This balancing procedure works by discarding a selection of treatment groups from
the meta-analysis, such that the multi-sample test statistics indicate that the covariate imbalance is
no longer significant. The result is a more combinable set of treatment groups that can be used for
the purposes of meta-analysis. Finally, a simulation study of the balancing procedure is done for three
and four treatment groups. In these simulations, the treatment groups are simulated with different
underlying distributions, such that in theory the covariate imbalance is significant. These simulations
seem to indicate that the more treatment groups there are, the more groups need to be discarded before
the covariate imbalance is no longer significant. This is explained by the fact that the initial covariate
imbalance is larger if there are more treatment groups. On average, in the case of three treatment groups,
nearly a fifth of groups needs to discarded, while in in the case of four treatment groups, roughly a third
of groups needs to be discarded. Finally the use of five multi-sample test statistics in the balancing
procedure result in a sizeable overlap of groups that are discarded.
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Nomenclature

Abbreviations

Abbreviation ‘ Definition

RCT Randomized Clinical Trial

OBS Observational Study

ECDF Empirical Cumulative Distribution Function

MNDF Monotonically Non-Decreasing Function

Symbols

Symbol Definition

n Number of studies included in meta-analysis.

g Number of treatment groups.

X Matrix with entry X;; representing the mean covari-
ate value of treatment group j in study .

P Matrix with entry F;; representing the number of
participants in treatment group j in study <.

D The domain of covariate values in the data.

Fj The ECDF of the covariate of interest in meta-arm
j.

Froean The pointwise mean values of the ECDFs of the meta-
arms.

Fliedian The pointwise median values of the ECDFs of the
meta-arms.

Floint The ECDF of the joint sample of the meta-arms.

Flin The pointwise minimum values of the ECDFs of the
meta-arms.

Frax The pointwise maximum values of the ECDFs of the
meta-arms.

Tra The Wasserstein metric between two MNDFs F' and
G.

Thairwise Multi-sample test statistic based on pairwise Wasser-
stein metric of the meta-arms.

Trmean Multi-sample test statistic based on the Wasserstein
metrics between Fihean and the meta-arms.

Tnedian Multi-sample test statistic based on the Wasserstein
metrics between Fedqian @and the meta-arms.

Tioint Multi-sample test statistic based on the Wasserstein
metrics between Fjoine and the meta-arms.

Tinin-max Wasserstein metric between Fpuin and Fiax-

T o 100(1 — a)% quantile of the null distribution of the
multi-sample test statistic from the permutation test.
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Introduction

The method of meta-analysis combines the treatment effects of multiple independent studies answering
a common research question. The result is that meta-analyses have more statistical power than single
studies [4]. This makes them particularly useful when combining smaller studies that individually lack
power to detect a significant effect, but in the context of meta-analysis may reach significance. This
allows meta-analyses to give more reliable results by detecting small effect sizes or rarely occuring effects.
Consequently, they can be particularly useful in the case of rare diseases. Due to the increased range
of values in participant characteristics, the treatment effect can also be extended to larger populations.
Therefore, they are an important instrument in the literature in answering causal questions about the
effect of a specific treatment. Hence, they are widely applied to determine public health policy and
shape guidelines.

One of the main goals of meta-analysis is to answer causal questions about the treatment effect. To do
this, it is important that the outcome is solely a result of the treatment. Therefore, other factors should
be excluded as possible confounding factors. Factors that may also affect the outcome are also called
covariates. Examples of covariates include the age, gender, socioeconomic status and lifestyle factors
of participants and the dosage of treatment and duration of the study. To determine a causal effect,
it is vital that these covariates are similarly distributed between the treatment groups. For example,
consider that one wants to establish a causal effect of smoking on lung cancer. If the group of non-
smokers consists of participants younger than 30 years and the group of smokers consists of participants
older than 50 years, it becomes hard to tell whether the smoking or the age of the participants is leading
to lung cancer.

In the case of experimental studies, like Randomised Clinical Trials (RCTs), the participants are ran-
domly allocated to the treatment groups. As a consequence, the extent of covariate imbalances be-
tween treatment groups is limited. In the smoking example, the young and old participants would be
randomised between the group of non-smokers and group of smokers. Due to ethical considerations,
however, it is argued that such experimental studies should not be undertaken [9]. Therefore, observa-
tional studies (OBSs) can play a vital role in such contexts. In OBSs, the participants are not randomly
allocated to treatment groups. As a result, the extent of covariate imbalances between treatment groups
may be severe.

In the context of meta-analysis, the condition where this covariate balance is present between treatment
groups and studies, is referred to as combinability. This term can be described as “the extent to which
separate studies measure approximately the same thing” [5]. There are two main types of combinability:
basic combinability and marginal combinablity. The first refers to the comparison between the collection
of similar types of treatment groups in the meta-analysis, which are called meta-arms. The second type
refers to the comparison of subsets of studies with different characteristics [1]. In order to have a meta-
analysis of good scientific quality, it is necessary that both types of combinability are satisfied. In this
thesis, only basic combinability is considered.

When experimental studies, like RCTs, are combined in meta-analysis, the degree of covariate imbal-



ances between the meta-arms will be limited, since the individual studies are already relatively balanced.
However, the large cumulative effect of small imbalances could still lead to a violation of basic com-
binability [1]. In contrast to RCTs, individual OBSs can already have a significant imbalance between
treatment groups. Thus, when OBSs are combined in a meta-analysis, the resulting covariate imbalance
between the meta-arms may be substantially larger than in meta-analyses of experimental studies.

Therefore, a preemptive balancing procedure is necessary, in particular for meta-analyses of OBSs.
Different techniques of balancing procedures have been proposed. The current state-of-the-art method
is that of propensity score [8]. This method is generally used to balance a single observational study.
In this thesis, the focus is not on balancing a single observational study, but instead, on balancing a
meta-analysis of OBSs. However, the method of propensity score works best when data is known for
each participant, which is generally unavailable in meta-analysis.

Instead, a new preemptive balancing procedure for meta-analyses of OBSs is proposed in this thesis,
based on the comparison of empirical cumulative distribution functions of a particular coviarate between
the meta-arms. This procedure only considers one covariate of interest. The key idea is that single
observational studies may not be balanced individually, but a meta-analysis may become balanced when
carefully selecting which treatment groups of the studies are included.

The outline of this thesis is as follows: in Chapter 2 the general framework and structure of the data
in context of meta-analyses of observational studies is laid out. In Chapter 3 the assessment of the
covariate balance is undertaken. First, previous work in the literature is considered for experimental
studies with two treatment groups. This inspires the proposal of an extension to the assessment of
covariate imbalance for multi-treatment observational studies. Five different methods are introduced to
assess the covariate imbalance in the multi-treatment case. These methods are based on the comparison
of empirical cumulative distribution functions of the covariate of interest in each meta-arm. Then, a
permutation test is used to determine whether the covariate imbalance is significant as measured by
the assessment methods. Subsequently, in Chapter 4 a balancing procedure is proposed that minimises
the covariate imbalance by creating a smaller selection of groups to be included in the meta-analysis.
This is done by discarding some treatment groups of some studies that are “hindering” combinability
based on one of the assessment methods. Lastly, in Chapter 5 a conclusion is drawn and further areas
of research are discussed.

The source code used for the assessment method, balancing procedure and graphs in this thesis is found
in Appendix A in the programming language R.



Framework

In the meta-analysis literature, there exist different types of combinability. In this thesis, only basic
combinability as explained by Aiello, Attanasio, and Tiné [1], is considered. This is satisfied if a balance
in covariates between the treatment groups is present after combining the studies into a meta-analysis.
That is, the values of the coviarate are roughly equally distributed between the treatment groups.
Henceforth, when referring to combinability, the basic type is implied.

As mentioned in Chapter 1, in this thesis, a new preemptive balancing procedure is proposed for a meta-
analysis of multi-treatment observational studies (OBSs) that considers one covariate of interest. First,
five assessment methods of combinability are proposed. These assessment methods are based on the
comparison of the Empirical Cumulative Distribution Functions (ECDFs) of the covariate of interest.
Subsequently, a balancing procedure is introduced that aims to create a balanced meta-analysis by
discarding treatment groups of the included OBSs. A similar balancing method has been proposed
by Attanasio, Aiello, and Tine [2], but for the case of RCTs with one control and one experimental
group. In that case, however, full studies are discarded and not treatment groups. The reason why,
in the case of OBSs, it is allowed to discard treatment groups is explained below. If the assessment
method concludes that combinability is already satisfied, then no balancing procedure is necessary. As
previously stated, in this thesis only one covariate of interest is considered. More specifically, only
participant-level variables such as age or comorbidity are considered.

An important goal of a meta-analysis is to answer causal questions about a specific treatment effect.
Thus, a pool of studies is collected which all approximately investigate this treatment effect. For the
purposes of this thesis, it is assumed that each study contains exactly the same number of treatment
groups and that the treatment groups are identically defined in each study. In the context of meta-
analysis, only the following data on each treatment group in each study is generally known:

1. The mean value of the covariate of interest;

2. The standard deviation of the covariate of interest;
3. The number of participants.

4. The treatment effect (only for RCTs)

If, however, more data is available, for example on the individual participant level, more accurate
techniques may be developed and/or used than proposed in this thesis.

The reason why it is allowed to discard treatment groups instead of discarding full studies, lies in
the difference between OBSs and experimental studies, such as RCTs. In RCTs, this should not be
done, since information would be lost on the causal treatment effect of that particular treatment group.
However, in the case of OBSs this information is not known, as stated by the fourth item mentioned
above. A key difference between OBSs and RCTs is that in OBSs the balance between treatment groups
is not guaranteed, since no randomisation has occurred in OBSs. Thus, the treatment groups are not
actually predefined. The treatment groups are instead determined by the participants and a causal



effect of the treatment cannot be inferred [9]. Using meta-analysis of OBSs, the idea is to combine
treatment groups of different studies in order to achieve balance overall. Moreover, in the balancing
procedure of this thesis, when discarding part of a study, only treatment groups in full are discarded.

In the context of meta-analysis, a meta-arm is defined as the collection of all similar treatment groups
[1]. Consider the illustrative example of Figure 2.1 with three meta-arms: the meta-control-arm, the
meta-experimental-one-arm and the meta-experimental-two-arm. The meta-control-arm, for example,
contains all control groups in the n studies included in this example. This is an example of multi-
treatment studies with three treatment groups.

meta meta meta
control experimental 1 experimental 2
titiet (R EEK] IEEEER]
1 I XXX RN (R EEX] [(EEEEK]
I EEEEX] (XEERE] IEEEEX]
tiiiit [(XEEEX]
2 IXEXEY IXEEEE
tiiddt [EEEEX]
tiiiit (XEEEX]
3 hiiiii SRR
tiiiit (XEEEX]
tiiiit
n tiiiit
tifted [EEEE K]

Figure 2.1: An example of a meta-analysis including three meta-arms indicated by the different colours. They all
consists of the n similar treatment groups.

Let g be the number of treatment groups and let n be the number of studies. For each treatment group
in each study the mean covariate value and the number of participants are known. These values are
recorded in the matrices X and P, respectively. X;; represents the mean covariate value of treatment
group j in study ¢ and P;; represents the number of participants in treatment group j in study i.

In Table 2.1 and Table 2.2 an illustrative example dataset consisting of X and P is shown to highlight
the structure of the data. This example contains n = 25 studies and g = 3 treatment groups. This
example is used a few more times throughout the thesis.

X: X2 Xj P, Py Pa
1 [-0.288 0.106 3.598 T899 19T 830
2 | 1.727  1.864 2.320 5 | 0314 306 649
3 | 0.167 1.393 4.505 3 | 630 647 335
4] 0206 1.354 3.821 1 913 764 160
25 | -0.558 2.139  3.617 o | 815 687 409

Table 2.1: An illustrative example of the mean
covariate values in each treatment group in each
study.

