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Alcohol dehydrogenases have fascinated chemists over the
span of a few decades to catalyze oxidation and reduction
reactions and have been increasingly incorporated as bio-
catalysts in scaled-up industrial processes for the production of
valuable chiral compounds under mild and environmentally
friendly conditions. In this review, we discuss recent advances
on alcohol dehydrogenases coupled in cascade reactions with
other enzyme classes, chemocatalysts, or organocatalysts to
obtain high value—added products. The examples include
deracemization processes for the synthesis of chiral diols and
amino alcohols, whole-cell and co-expression systems, and
chemoenzymatic and organoenzymatic cascades, with a
vision for future developments.
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Introduction

Since the 1980s, the application of biological systems, as
green catalysts for the synthesis of organic compounds,
has experienced a great wave of development. Nowa-
days, the use of biocatalysis is well established in organic
synthesis and represents a valuable and complementary
alternative to the classical catalytic methodologies [1].
Biocatalytic procedures can be improved by reaction
medium engineering [2], with molecular biology tools to
obtain more active and/or selective biocatalysts [3,4], or
by different immobilization techniques [5,6]. The
integration of several (bio)catalytic transformations in a
multienzymatic cascade system has revealed to be
particularly beneficial to develop efficient processes [7].
The combination of enzymatic transformations in con-
current one-pot processes presents several advantages,
bypassing the need for purification and isolation of in-
termediates, which leads to a higher E factor [8,9]. The

product recovery is easier, and those reversible reactions
can be driven to completion. Several examples of
cascade reactions have been described by combining
several biocatalysts [7,10,11], as well as biocatalysts
combined with chemical catalysts [12—14].

Alcohol dehydrogenases (ADHs, KREDs, EC 1.1.1.X)
are oxidoreductases that reversibly catalyze the selec-
tive reduction of aldehydes and ketones to primary and
secondary alcohols [15]. Although their use has been
mostly applied for the asymmetric reduction of ketones
[16], examples are available for oxidation reactions [17].
ADHs require a nicotinamide adenine dinucleotide
cofactor (NAD or NADP) as an oxidant or reductant,
efficiently recycled in whole-cell systems, whereas in
cell-free biocatalytic reactions, typically coupled en-
zymes or other chemochemical, electrochemical,
photochemical methods [18,19] are implemented.

Previous reviews describe the use of ADHs in various
processes to obtain specific valuable chemicals [20,21]
and on general biocatalytic cascades [7,10,22]. Here, we
aimed at providing a current view on ADH-promoted
cascade reactions that lead to relevant products from
an application perspective, focusing on bicatalytic and
multicatalytic cascades.

ADH-promoted cascades coupled with

other enzyme classes

ADH-promoted in vitro enzymatic cascades

Obtaining chiral alcohols and vicinal diols

Access to chiral alcohols by deracemization continues to
be developed, with a recent example by Musa et al. [23]
using Thermoanaerobacter ethanolicus ADH TeADH. A first
unselective ADH oxidizes the racemic alcohol to the
corresponding ketone, which is then reduced selectively
by a second ADH. For access to chiral vicinal diols, a
one-pot bienzymatic cascade was developed from
aliphatic dialdehydes using a thiamine diphosphate
(ThDP)—dependent pyruvate decarboxylase from
Zymomonas mobilis (ZmPDCQC) or Streptococcus pneumonia
(S§pPDC) and an ADH, from Bacillus subrilis (BDHA) or
Thermoethanolicus brockii (1DADH) (Figure 1a) [24]. The
PDC-catalyzed cyclization of the aliphatic dialdehydes
via intramolecular C—C bond formation, followed by
ADH-catalyzed reduction of the cyclic hydroxyketone,
resulted in 1,2-cyclopentanediols in three different
stereoisomeric forms and 1,2-cyclohexanediols in two
different stereoisomeric forms with high conversion and
stereoisomeric excess from the initial glutaraldehyde
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(a) One-pot bienzymatic enantioselective synthesis of chiral cyclic vicinal diols; (b) One-pot two-step synthesis of (1R,2R)-1-phenylpropane-1,2-diol
with co-product recycling; (¢) Multienzymatic cascade to (R)-1-phenylethylamine; (d) One-pot synthesis of enantio-enriched phenylpropanolamine
isomers from chiral 1,2-diols. (e) Redox neutral convergent cascade combining CHMO and TeADH using 1,6-hexanediol as the co-substrate, to obtain
E€—caprolactone. (f) Synthesis of (S)-4-phenylbutan-2-ol using E. coli cells expressing CvTA and LeKRED co-immobilized as sol—gel in silica
microspheres.
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and adipaldehyde substrates. This one-pot bienzymatic
cascade represents a promising approach for the syn-
thesis of chiral vicinal diols.

Rother et al. [25] developed an ADH-promoted
system to synthesize chiral 1,2-diol building blocks
with co-product removal (Figure 1b). This elegant
strategy allowed for efficient NADPH cofactor recy-
cling, while removing the co-product formed during
the reaction, thereby shifting the equilibrium toward
the product formation. In this system, first, a ThDP-
dependent benzaldehyde lyase from Pseudomonas fluo-
rescens (PfBAL) forms a hydroxyketone intermediate
from benzaldehyde and acetaldehyde and then
reduced by the ADH from Ra/stonia sp. (RasADH) to
obtain the desired chiral 1,2-diol, such as (1R,2R)-1-
phenylpropane-1,2-diol. When using benzyl alcohol as
a co-substrate to recycle the NADPH, the oxidized co-
substrate becomes the benzaldehyde substrate for the
carboligase. Without adding benzaldehyde in the first
step, the reaction yielded 1,2-diol in >100 mM con-
centrations with up to 99% ¢ and de. Another major
advantage is the low benzaldehyde solubility in
aqueous medium is no longer a challenge. This cascade
combination can be implemented for any system
where the co-products of the one-step reaction serve
as substrates for the coupled reaction step [25].

In a different approach, Bommarius et al. [26] recently
described the deracemization of 1-phenylethanol to
yield (R)- or (§)-1-phenylethanol by combining the (R)-
ADH from Lacrobacillus brevis or the (§)-ADH from Ba-
cillus subtilis with the NADPH-oxidase from Lactobacillus
plantarum. This bienzymatic system was developed in a
bubble column with sparged air, achieving a higher re-
action rate in the deracemization than when using a
standard solution. Complete conversion of 50 mM 1-
phenylethanol was observed in the optimized system.

Obtaining chiral amines and amino alcohols

Chiral amines are highly sought-after, the amino group
being present in a plethora of chemical building blocks.
The Park group [27] developed enzymatic cascades to
obtain long-chain aliphatic amines such as (Z£)-12-
aminooctadec-9-enoic acid, 10- or 12-aminooctadecanoic
acid, and 10-amino-12-hydroxyoctadecanoic acid from
renewable fatty acids with the combination of a fatty acid
double bond hydratase OhyA (from Stenotrophomonas
maltophilia), a long-chain ADH (from Micrococcus luteus),
and a variant transaminase ('TA, from Vibrio fluvialis). Tight
control of putative enzyme inhibitors, such as the amino
donor and by-products, and the cofactor regeneration
system enabled the production of bulky aliphatic amines
in high yield. A similar cascade combination has been
recently used for the selective synthesis of aromatic
fluorinated amino alcohols using panels of ADHs and TAs
to find the best complementary enzymes, obtaining the
desired stereoisomers in >99% ¢e and de [28].

Wang et al. [29] designed a multienzymatic cascade
reaction for the selective bioamination of aromatic al-
kanes, comprising a P450 monooxygenase (mutant
P450pM3 19a12), two stereocomplementary ADHs from
Streptomyces coelicolor (ScCR) and from Paracoccus panto-
trophus (PpADH), and an amine dehydrogenase from
Exiguobacterium sibiricum (EsAmDH) using ammonia as
an amino donor (Figure 1c). A series of aromatic alkanes
afforded moderate conversions. After reaction optimi-
zation, the bioamination cascade of ethylbenzene was
implemented on a preparative scale to obtain (R)-1-
phenylethylamine, achieving a 25% isolated yield with
>99% ee.