Table 2.2: An illustrative example of the number of
participants in each treatment group in each study.

The domain D is taken as the smallest real interval containing all covariate values in X. For example,
if the covariate of interest is age in years, D could be D = [20,90], depending on the ages of the
participants. Another possibility for the covariate of interest could be proportion of participants with
diabetes, in which case D C [0, 1].

In the next chapter five assessment methods of the covariate imbalance are proposed based on the
comparison of ECDFs of the covariate in each meta-arm. First, the case of g = 2 treatment groups is
considered, before making an extension to g > 2 treatment groups.



Assessing covarlate imbalance

In this chapter, five test statistics are introduced to a priori assess the degree of basic combinability
in meta-analyses of OBSs. As mentioned in Chapter 1, this occurs when a balance in the covariate
of interest is present after combining the studies into a meta-analysis. Thus, basic combinability is
satisfied if there are no meaningful differences in covariate value between meta-arms. In this chapter,
a comparison between Empirical Cumulative Distribution Functions (ECDFs) is used to quantify the
difference in covariate values between the meta-arms. This method is inspired by Aiello, Attanasio, and
Tineé [1], where the covariate imbalance is assessed in the case of two treatment groups by comparing the
ECDFs of the meta-arms. Below, this method is extended to multiple treatment groups. Five different
test statistics are introduced in Section 3.1 that assess the covariate imbalance. Subsequently, in Section
3.2 a permutation test is introduced to determine whether the covariate imbalance is significant. These
five test statistics and the permutation test are used in the balancing procedures later on in order to
minimise the covariate imbalance in Chapter 4.

Let t € D be an arbitrary covariate value, where D is the domain of the covariate value. The ECDF
of the column vector X.; with corresponding weights P.;, denoted Fj, is given by Formula 3.1. The
tilde indicates the fact that it represents empirical data. In essence, this is a weighted version of the
classical definition of an ECDF, where the weights are determined by the number of participant in each
treatment group.

ZPU x<n
Fj(t) = = (3.1)

> Py

i=1

I:"j represents the distribution of the covariate in a particular meta-arm j. From Formula 3.1 the ECDF
value in each point t € D for each meta-arm can be computed. For the illustrative data of Table 2.1
and Table 2.2 with 25 studies and 3 treatment groups, the result is shown in Figure 3.1.
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Figure 3.1: The ECDFs of the covariate value for illustrative data with n = 25 and g = 3, where each colour represents
the ECDF of a particular meta-arm.

Recall that combinability is satisfied if there are no meaningful differences in the covariate value between
meta-arms. In terms of ECDFs, this is satisfied whenever the ECDFs are “similar enough”. Then, the
distribution of the covariate is “similar” across the meta-arms and combinability is satisfied. Naturally,
this raises the question when g ECDFs are “similar”.

First, consider the case of g = 2 meta-arms. This case has been extensively covered by Aiello, Attanasio,
and Tine [1]. They address this issue for RCTs with one control and one treatment group. They propose
the use of a nonparametric two-sample test to determine basic combinability between two ECDFs. For
this, they apply the Kolmogorov-Smirnov test and the Anderson-Darling test with a correction for ties,
that is, observations in the data with identical covariate value. These tests reject the null hypothesis
that the underlying, true distributions are identical in all meta-arms if the resulting p-value is below a
certain significant level. If the null is not rejected, the meta-arms are considered similar enough and
hence, combinability is satisfied between these two meta-arms.

This could be a useful testing method to a priori assess the combinability or covariate imbalance of
a meta-analysis, for both RCTs and OBSs. However, using p-values as the maximisation target in a
balancing procedure may not yield the best results. In that case, the p-value could even be misleading,
since it is susceptive to the sample size of the meta-arms. Discarding a selection of groups from the
meta-analysis automatically reduces the sample size, since fewer participants are included. Then, a
change in p-value could be caused by both the discarding of groups “hindering” combinability and the
reduction in the number of participants. In the worst case, a group could be discarded, whose removal
does not “significantly” alter the shape of the ECDFs of the meta-arms, but whose sample size is large.
Then, a relatively large reduction in p-value would occur entirely due to the sample size reduction, even
though the meta-arms still have a similar distribution w.r.t. the covariate. Hence, useful data would
be discarded and combinability may not even be improved, despite the p-value increasing. Instead, the
test statistic of a non-parametric test is used in the balancing procedure.

Inspired by the method proposed by Aiello, Attanasio, and Tiné [1], in this thesis an extension is pro-
posed to multi-treatment observational studies. As previously stated, in this thesis, the assessment of
combinability is not based on the p-value but on the test statistic from a non-parametric test. This test
statistic can be thought of as the “distance measure” or “amount of difference” between two monotonic



non-decreasing functions and is used to assess the covariate imbalance between meta-arms. The reason
why monotonic non-decreasing functions are used and not ECDFs will be clear later, however, note
that ECDFs are monotonically non-decreasing functions. A definition of this test statistic is given by
Definition 3.1.

Definition 3.1 (Two-sample test statistic Trg). Let F and G be two monotonically non-decreasing
functions. The statistic Trg is defined as Wasserstein distance metric between F and G, that is,

Tr = [ NECEEI

In this thesis, the Wasserstein distance metric, also known as Earth Mover’s distance or Kantorovich—-
Rubinstein metric[7] is used to measure the difference between two monotonically non-decreasing func-
tions, such as ECDFs . This metric is the area between two monotonically non-decreasing functions.
The reason for choosing the Wasserstein metric is two-fold:

1. The Wasserstein metric is not affected by ties in the data, which are frequent in meta-analyses.
Tests such as the Kolmogorov Smirnov test and Anderson-Darling test are affected by ties, and
therefore Aiello, Attanasio, and Tineé [1] introduced perturbations functions to the data. However,
such perturbation functions require assumptions on the data, which is not necessarily guaranteed
to correctly reflect the actual data. To circumvent this issue, a test shall be used that is not
affected by ties. The Wasserstein metric fullfills this criterion.

2. The Wasserstein metric is sensitive to the shape of the distribution, which means that horizontal
differences in the ECDFs have meaning. Thus, it detects a difference between a situation where
the covariate values in the samples lie close together and where they lie further apart, even
though the vertical differences in ECDFs may be identical. To illustrate this issue, consider three
sets of covariate observations (10, 20, 30), (5, 15,25), and (9, 19, 29) from which the corresponding
ECDFs F, G; and Gs, respectively, are computed and shown in Figure 3.2 . Intuitively, G5 is
more “similar” to F' than G is to F' and it is desired that the test statistic reflects this. This is
true for the Wasserstein metric, but not, for example, for the Kolmogorov-Smirnov test statistic
and Anderson-Darling test statistic.

1.0
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Figure 3.2: An example of ECDFs F,G; and G2 corresponding to covariate observations (10, 20, 30), (5, 15,25), and
(9,19, 29), respectively.

However, the Definition of 3.1 can be adapted to use any test statistic, not just the Wasserstein metric.
Other examples may include the Kolmogorov Smirnov test, the Anderson-Darling test, the Cramér—von
Mises criterion and the Kuiper’s test.

Having established an assessment method for the covariate imbalance for g = 2 treatment groups, an
extension of this assessment can now be made for g > 2 treatment groups. Multiple paths are possible
here. In this thesis, five different multi-sample test statistics are explored. These five multi-sample test
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statistics are introduced in the next section and measure the covariate imbalance between the meta-
arms when g > 2. These are referred to as multi-sample test statistics, as opposed to the two-sample
statistic from Definition 3.1.

3.1. Multi-sample test statistics

In this section five multi-sample test statistics are introduced that measure the covariate imbalance
between the meta-arms. More precisely, these test statistics measure or quantify the “distance” between
the ECDFs of the g meta-arms and thus they give a measure for the covariate imbalance. The lower this
statistic is, the more combinable the meta-arms are. If the test statistic equals zero, then the meta-arms
are perfectly balanced with respect to the covariate.

The first of these multi-sample test statistics is the pairwise statistic. The pairwise statistic is deter-
mined by calculating the two-sample test statistics T’z Py B of each pairwise combination of ECDFs of
the meta-arms. Subsequently, the maximum of all comblnatlons is taken as the pairwise statistic, since

the maximum represents the largest imbalance in any pair of the meta-arms. This is summarised in
Definition 3.2.

Definition 3.2 (Thairwise): Lpairwise = maX{Tﬁjlﬁj2 71,72 €{1,2,...,9}}

The intuitive idea is that if the meta-arms are combinable, then the covariate imbalance between all
meta-arm pairs should be small.

Secondly, the mean statistic is defined by Definition 3.3. First, the monotonic non-decreasing function
Flinean is computed as in Equation 3.2. It computes the pointwise mean value of the ¢ ECDFs of the
meta-arms in a given covariate value t € D. Subsequently, the maximum is taken of the two-sample
statistics between Fiean and the ECDF of each meta-arm.

Frean(t) = mean(F t)je{1,2,...,9}) (3.2)
Definition 3.3 (Tiean). Timean = maX{TF o lie{l,2,...,9}}

Thirdly, the median statistic, is given by Definition 3.4. First, the monotonic non-decreasing function
Finedian is computed as in Equation 3.3. It computes the pointwise median value of the g ECDFs of the
meta-arms in a given covariate value t € D. Subsequently, the maximum is taken of the two-sample
statistics between Fpedian and the ECDF of each meta-arm.

Fredian(t) = medlan(F i e {1,2,...,9}) (3.3)
Definition 3.4 (Tinedian): Tmedian = max{TFjF je{1,2,...,9}}

median
The fourth statistic is the joint statistic. First, the joint sample is created by combining all covariate
values across the meta-arms. Subsequently, the ECDF of this joint sample is computed in each covariate
value t € D as determined by Equation 3.4. This is in fact an ECDF, since the joint sample can be
considered empirical data. Then, the maximum is taken of the two-sample statistics between Fjoim and
the ECDF of each meta-arm.

join jg:1 Z:‘:l Pij

Definition 3.5 (Tioint). Ljoint = max{TFj F]-OWU e{1,2,...,g9}}

(3.4)

The intuitive idea behind the mean, median and joint multi-sample test statistics, is that if all meta-
arms are combinable, then each individual meta-arm should be “similar” to some “average” measure of
the meta-arms. The Fican, Finedian @nd Fjoint are suggested as measures for this.

The fifth and final statistic, the Min-Mazx statistic, is based on two monotonically non-decreasing func-
tions of the pointwise minimum and maximum values of the ECDFs of the meta-arms. These minimum
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and maximum values, denoted Fii, and Fiay, respectively, are defined by Formulas 3.5 and 3.6, where
te D.

Fuuin(t) = min{F;(t)|j € {1,2,....9}} (3.5)
Funax(t) = max{Fj(t)|j € {1,2,...,g}} (3.6)
Then, the Min-Maz statistic is defined by Definition 3.6.

Definition 3.6 (Tiin-max). Tmin-maz = L Fpin Faax

The intuitive idea here, is that if the maximum and minimum vertical extents of the ECDFs of the
meta-arms are “similar”, then the meta-arms themselves should also be “similar enough”.

Note that, despite Fiean, Fmedians Fmin and Fpax being drawn from ECDFs, they are not actually
ECDFs themselves, since their distributions do not stem from empirical data and thus, they are referred
to as monotonically non-decreasing functions (MNDFs). They are treated the same as ECDFs, however,
in the sense that they satisfy the following:

1. F is defined on D and not on R\ D.

2. F' is non-decreasing;

3. limgyqqup(p) F(z) = 1 and limg in¢py F(z) = 0, and;
4. F' is right-continuous

In Figure 3.3 the MNDFs Flhean (2), Fiedian (b), Fjoim (c) and Fiyin and Fiax (d) are plotted along
with the ECDFs of the meta-arms of the illustrative example of Table 2.1 and Table 2.2.