To obtain chiral B-amino alcohols, Zhang et al. [30]
developed a multienzymatic cascade coupling an ADH
and a TA resulting in 79—99% conversion and 97—99%
ee, with a self-sufficient cofactor recycling system
catalyzed by an ADH. With the same concept, to
synthesize enantio-enriched phenylpropanolamines,
Mutti et al. [31] used chiral 1-phenylpropane-1,2-diols
as key intermediates, obtained from #rans- or cis-B-
methylstyrene by combining a styrene monooxygenase
with stereocomplementary epoxide hydrolases. The
right combination of stereocomplementary-selective
NAD"-dependent ADHs BDHA or ZsADH from
Leifsonia sp., and w-TA, AfTA from Aspergillus terreus,
Co'TA from Chromobacterium violaceum, Bim'TA from Ba-
cillus megaterium, together with an alanine dehydroge-
nase from Bacillus sphaericus (BsAlaDH), enabled an
impressive redox-neutral process to convert the 1,2-
diols into each four possible amino alcohol stereoiso-
mers (Figure 1d).

In 2019, a one-pot enzymatic cascade was developed
combining a laccase-catalyzed deoximation with either a
KRED for ketone reduction or a w-TA for reductive
amination, to give access to either alcohols or amines,
respectively [32]. The selection of each biocatalyst
provided conversions in the range from 83 to >99% for
alcohols and from 70 to >99% for amines, with excellent
ee. Of note, the authors discovered that using 1% (w/w)
of a polyethoxylated castor oil (Cremophor®) as co-
solvent allowed reaching product concentrations of up
to 100 mM in the cascade, leading to chiral alcohols.

Obtaining chiral lactones and lactams

With wide applications in the fragrance industry, chiral
butyrolactones are interesting compounds to synthesize.
Pietruszka et al. [33] thus developed a one-pot enzy-
matic cascade for the synthesis of y-butyrolactone—
based fragrances. Starting from o,B-unsaturated 7-
ketoesters, a flavin-dependent ene reductase first
reduced the double bond, followed by reduction of the
ketone catalyzed by an ADH and, in acidic conditions,
the hydrolysis of the ester leading to the cyclization to
achieve the butyrolactone products with high selec-
tivity. With an efficient NADPH recycling system using
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glucose dehydrogenase, a preparative scale of 1 g was
achieved [33].

An elegant concept to create a redox-neutral cascade
system to synthesize lactones was developed through
the combination of the NADP-dependent Baeyer-
Villiger cyclohexanone monooxygenase from Acinetobacter
sp. NCIMB 9871 (A4c«CHMO) and 7¢/ADH, using 1,6-
hexanediol as the co-substrate (Figure 1le) [34]. The
latter is oxidized forming a hemiacetal that is further
oxidized, thus affording three molecules of E-capro-
lactone from two molecules of cyclohexanone and one of
1,6-hexanediol [34]. The same cascade concept was
achieved with an NAD-dependent flavin mono-
oxygenase, thus lowering the cost [35], and otherwise
with horse liver ADH coupled to an NADH oxidase
starting with amino alcohols, allowing access to lactams
[36].

Whole-cell systems with ADHs

Most of the cascade reactions in which isolated bio-
catalysts are involved present drawbacks, such as a low
operational stability and the requirement of usually
expensive cofactors for the development of the enzyme
activity. For this reason, the use of recombinant whole
cells, in different preparations, is an inexpensive and
easy alternative for developing multienzymatic proced-
ures [37].

In 2018, Escherichia coli whole-cells containing Co'TA and
Lodderomyces  elongisporus  yeast with ADH activity
(LeKRED) were co-immobilized as sol—gel using hollow
silica microspheres as additive [38] (Figure 1f). This
catalyst was used for the kinetic resolution of racemic 4-
phenylbutan-2-amine catalyzed by Co'TA coupled to the
LeKRED-catalyzed bioreduction of 4-phenylbutan-2-
one. These two steps afforded (R)-4-phenylbutan-2-
amine and (§)-4-phenylbutan-2-ol, wvaluable chiral
synthons for the preparation of pharmaceuticals. When
pyridoxal phosphate (PLP) was used as the CGovTA
cofactor and isopropylalcohol (IPA) as the co-substrate
for NADH recycling, an LeKRED:Co'TA weight ratio of
2:1 was required, in which the final (§)-alcohol was
obtained enantiopure with 46% conversion, whereas the
starting (R)-amine was recovered enantiopure after
24 h. The process was carried out under continuous flow
conditions. Both enantiopure (§)-alcohol and (R)-amine
were obtained, but ketone accumulation was observed
after 4 h, yielding 41% of the alcohol and 30% of the
amine after 24 h. Co-immobilized Co'TA-LeKRED was
studied, with enhanced performance after 24 h, with an
amine recovery of 44%.