1.0

1.0

— Meta-arm 1 | — Meta-arm 1
© Meta-arm 2 © Meta-arm 2
o | — Meta-arm 3 o 7| — Meta-arm 3
- -+ Mean - -+ Median
© ©
w o 7| w o 7|
(=] a
o o
w = w ~
o 7 o 7|
o~ o~
(S o 7
o | o | Clmeemr==
° T T T T T T T ° T T T T T T T
1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Covariate value (t) Covariate value (t)
(2) (b)
e e
- — Meta-arm 1 - — Meta-arm 1
© Meta-arm 2 © Meta-arm 2
o | — Meta-arm 3 o 7| — Meta-arm 3
- = Joint ~=- Min
© © _| --- Max
L o L o
a a
o o
wo<« ] wos ]
S =3
o~ o~
o 7 o 7|
o | e B I —
° T T T T T T T ° T T T T T T T
1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Covariate value (t) Covariate value (t)
(c) (d)

Figure 3.3: The ECDFs of the meta-arms, in the coloured lines, of the illustrative example of Table 2.1 and Table 2.2,

along with the MNDFs Finean (8), Fmedian (b), Fjoint (¢) and Fiin and Fax (d) in the dashed black lines.
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In fact, it can be shown that Tiin-max > Tpairwisea Tpairwise 2 Tean, Tpairwise > Thedian and Tpairwise >
Tioint Vg > 2. Proposition 1 gives a proof for the first inequality, but the proof is similar for the
others.

Proposition 1. Vg > 2:  Thin-maz = Tpairwise

Proof. Let g > 2, t € D and let Fy, F, ... Fg be the ECDFs of the covariate corresponding to meta-
arms 1,2,...,g, respectively. By construction, Fuin(t) < Fj(t) < Funax(t) Vj € {1,2,...,g} and thus
|Fmin(t) - Fmax(t)‘ 2 |Fj1 (t) - sz (t)‘ Vj1,J2 € {15 2,... ag}'

Now, consider the Wasserstein metric of two MNDFs F' and G:

Tre = / IF@) -G di

Then, substituting F' and G for Fi,i, and Fy,.x yields that

Tmin—max = T’F'mm,Fm,_,LX = / ‘Fmin(t) - -Fmax(t)| dt
teD

> [, () = B, (0] At = max Ty, = Ty

O

The proofs of the other inequalities are based on the fact that for Flean, Fimedian and ﬁ}oim, there is at
least one meta-arm whose ECDF value is larger, and one whose ECDF value is smaller, at every t € D.
For Fiuean and Fieqian this follows directly from the definitions, but for IEjoint this may not be directly
obvious. Hence, a quick proof of this fact is given below.

Proof. Let g > 2. To show: Vt € D: 3Jj s.t. F}Omt(t) < Fj(t). Let t € D. Suppose this not the case,
thus Fioine(t) > F;(t) Vj € {1,2,...,9}. Then, by definition of Fjoin; and Fj it follows that

Jo1 22 Py Lyx, < . i P Lix,<n
?:1 Z?:l Pij Z?:l Pij

Vi

g n n n

2o Py Tyxy,<n .

Ty > P2 P> Py lixsy Vi
j=1 i=1+ 1) i1 P

Then. summing these inequalities over 7 = 1,2..., g together yields

?:1 Yimi P Iixy<ty v ~\
TS 2> Pa> D) Pyl
j=1 2ui=1 1] j=1i=1

j=11i=1

g n g n
= > D Py lixyen > ) ) Py lix,cn =

j=11i=1 j=11i=1

Hence, 3j s.t. ﬁ}oint(t) < Fj(t) Vt € D. The case of ﬁ‘j (t) < ~joint(t) is nearly identical. O

In terms of computations, the Ti,in-max may have an advantage, since it requires only one Wasserstein
metric to be calculated, whereas Tincan, Tmedian a0d Tjoins Tequire g Wasserstein metrics to be calculated

and Tpairwise Tequires (§) calculations of a Wasserstein metric.

In the next section, a permutation test is used to determine whether the covariate imbalance between
the meta-arms is significant based on the multi-sample test statistics.
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3.2. Permutation test

In the previous section of this chapter, five multi-sample test statistics were introduced to assess the
covariate imbalance between the g meta-arms based on the comparison of ECDFs of the covariate. In
this section, a permutation test is used to determine whether the covariate imbalance between the
meta-arms is significant in a particular dataset. This permutation test can be applied to any of the
multi-sample test statistics.

Under the null hypothesis, the underlying distributions of the meta-arms are identical. Hence, the
treatment group labels are interchangeable. This allows for a permutation test where a large number
of datasets is sampled, with replacement, from the original dataset. Subsequently, the multi-sample
test statistics can be recomputed for each of these datasets. This yields a null distribution of the multi-
sample test statistics for the original dataset. In essence, this null distribution shows which range of
values of the multi-sample test statistic is expected or likely to occur under the null. The details of this
permutation test can be found in Algorithm 1.

Algorithm 1 Permutation test for X and P

Compute multi-sample test statistic 7°% from X and P
Define « as the significance level
Set Npoots = 500
for min {1,2,..., Npoots} do
Resample X’ with replacement from X and determine P’ such that the new covariate value X{j
correspond to the original weights attributed to that value in P.
: Compute multi-sample test statistic T}, for X’ and P’
7: Define Th_, as the 100(1 — «)% quantile of (T4, 75, ..., T, .p..)
8: Define p = —— 3 Vboors Lz, >7}

Nboots m=1

The resulting 100(1 — @)% quantile of the null distribution of the multi-sample test statistics can then
be used to determine whether the covariate imbalance is significant in the original dataset. The null
is rejected if the observed multi-sample test statistic in the original dataset 7°% > T)_, at signifi-
cance level a. Equivalently, the null is rejected if the p-value obtained by Algorithm 1 is smaller than
significance level a.

As an example, this permutation test is applied to the dataset of Table 2.1 and Table 2.2. The observed
multi-sample test statistic in this illustrative dataset 7%, the 95% quantile Tp.g5 of the null distribution
of the multi-sample test statistics and the p-values as determined by the permutation test are presented
in Table 3.1 for each of the five multi-sample test statistics. As an example, the histogram of the null
distribution of Tpairwise is given in Figure 3.4, for this illustrative dataset.

Histogram of Tpairwise in Permutation test
T°%  Tyos p-value
Tpairwise | 2404 1.037  0.000
Thean 1.313 0.603  0.000
Thedian 1.536 0.711  0.000
Tioint 1.258 0.592  0.000
Thin-max | 2404 1.156  0.000

Frequency
0 10 20 30 40 50 60

0.4 0.6 08 1.0 1.2 1.4

Figure 3.4: Histogram of the null distribution of

Table 3.1: 7°% in the illustrative dataset, Tp.95 and Tpairwise determined by the permutation test of the

the p-value as determined by permutation test for the illustrative dataset. The vertical red line indicates
five multi-sample test statistics. To.95 for Thairwise-
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In Table 3.1 each observed multi-sample test statistic is larger than Tj 95. Therefore, the null is rejected
and thus, the covariate imbalance between the meta-arms is significant in this example. Moreover, the
p-values are equal to zero in this illustrative example for all multi-sample test statistics.

In the next chapter, a balancing procedure is proposed to minimise the covariate imbalance by discarding
some groups. In this balancing procedure 77—, from the permutation test is used to determine when
this procedure stops.



Minimising covariate imbalance

In this chapter a balancing procedure is introduced. The aim of this procedure is to minimise the
covariate imbalance between meta-arms by selectively discarding groups from studies. A group refers
to a single treatment group from a single study. This reduces the amount of data used, but may result
in a more combinable selection of studies and groups for the purposes of meta-analysis. Therefore, it is
desired to discard as few groups as necessary. In the balancing procedure, each of the multi-sample test
statistics from Chapter 3 can be used as the measure of covariate imbalance between the g meta-arms
and is the objective that is minimised.

In Section 4.1 the balancing procedure is introduced and applied to an illustrative dataset. In Section
4.2 a simulation of the balancing procedure is performed under the alternative hypothesis that the
meta-arms have different underlying distributions. Lastly, in Section 4.3 other balancing procedures
are discussed that were considered, but ultimately abandoned.

4.1. Balancing procedure

In this section a balancing procedure is proposed that repeatedly discards one group until a stopping
condition is satisfied, or when one meta-arm consist of only a single group. In each iteration, the
discarded group is selected as the group whose discarding results in the smallest multi-sample test
statistic. L.e. it temporarily leaves out one of the non-discarded groups and then measures the resulting
multi-sample test statistic. Subsequently, it discards the group for which the lowest multi-sample test
statistic has occurred. It repeats this process with the non-discarded groups until the stopping condition
is satisfied, or when one meta-arm consist of only a single group.

However, a blind focus on minimising the multi-sample test statistic may not be ideal, since discarding
more groups means less available data to investigate the treatment effect in the meta-analysis. Thus, it
is desired to discard no more groups than necessary. One way to do this, is by means of the stopping
condition. Before discarding any group in the balancing procedure, T} _,, is determined from Algorithm
1 from Section 3.2. Since Tj_, is determined under the null that all meta-arms stem from the same
underlying distribution, 77 _, can be considered as an upper bound for an acceptable level of measured
covariate imbalance under the null. The stopping condition is then satisfied if the multi-sample test
statistic falls below this threshold 77_,. Then, the balancing procedure stops and yields the multi-
sample test statistic TBF and number of discarded groups at the stopping point as determined by the
application of the balancing procedure.

The balancing procedure is given in detail in Algorithm 2.

13
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Algorithm 2 Balancing Procedure

1: Define k as iteration number, with initially & = 1.

2: Define Tjy as multi-sample test statistic w.r.t. initial dataset consisting of Xy and P.
3: Determine T7_, by Algorithm 1

4: while Xj_; and P;_; contain at least one group in each meta-arm do

5: for group a in included groups in X;_; and Py_; do

6: Xtemp = Xp_1

T Ptemp =Pr_1

8: Discard group a from Xiemp and Piemyp

9: Calculate multi-sample test statistic w.r.t. updated Xiemp and Premp
10: Denote T_, as the resulting multi-sample test statistic when group a is discarded
11: Denote aymi, = argmin, T,
12: Set Ty, =T 4.
13: if T, <T,_, then
14: Stop
15: Discard group ami, from X, 1 and Py_; and denote as X and Py

16: Update k =k + 1.
17: Denote TBP = T}, as the multi-sample test statistic at the stopping point.

In all figures showing results of applying the balancing procedure, the values of the multi-sample test
statistics are standardised to the initial value of the multi-sample test statistics, that is, before discarding
any groups. Thus, all multi-sample test statistics are initially equal to 1, even though their non-
standardised values are not equal. This standardisation is done to visually compare the different multi-
sample test statistics. Only the relative change in multi-sample test statistic, as caused by the balancing
procedure, is meaningful. The multi-sample test statistics are different methods to measure the covariate
imbalance. Hence, size differences between the different non-standardised multi-sample test statistics
do not represent a difference in covariate imbalance or combinability, only a difference in measurement.
Moreover, the number of discarded groups is denoted in percentages. Note that this standardisation
of the results is done after the balancing procedure. In the balancing procedure, the non-standardised
values are used.

As an example, the balancing procedure of Algorithm 2 is applied to the illustrative example, with
n = 25 and g = 3, of Table 2.1 and Table 2.2 of Chapter 2 with and without stopping condition. The
resulting graphs are shown in Figure 4.1 with (a) and without (b) stopping condition. Note that the
scales of these graphs are different.

Balancing Procedure with Stopping Condition ing P without pping Condition

- Pairwise
Mean

®© | Median
Joint
Min-Max

Pairwise
Mean
Median
Joint
Min-Max

Standardised Multi-Sample Test Statistic (T)

Standardised Multi-Sample Test Statistic (T)
03 04 05 06 07 08 09 1.0

T T T T T T T
0 5 10 15 20 25 30 0 20 40 60 80 100

Percentage of groups discarded (%) Percentage of groups discarded (%)

(a) (b)

Figure 4.1: The standardised multi-sample test statistic and the corresponding percentage of discarded groups at each

iteration in the balancing procedure with (a) and without (b) stopping condition applied to the illustrative example of

Figure 3.1 with n = 25 and g = 3 for each multi-sample test statistic. The stopping points are indicated by the points at
the end of each curve. The different multi-sample test statistics are indicated by the different colours.

In the graphs of Figure 4.1, each curve represents the use of one multi-sample test statistic in the
balancing procedure. The value of the multi-sample test statistic is measured and plotted at each
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percentage of discarded groups corresponding to the iterations of the balancing procedure. The points
of each curve represent the stopping points in the balancing procedure. The dashed horizontal red line
indicates the value of the initial test statistic. Thus, if the multi-sample test statistic is below this line,
then the covariate imbalance between the meta-arms is decreased by discarding groups.

The first thing to note is that the balancing procedure with stopping condition (a) yields an almost
strict decrease of the multi-sample test statistic until the stopping point. In the balancing procedure
without stopping condition (b) the multi-sample test statistic decreases before plateauing and then
increasing again. Clearly, at some point it is no longer optimal to continue discarding groups in the
balancing procedure without stopping condition. This highlights the effect of the stopping condition. By
stopping when the multi-sample test statistic is below the threshold T _,, the potentially unnecessary
discarding of groups is prevented.

At the right side of Figure 4.1 (b), the multi-sample test statistics tend to increase again with large
fluctuations. This is explained by the fact that when fewer non-discarded groups remain, any discarding
of an additional group has a larger relative influence on the shape of the ECDFs of the meta-arms. Hence,
discarding a group may then drastically change the multi-sample test statistics.

The non-standardised multi-sample test statistics initially and at the stopping point of the balancing
procedure as well as the percentage of discarded groups and the relative reduction of the multi-sample
test statistic of this illustrative example, with stopping condition, can be found in Table 4.1.

Percentage of To  TBP Reduction in multi-

discarded groups sample test statistic
Tpairwise 28.0% 2.404 0.981 59.2%
Tnean 25.3% 1.313  0.603 54.1%
Tinedian 26.7% 1.536  0.645 58.0%
Tioint 28.0% 1.258 0.541 57.0%
Tin-max 25.3% 2.404 1.156 51.9%

Table 4.1: The non-standardised multi-sample test statistic before (Tp) and after (TBF) applying the balancing
procedure, the reduction in multi-sample test statistic in percentages and the corresponding percentage of discarded
groups in the illustrative example of Table 2.1 and Table 2.2.

From Table 4.1 it follows that the differences in the reduction of the multi-sample test statistic and
the differences in the percentage of discarded groups are relatively modest between the different multi-
sample test statistics. In this example, Tiean and Thin-max resulted in the lowest percentage of discarded
groups, 25.3%, while Tpairwise resulted in the largest reduction in the multi-sample test statistic, 59.2%.

A careful consideration must be made though between minimising the number of discarded groups and
minimising the multi-sample test statistic. However, since the stopping condition is only satisfied if the
multi-sample test statistic is below T7_,, the result of using each multi-sample test statistic in Table 4.1
could be considered equally balanced. In that case, the result of Tiean OF Tiin-max may be considered
the “best” in this example, since they discard the fewest number of groups.

Taking the result of Tiean, one can determine the corresponding dataset after applying the balancing
procedure to this example. The resulting ECDFs of the meta-arms of the dataset before and after this
balancing procedure with Tyean are plotted in Figure 4.2 (a) and (b), respectively.
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Figure 4.2: The ECDFs of the meta-arms of the illustrative example of Table 2.1 and Table 2.2, before (a) and after
(b) applying the balancing procedure with Timean, resulting in discarding 25.3% of groups and reducing Tmean by 54.1%.

From the datasets corresponding to Figures 4.2 (a) and (b) one can compute each multi-sample test
statistics and determine a p-value by permutation test for each multi-sample test statistic as detailed
in Algorithm 1. The resulting p-values are shown in Table 4.2.

Before (a) After (b)
Tpairwise 0.000 0.008
Tinean 0.000 0.010
Tinedian 0.000 0.014
Tioint 0.000 0.008
Tnin-max 0.000 0.012

Table 4.2: The p-values in [0, 1] computed by permutation test of Algorithm 1 in the dataset of Figure 4.2 before (a)
and after (b) applying the balancing procedure with Tmean.

At significance level o = 0.05, all reject the null hypothesis that the underlying distribution is the
same in each meta-arm. Thus, the covariate imbalance is still significant before and after applying the
balancing procedure in this example. Hence, combinability is not satisfied, but it is improved.

4.2. Simulation study of balancing procedure

In the previous section, a balancing procedure was introduced to make a selection of groups that is
more combinable in context of meta-analysis. This is done by discarding groups one by one such that
the multi-sample test statistic is minimised. The five multi-sample test statistics of Section 3.1 are used
for this purpose. In this section, to understand the behaviour and accuracy of the balancing procedure
under the alternative hypothesis, a simulation study is performed of this balancing procedure. Under the
alternative hypothesis, the distribution of the covariate is not identically distributed in each meta-arm.

Two simulations are performed, one with ¢ = 3 and one with ¢ = 4. Each simulation consists of 100
sample datasets. In each sample dataset the number of studies is set at n = 25 and g = 3 or g = 4. The
sample datasets each consist of covariate value matrix X and number of participants matrix P, which
represent the mean covariate value and number of participants of the groups. Thus, X and P are of
shape 25 x ¢g. In each sample dataset, these are generated by the following properties:

o Xij ~N(j,1)

e P;; ~ U{100,1000}
Here, N(u,0?) represents a normal distribution with mean p and standard deviation o and U{a, b}
indicates a discrete uniform distribution of integers {a,a+1,...,b—1,b}. Note that X has a different
distribution in each meta-arm, meaning this simulation is performed under the alternative hypothesis,

where the meta-arms do not have the same underlying distribution. As a result, the samples in the
simulation have, in theory, a substantial covariate imbalance before applying the balancing procedure.
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From X and P, the ECDFs of the g meta-arms from Definition 3.1 are computed and then, the MNDFs
of Fpairwise, Fmean, Fmedian, Fioints Fmin and Fiuax from Section 3.1 can be computed.

Subsequently, the balancing procedure of Algorithm 2 is applied to each sample dataset in the simulation.
For each sample dataset, the multi-sample test statistics over the iterations of the procedure are obtained.
Each iteration naturally corresponds to a certain number of discarded groups. These values are again
standardised in each sample dataset such that the initial multi-sample test statistic equals 1 and the
number of discarded groups is expressed in percentages.

For the simulation of ¢ = 3, these results are shown per multi-sample test statistic in Figure 4.3,
representing Tpairwise (2); Tmean (€); Tmedian (€), Tjoint (8) and Tmin-max (i). For the simulation of
g = 4, these results are also shown in Figure 4.3, representing Thairwise (P), Tmean (d); Tmedian (&),
Tioint () and Tinin-max (j). Note that the scale of the graphs is different between the simulation of
g = 3 and g = 4. In each graph in Figure 4.3, each line represents one sample dataset to which the
balancing procedure is applied. A circular point represents a stopping point of one sample dataset.

The graphs in Figure 4.3 all show a clearly decrease in the multi-sample test statistic. In the case of
g = 4 there are a few outliers where the balancing procedure discards substantially more groups than
in the other sample datasets. Note, for example, the outlier in the case of Tjoint and g = 4 (h), where
more than 90% of groups is discarded. In fact, this was the only case in the simulations where the
stopping condition was not met and instead the procedure stopped since one meta-arm consisted of
only one group.

Note, that in the case of Tiedian the lines are less smooth and instead resemble a more “twisting” or
“zigzagging” motion. This may be caused by the fact that the in g = 3, Fijedian 18 equal to one of the
ECDFs of the meta-arms. Thus, if the ECDFs are altered by the discarding of groups, Fijedian may
change less smoothly than other MNDFs such as Fiyean and ﬁ}oint. However, this also happens in the
case of g = 4, where the median value essentially becomes a mean between the middle ECDFs of the
meta-arms.

Moreover, the multi-sample test statistics and the number of discarded groups at the stopping points
are determined in each sample dataset of both simulations. These values across all sample datasets are
then combined, from which the mean, 2.5% and 97.5% quantiles of the multi-sample test statistic at
the stopping points are computed. The range of values between the 2.5% and 97.5% quantile is then
denoted as the 95% range of values. In Table 4.3 and Table 4.4, these values at the stopping points are
shown for the simulation of g = 3 and g = 4, respectively

Percentage of discarded groups | Reduction in multi-sample test statistic

Mean 95% value range Mean 95% value range
Toairwise | 18.8% [6.7%, 31.4%) 52.9% [39.8%, 61.1%)
Tean | 17.9% [5.3%, 30.7%] 48.7% [31.0%, 57.5%]
Toedion | 16.9% 3.3%, 31.4%] 46.7% [25.2%, 60.8%)
Toins 19.6% 6.0%, 32.1%) 49.8% 31.7%, 60.3%]
Toinmax | 18.4% 6.7%, 32.0%) 47.9% 34.9%, 57.1%)]

Table 4.3: The mean and 95% range of values of the percentage of discarded groups and reduction in multi-sample test
statistic at the stopping points in the simulation for g = 3.
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Figure 4.3: The multi-sample test statistic and corresponding percentage of discarded groups at each iteration in the

balancing procedure in the simulation of 100 sample datasets with n = 25. The figures on the left indicate the

simulatiOn with g = 3 and on the right with g = 4. Each curve and its stopping point indicated by the circle represent

one sample dataset in the simulation
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Percentage of discarded groups | Reduction in multi-sample test statistic

Mean 95% value range Mean 95% value range
Toaiewise | 32.6% [20.5%, 44.5%] 67.2% [54.2%, 75.8%]
Trnean 32.3% [19.0%, 57.2%] 64.6% [53.2%, 74.2%]
Toedion | 27.3% [15.0%, 41.6%) 60.3% 45.2%, 72.1%]
Tioint 34.2% [19.5%, 52.6%) 63.5% [51.0%, 72.2%)
Toinmax | 35.1% [21.5%, 47.5%] 64.4% [52.2%, 73.6%)

Table 4.4: The mean and 95% range of values of the percentage of discarded groups and reduction in multi-sample test
statistic at the stopping points in the simulation for g = 4.

From Table 4.3 and Table 4.4 it follows that for both simulations using Tiedian in the balancing pro-
cedure yields on average the lowest percentage of discarded groups (16.9% and 27.3%), while Tpairwise
yields the largest reduction in the multi-sample test statistic (52.9% and 67.2%). This is also reflected
in the corresponding 95% range of values. However, the differences between the percentage of discarded
groups and the differences between the reduction in multi-sample test statistic are modest between the
five multi-sample test statistics.