Finally, recently, Borowiecki et al. [39] impressively
developed a chemoenzymatic cascade combining whole-
cell biocatalysts such as Baker’s yeast, microorganisms
containing ADH activity, and FE. co/i whole-cells

harboring known ADHs to catalyze the reduction of
bulky-bulky aromatic y-ketoesters, toward the synthesis
of y-aryl-y-butyrolactones.

Co-expression systems with ADHs

The application of multienzymatic biosynthesis has
allowed performing complex preparations, avoiding the
separation and purification of intermediates. Thus, the
use of biocatalytic cascades for the synthesis of chemical
compounds is becoming one efficient approach in
organic synthesis.

Optically pure D-phenylglycine was obtained by engi-
neering a recombinant E. o/ (LLZ110) starting from
cheap and easily available starting materials [40]. One of
the synthetic procedures consists in a cascade
biotransformation from styrene using six enzymes
(Figure 2a). Thus, styrene monooxygenase (SMO),
epoxide hydrolase (SpEH), ADH (Alk]), and aldehyde
dehydrogenase (FEALDH) were used to obtain (S)-
mandelic acid and then combined with an FMN-(S)-
mandelate dehydrogenase (SMDH) and a Dp-phenyl-
glycine aminotransferase (DpgAT) to afford the desired
D-phenylglycine. Glutamate dehydrogenase (GluDH)
was used to enhance the productivity, regenerating L-
glutamate in the amino transfer process. The seven
enzymes of the reaction were divided into three enzyme
modules to achieve a better enzyme expression. SMO-
SpEH, AIKJ-EcCALDH, and DpgAT-GluDH-SMDH
were prepared, and each enzyme module was
constructed on four plasmids. Combination of these
plasmids afforded 24 E. co/i strains, each one co-
expressing the seven enzymes. The cascade trans-
formation of styrene was tested with resting cells of
E. coli in a two-phase system (phosphate buffer/ethyl
oleate) containing ammonia and glucose for NADPH
regeneration. D-Phenylglycine acid was obtained from
all the strains after 24 h, with 80% conversion in the
presence of F. coli 1.Z116, with only very small con-
centrations of some of the intermediate compounds.
This strain was tested in the reaction of twelve
substituted styrenes, affording the corresponding D-
phenylglycines with excellent optical purities and high
conversions.

The biosynthesis of D-phenylglycine was also tested
starting from L-phenylalanine. A cascade biotransfor-
mation was proposed including nine enzymes, the
seven used in the previous synthesis plus phenylala-
nine ammonia lyase (PAL) and phenylacrylic acid
decarboxylase (PAD). The PAL—PAD was also pre-
pared in four plasmids, leading to 24 strains of E. co/i,
which were tested in the biotransformation of (5)-
phenylalanine in the biphasic system containing
glucose. The E. coli 1.Z143 strain was able to perform
the transformation to enantiopure D-phenylglycine.
Preparative cascades were performed for the conversion

Current Opinion in Green and Sustainable Chemistry 2021, 32:100548
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Figure 2
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(a) Synthesis of p-phenylglycine using an engineered recombinant E. coli (LZ110) in two multienzymatic approaches including the ADH-catalyzed
process, starting from styrene or from L-phenylalanine. (b) Preparation of cinnamyl alcohol in a three-step cascade using an engineered E. coli NST
strain. (c) Artificial multienzymatic cascades to obtain (R)- and (S)-2-phenylglycinols.

of styrene and L-phenylalanine into D-phenylglycine at
the optimized conditions, achieving 62% and 53%
yield, respectively, after 24 h, demonstrating the po-
tential of these one-pot cascades.

(R)- and (8)-2-phenylglycinols are building blocks in
pharmaceutical chemistry which have been recently
prepared in a multienzymatic method [41]. Thus, start-
ing from styrene, a cascade process including four

enzymes, with a styrene monooxygenase from Pseudo-
monas sp. (SMO), an epoxide hydrolase Solanum tuberosum
(S7EH), butanediol dehydrogenase BDHA, and a TA, was
conducted by co-expressing these enzymes from three
plasmids into the strain E. co/-SSBB-1. After optimizing
the reaction conditions, the one-pot biotransformation
was carried out with good yields and complete selectivity.
This biosynthesis was also performed from L-phenylala-
nine, by converting this compound into styrene in a two-
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step process catalyzed by a PAL and a PAD, which were
expressed together and combined with the rest of bio-
catalysts into the strains F£. o/-PPSSBB and E. coli-
PPSSBN. The process was finally developed from
renewable feedstocks as glucose and glycerol, which were
converted into L-phenylalanine by the Shikimate
pathway. Two strains, £. coli NST-PPSSBB and E. co/i
NST-PPSSBN, were engineered, leading to good results
in the preparation of chiral 2-phenylglycinols.