Moreover, for ¢ = 4 the percentage of discarded groups and the reduction in the multi-sample test
statistics is substantially larger than for ¢ = 3. This may imply that in the case of g = 4, more
groups need to be discarded such that a lower multi-sample test statistic is reached, before the stopping
condition is satisfied. Thus, it takes a larger reduction in multi-sample test statistic until this value
reaches the corresponding Tj 95 quantile of the null distribution of the multi-sample test statistics. This
may point to the fact that, for g = 4, the meta-arms have a larger covariate imbalance to begin with.

Below, three examples of the balancing procedure are shown corresponding to datasets from the simu-
lation. Note that the scales are not the same in these figures.

First, the ECDFs of the meta-arms of the sample dataset where the most groups were discarded (93%) in
Figure 4.3 (h) (Tjoint with g = 4) is shown in Figure 4.4 before (a) and after (b) applying the balancing
procedure with Tjoint. In this case, the balancing procedure does not appear to give satisfactory results,
as nearly all groups are discarded. However, applying the balancing procedure with Thairwise; Tmeans
Tmedian and Tiin-max leads to 38%, 43%, 27% and 42% of groups being discarded, respectively. Thus,
this is a particular case where the use of Tjqine was unfruitful.

Secondly, the ECDFs of the meta-arms of the sample dataset that discarded the fewest groups (4%)
in Figure 4.3 (i) (Tmin-max With g = 3) is shown in Figure 4.5 before (a) and after (b) applying the
balancing procedure with Tinin-max- There is not a lot of change between the before and after image,
since only 4% of groups are discarded. Note that it appears that the groups are discarded with the
most extreme covariate, since the “tails” of the ECDFs are reduced.

Thirdly, the ECDFs of the meta-arms of the first sample dataset in the simulation with g = 4 is shown
in Figure 4.6 before (a) and after (b) applying the balancing procedure with Tphairwise- Note that the
ECDFs are shifted towards the covariate range where each meta-arm contains groups with covariate in
that range.
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Figure 4.4: An example of ECDFs of the meta-arms before (a) and after (b) applying the balancing procedure with
Tjoint, resulting in discarding 93% of groups and reducing Tiean by 64.4%.
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Figure 4.5: An example of ECDFs of the meta-arms before (a) and after (b) applying the balancing procedure with
Tin-max, resulting in discarding 4% of groups and reducing Tmean by 29.5%.
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Figure 4.6: An example of ECDFs of the meta-arms before (a) and after (b) applying the balancing procedure with
Tpairwise, resulting in discarding 30% of groups and reducing Tinean by 60.5%.

Lastly, a natural question of the balancing procedure, is whether the same groups are discarded when
using different multi-sample test statistics. To investigate this, the overlap of groups between every
combination of two multi-sample test statistics is computed in each sample dataset of the simulations.
The overlap is the number of discarded groups, not percentage, that two balancing procedures have both
discarded at the stopping point. Subsequently, the mean of these overlaps can be taken over all sample
datasets. The resulting mean overlaps are presented in Table 4.5 and Table 4.6, for the simulation of
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g = 3 and g = 4, respectively. Recall that there were 75 and 100 groups, respectively, in total in each
sample dataset. Note that the overlap of a balancing procedure using a a particular test statistic with
itself is just all groups it discards. This is represented by the main diagonal.

Pairwise Mean Median Joint Min-Max
Pairwise 14.1 10.6 8.9 10.8 12.2

Mean 13.5 9.5 10.3 11.2
Median 12.7 9.1 9.2
Joint 14.7 10.9
Min-Max 13.8

Table 4.5: The mean overlaps of each combination of two multi-sample test statistics, in the simulation with g = 3.

Pairwise Mean Median Joint Min-Max
Pairwise 32.6 28.0 25.2 25.9 28.1

Mean 32.3 25.0 26.7 28.1
Median 27.3 23.0 24.7
Joint 34.2 28.0
Min-Max 35.1

Table 4.6: The mean overlaps of each combination of two multi-sample test statistics, in the simulation with g = 4.

From Table 4.5 one can conclude that the smallest overlap in the simulation of g = 3 occurred between
Tmedian and Tjoins at 9.1 groups overlap on average, while they individually discarded 12.7 and 14.7
groups on average, respectively. In the simulation of g = 4, the smallest overlap also occurred between
Tinedian and Tioing at 23.0 groups overlap on average, while individually they discarded 27.3 and 34.2
groups on average, respectively. In most combinations, the mean overlap is relatively large, thus the use
of different multi-sample test statistics in the balancing procedure result in quite some overlap between
the selection of groups that are discarded.

4.3. Abandoned balancing procedures

As a side note, the balancing procedure presented in Algorithm 2 was not the only procedure developed
and investigated for this thesis. However, other balancing procedures that were considered were not
effective at minimising the covariate imbalance. In essence, they tried to find a criterium that would
yield the group whose discarding results in the lowest multi-sample test statistic. That would be the
same group as in the balancing procedure in Algorithm 2, but may result in an algorithm with faster
computation time. The considered balancing procedures were the following;:

e Histogram method:

This method is based on an estimator of the density of the covariate for each meta-arm, considering
the number of participants in each group as weights. In this method, the histogram was used
as an estimator of the density. Similar to ECDFs, if the meta-arms have the same underlying
distribution of the covariate, then the density of the covariate should be the same in each meta-
arm. This fact is used to determine which group is discarded in each iteration. To determine
this group, the method first determined the “bin” in the histogram with the largest frequency
difference between the meta-arms. The contribution to the covariate imbalance would then be
considered the greatest at the covariate values of that bin and hence, the group is discarded that
decreases the frequency difference in this bin the most. This procedure then repeats the same
steps, but without the discarded group and continues until one meta-arm has only one group left
or the stopping condition is satisfied.

e Adapted histogram method:
This method is similar to the histogram method, but with an adapted “histogram”. First, it
constructs a grid of all unique covariate values in X. The goal is to find the point on the grid
where the largest covariate imbalance between the meta-arms occurs. This is done by, for each
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point on the grid, determining the number of groups in each meta-arm that have covariate value
“close” to this point. In this method, “close” meant that the difference between the value on the
axis and the covariate value of a group was smaller or equal than the mean step size between
the grid values. Then, it determined at which covariate value on the grid the difference between
the meta-arms is largest in the number of groups that are “close”. Subsequently, the group is
discarded such that this difference decreases the most. This procedure then repeats the same
steps, but without the discarded group and continues until one meta-arm has only one group left
or the stopping condition is satisfied.

e« Maximum height method:
This method determines the covariate value on the grid for which the largest vertical difference
between the ECDFs of the meta-arms occurs. Then, a group is discarded with that covariate value.
This groups must also belong to the meta-arm with the largest ECDF value at that covariate value.
This procedure then repeats the same steps, but without the discarded group and continues until
one meta-arm has only one group left or the stopping condition is satisfied.

o Difference-to-measure method:
This method is similar to the maximum height method, but instead does not use the maximum
vertical height, but the largest vertical height between the ECDFs of the meta-arms and a measure
MNDF. This measure MNDF is taken as either Fiean, Fedian OF Fjoim. Then, a group is discarded
in the same way as the maximum height method. This procedure then repeats the same steps,
but without the discarded group and continues until one meta-arm has only one group left or the
stopping condition is satisfied.

However, these procedures did not produce fruitful results in the sense that they did not decrease
the multi-sample test statistics with certainty. They would not give the same result as the balancing
procedure in Algorithm 2 and instead, the multi-sample test statistic would on average barely decrease,
or even increase. In fact, these balancing procedures seemed to almost arbitrarily determine which
group is discarded at each iteration. The presumed reason for this is three-fold:

1. Firstly, in the case of the Maximum height method and the Difference-to-measure method, it is
uncertain whether these criteria accurately determine the group that is causing the most covariate
imbalance and thus, hindering combinability. The problem arises from the nature of ECDFs. If at
a certain covariate value two ECDFs have a large vertical difference, then that does not mean that
this vertical difference is caused at this value of the covariate. Instead, it could be caused at any
covariate value smaller than this value, since ECDFs are cumulative. A way to circumvent this
issue may be to look at, for example, histograms instead, since these are not cumulative. However,
the Histogram method was not fruitful either.

2. Secondly, the Histogram method puts all covariate values into distinct bins. Thus, two groups
that are “close” in covariate value, could have their covariate value sorted into separate bins.
Subsequently, this method could make two errors. First, it could consider the frequency difference
in a particular bin as the largest, even though this difference may be reduced when including
groups “close” in covariate values but with covariates sorted into different bins. Secondly, in a
particular bin it could consider the frequency difference to be small, even though this difference
may be increased when including groups “close” in covariate values but with covariates sorted into
different bins. Moreover, the Histogram method is very dependent on the size of the bins. Perhaps
choosing a more appropriate bin size may improve this method. To prevent these problems, the
Adapted histogram method was developed, but it was also unfruitful.

3. Lastly, the Histogram method and Adapted histogram method are limited by the number of
participants in each group, since only full groups and thus, a fixed number of participants can be
discarded. This means that a large covariate imbalance for a certain bin, can only be reduced by
discarding a fixed amount of frequency. Hence, this discarding could even result in an increased
covariate imbalance which has been reversed between the meta-arms, because too much frequency
has been discarded.

These reasons may explain why these alternative balancing procedures were unfruitful. Hence, they
were abandoned.



Conclusion & discussion

Meta-analysis is a powerful and useful method to combine the treatment effects of multiple independent
studies. In order to answer causal questions about the treatment effect, it is crucial that combinability
is ensured. In this thesis, the basic type of combinability was studied, which refers to the covariate
imbalance between meta-arms. If the meta-arms are not balanced with respect to a particular covariate,
then the covariate cannot be excluded as a confounding factor. This problem is of even greater impor-
tance in the case of observational studies, since they are inherently less balanced between treatment
groups.

Therefore, in Chapter 3 five multi-sample test statistic are proposed to assess the covariate imbalance
between meta-arms. This assessment is based on the ECDFs of the meta-arms with respect to the
covariate. In the case of g = 2 treatment groups, the Wasserstein metric is used as the two-sample
test statistic measuring the covariate imbalance between two MDNFs. Subsequently, five extensions
are made to the multi-treatment case determined by taking the maximum of one or more two-sample
test statistics. These multi-sample test statistics are Thairwises Imeans Imedian, Ljoint @0d Trin-max and
represent the covariate imbalance in the multi-treatment case.

To determine the significance of the covariate imbalance, a permutation test is used. This permutation
test yields a null distribution of the multi-sample test statistics and the corresponding 100(1 — )%
quantile T7_,. If the observed multi-sample test statistic is larger than this value, then the covariate
imbalance is significant and a balancing procedure is required. This value is used in the balancing
procedure as stopping condition.

In Chapter 4 a balancing procedure is introduced that aims to minimise the covariate imbalance, as
can be measured by any of the multi-sample test statistics. This is done by discarding groups one
by one based on whichever group’s discarding results in the lowest multi-sample test statistic. This is
continued until the multi-sample test statistic is below 77 _,,, or at least one meta-arm contains only a
single group.

Subsequently, a simulation study for each multi-sample test statistic is performed of the balancing
procedure, for g = 3 and g = 4. These simulations all consisted of 100 sample datasets with n = 25. For
g = 3, the balancing procedure resulted on average in a 18.8%, 17.9%, 16.9%, 19.6% and 18.4% of groups
being discarded yielding a reduction in the multi-sample test statistic of 52.9%, 48.7%, 46.7%, 49.8%
and 47.9%, respectively, for the multi-sample statistics Tpairwise, Imeans Imedians; Ljoint a10d Tinin-max;
respectively. For g = 4, the balancing procedure resulted on average in a 32.6%, 32.3%, 27.3%, 34.2%
and 35.1% of groups being discarded yielding a reduction in the multi-sample test statistic of 67.2%,
64.6%, 60.3%, 63.5% and 64.4%, respectively. Thus, in the case of g = 4 a larger reduction in the multi-
sample test statistic is needed until the multi-sample test statistic is below 7T;_,. Hence, more groups
need to be discarded to reach this reduction. This may indicate that the initial covariate imbalance in
the simulation of g = 4 is substantially larger than in the simulation of g = 3.

Using Tiedian in the balancing procedure yielded the lowest percentage of discarded groups, while the
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Toairwise statistic resulted in the highest reduction of the multi-sample test statistic value, in both
simulation of g. Then, Tiedian Mmay be considered the “best”, since it discards the fewest groups.
The reduction in multi-sample test statistic is less relevant, since the stopping condition at T;_, may
ideally guarantee combinability. However, in practice, combinability is not necessarily satisfied after
the balancing procedure, but it is improved.

A way to determine which multi-sample test statistic yields the “best” result, may be to reassess the
covariate imbalance after the balancing procedure. Then, by permutation test a p-value can be obtained
using each multi-sample test statistic. The “best” result may then be obtained by the multi-sample test
statistic whichever results in the fewest groups being discarded, but has p > « for all multi-sample test
statistics in the reassessment of the covariate imbalance.

Moreover, in the simulation study it turned out that the balancing procedures, with different multi-
sample test statistic, result in quite some overlap of groups being discarded. However, it would be
interesting to investigate this further. Maybe the intersection of groups discarded by all the different
multi-sample test statistics in the balancing procedure, can be used as a starting point. One discards all
these groups and then assesses the covariate imbalance and if need be, apply the balancing procedure
from there.

In addition, some further areas of research may include:

o The two-sample test statistic used in this thesis is the Wasserstein metric. However, other two-
sample test statistic can be explored as well, such as the Kolmogorv-Smirnov test, the Anderson-
Darling test, the Cramér-von Mises test and the Kuiper’s test.

e The multi-sample test statistics introduced in this thesis are just some possible ways to make an
extension to the multi-treatment case. Of course, other multi-sample test statistics may be used or
defined to extend to the multiple treatment case. For example, a multi-sample Anderson-Darling
test statistic may be used, as proposed by Scholz and and [10].

e Moreover, the methods in this thesis consider only a single covariate. However, multiple covariates
may be of interest, therefore an extension could be made to the multivariate case. This could be
extended by considering multivariate ECDFs and testing similarity using multivariate two-sample
tests, such as proposed by Justel, Pena, and Zamar [6] and Baringhaus and Franz [3].

e The proposed balancing procedure in this thesis discards groups one by one. This makes it near-
sighted, in the sense that, at every iteration, it only considers the discarding of one group. It does
not consider the fact that more groups may be discarded at later iterations. Thus, there could be
a “better” combination of groups than is found by discarding one by one. However, the balancing
procedure of this thesis might be used to determine an upper bound for the number of groups
that needs to be discarded to find an optimum.

e Another issue of the balancing procedure is that it only discards groups. After having applied the
balancing procedure, it could be that one group could be re-added without significantly increasing
the covariate imbalance. A solution could be to allow the possibility of restoring discarded groups
in the balancing procedure. Thus, at each iteration, the possibility of restoring any discarded group
is considered as well and unless this leads, for example, to a larger multi-sample test statistic, a
discarded group is restored.

e The stopping condition in this thesis is based on the null distribution of the multi-sample test
statistics as determined by the permutation test. The balancing procedure stops if the multi-
sample test statistic is below the 100(1 — )% quantile of the null distribution of the multi-sample
test statistics. However, this null distribution is computed before the balancing procedure and
therefore is valid for the initial dataset before discarding groups. The stopping condition could be
improved by recomputing the null distribution of the multi-sample test statistics at each iteration
in the balancing procedure, and then stopping if the null is rejected.

e The result of the balancing procedure is not necessarily balanced between the meta-arms. A
dataset can have significant covariate imbalance before and after the balancing procedure. One
way to reach a balanced result, could be to repeatedly perform the balancing procedure until the
end result is in fact balanced. However, it is unsure whether every dataset can even be made
balanced by the balancing procedure.
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e In the simulation of the balancing procedure, the meta-arms were simulated using different under-
lying normal distributions with mean j and standard deviation 1 for meta-arm j. However, the
first and last meta-arm may then barely have any overlap in values. This is especially true if g
increases. It may be interesting to perform this simulation with different underlying distributions,
that may or may not have more overlap in values between the meta-arms.

e Instead of a permutation test to determine the null distribution of the multi-sample test statistics,
one may also perform a Monte Carlo simulation under the null hypothesis that the underlying
distributions are the same in each meta-arm. For example, the covariate in each meta-arm could
be distributed according to a uniform distribution on [0,1]. However, this method works best
when the assumed underlying distribution is representative of the structure of the real data.

e Lastly, the standard deviation of the covariate in each treatment in each study is generally known
in meta-analyses. However, it was not used in this thesis. Perhaps, the standard deviation can be
used to introduce uncertainty in the ECDFs of the meta-arms. One could also generate a large
number of slightly different datasets than the original dataset. Each dataset may, for example,
be generated as a normal distribution with parameters set to the mean covariate value in each
treatment group and the standard deviation in that treatment group. Then, the multi-sample test
statistics can be calculated over all these datasets and give a sense of variability in the assessment
of the covariate imbalance.
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Source Code (R)

The source code below, in the programming language R, is the code used to produce the results and
graphs in this thesis. In Section A.1 a list of functions is coded to be used in Section A.2, where the
graphs, permutation test, balancing procedure and simulation are coded.

A.l. Functions

2 # This function generates fictitious data with g treatment groups and S studies under the
null hypothesis.

3
4
5
6
7
8
9

25
26
27
28
29
30
31
32
33

generate_da

# Lists o
Cov_list
Pat_1list

# Distrib
for (i in

CovVals
PatVals

assign(
assign(

# Combine
df _Cov =
df _Pat =
df

# Add two
df ["Total
df ["Study

return (df

}

ta = function(S, g) {

f variable names
= paste0("CovVal", 1:g)
= pasteO("PatNum", 1:g)

utions
1:g) {

= runif (S)
= sample (100:1000,8S)

Cov_list[i], CovVals )
Pat_list[i], PatVals )

into data frame
do.call(cbind, mget(Cov_list))
do.call(cbind, mget(Pat_list))
data.frame (cbind (df _Cov,df_Pat))

more columns
PatNum"] = apply(df_Pat, 1, sum,
o] = 1:5

)

na.rm = TRUE)

# This function generates a dataset under the alternative hypothesis, with the covariates
being distributed according

# to a norm
generate_da
# Lists o

Cov_1list
Pat_list

al(j,1) in meta arm j
ta_H1 = function(S, g) {
f variable names

= paste0("CovVal", 1:g)
= pasteO("PatNum", 1:g)

27
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43
44
45
46
47
48
49
50

53

57

66

105

107
108
109
110
111
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# Distributions
for (i in 1:g) {

CovVals = rnorm(S,mean=i,sd=1)
PatVals = sample(100:1000,8S)

assign( Cov_list[i], CovVals )
assign( Pat_list[i], PatVals )
}

# Combine into data frame

df _Cov = do.call(cbind, mget(Cov_list))
df _Pat = do.call(cbind, mget(Pat_list))
af data.frame (cbind (df _Cov,df_Pat))

# Add two more columns
df ["TotalPatNum"] = apply(df_Pat, 1, sum, na.rm = TRUE)
df ["Study"] = 1:8

return (df)
}

# This function creates the names and values of the ECDFs for a given dataset df.
create_ECDFs = function(df, g) {

ECDF _names = paste0O("ECDF", 1:g)
ECDF_list = list()

for (group in 1:g) {

vals = na.omit(df [, group])
weights = na.omit(df[, (g + group)l)

ECDF_1list [[ECDF_names [groupl]] = ecdf(rep(vals,weights ) )
}
return(list("List" = ECDF_list, "Names" = ECDF_names) )

# This function plots the ECDFs for a given dataset df.
plot _ECDFs = function(df, g, selected_groups= 1:g, 1lty = 1) {

# Plotting ECDFs
plot (NULL, xlab = "Covariateyvalue,(t)", ylab = "ECDF", main="",
xlim = c(min(df[,1:g],na.rm = TRUE) ,max(df[,1:gl,na.rm = TRUE)), ylim = c(0,1) )

ECDFs = create_ECDFs(df, g)

colours = rainbow(g)
for (i in selected_groups) {
ECDF_func = ECDFs$List [[ECDFs$Names[i]]]
lines (ECDF_func, verticals = TRUE, do.points = FALSE, col = colours[i], 1ty = 1lty)

}
legend(x = "topleft",
legend = c(pasteO("Meta-arm,", 1:g)),
1ty = 1,
col = colours,
lwd = 2)

HHAHAHBRBARARAHARBRBRRARARARBRBARARRRRRBRBABAHRRRRRRBARARARRR BB R RA R AR AR BRRAH RS
# This function determines the multi-sample test statistics in a particular dataset.

AreSimilar2 = function(df, g) {

result data.frame ()



151

153

177
178

A.l. Functions 29

#

ECDF_vals = measures_ecdf (df, g)

# Pairwise
res_pairwise = cQ
names_pairwise = pasteO("ECDF",1:g)

for (i in 1:(g-1)) {
for (j in (i+1):g) {

name = paste(pasteO("ECDF", i), "vs", pasteO("ECDF", j))

res_pairwise = c(res_pairwise, wass_stat_ecdf (ECDF_vals,names_pairwise[i] ,names_
pairwise[j]) )
}
}
result["pairwise","statistic"] = max(res_pairwise)

#Compared to measure
measure_names = c("mean","median","joint")

for (measure_name in measure_names) {
res_measure =c()

for (j in 1:g) {

name = paste(pasteO("ECDF", j), paste0("vs,", measure_name))
res_measure = c(res_measure, wass_stat_ecdf (ECDF_vals, measure_name, names_pairwise[j])
)
}
result [measure_name,"statistic"] = max(res_measure)
}
# Min-Max

result["Min vs_ Max","statistic"] = wass_stat_ecdf (ECDF_vals, "MIN", "MAX")

return(result)

This function resamples the dataset with replacement according to the permutation test in
Section 3.2

resample_groups = function(df,g) {

}

#

X = unlist(df[,1:g], use.names = FALSE)

P = unlist(df[,(g+1):(g+g)], use.names = FALSE)
groups = data.frame("X" = X, "P" = P)

I, = length(X)

new_indices = sample(1:L, nrow(df)xg, replace = TRUE)
new_X X[new_indices]
new_P = P[new_indices]

new_df = data.frame(split(new_X,1:g), split(new_P,1:g))

new_df ["TotalPatNum"] = apply(new_df[,(g+1):(g+g)],1,sum)

new_df ["Study"] = 1:nrow(df)

colnames (new_df) = c(paste0("CovVal",1l:g),paste0("PatNum",1:g),"TotalPatNum","Study")

return(new_df)

This function computes the p value by the permutation test in Section 3.2

179 p_value_permutation = function(df, g) {
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180

181 T_observed = AreSimilar2(df,g)$statistic

182 multistats = permutation_stats(df, g)

183

184 counts = sapply(1:5, function(k) {length(which(multistats[,k]>=T_observed[k]))})

185

186 return (counts/nrow(multistats))

187

188 }

189

190 # This function gives the null distribution of the stats by the permutation test of Section
3.2

191

192 permutation_stats = function(df, g) {

193

194 multistats = data.frame()

195

196 N_boots = 500
197 for (m in 1:N_boots) {
198

199 set.seed (314+m)

200 df _resampled = resample_groups (df,3)

201 result = AreSimilar2(df_resampled,3)