The preparation of cinnamyl alcohol has been performed
in a three-step cascade from L-phenylalanine [42],
combining a PAL from Anabaena variabilis with the car-
boxylic acid reductase from Mycobacterium marinum
(MmCAR) and the ADH from Saccharomyces cerevisiae by
metabolic engineering (Figure 2b). L-Phenylalanine was
produced by the E. co/i NST strain using a mixture of
glycerol and glucose as the carbon source. FE. co/i NST
cells were then transformed with the pZZ-Eva2 vector,
which allows the formation of cinnamyl alcohol. When
the biotransformation was carried out in Terrific broth
(TB) medium, a maximum of 300 mg of the final
product per liter of culture was produced after 24 h. In
mineral media M9, starting from the glycerol/glucose
mixture, the production of cinnamyl alcohol rises up to
80 mg L~ !, with no side-product formation in this re-
action medium.

Chemoenzymatic cascades with ADHs

The combination of chemocatalytic reactions with bio-
transformations catalyzed by ADHs toward chemo-
enzymatic cascade-type one-pot processes has gained a
great interest in the last few years. The application of
catalysts of different nature allows complementing their
different reactivity. Thus, most of the examples devel-
oped until nowadays include metal- and organo-cata-
lyzed carbon-carbon bond formation, combined with a
biocatalyzed reaction. In general, chemical catalysis has
shown high versatility and efficiency, whereas enzymes
are usually more selective. In these chemoenzymatic
methodologies, the compatibility between the chemical
catalyst and the biocatalyst is a key parameter that has to
be precisely controlled [43].

Metal catalysts combined with ADHs

In 2019, the preparation of the odanacatib precursor,
(R)-2,2,2-trifluoro-1-(4’-(methylsulfonyl)-[1,1'-
biphenyl]-4-yl)ethanol, was developed [44]; starting
from 1-(4-bromophenyl)-2,2,2-trifluoroethanone, the
Suzuki—Miyaura coupling of the ketone with boronic
acids, followed by ADH-catalyzed bioreduction led to
the desired alcohol (Figure 3a), with quantitative con-
version using ADH-A, ADH-T, RasADH, or evo-1.1.200.
The cross-coupling reaction was studied, using both
reagents in stoichiometric amounts with 2 mol% of
PdCl;(PPh3);, in the presence of Na,CO3; and water.
When the process was carried out in a one-pot

procedure, 500 mM of the starting ketone gave enan-
tiopure (R)-alcohol with 85% yield.

Recently, a two-step approach combining gold catalysis
and ADH-catalyzed bioreduction was developed for the
preparation of optically active PB,B-disubstituted allylic
alcohols [45], starting from propargylic alcohols
(Figure 3b). These compounds were subjected to the
Meyer—Schuster rearrangement to yield the corre-
sponding a,B-unsaturated ketones in the presence of V-
heterocyclic carbene gold (I) catalysts. Best results were
achieved in the presence of IPrAuNTf; in a mixture of
water/IPA  (4:1 v/v). The bioreduction of (FK)-4-
phenylpent-3-en-2-one led to the formation of (R)- or
(8)-allylic alcohols with FE. coli LOADH or KRED-P1-
A12. This methodology was extended to other prop-
argylic alcohols to achieve the (R)- or the (&§)-allylic
alcohols with high yields and optical purities, even
allowing a 100 mg scale to (R,E)- or (S, F)-enantiomers.

Nanoparticles were combined with ADHs in chemo-
enzymatic cascades in the synthesis of (1.5,3.S)-3-
methylcyclohexanol from  3-methyl-2-cyclohexenone
[46]. The initial step was the metal-catalyzed hydro-
genation of the starting material to 3-methyl-2-
cyclohexanone in the presence of Pd or Pt nano-
particles (NPs), followed by the addition of the ADH
from Thermus sp. ATN1 (TADH). Pt-based NPs led to
quantitative conversion albeit with lower selectivity. In
contrast, the use of the Pd-NPs afforded lower conver-
sions, but the (15,3S)-product had 95% .

Chemocatalysts combined with ADHs

Apart from metal catalysts, some other examples of the
use of chemocatalysts and ADHs for the synthesis of
valuable compounds have been reviewed [12]. In 2020,
the preparation of optically active vicinal fluoro alcohols,
valuable building blocks of natural products, has been
developed in a three-step one-pot procedure starting
from B-ketoesters [47]. These esters were treated with
the lipase CAL-B and Selectfluor in water in a process of
hydrolysis and decarboxylative fluorination to yield the
vicinal fluoroketones that were selectively reduced to
the (5)-fluoro alcohols by the ADH from Kluyveromyces
thermotolerans (KrCR) and to the (R)-products by the
Bacillus sp. ECU0013 ketoreductase (YtbE) with mod-
erate to good yields and high enantioselectivity.

Deracemizations combining chemocatalysts and
ADHs

Chemical catalysts have been combined with ADHs in
deracemization procedures [48]. Synthesis of ¢s- and
trans-3-methylcyclohexanol and other fragrance prod-
ucts has been performed with ADHs in combination
with TEMPO [49]. The starting 1-methylcyclohex-2-
enol undergoes an oxidative 1,3-rearrangement cata-
lyzed by the laccase of Trametes versicolor in the presence

Current Opinion in Green and Sustainable Chemistry 2021, 32:100548
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(a) One-pot ADH-promoted cascade to synthesize an odanacatib precursor by combining Suzuki—Miyaura coupling with RasADH-catalyzed bio-
reduction; (b) One-pot synthesis of optically pure allylic alcohols using a N-heterocyclic gold catalyst and an ADH; (¢) Multienzymatic cascade to obtain
cis- and trans-3-methylcyclohexanol; (d) Procedure for the deracemization of propargyl alcohols combining laccases and ADHs.

of TEMPOBF} as an organic mediator (Figure 3¢). The
resulting enone was reduced by ene reductase OYE1 or
OYE2 to ()-3-methylcyclohexanone with good yields
and excellent selectivity. The cascade was completed by
adding different commercial ADHs to obtain the final
(18,38)-zrans-product (de >98%) or (1R,3.5)-cis config-
uration (>90% de).

In 2020, the laccase from 7 versicolor coupled with
TEMPO [50] was combined with different ADHs to
synthesize optically active propargylic alcohols starting
from a racemic mixture (Figure 3d). The laccase/
TEMPO system performed the oxidation to the prop-
argylic ketones with high yield and selectivity, followed
by the bioreduction using either (§)- or (R)-selective
ADHs giving high to excellent selectivity for the (5)-
selective ADHs. The sequential process was studied in
the deracemization of 50 mM 1-phenylprop-2-yn-1-ol; a
scale-up vyielded the enantio-enriched ()- and (R)-

alcohols with 79% and 83% vyield, respectively. This
methodology was successfully extended to other prop-
argylic alcohols.

Similarly, 2-azaadamantane /N-oxyl, combined with
stoichiometric amounts of NaOCI, has been used as an
organocatalyst for the oxidation of racemic secondary
alcohols to the corresponding ketones, which were then
reduced by isolated commercial ADHs [51]. Thus,
250 mM of 1-(4-trifluoromethyl)-phenylpropan-2-ol was
oxidized to the ketone, further reduced by an ADH to
obtain the desired (§)-alcohol with complete conver-
sion. This method was successfully extended to other
aromatic or aliphatic alcohols.

Conclusions

ADHs have been shown to be compatible with a wide
variety of biocatalysts and chemocatalysts, being used in
concurrent or sequential multistep processes for the
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preparation of different chiral compounds including
vicinal diols, amines, amino alcohols, and lactones,
among others. In the present review, we have given an
overview of the current use of ADHs in various multi-
catalytic processes, using # vitro artificial cascades as
well as whole-cell systems, to give access to enantio-
enriched valuable products.

The future use of ADHs as valuable synthetic catalysts
in cascades will certainly continue to evolve not only
with the discovery of new ADH libraries [52], protein
and cofactor engineering, and metalloprotein modifica-
tions [53] but also with novel combinations of bio-
catalysts/chemocatalysts/organocatalysts, thus
expanding the (bio)catalytic toolbox to access new
synthetic routes [54].
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