202 multistats = rbind(multistats, result$statistic)
203

204 }

205 colnames (multistats) = c("Pairwise","Mean","Median","Joint","Min-Max")
206

207 return(multistats)

208 }

209

2

ot

o # This function gives the 100(1-alpha)’% quantile of the null distribution of the stats by
permutation test from #Section 3.2

211 permutation_quantiles = function(df, g, alpha = 0.05) {

212

213 multistats = permutation_stats(df,g)

214

215 quantiles = apply(multistats,2,function(vals) {quantile(vals,probs = 1-alpha)l)
216 return(quantiles)

217 }

218

219 HEHRHAABHARARBHABAHBHBRABHRBRABBHARA BB RRARBHARABHHR AR BHAA AR BH B AR BRB AR BH AR ABHERAHRS

223 # This function finds Fmean, Fmedian, Fjoint, Fmin and Fmax

225 measures_ecdf = function(df, g) {

227 joint_sample = na.omit(unlist(df[,1:g], use.names = FALSE))
228 joint_partic = na.omit(unlist(df[,(g+1):(g+g)], use.names = FALSE))

229 joint = rep(joint_sample, joint_partic)
230

231 jointje = na.omit(c(apply(dfl[,1:g]1,1,c)))

232 axis = sort (unique ((jointje)))

233

234 # Calculate F1 to Fg

235 ECDFs = create_ECDFs(df, g)

236 ECDF_vals = data.frame("Covariate Value" = axis)
237

238 for (i in 1:g) {

239

240 ECDF_vals [ECDFs$Names[i]] = ECDFs$List[[i]] (axis)
241 }

243 # Determine F_measure

244 ECDF_vals[,"mean"] = apply (ECDF_vals[2:(1+g)], 1, mean)
245 ECDF_vals[,"median"] = apply(ECDF_vals[2:(1+g)], 1, median)
246 ECDF_vals[,"joint"] = ecdf(joint) (axis)

247 # Determine Fmin and Fmax

248 ECDF _vals[,"MIN"] = apply(ECDF_vals[2:(1+g)], 1, min)
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249 ECDF _vals [, "MAX"] = apply (ECDF_vals[2:(1+g)], 1, max)
250

251

252 return (ECDF_vals)

253 }

254

255

256 # This function computes the Wasserstein metric for any combination of MNDFs.
257 # Input "ECDF1", ..., "ECDFg", "mean", "median", "joint", "MIN" or "MAX" for a and b
258

250 wass_stat_ecdf = function(ECDF_vals, a = "ECDF1", b = "ECDF2") {
260

261 axis = ECDF_vals$Covariate.Value

262

263 stat = 0

264 for (k in 1:(length(axis)-1)) {

265

266 width = axis[k+1] - axis[k]

267 height = ECDF_vals[k,a]-ECDF_vals[k,b]

268

269 stat = stat + width * abs(height)

270}

271

272 return(stat)

273 }

274

275 # This function computes Tpairwise

276

277 stat_pairwise = function(df,g) {

278

279 joint_sample = unlist(df[,1:g]l, use.names = FALSE)

280

281 jointje = na.omit(c(apply(dfl[,1:g]1,1,c)))

282 axis = sort(unique ((jointje)))

283

284 # Calculate F1 to Fg

285 ECDFs = create_ECDFs(df, g)

286 ECDF_vals = data.frame("Covariate Value" = axis)
287

288 for (i in 1:g) {

289

290 ECDF_vals [ECDFs$Names[i]] = ECDFs$List[[i]] (axis)
291 }

292 res =cQ

293 for (i in 1:(g-1)) {

204 for (j in (i+1):g) {

295

206 res = c(res, wass_stat_ecdf (ECDF_vals,paste0O("ECDF",i),pasteO("ECDF",j)) )
297 }

208 }

299 return( max(res) )

300

301

302 }

303

304 # This function computes Tmean

305

306 stat_mean = function(df,g) {

307

308 joint_sample = unlist(df[,1:g], use.names = FALSE)
309

310 jointje = na.omit(c(apply(df[,1:g],1,c)))

311 axis = sort(unique ((jointje)))

312

313 # Calculate F1 to Fg

314 ECDFs = create_ECDFs(df, g)

315 ECDF_vals = data.frame("Covariate_ Value" = axis)
316

317 for (i in 1:g) {

318

319 ECDF_vals [ECDFs$Names [i]] = ECDFs$List[[i]] (axis)
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320 }

321

322 # Determine F_mean

323 ECDF_vals[,"mean"] = apply (ECDF_vals[2:(1+g)], 1, mean)
324

325 res = c()

326

327 for (j in 1:g) {

328 res = c(res, wass_stat_ecdf (ECDF_vals, "mean", pasteO("ECDF",j) ) )
329 }

330 return( max(res) )

331 }

332

333 # This function computes Tmedian

334

335 stat_median = function(df,g) {

336

337 joint_sample = unlist(df[,1:g], use.names = FALSE)

338

339 jointje = na.omit(c(apply(df[,1:g],1,c)))

340 axis = sort(unique((jointje)))

341

342 # Calculate F1 to Fg

343 ECDFs = create_ECDFs(df, g)

344 ECDF_vals = data.frame("Covariate Value" = axis)

345
346 for (i in 1:g) {

347
348 ECDF _vals [ECDFs$Names[i]] = ECDFs$List[[i]] (axis)

349 }

350

351 # Determine F_mean

352 ECDF_vals[,"median"] = apply (ECDF_vals[2:(1+g)], 1, median)
353

354 res = c()

356 for (j in 1:g) {

357 res = c(res, wass_stat_ecdf (ECDF_vals, "median", pasteO("ECDF",j) ) )
358 }

359 return( max(res) )

360 }

361

362 # This function computes Tjoint

363

364 stat_joint = function(df,g) {

365

366 joint_sample = unlist(df[,1:g], use.names = FALSE)
367

368 jointje = na.omit(c(apply(df[,1:g],1,c)))

369 axis = sort(unique ((jointje)))

370

371 # Calculate F1 to Fg

372 ECDFs = create_ECDFs(df, g)

373 ECDF_vals = data.frame("Covariate Value" = axis)
374

375 for (i in 1:g) {

376

377 ECDF_vals [ECDFs$Names[i]] = ECDFs$List[[i]] (axis)
378 }

379

380 # Determine F_mean

381 ECDF_vals[,"joint"] = ecdf(joint_sample) (axis)
382

383 res = c()

384

385 for (j in 1:g) {

386 res = c(res, wass_stat_ecdf (ECDF_vals, "joint", pasteO("ECDF",j) ) )
387 }

388 return( max(res) )

389 }
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3901 # This function computes Tminmax

392
393
394
395
396
397
398
399
400
401
402
403
404
405

453

456
457
458

stat_minmax = function(df,g) {

joint_sample = unlist(df[,1:g], use.names = FALSE)

jointje = na.omit(c(apply(dfl[,1:g],1,c)))
axis sort (unique ((jointje)))

# Calculate F1 to Fg
ECDFs = create_ECDFs(df, g)
ECDF_vals = data.frame("Covariate Value" = axis)

for (i in 1:g) {

ECDF_vals [ECDFs$Names [i]] = ECDFs$List[[i]] (axis)

}

# Determine F_mean

ECDF _vals[,"MIN"] = apply (ECDF_vals[2:(1+g)], 1, min)

ECDF_vals [, "MAX"] = apply(ECDF_vals[2:(1+g)], 1, max)

res = wass_stat_ecdf (ECDF_vals, "MIN","MAX" )

return( res )
}
HARHBHAHARHARHARARHRRAHBHARBRHRBHRRBRHRRARBHA BB RARRHRBHRHBRARBHA BB RHRRARBH B R RS
# This function checks if each meta-arm has at least one group left.
all_groups_have_data = function(df,g) {

counts_NA = apply(df[,1:gl, 2, function(col) {sum(is.na(col))} )

groups_not_NA = nrow(df)-counts_NA > 1

res = floor(sum(groups_not_NA)/g)

return(res == 1)
}
# This function is the balancing procedure and repeatedly discards group until the statistic

H OH H

is below threshold = quantile of null distribution from permutation test
Set stop = FALSE to turn off stopping condition
Set p = TRUE to receive p values at stopping point
Set stats = TRUE to receive removed groups and corresponding stats at each iteration
Set print = TRUE to plot the ECDFs of meta-arms at stopping point
Input "stat_pairwise", "stat_mean", "stat_median", "stat_joint" or "stat_minmax" for quant

remove_groups = function(df, g, threshold, stop = TRUE, quant = "stat_minmax", print = FALSE,

p = FALSE, stats = FALSE) {

result = data.frame("study" = NA,
llgroup“ NA’
"statistic" get (quant) (df ,g),
"removed" 0

)

df _remain = df

df _min = df

min_stat = 10710

while ( all_groups_have_data(df_remain,g) ) {

new_row = RemoveGroupBrute (df_remain, g, quant)

df _temp df _remain
df _temp [which(df_temp$Study==new_row$study), new_row$group] = NA

df _temp[which(df_temp$Study==new_row$study), (g+new_row$group)] NA
new_row["removed"] = tail(result$removed,1) + 1
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460
461

462 df _remain = df_temp

463 result = rbind(result, new_row)

164 if ( stop & new_row$statistic < threshold ) {break}
465

466 if ( new_row$statistic < min_stat ) {

467 df _min = df _temp

468 min_stat = new_row$statistic

469 }

470

471 }

472

473 if (print) {plot_ECDFs(df_min, g)}

474 if (p) {print(p_value_permutation(df_min,g))}
475 if (stats) {print(AreSimilar2(df_min,g))}

476

477 return(result)

478 }

479

480

481

482 # This function determines which group to exclude in each iteration.
483

484 RemoveGroupBrute = function(df ,g, quant) {

485

486 lowest_stat = 10710

487
488 for ( study in 1l:nrow(df) ) {

489 for ( group in 1:g ) {

490

491 if ( is.na(df[study,groupl) ) {

492 next

193 }

494

495 df _temp = df

496 df _temp[study, groupl] = NA

497 df _temp[study, (g+group)] = NA

498

499 stat = get(quant) (df_temp,g)

500

501 if ( stat < lowest_stat ) {

502 best_group = group

503 corr_study = df$Studyl[study]

504 lowest_stat = stat

505 }

506 }

507 }

508 result = list("study" = corr_study,
509 "group" = best_group,
510 "statistic" = lowest_stat)
511 return(result)

512 }

513

514 # This function standardises the result of the balancing procedure
515

516 standardise_group_result = function(result, n, g) {
517

518 initial_stat = result$statistic[1]

519 result$statistic = result$statistic/initial_stat
520 result$removed = result$removed/ (n*g)*100

521

522

523 return(result)

524 }

525

526

527
528 # This function returns the overlap between two sets of groups
529

530 overlap_checker = function(groupsl, groups2) {
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# Remove first NA NA
groupsl = groupsl[2:length(groupsi)]
groups2 = groups2[2:length(groups2)]

intersection = intersect(groupsl, groups2)

return(length(intersection))

A.2. Permutation, simulations and graphs

This part of the source code contains the code producing the ECDF graphs in Chapter 3, performing
the permutation test of Section 3.2 and the balancing procedure and graphs of Chapter 4 using the
functions of Section A.1.

# This part plots the simple example highlighting the reason for why the Wasserstein distance
is used.

source ("functions.R")
set.seed (314)

S = 25

g =3

df = generate_data_H1(S, g)

plot_ECDFs(df, g)

black = c(10,20,30)

blue = c( 9,19,29)
red = c¢( 5,15,25)
plot (ecdf (black),col="black", verticals = TRUE, do.points = F,lwd = 2,main="",xlab="Covariate
uvalue, (t)",ylab="F(t)")
lines(ecdf(red) , col="red" ,verticals = TRUE, do.points = F, lwd = 2, 1ty = 2)
lines (ecdf (blue), col="blue",verticals = TRUE, do.points = F, lwd = 2, lty = 2)
legend( x = "topleft",
legend = C("F","Gl","GQ"),
1ty = c(1,2,2),
col = c("black","red","blue"),
lwd = 3 )
HURHHHAHHHABHH AR B ARBHBR SR B RS H B AR H B AR H AR B R B RS H B AR H B AR H R R B R B RS HBABH B AR HHERHH
# This part is used to plot the ECDFs and MNDFs in the thesis.
set.seed (314)
S = 25
g =3
df = generate_data_H1(S,g)
plot_ECDFs(df,g)
names = c("Mean","Median","Joint", "Min","Max")
X = measures_ecdf (df,g)
#lines (x$Covariate.Value,x$mean, type = "s", col = "black", lwd = 3, lty = 2)
#lines (x$Covariate.Value,x$median, type = "s", col = "black", lwd = 3, 1lty = 2)
#lines(x$Covariate.Value,x$joint, type = "s", col = "black", lwd = 3, 1ty = 2)
lines(x$Covariate.Value,x$MIN, type = "s", col = "black", lwd = 3, 1lty = 2)
lines(x$Covariate.Value,x$MAX, type = "s", col = "black", lwd = 3, lty = 2)

legend(x = "topleft",



A.2. Permutation, simulations and graphs

52 legend = c(pasteO("Meta-arm,", 1:g),names[4:5]),
53 1ty = c(rep(1l,g),rep(2,2)),

54 col = c(rainbow(g),rep("black",2)),

55 lwd = 2)

56
57
58 HHAFHFRAHREHAEHAHBHRARAHFHBHBRBARAHBHBRBA BB AR BHBRBABARARBHBR R BB R HBH BB R RA R A

60 # This part determines the table and plot of the permutation test in Section 3.2

62 set.seed(314)
63 df = generate_data_H1(25,3)

64
65 multistats = data.frame ()
66

67

68 M = 1073

69 for (m in 1:M) {

71 set.seed (314+m)
72 df _resampled = resample_groups (df,3)

73 result = AreSimilar2(df_resampled,3)

74 multistats = rbind(multistats, result$statistic)

75

76 X

77 colnames (multistats) = c("Pairwise","Mean","Median","Joint","Min-Max")
78

79

80 names_lower = c("pairwise","mean","median","joint","min-max"

81 for (k in 1:5) {

83 hist(multistats[,k], 20, col = colors[k],xlab = "T",

84 main=pasteO("Histogram of T",names_lower [k], ",in Permutation, test"))
85 val = quantile(multistats[,k],probs = .95)

86 abline(v = val, col="red")

s7 }

89 HAHHHARABHARARHARARBHARABHHRAHBBHRAABH AR AR B AR R B R AR A A BB BB AR BH B ABH AR AR BHARRH

91 # This part is used to apply the balancing procedure to the example in Section 4.1

93 N = 100
94 g = 3
95 n = 25
96

97 set.seed(314)
98 df = generate_data_H1(25, 3)

100

101 quants = c("stat_pairwise","stat_mean","stat_median","stat_joint","stat_minmax")

102

103

104 plot(NULL, xlim = c(0,30), ylim = c(0.3,1),

105 xlab = "Percentage of groups discarded (%)", ylab = "Standardised Multi-Sample Test,
Statistic,(T)",

106 main=pasteO("Balancing ,Procedure withStopping, ,Condition"))

107 abline(h=1, col="red",1lty=3)

109 stats_5 =cQ

110 axis_5 = c(Q)

111 min_removed_5 = c()

112 min_stat_5 = cQ)

113

114 quantiles95 = permutation_quantiles(df,g)

115
116 for (k in 1:5) {
117

118 result = remove_groups(df, 3, quantiles95[k], stop = TRUE, quant = quants[k])
119 standardised = standardise_group_result(result, 25, 3)

120

121 min_loc = which.min(standardised$statistic)
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standardised[min_loc,]
tail (standardised, n = 1)

min_row
last_row

stats_5 = c( stats_b5, standardised$statistic )
axis_5 = c( axis_b , standardised$removed )
min_removed_5 c( min_removed_5, min_row$removed )
min_stat_5 = c( min_stat_5, min_row$statistic )

groups = pasteO(standardised[1:min_loc,1],",",standardised[1:min_loc,2])

assign(pasteO("groups_",quants[k],"_example"), groups)

lines(standardised$removed, standardised$statistic, col=colors[k],type="1",1lwd=2)

lines (last_row$removed,last_row$statistic, type = "p", col =
}
legend(x = "topright",
legend = c(names),
1ty = 1,
col = colors,
lwd = 3 )

HHFHAHBHRARAHEHBRBARAH SRR BARAREH R BR BB H SRR RA B R H R BR BB H AR BR BB R SRS RS

# This part generates the datasets of the simulation for g = 3 and g

for (index in 1:N) {
set.seed (314*index)
dfi = generate_data_H1(25,3)
assign(pasteO0("df_",index) ,dfi)
}

for (index in 1:N) {
set.seed(314*index)
dfi = generate_data_H1(25,4)
assign(paste0("df4_",index) ,dfi)
}

colors[k],lwd=6)

4 of Section 4.2

HHFHAHBHBARAHEHBRBRBARAH R BRBA B R AR BHBR BB RS H R BB B R R BARA BB ERBHBHBAEBEREHH

# This part performs the simulation in Section 4.2

3 # It is better to do this for each k = 1,2,3,4,5 separately,

#since it takes some time to run.
# Change g to 3, and df _4 to df_ t obtain the results for g = 3
g =4
for (k in 1:5) {
quant = quants [k]
stats = c()
axis = c()
min_removed = c()
min_stat = c()
for (index in 1:N) {
print (index)
data = get(paste0("df4_",index))
quantiles95 = permutation_quantiles(data,g)
quant = quants [k]
result = remove_groups(data, g, quantiles95[k], stop
standardised = standardise_group_result(result, 25, g)
min_loc = which.min(standardised$statistic)
min_row = standardised[min_loc,]
stats = c( stats, standardised$statistic )

TRUE,

quant

quants [k])
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axis = c( axis , standardised$removed )
min_removed = c( min_removed, min_row$removed )
min_stat = c¢( min_stat, min_row$statistic )

groups = pasteO(standardised[1:min_loc,1],",",standardised[1:min_loc,2])
assign(pasteO("groups4_",quant,index), groups)

#lines (standardised$removed, standardised$statistic, col=colors[k],type="1",1lud=2)

#lines (min_row$removed ,min_row$statistic, type = "p", col = colors[k],lwd=5)

}

assign(pasteO("stats4_",quant),stats)
assign(pasteO("axis4_" ,quant), axis)
assign(pasteO0("min_sta4t_",quant) ,min_stat)
assign(pasteO("min_removed4_",quant) ,min_removed)

}
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# This part plots the results of the simulation

trans = 1/2

colors = c( rgb(0, 1,0, trans),
rgb(1, 0,0, trans),
rgb(1,0.65,0, trans),

rgb(1,0.84,0, tramns),

rgb (0, 1,1, trans) )

names = c("Pairwise","Mean","Median","Joint","Min-Max")
for (i in 1:5 ) {

plot (NULL, xlim = c(0,40), ylim = c(0.3,1),

xlab = "Percentage of_ groups discarded(%)", ylab = "Multi-Sample Test, Statistic,(T)",

main=pasteO("Balancing ,Procedure for." ,names[i], " Statistic,"))
abline (h=1, col="red",lty=3)

quant = quants[i]

stats = get(pasteO("stats_" ,quant))
axis = get(pasteO("axis_" ,quant))
min_removed = get(pasteO("min_removed_" ,quant))
min_stat = get(pasteO("min_stat_" ,quant))

# Adding mean line

#mean_line = aggregate(stats ~ axis, FUN = mean)
#lines(mean_line$axis, mean_line$stats, col = colors[i], lwd = 2)
splitted_indices = which(axis == 0)

for ( j in 1:(length(splitted_indices)-1) ) {

line_stats = stats[splitted_indices[j]:(splitted_indices[j+1]-1)]
line_axis = axis[splitted_indices[j]:(splitted_indices[j+1]-1)]

lines(line_axis, line_stats, col = colors[i], 1lwd = 1)
}
j = length(splitted_indices)
line_stats = stats[splitted_indices[j]:length(stats) ]
line_axis = axis[splitted_indices[j]:length(axis) 1]

lines(line_axis, line_stats, col = colors[i], 1lwd = 1)

#Adding "CI"
#x_axis = 0O:max(stops)

#CI = aggregate(stats ~ axis, FUN = function(val){quantile(val,probs = c(.025,.975))1})

#polygon(c(x_axis, rev(x_axis)),
#c(CI[,2]1[,1], rev(CI[,2]1[,21)),
#col = colors_CI95[i], border = NA)
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#CI50 = aggregate(stats ~ axis, FUN = function(val){quantile(val,probs
#polygon(c(x_axis, rev(x_axis)),

#c(CI50([,21[,1], rev(CI50[,21[,21)),

#col = colors_CI95[i], border = NA)

#Adding stopping points
lines(min_removed, min_stat, type = "p", col = colors[i], 1lwd = 2)

#hist (stops, col = colors[i], breaks = 10)
#abline(v = mean(stops),col="black",lty = 2)

#length(which(final < 1) )/N

legend(x = "topright",
legend = c("sample","stopping,point"),
1ty = c(1,NA),
pch=c(NA,1), merge=FALSE,
col = c(colors[il,colors[il),
lwd = c(3, 2) )
i
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c(.25,.75))})

# This part makes the table of the values of the multi-sample test stats and discarded

percentage of groups in the simulation at the stopping points.
mat = matrix(NA, nrow = 5, ncol = 4)
for (k in 1:5) {
quant = quants [k]

stops = get(pasteO("min_removed_" ,quant))
final = get(pasteO("min_stat_" ,quant) )

95_stops = round(quantile(stops, probs =c(.025,.975)),digits = 1)
95_final = round(100*quantile(final, probs =c(.025,.975)),digits = 1)

mat[k,] = c(round(mean(stops),digits = 1),
pasteO("[",95_stops[1],",,",95_stops[2],"]1"),

round (100-mean (100*final) ,digits = 3),
pasteO("[",100—95_fina1[2],",u",100—95_final[1],"]”) )

}

mat

HARARHRHARHABAARARHARARBARBARARRARBARHARARBAR BB RARRAR BB R R R RARBAR BB RARRARBARHHH

# This part determines the overlap between the balancing procedures using different multisamp

test stats

overlapping = data.frame(matrix("",nrow=5,ncol=5))
colnames (overlapping) = names
rownames (overlapping) = names

# Checking overlap
for (k1 in 1:5) {
for (k2 in k1:5) {

overlaps = c()

statl = pasteO("groups_",quants[k1l])
stat2 = paste0("groups_",quants[k2])

#stopsl = get(pasteO("min_removed_",quants[k1]))
#stops2 get (pasteO("min_removed__",quants[k2]))

for (index in 1:N) {
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333
334

335 groupsl_index = get(pasteO(statl,index))

336 groups2_index = get(pasteO(stat2,index))

337

338

339

340 val = overlap_checker (groupsl_index, groups2_index)
341 overlaps = c(overlaps, val)

342 }

343 mean_overlap = mean(overlaps)

344

345 overlapping[k1,k2] = round(mean_overlap, digits = 1)

346 }

347 }

348 overlapping

349

350 HHHHFBARAHREHBHBARARAHEHBHBRBAREHEHBRBARAREHBHBRBA R R SRR BR BB AR R BR R RA R AR BB
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